
Simulink®

Reference

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Reference
© COPYRIGHT 2002–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
July 2002 Online only Revised for Simulink 5 (Release 13)
April 2003 Online only Revised for Simulink 5.1 (Release 13SP1)
April 2004 Online only Revised for Simulink 5.1.1 (Release 13SP1+)
June 2004 Online only Revised for Simulink 6 (Release 14)
October 2004 Online only Revised for Simulink 6.1 (Release 14SP1)
March 2005 Online only Revised for Simulink 6.2 (Release 14SP2)
September 2005 Online only Revised for Simulink 6.3 (Release 14SP3)
March 2006 Online only Revised for Simulink 6.4 (Release 2006a)
September 2006 Online only Revised for Simulink 6.5 (Release 2006b)
March 2007 Online only Revised for Simulink 6.6 (Release 2007a)
September 2007 Online only Revised for Simulink 7.0 (Release 2007b)
March 2008 Online only Revised for Simulink 7.1 (Release 2008a)
October 2008 Online only Revised for Simulink 7.2 (Release 2008b)
March 2009 Online only Revised for Simulink 7.3 (Release 2009a)
September 2009 Online only Revised for Simulink 7.4 (Release 2009b)
March 2010 Online only Revised for Simulink 7.5 (Release 2010a)
September 2010 Online only Revised for Simulink 7.6 (Release 2010b)
April 2011 Online only Revised for Simulink 7.7 (Release 2011a)
September 2011 Online only Revised for Simulink 7.8 (Release 2011b)
March 2012 Online only Revised for Simulink 7.9 (Release 2012a)
September 2012 Online only Revised for Simulink 8.0 (Release 2012b)
March 2013 Online only Revised for Simulink 8.1 (Release 2013a)
September 2013 Online only Revised for Simulink 8.2 (Release 2013b)
March 2014 Online only Revised for Simulink 8.3 (Release 2014a)
October 2014 Online only Revised for Simulink 8.4 (Release 2014b)
March 2015 Online only Revised for Simulink 8.5 (Release 2015a)
September 2015 Online only Revised for Simulink 8.6 (Release 2015b)
October 2015 Online only Rereleased for Simulink 8.5.1 (Release 2015aSP1)
March 2016 Online only Revised for Simulink 8.7 (Release 2016a)
September 2016 Online only Revised for Simulink 8.8 (Release 2016b)
March 2017 Online only Revised for Simulink 8.9 (Release 2017a)
September 2017 Online only Revised for Simulink 9.0 (Release 2017b)
March 2018 Online only Revised for Simulink 9.1 (Release 2018a)
September 2018 Online only Revised for Simulink 9.2 (Release 2018b)
March 2019 Online only Revised for Simulink 9.3 (Release 2019a)
September 2019 Online only Revised for Simulink 10.0 (Release 2019b)
March 2020 Online only Revised for Simulink 10.1 (Release 2020a)
September 2020 Online only Revised for Simulink 10.2 (Release 2020b)
March 2021 Online only Revised for Simulink 10.3 (Release 2021a)
September 2021 Online only Revised for Simulink 10.4 (Release 2021b)
March 2022 Online only Revised for Simulink 10.5 (Release 2022a)
September 2022 Online only Revised for Simulink 10.6 (Release 2022b)
March 2023 Online only Revised for Simulink 10.7 (Release 2023a)

Blocks
1

Functions
2

Mask Icon Drawing Commands
3

Simulink Debugger Commands
4

Classes
5

Model and Block Parameters
6

Programmatic Model Editor Appearance Parameters 6-2

Internal Programmatic Model Settings . 6-9

Common Block Properties . 6-12
Examples of Setting Block Properties . 6-23

Block-Specific Parameters . 6-24
Programmatic Parameters of Blocks and Models 6-24
Block-Specific Parameters and Programmatic Equivalents 6-24

Mask Parameters . 6-128
About Mask Parameters . 6-128

v

Contents

Tools and Apps
7

Objects
8

Model Advisor Checks
9

Simulink Checks . 9-2
Simulink Check Overview . 9-4
Migrating to Simplified Initialization Mode Overview 9-4
Identify unconnected lines, input ports, and output ports 9-5
Check root model Inport block specifications . 9-5
Check optimization settings . 9-6
Check diagnostic settings ignored during accelerated model reference

simulation . 9-8
Check for parameter tunability information ignored for referenced models

. 9-9
Check for implicit signal resolution . 9-9
Check for optimal bus virtuality . 9-10
Check for Discrete-Time Integrator blocks with initial condition uncertainty

. 9-10
Identify disabled library links . 9-11
Check for large number of function arguments from virtual bus across

model reference boundary . 9-12
Identify parameterized library links . 9-12
Identify unresolved library links . 9-13
Identify configurable subsystem blocks for converting to variant subsystem

blocks . 9-14
Identify Variant Model blocks and convert those to Variant Subsystem

containing Model block choices . 9-14
Identify Variant blocks using Variant objects with empty conditions 9-15
Check usage of function-call connections . 9-15
Check Data Store Memory blocks for multitasking, strong typing, and

shadowing issues . 9-15
Check if read/write diagnostics are enabled for data store blocks 9-16
Check data store block sample times for modeling errors 9-17
Check for potential ordering issues involving data store access 9-18
Check structure parameter usage with bus signals 9-19
Check Delay, Unit Delay and Zero-Order Hold blocks for rate transition . 9-20
Check for calls to slDataTypeAndScale . 9-22
Check bus signals treated as vectors . 9-23
Check for potentially delayed function-call subsystem return values 9-23
Identify block output signals with continuous sample time and non-floating

point data type . 9-24
Check usage of Merge blocks . 9-25
Check usage of Outport blocks . 9-27
Check usage of Discrete-Time Integrator blocks 9-34

vi Contents

Check model settings for migration to simplified initialization mode 9-35
Check S-functions in the model . 9-36
Check for non-continuous signals driving derivative ports 9-37
Runtime diagnostics for S-functions . 9-38
Identify unit mismatches in the model . 9-39
Identify automatic unit conversions in the model 9-39
Identify disallowed unit systems in the model . 9-39
Identify undefined units in the model . 9-40
Identify ambiguous units in the model . 9-40
Check model for block upgrade issues . 9-41
Check model for block upgrade issues requiring compile time information

. 9-41
Check if SLX file compression is off . 9-42
Check that the model or library is saved in current version 9-43
Check model for SB2SL blocks . 9-43
Check Model History properties . 9-44
Identify Model Info blocks that can interact with external source control

tools . 9-45
Check model for upgradable SerDes Toolbox blocks 9-45
Check model for legacy 3DoF or 6DoF blocks . 9-46
Check model for Aerospace Blockset navigation blocks 9-46
Check and update masked blocks in library to use promoted parameters

. 9-47
Check and update mask image display commands with unnecessary

imread() function calls . 9-48
Check and update mask to affirm icon drawing commands dependency on

mask workspace . 9-48
Identify masked blocks that specify tabs in mask dialog using

MaskTabNames parameter . 9-49
Identify questionable operations for strict single-precision design 9-50
Check get_param calls for block CompiledSampleTime 9-51
Check if all simulation outputs are returned as a single

Simulink.SimulationOutput object . 9-52
Check model for parameter initialization and tuning issues 9-53
Check for virtual bus across model reference boundaries 9-54
Check model for custom library blocks that rely on frame status of the

signal . 9-55
Check model for S-function upgrade issues . 9-55
Update System object syntax . 9-56
Check Rapid accelerator signal logging . 9-57
Check virtual bus inputs to blocks . 9-58
Check for root outports with constant sample time 9-61
Analyze model hierarchy and continue upgrade sequence 9-61
Check Access to Data Stores . 9-62
Check relative execution orders for Data Store Read and Data Store Write

blocks . 9-63
Check for case mismatches in references to models and libraries 9-64
Check model for Signal Builder blocks . 9-64
Check output dimensions of MATLAB Function blocks 9-64
Check model for RF Blockset Divider blocks using Wilkinson power divider

component with broken connections . 9-65
Identify Environment Controller Blocks and Replace Them with Variant

Source Blocks . 9-66
Identify variant blocks with VariantActivation set to "Inherit From

Simulink.VariantControl" but does not use Simulink.VariantControl . . 9-67
Check for machine-parented data . 9-67

vii

Identify clones from the linked library . 9-69
Refactor Bus Selector and Bus Creator blocks to In Bus Element and Out

Bus Element blocks . 9-70

Performance Advisor Checks
10

Simulink Performance Advisor Checks . 10-2
Simulink Performance Advisor Check Overview 10-2
Baseline . 10-3
Checks that Require Update Diagram . 10-3
Checks that Require Simulation to Run . 10-3
Check Simulation Modes Settings . 10-3
Check Compiler Optimization Settings . 10-3
Check Hardware Acceleration Settings . 10-3
Create baseline . 10-4
Identify resource-intensive diagnostic settings . 10-4
Check optimization settings . 10-4
Identify inefficient lookup table blocks . 10-4
Check MATLAB System block simulation mode . 10-5
Identify Interpreted MATLAB Function blocks . 10-5
Identify simulation target settings . 10-6
Check model reference rebuild setting . 10-6
Identify Scope blocks . 10-6
Identify active instrumentation settings on the model 10-6
Check model reference parallel build . 10-7
Check Delay block circular buffer setting . 10-8
Check continuous and discrete rate coupling . 10-8
Check zero-crossing impact on continuous integration 10-9
Check discrete signals driving derivative port . 10-9
Check solver type selection . 10-9
Select multi-thread co-simulation setting on or off 10-10
Identify co-simulation signals for numerical compensation 10-11
Check Dataflow Domain Settings . 10-11
Select simulation mode . 10-11
Select compiler optimizations on or off . 10-12
Select hardware acceleration setting . 10-12
Final Validation . 10-13

Simulink Limits
11

Maximum Size Limits of Simulink Models . 11-2

Systems and Models . 11-3
System . 11-3
System Component . 11-3
Model . 11-3
Model Component . 11-4

viii Contents

Differential Algebraic Equations . 11-5

Simulink Models . 11-6
Block Diagram . 11-6
Blocks . 11-7
Lines . 11-10
Data . 11-11
Parameters . 11-15
Properties . 11-17
State variables . 11-21
Sample Time . 11-24
Units . 11-25
Direct Feedthrough . 11-25
Algebraic Loop . 11-26
Artificial Algebraic Loops . 11-26
Zero-Crossing Detection . 11-27

Simulink Simulation . 11-28
Compilation . 11-28
Callback . 11-29
Execution Order . 11-29
Simulation . 11-30
Solver . 11-30

Simulink Tools . 11-33

Programming Constructs in Simulink . 11-44

Model Development Processes . 11-46
Test Harness . 11-48

What is Simulink Online? . 11-49

Block Reference Page Examples
12

Function-Call Subsystems with Multiple Initiators 12-6

Extract Output Elements of Feedback System . 12-8

Programmatically Create Bus Element Ports . 12-10

Manage Bus-to-Vector Conversions . 12-16

Initialize Your Model Using the Callback Button Block 12-18

Control a Parameter Value with Callback Button Blocks 12-19

Control the Duty Cycle of a PWM Signal Using Dashboard Blocks 12-21

Control Merging Signals with the Push Button Block 12-23

ix

Tune the Relative Slip for an Anti-Lock Braking System 12-25

Interactively Simulate a Vehicle Climate Control System 12-27

Interactively Simulate a Thermal Model of a House 12-30

Create a Realistic Dashboard Using the Circular Gauge Block 12-32

Solve a Linear System of Algebraic Equations . 12-35

Model a Planar Pendulum . 12-36

Improved Linearization with Transfer Fcn Blocks 12-39

View Dead Zone Output on Sine Wave . 12-40

View Backlash Output on Sine Wave . 12-41

Prelookup With External Breakpoint Specification 12-42

Prelookup with Evenly Spaced Breakpoints . 12-43

Configure the Prelookup Block to Output Index and Fraction as a Bus
. 12-44

Approximating the sinh Function Using the Lookup Table Dynamic Block
. 12-45

Create a Logarithm Lookup Table . 12-46

Providing Table Data as an Input to the Direct Lookup Table Block . . 12-47

Specifying Table Data in the Direct Lookup Table Block Dialog Box . . 12-48

Using the Quantizer and Saturation blocks in sldemo_boiler 12-49

Scalar Expansion with the Coulomb and Viscous Friction Block 12-50

Sum Block Reorders Inputs . 12-51

Iterated Assignment with the Assignment Block 12-52

View Sample Time Using the Digital Clock Block 12-53

Bit Specification Using a Positive Integer . 12-54

Bit Specification Using an Unsigned Integer Expression 12-55

Track Running Minimum Value of Chirp Signal 12-56

Unary Minus of Matrix Input . 12-57

Sample Time Math Operations Using the Weighted Sample Time Math
Block . 12-58

x Contents

Construct Complex Signal from Real and Imaginary Parts 12-59

Construct Complex Signal from Magnitude and Phase Angle 12-60

Find Nonzero Elements in an Array . 12-61

Calculate the Running Minimum Value with the MinMax Running
Resettable Block . 12-62

Find Maximum Value of Input . 12-64

Permute Array Dimensions . 12-66

Multiply Inputs of Different Dimensions with the Product Block 12-67

Multiply and Divide Inputs Using the Product Block 12-68

Divide Inputs of Different Dimensions Using the Divide Block 12-69

Complex Division Using the Product of Elements Block 12-70

Element-Wise Multiplication and Division Using the Product of Elements
Block . 12-71

sin Function with Floating-Point Input . 12-72

sincos Function with Fixed-Point Input . 12-73

Trigonometric Function Block Behavior for Complex Exponential Output
. 12-74

Control Algorithm Execution Using Enumerated Signal 12-75

Integer and Enumerated Data Type Support in the Ground Block 12-77

Fixed-Point Data Type Support in the Ground Block 12-78

Read 2-D Signals in Structure Format From Workspace 12-79

Eliminate Singleton Dimension with the Squeeze Block 12-80

Difference Between Time- and Sample-Based Pulse Generation 12-81

Specify a Waveform with the Repeating Sequence Block 12-83

Tune Phase Delay on Pulse Generator During Simulation 12-84

Difference Sine Wave Signal . 12-85

Discrete-Time Derivative of Floating-Point Input 12-86

First-Order Sample-and-Hold of a Sine Wave . 12-87

xi

Calculate and Display Simulation Step Size using Memory and Clock
Blocks . 12-88

Capture the Velocity of a Bouncing Ball with the Memory Block 12-89

Implement a Finite-State Machine with the Combinatorial Logic and
Memory Blocks . 12-91

Discrete-Time Integration Using the Forward Euler Integration Method
. 12-92

Signal Routing with the From, Goto, and Goto Tag Visibility Blocks . . 12-93

Zero-Based and One-Based Indexing with the Index Vector Block 12-95

Noncontiguous Values for Data Port Indices of Multiport Switch Block
. 12-96

Using Variable-Size Signals on the Delay Block 12-97

Buses with the Delay Block for Frame-Based Processing 12-98

Control Execution of Delay Block with Enable Port 12-99

Zero-Based Indexing for Multiport Switch Data Ports 12-100

One-Based Indexing for Multiport Switch Data Ports 12-101

Enumerated Names for Data Port Indices of the Multiport Switch Block
. 12-102

Prevent Block Windup in Multiloop Control . 12-103

Bumpless Control Transfer . 12-104

Bumpless Control Transfer with a Two-Degree-of-Freedom PID Controller
. 12-105

Using a Bit Set block . 12-106

Using a Bit Clear block . 12-107

Two-Input AND Logic . 12-108

Circuit Logic . 12-109

Unsigned Inputs for the Bitwise Operator Block 12-110

Signed Inputs for the Bitwise Operator Block 12-111

Merge Block with Input from Atomic Subsystems 12-112

Index Options with the Selector Block . 12-113

xii Contents

Switch Block with a Boolean Control Port Example 12-114

Merge Block with Unequal Input Widths Example 12-115

Detect Rising Edge of Signals . 12-117

Detect Falling Edge Using the Detect Fall Nonpositive Block 12-119

Detect Increasing Signal Values with the Detect Increase Block 12-120

Extract Bits from Stored Integer Value . 12-121

Detect Signal Values Within a Dynamically Specified Interval 12-122

Model a Digital Thermometer Using the Polynomial Block 12-124

Convert Data Types in Simulink Models . 12-125

Control Data Types with the Data Type Duplicate Block 12-127

Probe Sample Time of a Signal . 12-128

Convert Signals Between Continuous Time and Discrete Time 12-129

Remove Scaling from a Fixed-Point Signal . 12-131

Stop Simulation Block with Relational Operator Block 12-132

Output Simulation Data with Blocks . 12-133

Increment and Decrement Real-World Values 12-137

Increment and Decrement Stored Integer Values 12-139

Specify a Vector of Initial Conditions for a Discrete Filter Block 12-140

Generate Linear Models for a Rising Edge Trigger Signal 12-142

Generate Linear Models at Predetermined Times 12-144

Capture Measurement Descriptions in a DocBlock 12-146

Square Root of Negative Values . 12-147

Signed Square Root of Negative Values . 12-148

rSqrt of Floating-Point Inputs . 12-149

rSqrt of Fixed-Point Inputs . 12-150

Model a Series RLC Circuit . 12-151

Detect Change in Signal Values . 12-154

xiii

Detect Fall to Negative Signal Values . 12-155

Detect Decreasing Signal Values . 12-156

Function-Call Blocks Connected to Branches of the Same Function-Call
Signal . 12-157

Function-Call Feedback Latch on Feedback Signal Between Child and
Parent . 12-158

Single Function-Call Subsystem . 12-159

Function-Call Subsystem with Merged Signal As Input 12-160

Partitioning an Input Signal with the For Each Block 12-161

Specifying the Concatenation Dimension in the For Each Block 12-162

Working with the Initialize Function, Reset Function, and Terminate
Function Blocks . 12-163

Reading and Writing States with the Initialize Function and Terminate
Function Blocks . 12-164

Use Parameter Writer Block to Change Parameter of Block Inside
Referenced Model . 12-165

Use Parameter Writer Block to Change Block Parameters 12-166

PWM Control of a Boost Converter . 12-167

Voltage Controlled Oscillator . 12-170

Check Signal Lower Bound with Check Dynamic Lower Bound Block
. 12-172

Check Signal Upper Bound with Check Dynamic Upper Bound Block
. 12-174

Check Signal Lower Bound with Check Static Lower Bound Block . . 12-176

Check Signal Range with Check Static Range Block 12-178

Check Signal Upper Bound with Check Static Upper Bound Block . . 12-180

Check Signal Slope with Check Discrete Gradient Block 12-182

Check Signal Value with Check Dynamic Gap Block 12-184

Check Signal Value with Check Static Gap Block 12-186

Check Signal Range with Check Dynamic Range Block 12-188

Check Signal Resolution with Check Input Resolution Block 12-190

xiv Contents

Generate Unit-Diagonal and Identity Matrices 12-193

Extract 3-by-2 Submatrix from Input Signal . 12-194

Generate Diagonal Matrix from Vector Input . 12-196

Permute Matrix by Row or Column . 12-197

Extract Diagonal of Matrix . 12-198

Calculate Optical Flow by Using Neighborhood Processing Subsystem
Blocks . 12-199

Perform Fog Rectification by Using Neighborhood Processing Subsystem
Blocks . 12-205

Perform Corner Detection by Using Neighborhood Processing Subsystem
Blocks . 12-214

Convert RGB Image to Grayscale by Using a Neighborhood Processing
Subsystem Block . 12-222

Perform Edge Detection by Using a Neighborhood Processing Subsystem
Block . 12-227

Model Constant Propagation Delay . 12-231

Model Variable Propagation Delay . 12-235

Schedule When Traffic Camera Takes Snapshot 12-237

Model Effect of Temperature and Jitter on Crystal Oscillation Frequency
. 12-240

Behavior of Right Bit Shifts . 12-243

Effect of Binary Point Shifts . 12-244

Sign Block Behavior for Real Inputs . 12-245

Sign Block Behavior for Complex Issues . 12-246

Working with the Reinitialize Function Block 12-247

Simulink Featured Examples
13

Simulation of Bouncing Ball . 13-6

Single Hydraulic Cylinder Simulation . 13-11

xv

Thermal Model of a House . 13-21

Approximating Nonlinear Relationships: Type S Thermocouple 13-26

Digital Waveform Generation: Approximating a Sine Wave 13-35

Simulate DC Motor Step Response Using Local Solver 13-45

Accurate Zero-Crossing Detection . 13-54

Spiral Galaxy Formation Simulation Using MATLAB Function Blocks
. 13-55

Counters Using Conditionally Executed Subsystems 13-59

Friction Model with Hard Stops . 13-61

State Events . 13-63

Bang-Bang Control Using Temporal Logic . 13-64

Inverted Pendulum with Animation . 13-65

Double Spring Mass System . 13-67

Tank Fill and Empty with Animation . 13-69

Simulating Systems with Variable Transport Delay Phenomena 13-72

Modeling a Foucault Pendulum . 13-76

Foucault Pendulum Model with VRML Visualization 13-84

Explore Variable-Step Solvers with Stiff Model 13-87

Exploring the Solver Jacobian Structure of a Model 13-93

Double Bouncing Ball: Use of Adaptive Zero-Crossing Location 13-102

Four Hydraulic Cylinder Simulation . 13-109

Two Cylinder Model with Load Constraints . 13-115

Van der Pol Oscillator . 13-121

Model a Fault-Tolerant Fuel Control System . 13-124

Using a Data Dictionary to Manage the Data for a Fuel Control System
. 13-139

Modeling Engine Timing Using Triggered Subsystems 13-142

Engine Timing Model with Closed Loop Control 13-152

xvi Contents

Building a Clutch Lock-Up Model . 13-156

Modeling Clutch Lock-Up Using If Blocks . 13-167

Modeling an Anti-Lock Braking System . 13-172

Automotive Suspension . 13-178

Model an Automatic Transmission Controller 13-184

Vehicle Electrical System . 13-195

Simulating Automatic Climate Control Systems 13-197

Vehicle Electrical and Climate Control Systems 13-202

Power Window Control Project . 13-208

Developing the Apollo Lunar Module Digital Autopilot 13-215

Designing a High Angle of Attack Pitch Mode Control 13-225

Six Degrees of Freedom (6-DoF) Motion Platform 13-238

Aircraft Longitudinal Flight Control . 13-241

Simulink® Model Discretizer . 13-243

Radar Tracking Using MATLAB Function Block 13-244

Optical Sensor Image Generation . 13-246

Air Traffic Control Radar Design . 13-255

Design a Guidance System in MATLAB and Simulink 13-260

Airframe Trim and Linearize . 13-276

Anti-Windup Control Using PID Controller Block 13-281

Bumpless Control Transfer Between Manual and PID Control 13-297

Two Degree-of-Freedom PID Control for Setpoint Tracking 13-306

Data Typing in Simulink . 13-312

Data Typing Filter . 13-316

Explore Simulink Bus Capabilities . 13-318

Model Arrays of Buses . 13-326

Matrix Signals . 13-328

xvii

Variable-Size Signal Basic Operations . 13-329

Variable-Size Signal Length Adaptation . 13-331

Multimode Variable-Size Signal . 13-332

Parallel Channel Power Allocation . 13-333

Merging Signals . 13-335

Share Data Store Between Instances of a Reusable Algorithm 13-348

Attaching Input Data to External Inputs via Custom Input Mappings
. 13-353

Using Mapping Modes with Custom-Mapped External Inputs 13-357

Create Harness-Free Models with MAT File Input Data 13-361

Logging States in Structure Format . 13-366

Logging Intervals . 13-369

Working with Big Data . 13-372

Simulink Subsystem Semantics . 13-377

If-Then-Else Blocks . 13-378

Triggered Subsystems . 13-380

Enabled Subsystems . 13-382

Advanced Enabled Subsystems . 13-384

Resettable Subsystems . 13-387

Discrete and Continuous Resettable Subsystems 13-389

Block Priority . 13-392

Monitoring Ink Status on a Shared Printer Using Simulink Functions
. 13-393

Model Reusable Components Using Multiply Instanced Simulink
Functions . 13-395

Dynamic Priority Scheduling of Functions . 13-397

Component-Based Modeling with Model Reference 13-398

Viewing Signals in Model Reference Instances 13-402

Visualize Model Reference Hierarchies . 13-410

xviii Contents

Perform Block-Level Impact Analysis Using Dependency Analyzer . . 13-415

Introduction to Managing Data with Model Reference 13-418

Interface Specification Using Bus Objects . 13-420

Convert Subsystem to Referenced Model . 13-427

Use Data Stores Across Multiple Models . 13-429

Model Reference Function-Call . 13-435

Explore Protected Model Capabilities . 13-437

Model Reference Variants . 13-442

Assign Tasks to Cores for Multicore Programming 13-446

Implement an FFT on a Multicore Processor and an FPGA 13-449

Multicore Programming of a Field-Oriented Control on Zynq 13-453

Multicore Deployment of a Plant Model . 13-459

Modeling Objects with Identical Dynamics Using For Each Subsystem
. 13-463

Vectorizing a Scalar Algorithm with a For Each Subsystem 13-468

Tiled Processing of 2D Signals with For Each Subsystem 13-470

Using a Project with SVN . 13-471

Using a Project with Git . 13-476

Get Started with MATLAB Projects . 13-480

Perform Impact Analysis with a Project . 13-484

Work with Referenced Projects . 13-491

Automate Label Management in a Project . 13-494

Run Custom Tasks with a Project . 13-497

Upgrade Simulink Models Using a Project . 13-500

Share Subset of Project Files Using Labels . 13-502

Create and Reference a Project Programmatically 13-505

Organize Projects into Components Using References and Git
Submodules . 13-509

xix

Compare and Merge Simulink Models . 13-516

Compare and Merge Simulink Models Containing Stateflow 13-518

Resolve Conflicts with Simulink Three-Way Merge 13-521

Call C Functions Using C Caller Block . 13-527

Use Custom Image Filter Algorithms as Reusable Blocks in Simulink
. 13-531

Custom Code and Hand Coded Blocks Using the S-function API 13-533

Inputs Passed by Value or Address to Legacy Functions 13-534

Output Passed by Return Argument from Legacy Functions 13-537

Fixed Point Signals in Legacy Functions . 13-539

Fixed Point Parameters in Legacy Functions . 13-542

Lookup Tables Implemented in Legacy Functions 13-545

Start and Terminate Actions Within Legacy Functions 13-548

Using Buses with Legacy Functions Having Structure Arguments . . . 13-552

Inherited Signal Dimensions for Legacy Function Arguments 13-555

C++ Object Methods as Legacy Functions . 13-558

Persistent Memory Within Legacy Functions . 13-561

Multi-Dimensional Signals in Legacy Functions 13-564

Complex Signals in Legacy Function . 13-566

Specified or Inherited Sample Time with Legacy Functions 13-568

Illustration of Law of Large Numbers . 13-571

Using Buses with MATLAB System Blocks . 13-573

Run Quality Checks on S-Functions . 13-575

Using the Prelookup and Interpolation Blocks 13-577

Saving Memory in Prelookup and Interpolation Blocks by Using Smaller
Data . 13-582

Model Advisor . 13-583

Introduction to Profiling Models . 13-584

xx Contents

Introduction to Accelerating Models . 13-587

Determine Why Simulink Accelerator Is Regenerating Code 13-589

Parallel Simulations Using Parsim: Test-Case Sweep 13-594

Parallel Simulations Using Parsim: Parameter Sweep in Normal Mode
. 13-598

Parallel Simulations Using Parsim: Parameter Sweep in Rapid Accelerator
Mode . 13-602

Rapid Accelerator Simulations Using Parsim . 13-606

Multiple Simulations Workflow Tips . 13-610

Streamline Simulink Blockset Authoring Process with Blockset Designer
. 13-614

Import Co-Simulation FMU into Simulink . 13-615

Importing a Model Exchange FMU into Simulink 13-616

Simplify Interface for Structured Data with FMU Import Block 13-617

Co-Simulation Signal Compensation . 13-619

Using Numerical Compensation for Co-Simulation Integration 13-625

Multithread Co-Simulation . 13-631

Pulse Width Modulation Using MATLAB System Block 13-633

Modeling Cyber-Physical Systems . 13-634

Power Analysis of Spring Mass Damper System 13-639

Schedule an Export-Function Model Using the Schedule Editor 13-642

Graph-Based Multithread Simulation . 13-646

Find Shortest Control Path in Simulink Model 13-648

Use Fixed-Step Zero-Crossing Detection for Faster Simulations 13-653

xxi

Blocks

1

Abs
Output absolute value of input

Libraries:
Simulink / Math Operations
HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description
The Abs block outputs the absolute value of the input.

For signed-integer data types, the absolute value of the most negative value is not representable by
the data type. In this case, the Saturate on integer overflow check box controls the behavior of the
block.

If you... The block... And...
Select this check box Saturates to the most

positive value of the integer
data type

• For 8-bit signed integers, -128 maps to 127.
• For 16-bit signed integers, -32768 maps to

32767.
• For 32-bit signed integers, -2147483648

maps to 2147483647.
Do not select this
check box

Wraps to the most negative
value of the integer data
type

• For 8-bit signed integers, -128 remains -128.
• For 16-bit signed integers, -32768 remains

-32768.
• For 32-bit signed integers, -2147483648

remains -2147483648.

The Abs block supports zero-crossing detection. However, when you select Enable zero-crossing
detection on the dialog box, the block does not report the simulation minimum or maximum in the
Fixed-Point Tool. If you want to use the Fixed-Point Tool to analyze a model, disable zero-crossing
detection for all Abs blocks in the model first.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal to the absolute value block.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

1 Blocks

1-2

Output

Port_1 — Absolute value output signal
scalar | vector

Absolute value of the input signal.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
Main

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'
Default: 'on'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Signal Attributes

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

 Abs

1-3

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

1 Blocks

1-4

Inherit: Same as input (default) | Inherit: Inherit via internal ruleInherit:
Inherit via back propagation | | double | single | half | int8 | int32 | uint32 | int64 |
uint64 | fixdt(1,16,2^0,0) | <data type expression> | ...

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

Dependencies

When input is a floating-point data type smaller than single precision, the Inherit: Inherit via
internal rule output data type depends on the setting of the “Inherit floating-point output type
smaller than single precision” configuration parameter. Data types are smaller than single precision
when the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Same as input' | 'Inherit: Inherit via internal rule'|
'Inherit: Inherit via back propagation' | 'single' | 'half' | 'int8' | 'uint8' |
int16 | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | fixdt(1,16,2^0,0) | '<data type expression>'
Default: 'Inherit: Same as input'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB® rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

 Abs

1-5

Saturate on integer overflow — Choose the behavior when integer overflow occurs

off (default) | on

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Action Reason for Taking This
Action

What Happens Example

Select this check
box.

Your model has possible
overflow and you want explicit
saturation protection in the
generated code.

Overflows saturate to the
maximum value that the data
type can represent.

The number 130 does not fit
in a signed 8-bit integer and
saturates to 127.

Do not select this
check box.

You want to optimize
efficiency of your generated
code.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The number 130 does not fit
in a signed 8-bit integer and
wraps to -126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

1 Blocks

1-6

HDL Coder™ provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Native Floating Point
LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min, or

Zero for the floating-point operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

Complex Data Support

This block supports code generation for complex signals with floating-point types in Native
Floating Point mode.

Code generation for the block with complex signals that use fixed-point types is not supported. To
calculate the magnitude of a complex number, use the Complex to Magnitude-Angle block instead.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Sign | Sum

 Abs

1-7

Action Port
Control port for action signal to If Action Subsystem or Switch Case Action Subsystem block

Description
The Action Port block controls the execution of these subsystem blocks:

• If Action Subsystem blocks connected to If blocks.
• Switch Case Action Subsystem blocks connected to Switch Case blocks.
• Simulink based states in Stateflow® charts. See “Create and Edit Simulink Based States”
(Stateflow).

Parameters
States when execution is resumed — Select handling of internal states

held (default) | reset

Select how to handle internal states when a subsystem with an Action Port block reenables.

held
When the subsystem reenables, retain the previous state values of the subsystem. Previous state
values between calls are retained even if you call other subsystem blocks connected to the If or
Switch Case block.

reset
When the subsystem reenables, reinitialize the state values.

A subsystem reenables when the logical expression for its action port evaluates to true after
having been previously false. In the following example, the Action Port blocks for both subsystems
A and B have the States when execution is resumed parameter set to reset.

When case[1] is true, subsystem A is executed. Repeated calls to subsystem A while case [1]
continues to be true, does not reset its state values. The same behavior applies to subsystem B.

1 Blocks

1-8

Programmatic Use
Block Parameter: InitializeStates
Type: character vector
Value: 'held' | 'reset'
Default: 'held'

Propagate sizes of variable-size signals — Select when to propagate a variable-size signal

Only when execution is resumed (default) | During execution

Select when to propagate a variable-size signal.

Only when execution is resumed
Propagate variable-size signals only when reenabling the subsystem containing the Action Port
block.

During execution
Propagate variable-size signals at each time step.

Programmatic Use
Block Parameter: PropagateVarSize
Type: character vector
Values: 'Only when execution is resumed' | 'During execution'
Default: 'Only when execution is resumed'

Version History
Introduced before R2006a

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

See Also
If | If Action Subsystem | Switch Case | Switch Case Action Subsystem

Topics
Select Subsystem Execution

 Action Port

1-9

Add, Subtract, Sum of Elements, Sum
Add or subtract inputs

Libraries:
Simulink / Math Operations
HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description
The Sum block performs addition or subtraction on its inputs. The Add, Subtract, Sum of Elements,
and Sum blocks are identical blocks. This block can add or subtract scalar, vector, or matrix inputs. It
can also collapse the elements of a signal and perform a summation.

You specify the operations of the block with the List of signs parameter with plus (+), minus (-), and
spacer (|).

• The number of + and - characters equals the number of inputs. For example, +-+ requires three
inputs. The block subtracts the second (middle) input from the first (top) input, and then adds the
third (bottom) input.

• A spacer character creates extra space between ports on the block icon.
• If performing only addition, you can use a numerical value equal to the number of inputs.
• If only there is only one input port, a single + or - adds or subtracts the elements over all

dimensions or in the specified dimension.

The Sum block first converts the input data type to its accumulator data type, then performs the
specified operations. The block converts the result to its output data type using the specified
rounding and overflow modes.

Calculation of Block Output

Output calculation for the Sum block depends on the number of block inputs and the sign of input
ports:

If the Sum block has... And... The formula for output
calculation is...

Where...

One input port The input port sign is + y = e[0] + e[1] + e[2] ... +
e[m]

e[i] is the ith element of
input u

The input port sign is – y = 0.0 – e[0] – e[1] –
e[2] ... – e[m]

Two or more input ports All input port signs are – y = 0.0 – u[0] – u[1] –
u[2] ... – u[n]

u[i] is the input to the ith
input port

1 Blocks

1-10

If the Sum block has... And... The formula for output
calculation is...

Where...

The kth input port is the
first port where the sign is
+

y = u[k] – u[0] – u[1] – u[2]
– u[k–1] (+/–) u[k+1] ...
(+/–) u[n]

Ports
Inputs

The inputs can be of different data types, unless you select the Require all inputs to have the
same data type parameter.

Port_1 — First input operand signal
scalar | vector | matrix

Input signal to the addition or subtraction operation. If there is only one input signal, then addition or
subtraction is performed on the elements over all dimensions or the specified dimension.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Port_n — nth input operand signal
scalar | vector | matrix

nth input signal to the operations. The number of inputs matches the number of signs in the List of
signs parameter. The block applies the operations to the inputs in the order listed. You can also use a
numerical value equal to the number of input ports as the List of signs parameter. The block creates
the input ports and applies addition to all inputs. For example, if you assign 5 for the List of signs
parameter, the block creates 5 input ports and adds them together to produce the output.

All nonscalar inputs must have the same dimensions. Scalar inputs are expanded to have the same
dimensions as other inputs.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal resulting from addition and/or subtraction operations. The output signal has the same
dimension as the input signals.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

 Add, Subtract, Sum of Elements, Sum

1-11

Parameters
Main

Icon shape — Block icon shape

rectangular (default) | round

Designate the icon shape of the block as rectangular or round.

For a rectangular block, the first input port is the top port. For a round Sum block, the first input port
is the port closest to the 12 o'clock position going in a counterclockwise direction around the block.
Similarly, other input ports appear in counterclockwise order around the block.

Programmatic Use
Block Parameter: IconShape
Type: character vector
Values: 'rectangular' | 'round'
Default: 'round'

List of signs — Operations performed on inputs

++ (default) | + | - | | | integer

Enter addition and subtraction operations performed on the inputs. An input port is created for each
operation. A spacer (|) creates extra space between the input ports on the block icon. Addition is the
default operation. If you only want to add the inputs, enter the number of input ports. The operations
are performed in the order listed.

When you enter only one element, the block enables the Sum over parameter. For a single vector
input, + or - adds or subtracts the elements over all dimensions or in the specified dimension.

Tips

You can manipulate the positions of the input ports on the block by inserting spacers (|) between the
signs in the List of signs parameter. For example, “++|--” creates an extra space between the
second and third input ports.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: '+' | '-' | | | integer
Default: '++'

Sum over — Dimensions for operations on a single vector input

All dimensions (default) | Specified dimension

Select the dimension over which the block performs the sum-over operation.

For All dimensions, all input elements are summed. When you select configuration parameter Use
algorithms optimized for row-major array layout, Simulink enables row-major algorithms for
simulation. To generate row-major code, set configuration parameter Array layout (Simulink Coder)
to Row-major in addition to selecting Use algorithms optimized for row-major array layout. The
column-major and row-major algorithms differ only in the summation order. In some cases, due to

1 Blocks

1-12

different operation order on the same data set, you might experience minor numeric differences in
the outputs of column-major and row-major algorithms.

When you select Specified dimensions, another parameter Dimension appears. Choose the specific
dimension for summing the vector input.
Dependency

Enabled when you list only one sign in the List of signs parameter.
Programmatic Use
Block Parameter: CollapseMode
Type: character vector
Values: 'All dimensions' | 'Specified dimension'
Default: 'All dimensions'

Dimension — Dimension for summation on vector input

1 (default) | integer

When you choose Specified dimension for the Sum over parameter, specify the dimension over
which to perform the operation.

The block follows the same summation rules as the MATLAB sum function.

Suppose that you have a 2-by-3 matrix U.

• Setting Dimension to 1 results in the output Y being computed as:

Y = ∑i = 1
2 U(i, j)

• Setting Dimension to 2 results in the output Y being computed as:

Y = ∑ j = 1
3 U(i, j)

If the specified dimension is greater than the dimension of the input, an error message appears.
Dependency

Enabled when you choose Specified dimension for the Sum over parameter.
Programmatic Use
Block Parameter: CollapseDim
Type: character vector
Value: integer
Default: '1'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.
Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

 Add, Subtract, Sum of Elements, Sum

1-13

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Signal Attributes

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Require all inputs to have the same data type — Require that all inputs have the same data type

off (default) | on

Specify if input signals must all have the same data type. If you enable this parameter, then an error
occurs during simulation if the input signal types are different.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Accumulator data type — Data type of the accumulator

Inherit: Inherit via internal rule (default) | Inherit: Same as first input |
double | single | half | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Choose the data type of the accumulator. The type can be inherited, specified directly, or expressed as
a data type object such as Simulink.NumericType. When you choose Inherit: Inherit via
internal rule, Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target hardware.

Programmatic Use
Block Parameter: AccumDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as first input' |
'double''single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16', 'int32' | 'uint32' |
'int64' | 'uint64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data
type expression>'
Default: 'Inherit: Inherit via internal rule'

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

1 Blocks

1-14

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

Inherit: Inherit via internal rule (default) | Inherit: Keep MSB | Inherit: Keep
LSB | Inherit: Inherit via back propagation | Inherit: Same as first input |
Inherit: Same as accumulator | double | single | half | int8 | uint8 | int16 | uint16 |

 Add, Subtract, Sum of Elements, Sum

1-15

int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule—Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware.

Note The accumulator internal rule favors greater numerical accuracy, possibly at the cost of less
efficient generated code. To get the same accuracy for the output, set the output data type to
Inherit: Inherit same as accumulator.

Note When input is a floating-point data type smaller than single precision, the Inherit:
Inherit via internal rule output data type depends on the setting of the “Inherit floating-
point output type smaller than single precision” configuration parameter. Data types are smaller
than single precision when the number of bits needed to encode the data type is less than the 32
bits needed to encode the single-precision data type. For example, half and int16 are smaller
than single precision.

• Inherit: Keep MSB– Simulink chooses a data type that maintains the full range of the
operation, then reduces the precision of the output to a size appropriate for the embedded target
hardware.

Tip For more efficient generated code, set the Accumulator data type to Inherit: Inherit
via internal rule, and deselect the Saturate on integer overflow parameter.

This rule never produces overflows.
• Inherit: Keep LSB– Simulink chooses a data type that maintains the precision of the

operation, but reduces the range if the full type does not fit on the embedded target hardware.

Tip For more efficient generated code, set the Accumulator data type to Inherit: Inherit
via internal rule, and deselect the Saturate on integer overflow parameter.

This rule can produce overflows.

If you change the embedded target settings, the data type selected by these internal rules might
change. It is not always possible for the software to optimize code efficiency and numerical
accuracy at the same time. If the rules do not meet your specific needs for numerical accuracy or
performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as first input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point

Tool to propose data types for your model. For more information, see fxptdlg.

1 Blocks

1-16

• To specify your own inheritance rule, use Inherit: Inherit via back propagation and
then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

• Inherit: Inherit via back propagation — Use data type of the driving block.
• Inherit: Same as first input — Use data type of the first input signal.
• Inherit: Inherit same as accumulator— Use data type of the accumulator.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule|'Inherit: Keep MSB'|'Inherit: Keep
LSB' | 'Inherit: Inherit via back propagation''Inherit: Same as first input' |
'Inherit: Same as accumulator' | 'double' | 'single' | 'half' | 'int8' | 'uint8' |
'int16' | 'uint16', 'int32' | 'uint32' | 'int64'| 'uint64'|'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select to lock data type settings of this block against changes by the Fixed-Point Tool and the Fixed-
Point Advisor. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

 Add, Subtract, Sum of Elements, Sum

1-17

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

1 Blocks

1-18

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture of Sum, Add, and Subtract Blocks

The default Linear architecture generates a chain of N operations (adders) for N inputs.

HDL Architecture of Sum of Elements Block

For the Sum of Elements block, HDL Coder supports Tree architectures for Sum of Elements blocks
that have a single vector input with multiple elements.

This block has multi-cycle implementations that introduce additional latency in the generated code.
To see the added latency, view the generated model or validation model. See “Generated Model and
Validation Model” (HDL Coder).

Architecture Additional cycles of latency Description
Linear 0 Generates a linear chain of adders to

compute the sum of products.

For multiple inputs that have different bit
widths, the Linear architecture optimizes
the resource utilization by implementing
adders in multiple stages with pipelines in
between the stages. The output of each
stage is calculated based on the width of
the inputs to that stage.

Tree 0 Generates a tree structure of adders to
compute the sum of products.

HDL Block Properties

Note To use the LatencyStrategy setting in the Native Floating Point tab of the HDL Block
Properties dialog box, specify Linear or Tree as the HDL Architecture.

 Add, Subtract, Sum of Elements, Sum

1-19

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Note The Sum of Elements block does not support HDL code generation with double data types in
the Native Floating Point mode.

Native Floating Point
LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min,

Zero, or Custom for the floating-point operator. The default is inherit.
See also “LatencyStrategy” (HDL Coder).

NFPCustomLatency To specify a value, set LatencyStrategy to Custom. HDL Coder adds
latency equal to the value that you specify for the NFPCustomLatency
setting. See also “NFPCustomLatency” (HDL Coder).

Complex Data Support

The default Linear implementation supports complex data.

The Tree implementation supports complex data with + for the List of signs block parameter. With
native floating point support, the Tree implementation supports complex data with both + and - for
List of signs.

Limitations and Considerations

To generate HDL code for multi-input Sum block that has mixed scalar and vector inputs, you must
specify vector input at one of the first two inputs of the Sum block.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Gain | Divide | Bias

Topics
“Control Data Types of Signals”

1 Blocks

1-20

Algebraic Constraint
Constrain input signal

Libraries:
Simulink / Math Operations

Description
The Algebraic Constraint block constrains the input signal f(z) to z or 0 and outputs an algebraic state
z. The block outputs a value that produces 0 or z at the input. The output must affect the input
through a direct feedback path. In other words, the feedback path only contains blocks with direct
feedthrough. For example, you can specify algebraic equations for index 1 differential-algebraic
systems (DAEs).

Ports
Input

f(z) — Input signal
real scalar or vector

Signal is subjected to the constraint f(z) = 0 or f(z) = z to solve the algebraic loop.
Data Types: double

Output

z — Output state
real scalar or vector

Solution to the algebraic loop when the input signal f(z) is subjected to the constraint f(z) = 0 or f(z)
= z.
Data Types: double

Parameters
Constraint — Constraint on input signal

f(z) = 0 (default) | f(z) = z

Type of constraint for which to solve. You can solve for f(z) = 0 or f(z) = z

Programmatic Use
Block Parameter: Constraint
Type: character vector
Values: 'f(z) = 0' | 'f(z) = z'
Default: 'f(z) = 0'

 Algebraic Constraint

1-21

Solver — Algebraic Loop Solver

auto (default) | Trust region | Line search

Choose between the Trust region [1], [2] or Line search [3] algorithms to solve the algebraic loop. By
default this value is set to auto, which selects the algebraic loop solver based on the model
configuration and switches the solver between the Trust region and Line search algorithm during
simulation

Programmatic Use
Block Parameter: Solver
Type: character vector
Values: 'auto' | 'Trust region' | 'Line search'
Default: 'auto'

Tolerance — Solver Tolerance

auto (default) | positive scalar

This option is visible when you explicitly specify a solver to be used (Trust region or Line Search) in
the Solver drop-down menu. Specify a smaller value for higher accuracy or a larger value for faster
execution. By default it is set to auto.

Programmatic Use
Block Parameter: Tolerance
Type: character vector
Values: 'auto' | positive scalar
Default: 'auto'

Initial Guess — Initial guess of solution value

0 (default) | scalar

Initial guess for the algebraic state z that is close to the expected solution value to improve the
efficiency of the algebraic loop solver. By default, this value is set to 0

Programmatic Use
Block Parameter: InitialGuess
Type: character vector
Values: scalar
Default: '0'

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

1 Blocks

1-22

Version History
Introduced before R2006a

References
[1] Garbow, B. S., K. E. Hillstrom, and J. J. Moré. User Guide for MINPACK-1. Argonne, IL: Argonne

National Laboratory, 1980.

[2] Rabinowitz, P. H. Numerical Methods for Nonlinear Algebraic Equations. New York: Gordon and
Breach, 1970.

[3] Kelley, C. T. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and
Applied Mathematics, Philadelphia, PA: 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

See Also
“Algebraic Loop Concepts”

 Algebraic Constraint

1-23

Argument Inport
Argument input port for Simulink Function block

Description
This block is an argument input port for a function that you define in the Simulink Function block.

Ports
Input

u — Argument input
scalar | vector | matrix

The Argument Inport block accepts complex or real signals of any data type that Simulink supports,
including fixed-point and enumerated data types. The Argument Inport block also accepts a bus
object as a data type.

The complexity and data type of the block output are the same as the argument input. You can specify
the signal type and data type of an input argument to an Argument Inport block using the Signal
type and Data type parameters.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Output

out — Block output
scalar | vector | matrix

Block output signal from this block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Parameters
Port number — Specify port number of block
1 (default) | integer

Specify the order in which the port that corresponds to the block appears in the parent subsystem or
model block.

1
Specify the first port location for this block.

integer
Specify location of port.

1 Blocks

1-24

Programmatic Use
Block parameter: Port
Type: character vector
Value: '1' | '<integer>'
Default: '1'

Argument name — Specify input argument name
u (default) | character vector

Specify input argument name for the function prototype displayed on the face of the Simulink
Function block.

u
Default name for the input argument.

character vector
Name of the input argument.

Programmatic Use
Block parameter: ArgumentName
Type: character vector
Value: 'u' | '<character vector>'
Default: 'u'

Minimum — Specify minimum value for block output
[] (default) | number

Specify the minimum value for the block output signal.

Note If you specify a bus object as the data type for this block, do not set the minimum value for bus
data on the block. Simulink ignores this setting. Instead, set the minimum values for bus elements of
the bus object specified as the data type. For information on the Minimum property of a bus element,
see Simulink.BusElement.

Simulink uses this value to perform Simulation range checking and automatic scaling of fixed-point
data types.

[]
Minimum value not specified.

number
Finite real double scalar value.

Programmatic Use
Block parameter: OutMin
Type: character vector
Value: '[]' | '<number>'
Default: '[]'

Maximum — Specify maximum value for block output
[] (default) | number

 Argument Inport

1-25

Specify the maximum value for the block output signal.

Note If you specify a bus object as the data type for this block, do not set the maximum value for bus
data on the block. Simulink ignores this setting. Instead, set the maximum values for bus elements of
the bus object specified as the data type. For information on the Maximum property of a bus element,
see Simulink.BusElement.

Simulink uses this value to perform Simulation range checking and automatic scaling of fixed-point
data types.

[]
Maximum value not specified.

number
Finite real double scalar value.

Programmatic Use
Block parameter: OutMax
Type: character vector
Value: '[]' | '<number>'
Default: '[]'

Data type — Specify block output data type
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^,0) | Enum: <class name> | Bus:
<object name> | <data type expression>

Specify the block output data type.

double
Data type is double.

single
Data type is single.

int8
Data type is int8.

uint8
Data type is uint8.

int16
Data type is int16.

uint16
Data type is uint16.

int32
Data type is int32.

uint32
Data type is uint32.

1 Blocks

1-26

int64
Data type is int64.

uint64
Data type is uint64.

boolean
Data type is boolean.

fixdt(1,16,0)
Data type is fixed point fixdt(1,16,0).

fixdt(1,16,2^0,0)
Data type is fixed point fixdt(1,16,2^0,0).

Enum: <class name>
Data type is enumerated, for example, Enum: Basic Colors.

Bus: <object name>
Data type is a Simulink.Bus object.

<data type expression>
The name of a data type object, for example Simulink.NumericType

Tips

You cannot enter the name of a Simulink.Bus object as a data type expression. To specify the Data
type for the block using a Bus object, select the Bus: <object name> option and replace <object
name> with the name of the Bus object.

Programmatic Use
Block parameter: OutDataTypeStr
Type: character vector
Value: 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' |
'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type
expression>'
Default: 'double'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data type
off (default) | on

Control changes to data type settings from the Fixed-Point Tool and the Fixed-Point Advisor. For more
information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

 On
Locks all data type settings for this block.

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change data type settings for this
block.

Programmatic Use
Block parameter: LockScale

 Argument Inport

1-27

Type: character vector
Value: 'off' | 'on'
Default: 'off'

Port dimensions — Specify port dimensions
1 (default) | n | [m n]

Specify the dimensions of the argument input signal to the block. For more information, see Outport.

1
Inherit port dimensions.

n
Vector signal of width n.

[m n]
Matrix signal having m rows and n columns.

Programmatic Use
Block parameter: PortDimensions
Type: character vector
Value: '1' | 'n' | '[m n]'
Default: '1'

Signal type — Select real or complex signal
real (default) | complex

Select real or complex signal.

real
Specify the signal type as a real number.

complex
Specify the signal type as a complex number.

Programmatic Use
Block parameter: SignalType
Type: character vector
Value: 'real' | 'complex'
Default: 'real'

Version History
Introduced in R2014b

See Also
Argument Outport | Simulink Function | Function Caller

Topics
“Simulink Functions Overview”
“Argument Specification for Simulink Function Blocks”

1 Blocks

1-28

Argument Outport
Argument output port for Simulink Function block

Description
This block is an output argument port for a function that you define in the Simulink Function block.

Ports
Input

in — Block input
scalar | vector | matrix

Block input signal to this block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Output

y — Argument output
scalar | vector | matrix

The Argument Outport block accepts real or complex signals of any data type that Simulink supports.
An Argument Outport block can also accept fixed-point and enumerated data types when the block is
not a root-level output port. The Argument Outport block also accepts a bus object as a data type.

The complexity and data type of the block input are the same as the argument output. You can specify
the signal type and data type of an output argument from an Argument Outport block using the
Signal type and Data type parameters. For more information, see “Data Types Supported by
Simulink”.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Parameters
Port number — Specify port number of block
1 (default) | integer

Specify the order in which the port that corresponds to the block appears in the parent subsystem or
model block.

1
Specify the first port location for this block.

integer
Specify location of port.

 Argument Outport

1-29

Programmatic Use
Block parameter: Port
Type: character vector
Value: '1' | '<integer>'
Default: '1'

Argument name — Specify output argument name
u (default) | character vector

Specify output argument name for the function prototype displayed on the face of the Simulink
Function block.

u
Default name of the output argument.

character vector
Name of the output argument.

Programmatic Use
Block parameter: ArgumentName
Type: character vector
Value: 'u' | '<character vector>'
Default: 'u'

Minimum — Specify minimum value for block input
[] (default) | number

Specify the minimum value for the block input signal.

Note If you specify a bus object as the data type for this block, do not set the minimum value for bus
data on the block. Simulink ignores this setting. Instead, set the minimum values for bus elements of
the bus object specified as the data type. For information on the Minimum property of a bus element,
see Simulink.BusElement.

Simulink uses this value to perform Simulation range checking (see “Specify Signal Ranges”) and
automatic scaling of fixed-point data types.

[]
Minimum value not specified.

number
Finite real double scalar value.

Programmatic Use
Block parameter: OutMin
Type: character vector
Value: '[]' | '<number>'
Default: '[]'

Maximum — Specify maximum value for block input
[] (default) | number

1 Blocks

1-30

Specify the maximum value for the block input signal.

Note If you specify a bus object as the data type for this block, do not set the maximum value for bus
data on the block. Simulink ignores this setting. Instead, set the maximum values for bus elements of
the bus object specified as the data type. For information on the Maximum property of a bus element,
see Simulink.BusElement.

Simulink uses this value to perform Simulation range checking (see “Specify Signal Ranges”) and
automatic scaling of fixed-point data types.

[]
Maximum value not specified.

number
Finite real double scalar value.

Programmatic Use
Block parameter: OutMax
Type: character vector
Value: '[]' | '<number>'
Default: '[]'

Data type — Specify block input data type
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^,0) | Enum: <class name> | Bus:
<object name> | <data type expression>

Specify block input data type. For more information, see

• Outport
• “Specify Data Types Using Data Type Assistant”

double
Data type is double.

single
Data type is single.

int8
Data type is int8.

uint8
Data type is uint8.

int16
Data type is int16.

uint16
Data type is uint16.

 Argument Outport

1-31

int32
Data type is int32.

uint32
Data type is uint32.

int6a4
Data type is int64.

uint64
Data type is uint64.

boolean
Data type is boolean.

fixdt(1,16,0)
Data type is fixed point fixdt(1,16,0).

fixdt(1,16,2^0,0)
Data type is fixed point fixdt(1,16,2^0,0).

Enum: <class name>
Data type is enumerated, for example, Enum: Basic Colors.

Bus: <object name>
Data type is a Simulink.Bus object.

<data type expression>
The name of a data type object, for example Simulink.NumericType

Tips

You cannot enter the name of a Simulink.Bus object as a data type expression. To specify the Data
type for the block using a Bus object, select the Bus: <object name> option and replace <object
name> with the name of the Bus object.

Programmatic Use
Block parameter: OutDataTypeStr
Type: character vector
Value: 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' |
'int64' | 'uint64'| 'boolean' | '<fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'double'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data type
off (default) | on

Control changes to data type settings from the Fixed-Point Tool and the Fixed-Point Advisor. For more
information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

 On
Locks all data type settings for this block.

1 Blocks

1-32

 Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change data type settings for this
block.

Programmatic Use
Block parameter: LockScale
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Port dimensions — Specify port dimensions
1 (default) | n | [m n]

Specify the dimensions of the output argument signal from the block. For more information, see
Outport.

1
Inherit port dimensions.

n
Vector signal of width n.

[m n]
Matrix signal having m rows and n columns.

Programmatic Use
Block parameter: PortDimensions
Type: character vector
Value: '1' | 'n' | '[m n]'
Default: '1'

Signal type — Select real or complex signal
real (default) | complex

Select real or complex signal. For more information, see Outport.

real
Specify the signal type as a real number.

complex
Specify the signal type as a complex number.

Programmatic Use
Block parameter: SignalType
Type: character vector
Value: 'real' | 'complex'
Default: 'real'

Version History
Introduced in R2014b

 Argument Outport

1-33

See Also
Argument Inport | Simulink Function | Function Caller

Topics
“Simulink Functions Overview”
“Argument Specification for Simulink Function Blocks”

1 Blocks

1-34

ASCII to String
Uint8 vector signal to string signal

Libraries:
Simulink / String

Description
The ASCII to String block converts uint8 vector signals to string signals. The block treats each
element in the input vector as an ASCII value during the conversion. For example, the block converts
an input vector of [72 101 108 108 111] to the string "Hello".

Ports
Input

Port_1 — ASCII signal
vector

ASCII signal, specified as a vector.

While using dynamic strings, if the length of the input vector exceeds the number of characters
specified in the configuration parameter Buffer size of dynamically-sized string (bytes) (256 by
default), the ASCII to String block truncates the string output to the buffer size-1 (for example, 255),
for generated code. To avoid truncation, increase the value of the Buffer size of dynamically-sized
string (bytes) configuration parameter.
Example: [088 099]
Data Types: uint8

Output

Port_1 — Converted string signal
scalar

Converted string signal from input ASCII signal, specified as a scalar. The block converts each ASCII
element in the vector into its alphanumeric equivalent and outputs all elements concatenated into
one string.
Data Types: string

Block Characteristics
Data Types integer | string
Direct Feedthrough yes

 ASCII to String

1-35

Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Compose String | Scan String | String Compare | String Concatenate | String Constant | String Find |
String Length | String to Double | String to Single | String To Enum | String To ASCII | Substring | To
String

Topics
“String Data Type Conversions”
“Simulink Strings”

1 Blocks

1-36

Assertion
Check whether signal is zero

Libraries:
Simulink / Model Verification
HDL Coder / Model Verification

Description
The Assertion block checks whether any of the elements of the input signal are 0. If all of the
elements are nonzero, the assertion is true (1) and the block does nothing. If not, the block halts
the simulation and returns an error message by default.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal to the assertion check.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Parameters
Enable assertion — Enable or disable check

on (default) | off

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use
Parameter: enabled
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

 Assertion

1-37

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.
Dependencies

To enable this parameter, select the Enable assertion parameter.
Programmatic Use
Parameter: callback
Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | off

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.
Programmatic Use
Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.
Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.
Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

1 Blocks

1-38

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder™ generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used for checking whether the input signal is zero during simulation, but is not
included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Dynamic Lower Bound | Check Dynamic Upper Bound | Check Static Lower Bound | Check
Static Upper Bound

 Assertion

1-39

Assignment
Assign values to specified elements of signal

Libraries:
Simulink / Math Operations
HDL Coder / Math Operations

Description
The Assignment block assigns values to specified elements of the signal. You specify the indices of the
elements to be assigned values either by entering the indices in the block dialog box or by connecting
an external indices source or sources to the block. The signal at the block data port, U, specifies
values to be assigned to Y. The block replaces the specified elements of Y with elements from the
data signal.

Based on the value you enter for the Number of output dimensions parameter, a table of index
options is displayed. Each row of the table corresponds to one of the output dimensions in Number
of output dimensions. For each dimension, you can define the elements of the signal to work with.
Specify a vector signal as a 1-D signal and a matrix signal as a 2-D signal. To enable an external index
port, in the corresponding row of the table, set Index Option to Index vector (port) or
Starting index (port).

For example, assume a 5-D signal with a one-based index mode. The table in the Assignment block
dialog changes to include one row for each dimension. If you define each dimension with the
following entries:

Row Index Option Index
1 Assign all
2 Index vector (dialog) [1 3 5]
3 Starting index (dialog) 4
4 Starting index (port)
5 Index vector (port)

The assigned values are Y(1:end,[1 3
5],4:3+size(U,3),Idx4:Idx4+size(U,4)-1,Idx5)=U, where Idx4 and Idx5 are the input
ports for dimensions 4 and 5.

When using the Assignment block in normal mode, Simulink initializes block outputs to zero even if
the model does not explicitly initialize them. In accelerator mode, Simulink converts the model into
an S-Function. This involves code generation. The code generated may not do implicit initialization of
block outputs. In such cases, you must explicitly initialize the model outputs.

You can use the block to assign values to vector, matrix, or multidimensional signals.

You can use an array of buses as an input signal to an Assignment block.

1 Blocks

1-40

Assignment Block in Conditional Subsystem

If you place an Assignment block in a conditional subsystem block, a hidden signal buffer (which is
equivalent to a Signal Copy block) is inserted in many cases, and merging of signals from Assignment
blocks with partial writes can cause an error.

However, if you select the Ensure outport is virtual parameter for the conditional subsystem
Outport block, such cases are supported and partial writes to arrays using Assignment blocks are
possible. See “Ensure Output Port Is Virtual”.

Limitations
• The Index parameter is not tunable during simulation. If the Index Option for a dimension is set

to Index vector (dialog) or Starting index (dialog) and you specify a symbolic value,
including a Simulink.Parameter object, for the corresponding Index in the block dialog, then
the instantaneous value at the start of simulation will be used throughout the simulation, and the
parameter will appear as an inlined value in the generated code. See “Tune and Experiment with
Block Parameter Values”. You can adjust the assignment index dynamically by using index ports.

Ports
Input

Y0 — Input initialization signal
scalar | vector

The initialization signal for the output signal. If an element is not assigned another value, then the
value of the output element matches this input signal value.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | Boolean | enumerated | bus

U — Input data port
scalar | vector

Value assigned to the output element when specified.

 Assignment

1-41

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | Boolean | enumerated | bus

IndxN — Nth index signal
scalar | vector

External port specifying an index for the assignment of the corresponding output element.

You can specify integer of custom width (for example, a 15-bit integer or 23-bit integer) as an index
signal value. When you configure the width of the integer, you must specify the Mode as Fixed
point, with Word length less than or equal to 128, Slope equal to 1, and Bias equal to 0. For more
information on specifying a fixed-point data type, see “Specify Data Types Using Data Type
Assistant”.

Dependencies

To enable an external index port, in the corresponding row of the Index Option table, set Index
Option to Index vector (port) or Starting index (port).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

Y — Output signal with assigned values
scalar | vector

The output signal with assigned values for the specified elements.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | enumerated | bus

Parameters
Number of output dimensions — Number of dimensions of the output signal

1 (default) | integer

Enter the number of dimensions of the output signal.

Programmatic Use
Parameter: NumberOfDimensions
Type: character vector
Values: integer
Default: '1'

Index mode — Index mode

One-based (default) | Zero-based

Select the indexing mode. If One-based is selected, an index of 1 specifies the first element of the
input vector. If Zero-based is selected, an index of 0 specifies the first element of the input vector.

Programmatic Use
Parameter: IndexMode
Type: character vector

1 Blocks

1-42

Values: 'Zero-based' | 'One-based'
Default: 'One-based'

Index Option — Index method for elements

Index vector (dialog) (default) | Assign all | Index vector (port) | Starting index
(dialog) | Starting index (port)

Define, by dimension, how the elements of the signal are to be indexed. From the list, select:

Menu Item Action
Assign all All elements are assigned.
Index vector (dialog) Enables the Index column. Enter the indices of

elements.
Index vector (port) The index port defines the indices of elements.
Starting index (dialog) Enables the Index column. Enter the starting

index of the range of elements to be assigned
values.

Starting index (port) The index port defines the starting index of the
range of elements to be assigned values.

If you choose Index vector (port) or Starting index (port) for any dimension in the table,
you can specify one of these values for the Initialize output (Y) parameter:

• Initialize using input port <Y0>
• Specify size for each dimension in table

Otherwise, Y0 always initializes output port Y.

The Index and Output Size columns are displayed as relevant.

Programmatic Use
Parameter: IndexOptionArray
Type: character vector
Values: 'Assign all' | 'Index vector (dialog)' | 'Index option (port)' | 'Starting
index (dialog)' | 'Starting index (port)'
Default: 'Index vector (dialog)'

Index — Index of elements

1 (default) | integer

If the Index Option is Index vector (dialog), enter the index of each element you are
interested in.

If the Index Option is Starting index (dialog), enter the starting index of the range of
elements to be selected. The number of elements from the starting point is determined by the size of
this dimension at U.

Programmatic Use
Parameter: IndexParamArray
Type: character vector

 Assignment

1-43

Values: cell array
Default: '{ }'

Output Size — Width of block output signal

1 (default) | integer

Enter the width of the block output signal.

Dependencies

To enable this column, select Specify size for each dimension in table for the Initialize
output (Y) parameter.

Programmatic Use
Parameter: OutputSizeArray
Type: character vector
Values: cell array
Default: '{ }'

Initialize output (Y) — How to initialize output signal

Initialize using input port <Y0> (default) | Specify size for each dimension in
the table

Specify how to initialize the output signal.

• Initialize using input port <Y0> – Signal at the input port Y0 initializes the output.
• Specify size for each dimension in table – Requires you to specify the width of the

block output signal in the Output Size parameter. If the output has unassigned elements, the
value of those elements is undefined.

Dependencies

Enabled when you set Index Option to Index vector (port) or Starting index (port) for
one or more dimensions.

Programmatic Use
Parameter: OutputInitialize
Type: character vector
Values: 'Initialize using input port <Y0>' | 'Specify size for each dimension in
table'
Default: 'Initialize using input port <Y0>'

Action if any output element is not assigned — Option to produce warning or error

Warning (default) | Error | None

Specify whether to produce a warning or error if you have not assigned all output elements. Options
include:

• Warning — Simulink displays a warning and continues the simulation.
• Error — Simulink terminates the simulation and displays an error.
• None — Simulink takes no action.

1 Blocks

1-44

Dependencies

To enable this parameter, set Index Option to Index vector (port) or Starting index
(port) for one or more dimensions, then set Initialize output (Y) to Specify size for each
dimension in table.

Programmatic Use
Parameter: DiagnosticForDimensions
Type: character vector
Values: 'Error' | 'Warning' | 'None'
Default: 'Warning'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Check for out-of-range index in accelerated simulation — Option to check for out-of-range index
values in accelerator and rapid accelerator simulation modes

off (default) | on

Select this check box to have Simulink check during simulation in accelerator or rapid accelerator
mode whether any index values are outside the range of valid indices for the relevant dimension of
the input signal. If an index is out of range, Simulink stops the simulation and displays an error
message.

Note If you do not select this check box, out-of-range index values could lead to undefined behavior
during accelerator or rapid accelerator mode simulation.

Simulink performs this check during normal mode simulation regardless of whether you select this
check box.

Programmatic Use
Parameter: RuntimeRangeChecks
Type: character vector
Values: 'Off' | 'On'
Default: 'Off'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single

 Assignment

1-45

Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

R2023a: Index signal supports integer of custom width

Starting in R2023a, you can customize the width of the integer that you use to specify the index
signal value for the Assignment block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

1 Blocks

1-46

Restrictions

• 3-dimensional matrix inputs are not supported. You can use 1-D vectors and 2-D matrices with the
block.

• Variable-size signals are not supported for code generation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Bus Assignment | Selector

Topics
“Group Nonvirtual Buses in Arrays of Buses”

 Assignment

1-47

Backlash
Model behavior of system with play

Libraries:
Simulink / Discontinuities
HDL Coder / Discontinuities

Description
The Backlash block implements a system in which a change in input causes an equal change in
output, except when the input changes direction. When the input changes direction, the initial
change in input has no effect on the output. The amount of side-to-side play in the system is referred
to as the deadband. The deadband is centered about the output. This figure shows an initial state,
with the default deadband width of 1 and initial output of 0.

A system with play can be in one of three modes.

Mode Input Output
Disengaged Inside deadband zone. Remains constant.
Engaged-positive direction Outside deadband zone and

increasing.
Equals input minus half of
deadband width.

Engaged-negative direction Outside deadband zone and
decreasing.

Equals input plus half of
deadband width.

The Initial output parameter value defines the initial center of the deadband zone.

This table shows output values when initial conditions are: Deadband width = 2 and Initial output
= 5.

Output Value Condition
5 4 <= input <= 6
input + 1 input < 4
input - 1 input > 6

For example, you can use the Backlash block to model the meshing of two gears. The input and
output are both shafts with a gear on one end, and the input shaft drives the output shaft. Extra
space between the gear teeth introduces play. The width of this spacing is the Deadband width
parameter. If the system is disengaged initially, the Initial output parameter defines the output.

1 Blocks

1-48

These figures illustrate operation when the initial input is within the deadband and the system begins
in disengaged mode.

When the input increases and reaches the end of the deadband, it engages the output. The output
remains at its previous value.

After the input engages the output, the output changes by the same amount as the input.

If the input reverses direction, it disengages from the output. The output remains constant until the
input reaches the end of the deadband and engages again.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal to the backlash algorithm. The value of this signal is either in the deadband or engaging
the output in a positive or negative direction.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

Port_1 — Output signal
scalar | vector

Output signal after the backlash algorithm is applied to the input signal. When the input is in the
deadband, then the output remains unchanged. If the input is engaged with the output, then the
output changes an equal amount as the input.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32

Parameters
Deadband width — Specify the width of the deadband

 Backlash

1-49

1 (default) | scalar | vector

Specify the size of the deadband zone centered on the output value. When the input signal is inside
the deadband, then a change in input does not cause a change in output. When the input signal is
outside of the deadband, then the output changes an equal amount as the input.

Programmatic Use
Block Parameter: BacklashWidth
Type: character vector
Values: real scalar or vector
Default: '1'

Initial output — Specify the initial output value

0 (default) | scalar | vector

Specify the initial center of the deadband zone. If the initial input value is in the deadband zone, then
the output value is equal to Initial output. If the initial input value is outside of the deadband zone,
then the output value is Initial output plus or minus half of the deadzone width.

Programmatic Use
Block Parameter: InitialOutput
Type: character vector
Values: real scalar or vector
Default: '0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox™ license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Enable zero-crossing detection — Enable zero-crossing detection

1 Blocks

1-50

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

This block supports zero-crossing detection only in simulations that use a variable-step solver. When
you use a fixed-step solver for simulation, the software does not detect or locate zero crossings for
this block.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset function (string.h) in certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

 Backlash

1-51

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

The Deadband width and Initial output parameters support only scalar values.

See Also
Dead Zone

1 Blocks

1-52

Band-Limited White Noise
Introduce white noise into continuous system

Libraries:
Simulink / Sources

Description
The Band-Limited White Noise block generates normally distributed random numbers that are
suitable for use in continuous or hybrid systems.

Simulation of White Noise

Theoretically, continuous white noise has a correlation time of 0, a flat power spectral density (PSD),
and a total energy of infinity. In practice, physical systems are never disturbed by white noise,
although white noise is a useful theoretical approximation when the noise disturbance has a
correlation time that is very small relative to the natural bandwidth of the system.

In Simulink software, you can simulate the effect of white noise by using a random sequence with a
correlation time much smaller than the shortest time constant of the system. The Band-Limited White
Noise block produces such a sequence. The correlation time of the noise is the sample rate of the
block. For accurate simulations, use a correlation time much smaller than the fastest dynamics of the
system. You can get good results by specifying

tc ≈ 1
100

2π
fmax

,

where fmax is the bandwidth of the system in rad/sec.

Comparison with the Random Number Block

The primary difference between this block and the Random Number block is that the Band-Limited
White Noise block produces output at a specific sample rate. This rate is related to the correlation
time of the noise.

Usage with the Averaging Power Spectral Density Block

The Band-Limited White Noise block specifies a two-sided spectrum, where the units are Hz. The
Averaging Power Spectral Density block specifies a one-sided spectrum, where the units are the
square of the magnitude per unit radial frequency: mag^2/(rad/sec). When you feed the output of a
Band-Limited White Noise block into an Averaging Power Spectral Density block, the average PSD
value is π times smaller than the Noise power of the Band-Limited White Noise block. This difference
is the result of converting the units of one block to the units of the other, 1/(1/2)(2π) = 1/π, where:

• 1/2 is the factor for converting from a two-sided to one-sided spectrum.
• 2π is the factor for converting from Hz to rad/sec.

 Band-Limited White Noise

1-53

Ports
Output

Port_1 — Normally distributed random numbers
scalar | vector | matrix | N-D array

Normally distributed random numbers specified as a scalar, vector, matrix, or N-D array.
Data Types: double

Parameters
Noise power — Height of PSD of white noise

[0.1] (default) | scalar | vector | matrix | N-D array

Specify the height of the PSD of the white noise as a scalar, vector, matrix, or N-D array of positive
values.

Programmatic Use
Block Parameter: Cov
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '[0.1]'

Sample time — Correlation time of noise

0.1 (default) | scalar | vector

Correlation time of the noise. For more information, see “Specify Sample Time”.

Programmatic Use
Block Parameter: Ts
Type: character vector
Values: scalar | vector
Default: '0.1'

Seed — Starting seed

[23341] (default) | scalar | vector | matrix | N-D array

Specify the starting seed for the random number generator as a scalar, vector, matrix, or N-D array.
Values must be positive, real-valued, and finite.

Programmatic Use
Block Parameter: seed
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '[23341]'

Interpret vector parameters as 1-D — Treat vector parameters as 1-D

on (default) | off

1 Blocks

1-54

Select to output a 1-D array when the block parameters are vectors. Otherwise, output a 2-D array
one of whose dimensions is 1. For more information, see “Determine the Output Dimensions of
Source Blocks”.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
To produce the correct intensity of this noise, the covariance of the noise is scaled to reflect the
implicit conversion from a continuous PSD to a discrete noise covariance. The appropriate scale
factor is 1/tc, where tc is the correlation time of the noise. This scaling ensures that the response of a
continuous system to the approximate white noise has the same covariance as the system would have
to true white noise. Because of this scaling, the covariance of the signal from the Band-Limited White
Noise block is not the same as the Noise power (intensity) parameter. This parameter is actually the
height of the PSD of the white noise. This block approximates the covariance of white noise as the
Noise power divided by tc.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Cannot use inside a triggered subsystem hierarchy.

See Also
Random Number

Topics
“Sample Time”

 Band-Limited White Noise

1-55

Bias
Add bias to input

Libraries:
Simulink / Math Operations
HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description
The Bias block adds a bias, or offset, to the input signal according to

Y = U + bias

where U is the block input and Y is the output.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal to which the bias is added to create the output signal.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Output

Port_1 — Output signal
scalar | vector

Output signal resulting from adding the bias to the input signal.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
Bias — Offset to add to the input signal

0.0 (default) | scalar | vector

Specify the value of the offset to add to the input signal.

Programmatic Use
Block Parameter: Bias
Type: character vector

1 Blocks

1-56

Values: real, finite
Default: '0.0'

Saturate on integer overflow — Choose the behavior when integer overflow occurs

off (default) | on

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this check
box.

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box.

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. Usually, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | fixed point | half | integer | single

 Bias

1-57

Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Add | Gain | Divide

1 Blocks

1-58

Bit Clear
Set specified bit of stored integer to zero

Libraries:
Simulink / Logic and Bit Operations
HDL Coder / Logic and Bit Operations

Description
The Bit Clear block sets the specified bit, given by its index, of the stored integer to zero. Scaling is
ignored.

You can specify the bit to be set to zero with the Index of bit parameter, where bit zero is the least
significant bit.

Ports
The Bit Clear block supports Simulink integer, fixed-point, and Boolean data types. The block does not
support true floating-point data types or enumerated data types.

Input

Port_1 — Input signal
scalar or vector

The input signal is the specified bit of the stored integer.
Data Types: single | double | Boolean | fixed point

Output

Port_1 — Output signal
scalar or vector

The output consists of the specified bit set to zero.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
Index of bit — Index of bit

0 (default) | scalar or vector

Index of bit where bit 0 is the least significant bit.

 Bit Clear

1-59

Programmatic Use
Block Parameter: iBit
Type: scalar or vector
Values: {'0'}
Default: '0'

Block Characteristics
Data Types Booleana | fixed point | integer
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

a Bit operations are not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

1 Blocks

1-60

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Bit Set | Bitwise Operator | Bit Rotate | Bit Shift

 Bit Clear

1-61

Bit Set
Set specified bit of stored integer to one

Libraries:
Simulink / Logic and Bit Operations
HDL Coder / Logic and Bit Operations

Description
The Bit Set block sets the specified bit of the stored integer to one. Scaling is ignored.

You can specify the bit to be set to one with the Index of bit parameter, where bit zero is the least
significant bit.

Ports
Input

Port_1 — Input signal
scalar or vector

Input signal with the specified bit of the stored integer.
Data Types: single | double | Boolean | fixed point

Output

Port_1 — Output signal
scalar or vector

Output signal with the specified bit set to 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
Index of bit — Index of bit

0 (default) | scalar or vector

Index of bit where bit 0 is the least significant bit.

Programmatic Use
Block Parameter: iBit
Type: character vector
Values: positive integer

1 Blocks

1-62

Default:'0'

Block Characteristics
Data Types Booleana | fixed point | integer
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

a Bit operations are not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

 Bit Set

1-63

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Bit Clear | Bitwise Operator | Bit Rotate | Bit Shift

1 Blocks

1-64

Bit to Integer Converter
Map vector of bits to corresponding vector of integers

Libraries:
Simulink / Logic and Bit Operations
Communications Toolbox / Utility Blocks

Description
The Bit to Integer Converter block maps groups of bits in the input vector to integers in the output
vector.

If M is specified by the Number of bits per integer(M) parameter:

• For unsigned integers, the block maps each group of M bits to an integer in the range [0, (2M – 1)].
As a result, the output vector length is 1/M times the input vector length.

• For signed integers, the block maps each group of M bits to an integer in the range [(–2M-1), (2M – 1

– 1)].

Ports
Input

In — Input signal
bit scalar | column vector of bits

Input signal, specified as a scalar or column vector of bits with a length that is a multiple of the value
specified in the Number of bits per integer(M) parameter. The input must be bits with values of 0
or 1.
Data Types: double

Output

Out — Output signal
integer | column vector of integers

Output signal, returned as an integer or column vector of integers. The After bit packing, treat
resulting integer values as parameter specifies whether input bits are treated as unsigned or
signed.

• When the input bits are treated as unsigned, each integer output is in the range [0, (2M – 1)].
• When the input bits are treated as signed, each integer output is in the range [(–2M-1), (2M – 1 – 1)].

Parameters
Number of bits per integer(M) — Number of bits per integer

 Bit to Integer Converter

1-65

3 (default) | integer in the range [1, 32]

Number of input bits mapped to each integer in the output, specified as an integer in the range [1,
32].

Programmatic Use
Block Parameter: nbits
Type: character vector
Values: integer in the range [1, 32]
Default: '3'

Input bit order — Input bit order

MSB first (default) | LSB first

Input bit order, specified as 'MSB first' or 'LSB first'.

• 'MSB first' –– First bit of the input signal is the most significant bit (MSB).
• 'LSB first' –– First bit of the input signal is the least significant bit (LSB).

Programmatic Use
Block Parameter: bitOrder
Type: character vector
Values: 'MSB first' | 'LSB first'
Default: 'MSB first'

After bit packing, treat resulting integer values as — Flag for signed integer values after bit
packing

Unsigned (default) | Signed

Specify whether the resulting integer values are treated as signed or unsigned after bit packing. This
parameter setting determines which Output data type selections are available.

Tip When this parameter is set to Unsigned and the block has an overflow, the block behaves as
though After bit packing, treat resulting integer values as is set to Signed.

Programmatic Use
Block Parameter: signedOutputValues
Type: character vector
Values: 'Unsigned' | 'Signed'
Default: 'Unsigned'

Output data type — Output data type

Inherit via internal rule (default) | Smallest integer | Same as input | double |
single | int8 | uint8 | int16 | uint16 | int32 | uint32

The Output data type options change depending on the desired signedness of the output.

If the output integers are Signed, you can choose from the following Output data type options:

• Inherit via internal rule

1 Blocks

1-66

• Smallest integer
• double
• single
• int8
• int16
• int32

If the output integers are Unsigned, you can choose from the following options in addition to the
Signed options:

• Same as input
• uint8
• uint16
• uint32

When you set the parameter to Inherit via internal rule, the block determines the output
data type based on the input data type.

• If the input signal is floating-point (either double or single), the output data type is the same as
the input data type.

• If the input data type is not floating-point, the output data type is determined as if the parameter
is set to Smallest integer.

When you set the parameter to Smallest integer, the block selects the output data type based on
the settings used in the “Hardware Implementation Pane” of the Configuration Parameters dialog
box.

• If you select ASIC/FPGA for the device vendor, the output data type is the smallest ideal integer or
fixed-point data type, based on the setting for the Number of bits per integer(M) parameter.

• For all other device vendor selections, the output data type is the smallest available (signed or
unsigned) integer word length that is large enough to fit the ideal minimum bit size.

Programmatic Use
Block Parameter: outDtype
Type: character vector
Values: 'Inherit via internal rule' | 'Smallest integer' | 'Same as input' |
'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32'
Default: 'Inherit via internal rule'

Block Characteristics
Data Types Boolean | double | fixed pointa, b | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes

 Bit to Integer Converter

1-67

Zero-Crossing
Detection

no

a Fixed-point inputs must be ufix(1).
b ufix(N) or sfix(N) when ASIC/FPGA is selected in the Hardware Implementation Pane and output data-type is set to

either (a) Smallest integer or, (b) Inherit via internal rule and at the same time input is non floating-point.

Version History
Introduced before R2006a

R2022a: Bit to Integer Converter Block Added to Simulink Logic and Bit Operations Library
Behavior changed in R2022a

The Bit to Integer Converter block has been added from the Communications Toolbox > Utility
Blocks library to the Simulink > Logic and Bit Operations library. All existing models continue to
work.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Integer to Bit Converter

Functions
bit2int | int2bit

1 Blocks

1-68

Bitwise Operator
Specified bitwise operation on inputs

Libraries:
Simulink / Logic and Bit Operations
HDL Coder / Logic and Bit Operations

Description
The Bitwise Operator block performs the bitwise operation that you specify on one or more operands.
Unlike logic operations of the Logical Operator block, bitwise operations treat the operands as a
vector of bits rather than a single value.

Restrictions on Block Operations

The Bitwise Operator block does not support shift operations. For shift operations, use the Shift
Arithmetic block.

When configured as a multi-input XOR gate, this block performs modulo-2 addition according to the
IEEE® Standard for Logic Elements.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal, specified as a scalar or vector.

• The NOT operator accepts only one input, which can be a scalar or a vector. If the input is a
vector, the output is a vector of the same size containing the bitwise logical complements of the
input vector elements.

• For a single vector input, the block applies the operation (except the NOT operator) to all
elements of the vector.

• For two or more inputs, the block performs the operation between all of the inputs. If the inputs
are vectors, the block performs the operation between corresponding elements of the vectors to
produce a vector output.

Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed
point

Output

Port_1 — Output signal
scalar | vector

 Bitwise Operator

1-69

The output signal specified as the output data type, which the block inherits from the driving block,
must represent zero exactly. Data types that satisfy this condition include signed and unsigned
integer data types.

The size of the block output depends on the number of inputs, the vector size, and the operator you
select. If you do not specify a bit mask, the output is a scalar. If you do specify a bit mask, the output
is a vector.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed
point

Parameters
Operator — Bitwise logical operator

AND (default) | OR | NOR | NAND | XOR | NOT

Specify the bitwise logical operator for the block operands.

You can select one of these bitwise operations:

Bitwise Operation Description
AND TRUE if the corresponding bits are all TRUE
OR TRUE if at least one of the corresponding bits is TRUE
NAND TRUE if at least one of the corresponding bits is FALSE
NOR TRUE if no corresponding bits are TRUE
XOR TRUE if an odd number of corresponding bits are TRUE
NOT TRUE if the input is FALSE (available only for single input)

Programmatic Use
Block Parameter: logicop
Type: character vector
Values: 'AND'|'OR' |'NAND'|'NOR' |'XOR' | 'NOT'
Default: 'AND'

Use bit mask — Select to use bit mask

checked (default) | unchecked

Select to use the bit mask. Clearing this check box enables Number of input ports and disables Bit
Mask and Treat mask as.

Programmatic Use
Block Parameter: UseBitMask
Type: character vector
Values: 'off'|'on'
Default: 'on'

Number of input ports — Number of input signals

1 (default) | integer

1 Blocks

1-70

Specify the number of inputs. You can have more than one input ports.

Dependency

Clearing the Use bit mask check box enables Number of input ports and disables Bit Mask and
Treat mask as.

Programmatic Use
Block Parameter: NumInputPorts
Type: character vector
Values: positive integer
Default: '1'

Bit Mask — Bit mask to associate with a single input

bin2dec (default)

Specify the bit mask to associate with a single input. This parameter reads values as hexadecimal
values.

You can use the bit mask to set, get, or clear a bit on the input.

To perform a... Set the Operator parameter
to...

And create a bit mask with...

Bit set OR A 1 for each corresponding
input bit that you want to set to
1

Bit clear AND A 0 for each corresponding
input bit that you want to set to
0

Bit get AND A 1 for each corresponding
input bit that you want to get

Suppose you want to set the fourth bit of an 8-bit input vector. The bit mask would be 00010000,
which you can specify as 2^4 for the Bit Mask parameter. To clear the bit, the bit mask would be
11101111, which you can specify as 2^7+2^6+2^5+2^3+2^2+2^1+2^0 for the Bit Mask parameter.

Tip Do not use a mask greater than 53 bits. Otherwise, an error message appears during simulation.

Dependency

This parameter is available only when you select Use bit mask.

Programmatic Use
Block Parameter: BitMask
Type: character vector
Values: positive integer
Default: 'bin2dec('11011001')'

Treat mask as — Treat the mask as a real-world value or a stored integer

Stored Integer (default) | Real World Value

 Bitwise Operator

1-71

Specify whether to treat the mask as a real-world value or a stored integer.

The encoding scheme is V = SQ + B, as described in “Scaling” (Fixed-Point Designer) in the Fixed-
Point Designer™ documentation. Real World Value treats the mask as V. Stored Integer treats
the mask as Q.

Dependency

This parameter is available only when you select Use bit mask.

Programmatic Use
Block Parameter: BitMaskRealWorld
Type: character vector
Values: 'Real World Value' | 'Stored Integer'
Default: 'Stored Integer'

Block Characteristics
Data Types Booleana | fixed point | integer
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

a Bit operations are not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

1 Blocks

1-72

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Logical Operator | Compare To Constant | Compare To Zero | Shift Arithmetic

 Bitwise Operator

1-73

Block Support Table
View data type support for Simulink blocks

Libraries:
Simulink / Model-Wide Utilities

Description
The Block Support Table block helps you access a table that lists the data types that Simulink blocks
support. To view the table, double-click the block.

Block Characteristics
Data Types
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Tips
To open the Block Support Table from the command line, enter showblockdatatypetable at the
MATLAB command prompt.

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Block Support Table block is ignored during code generation.

See Also
showblockdatatypetable

1 Blocks

1-74

Topics
“Data Types Supported by Simulink”

 Block Support Table

1-75

Bus Assignment
Assign new values to specified bus elements

Libraries:
Simulink / Signal Routing
HDL Coder / Signal Routing

Description
The Bus Assignment block assigns the values of input signals to selected bus elements. Use a Bus
Assignment block to change bus element values without adding Bus Selector and Bus Creator blocks
that select bus elements and reassemble the elements into a bus. A Bus Assignment block simplifies
updating a bus to reflect the processing that occurs in a separate component, such as a subsystem or
referenced model.

The Bus Assignment block assigns elements connected to its assignment input ports to specified
elements of the bus connected to its bus input port. The block replaces the elements previously
assigned to those elements. The change does not affect the composition of the bus; it affects only the
values of the elements themselves. Signals not replaced are unaffected by the replacement of other
elements.

The elements to which you assign values can be nonbus signals or buses, including arrays of buses.
The new values must match the attributes of the elements in the original bus.

By default, Simulink repairs broken selections for a Bus Assignment block that are due to upstream
bus hierarchy changes. Simulink generates a warning to highlight that it modified the model. To
prevent Simulink from making these repairs automatically:

1 On the Modeling tab of the Simulink Toolstrip, click Model Settings.
2 Navigate to the Diagnostics > Connectivity pane.
3 Set the Repair bus selections configuration parameter to Error without repair.

Limitations
• The Bus Assignment block does not support messages.
• A Bus Assignment block cannot replace a bus in an array of buses. Use an Assignment block

instead. For more information, see “Assign Values into Arrays of Buses”.
• A Bus Assignment block cannot replace an element of a bus in an array of buses. To select the

index of the bus that you want to modify with the Bus Assignment block, use a Selector block.
Then, use that selected bus with the Bus Assignment block.

1 Blocks

1-76

Ports
Input

Bus — Input bus with elements to reassign
bus

The input virtual or nonvirtual bus can have elements with real or complex values of any data type
supported by Simulink, including bus objects, fixed-point data types, and enumerated data types. The
bus can also contain arrays of buses.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | string

:= — New value to assign to bus element
scalar | vector | matrix | array | bus

Each element in the Elements that are being assigned list receives an assignment port. The port
label indicates the bus element that corresponds to the port. For an element named signal1, the
port label is := signal1.

Connect the signal that you want to assign to the bus element to its corresponding assignment port.
The signal connected to the assignment port must have the same structure, data type, and sample
time as the corresponding bus element. To change the sample time of one or more elements, use a
Rate Transition block. For more information, see “Modify Sample Times for Nonvirtual Buses”.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | string

Output

Bus — Output bus
bus

The output virtual or nonvirtual bus includes the assigned bus element values for the selected
elements and the unmodified bus element values for the other elements.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | string

Parameters
Elements in the bus — Elements of input bus
list of element names

This parameter is read-only.

Select elements in the input bus to operate on them.

An arrow next to an element name indicates that an element is a nested bus. To display the elements
in a nested bus, click the arrow.

With one or more elements selected, click:

• Find — Find the source of the selected elements. Simulink opens and highlights the system
containing the element source.

 Bus Assignment

1-77

• Select — Add the selected elements to the list of elements to be assigned values. For more
information, see Elements that are being assigned.

To refresh the list to reflect modifications to the input bus, click Refresh.

Programmatic Use
Block Parameter: InputSignals
Type: cell array | cell array of cell arrays
Values: names of input bus elements
Default: none

Filter by name — Filter for input elements
text

Specify a search term to use for filtering a long list of input elements. Do not enclose the search term
in quotation marks. The filter does a partial string search.

To access filtering options, such as using a regular expression for specifying the search term, click
the Show filtering options button to the right of the Filter by name box.

Enable regular expression — Option to filter input elements with regular expressions
off (default) | on

Enable the use of MATLAB regular expressions for filtering element names. For example, enter t$ in
the Filter by name box to display all elements whose names end with a lowercase t and their
immediate parents. For more information, see “Regular Expressions”.

Dependencies

To access this parameter, click the Show filtering options button to the right of the Filter by
name box.

Show filtered results as a flat list — Option to display filtered input elements in a flat list
off (default) | on

By default, the list of input elements displays elements in a hierarchical tree. To display filtered
elements in a flat list that uses dot notation to reflect the bus hierarchy, select this parameter.

Dependencies

To access this parameter, click the Show filtering options button on the right of the Filter by
name box.

Elements that are being assigned — Bus elements to be assigned new values
list of element names

For each element in this list, the block has an assignment port. The port label contains the name of
the corresponding element.

To add assignment ports for elements:

1 Select one or more elements from the Elements in the bus list.

1 Blocks

1-78

If you select multiple elements from the Elements in the bus list, the order in which you select
them sets their order in the Elements that are being assigned list.

2 Optionally, specify where you want the elements to appear in the Elements that are being
assigned list. Select the element below which you want the added elements to appear. If you do
not select an element, added elements appear at the end of the list.

3 Click Select.

To change the order of the assignment ports, select an element or multiple contiguous elements in
the list, then click Up or Down. Port connectivity is maintained when you change the element order.

To remove assignment ports, select the corresponding elements in the list, then click Remove.

If an element in the list is not in the input bus, the element name starts with three question marks
(???). Modify the input bus to include an element of the specified name or remove the element from
the list.

Programmatic Use
Block Parameter: AssignedSignals
Type: character vector | string scalar
Values: comma-separated list of element names
Default: none

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

 Bus Assignment

1-79

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Bus Creator | Bus Selector

Topics
“Composite Interface Guidelines”
“Group Signals or Messages into Virtual Buses”
“Create Nonvirtual Buses”
“Group Nonvirtual Buses in Arrays of Buses”
“Share and Reuse Bus-Routing Blocks”

1 Blocks

1-80

Bus Creator
Create bus from input elements

Libraries:
Simulink / Commonly Used Blocks
Simulink / Signal Routing
HDL Coder / Signal Routing

Description
The Bus Creator block combines a set of input elements into a bus. You can connect any element
types to the input ports, including other buses. You can access elements in a bus by using a Bus
Selector block.

Elements of a bus must have unique names. By default, each element of the bus inherits the name of
the element connected to the Bus Creator block. If duplicate names are present, the Bus Creator
block appends the port number to all input element names. For elements that do not have names, the
Bus Creator block generates names in the form signaln, where n is the port number connected to
the element. You can refer to elements by name when you search for their sources or select elements
for connection to other blocks. For element naming guidelines, see “Signal Names and Labels”.

The Bus Creator block does not support mixing message and signal elements as inputs.

Ports
Input

Port_1 — Input element to include in bus
scalar | vector | matrix | array | bus

The input ports accept the elements to include in the bus. The number of input ports is driven by the
Number of inputs parameter.

You can specify variable-size input signals with upper bounds smaller than the upper bounds of the
variable-size signals that the corresponding Bus Creator block input ports can accept. To configure
the upper bounds of variable-size signals that Bus Creator block input ports accept, use a
Simulink.BusElement object. For more information, see Simulink.BusElement. Variable-size
input signals and variable-size signals that the corresponding Bus Creator block input ports accept
must have the same dimensionality.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Output

Port_1 — Output virtual or nonvirtual bus
bus

 Bus Creator

1-81

The output bus is composed of the input elements. The Output as nonvirtual bus parameter
specifies whether the output bus is a virtual or nonvirtual bus. For information about the types of
buses, see “Composite Interface Guidelines”.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Parameters
Number of inputs — Number of input elements

2 (default) | integer

The number of input elements must be an integer greater than or equal to 2. Increasing the number
of inputs adds empty input ports to the block. Before you simulate the model, make sure that an input
element is connected to each input port.

When you modify the Number of inputs parameter, click Refresh to update the list of elements.

If all input ports are already connected, you can add an input port to the Bus Creator block by
connecting another line to it.

Interactively adding a port updates the Number of inputs parameter and adds the new element to
the list of elements in the bus.
Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: integer greater than or equal to 2, comma-separated list of element names
Default: '2'

By default, the Inputs parameter specifies the number of inputs. When you use it to specify the
names of elements in the bus, the number of inputs matches the number of element names you
specify.

Elements in the bus — List of input elements

list of element names

The list of input elements includes all elements that enter the block, including the elements of nested
buses. An arrow next to an element indicates that an input element is a bus. To display the contents
of that bus, click the arrow.

To highlight the source of an element that enters the block, select the element in the list and click
Find.

If you change an element name while the dialog box is open, click Refresh to update the name in the
list.

1 Blocks

1-82

To rearrange the elements in the output bus, use the Up and Down buttons. You can select multiple
top-level adjacent elements in the Elements in the bus list to reorder or remove.

To add or remove input elements, click Add or Remove, respectively. Then, update the block icon by
clicking Apply or OK. Before you simulate the model, make sure that an input element is connected
to each input port.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: integer greater than or equal to 2, comma-separated list of element names
Default: '2'

By default, the Inputs parameter specifies the number of inputs. When you use it to specify the
names of elements in the bus, the number of inputs matches the number of element names you
specify.

Filter by name — Search term for filtering displayed input elements

text

To filter the displayed input elements, enter a search term. The filter does a partial-string search. Do
not enclose the search term in quotation marks.

To access the filtering options, click the Show filtering options button to the right of the Filter
by name box.

Enable regular expression — Option to filter displayed input elements by regular expression

off (default) | on

Select this parameter to filter the displayed input elements with either regular expressions or partial
search strings. By default, you can filter the displayed input elements with only partial search strings.

Regular expressions let you filter based on whether the input elements match a pattern. For example,
enter t$ in the Filter by name box to display all elements whose names end with a lowercase t (and
their immediate parents). For more informations, see “Regular Expressions”.

Dependencies

To access this parameter, click the Show filtering options button to the right of the Filter by
name box.

Show filtered results as a flat list — Option to display filtered results as a flat list

off (default) | on

Select this parameter to display filtered results as a flat list that uses dot notation to reflect the bus
hierarchy. By default, the filtered results appear in a hierarchical tree.

Dependencies

To access this parameter, click the Show filtering options button to the right of the Filter by
name box.

 Bus Creator

1-83

Output data type — Data type of output bus

'Inherit: auto' (default) | 'Bus: <object name>' | <data type expression>

Specify the data type of the output bus.

If you select Bus: <object name>, replace <object name> with the name of a Simulink.Bus
object. The Bus object must be accessible when you edit the model.

To define a Bus object using the Type Editor, click the Show data type assistant button , set
Mode to Bus object, and then click the Edit button.

If you select <data type expression>, specify an expression that evaluates to a Bus object.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'Bus: <object name>'
Default: 'Inherit: auto'

Require names of inputs to match names above — Option to check that input element names
match names listed in dialog box

off (default) | on

This parameter might be removed in a future release. To enforce strong data typing, use the Use
names from inputs instead of from bus object parameter.

When selected, this parameter checks that the input element names match the names listed in the
Block Parameters dialog box. If the element names do not match, Simulink returns an error.
Dependencies

• This parameter is ignored if you select Use names from inputs instead of from bus object.
• This parameter reverts to off if you programmatically change Number of inputs.

Rename selected signal — New name for selected input element

'' (default) | character vector

Specify a new name for the selected input element. See “Signal Names and Labels” for name
guidelines.
Dependencies

To enable this parameter, select Require names of inputs to match names above.

Use names from inputs instead of from bus object — Option to use names from input elements
instead of from bus object

on (default) | off

By default, the Bus Creator block uses the input element names as the output bus element names,
even when you specify a Simulink.Bus object as the data type.

1 Blocks

1-84

To inherit bus element names from the Bus object, clear this parameter. Clearing the parameter:

• Enforces strong data typing.
• Avoids having to enter an element name multiple times: in the Bus object and in the model.

Entering the name multiple times can accidentally create element name mismatches.
• Supports the array of buses requirement to have consistent element names across array elements.

Alternatively, you can enforce strong data typing by checking that input element names match the
Bus object element names. Keep this parameter selected and set the Element name mismatch
configuration parameter to error.

Dependencies

To enable this parameter, set Output data type to a Bus object.

Programmatic Use
Block Parameter: InheritFromInputs
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Output as nonvirtual bus — Option to output nonvirtual bus

off (default) | on

Select this parameter to output a nonvirtual bus instead of a virtual bus.

All elements in a nonvirtual bus must have the same sample time, even if the elements of the
associated Bus object specify inherited sample times for some elements. Any operation resulting in a
nonvirtual bus containing elements with different sample rates generates an error. To change the
sample time of an element or bus that has a different sample time than the other nonvirtual bus input
elements, use a Rate Transition block. For details, see “Modify Sample Times for Nonvirtual Buses”.

To generate code that uses a C structure to define the structure of the bus that this block creates,
enable this parameter.

Dependencies

To enable this parameter, set Output data type to a Bus object.

Programmatic Use
Block Parameter: NonVirtualBus
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

 Bus Creator

1-85

Variable-Size Signals yes
Zero-Crossing
Detection

no

Tips
For buses at subsystem and model interfaces, you can use Out Bus Element blocks instead of a Bus
Creator block with an Outport block. Out Bus Element blocks:

• Reduce line complexity and clutter in a block diagram.
• Make it easier to change the interface incrementally.

Version History
Introduced before R2006a

R2023a: Variable-size input signal upper bound can be smaller than upper bound of
variable-size signal that the corresponding Bus Creator block input port can accept

Starting in R2023a, the Bus Creator block supports variable-size input signals with upper bounds
smaller than upper bounds of variable-size signals that the corresponding Bus Creator block input
ports can accept.

This enhancement allows you to use variable-size input signals when the upper bounds of input
signals are not equal to the upper bounds of variable-size signals that the corresponding Bus Creator
block input ports can accept.

R2014b: Require names of inputs to match names above parameter is not recommended
Not recommended starting in R2014b

The Require names of inputs to match names above parameter might be removed in a future
release. To enforce strong data typing, use the Use names from inputs instead of from bus
object parameter instead.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

1 Blocks

1-86

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Bus Assignment | Bus Selector | Bus to Vector | Out Bus Element

Topics
“Group Signals or Messages into Virtual Buses”
“Simplify Subsystem and Model Interfaces with Bus Element Ports”
“Bus-Capable Blocks”
“Assign Signal Values to Bus Elements”
“Modify Sample Times for Nonvirtual Buses”
“Specify Bus Properties with Simulink.Bus Object Data Types”

 Bus Creator

1-87

Bus Selector
Select elements from incoming bus

Libraries:
Simulink / Commonly Used Blocks
Simulink / Signal Routing
HDL Coder / Signal Routing

Description
The Bus Selector block outputs the elements you select from the input bus. The block can output the
selected elements separately or in a new virtual bus.

The Bus Selector block does not support mixing message and signal elements as outputs.

Ports
Input

Port_1 — Input virtual or nonvirtual bus
bus

The input virtual or nonvirtual bus contains the elements to be selected.

For arrays of buses, use a Selector block to select the bus that you want to use with the Bus Selector
block.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Output

Port_1 — Selected elements of input bus
scalar | vector | matrix | array | bus

By default, the block outputs each of the selected elements from a separate output port that is
labeled with the corresponding bus element name. When the Output as virtual bus parameter is
enabled, the block outputs the selected elements from one port, grouped in a virtual bus.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Parameters
To interactively edit the block parameters, double-click the block.

Elements in the bus — List of elements in input bus

1 Blocks

1-88

list of element names

This parameter is read-only.

The list of input elements includes all elements that enter the block, including the elements of nested
buses. An arrow next to an element indicates that an input element is a bus. To display the contents
of that bus, click the arrow.

To highlight the source of an element that enters the block, select the element in the list and click
Find.

If you change an element name while the dialog box is open, click Refresh to update the name in the
list.

Programmatic Use
Block Parameter: InputSignals
Type: cell array
Values: element names

Filter by name — Search term for filtering displayed input elements

text

To filter the displayed input elements, enter a search term. The filter does a partial-string search. Do
not enclose the search term in quotation marks.

To access the filtering options, click the Show filtering options button to the right of the Filter
by name box.

Enable regular expression — Option to filter displayed input elements by regular expression

off (default) | on

Select this parameter to filter the displayed input elements with either regular expressions or partial
search strings. By default, you can filter the displayed input elements with only partial search strings.

Regular expressions let you filter based on whether the input elements match a pattern. For example,
enter t$ in the Filter by name box to display all elements whose names end with a lowercase t (and
their immediate parents). For more informations, see “Regular Expressions”.

Dependencies

To access this parameter, click the Show filtering options button on the right side of the Filter
by name box.

Show filtered results as a flat list — Option to display filtered results as a flat list

off (default) | on

Select this parameter to display filtered results as a flat list that uses dot notation to reflect the bus
hierarchy. By default, the filtered results appear in a hierarchical tree.

 Bus Selector

1-89

Dependencies

To access this parameter, click the Show filtering options button on the right side of the Filter
by name box.

Selected elements — Selected elements of input bus

list of elements names

Each element in this list is included in the block output.

To add elements to the block output:

1 Select one or more elements from the Elements in the bus list.

If you select multiple elements from the Elements in the bus list, the order in which you select
them sets their order in the Selected elements list.

2 Optionally, specify where you want the elements to appear in the Selected elements list. Select
the element below which you want the added elements to appear. If you do not select an element,
added elements appear at the end of the list.

3 Click Select.

Alternatively, in the Simulink Editor, draw a new line close to the output side of the Bus Selector
block when the input port receives a bus and all output ports connect to other ports. Simulink
prompts you to specify an element to select and adds a port for the element you specify. You cannot
create ports in this way when Output as virtual bus is selected.

To change the order of the output elements, select an element or multiple contiguous elements in the
list, then click Up or Down. Port connectivity is maintained when you change the element order.

To remove elements from the block output, select the elements in the list, then click Remove.

If an element in the list is not in the input bus, the element name starts with three question marks
(???). Modify the input bus to include an element of the specified name or remove the element from
the list.

Limitations

To avoid a recursion limit, select fewer than 500 elements per Bus Selector block.

Programmatic Use
Block Parameter: OutputSignals
Type: character vector
Values: character vector in the form of 'signal1,signal2'
Default: none

Output as virtual bus — Option to output selected elements as virtual bus

off (default) | on

By default, the block outputs each of the selected elements from a separate output port that is
labeled with the corresponding bus element name. Select this parameter to output the selected
elements from one port, grouped in a virtual bus.

1 Blocks

1-90

To convert the output to a nonvirtual bus, insert a Signal Conversion block after the Bus Selector
block. Set the Signal Conversion block Output parameter to Nonvirtual bus and set the Data
type to a Simulink.Bus object.

When the Selected elements list includes only one element and you enable Output as virtual bus,
then that element is not wrapped in a bus. For example, if the element is a bus, the output element is
that bus. If the element is not a bus, the output element is not a bus.

Programmatic Use
Block Parameter: OutputAsBus
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Tips
For buses at subsystem and model interfaces, you can use In Bus Element blocks instead of an Inport
block with a Bus Selector block. In Bus Element blocks:

• Reduce line complexity and clutter in a block diagram.
• Make it easier to change the interface incrementally.
• Allow access to a bus element closer to the point of usage, avoiding the use of a Bus Selector and

Goto block configuration.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 Bus Selector

1-91

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Bus Creator | Bus Assignment | Bus to Vector | Out Bus Element

Topics
“Group Signals or Messages into Virtual Buses”
“Simplify Subsystem and Model Interfaces with Bus Element Ports”
“Bus-Capable Blocks”
“Assign Signal Values to Bus Elements”

1 Blocks

1-92

Bus to Vector
Convert virtual bus to vector

Libraries:
Simulink / Signal Attributes
HDL Coder / Signal Attributes

Description
The Bus to Vector block converts a virtual bus to a vector signal. The input bus must consist of scalars
or 1-D, row, or column vectors that have the same data type, signal type, and sampling mode. If the
input bus contains row or column vectors, the output is a row or column vector, respectively.
Otherwise, the output is a 1-D array.

Use the Bus to Vector block only to replace an implicit bus-to-vector conversion with an explicit
conversion. To identify and correct buses used as vectors without manually inserting Bus to Vector
blocks, you can use Model Advisor check Check bus signals treated as vectors. Alternatively, you can
use the Simulink.BlockDiagram.addBusToVector function, which automatically inserts Bus to
Vector blocks wherever needed.

Note If you use Save As to save a model in a version of the Simulink product before R2007a, a null
subsystem that outputs nothing replaces each Bus to Vector block. Before you can use the model,
reconnect or otherwise correct each path that used to contain a Bus to Vector block but now is
interrupted by a null subsystem.

Ports
Input

Port_1 — Bus to convert to vector
scalar | vector | bus

An input bus must consist of scalars or 1-D, row, or column vectors that have the same data type,
signal type, and sampling mode. If the input is a nonbus signal, the block does no conversion.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Output vector
vector

The dimensions of the output vector depend on the dimensions of the input bus elements. If the input
bus contains row or column vectors, the block output is a row or column vector, respectively.
Otherwise, the output is a 1-D vector.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

 Bus to Vector

1-93

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2007a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

1 Blocks

1-94

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Blocks
Bus Creator | Bus Selector | Mux | Data Type Conversion

Functions
Simulink.BlockDiagram.addBusToVector

Topics
“Identify Automatic Bus Conversions”
“Composite Interface Guidelines”

 Bus to Vector

1-95

C Caller
Integrate C code in Simulink

Libraries:
Simulink / User-Defined Functions

Description
The C Caller block integrates your external C code into Simulink. This block imports and lists the
functions in your external C code, and allows you to select your resolved C functions to integrate in
your Simulink models. The C Caller block standalone supports code generation. For more complex
models, code generation depends on the capabilities of your Simulink model.

To use the C Caller block, define your source code and any supporting files using Simulation Target
under Configuration Parameters. Then, bring a C Caller block to the Simulink canvas, using
Library Browser > Simulink > User Defined Functions. To change the defined source code file
and its dependencies, go to Simulation Target tab in Configuration Parameters by clicking the

 from the block dialog. After changing your source code or any of its dependencies, refresh the

list of functions by clicking the on the block dialog. To browse the function definitions in your

source code, use the icon to access your source files.

Ports
Input

Port_1 — Input port
scalar | vector | matrix

The number of input ports and their names are inferred through the selected function in your
external C code. To provide data to a C Caller block, connect an input signal to the input ports.

The input label has the same name as your input port unless changed by editing the Label column
under Port Specification from the Block Dialog. If you rename the label to an input port, the C
Caller block changes the name of the port.

For input variables, you can change the input scope to parameters or constants using the Scope
column.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Output

Port_1 — Output port
scalar | vector | matrix

1 Blocks

1-96

The number of output ports and their names are inferred through the selected function in your
external C code. To send data from your C Caller block, connect a block to the output port of your C
Caller block.

The output port label has the same name as your output port unless you change it by editing the
Label column under Port Specification from the Block Dialog. If you rename the label to an input
port, the C Caller block changes the name of the port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus

Parameters
Function name — Name of function

character vector | string scalar

Name of the function parsed for the C Caller block, specified as a character vector or string scalar.
For a list of available functions, see “Available Functions” on page 1-0 .

Tunable: Yes
Programmatic Use
Block Parameter: FunctionName
Type: character vector or string scalar

myFunctionName = get_param(gcb,"FunctionName")

myFunctionName =

 'mean_filter'

Port specification — Port properties

table

Port properties, specified as a table. The table indicates the attributes of each input and output
element of the block. If the scope is an input, you can modify this variable to a parameter or a
constant. These properties include

Name — Demonstrates the variable name inferred from your source code.

A bold argument name indicates that the port or parameter is a global argument.

Scope — Indicates the role of the variables from your source code. If the variable is an input
argument in the C Caller block source code, you can change the scope type to a constant or a
parameter. If the variable is an output argument in the source code, you cannot change the scope
type.

Label — Labels the input or output variable for the Simulink model. You can change the labels using
this table. If the scope is a parameter, enter the parameter name in this field. If the scope is a
constant, enter the constant value.

Type — Indicates the data type coming from the ports.

Size — Indicates the size of the input and output data.

 C Caller

1-97

Name, scope, type, and size are inferred from your source code.

Programmatic Use
Block Parameter: FunctionPortSpecification
Type: FunctionPortSpecification object

Available Functions — List of available functions
cell array

List of all available functions that can be mapped to a C Caller block, specified as a cell array.

The C Caller block in your model imports all functions in your external source code, and shows the
function names next to the “Function name” on page 1-0 on the block dialog. To select and use a
function in your block, confirm that the function name appears in the Available Functions table.

If you are missing one of the functions, reload the source code by clicking on the block dialog.
To change the names of functions, modify your source code and click the Refresh button to reload.

Programmatic Use
Block Parameter: AvailableFunctions
Type: cell array

allAvailableFunctions = get_param(gcb, "AvailableFunctions")

allAvailableFunctions =

 1×1 cell array

 {'add'}

Sample time — Sample period
-1 (default) | scalar | vector

Sample period, specified in seconds. See “Types of Sample Time” and “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | integera |

singlea

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals no
Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

1 Blocks

1-98

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
C Function | MATLAB Function | MATLAB System | S-Function | S-Function Builder

Topics
“Integrate C Code Using C Caller Blocks”

 C Caller

1-99

C Function
Integrate and call external C/C++ code from a Simulink model

Libraries:
Simulink / User-Defined Functions

Description
The C Function block integrates and calls external C/C++ code from a Simulink model. Use this block
to define external code and customize the integration of your code by preprocessing or
postprocessing the data. In addition, you can specify customized code for simulation and C code
generation. You can conditionally call functions defined in your code, and you can also call multiple
functions in one block. Using this block, you can initialize persistent data and pass it to an external
function.

The C Function block supports initializing persistent data and calling external functions from the
block dialog box. Persistent data can include an object of a C++ class defined in your custom code.
See “Interface with C++ Classes Using C Function Block”. The block supports only initializing and
terminating persistent data. The block does not support updating the data during simulation. To
model a dynamic system with continuous states, use an S-Function block. To learn more about S-
functions, see “What Is an S-Function?”

Define the source code and supporting files to be called by the C Function block in the Simulation
Target pane of the Model Configuration Parameters dialog box. See “Model Configuration
Parameters: Simulation Target”.

Note C99 is the standard version of C language supported for custom C code integration into
Simulink.

Call C Library Functions

You can call these C Math Library functions directly from the C Function block.

abs acos asin atan atan2 ceil
cos cosh exp fabs floor fmod
labs ldexp log log10 pow sin
sinh sqrt tan tanh

When you call these functions, double precision applies unless all the input arguments are explicitly
single precision. When a type mismatch occurs, a cast of the input arguments to the expected type
replaces the original arguments. For example, if you call the sin function with an integer argument,
a cast of the input argument to a floating-point number of type double replaces the original
argument.

1 Blocks

1-100

To call other C library functions, create and call an external wrapper function that calls the C library
function.
Call the abs, fabs, and labs Functions

Interpretation of the abs, fabs, and labs functions in C Function block goes beyond the standard C
version to include integer and floating-point arguments:

• If x is an integer, the standard C function abs applies to x, or abs(x).
• If x is a double, the standard C function labs applies to x, or labs(x).
• If x is a single, the standard C function fabs applies to x, or fabs(x).

Code Replacement Library (CRL) Based on Type

The call to the function should call the correct CRL based on the type of data passed into the
function. If no CRL is specified, the call to the function should call to type-specific library. The CRL for
C99 generates a type-specific function. For example:

Type passed in Code generation call
sin(doubleIn) sin(doubleIn)
sin(floatIn) sinf(floatIn)

Limitations
These features of Simulink are not compatible with the C Function block.

• Simulink Coverage™

Only execution coverage is measured.
• Simulink Code Inspector™
• Simulink Design Verifier™

These limitations apply to the C code that you specify in a C Function block.

• Local static variables using the static keyword are not supported. To cache values across time
steps, define a symbol as Persistent in the Symbols table of the block dialog box.

• You cannot #include files in the code. Files containing external functions must be specified in the
Simulation Target pane of the Configuration Parameters window.

• Taking the address of a Constant symbol is not supported.
• Directly calling C library functions other than the C Math Library functions listed above under Call

C Library Functions is not supported. To call other C library functions, create and call a wrapper
function that calls the C library function.

Ports
Input

Port_1 — Input port
scalar | vector | matrix

The number of input ports is determined by the number of symbols with Input or InputOutput
scope defined in the Symbols table in the block parameters dialog box. Each input port label is the

 C Function

1-101

same as the name of the Input or InputOutput symbol unless you change it by editing the Label
field in the Symbols table of the block dialog box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixedpoint

Output

Port_1 — Output port
scalar | vector | matrix

The number of output ports is determined by the number of symbols with Output or InputOutput
scope defined in the Symbols table in the block parameters dialog box. Each output port label is the
same as the name of the Output or InputOutput symbol unless you change it by editing the Label
field in the Symbols table of the block dialog box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixedpoint

Parameters
Output Code — Output code

character vector | string scalar

Output code that the block executes at each time step during simulation, specified as a character
vector or string scalar. For example, you can call a function from external C code, make modifications
to the results, and perform operations to pass the results to other blocks.

Programmatic Use
Block Parameter: OutputCode
Type: character vector or string scalar
Value: "" | C code
Default: ""

Start Code — Initialization code

character vector | string scalar

Initialization code that the block executes one time at the start of simulation, specified as a character
vector or string scalar. For example, you can initialize persistent symbols.

Programmatic Use
Block Parameter: StartCode
Type: character vector or string scalar
Value: "" | C code
Default: ""

Initialize Conditions Code — Reinitialization code

character vector | string scalar

Reinitialization code for the block to execute when enabling a subsystem or model in which the block
is placed, specified as a character vector or string scalar. The code executes one time at the start of
simulation, and if the block is inside a subsystem or model containing an Enable block with the

1 Blocks

1-102

States when enabling parameter set to reset, the code also executes each time the subsystem or
model switches from disabled to enabled. See “Using Enabled Subsystems”. You can use this code, for
example, to set an initial output value or reset the value of a persistent variable.

Programmatic Use
Block Parameter: InitializeConditionsCode
Type: character vector or string scalar
Value: "" | C code
Default: ""

Terminate Code — Termination code

character vector | string scalar

Termination code that the block executes one time at the end of simulation, specified as a character
vector or string scalar. For example, use this code to free the memory cached on persistent symbols
specified as void pointers.

Programmatic Use
Block Parameter: TerminateCode
Type: character vector or string scalar
Value: "" | C code
Default: ""

Symbols — Symbols and symbol properties

table

Symbols and symbol properties used in the C code, specified as a table. You must enter the following
attributes of each symbol in the table:

• Name — Symbol name in the code.

If the symbol represents a C++ class object, the Name field serves as a call to the class
constructor:

ObjectName(Argument1,Argument2,...)

• Scope — Scope of the symbol. These scopes are available:

• Input — Input to the block.
• Output — Output to the block.
• InputOutput — Both input and output to the block.

Use the InputOutput scope to map an input passed by a pointer in your C code. Ports created
using an InputOutput scope have the same name for input and output ports. InputOutput
scope enables buffer reuse for input and output ports. Buffer reuse may optimize memory use
and improve code simulation and code generation efficiency, depending on the signal size and
the block layout. Limitations include:

• An InputOutput symbol cannot be used in Start Code, Initialize Conditions Code, or
Terminate Code.

• InputOutput symbols do not support the void* data type.
• InputOutput symbols do not support size() expressions.

 C Function

1-103

• Parameter — Block parameter that appears on the block parameter mask. The parameter
name is defined by the Label of the symbol.

• Persistent — Persistent block data, which retains its value from one time step to the next
during simulation.

You can define a void pointer using the Persistent scope. A void pointer is a pointer that can
store any type of data that you create or allocate.

You can instantiate an object of a C++ class defined in your custom code by defining a symbol
with Persistent scope and using Class: ClassName as the Type for the symbol. See
“Interface with C++ Classes Using C Function Block”.

• Constant — Constant value, defined using value-size or numeric expressions.
• Label — Label of the symbol. For a symbol with Input, InputOutput, or Output scope, the

label appears as the port name on the block. For a symbol with Parameter scope, the label
appears on the block parameter mask. If the scope is Constant, the label is the constant
expression. You cannot define a label for Persistent scope symbols.

• Type — Data type of the symbol. Select a data type from the drop-down list or specify a custom
data type.

C++ class types defined in your custom code are supported, as are Simulink.Bus, Simulink
Enum, and Simulink.AliasType types. Enter the Type as shown in this table.

Custom type Specification in Type field
C++ class Class: C++ClassName
Simulink.Bus Bus: BusTypeName
Simulink.Enum Enum: EnumTypeName
Simulink.AliasType AliasTypeName

• Size — Size of the symbol data. You can use a size expression to define the size of an output or use
-1 to inherit size.

• Port — Port index of the symbol. For an Input, InputOutput, or Output symbol, Port specifies
the port index on the block of the port or ports corresponding to the symbol. For a Parameter
symbol, Port specifies the order that the symbol appears in the block parameter mask.

Programmatic Use
Block Parameter: SymbolSpec
Type: SymbolSpec object
Value: SymbolSpec object
Default: Empty array of Symbol objects

Sample time — Sample period
-1 (default) | scalar | vector

Sample period, specified in seconds. See “Types of Sample Time” and “Specify Sample Time”. If the
block defines persistent symbols, you cannot specify a continuous sample time.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

1 Blocks

1-104

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | integera |

singlea

Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

See Also
Blocks
C Caller

Objects
SymbolSpec | Symbol

Functions
addSymbol | deleteSymbol | getSymbol

Topics
“Integrate External C/C++ Code into Simulink Using C Function Blocks”
“Interface with C++ Classes Using C Function Block”

 C Function

1-105

Callback Button
Execute MATLAB code using button with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
The Callback Button block executes MATLAB code in response to a click or a press of the button.
When you press the button, the code executes after a time span that you specify has elapsed or at
time intervals that you specify. You can configure the block to execute different code for a click versus
for a press. When you use the Callback Button block from the Customizable Blocks library, you can
also customize the appearance of the block to look like a button in your real system.

To push the virtual button, click the Callback Button block. While you press your pointer, the button is
pushed. When you release your pointer, you release the button.

You can use callback functions to specify what you want the button to do:

• PressFcns functions run while the button is pushed. You can configure the button to run the
PressFcn function only once while the button is pushed, or you can specify a repeat interval.

• ClickFcns functions run when you release the button.

You can configure the button to stay pushed when you release your pointer by setting the Button
Type to Latched. When you choose the latched button type:

• To latch the button, click the button.
• To unlatch the button, click the button again.

The PressFcn function runs while the button is latched. The ClickFcn function runs once when you
latch the button, and once when you unlatch the button.

You can use states to specify how the appearance of the Callback Button block changes when you
interact with the button:

• While you push the button, the block is in the Pressed state.
• When the button is latched and you are not pushing it, the block is in the Latched state.
• When the button is latched and you are pushing it, the block is in the Latched and Pressed

state.
• When the block is not in any of these three states, it is in the Default state.

A state pairs pointer actions with:

• A State Label
• A state icon
• A state image

1 Blocks

1-106

Note Double-clicking the Callback Button block does not open its dialog box during simulation or
when the block is selected. To edit the block parameters, you can use the Property Inspector or
open the block dialog box by:

• Double-clicking the block when the block is not selected and the model is not simulating
• Right-clicking the block and selecting Block Parameters from the context menu

Customize Callback Button Blocks

When you add a Callback Button block to your model, the block is preconfigured with a default
design. You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

When you design a Callback Button block, you configure the block appearance for each possible
state. When you configure the Block Type as Momentary, the block has two states. When you
configure the Block Type as Latch, the block has four.

You can use the toolbar above the block to switch states. For each state, you can:

• Upload a state image.
• Upload a state icon and specify the position of the icon relative to the state label.
• Specify the State Label text, color, opacity, and position.

 Callback Button

1-107

You can also upload a foreground or a background image, or set a solid background color. The
foreground and background apply to all states.

Use the toolbar above the block to configure the image, the icon, and the State Label color and
opacity.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

Use the Design tab to:

• Specify the State Label text and position.
• Specify the icon position.
• Upload a foreground image.
• Upload a background image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Main

Button Type — Button response to click

Momentary (default) | Latch

Specify how the block responds to a click.

• Momentary — The button changes state only while pressed. When you release the click, the
button returns to its default state.

• Latch — The button latches the state change when clicked. The button remains in the pressed
state until you click it again.

When you configure Button Type as Momentary, the block has these states:

• Default — Default state for the block when it is not pressed
• Pressed — Block state when the block is pressed

When you configure Button Type as Latch, the block has these states:

1 Blocks

1-108

• Default — Default state for the block when it is not pressed.
• Pressed — Transitional state when you press the button while it is in the Default state. The

block transitions to the Latched state when you release the click.
• Latched — Latched state for the block when it is not pressed.
• Latched and Pressed — Transitional state when you press the button while it is in the

Latched state. The block transitions to the Default state when you release the click.

Programmatic Use
Block Parameter: ButtonType
Type: string or character array
Value: 'Momentary' | 'Latch'

Button Text — Button label text

'Callback Button' (default) | string | character array

Specify the text for the button label. The label is applied to the button for the state that is selected in
the Select State section of the States component on the Design tab.

Programmatic Use

Specify the ButtonText parameter for the block as a string or a character vector.
Block Parameter: ButtonText
Type: character vector | string

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Callbacks

ClickFcn — MATLAB code that executes in response to click
MATLAB code

MATLAB code that executes in response to a click of the button.

Every time you click the button, the ClickFcn code executes once, at the point in time when you
release the click.

To specify code for the ClickFcn, select ClickFcn from the drop-down menu. Enter the code in the
text box below the menu.

 Callback Button

1-109

Programmatic Use

Specify the ClickFcn parameter for the block as MATLAB code that is formatted as a string or a
character vector.
Block Parameter: ClickFcn
Type: character vector | string
Values: MATLAB code

PressFcn — MATLAB code that executes in response to press
MATLAB code

MATLAB code that executes in response to a press of the button.

While the button is in the pressed state, the PressFcn code executes once when the Press Delay
time has elapsed and periodically at every Repeat Interval.

To specify code for the PressFcn, select PressFcn from the drop-down menu. Enter the code in the
text box below the menu.

How you press the button to execute the PressFcn code depends on the Button Type.

• If the Button Type is Momentary, hold down your click for the duration that you want to press
the button.

• If the Button Type is Latch, click to press the button, but do not hold down your click. The
button remains pressed until you click it again.

Note Every time that you click on the button, even when you do so as part of the process for
pressing the button, the ClickFcn code executes once, at the point in time when you release the
click.

Programmatic Use

Specify the PressFcn parameter for the block as MATLAB code that is formatted as a string or a
character vector.
Block Parameter: PressFcn
Type: character vector | string
Values: MATLAB code

Press Delay (ms) — Time to hold button for press

500 (default) | scalar

Amount of time required to cause the PressFcn code to execute.

Dependencies

Press Delay (ms) is visible only when PressFcn is selected as the callback.

Programmatic Use

Specify the PressDelay parameter for the block as a positive scalar value.
Block Parameter: PressDelay
Type: scalar

1 Blocks

1-110

Repeat Interval (ms) — Time interval to repeat PressFcn code

0 (default) | scalar

Time interval after which the PressFcn code executes again if the Callback Button block is still
pressed.

Dependencies

Repeat Interval (ms) is visible only when PressFcn is selected as the callback.

Programmatic Use

Specify the RepeatInterval parameter for the block as a positive scalar value.
Block Parameter: RepeatInterval
Type: scalar

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Button

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States

Select State — Selection of state to configure
Default (default) | Pressed | Latched | Latched and Pressed

Select a state that you want to configure from the drop-down menu in the Select State section of the
States component. When the Button Type is Momentary, you can select these states:

• Default — Default state for the block when it is not pressed
• Pressed — Block state when the block is pressed

When the Button Type is Latch, you can select these states:

• Default — Default state for the block when it is not pressed.
• Pressed — Transitional state when you press the button while it is in the Default state. The

block transitions to the Latched state when you release the click.

 Callback Button

1-111

• Latched — Latched state for the block when it is not pressed.
• Latched and Pressed — Transitional state when you press the button while it is in the

Latched state. The block transitions to the Default state when you release the click.

Note You can configure all of the parameters in the States component of the Design tab for a state.
For example, you can select an icon that will appear on the button when it is in the state. When you
configure any of the parameters in the States component, the changes are applied to the state that is
selected in the Select State section of the States component.

Example: Pressed

Button Text — Button label text

'Callback Button' (default) | string | character array

Specify the text for the button label. The label is applied to the button for the state that is selected in
the Select State section of the States component on the Design tab.
Programmatic Use

Specify the ButtonText parameter for the block as a string or a character vector.
Block Parameter: ButtonText
Type: character vector | string

Label Color — Button label font color
[r g b] vector

Choose a font color for the button label from the palette of standard colors, or specify a custom color.
The color is applied to the button label for the state that is selected in the Select State section of the
States component on the Design tab.

Horizontal Alignment — Horizontal button text alignment
Center (default) | Left | Right

Set the alignment of the button text.

• Center: Midway between left and right edges of block
• Left: Left edge of block
• Right: Right edge of block

Vertical Alignment — Vertical button text alignment
Center (default) | Bottom | Top

Set the alignment of the button text.

• Center: Midway between top and bottom edges of block
• Bottom: Bottom edge of block
• Top: Top edge of block

Label X Offset — Horizontal offset of button text center from default position for selected horizontal
alignment setting
0 (default) | scalar

1 Blocks

1-112

Specify the horizontal offset of the center of the Button Text from the default position for the
selected Horizontal Alignment setting as a ratio of the block width. Relative to the position of the
text when the offset is 0, an offset with a negative value moves the text left, and an offset with a
positive value moves the text right.

Label Y Offset — Vertical offset of button text center from default position for selected horizontal
alignment setting
0 (default) | scalar

Specify the vertical offset of the center of the Button Text from the default position for the selected
Vertical Alignment setting as a ratio of the block height. Relative to the position of the text when
the offset is 0, an offset with a negative value moves the text up, and an offset with a positive value
moves the text down.

Icon Placement — Placement of icon relative to button text
Left (default) | Top | Right | Bottom

Specify the placement of the icon relative to the button text.

Note Changing the placement of the icon also moves the button text, but does not change the
specified X Offset, Y Offset, Horizontal Alignment, or Vertical Alignment of the text.

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

 Callback Button

1-113

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Background Image

Use Background Color — Option to specify solid background color for button
off (default) | on

You can provide a background image for the block or select a solid background color for the button.
To select a solid background color for the button, select this parameter. To provide a background
image for the block, clear this parameter.

Note

• The state images are not visible when you set a solid background color for the button. To make the
state images visible, turn off Use Background Color.

• Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and turns on the Use Background Color parameter.

Example: on

Color — Button background color
[r g b] vector

To select a solid background color for the button, enable the Use Background Color parameter.
Then, choose a background color from the palette of standard colors, or specify a custom color.

Note The state images are not visible when you set a solid background color. To make the state
images visible, in the Property Inspector, on the Design tab, in the Background Image component,
turn off Use Background Color.

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the opacity of the solid background color as a scalar value from 0 to 1.

1 Blocks

1-114

Example: 0.5

Corner Radius — Corner radius of area with block background color
scalar

Specify the corner radius of the area covered by the solid background color.
Example: 0.25

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no

 Callback Button

1-115

Zero-Crossing
Detection

no

Tips
To design a button that changes the value of a variable or parameter in your model, use the Push
Button block.

Version History
Introduced in R2021b

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows®. On a Mac, press command (⌘) instead of
Ctrl.

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

1 Blocks

1-116

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Customizable Push Button | Callback Button | Push Button

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”
“Getting Started with Panels”

 Callback Button

1-117

Callback Button
Execute MATLAB code using button

Libraries:
Simulink / Dashboard

Description
The Callback Button block executes MATLAB code in response to a click or a press of the button.
When you press the button, the code executes after a time span that you specify has elapsed or at
time intervals that you specify. You can configure the block to execute different code for a click versus
for a press. When you use the Callback Button block from the Customizable Blocks library, you can
also customize the appearance of the block to look like a button in your real system.

To push the virtual button, click the Callback Button block. While you press your pointer, the button is
pushed. When you release your pointer, you release the button.

You can use callback functions to specify what you want the button to do:

• PressFcns functions run while the button is pushed. You can configure the button to run the
PressFcn function only once while the button is pushed, or you can specify a repeat interval.

• ClickFcns functions run when you release the button.

You can configure the button to stay pushed when you release your pointer by setting the Button
Type to Latched. When you choose the latched button type:

• To latch the button, click the button.
• To unlatch the button, click the button again.

The PressFcn function runs while the button is latched. The ClickFcn function runs once when you
latch the button, and once when you unlatch the button.

You can use states to specify how the appearance of the Callback Button block changes when you
interact with the button:

• While you push the button, the block is in the Pressed state.
• When the button is latched and you are not pushing it, the block is in the Latched state.
• When the button is latched and you are pushing it, the block is in the Latched and Pressed

state.
• When the block is not in any of these three states, it is in the Default state.

A state pairs pointer actions with:

• A State Label

1 Blocks

1-118

• A state icon
• A state image

Note Double-clicking the Callback Button block does not open its dialog box during simulation or
when the block is selected. To edit the block parameters, you can use the Property Inspector or
open the block dialog box by:

• Double-clicking the block when the block is not selected and the model is not simulating
• Right-clicking the block and selecting Block Parameters from the context menu

Customize Callback Button Blocks

When you add a Callback Button block to your model, the block is preconfigured with a default
design. You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

When you design a Callback Button block, you configure the block appearance for each possible
state. When you configure the Block Type as Momentary, the block has two states. When you
configure the Block Type as Latch, the block has four.

You can use the toolbar above the block to switch states. For each state, you can:

 Callback Button

1-119

• Upload a state image.
• Upload a state icon and specify the position of the icon relative to the state label.
• Specify the State Label text, color, opacity, and position.

You can also upload a foreground or a background image, or set a solid background color. The
foreground and background apply to all states.

Use the toolbar above the block to configure the image, the icon, and the State Label color and
opacity.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

Use the Design tab to:

• Specify the State Label text and position.
• Specify the icon position.
• Upload a foreground image.
• Upload a background image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Main

Button Type — Button response to click

Momentary (default) | Latch

Specify how the block responds to a click.

• Momentary — The button changes state only while pressed. When you release the click, the
button returns to its default state.

• Latch — The button latches the state change when clicked. The button remains in the pressed
state until you click it again.

When you configure Button Type as Momentary, the block has these states:

• Default — Default state for the block when it is not pressed

1 Blocks

1-120

• Pressed — Block state when the block is pressed

When you configure Button Type as Latch, the block has these states:

• Default — Default state for the block when it is not pressed.
• Pressed — Transitional state when you press the button while it is in the Default state. The

block transitions to the Latched state when you release the click.
• Latched — Latched state for the block when it is not pressed.
• Latched and Pressed — Transitional state when you press the button while it is in the

Latched state. The block transitions to the Default state when you release the click.

Programmatic Use
Block Parameter: ButtonType
Type: string or character array
Value: 'Momentary' | 'Latch'

Button Text — Button label text

'Callback Button' (default) | string | character array

Specify the text for the button label. The label is applied to the button for the state that is selected in
the Select State section of the States component on the Design tab.
Programmatic Use

Specify the ButtonText parameter for the block as a string or a character vector.
Block Parameter: ButtonText
Type: character vector | string

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Callbacks

ClickFcn — MATLAB code that executes in response to click
MATLAB code

MATLAB code that executes in response to a click of the button.

Every time you click the button, the ClickFcn code executes once, at the point in time when you
release the click.

 Callback Button

1-121

To specify code for the ClickFcn, select ClickFcn from the drop-down menu. Enter the code in the
text box below the menu.

Programmatic Use

Specify the ClickFcn parameter for the block as MATLAB code that is formatted as a string or a
character vector.
Block Parameter: ClickFcn
Type: character vector | string
Values: MATLAB code

PressFcn — MATLAB code that executes in response to press
MATLAB code

MATLAB code that executes in response to a press of the button.

While the button is in the pressed state, the PressFcn code executes once when the Press Delay
time has elapsed and periodically at every Repeat Interval.

To specify code for the PressFcn, select PressFcn from the drop-down menu. Enter the code in the
text box below the menu.

How you press the button to execute the PressFcn code depends on the Button Type.

• If the Button Type is Momentary, hold down your click for the duration that you want to press
the button.

• If the Button Type is Latch, click to press the button, but do not hold down your click. The
button remains pressed until you click it again.

Note Every time that you click on the button, even when you do so as part of the process for
pressing the button, the ClickFcn code executes once, at the point in time when you release the
click.

Programmatic Use

Specify the PressFcn parameter for the block as MATLAB code that is formatted as a string or a
character vector.
Block Parameter: PressFcn
Type: character vector | string
Values: MATLAB code

Press Delay (ms) — Time to hold button for press

500 (default) | scalar

Amount of time required to cause the PressFcn code to execute.

Dependencies

Press Delay (ms) is visible only when PressFcn is selected as the callback.

Programmatic Use

Specify the PressDelay parameter for the block as a positive scalar value.

1 Blocks

1-122

Block Parameter: PressDelay
Type: scalar

Repeat Interval (ms) — Time interval to repeat PressFcn code

0 (default) | scalar

Time interval after which the PressFcn code executes again if the Callback Button block is still
pressed.

Dependencies

Repeat Interval (ms) is visible only when PressFcn is selected as the callback.

Programmatic Use

Specify the RepeatInterval parameter for the block as a positive scalar value.
Block Parameter: RepeatInterval
Type: scalar

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Button

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States

Select State — Selection of state to configure
Default (default) | Pressed | Latched | Latched and Pressed

Select a state that you want to configure from the drop-down menu in the Select State section of the
States component. When the Button Type is Momentary, you can select these states:

• Default — Default state for the block when it is not pressed
• Pressed — Block state when the block is pressed

When the Button Type is Latch, you can select these states:

 Callback Button

1-123

• Default — Default state for the block when it is not pressed.
• Pressed — Transitional state when you press the button while it is in the Default state. The

block transitions to the Latched state when you release the click.
• Latched — Latched state for the block when it is not pressed.
• Latched and Pressed — Transitional state when you press the button while it is in the

Latched state. The block transitions to the Default state when you release the click.

Note You can configure all of the parameters in the States component of the Design tab for a state.
For example, you can select an icon that will appear on the button when it is in the state. When you
configure any of the parameters in the States component, the changes are applied to the state that is
selected in the Select State section of the States component.

Example: Pressed

Button Text — Button label text

'Callback Button' (default) | string | character array

Specify the text for the button label. The label is applied to the button for the state that is selected in
the Select State section of the States component on the Design tab.

Programmatic Use

Specify the ButtonText parameter for the block as a string or a character vector.
Block Parameter: ButtonText
Type: character vector | string

Label Color — Button label font color
[r g b] vector

Choose a font color for the button label from the palette of standard colors, or specify a custom color.
The color is applied to the button label for the state that is selected in the Select State section of the
States component on the Design tab.

Horizontal Alignment — Horizontal button text alignment
Center (default) | Left | Right

Set the alignment of the button text.

• Center: Midway between left and right edges of block
• Left: Left edge of block
• Right: Right edge of block

Vertical Alignment — Vertical button text alignment
Center (default) | Bottom | Top

Set the alignment of the button text.

• Center: Midway between top and bottom edges of block
• Bottom: Bottom edge of block

1 Blocks

1-124

• Top: Top edge of block

Label X Offset — Horizontal offset of button text center from default position for selected horizontal
alignment setting
0 (default) | scalar

Specify the horizontal offset of the center of the Button Text from the default position for the
selected Horizontal Alignment setting as a ratio of the block width. Relative to the position of the
text when the offset is 0, an offset with a negative value moves the text left, and an offset with a
positive value moves the text right.

Label Y Offset — Vertical offset of button text center from default position for selected horizontal
alignment setting
0 (default) | scalar

Specify the vertical offset of the center of the Button Text from the default position for the selected
Vertical Alignment setting as a ratio of the block height. Relative to the position of the text when
the offset is 0, an offset with a negative value moves the text up, and an offset with a positive value
moves the text down.

Icon Placement — Placement of icon relative to button text
Left (default) | Top | Right | Bottom

Specify the placement of the icon relative to the button text.

Note Changing the placement of the icon also moves the button text, but does not change the
specified X Offset, Y Offset, Horizontal Alignment, or Vertical Alignment of the text.

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

 Callback Button

1-125

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Background Image

Use Background Color — Option to specify solid background color for button
on (default) | off

You can provide a background image for the block or select a solid background color for the button.
To select a solid background color for the button, select this parameter. To provide a background
image for the block, clear this parameter.

Note

• The state images are not visible when you set a solid background color for the button. To make the
state images visible, turn off Use Background Color.

• Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and turns on the Use Background Color parameter.

Example: on

Color — Button background color
[r g b] vector

To select a solid background color for the button, enable the Use Background Color parameter.
Then, choose a background color from the palette of standard colors, or specify a custom color.

Note The state images are not visible when you set a solid background color. To make the state
images visible, in the Property Inspector, on the Design tab, in the Background Image component,
turn off Use Background Color.

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Button background opacity
1 (default) | scalar

1 Blocks

1-126

Specify the opacity of the solid background color as a scalar value from 0 to 1.
Example: 0.5

Corner Radius — Corner radius of area with button background color
scalar

Specify the corner radius of the area covered by the solid background color.
Example: 0.25

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types
Direct Feedthrough no
Multidimensional
Signals

no

 Callback Button

1-127

Variable-Size Signals no
Zero-Crossing
Detection

no

Tips
To design a button that changes the value of a variable or parameter in your model, use the Push
Button block.

Version History
Introduced in R2017b

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2023a: Callback Button blocks in Dashboard Library and Customizable Blocks Library have
same customization
Behavior change in future release

Starting in R2023a, the Callback Button block from the Dashboard library has the same
customization options as the Callback Button block from the Customizable Blocks library.

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.

1 Blocks

1-128

• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset™ Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add_block and set_param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Push Button | Callback Button

 Callback Button

1-129

Check Box
Select parameter or variable value

Libraries:
Simulink / Dashboard

Description
The Check Box block allows you to set the value of a parameter or variable during simulation by
checking or clearing the box. Use the Check Box block with other Dashboard blocks to create an
interactive dashboard for your model.

Double-clicking the Check Box block does not open its dialog box during simulation and when the
block is selected. To edit the block's parameters, you can use the Property Inspector, or you can
right-click the block and select Block Parameters from the context menu.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top

1 Blocks

1-130

level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

 Check Box

1-131

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection

Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

1 Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

1 Blocks

1-132

Main

Check Box Label — Description of check box action

Label (default) | character vector

Label that appears next to the check box. You can use the Check Box Label to describe what
happens in your model when you check the check box.
Example: Enable sound

Programmatic Use
Block Parameter: Label
Type: character vector
Default: 'Label'

Checked/Unchecked Values — Values to assign for checked and unchecked states
Unchecked: 0 Checked: 1 (default) | scalar

Value to assign to the connected variable or parameter for the checked and unchecked block states.

• Unchecked — Value assigned to the connected parameter when the Check Box block is not
checked.

• Checked — Value assigned to the connected parameter when the Check Box block is checked.

Programmatic Use

You set the Unchecked and Checked values programmatically using a 2-by-1 vector that contains
the Unchecked and Checked values, in that order.
Block Parameter: Values
Type: 2x1 vector
Default: [0 1]

Label — Block label position

Hide (default) | Bottom | Top

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Format

Opacity — Block background opacity

1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.
Example: 0.5

 Check Box

1-133

Programmatic Use
Block Parameter: Opacity
Type: scalar
Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, including the text. You can select a color from a palette of standard colors or
specify a custom color.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Background Color — Block background color
[r g b] vector

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2017b

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a

1 Blocks

1-134

dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Background Color, Foreground Color, and Opacity properties added for several
dashboard blocks

Starting in R2020b, you can specify a background color, a foreground color, and opacity for these
blocks from the Dashboard library:

• Check Box
• Combo Box
• Edit
• Push Button
• Radio Button

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add_block and set_param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Rocker Switch | Slider Switch | Toggle Switch | Rotary Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 Check Box

1-135

Check Discrete Gradient
Check that absolute value of difference between successive samples of discrete signal is less than
specified value

Libraries:
Simulink / Model Verification
HDL Coder / Model Verification

Description
The Check Discrete Gradient block checks each signal element and determines whether the absolute
value of the difference between successive values of the element is less than an specified value. The
block then executes an assertion after comparison. You can specify the value of gradient (1 by
default) by adjusting the Maximum gradient parameter. If the input signal difference is less than
the absolute value of the Maximum gradient, the assertion is true (1) and the block does
nothing. If not, the block halts the simulation and returns an error message by default.

Note To run simulations, the Check Discrete Gradient block requires a fixed-step discrete solver. If
another solver is selected, an error prompts.

Ports
Input

Port_1 — Input signal checked against gradient
scalar | vector | matrix

Input signal the block checks to determine if the difference of each element between successive
samples is less than the absolute value of the Maximum gradient parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds, and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this output port, select the Output assertion signal parameter check box.
Data Types: double | Boolean

1 Blocks

1-136

Parameters
Maximum gradient — Maximum value of allowed differences

1 (default) | scalar

Specify the value on the allowed gradient of the input signal.

Programmatic Use
Parameter: gradient
Type: string scalar or character vector
Values: real scalar
Default: "1"

Enable assertion — Enable or disable check

on (default) | off

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use
Parameter: enabled
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use
Parameter: callback
Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | off

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: string scalar or character vector

 Check Discrete Gradient

1-137

Values: "on" | "off"
Default: "on"

Output assertion signal — Create output signal

off (default) | on

Select this parameter to enable the output port.
Programmatic Use
Parameter: export
Type: string scalar or character vector
Values: "on" | "off"
Default: "off"

Select icon type — Select icon type

graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.
Programmatic Use
Parameter: icon
Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

1 Blocks

1-138

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to check whether the difference between successive samples is less than the
specified gradient during simulation, but is not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Dynamic Range | Check Dynamic Gap

 Check Discrete Gradient

1-139

Check Dynamic Gap
Check that gap of possibly varying width occurs in range of signal's amplitudes

Libraries:
Simulink / Model Verification
HDL Coder / Model Verification

Description
The Check Dynamic Gap block checks that a signal falls outside a range of values at each time step
and executes an assertion after comparison. The width of the gap can vary from time step to time
step. The u port is the tested input signal. The inputs min and max specify the lower and upper
bounds of the gap, respectively. If u falls outside of the gap defined by min and max, the assertion is
true (1) and the block does nothing. If not, the block halts the simulation and returns an error
message by default.

The input signals can be scalars, vectors, or matrices. All three input signals must be the same data
type. The block compares the value of u to the bounds differently depending on the signal.

• When comparing scalars to vectors or matrices, the block compares the scalar signal to each
element of the non-scalar signal.

• When comparing vectors or matrix signals to other vectors or matrices, the block compares the
input to the bounds element-by-element.

• For models with more than one vector or matrix input signal, the vectors or matrices must have
the same dimensions.

Ports
Input

max — Upper bound of dynamic gap
scalar | vector | matrix

Signal specifying the upper bound of the gap.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

min — Lower bound of dynamic gap
scalar | vector | matrix

Signal specifying the lower bound of the gap.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

u — Input signal checked against gap
scalar | vector | matrix

1 Blocks

1-140

Input signal checked for a gap of width specified by max and min.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds, and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this output port, select the Output assertion signal parameter check box.
Data Types: double | Boolean

Parameters
Enable assertion — Enable or disable check

on (default) | off

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use
Parameter: enabled
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use
Parameter: callback
Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

 Check Dynamic Gap

1-141

on (default) | off

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Output assertion signal — Create output signal

off (default) | on

Select this parameter to enable the output port.

Programmatic Use
Parameter: export
Type: string scalar or character vector
Values: "on" | "off"
Default: "off"

Select icon type — Select icon type

graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use
Parameter: icon
Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

1 Blocks

1-142

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to check the gap in the varying signal amplitudes, but it is not included in the
generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Dynamic Lower Bound | Check Dynamic Upper Bound | Check Dynamic Range

 Check Dynamic Gap

1-143

Check Dynamic Lower Bound
Check that one signal is always less than another signal

Libraries:
Simulink / Model Verification
HDL Coder / Model Verification

Description
The Check Dynamic Lower Bound block checks if a reference signal, min, is less than the amplitude
of an input signal, u at each time step and executes an assertion after comparison. If min is less than
u, the assertion is true (1) and the block does nothing. If not, the block halts the simulation and
returns an error message by default.

The input signals can be scalars, vectors, or matrices. Both input signals must be the same data type.
The block compares the value of u to the bound differently depending on the signal.

• When comparing scalars to vectors or matrices, the block compares the scalar signal to each
element of the non-scalar signal.

• When comparing a vector or matrix signal to another vector or matrix signal, the block checks the
signals element-by-element.

• For models with an input and bound that are both vectors or matrices, the input and bound must
have the same dimensions.

Ports
Input

min — Lower bound of dynamic range check
scalar | vector | matrix

Signal specifying the lower bound of the check against the input signal u amplitude. Signal data type
and dimension must be the same as u.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

u — Input signal checked against bound
scalar | vector | matrix

Input signal checked against the lower bound specified by min. Both input signals must be the same
data type and dimension.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

1 Blocks

1-144

Output signal that is true (1) if the assertion succeeds and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this output port, select the Output assertion signal parameter check box.
Data Types: double | Boolean

Parameters
Enable assertion — Enable or disable check

on (default) | off

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use
Parameter: enabled
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use
Parameter: callback
Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | off

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"

 Check Dynamic Lower Bound

1-145

Default: "on"

Output assertion signal — Create output signal

off (default) | on

Select this parameter to enable the output port.

Programmatic Use
Parameter: export
Type: string scalar or character vector
Values: "on" | "off"
Default: "off"

Select icon type — Select icon type

graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use
Parameter: icon
Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

1 Blocks

1-146

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to check the lower bound of a test signal as compared to the input, but it is
not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Dynamic Upper Bound | Check Dynamic Range

 Check Dynamic Lower Bound

1-147

Check Dynamic Range
Check that signal falls inside range of amplitudes that varies from time step to time step

Libraries:
Simulink / Model Verification
HDL Coder / Model Verification

Description
The Check Dynamic Range block checks that a signal falls inside a range of values at each time step
and executes an assertion after comparison. The width of the range can vary from time step to time
step. The u port is the tested input signal. The min and max ports are the lower and upper bounds of
the range, respectively. If u is between max and min, the assertion is true (1) and the block does
nothing. If not, the block halts the simulation and returns an error message by default.

The input signals can be scalars, vectors, or matrices. All three input signals must be the same data
type. The block compares the value of u to the bounds differently depending on the signal.

• When comparing scalars to vectors or matrices, the block compares the scalar signal to each
element of the non-scalar signal.

• When comparing vectors or matrix signals to other vectors or matrices, the block checks the
inputs element-by-element.

• For models with more than one vector or matrix input signal, the vectors or matrices must have
the same dimensions.

Ports
Input

max — Upper bound of dynamic range check
scalar | vector | matrix

Signal specifying the upper bound of the range.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

min — Lower bound of dynamic range check
scalar | vector | matrix

Signal specifying the lower bound of the range.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

u — Input signal checked against range
scalar | vector | matrix

Signal checked against the range specified by the max and min ports.

1 Blocks

1-148

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this port, select the Output assertion signal parameter.
Data Types: double | Boolean

Parameters
Enable assertion — Enable or disable check

on (default) | off

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use
Parameter: enabled
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use
Parameter: callback
Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | off

 Check Dynamic Range

1-149

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Output assertion signal — Create output signal

off (default) | on

Select this parameter to enable the output port.

Programmatic Use
Parameter: export
Type: string scalar or character vector
Values: "on" | "off"
Default: "off"

Select icon type — Select icon type

graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use
Parameter: icon
Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

1 Blocks

1-150

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to check whether a test signal falls within a range of amplitudes, but it is not
included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Relational Operator

 Check Dynamic Range

1-151

Check Dynamic Upper Bound
Check that one signal is always greater than another signal

Libraries:
Simulink / Model Verification
HDL Coder / Model Verification

Description
The Check Dynamic Upper Bound block checks if the a reference signal, max, is greater than the
amplitude of an input signal, u, at each time step and executes an assertion after comparison. If max
is greater than u, the assertion is true (1) and the block does nothing. If not, the block halts the
simulation and returns an error message by default.

The input signals can be scalars, vectors, or matrices. Both input signals must be the same data type.
The block compares the value of u to max differently depending on the signal.

• When comparing scalars to vectors or matrices, the block compares the scalar signal to each
element of the non-scalar signal.

• When comparing a vector or matrix signal to another vector or matrix signal, the block checks the
signals element-by-element.

• For models with an input signal and bound that are both vectors or matrices, the input signal and
bound must have the same dimensions.

Ports
Input

max — Upper bound of range check
scalar | vector | matrix

Signal specifying the lower bound of the range that the block checks the input signal u amplitude.
Signal data type and dimension must be the same as u.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

u — Input signal checked against bound
scalar | vector | matrix

Input signal checked against the lower bound specified by min.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

1 Blocks

1-152

Output signal that is true (1) if the assertion succeeds and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this output port, select the Output assertion signal parameter check box.
Data Types: double | Boolean

Parameters
Enable assertion — Enable or disable check

on (default) | off

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use
Parameter: enabled
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use
Parameter: callback
Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | off

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"

 Check Dynamic Upper Bound

1-153

Default: "on"

Output assertion signal — Create output signal

off (default) | on

Select this parameter to enable the output port.

Programmatic Use
Parameter: export
Type: string scalar or character vector
Values: "on" | "off"
Default: "off"

Select icon type — Select icon type

graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use
Parameter: icon
Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

1 Blocks

1-154

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to check the upper bound of a test signal as compared to the input, but it is
not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Dynamic Lower Bound | Check Dynamic Range

 Check Dynamic Upper Bound

1-155

Check Input Resolution
Check that input signal has specified resolution

Libraries:
Simulink / Model Verification
HDL Coder / Model Verification

Description
The Check Input Resolution block checks whether the input signal has a specified resolution. The
block input and resolution can be either a scalar or vector. The input and resolution must be the same
data type.

If the Resolution parameter is a scalar, the block calculates the modulus of the input signal over the
provided scalar resolution. The calculated modulus is then compared to a tolerance of 10e-3, and
executes an assertion after comparison. If the modulus is less than the tolerance, the assertion is
true (1) and the block does nothing. If not, the block halts the simulation and returns an error
message by default. If the Resolution parameter is a vector, it asserts true (1) if the value of the
input signal is equal to any of the resolution vector elements.

The block compares the input to the resolution in several additional ways depending on the
dimensions of the signal and resolution.

• When comparing a scalar input signal or resolution to a vector input signal or resolution, the block
compares the scalar to each element of the vector.

• When comparing a vector input signal to a vector resolution, the block compares the input signal
to the resolution element-by-element.

• For models with an input signal and resolution that are both vectors, the input signal and
resolution must have the same dimensions.

Ports
Input

Port_1 — Input signal checked against resolution
scalar | vector

Input signal that the block checks against the resolution specified by the Resolution parameter.
Data Types: double

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced

1 Blocks

1-156

parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this port, select Output assertion signal.
Data Types: double | Boolean

Parameters
Resolution — Resolution value to compare to input signal

scalar | vector

Specify the resolution requirement for the input signal.

Programmatic Use
Parameter: resolution
Type: string scalar or character vector
Default: "1"

Enable assertion — Enable or disable check

on (default) | off

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use
Parameter: enabled
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use
Parameter: callback
Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | off

 Check Input Resolution

1-157

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Output assertion signal — Create output signal

off (default) | on

Select this parameter to enable the output port.

Programmatic Use
Parameter: export
Type: string scalar or character vector
Values: "on" | "off"
Default: "off"

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

1 Blocks

1-158

HDL Architecture

This block can be used to check whether the input signal has a specified resolution during simulation,
but it is not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Math Function | Repeating Sequence Stair

 Check Input Resolution

1-159

Check Static Gap
Check that gap exists in signal's range of amplitudes

Libraries:
Simulink / Model Verification
HDL Coder / Model Verification

Description
The Check Static Gap block checks that an input signal is less than (or optionally equal to) a static
lower bound or greater than (or optionally equal to) a static upper bound at the current time step.
The Upper bound and Lower bound parameters define the upper and lower bounds of the gap. The
block then executes an assertion after comparison. If the signal falls outside of the gap, the assertion
is true (1) and the block does nothing. If not, the block halts the simulation and returns an error
message by default.

The input signal and bounds can be scalars, vectors, or matrices. The input and the bounds must be
the same data type. The block compares the value of the input to the bounds differently depending on
the signal.

• When comparing scalars to vectors or matrices, the block compares the scalar to each element of
the non-scalar input signal or bound.

• When comparing vectors or matrix signals to other vectors or matrices, the block compares the
input signal and the bounds element-by-element.

• For models with more than one vector or matrix as the input signal or bounds, the vectors or
matrices must have the same dimensions.

Ports
Input

Port_1 — Input signal checked against gap
scalar | vector | matrix

Input signal the block checks if the signal value is less than a static lower bound or greater than a
static upper bound.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds, and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

1 Blocks

1-160

Dependencies

To enable this output port, set the Output assertion signal parameter check box.
Data Types: double | Boolean

Parameters
Upper bound — Upper boundary value

scalar | vector | matrix

Specify the upper bound on the range of amplitudes that the input signal can have.

Programmatic Use
Parameter: max
Type: string scalar or character vector
Default: "0"

Inclusive upper bound — Include the upper bound in range

on (default) | off

Select this check box to make the range of valid input amplitudes include the upper bound.

Programmatic Use
Parameter: max_included
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Lower bound — Lower boundary value

scalar | vector | matrix

Specify the lower bound on the range of amplitudes that the input signal can have.

Programmatic Use
Parameter: min
Type: string scalar or character vector
Default: "0"

Inclusive lower bound — Include the lower bound in range

on (default) | off

Select this check box to make the range of valid input amplitudes include the lower bound.

Programmatic Use
Parameter: min_included
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Enable assertion — Enable or disable check

 Check Static Gap

1-161

on (default) | off

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use
Parameter: enabled
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use
Parameter: callback
Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | off

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Output assertion signal — Create output signal

off (default) | on

Select this parameter to enable the output port.

Programmatic Use
Parameter: export
Type: string scalar or character vector
Values: "on" | "off"
Default: "off"

Select icon type — Select icon type

1 Blocks

1-162

graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use
Parameter: icon
Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block checks whether each element is less than a static lower bound or greater than a static
upper bound during simulation, but it is not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

 Check Static Gap

1-163

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Dynamic Range | Check Static Upper Bound | Check Static Lower Bound

1 Blocks

1-164

Check Static Lower Bound
Check that signal is greater than (or optionally equal to) static lower bound

Libraries:
Simulink / Model Verification
HDL Coder / Model Verification

Description
The Check Static Lower Bound block checks if an input signal is greater than (or optionally equal to)
a specified lower bound at each time step and executes an assertion after comparison. The Lower
bound parameter defines the lower bound. If the input signal is greater than the lower bound, the
assertion is true (1) and the block does nothing. If not, the block halts the simulation and returns
an error message by default.

The input signal and bound can be scalars, vectors, or matrices. The input and the bound must be the
same data type. The block compares the value of the input to the bound differently depending on the
signal.

• When comparing scalars to vectors or matrices, the block compares the scalar to each element of
the non-scalar input signal or bound.

• When comparing a vector or matrix input signal to a vector or matrix bound, the block compares
the input signal to the bound element-by-element.

• For models with an input signal and bound that are both vectors or matrices, the input signal and
bound must have the same dimensions.

Ports
Input

Port_1 — Input signal checked against bound
scalar | vector | matrix

Input signal checked against the lower bound specified by the Lower bound parameter.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

 Check Static Lower Bound

1-165

Dependencies

To enable this output port, select the Output assertion signal parameter check box.
Data Types: double | Boolean

Parameters
Lower bound — Lower boundary value

scalar | vector | matrix

Specify the lower bound on the range of amplitudes that the input signal can have.

Programmatic Use
Parameter: min
Type: string scalar or character vector
Default: "0"

Inclusive boundary — Include the lower bound in range

on (default) | off

Select this check box to make the range of valid input amplitudes include the lower bound.

Programmatic Use
Parameter: min_included
Type: string scalar character vector
Values: "on" | "off"
Default: "on"

Enable assertion — Enable or disable check

on (default) | off

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use
Parameter: enabled
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

1 Blocks

1-166

Programmatic Use
Parameter: callback
Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | off

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Output assertion signal — Create output signal

off (default) | on

Select this parameter to enable the output port.

Programmatic Use
Parameter: export
Type: string scalar or character vector
Values: "on" | "off"
Default: "off"

Select icon type — Select icon type

graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use
Parameter: icon
Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no

 Check Static Lower Bound

1-167

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block checks whether each input signal element is greater than a static lower bound during
simulation, but it is not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Static Upper Bound | Check Dynamic Lower Bound | Check Dynamic Upper Bound | Check
Dynamic Range

1 Blocks

1-168

Check Static Range
Check that signal falls inside fixed range of amplitudes

Libraries:
Simulink / Model Verification
HDL Coder / Model Verification

Description
The Check Static Range block checks that each element of the input signal falls inside the same
range of amplitudes at each time step. The Upper bound and Lower bound parameters define the
upper and lower bounds of the range. The block then executes an assertion after comparison. If the
signal falls inside the bounds, the assertion is true (1) and the block does nothing. If not, the block
halts the simulation and returns an error message by default.

The input signal and bounds can be scalars, vectors, or matrices. All three must be the same data
type. The block compares the value of the input to the bounds differently depending on the signal.

• When comparing scalars to vectors or matrices, the block compares the scalar to each element of
the non-scalar input signal or bounds.

• When comparing vectors or matrix signals to other vectors or matrices, the block compares the
input signal to the bounds element-by-element.

• For models with more than one vector or matrix input signal or bounds, the vectors or matrices
must have the same dimensions.

Ports
Input

Port_1 — Input signal checked against range
scalar | vector | matrix

Input signal checked against the range specified by the Upper bound and Lower bound parameters.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds, and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.
Dependencies

To enable this output port, set the Output assertion signal parameter check box.

 Check Static Range

1-169

Data Types: double | Boolean

Parameters
Upper bound — Upper bound compared to input signal

scalar | vector | matrix

Specify the upper bound on the range of amplitudes that the input signal can have.
Programmatic Use
Parameter: max
Type: string scalar or character vector
Default: "0"

Inclusive upper boundary — Include the upper bound in range

on (default) | off

Select this check box to make the range of valid input amplitudes include the lower bound.
Programmatic Use
Parameter: min_included
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Lower bound — Lower bound compared to input signal

scalar | vector | matrix

Specify the lower bound on the range of amplitudes that the input signal can have.
Programmatic Use
Parameter: min
Type: string scalar or character vector
Default: "0"

Inclusive lower bound — Include the lower bound in range

on (default) | off

Select this check box to make the range of valid input amplitudes include the lower bound.
Programmatic Use
Parameter: min_included
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Enable assertion — Enable or disable check

on (default) | off

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the

1 Blocks

1-170

Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.
Programmatic Use
Parameter: enabled
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.
Dependencies

To enable this parameter, select the Enable assertion parameter.
Programmatic Use
Parameter: callback
Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | off

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.
Programmatic Use
Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Output assertion signal — Create output signal

off (default) | on

Select this parameter to enable the output port.
Programmatic Use
Parameter: export
Type: string scalar or character vector
Values: "on" | "off"
Default: "off"

Select icon type — Select icon type

graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

 Check Static Range

1-171

Programmatic Use
Parameter: icon
Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block checks whether each input signal element falls within the same amplitude range at each
time step during simulation, but it is not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1 Blocks

1-172

See Also
Check Dynamic Range | Check Static Lower Bound | Check Static Upper Bound

 Check Static Range

1-173

Check Static Upper Bound
Check that signal is less than (or optionally equal to) static upper bound

Libraries:
Simulink / Model Verification
HDL Coder / Model Verification

Description
The Check Static Upper Bound block checks if an input signal is less than (or optionally equal to) a
specified lower bound at each time step and executes an assertion after comparison. The Upper
bound parameter defines the upper bound. If the input signal is less than the upper bound, the
assertion is true (1) and the block does nothing. If not, the block halts the simulation and returns
an error message by default.

The input signal and bound can be scalars, vectors, or matrices. The input and the bound must be the
same data type. The block compares the value of the input to the bound differently depending on the
signal.

• When comparing scalars to vectors or matrices, the block compares the scalar to each element of
the non-scalar input signal or bound.

• When comparing a vector or matrix signal to a vector or matrix upper bound, the block compares
the input signal to the bound element-by-element.

• For models with an input signal and bound that are both vectors or matrices, the input signal and
bound must have the same dimensions.

Ports
Input

Port_1 — Input signal checked against bound
scalar | vector | matrix

Input signal checked against the upper bound specified by the Upper bound parameter.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

1 Blocks

1-174

Dependencies

To enable this output port, select the Output assertion signal parameter check box.
Data Types: double | Boolean

Parameters
Upper bound — Upper boundary value

scalar | vector | matrix

Specify the upper bound on the range of amplitudes that the input signal can have.

Programmatic Use
Parameter: max
Type: string scalar or character vector
Default: "0"

Inclusive boundary — Include the upper bound in range

on (default) | off

Select this check box to make the range of valid input amplitudes include the upper bound.

Programmatic Use
Parameter: max_included
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Enable assertion — Enable or disable check

on (default) | off

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use
Parameter: enabled
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

 Check Static Upper Bound

1-175

Programmatic Use
Parameter: callback
Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | off

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"
Default: "on"

Output assertion signal — Create output signal

off (default) | on

Select this parameter to enable the output port.

Programmatic Use
Parameter: export
Type: string scalar or character vector
Values: "on" | "off"
Default: "off"

Select icon type — Select icon type

graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use
Parameter: icon
Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no

1 Blocks

1-176

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block checks whether each input signal element is lower than a static upper bound during
simulation, but it is not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Static Lower Bound | Check Dynamic Lower Bound | Check Dynamic Upper Bound | Check
Dynamic Range

 Check Static Upper Bound

1-177

Chirp Signal
Generate sine wave with increasing frequency

Libraries:
Simulink / Sources

Description
The Chirp Signal block generates a sine wave whose frequency increases at a linear rate with time.
You can use this block for spectral analysis of nonlinear systems. The block generates a scalar or
vector output.

The parameters, Initial frequency, Target time, and Frequency at target time, determine the
block's output. You can specify any or all of these variables as scalars or arrays. All the parameters
specified as arrays must have the same dimensions. The block expands scalar parameters to have the
same dimensions as the array parameters. The block output has the same dimensions as the
parameters unless you select the Interpret vector parameters as 1-D check box. If you select this
check box and the parameters are row or column vectors, the block outputs a vector (1-D array)
signal.

Limitations
• The start time of the simulation must be 0. To confirm this value, go to the Solver pane in the
Configuration Parameters dialog box and view the Start time field.

• Suppose that you use a Chirp Signal block in an enabled subsystem. Whenever the subsystem is
enabled, the block output matches what would appear if the subsystem were enabled throughout
the simulation.

Ports
Output

Port_1 — Chirp signal
scalar | vector | matrix | N-D array

Sine wave whose frequency increases at a linear rate with time. The chirp signal can be a scalar,
vector, matrix, or N-D array.
Data Types: double

Parameters
Initial frequency — Initial frequency (Hz)

0.1 (default) | scalar | vector | matrix | N-D array

1 Blocks

1-178

The initial frequency of the signal, specified as a scalar, vector, matrix, or N-D array.

Programmatic Use
Block Parameter: f1
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '0.1'

Target time — Target time (seconds)

100 (default) | scalar | vector | matrix | N-D array

Time, in seconds, at which the frequency reaches the Frequency at target time parameter value.
You specify the Target time as a scalar, vector, matrix, or N-D array. After the target time is reached,
the frequency continues to change at the same rate.

Programmatic Use
Block Parameter: T
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '100'

Frequency at target time — Frequency (Hz)

1 (default) | scalar | vector | matrix | N-D array

Frequency, in Hz, of the signal at the target time, specified as a scalar, vector, matrix, or N-D array.

Programmatic Use
Block Parameter: f2
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '1'

Interpret vector parameters as 1-D — Treat vector parameters as 1-D

on (default) | off

When you select this check box, any column or row matrix values you specify for the Initial
frequency, Target time, and Frequency at target time parameters result in a vector output whose
elements are the elements of the row or column. For more information, see “Determine the Output
Dimensions of Source Blocks”.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double
Direct Feedthrough no

 Chirp Signal

1-179

Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times. While
the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code. Usually, blocks evolve toward being suitable for
production code. Thus, blocks suitable for production code remain suitable.

See Also
Sine Wave

Topics
“Creating Signals”

1 Blocks

1-180

Circular Gauge
Display signal value during simulation on circular gauge with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
The Circular Gauge block displays the value of the connected signal on a circular gauge that you can
design to look like a gauge in a real system.

The Circular Gauge block displays the instantaneous value of the connected signal throughout
simulation. You can modify the range and tick values on the Circular Gauge block to fit your data. Use
the Circular Gauge block with other dashboard blocks to build an interactive dashboard of controls
and indicators for your model.

Customize Circular Gauge Blocks

When you add a Circular Gauge block to your model, the block is preconfigured with a default design.
You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

 Circular Gauge

1-181

In design mode, you can:

• Upload a needle image.
• Upload a background image or set a solid background color.
• Change the color and opacity of the scale, tick labels, and value bar.
• Change the size of the scale and needle.
• Change the arc length of the scale.
• Reposition the scale and needle.
• Specify the scale direction as clockwise or counterclockwise.
• Specify the location of the origin from which the value bar grows.
• Upload a foreground image.

You can use the toolbar above the block to upload a needle or a background image and to change the
color and opacity of the scale, tick labels, and value bar. To change the color and opacity, in the
second section of the toolbar from the left, select a component. Then, click the color wheel in the
toolbar to change the color of the component. Move the slider to change the opacity.

To resize the scale or needle or to change the arc length of the scale, select the component in the
canvas. Then, click and drag the grab points that define its dimensions.

To reposition the scale or needle, click and drag it in the canvas. The movement of the needle is
limited to the radial line that goes from the center of the block to the minimum value on the scale.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

1 Blocks

1-182

Use the Design tab to:

• Specify the scale direction.
• Specify the origin.
• Upload a foreground image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.

 Circular Gauge

1-183

• You cannot use the Connection table in the block dialog to connect a dashboard block to a block
that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

• You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

• Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Connection — Signal to connect and display
signal connection options

Use the Connection table in the Block Parameters dialog box to select or change the signal that the
block connects to. To connect the block to a signal:

1 If the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

2 Select a signal in the model.
3 In the table, select the signal you want to connect.
4 Click Apply.

To help understand and debug your model, you can connect dashboard blocks to signals in the model
during simulation.

Tip You can also use bind mode select or change the signal that the block connects to. To enter bind
mode:

• If you are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

1 Blocks

1-184

• Click the dashboard block in the canvas. If the dashboard block is not connected, the Connect

button and an ellipsis appear over the dashboard block. If the dashboard block is already
connected, only the ellipsis appears.

• If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
signals that are available for connection appears.

To connect the dashboard block in bind mode:

• From the list, select the signal you want to connect.
•

To exit bind mode, click Done Connecting over the dashboard block.

Programmatic Use
Block Parameter: Binding
Type: Simulink.HMI.SignalSpecification
Default: []

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.

 Circular Gauge

1-185

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Scale Direction — Direction of increasing scale values
Clockwise (default) | Counterclockwise

Set the direction of increasing scale values.

Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Label — Position of label displaying name of connected element

Top (default) | Bottom | Hide

You can display the name of the element to which the dashboard block connects in a label positioned
at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

1 Blocks

1-186

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Scale Colors — Color indications on gauge scale
colors for scale ranges

Color specifications for value ranges on the scale. Click the + button to add a scale color. For each
color added, specify the minimum and maximum values of the range in which you want to display that
color.
Programmatic Use

To programmatically specify the Scale Colors parameter, use an array of structures with these
fields:

• Min — Minimum value for the color range on the scale
• Max — Maximum value for the color range on the scale
• Color — 1-by-3 vector of double values between 0 and 1 that specify the color for the range in

the form [r g b]

Include a structure in the array for each scale range for which you want to specify a color.

range1.Min = 0;
range1.Max = 10;
range1.Color = [0 0 1];
range2.Min = 10;
range2.Max = 15;
range2.Color = [0 1 0];
scaleRanges = [range1 range2];

Block Parameter: ScaleColors
Type: structure array
Default: 0x1 struct array

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Circular Gauge

Lock Aspect Ratio — Option to maintain block aspect ratio

 Circular Gauge

1-187

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Scale

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.
Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.
Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

1 Blocks

1-188

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Origin — Value on scale from which needle moves and value bar grows
auto (default) | scalar

Specify the value on the scale from which the needle moves and the value bar grows. When set to
auto, the Origin is the minimum of the scale.
Example: 0

Scale Direction — Direction of increasing scale values
Clockwise (default) | Counterclockwise

Set the direction of increasing scale values.

Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Arc — Arc length of scale
270 (default) | scalar

Specify the arc length of the scale as a scalar value, measured in degrees.
Example: 90

Start Angle — Angular location of scale minimum
135 (default) | scalar

Specify the angular location of the minimum scale value, measured in degrees clockwise from the
horizontal axis pointing right.
Example: 0

Inner Radius — Radius of free end of scale tick marks
scalar

Specify the radius of the free end of the scale tick marks as a ratio of the smaller of the two
dimensions of the bounding box of the scale, width or height. The Inner Radius can be larger than
the Outer Radius.
Example: 0.5

Outer Radius — Span line radius
scalar

Specify the span line radius as a ratio of the smaller of the two dimensions of the bounding box of the
scale, width or height. The Outer Radius can be smaller than the Inner Radius.

 Circular Gauge

1-189

Example: 0.5

X Offset — Horizontal offset of left edge of scale bounding box from left edge of block
scalar

Specify the horizontal offset of the left edge of the bounding box of the scale from the left edge of the
block as a ratio of the block width. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale left, and an offset with a positive value moves the scale right.
Example: 1

Y Offset — Vertical offset of top edge of scale bounding box from top edge of block
scalar

Specify the vertical offset of the top edge of the bounding box of the scale from the top edge of the
block as a ratio of the block height. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale up, and an offset with a positive value moves the scale down.
Example: 1

Width — Scale width
scalar

Specify the width of the bounding box of the scale as a ratio of the block width.
Example: 2

Height — Scale height
scalar

Specify the height of the bounding box of the scale as a ratio of the block height.
Example: 2

Lock Aspect Ratio — Option to maintain scale aspect ratio
on (default) | off

Enable on this option to maintain the aspect ratio when resizing the scale using the Property
Inspector.

Tick Color — Color of scale tick marks, span line, and block name
[r g b] vector

Set the color of the scale tick marks, the span line, and the block name. Choose a color from the
palette of standard colors, or specify a custom color.

Tip You can also set the Tick Color by choosing a Foreground Color on the Format tab of the
Simulink Toolstrip.

To specify the color of the block text, use the Label Color parameter.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.

1 Blocks

1-190

Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Label Color — Scale label font color
[r g b] vector

Choose a font color for the scale label from the palette of standard colors, or specify a custom color.

Tip To specify the color of the scale, use the Tick Color parameter.

Label Radius — Distance of scale labels from scale center
scalar

Specify the distance of the scale labels from the center of the scale as a ratio of the radius of the
scale.
Example: 0.5

Needle

Width — Needle image width
scalar

Specify the width of the needle image as a ratio of the smaller of the two dimensions of the bounding
box of the scale, width or length.
Example: 1

Height — Needle image height
scalar

Specify the height of the needle image as a ratio of the smaller of the two dimensions of the bounding
box of the scale, width or length.
Example: 1

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Rotate Image — Rotation of needle image
180 (default) | scalar

Rotate the needle image about its center in 90 degree increments.
Example: 90

Offset from Center — Offset of needle image center from scale center
0 (default) | scalar

Specify the distance from the center of the needle image to the center of the scale as a ratio of the
diameter of the scale.
Example: 1

 Circular Gauge

1-191

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can choose to provide a background image, or to select a solid color.
To select a solid background color, turn Use Background Color on. To provide a background image,
turn Use Background Color off.

Note Changing the background color using the toolstrip removes the background image and enables
the Use Background Color option.

When you use a solid background with the Circular Gauge block, you can design noncircular gauges.
When the scale arc angle is 180° or smaller, the background shape conforms to the scale.

Example: on

Color — Block background color
[r g b] vector

To select a solid background color, enable the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

Note When you use a solid background with the Circular Gauge block, you can design noncircular
gauges. When the scale arc angle is 180° or smaller, the background shape conforms to the scale.

1 Blocks

1-192

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Offset from Scale — Offset of outer edge of area with block background color from scale
scalar

Set the offset of the outer edge of the area covered by the block background color from the scale
span line, specified as a scalar value from 0 to 1.
Example: 0.1

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

 Circular Gauge

1-193

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2020b

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (⌘) instead of Ctrl.

1 Blocks

1-194

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2022a: Change scale direction

Starting in R2022a, you can change the direction of the scale of these blocks from the Customizable
Blocks library:

• Circular Gauge
• Horizontal Gauge
• Horizontal Slider
• Knob
• Vertical Gauge
• Vertical Slider

R2022a: Specify origin for value bar and needle

The origin of a scale is the value on the scale from which the needle moves and the value bar grows.
Starting in R2022a, you can specify an origin for the scales of these blocks from the Customizable
Blocks library:

• Circular Gauge
• Horizontal Gauge
• Horizontal Slider
• Knob
• Vertical Gauge
• Vertical Slider

R2022a: Resize and reposition foreground image

 Circular Gauge

1-195

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

R2021b: Deploy customizable Gauge and Knob Dashboard blocks on Raspberry Pi boards
Behavior changed in R2021b

Starting in 2021b, the Simulink Support Package for Raspberry Pi® Hardware supports deploying the
Circular Gauge block and the Knob block on your Raspberry Pi hardware boards.

You can customize the visual aspects of the blocks in the Simulink model and obtain the what you see
is what you get (WYSIWYG) visualization on a web browser you launch from the Raspberry Pi
terminal.

R2021b: Deploy customizable Gauge and Knob Dashboard blocks on Android device
Behavior changed in R2021b

Starting in 2021b, the Simulink Support Package for Android® Devices supports deploying the
Circular Gauge block and the Knob block on your Android device.

You can customize the visual aspects of the blocks in the Simulink model and obtain the what you see
is what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

R2021a: Customizable dashboard block gauges move to Customizable Blocks library
Behavior changed in R2021a

In prior releases, the Dashboard library contained the Circular Gauge, Horizontal Gauge, and Vertical
Gauge blocks. Starting in R2021a, these blocks are in the Customizable Blocks sublibrary within the
Dashboard library.

R2021a: Dashboard gauge blocks support foreground, background, and font color

Starting in R2021a, you can change the foreground, background, and font color of these blocks:

• Gauge
• Half Gauge
• Linear Gauge
• Quarter Gauge
• Circular Gauge
• Horizontal Gauge
• Vertical Gauge

R2020b: Simulink toolstrip support for dashboard blocks

Starting in R2020b, the Simulink Toolstrip opens a block-specific tab when you select a block in your
model from the Simulink Dashboard library or from the Flight Instruments library in the Aerospace
Blockset Flight Control Analysis Library. From the toolstrip, you can connect, disconnect, and modify
connections for the selected block. You also can jump to the model element connected to the selected
block and add the selected block to a panel.

1 Blocks

1-196

R2020b: Add a foreground image to the Horizontal Gauge, Vertical Gauge, and Circular
Gauge blocks

Starting in R2020b, you can add a foreground image to a Horizontal Gauge, Vertical Gauge, or
Circular Gauge block in your model.

R2020b: Circular Gauge block replaces the Custom Gauge block
Behavior changed in R2020b

Starting in R2020b, the Circular Gauge block replaces the Custom Gauge block. When you open a
model from a previous release that contains the Custom Gauge block, the Custom Gauge block is
automatically replaced with a Circular Gauge block with the same configuration.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Horizontal Gauge | Vertical Gauge | Gauge | Half Gauge | Linear Gauge | Quarter Gauge

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”
“Getting Started with Panels”

 Circular Gauge

1-197

Clock
Display and provide simulation time

Libraries:
Simulink / Sources

Description
The Clock block outputs the current simulation time at each simulation step. This block is useful for
other blocks that need the simulation time.

When you need the current time within a discrete system, use the Digital Clock block.

Ports
Output

Port_1 — Sample time
scalar

Sample time, specified as the current simulation time at each simulation time step.
Data Types: double

Parameters
Display time — Display simulation time on block icon

off (default) | on

Select this check box to display the simulation time as part of the Clock block icon. When you clear
this check box, the simulation time does not appear on the block icon.

Programmatic Use
Block Parameter: DisplayTime
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Decimation — Interval at which to update block icon

10 (default) | positive integer

Specify the interval at which Simulink updates the Clock icon as a positive integer.

Suppose that the decimation is 1000. For a fixed integration step of 1 millisecond, the Clock icon
updates at 1 second, 2 seconds, and so on.

1 Blocks

1-198

Dependencies

To display the simulation time on the block icon, you must select the Display time check box.

Programmatic Use
Block Parameter: Decimation
Type: character vector
Value: scalar
Default: '10'

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times. While
the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code. Usually, blocks evolve toward being suitable for
production code. Thus, blocks suitable for production code remain suitable.

See Also
Digital Clock

Topics
“Sample Time”

 Clock

1-199

Combinatorial Logic
Implement truth table

Libraries:
Simulink / Logic and Bit Operations

Description
The Combinatorial Logic block implements a standard truth table for modeling programmable logic
arrays (PLAs), logic circuits, decision tables, and other Boolean expressions. You can use this block in
conjunction with Memory blocks to implement finite-state machines or flip-flops.

Ports
Input

Port_1 — Input signal
vector

Input signal, specified as a vector. The type of signals accepted by a Combinatorial Logic block
depends on whether you selected the Boolean logic signals option (see “Implement logic signals as
Boolean data (vs. double)”). If this option is enabled, the block accepts real signals of type Boolean
or double.
Data Types: double | Boolean

Output

Port_2 — Output signal
scalar | vector

Output signal, double if the truth table contains non-Boolean values of type double; Boolean
otherwise. The type of the output is the same as that of the input except that the block outputs
double if the input is Boolean and the truth table contains non-Boolean values.
Data Types: double | Boolean

Parameters
Truth table — Matrix of outputs

matrix

You specify a matrix that defines all possible block outputs as the Truth table parameter. Each row of
the matrix contains the output for a different combination of input elements. You must specify outputs
for every combination of inputs. The number of columns is the number of block outputs.

1 Blocks

1-200

The Truth table parameter can have Boolean values (0 or 1) of any data type, including fixed-point
data types. If the table contains non-Boolean values, the data type of the table must be double.

The relationship between the number of inputs and the number of rows is:

number of rows = 2(number of inputs)

Simulink returns a row of the matrix by computing the row's index from the input vector elements.
Simulink computes the index by building a binary number where input vector elements having zero
values are 0 and elements having nonzero values are 1, then adding 1 to the result. For an input
vector, u, of m elements:

row index = 1 + u(m)*20 + u(m-1)*21 + ... + u(1)*2m-1

Programmatic Use
Block Parameter: TruthTable
Type: character vector
Values: matrix
Default: '[0 0;0 1;0 1;1 0;0 1;1 0;1 0;1 1]'

Block Characteristics
Data Types Boolean | double
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Compare To Constant | Compare To Zero | Bit Clear | Bit Set

 Combinatorial Logic

1-201

Combo Box
Select parameter value from drop-down menu

Libraries:
Simulink / Dashboard

Description
The Combo Box block lets you set the value of a parameter to one of several values. You can define
each selectable value and its label through the Combo Box block parameters. Use the Combo Box
block with other Dashboard blocks to build an interactive dashboard of controls and indicators for
your model.

Double-clicking the Combo Box block does not open its dialog box during simulation and when the
block is selected. To edit the block's parameters, you can use the Property Inspector, or you can
right-click the block and select Block Parameters from the context menu.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus

1 Blocks

1-202

or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

 Combo Box

1-203

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection

Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

1 Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

1 Blocks

1-204

Main

Enumerated Data Type — Specify state values and labels using an enumerated data type

off (default) | on

You can use an enumerated data type that pairs a numeric value with each enumeration to configure
the state values and labels for the block. To specify the states for the block using an enumerated data
type, first select the Enumerated Data Type option. Then, specify the name of the enumerated data
type in the text box. The definition for the specified enumerated data type must be saved on the
MATLAB path or in the base workspace.
Example: myEnumType

Programmatic Use

To programmatically specify the state labels and values for the block using an enumerated data type,
specify 'on' for the UseEnumeratedDataType parameter and the name of the enumerated data
type for the EnumeratedDataType parameter.
Block Parameter: UseEnumeratedDataType
Type: string or character array
Values: 'on' | 'off'
Default: 'off'
Block Parameter: EnumeratedDataType
Type: string or character array
Default: ''

Label — Block label position

Hide (default) | Bottom | Top

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

States — Set of states to select for connected parameter
scalar and character vector

Set of states from which to select a value for the connected parameter. Each State consists of a State
Value and a State Label.

• State Value — Value assigned to the connected variable or parameter when you select the state
with the corresponding Label.

• State Label — Label for each state. You can use the Label to display the value the connected
parameter takes when the switch is positioned at the bottom, or you can enter a descriptive text
label.

Click the + button to add additional States.

The default configuration for the block includes these States.

 Combo Box

1-205

States

State Value State Label
0 Label1
1 Label2
2 Label3

Programmatic Use

To programmatically configure the States for a block, use an array of structures containing the
fields Value and Label. Include a structure in the array for each state you want to configure on the
block.

state1.Value = 1;
state1.Label = 'State 1';
state2.Value = 2;
state2.Label = 'State 2';
radioStates = [state1 state2];

Block Parameter: States
Type: structure
Default: 3x1 structure array

Format

Opacity — Block background opacity

1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.
Example: 0.5

Programmatic Use
Block Parameter: Opacity
Type: scalar
Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, including the text. You can select a color from a palette of standard colors or
specify a custom color.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Background Color — Block background color
[r g b] vector

1 Blocks

1-206

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2017b

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a
dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Background Color, Foreground Color, and Opacity properties added for several
dashboard blocks

Starting in R2020b, you can specify a background color, a foreground color, and opacity for these
blocks from the Dashboard library:

• Check Box
• Combo Box
• Edit
• Push Button
• Radio Button

R2020b: Simulink Toolstrip support for dashboard blocks

 Combo Box

1-207

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019b: Enhanced enumerated data type support for the Rotary Switch block and Combo
Box block

Starting in R2019b, you can use an enumeration class to configure the values and labels for the states
of a Rotary Switch block and a Combo Box block.

To configure the States for a Rotary Switch or Combo Box block with an enumerated data type,
select Enumerated Data Type. In the text box, enter the name of the enumeration class you want to
use.

When you use an enumeration class to configure the states of the block, you cannot manually edit,
add, or remove states from the States table.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add_block and set_param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Rotary Switch | Radio Button

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1 Blocks

1-208

Compare To Constant
Determine how signal compares to specified constant

Libraries:
Simulink / Logic and Bit Operations
HDL Coder / Logic and Bit Operations

Description
The Compare To Constant block compares an input signal to a constant. Specify the constant in the
Constant value parameter. Specify how the input is compared to the constant value with the
Operator parameter.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix, is compared with constant. The block first
converts its Constant value parameter to the input data type, and then performs the specified
operation.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — Output signal
0 | 1 | vector | matrix

The output is 0 if the comparison is false, and 1 if it is true.
Data Types: uint8 | Boolean

Parameters
Operator — Logical operator

<= (default) | == | ~= | < | >= | >

This parameter can have these values:

• == — Determine whether the input is equal to the specified constant.
• ~= — Determine whether the input is not equal to the specified constant.

 Compare To Constant

1-209

• < — Determine whether the input is less than the specified constant.
• <= — Determine whether the input is less than or equal to the specified constant.
• > — Determine whether the input is greater than the specified constant.
• >= — Determine whether the input is greater than or equal to the specified constant.

Programmatic Use
Block Parameter: relop
Type: character vector
Values: '==' | '~='| '<' |'<='| '>='| '>'
Default: '<='

Constant value — Constant to compare with

constant

Specify the constant value to which the input is compared.

Programmatic Use
Block Parameter: const
Type: character vector
Value: scalar | vector | matrix | N-D array
Default: '3.0'

Output data type — Data type of the output

boolean (default) | uint8

Specify the data type of the output, boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values:'boolean' | 'uint8'
Default: 'boolean'

Enable zero-crossing detection — Select to enable zero-crossing detection

'on' (default) | 'off'

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection” in the
Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single

1 Blocks

1-210

Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 Compare To Constant

1-211

See Also
Compare To Zero | Logical Operator | Combinatorial Logic

1 Blocks

1-212

Compare To Zero
Determine how signal compares to zero

Libraries:
Simulink / Logic and Bit Operations
HDL Coder / Logic and Bit Operations

Description
The Compare To Zero block compares an input signal to zero. Specify how the input is compared to
zero with the Operator parameter.

The output is 0 if the comparison is false, and 1 if it is true.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as scalar, vector, or matrix, is compared with zero. If the input data type cannot
represent zero, parameter overflow occurs. To detect this overflow, go to the Diagnostics > Data
Validity pane of the Configuration Parameters dialog box and set Parameters > Detect overflow to
warning or error.

In this case, the block compares the input signal to the ground value of the input data type. For
example, if you have an input signal of type fixdt(0,8,2^0,10), the input data type can represent
unsigned 8-bit integers from 10 to 265 due to a bias of 10. The ground value is 10, instead of 0.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Output signal
0 | 1 | scalar | vector | matrix

The output is 0 if the comparison is false, and 1 if it is true.

The block output is uint8 or boolean, depending on your selection for the Output data type
parameter.
Data Types: uint8 | Boolean

 Compare To Zero

1-213

Parameters
Operator — Logical operator

<= (default) | == | ~= | < | >= | >

This parameter can have the following values:

• == — Determine whether the input is equal to zero.
• ~= — Determine whether the input is not equal to zero.
• < — Determine whether the input is less than zero.
• <= — Determine whether the input is less than or equal to zero.
• > — Determine whether the input is greater than zero.
• >= — Determine whether the input is greater than or equal to zero.

Programmatic Use
Block Parameter: relop
Type: character vector
Values: '==' | '~='| '<' |'<='| '>='| '>'
Default: '<='

Output data type — Data type of the output

boolean (default) | uint8

Specify the data type of the output, boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values:'boolean' | 'uint8'
Default: 'boolean'

Enable zero-crossing detection — Select to enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection” in the
Simulink documentation.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes

1 Blocks

1-214

Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 Compare To Zero

1-215

See Also
Compare To Constant | Logical Operator | Bitwise Operator | String Compare

1 Blocks

1-216

Complex to Magnitude-Angle
Compute magnitude and/or phase angle of complex signal

Libraries:
Simulink / Math Operations

Description
The Complex to Magnitude-Angle block outputs the magnitude and/or phase angle of the input signal,
depending on the setting of the Output parameter. The outputs are real values of the same data type
as the block input. The input can be an array of complex signals, in which case the output signals are
also arrays. The magnitude signal array contains the magnitudes of the corresponding complex input
elements. The angle output similarly contains the angles of the input elements.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Complex input signal that the block computes and outputs the magnitude and/or the phase angle.
Data Types: single | double

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that is the magnitude and/or phase angle of the input signal. To choose the output, set
the Output parameter.
Data Types: single | double

Parameters
Output — Magnitude and/or phase angle output specification

Magnitude and angle (default) | Magnitude | Angle

Specify if the output is the magnitude and/or the phase angle in radians of the input signal.

Command-Line Information
Parameter: Output
Type: character vector

 Complex to Magnitude-Angle

1-217

Values: 'Magnitude and angle' | 'Magnitude' | 'Angle'
Default: 'Magnitude and angle'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics
Data Types double | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Complex to Real-Imag | Real-Imag to Complex

1 Blocks

1-218

Complex to Real-Imag
Output real and imaginary parts of complex input signal

Libraries:
Simulink / Math Operations
HDL Coder / Math Operations

Description
The Complex to Real-Imag block outputs the real and/or imaginary part of the input signal, depending
on the setting of the Output parameter. The real outputs are of the same data type as the complex
input. The input can be an array (vector or matrix) of complex signals, in which case the output
signals are arrays of the same dimensions. The real array contains the real parts of the corresponding
complex input elements. The imaginary output similarly contains the imaginary parts of the input
elements.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Complex input signal that the block computes and outputs the real and/or imaginary part.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that is the real and/or imaginary part of the input signal. To choose which part is
output, set the Output parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Output — Real and/or imaginary output specification

Real and imag (default) | Real | Imag

Specify if the output is the real and/or imaginary part of the input signal.

 Complex to Real-Imag

1-219

Command-Line Information
Parameter: Output
Type: character vector
Values: 'Real and imag' | 'Real' | 'Imag'
Default: 'Real and imag'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

1 Blocks

1-220

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Complex to Magnitude-Angle | Real-Imag to Complex

 Complex to Real-Imag

1-221

Compose String
Compose output string signal based on specified format and input signals

Libraries:
Simulink / String

Description
The Compose String block composes output string signal based on the format specifier listed in the
Format parameter. The Format parameter determines the number of input signals. If there are
multiple inputs, the block constructs the string by combining these multiple inputs in order, and
applying the associated format specifier, one format specifier for each input. Each format specifier
starts with a percent sign, %, followed by the conversion character. For example, %f formats the input
as a floating point output. To supplement the string output, you can also add a character to the format
specification. Use this block to compose and format an output string signal from a multiple inputs.

For example, if the Format parameter contains "%s is %f", the block expects two inputs, a string
signal and a single or double signal. If the first input is the string "Pi" and the second input is a
double value 3.14, the output is "Pi is 3.14".

When a MinGW® compiler compiles code generated from the block, running the compiled code may
produce nonstandard results for floating-point inputs. For example, a numeric input of 501.987
returns the string "5.019870e+002" instead of the expected string "5.019870e+02".

Ports
Input

d — Data for first part of string
scalar

Data for the first part of string, specified as a scalar. The Format parameter determines the port label
and the format of the input data. For example, if the first item in the Format parameter is %d, the
port label is d.

The data type of the input signal must be compatible with the format specifier in the Format
parameter. For more information, see the Format parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

f — Data for second part of string
scalar

Data for the second part of string, specified as a scalar. The Format parameter determines the port
label and the format of the input data. For example, if the first item in the Format parameter is %f,
the port label is f.

The data type of the input signal must be compatible with the format specifier specified in the
Format parameter. For more information, see the Format parameter.

1 Blocks

1-222

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Port_N — Data for N parts of string
scalar (default)

Data for N parts of string, specified as a scalar. The Format parameter determines the port label and
the format of the input data. For example, if the corresponding item in the Format parameter is %f,
the port label is f.

The data type of the input signal must be compatible with the format specifier in the Format
parameter. For more information, see the Format parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Output

str — Output string
scalar

Output string composed of inputs, specified as a scalar.
Data Types: string

Parameters
Format — Format input data
"%d %f" (default) | format string | character vector

Format of input data, specified as a format string.

For more information about acceptable format specifiers, see “Algorithms” on page 1-224.

Programmatic Use
Block Parameter: Format
Type: character vector
Values: '<filename>'
Default: '"%d %f"'

Output data type — Output data type
string (default) | <data type expression>

Output data type, specified using the string data type to specify a string with no maximum length.

To specify a string data type with a maximum length, specify stringtype(N). For example,
stringtype(31) creates a string data type with a maximum length of 31 characters.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the data type attributes. See “Specify Data Types Using Data Type Assistant” in the Simulink
User's Guide for more information.

 Compose String

1-223

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'string' | <data type expression>
Default: 'string'

Mode — Category of data
string (default) | scalar

Use the stringtype function, for example, stringtype(255).

Dependency

Clicking the Show data type assistant button enables this parameter.

Block Characteristics
Data Types double | integer | single | string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
A formatting specifier starts with a percent sign, %, and ends with a conversion character. The
conversion character is required. Optionally, you can specify identifier, flags, field width, precision,
and subtype specifiers between % and the conversion character. (Spaces are invalid between
specifiers and are shown here only for readability).

The Compose String block uses this format specifier prototype:

%[flags][width][.precision][length]specifier

Conversion Character

This table shows conversion characters to format numeric and character data as text.

Value Type Conversion Details
Integer, signed %d or %i Base 10
Integer, unsigned %u Base 10

%o Base 8 (octal)
%x Base 16 (hexadecimal), lowercase letters a–f
%X Same as %x, uppercase letters A–F

1 Blocks

1-224

Value Type Conversion Details
Floating-point number %f Floating-point notation (Use a precision

operator to specify the number of digits after
the decimal point.)

%e Exponential notation, such as 3.141593e+00
(Use a precision operator to specify the
number of digits after the decimal point.)

%E Same as %e, but uppercase, such as
3.141593E+00 (Use a precision operator to
specify the number of digits after the decimal
point.)

%g The more compact of %e or %f, with no trailing
zeros (Use a precision operator to specify the
number of significant digits.)

%G The more compact of %E or %f, with no trailing
zeros (Use a precision operator to specify the
number of significant digits.)

String %s The type of the output text is the same as the
type of Format.

Optional Operators

The optional identifier, flags, field width, precision, and operators further define the format of the
output text.

• Flags

'–' Left-justify. Works with all specifiers.
Example: %-5.2f
Example: %-10s

'+' Always print a sign character (+ or –) for any numeric value. Works with all
specifiers except u, o, x, X, and s.
Example: %+5.2f
Right-justify text.
Example: %+10s

' ' Insert a space before the value. Works with all specifiers except u, o, x, X,
and s.

Example: % 5.2f
'0' Pad to field width with zeros before the value. Works with all specifiers

except s.
Example: %05.2f

 Compose String

1-225

'#' Modify selected numeric conversions:

• For %o, %x, or %X, print 0, 0x, or 0X prefix.
• For %f, %e, or %E, print decimal point even when precision is 0.
• For %g or %G, do not remove trailing zeros or decimal point.

Works with all specifiers except d, i, u, and s.

Example: %#5.0f
• Field Width

Minimum number of characters to print.

The function pads to field width with spaces before the value unless otherwise specified by flags.
• Precision

For %f, %e, or %E Number of digits to the right of the decimal point
Example: '%.4f' prints pi as '3.1416'

d, i, o, u, x, X Minimum number of digits to be written. Outputs shorter than
the specified precision are padded with leading zeros.
Example: "%.4d" prints 5 as '0005'

For %g or %G Number of significant digits
Example: '%.4g' prints pi as '3.142'

s Maximum number of characters to be written to the output.
Example: "%.2s" prints "Hello!" as "He"

Note If you specify a precision operator for floating-point values that exceeds the precision of the
input numeric data type, the results might not match the input values to the precision you
specified. The result depends on your computer hardware and operating system.

Text Before or After Formatting Operators

Special Character Representation
Single quotation mark ''
Percent character %%
Backslash \\
Alarm \a
Backspace \b
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t
Vertical tab \v

1 Blocks

1-226

Special Character Representation
Character whose Unicode® numeric value can be represented
by the hexadecimal number, N

\xN

Example: sprintf('\x5A')
returns 'Z'

Character whose Unicode numeric value can be represented by
the octal number, N

\N

Example: sprintf('\132')
returns 'Z'

Format can also include additional text before a percent sign, %, or after a conversion character. The
text can be:

• Ordinary text to print.
• Special characters that you cannot enter as ordinary text. This table shows how to represent

special characters in formatSpec.

Length Specifiers

The Format String block supports the h and l length subspecifiers. These specifiers can change
according to the Configuration Parameters > Hardware Implementation > Number of bits
settings

Length d i u o x X f e E g G s
No length specifier int unsigned int double (default),

single
string

h short unsigned short — —
l long unsigned long — —

Note for Specifiers that Specify Integer Data Types (d, i, u, o, x, X)

Target int, long, and short type sizes are controlled by settings in the Configuration Parameters
> Hardware Implementation pane. For example, if the target int is 32 bits and the specifier is %u,
then the expected input type will be uint32. However, the input port accepts any built-in integer
type of that size or smaller with the %u specifier

Notes for Specifiers that Specify Floating Point Data Types (f, e, E, g, F)

• Do not use l and h with these specifiers. Do not use the length subspecifier (for example, %f is
allowed, but %hf and %lf are not allowed) .

• Ports that correspond with these specifiers accept both single and double data types.

Note for Specifiers that Specify the String Data Type (s)

• The s specifier does not work with the l or h subspecifiers, and only accepts a string input data
type.

Version History
Introduced in R2018a

 Compose String

1-227

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
sprintf | ASCII to String | Scan String | String Compare | String Concatenate | String Constant |
String Find | String Length | String to Double | String to Single | String to ASCII | String to Enum |
Substring | To String

Topics
“Display and Extract Coordinate Data”
“Simulink Strings”

1 Blocks

1-228

Configurable Subsystem
Represent any block selected from user-specified library of blocks

Libraries:
Simulink / Ports & Subsystems

Description

Note Configurable Subsystem block will be removed in a future release. It is recommended to use
Variant Subsystem instead of Configurable Subsystem. Variant Subsystems offer more capabilities
than Configurable Subsystems with these advantages:

• You can mix Model blocks and Subsystem blocks as variant choices.
• You can specify variants that have different numbers of input and output ports.

For more information on converting Configurable Subsystem block to a Variant Subsystem block, see
“Convert Configurable Subsystem to Variant Subsystem”.

For more information on Variant Subsystem, see Variant Subsystem, Variant Model, Variant Assembly
Subsystem.

If your model contains a Configurable Subsystem block, you will see a warning message. To change
the warning message to an error message set the string command line parameter
ConfigurableSubsystemUsage to error.

set_param(bdroot,'ConfigurableSubsystemUsage','error');

To revert it to a warning, set the ConfigurableSubsystemUsage to warning.

The Configurable Subsystem block represents one of a set of blocks contained in a specified library of
blocks. The context menu of the Configurable Subsystem block lets you choose which block the
configurable subsystem represents.

Configurable Subsystem blocks simplify creation of models that represent families of designs. For
example, suppose that you want to model an automobile that offers a choice of engines. To model
such a design, you would first create a library of models of the engine types available with the car.
You would then use a Configurable Subsystem block in your car model to represent the choice of
engines. To model a particular variant of the basic car design, a user need only choose the engine
type, using the configurable engine block's dialog box.

To create a configurable subsystem in a model, you must first create a library containing a master
configurable subsystem and the blocks that it represents. You can then create configurable instances
of the master subsystem by dragging copies of the master subsystem from the library and dropping
them into models.

 Configurable Subsystem

1-229

You can add any type of block to a master configurable subsystem library. Simulink derives the port
names for the configurable subsystem by making a unique list from the port names of all the choices.
However, Simulink uses default port names for non-subsystem block choices.

You cannot break library links in a configurable subsystem because Simulink uses those links to
reconfigure the subsystem when you choose a new configuration. Breaking links would be useful only
if you do not intend to reconfigure the subsystem. In this case, you can replace the configurable
subsystem with a nonconfigurable subsystem that implements the permanent configuration.

Creating a Master Configurable Subsystem

To create a master configurable subsystem:

1 Create a library of blocks representing the various configurations of the configurable subsystem.
2 Save the library.
3 Create an instance of the Configurable Subsystem block in the library.

To do so, drag a copy of the Configurable Subsystem block from the Simulink Ports & Subsystems
library into the library you created in the previous step.

4 Display the Configurable Subsystem block dialog box by double-clicking it. The dialog box
displays a list of the other blocks in the library.

5 Under List of block choices in the dialog box, select the blocks that represent the various
configurations of the configurable subsystems you are creating.

6 To apply the changes and close the dialog box, click the OK button.
7 Select Block Choice from the context menu of the Configurable Subsystem block.

The context menu displays a submenu listing the blocks that the subsystem can represent.
8 Select the block that you want the subsystem to represent by default.
9 Save the library.

Note If you add or remove blocks from a library, you must recreate any Configurable Subsystem
blocks that use the library.

If you modify a library block that is the default block choice for a configurable subsystem, the change
does not immediately propagate to the configurable subsystem. To propagate this change, do one of
the following:

• Change the default block choice to another block in the subsystem, then change the default block
choice back to the original block.

• Recreate the configurable subsystem block, including the selection of the updated block as the
default block choice.

If a configurable subsystem in your model contains a broken link to a library block, editing the link
and saving the model does not fix the broken link the next time you open the model. To fix a broken
library link in your configurable subsystem, use one of the following approaches.

• Convert the configurable subsystem to a variant subsystem. Right-click the configurable
subsystem, and select Subsystem and Model Reference > Convert Subsystem to > Variant
Subsystem.

1 Blocks

1-230

• Remove the library block from the master configurable subsystem library, add the library block
back to the master configurable subsystem library, and then resave the master configurable
subsystem library.

Creating an Instance of a Configurable Subsystem

To create an instance of a configurable subsystem in a model:

1 Open the library containing the master configurable subsystem.
2 Drag a copy of the master into the model.
3 Select Block Choice from the context menu of that Configurable Subsystem instance.
4 Select the block that you want the configurable subsystem to represent.

The instance of the configurable system displays the icon and parameter dialog box of the block that
it represents.

Setting Instance Block Parameters

As with other blocks, you can use the parameter dialog box of a configurable subsystem instance to
set its parameters interactively and the set_param command to set the parameters from the
MATLAB command line or in a MATLAB file. If you use set_param, you must specify the full path
name of the configurable subsystem's current block choice as the first argument of set_param, for
example:
curr_choice = get_param('mymod/myconfigsys', 'BlockChoice');
curr_choice = ['mymod/myconfigsys/' curr_choice];
set_param(curr_choice, 'MaskValues', ...);

Mapping I/O Ports

A configurable subsystem displays a set of input and output ports corresponding to input and output
ports in the selected library. Simulink uses the following rules to map library ports to Configurable
Subsystem block ports:

• Map each uniquely named input/output port in the library to a separate input/output port of the
same name on the Configurable Subsystem block.

• Map all identically named input/output ports in the library to the same input/output ports on the
Configurable Subsystem block.

• Terminate any input/output port not used by the currently selected library block with a
Terminator/Ground block.

This mapping allows a user to change the library block represented by a Configurable Subsystem
block without having to rewire connections to the Configurable Subsystem block.

For example, suppose that a library contains two blocks A and B and that block A has input ports
labeled a, b, and c and an output port labeled d and that block B has input ports labeled a and b and
an output port labeled e.

 Configurable Subsystem

1-231

A Configurable Subsystem block based on this library would have three input ports labeled a, b, and
c, respectively, and two output ports labeled d and e.

In this example, port a on the Configurable Subsystem block connects to port a of the selected library
block no matter which block is selected. Port c on the Configurable Subsystem block functions only if
library block A is selected. Otherwise, it simply terminates.

Note A Configurable Subsystem block does not provide ports that correspond to non-I/O ports, such
as the trigger and enable ports on triggered and enabled subsystems. Thus, you cannot use a
Configurable Subsystem block directly to represent blocks that have such ports. You can do so
indirectly, however, by wrapping such blocks in subsystem blocks that have input or output ports
connected to the non-I/O ports.

Convert to Variant Subsystem

Right-click a configurable subsystem and select Subsystems and Model Reference > Convert
Subsystem To > Variant Subsystem.

During conversion, Simulink performs the following operations:

• Replaces the Subsystem block with a Variant Subsystem block, preserving ports and connections.

1 Blocks

1-232

• Adds the original subsystem as a variant choice in the Variant Subsystem block.
• Overrides the Variant Subsystem block to use the subsystem that was originally the active choice.
• Preserves links to libraries. For linked subsystems, Simulink adds the linked subsystem as a

variant choice.

Simulink also preserves the subsystem block masks, and it copies the masks to the variant choice.

See Variant Subsystem for more information on variant choices.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array | bus

Input signal to the Configurable Subsystem. The block that the Configurable Subsystem represents
determines the supported data types and dimensions of the input signal.

Dependencies

The number of input ports depends on the blocks in the library that the Configurable Subsystem
represents. For more information, see “Mapping I/O Ports” on page 1-231.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — Output signal
scalar | vector | matrix | N-D array | bus

Output signal from the Configurable Subsystem. The block that the Configurable Subsystem
represents determines the output data types and dimensions.

Dependencies

The number of output ports depends on the blocks in the library that the Configurable Subsystem
represents. For more information, see “Mapping I/O Ports” on page 1-231.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
List of block choices — Block members of the configurable subsystem
no default

Select the blocks you want to include as members of the configurable subsystem. You can include
user-defined subsystems as blocks.

Programmatic Use
Block Parameter: MemberBlocks
Type: cell array of character vectors

 Configurable Subsystem

1-233

Values: cell array of block names as character vectors
Default: {''}

Port names — Port names
no default

Lists of input and output ports of member blocks. In the case of multiports, you can rearrange
selected port positions by clicking the Up and Down buttons.

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Actual code generation support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem | Variant Subsystem

Topics
“Model Discretizer”

1 Blocks

1-234

Constant
Generate constant value

Libraries:
Simulink / Commonly Used Blocks
Simulink / Sources
DSP System Toolbox / Sources
HDL Coder / Commonly Used Blocks
HDL Coder / Sources

Description
The Constant block generates a real or complex constant value signal. Use this block to provide a
constant signal input. The block generates scalar, vector, or matrix output, depending on:

• The dimensionality of the Constant value parameter
• The setting of the Interpret vector parameters as 1-D parameter

The output of the block has the same dimensions and elements as the Constant value parameter. If
you specify for this parameter a vector that you want the block to interpret as a vector, select the
Interpret vector parameters as 1-D check box. Otherwise, if you specify a vector for the Constant
value parameter, the block treats that vector as a matrix.

Tip To output a constant enumerated value, consider using the Enumerated Constant block instead.
The Constant block provides block parameters that do not apply to enumerated types, such as
Output minimum and Output maximum.

Using Bus Objects as the Output Data Type

The Constant block supports nonvirtual buses as the output data type. Using a bus object as the
output data type can help simplify your model. If you use a bus object as the output data type, set the
Constant value to 0 or to a MATLAB structure that matches the bus object.

Using Structures for the Constant Value of a Bus

The structure you specify must contain a value for every element of the bus represented by the bus
object. The block output is a nonvirtual bus signal.

You can use the Simulink.Bus.createMATLABStruct to create a full structure that corresponds
to a bus.

You can use Simulink.Bus.createObject to create a bus object from a MATLAB structure.

If the signal elements in the output bus use numeric data types other than double, you can specify
the structure fields by using typed expressions such as uint16(37) or untyped expressions such as
37. To control the field data types, you can use the bus object as the data type of a
Simulink.Parameter object. To decide whether to use typed or untyped expressions, see “Control
Data Types of Initial Condition Structure Fields”.

 Constant

1-235

Setting Configuration Parameters to Support Using a Bus Object Data Type

To enable the use of a bus object as an output data type, before you start a simulation, set
Configuration Parameters > Diagnostics > Data Validity > Advanced parameters >
Underspecified initialization detection to Simplified. For more information, see
“Underspecified initialization detection”.

Ports
Output

Port_1 — Constant value
scalar | vector | matrix | N-D array

Constant value, specified as a real or complex valued scalar, vector, matrix, or N-D array. By default,
the Constant block outputs a signal whose dimensions, data type, and complexity are the same as
those of the Constant value parameter. However, you can specify the output to be any data type that
Simulink supports, including fixed-point and enumerated data types.

Note If you specify a bus object as the data type for this block, do not set the maximum value for
bus data on the block. Simulink ignores this setting. Instead, set the maximum values for bus
elements of the bus object specified as the data type. For more information, see
Simulink.BusElement.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
Main

Constant value — Constant output value

1 (default) | scalar | vector | matrix | N-D array

Specify the constant value output of the block.

• You can enter any expression that MATLAB evaluates as a matrix, including the Boolean keywords
true and false.

• If you set the Output data type to be a bus object, you can specify one of these options:

• A full MATLAB structure corresponding to the bus object
• 0 to indicate a structure corresponding to the ground value of the bus object

For details, see “Using Bus Objects as the Output Data Type” on page 1-235.
• For nonbus data types, Simulink converts this parameter from its value data type to the specified

output data type offline, using a rounding method of nearest and overflow action of saturate.

Programmatic Use
Block Parameter: Value

1 Blocks

1-236

Type: character vector
Value: scalar | vector | matrix | N-D array
Default: '1'

Interpret vector parameters as 1-D — Treat vectors as 1-D

on (default) | off

Select this check box to output a vector of length N if the Constant value parameter evaluates to an
N-element row or column vector.

• When you select this check box, the block outputs a vector of length N, provided the Constant
value parameter evaluates to an N-element row or column vector.

• When you clear this check box, the block outputs a matrix of dimension 1-by-N or N-by-1, provided
the Constant value parameter evaluates to an N-element row or column vector. For example, the
block outputs a matrix of dimension 1-by-N or N-by-1.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Sample time — Sampling interval

inf (default) | scalar | vector

Specify the interval between times that the Constant block output can change during simulation (for
example, due to tuning the Constant value parameter).

The default value of inf indicates that the block output can never change. This setting speeds
simulation and generated code by avoiding the need to recompute the block output.

See “Specify Sample Time” for more information.
Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: 'inf'

Signal Attributes

Output minimum — Minimum output value for range checking

[] (default) | scalar

Specify the lower value of the output range that Simulink checks as a finite, real, double, scalar
value.

Note If you specify a bus object as the data type for this block, do not set the minimum value for bus
data on the block. Simulink ignores this setting. Instead, set the minimum values for bus elements of
the bus object specified as the data type. For information on the Minimum parameter for a bus
element, see Simulink.BusElement.

 Constant

1-237

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Specify the upper value of the output range that Simulink checks as a finite, real, double, scalar
value.

Note If you specify a bus object as the data type for this block, do not set the maximum value for
bus data on the block. Simulink ignores this setting. Instead, set the maximum values for bus
elements of the bus object specified as the data type. For information on the Maximum parameter for
a bus element, see Simulink.BusElement.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

1 Blocks

1-238

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Output data type — Output data type

Inherit: Inherit from 'Constant value' (default) | Inherit: Inherit via back
propagation | double | single | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32
| uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class
name> | Bus: <object name> | <data type expression>

Specify the output data type. The type can be inherited, specified directly, or expressed as a data type
object such as Simulink.NumericType.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant”.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit from 'Constant value'' | 'Inherit: Inherit via back
propagation' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' |
'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum: <class name>'
| 'Bus: <object name>'
Default: 'Inherit: Inherit from 'Constant value''

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Mode — Category of data to specify

Inherit (default) | Built in | Fixed point | Enumerated | Bus object | Expression

Select the category of data to specify.

Inherit
Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right.
Select one of the following choices:

 Constant

1-239

• Inherit from 'Constant value' (default)
• Inherit via back propagation

Built in
Built-in data types. Selecting Built in enables a second menu/text box to the right. Select one
of the following choices:

• double (default)
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32
• boolean

Fixed point
Fixed-point data types.

Enumerated
Enumerated data types. Selecting Enumerated enables a second menu/text box to the right,
where you can enter the class name.

Bus object
Bus object. Selecting Bus enables a Bus object parameter to the right, where you enter the
name of a bus object that you want to use to define the structure of the bus. If you need to create
or change a bus object, click Edit to the right of the Bus object field to open the Simulink Type
Editor. For details, see “Create and Specify Simulink.Bus Objects”.

Expression
Expressions that evaluate to data types. Selecting Expression enables a second menu/text box
to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

1 Blocks

1-240

Dependencies

To enable this parameter, click the Show data type assistant button, and set the Mode to Built
in or Fixed point.
Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Specify signed or unsigned

Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

• Signed, specifies the fixed-point data as signed.
• Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.
Dependencies

To enable this parameter, set the Mode to Fixed point.

Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.
Dependencies

To enable this parameter, set Mode to Fixed point.

Setting Scaling to Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Setting Scaling to Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

 Constant

1-241

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type

0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Binary point.

Slope — Specify slope for the fixed-point data type

2^0 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

1 Blocks

1-242

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Tunable Parameters

You can use a tunable parameter in a Constant block intended for HDL code generation. For details,
see “Generate DUT Ports for Tunable Parameters” (HDL Coder).

HDL Architecture

Architecture Parameters Description
default
Constant

None This implementation emits the value of the Constant
block.

Logic Value None By default, this implementation emits the character
'Z' for each bit in the signal. For example, for a 4-
bit signal, the implementation would emit 'ZZZZ'.

{'Value', 'Z'} If the signal is in a high-impedance state, use this
parameter value. This implementation emits the
character 'Z' for each bit in the signal. For
example, for a 4-bit signal, the implementation
would emit 'ZZZZ'.

{'Value', 'X'} If the signal is in an unknown state, use this
parameter value. This implementation emits the
character 'X' for each bit in the signal. For
example, for a 4-bit signal, the implementation
would emit 'XXXX'.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

 Constant

1-243

Complex Data Support

This block supports code generation for complex signals.

Restrictions

• The Logic Value implementation does not support the double data type. If you specify this
implementation for a constant value of type double, a code generation error occurs.

• Delay balancing does not support a Constant block that has Sample time set to inf when the
infinite sample time propagates to the device under test (DUT) output. If there is an infinite
sample rate error during HDL code generation, set Sample time to -1.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Enumerated Constant | Simulink.Parameter | Simulink.BusElement

Topics
“Set Block Parameter Values”
“Specify Bus Properties with Simulink.Bus Object Data Types”
“Specify Initial Conditions for Bus Elements”
“Create Array of Buses from MATLAB Structures”

1 Blocks

1-244

Coulomb and Viscous Friction
Model discontinuity at zero, with linear gain elsewhere

Libraries:
Simulink / Discontinuities
HDL Coder / Discontinuities

Description
The Coulomb and Viscous Friction block models Coulomb (static) and viscous (dynamic) friction. The
block models a discontinuity at zero and a linear gain otherwise.

The block output matches the MATLAB result for:

y = sign(x) .* (Gain .* abs(x) + Offset)

where y is the output, x is the input, Gain is the signal gain for nonzero input values, and Offset is
the Coulomb friction.

The block accepts one input and generates one output. The input can be a scalar, vector, or matrix
with real and complex elements.

• For a scalar input, Gain and Offset can have dimensions that differ from the input. The output is
a scalar, vector, or matrix depending on the dimensions of Gain and Offset.

• For a vector or matrix input, Gain and Offset must be scalar or have the same dimensions as the
input. The output is a vector or matrix of the same dimensions as the input.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

The input signal to the model of Coulomb and viscous friction.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

The output signal calculated by applying the friction models to the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

 Coulomb and Viscous Friction

1-245

Parameters
To edit the parameters for the Coulomb and Viscous Friction block, double-click the block icon.

Coulomb friction value — Static friction offset

[1320] (default) | real values

Specify the offset that applies to all input values.

Programmatic Use
Block Parameter: offset
Type: character vector
Value: real values
Default: '[1 3 2 0]'

Coefficient of viscous friction — Dynamic friction coefficient

1 (default) | real values

Specify the signal gain for nonzero input values.

Programmatic Use
Block Parameter: gain
Type: character vector
Value: real values
Default: '1'

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

1 Blocks

1-246

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

HDL code generation does not support complex input.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Dead Zone | Backlash

 Coulomb and Viscous Friction

1-247

Counter Free-Running
Count up and overflow back to zero after reaching maximum value for specified number of bits

Libraries:
Simulink / Sources
HDL Coder / Sources

Description
The Counter Free-Running block counts up until reaching the maximum value, 2Nbits – 1, where Nbits
is the number of bits. Then the counter overflows to zero and begins counting up again.

After overflow, the counter always initializes to zero. However, if you select the global doubles
override, the Counter Free-Running block does not wrap back to zero.

Note This block does not report wrap on overflow warnings during simulation. To report these
warnings, see the Simulink.restoreDiagnostic reference page. The block does report errors
due to wrap on overflow.

Ports
Output

Port_1 — Count value
scalar

Count value, specified as an unsigned integer of 8 bits, 16 bits, or 32 bits.
Data Types: uint8 | uint16 | uint32

Parameters
Number of Bits — Number of bits

16 (default) | scalar

Specify the number of bits as a finite, real-valued. When you specify:

• A positive integer, for example 8, the block counts up to 28 – 1, which is 255.
• An unsigned integer expression, for example uint8(8), the block counts up to uint8(2uint8(8) –

1), which is 254.

Programmatic Use
Block Parameter: NumBits
Type: character vector

1 Blocks

1-248

Values: scalar
Default: '16'

Sample time — Interval between samples

-1 (default) | scalar | vector

Specify the time interval between samples as a scalar (sampling period), or a two-element vector
([sampling period, initial offset]). To inherit the sample time, set this parameter to -1.
For more information, see “Specify Sample Time”.

Programmatic Use
Block Parameter: tsamp
Type: character vector
Values: scalar | vector
Default: '-1'

Block Characteristics
Data Types fixed point | integer
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times. While
the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code. Usually, blocks evolve toward being suitable for
production code. Thus, blocks suitable for production code remain suitable.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

 Counter Free-Running

1-249

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Counter Limited | MATLAB Function

1 Blocks

1-250

Counter Limited
Count up and wrap back to zero after outputting specified upper limit

Libraries:
Simulink / Sources
HDL Coder / Sources

Description
The Counter Limited block counts up until the specified upper limit is reached. Then the counter
wraps back to zero, and restarts counting up. The counter always initializes to zero.

Note This block does not report wrap on overflow warnings during simulation. To report these
warnings, see the Simulink.restoreDiagnostic reference page. The block does report errors
due to wrap on overflow.

Ports
Output

Port_1 — Count value
scalar

Count value, specified as an unsigned integer of 8 bits, 16 bits, or 32 bits. The block uses the smallest
number of bits required to represent the upper limit.
Data Types: uint8 | uint16 | uint32

Parameters
Upper limit — Upper limit

7 (default) | scalar

Specify the upper limit for the block to count to as a finite, real-valued scalar.
Programmatic Use
Block Parameter: uplimit
Type: character vector
Values: scalar
Default: '7'

Sample time — Interval between samples

-1 (default) | scalar | vector

Specify the time interval between samples as a scalar (sampling period), or a two-element vector
(sampling period, initial offset). To inherit the sample time, set this parameter to -1. For
more information, see “Specify Sample Time”.

 Counter Limited

1-251

Programmatic Use
Block Parameter: tsamp
Type: character vector
Values: scalar | vector
Default: '-1'

Block Characteristics
Data Types Boolean | fixed point | integer
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation.
In certain cases, you can achieve grouping by configuring the masked subsystem block to execute
as an atomic unit by selecting the Treat as atomic unit option.

• Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times.
While the code is functionally valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production code remain suitable.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

1 Blocks

1-252

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Counter Free-Running

 Counter Limited

1-253

Create Diagonal Matrix
Create square diagonal matrix from diagonal elements

Libraries:
Simulink / Matrix Operations

Description
The Create Diagonal Matrix block populates the diagonal of the M-by-M matrix output with the
elements contained in the length-M vector input D. The elements off the diagonal are zero.

A = diag(D) % Equivalent MATLAB code

Ports
Input

Port_1 — Input signal
vector

Input to convert into a diagonal matrix, specified as an M-element vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point
Complex Number Support: Yes

Output

Port_1 — Output signal
matrix

Output specified as an M-by-M matrix, where M is the length of the input vector.

The output is equivalent to:

A = diag(D) % Equivalent MATLAB code

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point
Complex Number Support: Yes

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

1 Blocks

1-254

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

R2021b: Create Diagonal Matrix Block Moved to Simulink Matrix Operations Library
Behavior changed in R2021b

The Create Diagonal Matrix block has been moved from the DSP System Toolbox > Math
Functions > Matrices and Linear Algebra > Matrix Operations library to the Simulink >
Matrix Operationslibrary. All existing models continue to work.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on the memcpy or memset function (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Extract Diagonal

Functions
diag

 Create Diagonal Matrix

1-255

Cross Product
Cross product of two vectors

Libraries:
Simulink / Matrix Operations

Description
The Cross Product block returns the cross product, or vector product, of two 3-by-1 vectors.

Ports
Input

Port_1 — First input vector
3-element vector

First input vector, specified as a 3-element vector.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point | enumerated | bus

Port_2 — Second input vector
3-element vector

Second input vector, specified as a 3-element vector.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — Cross product of input vectors
3-element vector

Cross product of input vectors, returned as a 3-element vector.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no

1 Blocks

1-256

Zero-Crossing
Detection

no

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Hermitian Transpose | Identity Matrix | IsSymmetric | IsTriangular | Matrix Square | Transpose

Topics
“Compatible Array Sizes for Basic Operations”
MATLAB Matrix Operations

 Cross Product

1-257

Dashboard Scope
Trace signals on scope display during simulation

Libraries:
Simulink / Dashboard

Description
The Dashboard Scope block plots connected signals during simulation on a scope display. You can use
the Dashboard Scope block with other dashboard blocks to build an interactive dashboard of controls
and indicators for your model. Signals connected to the Dashboard Scope block log to the Simulation
Data Inspector for analysis during or after simulation. The Dashboard Scope block can display signals
of any data type that Simulink supports, including enumerated data types, and up to eight signals
from an array or bus.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. If you
only want to connect a single dashboard block, you can also use the Connection table in the block
dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, select a dashboard block to connect and then, on the block tab, click
Connect. In connect mode, when you select one or more signals, a list of signals that are available
for connection appears. Select a signal from the list to connect the signal to the selected dashboard
block. To connect another dashboard block, pause on the block you want to connect and click the
Connect button above it. Then, select one or more signals in the model and choose a signal to
connect.

1 Blocks

1-258

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Analyze Signal Data

You can use the subplot menu or the context menu for the Dashboard Scope block to:

• Show or hide data cursors.
• Zoom out by a fixed amount.
• Configure the mouse interaction to pan and select or to zoom in time, in y, or in both time and y.
• Perform a fit-to-view in time, in y, or in both time and y.

To access the subplot menu, select the Dashboard Scope block then click the three dots that appear
when you pause on the plot area.

 Dashboard Scope

1-259

Configure Signal Line Style and Color

You can modify the color and line style for signals connected to a Dashboard Scope block using the
Connection table in the Block Parameters dialog box or the Property Inspector. To modify the
appearance of a connected signal:

1 Click the preview of the signal appearance in the Style column of the Connection table.

2 Choose a color from the palette of standard colors or select the Custom tab to specify a custom
color using RGB values between 0 and 255.

3 Select the line style from the solid, dotted, dashed, and dot-dashed options in the Style column.
4 Click Set.

When you mark a signal connected to the Dashboard Scope block for signal logging, you can also
configure the signal color and line style using the Instrumentation Properties dialog box. In the
signal color and line style menu for the Dashboard Scope block, the Override style and color option
is selected by default and specifies whether signal appearance options you choose using the
Connection table for the Dashboard Scope block override signal appearance options configured in
the instrumentation properties for the connected signals.

1 Blocks

1-260

When you connect signals to the Dashboard Scope block using the Block Parameters dialog box, the
connection table shows the default signal color and line style for each signal you connect. As you
select signals to connect, the Connection table updates the style and color for signals that are not
selected to indicate the style and color for the next signal you connect.

Configure Complex Signal Format

When you connect a complex signal to the Dashboard Scope block, you can configure how the signal
is displayed by specifying the Complex Format property for the signal:

1 Mark the complex signal for signal logging.
2 Right-click the logging badge for the complex signal and select Properties.
3 Specify the Complex Format.
4 Click OK.

When you specify the Complex Format for a signal as Real-Imaginary or Magnitude-Phase, the
Dashboard Scope block displays both components of the signal. The real or magnitude component is
displayed using the color indicated in the Connection table. The imaginary or phase component is
displayed using a different shade of the color indicated in the Connection table.

Limitations
• You cannot use the Connection table to connect a dashboard block to a block that is commented

out. When you connect a dashboard block to a commented block using connect mode, the
dashboard block does not display the connected value until the you uncomment the block.

• The toolstrip does not support dashboard blocks that are in a panel.
• Dashboard blocks cannot connect to signals inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

• You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

 Dashboard Scope

1-261

• Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Connection Table

Use the Connection table to select one or more signals to display and to configure the line style and
color.

Connection — Signals to connect and display
signal connection options

Populate the Connection table by selecting signals in the model. To connect a signal, select the
check box next to the signal you want to connect, then click Apply.

Tips

You can connect signals to a Dashboard Scope block during simulation.

Programmatic Use

To programmatically specify one or more signals to connect to the Dashboard Scope block, use a cell
array of Simulink.HMI.SignalSpecification objects.
Block Parameter: Binding
Type: cell array of Simulink.HMI.SignalSpecification objects
Default: []

Line Style — Line style and color for connected signals
line style and color options

You can configure the line style and color for signals connected to a Dashboard Scope block using the
Connection table. To change the line style or color for a signal, in the Style column that corresponds
to the signal row, click the preview of the signal appearance. When Override style and color is
cleared, the Style column displays the word auto instead of a preview of the line style. For more
information, see “Configure Signal Line Style and Color” on page 1-260.

Programmatic Use

To programmatically configure the line style and color for connected signals, use the Colors
parameter. Specify the value for the Colors parameter as an array of structures where each
structure specifies the style override setting, line style, and line color for one signal. Settings
specified using the Colors parameter apply to the signal at the same index in the value for the
Binding parameter.

Specify the line style and color for each signal as a structure with these fields:

• Auto — Style override setting specified by:

• "on" — Line style and color automatically set by the software
• "off" — Line style and color specified by Color and LineStyle

• Color — 1-by-3 [r g b] vector with values between 0 and 1.
• LineStyle — Character vector that specifies one of these line style options:

1 Blocks

1-262

• Solid: '-'
• Dashed: '––'
• Dotted: ':'
• Dash-dotted: '-.'

sigColors1.Color = '';
sigColors1.LineStyle = '';
sigColors1.Auto = "on";
sigColors2.Color = [0 0 1];
sigColors2.LineStyle = '--';
sigColors2.Auto = "off";
sigColors = [sigColors1 sigColors2];

set_param(blockPath,'Colors',sigColors);

Block Parameter: Colors
Type: array of structures

Main

Time Span — Time axis span

auto (default) | scalar

A finite, real, double, scalar value that sets the time span of the plot.

When Time Span is set to auto, the block sets its time span to the simulation stop time.

Tips

When you set the Time Span to a value that is less than the duration of the simulation, use the
Update Mode parameter to control whether the display wraps or scrolls when the simulation time
exceeds the specified time span.

Programmatic Use
Block Parameter: TimeSpan
Type: string | character array
Values: 'auto' or numeric value
Default: 'auto'

Update Mode — Display update behavior

Wrap (default) | Scroll

How the display updates during simulation, specified as Wrap or Scroll.

• Wrap — Display wraps to show incoming data after simulation time reaches end of time span.
• Scroll — Display scrolls to show incoming data after simulation time reaches end of time span.

Programmatic Use
Block Parameter: UpdateMode
Type: string | character array
Values: 'Wrap' | 'Scroll'
Default: 'Wrap'

 Dashboard Scope

1-263

Min — Vertical axis minimum

-3 (default) | scalar

A finite, real, double, scalar value that sets the minimum of the vertical axis.

Tips

To maintain the minimum and maximum vertical axis limits set by Min and Max after the simulation
stops, clear Scale axes limits at stop.

Programmatic Use

To specify the Min parameter for the Dashboard Scope block programmatically, create a 1-by-2 vector
that contains the minimum y-axis value and maximum y-axis value, in that order.
Block Parameter: YLimits
Type: 1x2 vector
Default: [-3 3]

Max — Vertical axis maximum

3 (default) | scalar

A finite, real, double, scalar value that sets the maximum of the vertical axis.

Tips

To maintain the minimum and maximum vertical axis limits set by Min and Max after the simulation
stops, clear Scale axes limits at stop.

Programmatic Use

To specify the Max parameter for the Dashboard Scope block programmatically, create a 1-by-2 vector
that contains the minimum y-axis value and maximum y-axis value, in that order.
Block Parameter: YLimits
Type: 1x2 vector
Default: [-3 3]

Normalize y-axis limits — Option to normalize y-axis

off (default) | on

When enabled, the connected signal data is normalized to display on a y-axis range of [0,1].

Programmatic Use
Block Parameter: NormalizeYAxis
Type: string | character vector
Values: 'on' | 'off'
Default: 'off'

Scale axes limits at stop — Option to perform fit-to-view upon simulation stop

on (default) | off

When enabled, performs a fit-to-view operation on the data displayed in the plot when the simulation
stops.

1 Blocks

1-264

Programmatic Use
Block Parameter: ScaleAtStop
Type: string | character vector
Values: 'on' | 'off'
Default: 'on'

Show "Double-click to connect" message — Connection instructions visibility

on (default) | off

When enabled, shows instructional text if the block is not connected. When the block is not
connected, you can specify this parameter as off to hide the text.

Programmatic Use
Block Parameter: ShowInitialText
Type: string | character vector
Values: 'on' | 'off'
Default: 'on'

Display

Ticks — Axes tick positions

Outside (default) | Inside | None

Axes tick positions, specified as Outside, Inside, or None.

• Outside — Ticks are drawn on the outside of the x- and y-axes.
• Inside — Ticks are drawn on the inside of the x- and y-axes.
• None — No ticks are shown on the x- or y-axes.

Programmatic Use
Block Parameter: TicksPosition
Type: string | character vector
Values: 'Outside' | 'Inside' | 'None'
Default: 'Outside'

Tick Labels — Tick label visibility

All (default) | T-Axis | Y-Axis | None

Visibility of tick labels on the x- and y-axes.

• All — Ticks labels are shown on the x- and y-axes.
• T-Axis — Tick labels are shown on the x-axis only.
• Y-Axis — Tick labels are shown on the y-axis only.
• None — No tick labels are shown on the x- or y-axis.

Programmatic Use
Block Parameter: TickLabels
Type: string | character vector
Values: 'All' | 'T-Axis' | 'Y-Axis' | 'None'
Default: 'All'

 Dashboard Scope

1-265

Legend — Legend position

Top (default) | Right | Inside top | Inside right | Hide

You can position the legend at the top of the plot inside or outside the plot area or on the right of the
plot inside or outside the plot area. You can also hide the legend. The legend shows the color chosen
for each connected signal next to the signal name.

Programmatic Use
Block Parameter: LegendPosition
Type: string | character vector
Values: 'Top' | 'Right' | 'InsideTop' | 'InsideRight | 'Hide'
Default: 'Top'

Horizontal — Horizontal grid line visibility

on (default) | off

Visibility of horizontal grid lines.

• on — Horizontal grid lines are visible on Dashboard Scope.
• off — Horizontal grid lines are not shown on Dashboard Scope.

Programmatic Use
Block Parameter: Grid
Type: string | character vector
Values: 'All' | 'Horizontal' | 'Vertical' | 'None'
Default: 'All'

Vertical — Vertical grid line visibility

on (default) | off

Visibility of vertical grid lines.

• on — Vertical grid lines are visible on Dashboard Scope.
• off — Vertical grid lines are not shown on Dashboard Scope.

Programmatic Use
Block Parameter: Grid
Type: string | character vector
Values: 'All' | 'Horizontal' | 'Vertical' | 'None'
Default: 'All'

Border — Plot border visibility

on (default) | off

Plot border visibility.

• on — Plot border is shown on Dashboard Scope.
• off — Plot border is not shown on Dashboard Scope.

1 Blocks

1-266

Programmatic Use
Block Parameter: Border
Type: string | character vector
Values: 'on' | 'off'
Default: 'on'

Markers — Option to show signal data markers

off (default) | on

When enabled, data markers are shown for signals plotted on the Dashboard Scope block.

Programmatic Use
Block Parameter: Markers
Type: string | character vector
Values: 'on' | 'off'
Default: 'off'

Style

Foreground Color — Grid lines color
[r g b] vector

Select the color for the grid lines from a palette of standard colors or specify a custom color using
RGB values between 0 and 255.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: string | character vector
Values: [r g b] vector

Background Color — Plot area color
[r g b] vector

Select the color for the plot area from a palette of standard colors or specify a custom color using RGB
values between 0 and 255.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: BackgroundColor
Type: string | character vector
Values: [r g b] vector

Font Color — Ticks and tick labels color
[r g b] vector

Select the color for the ticks and tick labels from a palette of standard colors or specify a custom
color using RGB values between 0 and 255.

 Dashboard Scope

1-267

Programmatic Use

Specify the FontColor parameter for the block as a 1-by-3 [r g b] vector with values between 0
and 1.
Block Parameter: FontColor
Type: [r g b] vector

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1 Blocks

1-268

Data Store Memory
Define data store

Libraries:
Simulink / Signal Routing

Description
The Data Store Memory block defines and initializes a named shared data store, which is a memory
region usable by Data Store Read and Data Store Write blocks that specify the same data store name.

The location of the Data Store Memory block that defines a data store determines which Data Store
Read and Data Store Write blocks can access the data store:

• If the Data Store Memory block is in the top-level system, Data Store Read and Data Store Write
blocks anywhere in the model can access the data store.

• If the Data Store Memory block is in a subsystem, Data Store Read and Data Store Write blocks in
the same subsystem or in any subsystem below it in the model hierarchy can access the data
store.

Data Store Read or Data Store Write blocks cannot access a Data Store Memory block that is either
in a model that contains a Model block or in a referenced model.

Do not include a Data Store Memory block in a For Each subsystem.

Obtaining correct results from data stores requires ensuring that data store reads and writes occur in
the expected order. For details, see:

• “Order Data Store Access”
• “Data Store Diagnostics”
• “Log Data Stores”

You can use Simulink.Signal objects in addition to, or instead of, Data Store Memory blocks to
define data stores. A data store defined in the base workspace with a signal object is a global data
store. Global data stores are accessible to every model, including all referenced models. See “Data
Stores” for more information.

You can select a Data Store Read, Data Store Write, or Data Store Memory block to highlight blocks
related to it. To show a related block in an open diagram or new tab, pause on the ellipsis that

appears after selection. Then, select Related Blocks from the action bar. When multiple blocks
correspond to the selected block, a list of related blocks opens. You can filter the list of related blocks
by entering a search term in the text box. After you select a related block from the list, window focus
goes to the open diagram or new tab that shows the related block.

 Data Store Memory

1-269

Parameters
Main

Data store name — Name for the data store

A (default) | character vector | string

Specify a name for the data store you are defining with this block. Data Store Read and Data Store
Write blocks with the same name can read from, and write to, the data store initialized by this block.
The name can represent a Data Store Memory block or a signal object defined to be a data store.

Programmatic Use
Block Parameter: DataStoreName
Type: character vector
Values: 'A' | ...
Default: 'A'

Rename All — Rename this data store throughout the model
button

Rename this data store everywhere the Data Store Read and Data Store Write blocks use it in a
model.

Limitations

You cannot use Rename All to rename a data store if you:

• Use a Simulink.Signal object in a workspace to control the code generated for the data store
• Use a Simulink.Signal object instead of a Data Store Memory block to define the data store

You must instead rename the corresponding Simulink.Signal object from Model Explorer. For an
example, see “Rename Data Store Defined by Signal Object”.

Corresponding Data Store Read/Write blocks — Path to connected Data Store Read/Write blocks

block path

List all the Data Store Read and Data Store Write blocks that have the same data store name as the
current block, and that are in the current system or in any subsystem below it in the model hierarchy.
Clicking a block path displays and highlights that block in your model.

Signal Attributes

Initial value — Initial value of data store

0 (default) | scalar | vector | matrix | N-D array

Specify the initial value or values of the data store. The Minimum parameter specifies the minimum
value for this parameter, and the Maximum parameter specifies the maximum value.

If you specify a nonscalar value and set Dimensions to -1 (the default), the data store has the same
dimensions as the array. Data that you write to the data store (by using Data Store Write blocks) must
have these dimensions.

1 Blocks

1-270

If you set the Dimensions parameter to a value other than -1, the initial value dimensions must
match the dimensions that you specify, unless the initial value is a scalar or a MATLAB structure. If
you specify a scalar, each element of the data store uses the scalar as the initial value. Use this
technique to apply the same initial value (the scalar that you specify) to each element without
manually matching the dimensions of the initial value with the dimensions of the data store.

To use this block to initialize a nonvirtual bus signal, specify the initial value as a MATLAB structure
and set the model configuration parameter “Underspecified initialization detection” to Simplified.
For more information about initializing nonvirtual bus signals using structures, see “Specify Initial
Conditions for Bus Elements”.

Programmatic Use
Block Parameter: InitialValue
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '0'

Minimum — Minimum output value for range checking

[] (default) | scalar

Specify the minimum value that the block should output. The default value is [] (unspecified). This
number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the minimum value for bus
data on the block. Simulink ignores this setting. Instead, set the minimum values for bus elements of
the bus object specified as the data type. For information on the Minimum property of a bus element,
see Simulink.BusElement.

Simulink uses the minimum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”).
• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Maximum — Maximum output value for range checking

[] (default) | scalar

Specify the maximum value that the block should output. The default value is [] (unspecified). This
number must be a finite real double scalar value.

 Data Store Memory

1-271

Note If you specify a bus object as the data type for this block, do not set the maximum value for
bus data on the block. Simulink ignores this setting. Instead, set the maximum values for bus
elements of the bus object specified as the data type. For information on the Maximum property of a
bus element, see Simulink.BusElement.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”).
• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Data type — Output data type

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16,0) | fixdt(1,16,2^0,0) | string | Enum:
<class name> | Simulink.ImageType(480,640,3)

Specify the output data type. You can set it to:

• A rule that inherits a data type (for example, Inherit: auto).
• The name of a built-in data type (for example, single).
• The name of a data type object (for example, a Simulink.NumericType object).
• An expression that evaluates to a data type (for example, fixdt(1,16,0)). Do not specify a bus

object as the data type in an expression; use Bus: <object name> to specify a bus data type.
• If you have Computer Vision Toolbox™, use the constructor for the Simulink.ImageType object

and specify the properties to describe the image. By default, the data type uses the
Simulink.ImageType(480,640,3) expression that represents the rows, columns, and channels
of the image respectively.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'string' | 'Enum: <class name>' |
'Simulink.ImageType(480,640,3)'

1 Blocks

1-272

Default: 'Inherit: auto'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Dimensions (-1 to infer from Initial value) — Dimensions of data store

-1 (default) | scalar | vector | matrix

Dimensions of the data store. The default value, -1, enables you to set the dimensions of the data
store by using the Initial value parameter. However, in this case, you cannot use scalar expansion
with the initial value. You must specify the initial value by using an array that has the dimensions that
you want.

If you use a value other than -1, specify the same dimensions as the dimensions of the Initial value
parameter, unless you specify the initial value as a scalar (for scalar expansion) or a MATLAB
structure. If the data store represents an array of buses, and if you use a MATLAB structure for the
initial value, you can specify dimensions to initialize the array of buses with this structure.

Programmatic Use
Block Parameter: Dimensions
Type: character vector
Values: scalar | vector | matrix
Default: '-1'

Interpret vector parameters as 1-D — Interpret vectors as 1-D

on (default) | off

Specify that the data store interpret vector initial values as one-dimensional.

By default, MATLAB represents vector data as matrices, which have two dimensions. For example,
MATLAB represents the vector [1 2 3] as a 1-by-3 matrix.

When you select this parameter, the data store represents vector data by using only one dimension
instead of two. For example, if you specify an initial value of [1 2 3], the data store stores a one-
dimensional vector with three elements.

For more information, see “Determine the Output Dimensions of Source Blocks”.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector

 Data Store Memory

1-273

Values: 'off' | 'on'
Default: 'on'

Signal type — Complexity of data store values

auto (default) | real | complex

Specify the numeric type, real or complex, of the values in the data store.

Programmatic Use
Block Parameter: SignalType
Type: character vector
Values: 'auto' | 'real' | 'complex'
Default: 'auto'

Share across model instances — Allow Model blocks to read from the same data store

off (default) | on

In a single model reference hierarchy, when you use multiple Model blocks to refer to a model that
contains a Data Store Memory block, by default, each instance of the referenced model (each Model
block) reads from and writes to a separate copy of the data store. When you select Share across
model instances, instead of interacting with a separate copy, all of the instances read from and
write to the same data store.

When you set the model configuration parameter Code interface packaging to Reusable
function to generate reentrant code from a model (Simulink Coder), a data store with Share
across model instances selected appears in the code as a global symbol that the generated entry-
point functions access directly. For example, a global symbol is a global variable or a field of a global
structure variable. Therefore, each call that your code makes to the entry-point functions (each
instance of the model) shares the data.

For an example, see “Share Data Store Between Instances of a Reusable Algorithm” on page 13-348.
For more information, see “Share Data Among Referenced Model Instances”.

Programmatic Use
Block Parameter: ShareAcrossModelInstances
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data store name must resolve to Simulink signal object — Require data store name resolve to
Simulink signal object

off (default) | on

Specify that Simulink software, when compiling the model, searches the model and base workspace
for a Simulink.Signal object having the same name, as described in “Symbol Resolution”. If
Simulink does not find such an object, the compilation stops with an error. Otherwise, Simulink
compares the attributes of the signal object to the corresponding attributes of the Data Store Memory
block. If the block and the object attributes are inconsistent, Simulink halts model compilation and
displays an error.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject

1 Blocks

1-274

Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostics

Detect Read Before Write — Action when model attempts to read data before writing in current time
step

warning (default) | none | error

Select the diagnostic action to take if the model attempts to read data from a data store to which it
has not written data in this time step. See also the “Detect read before write” diagnostic in the Data
Store Memory block section of the Model Configuration Parameters > Diagnostics > Data
Validity pane.

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: ReadBeforeWriteMsg
Type: character vector
Values: 'none' | 'warning' | 'error'
Default: 'warning'

Detect Write After Read — Action when block attempts to write after reading in same time step

warning (default) | none | error

Select the diagnostic action to take if the model attempts to write data to the data store after
previously reading data from it in the current time step. See also the “Detect write after read”
diagnostic in the Data Store Memory block section of the Model Configuration Parameters >
Diagnostics > Data Validity pane.

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: WriteAfterReadMsg
Type: character vector
Values: 'none' | 'warning' | 'error'
Default: 'warning'

Detect Write After Write — Action when model writes twice in same time step

warning (default) | none | error

Select the diagnostic action to take if the model attempts to write data to the data store twice in
succession in the current time step. See also the “Detect write after write” diagnostic in the Data
Store Memory block section of the Model Configuration Parameters > Diagnostics > Data
Validity pane.

 Data Store Memory

1-275

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: WriteAfterWriteMsg
Type: character vector
Values: 'none' | 'warning' | 'error'
Default: 'warning'

Logging

Log data store data — Log data store data

off (default) | on

Select this option to save the values of this signal to the MATLAB workspace during simulation.

Programmatic Use
Block Parameter: DataLogging
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Logging name — Name associated with logged signal data

Use data store name (default) | Custom

Use this pair of controls, consisting of a list box and an edit field, to specify the name associated with
logged signal data.

Simulink uses the signal name as its logging name by default. To specify a custom logging name,
select Custom from the list box and enter the custom name in the adjacent edit field.

Programmatic Use
Block Parameter: DataLoggingNameMode
Type: character vector
Values: 'SignalName' | 'Custom'
Default: ''

Note If you set DataLoggingNameMode to Custom, you must specify the name associated with
logged signal data using the DataLoggingName parameter.

Block Parameter: DataLoggingName
Type: character vector
Values: character vector
Default: ''

Limit data points to last — Discard all but the last N data points

5000 | non-zero integer

1 Blocks

1-276

Discard all but the last N data points, where N is the number that you enter in the adjacent edit field.
For more information, see “Log Data Stores”.

Programmatic Use
Block Parameter: DataLoggingMaxPoints
Type: character vector
Values: nonzero integer
Default: '5000'

Decimation — Log every Nth data point

2 (default) | integer

Log every Nth data point, where N is the number that you enter in the adjacent edit field. For
example, suppose that your model uses a fixed-step solver with a step size of 0.1 s. If you select this
option and accept the default decimation value (2), Simulink records data points for this signal at
times 0.0, 0.2, 0.4, and so on. For more information, see “Log Data Stores”.

Programmatic Use
Block Parameter: DataLoggingLimitDataPoints
Type: character vector
Values: non-zero integer
Default: '2'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

To generate PLC code for a model that uses a Data Store Memory block, first define a
Simulink.Signal in the base workspace. Then in the Signal Attributes tab of the block
parameters, set the data store name to resolve to that of the Simulink.Signal object.

 Data Store Memory

1-277

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Store Read | Data Store Write

Topics
“Retrieve Data From Data Store Memory Blocks”
“Data Stores”
“Choose How to Store Global Data”
“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)
“Organize Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder)
“Access Data Stores with Simulink Blocks”
“Log Data Stores”

1 Blocks

1-278

Data Store Read
Read data from data store

Libraries:
Simulink / Signal Routing

Description
The Data Store Read block copies data from the named data store or a selected portion thereof to its
output. More than one Data Store Read block can read from the same data store.

The data store from which the data is read is determined by the location of the Data Store Memory
block or signal object that defines the data store. For more information, see “Data Stores” and Data
Store Memory.

Obtaining correct results from data stores requires ensuring that data store reads and writes occur in
the expected order. See “Order Data Store Access” and “Data Store Diagnostics” for details.

You can select a Data Store Read, Data Store Write, or Data Store Memory block to highlight blocks
related to it. To show a related block in an open diagram or new tab, pause on the ellipsis that

appears after selection. Then, select Related Blocks from the action bar. When multiple blocks
correspond to the selected block, a list of related blocks opens. You can filter the list of related blocks
by entering a search term in the text box. After you select a related block from the list, window focus
goes to the open diagram or new tab that shows the related block.

Ports
Input

IdxN — Nth index signal
scalar | vector

External port specifying an index for the selection of the corresponding data store subelements.

Dependencies

To enable an external index port, on the Element Selection tab, select Enable indexing. Then, in
the Nth row of the Index Option table, set Index Option to Index vector (port) or Starting
index (port).
Data Types: int8 | int16 | int32 | uint8 | uint16

Output

Port_1 — Values from specified data store
scalar | vector | matrix | N-D array

 Data Store Read

1-279

Values from the specified data store, output with the same data type and number of dimensions as in
the data store. The block supports both real and complex signals. You can choose whether to output
the entire data store or only selected elements.

You can use arrays of buses with a Data Store Read block. For details about defining and using an
array of buses, see “Group Nonvirtual Buses in Arrays of Buses”.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
Parameters

Data store name — Name of data store from which block reads

A (default) | name of data store

Specify the name of the data store from which this block reads data. The adjacent list provides the
names of Data Store Memory blocks that exist at the same level in the model as the Data Store Read
block or at higher levels. The list also includes all Simulink.Signal objects in the base and model
workspaces. To change the name, select a name from the list or enter the name directly in the edit
field.

When compiling a model containing this block, Simulink searches the model upwards from the level
of the block for a Data Store Memory block having the specified data store name. If Simulink does not
find such a block, it searches the model workspace and the MATLAB workspace for a
Simulink.Signal object having the same name. If Simulink finds the signal object, it creates a
hidden Data Store Memory block at the root level of the model with the properties specified by the
signal object and an initial value set to an array of zeros. The dimensions of that array are inherited
from the Dimensions property of the signal object.

If Simulink finds neither the Data Store Memory block nor the signal object, it halts the compilation
and displays an error. See “Symbol Resolution” for more information about the search path.

Programmatic Use
Block Parameter: DataStoreName
Type: character vector
Values: data store name
Default: 'A'

Data store memory block — Data Store Memory block name
block path

This parameter is read-only.

This field lists the Data Store Memory block that initialized the store from which this block reads.

Corresponding Data Store Write blocks — List of corresponding Data Store Write blocks
block path

This parameter is read-only.

1 Blocks

1-280

This field lists the path to all Data Store Write blocks with the same data store name as this block that
are in the same (sub)system or in any subsystem below it in the model hierarchy. Click any entry in
this list to highlight the corresponding block in your model.

Sample time — Sample time

-1 (default) | scalar | vector

The sample time, which controls when the block reads from the data store. A value of -1 indicates
that the sample time is inherited. See “Specify Sample Time” for more information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

Element Selection

Elements in the array (Signals in the bus) — Elements in associated data store

character vector (no default)

List of elements in the associated data store. For data stores containing arrays, you can read the
whole data store, or you can specify one or more elements of the data store. For data stores with a
bus data type, you can expand the tree to view and select the bus elements. The list displays the
maximum dimensions for each element in parentheses.

If Enable indexing is not selected, select an element and use one of the following approaches:

• Click Select>> to display that element and all its subelements in the Selected element(s) list.
• Use the Specify element(s) to select edit box to specify the subelements that you want to select

for reading. Then click Select>>.

To select multiple elements, repeat the above procedure for each element.

Alternatively, you can select Enable indexing, then select a single element and specify the
subelements dynamically using the Index Option parameter.

To refresh the display and reflect modifications to the array or bus used in the data store, click
Refresh.

Dependencies

The prompt for this section (Elements in the array or Signals in the bus) depends on the type of
data in the data store.

Programmatic Use
Block Parameter: DataStoreElements
Type: character vector
Values: pound-delimited list of elements (See “Specification using the command line”.)
Default: ''

Specify element(s) to select — MATLAB expression defining element to select
character vector (no default)

 Data Store Read

1-281

Enter a MATLAB expression to define a specific element that you want to read, then click Select>>
to add the element to the Selected elements(s) table. Repeat to select additional elements.

For example, for a data store named DSM that has maximum dimensions of [3,5], you could enter
expressions such as DSM(2,4) or DSM([1 3],2) in the edit box. See “Accessing Specific Bus and
Matrix Elements”.

To apply the element selection, click OK or Apply.

Dependencies

The Specify element(s) to select edit box appears only if Enable indexing is not selected.

Programmatic Use
Block Parameter: DataStoreElements
Type: character vector
Values: pound-delimited list of elements (See “Specification using the command line”.)
Default: ''

Selected element(s) — List of selected elements

character vector (no default)

Elements that you select from the data store. The Data Store Read block icon displays an output port
for each element that you specify.

To change the order of bus or matrix elements in the list, select the element in the list and click Up or
Down. Changing the order of the elements in the list changes the order of the ports. To remove an
element, click Remove.

Dependencies

The Selected element(s) table appears only if Enable indexing is not selected.

Programmatic Use
Block Parameter: DataStoreElements
Type: character vector
Values: pound-delimited list of elements (See “Specification using the command line”.)
Default: ''

Enable indexing — Enable indexing to specify subelements of data store element to read

'off' (default) | 'on'

Select this parameter to enable indexing similar to that used by the Selector block, whereby you can
dynamically specify indices of subelements to read by using one or more index input ports, as well as
specifying indices by using the block dialog. A Data Store Read block can read from only a single
element of a data store (that is, a single signal in a bus) when this parameter is selected. To read from
multiple elements of a data store using dynamic indexing, use multiple Data Store Read blocks.

Clear this parameter to disable Selector block-style indexing. You can select multiple data store
elements to read, but you can specify which subelements to read only by using the block dialog.

Note Do not select Enable indexing if the associated data store contains only a single, scalar
element.

1 Blocks

1-282

Programmatic Use
Block Parameter: EnableIndexing
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Number of dimensions — Number of dimensions of data store element

1 (default) | positive integer

Number of dimensions of selected data store element. You must explicitly indicate this number.

Dependencies

This parameter is enabled only if Enable indexing is selected.

Programmatic Use
Block Parameter: NumberOfDimensions
Type: character vector
Values: positive integer
Default: '1'

Index mode — Index mode

One-based (default) | Zero-based

Select the indexing mode. If One-based is selected, an index of 1 specifies the first element of the
input vector. If Zero-based is selected, an index of 0 specifies the first element of the input vector.

Dependencies

This parameter is enabled only if Enable indexing is selected.

Programmatic Use
Parameter: IndexMode
Type: character vector
Values: 'Zero-based' | 'One-based'
Default: 'One-based'

Index Option — Index method for subelements

Index vector (dialog) (default) | Select all | Index vector (port) | Starting index
(dialog) | Starting index (port)

Define, by dimension, how the subelements of the selected data store element are to be indexed.
From the list, select:

Menu Item Action
Select all All subelements are read.
Index vector (dialog) Enables the Index column. Enter a vector

containing the indices of subelements to be read.
Index vector (port) The relevant index port defines the indices of

subelements to be read.

 Data Store Read

1-283

Menu Item Action
Starting index (dialog) Enables the Index and Output Size columns.

Enter the starting index and size of the range of
subelements to be read.

Starting index (port) Enables the Output Size column. The relevant
index port defines the starting index of the range
of elements to be read. Enter the size of the
range.

The Index and Output Size columns are displayed as relevant.

Dependencies

This parameter is enabled only if Enable indexing is selected.

Programmatic Use
Parameter: IndexOptionArray
Type: character vector
Values: 'Select all' | 'Index vector (dialog)' | 'Index vector (port)' | 'Starting
index (dialog)' | 'Starting index (port)'
Default: 'Index vector (dialog)'

Index — Indices or starting index of subelements

1 (default) | integer | vector of integers

If the Index Option is Index vector (dialog), enter a vector containing the indices of each
subelement to read.

If the Index Option is Starting index (dialog), enter the starting index of the range of
subelements to read.

Dependencies

This parameter is enabled only if Enable indexing is selected and the Index Option for the
dimension is Index vector (dialog) or Starting index (dialog).

Programmatic Use
Parameter: IndexParamArray
Type: character vector
Values: cell array
Default: '{ }'

Output Size — Size of range of subelements to read

1 (default) | integer

If the Index Option is Starting index (dialog) or Starting index (port), enter the size of
the range of subelements to read.

Dependencies

This parameter is enabled only if Enable indexing is selected and the Index Option for the
dimension is Starting index (dialog) or Starting index (port).

1 Blocks

1-284

Programmatic Use
Block Parameter: OutputSizeArray
Type: character vector
Values: cell array
Default: '{ }'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Store Memory | Data Store Write

Topics
“Data Stores”
“Rename Data Stores”
“Order Data Store Access”
“Access Data Stores with Simulink Blocks”
“Data Store Diagnostics”

 Data Store Read

1-285

Data Store Write
Write data to data store

Libraries:
Simulink / Signal Routing

Description
The Data Store Write block copies the value at its input to the named data store. Each write operation
performed by a Data Store Write block writes over the data store or a selected portion thereof and
replaces the previous contents.

The data store to which this block writes is determined by the location of the Data Store Memory
block or signal object that defines the data store. For more information, see “Data Stores” and Data
Store Memory. The size of the data store is set by the signal object or the Data Store Memory block
that defines and initializes the data store. Each Data Store Write block that writes to that data store
can write up to the amount of data in the data store.

More than one Data Store Write block can write to the same data store. However, if two Data Store
Write blocks attempt to write to the same data store during the same simulation step, results are
unpredictable.

Obtaining correct results from data stores requires ensuring that data store reads and writes occur in
the expected order. For details, see “Order Data Store Access” and “Data Store Diagnostics”.

You can log the values of a local or global data store data variable for all the steps in a simulation. For
details, see “Log Data Stores”.

You can select a Data Store Read, Data Store Write, or Data Store Memory block to highlight blocks
related to it. To show a related block in an open diagram or new tab, pause on the ellipsis that

appears after selection. Then, select Related Blocks from the action bar. When multiple blocks
correspond to the selected block, a list of related blocks opens. You can filter the list of related blocks
by entering a search term in the text box. After you select a related block from the list, window focus
goes to the open diagram or new tab that shows the related block.

Ports
Input

Port_1 — Values to write to data store
scalar | vector | matrix | N-D array

Values to write to the specified data store. The Data Store Write block accepts a real or complex
signal.

1 Blocks

1-286

You can use an array of buses with a Data Store Write block. For details about defining and using an
array of buses, see “Group Nonvirtual Buses in Arrays of Buses”.

To assign a subset of the bus or matrix elements to the associated data store, use the Element
Assignment pane. The Data Store Write block icon reflects the elements that you specify. For details,
see “Accessing Specific Bus and Matrix Elements”.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

IdxN — Nth index signal
scalar | vector

External port specifying an index for the assignment of the corresponding data store subelements.
Dependencies

To enable an external index port, on the Element Assignment tab, select Enable indexing. Then, in
the Nth row of the Index Option table, set Index Option to Index vector (port) or Starting
index (port).
Data Types: int8 | int16 | int32 | uint8 | uint16

Parameters
Parameters

Data store name — Name of data store to which block writes

A (default) | name of data store

Specify the name of the data store to which this block writes data. The adjacent list provides the
names of Data Store Memory blocks that exist at the same level in the model as the Data Store Write
block or at higher levels. The list also includes all Simulink.Signal objects in the base and model
workspaces. To change the name, select a name from the list or enter the name directly in the edit
field.

When compiling a model containing this block, Simulink searches the model upwards from the level
of the block for a Data Store Memory block having the specified data store name. If Simulink does not
find such a block, it searches the model workspace and the MATLAB workspace for a
Simulink.Signal object having the same name. If Simulink finds a signal object, it creates a hidden
Data Store Memory block at the root level of the model with the properties specified by the signal
object and an initial value set to an array of zeros. The dimensions of that array are inherited from
the Dimensions property of the signal object.

If Simulink finds neither the Data Store Memory block nor the signal object, it halts the compilation
and displays an error. See “Symbol Resolution” for more information about the search path.
Programmatic Use
Block Parameter: DataStoreName
Type: character vector
Values: data store name
Default: 'A'

Data store memory block — Data Store Memory block name
block path

 Data Store Write

1-287

This parameter is read-only.

This field lists the Data Store Memory block that initialized the store to which this block writes.

Corresponding Data Store Read blocks — List of corresponding Data Store Read blocks
block path

This parameter is read-only.

This field lists the path to all Data Store Read blocks with the same data store name as this block that
are in the same (sub)system or in any subsystem below it in the model hierarchy. Click any entry in
this list to highlight the corresponding block in your model.

Sample time — Sample time

-1 (default) | scalar | vector

The sample time, which controls when the block writes to the data store. A value of -1 indicates that
the sample time is inherited. See “Specify Sample Time” for more information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

Element Assignment

Elements in the array (Signals in the bus) — Elements in associated data store

character vector (no default)

List of elements in the associated data store. For data stores with arrays, you can write the whole
data store, or you can assign one or more elements to the whole data store. For data stores with a bus
data type, you can expand the tree to view and select the bus elements. The list displays the
maximum dimensions for each element in parentheses.

If Enable indexing is not selected, select an element and use one of the following approaches:

• Click Select>> to display that element and all its subelements in the Selected element(s) list.
• Use the Specify element(s) to assign edit box to specify the subelements that you want to select

for writing. Then click Select>>.

To select multiple elements, repeat the above procedure for each element.

Alternatively, you can select Enable indexing, then select a single element and specify the
subelements dynamically using the Index Option parameter.

To refresh the display and reflect modifications to the array or bus used in the data store, click
Refresh.

Dependencies

The prompt for this section (Elements in the array or Signals in the bus) depends on the type of
data in the data store.

1 Blocks

1-288

Programmatic Use
Block Parameter: DataStoreElements
Type: character vector
Values: pound-delimited list of elements (See “Specification using the command line”.)
Default: ''

Specify element(s) to assign — MATLAB expression defining the elements to assign
character vector (no default)

Enter a MATLAB expression to define the specific element that you want to write, then click
Select>> to add the element to the Assigned element(s) table. Repeat to select additional
elements.

For example, for a data store named DSM that has maximum dimensions of [3,5], you could enter
expressions such as DSM(2,4) or DSM([1 3],2) in the edit box. See “Accessing Specific Bus and
Matrix Elements”.

To apply the element selection, click OK or Apply.

Dependencies

The Specify element(s) to assign edit box appears only if Enable indexing is not selected.

Programmatic Use
Block Parameter: DataStoreElements
Type: character vector
Values: pound-delimited list of elements (See “Specification using the command line”.)
Default: ''

Assigned element(s) — List of selected elements

character vector (no default)

Elements that you select for assignment. The Data Store Write block icon displays an input port for
each element that you specify.

To change the order of bus or matrix elements in the list, select the element in the list and click Up or
Down. Changing the order of the elements in the list changes the order of the ports. To remove an
element, click Remove.

Dependencies

The Assigned element(s) table appears only if Enable indexing is not selected.

Programmatic Use
Block Parameter: DataStoreElements
Type: character vector
Values: pound-delimited list of elements (See “Specification using the command line”.)
Default: ''

Enable indexing — Enable indexing to specify subelements of data store element to write

'off' (default) | 'on'

Select this parameter to enable indexing similar to that used by the Assignment block, whereby you
can dynamically specify indices of subelements to write by using one or more index input ports, as

 Data Store Write

1-289

well as specifying indices by using the block dialog. A Data Store Write block can write to only a
single element of a data store (that is, a single signal in a bus) when this parameter is selected. To
write to multiple elements of a data store using dynamic indexing, use multiple Data Store Write
blocks.

Clear this parameter to disable Assignment block-style indexing. You can select multiple data store
elements to write, but you can specify which subelements to write only by using the block dialog.

Note Do not select Enable indexing if the associated data store contains only a single, scalar
element.

Programmatic Use
Block Parameter: EnableIndexing
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Number of dimensions — Number of dimensions of data store element

1 (default) | positive integer

Number of dimensions of selected data store element. You must explicitly indicate this number.

Dependencies

This parameter is enabled only if Enable indexing is selected.

Programmatic Use
Block Parameter: NumberOfDimensions
Type: character vector
Values: positive integer
Default: '1'

Index mode — Index mode

One-based (default) | Zero-based

Select the indexing mode. If One-based is selected, an index of 1 specifies the first element of the
input vector. If Zero-based is selected, an index of 0 specifies the first element of the input vector.

Dependencies

This parameter is enabled only if Enable indexing is selected.

Programmatic Use
Parameter: IndexMode
Type: character vector
Values: 'Zero-based' | 'One-based'
Default: 'One-based'

Index Option — Index method for subelements

Index vector (dialog) (default) | Select all | Index vector (port) | Starting index
(dialog) | Starting index (port)

1 Blocks

1-290

Define, by dimension, how the subelements of the selected data store element are to be indexed.
From the list, select:

Menu Item Action
Select all Disables the Index column. All subelements are

assigned.
Index vector (dialog) Enables the Index column. Enter a vector

containing the indices of subelements to be
assigned values.

Index vector (port) Disables the Index column. The relevant index
port defines the indices of subelements to be
assigned values.

Starting index (dialog) Enables the Index column. Enter the starting
index of the range of subelements to be assigned
values. The size of the range is inherited from the
size of relevant dimension of the input data
signal.

Starting index (port) Disables the Index column. The relevant index
port defines the starting index of the range of
elements to be assigned values. The size of the
range is inherited from the size of relevant
dimension of the input data signal.

The Index column is displayed as relevant.

Dependencies

This parameter is enabled only if Enable indexing is selected.

Programmatic Use
Parameter: IndexOptionArray
Type: character vector
Values: 'Select all' | 'Index vector (dialog)' | 'Index vector (port)' | 'Starting
index (dialog)' | 'Starting index (port)'
Default: 'Index vector (dialog)'

Index — Indices or starting index of subelements

1 (default) | integer | vector of integers

If the Index Option is Index vector (dialog), enter a vector containing the indices of each
subelement to write.

If the Index Option is Starting index (dialog), enter the starting index of the range of
subelements to write.

Dependencies

This parameter is enabled only if Enable indexing is selected and the Index Option for the
dimension is Index vector (dialog) or Starting index (dialog).

Programmatic Use
Parameter: IndexParamArray

 Data Store Write

1-291

Type: character vector
Values: cell array
Default: '{ }'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Store Memory | Data Store Read

Topics
“Data Stores”
“Rename Data Stores”
“Order Data Store Access”
“Access Data Stores with Simulink Blocks”
“Log Data Stores”
“Data Store Diagnostics”

1 Blocks

1-292

Data Type Conversion
Convert input signal to specified data type

Libraries:
Simulink / Commonly Used Blocks
Simulink / Signal Attributes
HDL Coder / Commonly Used Blocks
HDL Coder / HDL Floating Point Operations
HDL Coder / Signal Attributes

Description
The Data Type Conversion block converts an input signal of any Simulink data type to the data type
that you specify.

Note To control the output data type by specifying block parameters, or to inherit a data type from a
downstream block, use the Data Type Conversion block. To inherit a data type from a different signal
in the model, use the Data Type Conversion Inherited block.

Convert Fixed-Point Signals

When you convert between fixed-point data types, the Input and output to have equal parameter
controls block behavior. This parameter does not change the behavior of the block when:

• The input and output do not have a fixed-point data type.
• The input or output has a fixed-point data type with trivial scaling.

For more information about fixed-point numbers, see “Fixed-Point Numbers in Simulink” (Fixed-Point
Designer).

To convert a signal from one data type to another by attempting to preserve the real-world value of
the input signal, select Real World Value (RWV), the default setting. The block accounts for the
limits imposed by the scaling of the input and output and attempts to generate an output of equal
real-world value.

To change the real-world value of the input signal by performing a scaling reinterpretation of the
stored integer value, select Stored Integer (SI). Within the limits of the specified data types, the
block attempts to preserve the stored integer value of the signal during conversion. A best practice is
to specify input and output data types using the same word length and signedness. Doing so ensures
that the block changes only the scaling of the signal. Specifying a different signedness or word length
for the input and output could produce unexpected results such as range loss or unexpected sign
extensions. For an example, see “Convert Data Types in Simulink Models” on page 12-125.

If you select Stored Integer (SI), the block does not perform a lower-level bit reinterpretation of
a floating-point input signal. For example, if the input is single and has value 5, the bits that store
the input in memory are given in hexadecimal by the following command.

num2hex(single(5))

 Data Type Conversion

1-293

40a00000

However, the Data Type Conversion block does not treat the stored integer value as 40a00000, but
instead as the real-world value, 5. After conversion, the stored integer value of the output is 5.

Cast Enumerated Signals

Use a Data Type Conversion block to cast enumerated signals as follows:

1 To cast a signal of enumerated type to a signal of any numeric type.

The underlying integers of all enumerated values input to the Data Type Conversion block must
be within the range of the numeric type. Otherwise, an error occurs during simulation.

2 To cast a signal of any integer type to a signal of enumerated type.

The value input to the Data Type Conversion block must match the underlying value of an
enumerated value. Otherwise, an error occurs during simulation.

You can enable the Saturate on integer overflow parameter so that Simulink uses the default
value of the enumerated type when the value input to the block does not match the underlying
value of an enumerated value. See “Type Casting for Enumerations” (Simulink Coder).

You cannot use a Data Type Conversion block in these cases:

• To cast a noninteger numeric signal to an enumerated signal.
• To cast a complex signal to an enumerated signal, regardless of the data types of the real and

imaginary parts of the complex signal.

See “Simulink Enumerations” for information on working with enumerated types.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array. The input can be any real- or complex-
valued signal. If the input is real, the output is real. If the input is complex, the output is complex.
The block converts the input signal to the Output data type you specify.

When you are converting fixed-point data types, use the Input and output to have equal parameter
to determine whether the conversion happens based on the Real World Value (RWV) or Stored
Integer (SI) value of the signal. For more information, see “Convert Fixed-Point Signals” on page
1-293.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Output signal
scalar | vector | matrix | N-D array

Output signal, converted to the data type you specify, with the same dimensions as the input signal.

1 Blocks

1-294

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Parameters
Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

 Data Type Conversion

1-295

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Output data type

Inherit: Inherit via back propagation (default) | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'double' | 'single' | 'half' |
'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' |
'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum: <class name>''<data
type expression>'
Default: 'Inherit: Inherit via back propagation'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Input and output to have equal — Constraint for converting fixed-point data types

Real World Value (RWV) (default) | Stored Integer (SI)

Specify which type of input and output must be equal, in the context of fixed-point data
representation.

• Real World Value (RWV) — Specifies the goal of making the Real World Value (RWV) of
the input equal to the Real World Value (RWV) of the output.

• Stored Integer (SI) — Specifies the goal of making the Stored Integer (SI) value of the
input equal to the Stored Integer (SI) value of the output.

1 Blocks

1-296

Programmatic Use
Block Parameter: ConvertRealWorld
Type: character vector
Values: 'Real World Value (RWV)' | 'Stored Integer (SI)'
Default: 'Real World Value (RWV)'

Integer rounding mode — Specify the rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the MATLAB
ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the MATLAB
floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate rounding
code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Default: 'Floor'
See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

 Data Type Conversion

1-297

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type can

represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

• Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

• In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Mode — Select data type mode

Inherit (default) | Built in | Fixed Point

Select the category of data to specify.

• Inherit — Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right where you can select the inheritance mode.

1 Blocks

1-298

• Built in — Built-in data types. Selecting Built in enables a second menu/text box to the right
where you can select a built-in data type.

• Fixed point — Fixed-point data types. Selecting Fixed point enables additional parameters
that you can use to specify a fixed-point data type.

• Expression — Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, click the Show data type assistant button.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies

To enable this parameter, set Mode to Built in or Fixed point.

Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Specify signed or unsigned

Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

• Signed, specifies the fixed-point data as signed.
• Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, set the Mode to Fixed point.

 Data Type Conversion

1-299

Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type

0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Binary point.

Slope — Specify slope for the fixed-point data type

2^0 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

1 Blocks

1-300

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Note If you use double data types in your model, use this block for conversion between double and
single data types. You cannot use the block to convert between double and fixed-point data types.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

 Data Type Conversion

1-301

General
OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Note With the HDL Code Advisor, you can replace Data Type Conversion blocks that use the Stored
Integer (SI) mode and convert between floating-point and fixed-point data types with Float
Typecast blocks.

Native Floating Point
LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min,

Zero, or Custom for the floating-point operator. The default is inherit.
See also “LatencyStrategy” (HDL Coder).

NFPCustomLatency To specify a value, set LatencyStrategy to Custom. HDL Coder adds
latency equal to the value that you specify for the NFPCustomLatency
setting. See also “NFPCustomLatency” (HDL Coder).

Enumeration Data Support

This block supports code generation for enumerated signals. Use this block to cast a signal of an
enumerated type to any integer type or to cast a signal of any integer type to an enumerated type.

Complex Data Support

This block supports code generation for complex signals.

Restrictions

If you configure a Data Type Conversion block for double to fixed-point conversion or fixed-point to
double conversion, a warning is displayed during code generation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Type Conversion Inherited | Data Type Propagation | Data Type Scaling Strip

Topics
“Control Data Types of Signals”
“About Data Types in Simulink”
“Simulink Enumerations”
“Fixed Point”

1 Blocks

1-302

Data Type Conversion Inherited
Convert from one data type to another using inherited data type and scaling

Libraries:
Simulink / Signal Attributes

Description
The Data Type Conversion Inherited block converts one input to the data type and scaling of the
other input. The first input is used as the reference signal. The second input, u, is converted to the
reference type by inheriting the data type and scaling information. (For a description of the port
order for various block orientations, see “Identify Port Location on Rotated or Flipped Block”.)

Inheriting the data type and scaling provides these advantages:

• It makes reusing existing models easier.
• It allows you to create new fixed-point models with less effort since you can avoid the detail of

specifying the associated parameters.

Ports
Input

Port_1 — Reference signal
scalar | vector | matrix | N-D array

Reference signal, defining the data type used to convert input signal u.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

u — Input signal to convert
scalar | vector | matrix | N-D array

Input signal to convert to the reference data type, specified as a scalar, vector, matrix, or N-D array.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

y — Output signal
scalar | vector | matrix | N-D array

Output is the input signal u, converted to the reference data type.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

 Data Type Conversion Inherited

1-303

Parameters
Input and Output to have equal — Constraint for converting fixed-point data types

Real World Value (RWV) (default) | Stored Integer (SI)

Specify which type of input and output must be equal, in the context of fixed-point data
representation.

• Real World Value (RWV) — Specifies the goal of making the Real World Value (RWV) of
the input equal to the Real World Value (RWV) of the output.

• Stored Integer (SI) — Specifies the goal of making the Stored Integer (SI) value of the
input equal to the Stored Integer (SI) value of the output.

Programmatic Use
Block Parameter: ConvertRealWorld
Type: character vector
Values: 'Real World Value (RWV)' | 'Stored Integer (SI)'
Default: 'Real World Value (RWV)'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action

off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

1 Blocks

1-304

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Type Conversion | Data Type Propagation

Topics
“Control Data Types of Signals”
“About Data Types in Simulink”
“Fixed Point”

 Data Type Conversion Inherited

1-305

Data Type Duplicate
Force all inputs to same data type

Libraries:
Simulink / Signal Attributes
HDL Coder / Signal Attributes

Description
The Data Type Duplicate block forces all inputs to have the same data type. Other attributes of input
signals, such as dimension, complexity, and sample time, are independent.

You can use the Data Type Duplicate block to check for consistency of data types among blocks. If all
signals do not have the same data type, the block returns an error message.

The Data Type Duplicate block is typically used such that one signal to the block controls the data
type for all other blocks. The other blocks are set to inherit their data types via backpropagation.

The block can also be useful in a user created library. These library blocks can be placed in any
model, and the data type for all library blocks are configured according to the usage in the model. To
create a library block with more complex data type rules than duplication, use the Data Type
Propagation block.

Ports
Input

Port_1 — First input signal
scalar | vector | matrix | N-D array

First input signal, specified as a scalar, vector, matrix, or N-D array. If all signals do not have the
same data type, the block returns an error message.
Data Types: single | double | half | int8 | int16 | int32 | uint8 | uint16 | uint32 | string |
Boolean | fixed point | enumerated

Port_N — Nth input signal
scalar | vector | matrix | N-D array

Nth input signal, specified as a scalar, vector, matrix, or N-D array. If all signals do not have the same
data type, the block returns an error message.
Data Types: single | double | half | int8 | int16 | int32 | uint8 | uint16 | uint32 | string |
Boolean | fixed point | enumerated

Parameters
Number of input ports — Number of block inputs

2 (default) | real-valued positive integer

1 Blocks

1-306

Specify the number of inputs to this block as a real-valued positive integer.
Programmatic Use
Block Parameter: NumInputPorts
Type: character vector
Values: real-valued positive integer
Default: '2'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
HDL Architecture

This block can be used to force inputs to have same data type in subsystems that generate code, but
is not included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Type Conversion | Data Type Propagation

Topics
“Control Data Types of Signals”

 Data Type Duplicate

1-307

“About Data Types in Simulink”
“Fixed Point”

1 Blocks

1-308

Data Type Propagation
Set data type and scaling of propagated signal based on information from reference signals

Libraries:
Simulink / Signal Attributes
HDL Coder / Signal Attributes

Description
The Data Type Propagation block allows you to control the data type and scaling of signals in your
model. You can use this block along with fixed-point blocks that have their Output data type
parameter configured to Inherit: Inherit via back propagation.

The block has three inputs: Ref1 and Ref2 are the reference inputs, while the Prop input back-
propagates the data type and scaling information gathered from the reference inputs. This
information is then passed on to other fixed-point blocks.

The block provides many choices for propagating data type and scaling information. For example, you
can use:

• The number of bits from the Ref1 reference signal or the number of bits from widest reference
signal

• The range from the Ref2 reference signal or the range of the reference signal with the greatest
range

• A bias of zero, regardless of the biases used by the reference signals
• The precision of the reference signal with the least precision

You specify how data type information is propagated using the Propagated data type parameter:

• If you select Specify via dialog, then you manually specify the data type via the Propagated
data type edit field.

• If you select Inherit via propagation rule, then you must use the parameters described in
“Parameters” on page 1-311.

You specify how scaling information is propagated using the Propagated scaling parameter:

• If you select Specify via dialog, then you manually specify the scaling via the Propagated
scaling edit field.

• If you select Inherit via propagation rule, then you must use the parameters described in
“Parameters” on page 1-311.

After you use the information from the reference signals, you can apply a second level of adjustments
to the data type and scaling. To do so, use individual multiplicative and additive adjustments. This
flexibility has various uses. For example, if you are targeting a DSP, then you can configure the block
so that the number of bits associated with a multiply and accumulate (MAC) operation is twice as
wide as the input signal, and has a specific number of guard bits added to it.

 Data Type Propagation

1-309

The Data Type Propagation block also provides a mechanism to force the computed number of bits to
a useful value. For example, if you are targeting a 16-bit micro, then the target C compiler is likely to
support sizes of only 8 bits, 16 bits, and 32 bits. The block forces these three choices to be used. For
example, suppose that the block computes a data type size of 24 bits. Since 24 bits is not directly
usable by the target chip, the signal is forced up to 32 bits, which is natively supported.

There is also a method for dealing with floating-point reference signals. This method makes it easier
to create designs that are easily retargeted between fixed-point chips and floating-point chips.

The Data Type Propagation block allows you to set up libraries of useful subsystems that are properly
configured based on the connected signals. Without this data type propagation process, subsystems
from a library are unlikely to work as desired with most integer or fixed-point signals. Manual
intervention would be required to configure the data type and scaling. In many situations, this block
can eliminate the manual intervention.

Precedence Rules

The precedence of the dialog box parameters decreases from top to bottom. Also:

• Double-precision reference inputs have precedence over all other data types.
• Single-precision reference inputs have precedence over integer and fixed-point data types.
• Multiplicative adjustments are carried out before additive adjustments.
• The number of bits is determined before the precision or positive range is inherited from the

reference inputs.
• PosRange is one bit higher than the exact maximum positive range of the signal.
• The computed number-of-bits are promoted to the smallest allowable value that is greater than or

equal to the computation. If none exists, then the block returns an error.

Ports
Input

Ref1 — First reference signal
scalar | vector | matrix | N-D array

First reference signal, from which to gather data type and scaling information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Ref2 — Second reference signal
scalar | vector | matrix | N-D array

Second reference signal from which to gather data type and scaling information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Prop — Propagated data type and scaling
data type and scaling

Data type and scaling information, back-propagated to the model. After the block gathers data type
and scaling information from the reference signals, you can apply a second level of adjustments to the

1 Blocks

1-310

data type and scaling. To do so, specify individual multiplicative and additive adjustments in the block
dialog box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Propagated Type

1. Propagated data type — Mode of specifying propagated data type
Inherit via propagation rule (default) | Specify via dialog

Specify whether to propagate the data type via the dialog box, or inherit the data type from the
reference signals.

Dependencies

Setting this parameter to Specify via dialog enables the 1.1. Propagated data type (e.g.
fixdt(1,16), fixdt('single')).
Programmatic Use
Block Parameter: PropDataTypeMode
Type: character vector
Values: 'Specify via dialog' | 'Inherit via propagation rule'
Default: 'Inherit via propagation rule'

1.1. Propagated data type (e.g. fixdt(1,16), fixdt('single')) — Propagated data type
fixdt(1,16) (default) | data type string

Specify the data type to propagate.

Dependencies

To enable this parameter, set 1. Propagated data type to Specify via dialog.

Programmatic Use
Block Parameter: PropDataTypeMode
Type: character vector
Values: 'Specify via dialog' | 'Inherit via propagation rule'
Default: 'Inherit via propagation rule'

1.1 If any reference input is double, output is — Output data type when a reference input is
double
double (default) | single

Specify the output data type as single or double. This parameter makes it easier to create designs
that are easily retargeted between fixed-point chips and floating-point chips.

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

Programmatic Use
Block Parameter: IfRefDouble
Type: character vector

 Data Type Propagation

1-311

Values: 'double' | 'single'
Default: 'double'

1.2 If any reference input is single, output is — Output data type when a reference input is single
single (default) | double

Specify the output data type as single or double. This parameter makes it easier to create designs
that are easily retargeted between fixed-point chips and floating-point chips.

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

Programmatic Use
Block Parameter: IfRefSingle
Type: character vector
Values: 'double' | 'single'
Default: 'single'

1.3 Is-Signed — Signedness of propagated data type
IsSigned1 or IsSigned2 (default) | IsSigned1 | IsSigned2 | TRUE | FALSE

Specify the sign of Prop as one of the following values.

Parameter Value Description
IsSigned1 Prop is a signed data type if Ref1 is a signed data type.
IsSigned2 Prop is a signed data type if Ref2 is a signed data type.
IsSigned1 or
IsSigned2

Prop is a signed data type if either Ref1 or Ref2 are signed data types.

TRUE Ref1 and Ref2 are ignored, and Prop is always a signed data type.
FALSE Ref1 and Ref2 are ignored, and Prop is always an unsigned data type.

For example, if the Ref1 signal is ufix(16), the Ref2 signal is sfix(16), and the Is-Signed
parameter is IsSigned1 or IsSigned2, then Prop is forced to be a signed data type.

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

Programmatic Use
Block Parameter: IsSigned
Type: character vector
Values: 'IsSigned1' | 'IsSigned2' | 'IsSigned1 or IsSigned2' | 'TRUE' | 'FALSE'
Default: 'IsSigned1 or IsSigned2'

1.4.1 Number-of-bits: Base — Number of bits for the base of the propagated data type
max([NumBits1 NumBits2]) (default) | NumBits1 | NumBits2 | min([NumBits1 NumBits2]) |
NumBits1+NumBits2

Specify the number of bits used by Prop for the base data type as one of the following values.

Parameter Value Description
NumBits1 The number of bits for Prop is given by the number of bits for Ref1.

1 Blocks

1-312

Parameter Value Description
NumBits2 The number of bits for Prop is given by the number of bits for Ref2.
max([NumBits1 NumBits2]) The number of bits for Prop is given by the reference signal with

largest number of bits.
min([NumBits1 NumBits2]) The number of bits for Prop is given by the reference signal with

smallest number of bits.
NumBits1+NumBits2 The number of bits for Prop is given by the sum of the reference

signal bits.

For more information about the base data type, refer to Targeting an Embedded Processor (Fixed-
Point Designer).

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

Programmatic Use
Block Parameter: NumBitsBase
Type: character vector
Values: 'NumBits1' | 'NumBits2' | 'max([NumBits1 NumBits2])' | 'min([NumBits1
NumBits2])' | 'NumBits1+NumBits2'
Default: 'max([NumBits1 NumBits2])'

1.4.2 Number-of-bits: Multiplicative adjustment — Number of bits for multiplicative adjustment
of propagated data type
1 (default) | positive integer

Specify the number of bits used by Prop by including a multiplicative adjustment that uses a data
type of double. For example, suppose that you want to guarantee that the number of bits associated
with a multiply and accumulate (MAC) operation is twice as wide as the input signal. To do this, set
this parameter to 2.

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

Programmatic Use
Block Parameter: NumBitsMult
Type: character vector
Values: positive integer
Default: '1'

1.4.3 Number-of-bits: Additive adjustment — Number of bits for additive adjustment of
propagated data type
0 (default) | positive integer

Specify the number of bits used by Prop by including an additive adjustment that uses a data type of
double. For example, if you are performing multiple additions during a MAC operation, the result
could overflow. To prevent overflow, you can associate guard bits with the propagated data type. To
associate four guard bits, you specify the value 4.

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

 Data Type Propagation

1-313

Programmatic Use
Block Parameter: NumBitsAdd
Type: character vector
Values: scalar
Default: '0'

1.4.4 Number-of-bits: Allowable final values — Allowable number of bits in propagated data type
'1:128' (default) | scalar or vector of positive integers

Force the computed number of bits used by Prop to a useful value. For example, if you are targeting
a processor that supports only 8 bits, 16 bits, and 32 bits, then you configure this parameter to
[8,16,32]. The block always propagates the smallest specified value that fits. If you want to allow
all fixed-point data types, you would specify the value 1:128.
Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.
Programmatic Use
Block Parameter: NumBitsAllowFinal
Type: character vector
Values: scalar or vector of positive integers
Default: '1:128'

Propagated Scaling

2. Propagated scaling — Propagated scaling mode
Inherit via propagation rule (default) | Specify via dialog | Obtain via best
precision

Choose to propagate the scaling via the dialog box, inherit the scaling from the reference signals, or
calculate the scaling to obtain best precision.
Programmatic Use
Block Parameter: PropScalingMode
Type: character vector
Values: Inherit via propagation rule | Specify via dialog | Obtain via best
precision
Default: Inherit via propagation rule

2.1. Propagated scaling (Slope or [Slope Bias]) — Slope or slope and bias
2^-10 | Slope | [Slope Bias]

Specify the scaling as either a slope or a slope and bias.
Dependencies

To enable this parameter, set Propagated scaling to Specify via dialog.
Programmatic Use
Block Parameter: PropScaling
Type: character vector
Values: Slope | [Slope Bias]
Default: '2^-10'

2.1. Values used to determine best precision scaling — Values to constrain precision
[5 -7] (default)

1 Blocks

1-314

Specify any values to be used to constrain the precision, such as the upper and lower limits on the
propagated input. Based on the data type, the block selects a scaling such that these values can be
represented with no overflow error and minimum quantization error.

Dependencies

To enable this parameter, set Propagated scaling to Obtain via best precision.

Programmatic Use
Block Parameter: ValuesUsedBestPrec
Type: character vector
Values: vector of values
Default: '[5 -7]'

2.1.1. Slope: Base — Slope for base of the propagated data type
min([Slope1 Slope2]) (default) | Slope1 | Slope2 | min([Slope1 Slope2]) | max([Bias1
Bias2]) | Slope1*Slope2 | Slope1/Slope2 | PosRange1 | PosRange2 | max([PosRange1
PosRange2]) | min([PosRange1 PosRange2]) | PosRange1*PosRange2 | PosRange1/
PosRange2

Specify the slope used by Prop for the base data type as one of the following values.

Parameter Value Description
Slope1 The slope of Prop is given by the slope of Ref1.
Slope2 The slope of Prop is given by the slope of Ref2.
max([Slope1 Slope2]) The slope of Prop is given by the maximum slope of the

reference signals.
min([Slope1 Slope2]) The slope of Prop is given by the minimum slope of the

reference signals.
Slope1*Slope2 The slope of Prop is given by the product of the reference

signal slopes.
Slope1/Slope2 The slope of Prop is given by the ratio of the Ref1 slope to the

Ref2 slope.
PosRange1 The range of Prop is given by the range of Ref1.
PosRange2 The range of Prop is given by the range of Ref2.
max([PosRange1 PosRange2]) The range of Prop is given by the maximum range of the

reference signals.
min([PosRange1 PosRange2]) The range of Prop is given by the minimum range of the

reference signals.
PosRange1*PosRange2 The range of Prop is given by the product of the reference

signal ranges.
PosRange1/PosRange2 The range of Prop is given by the ratio of the Ref1 range to

the Ref2 range.

You control the precision of Prop with Slope1 and Slope2, and you control the range of Prop with
PosRange1 and PosRange2. Also, PosRange1 and PosRange2 are one bit higher than the maximum
positive range of the associated reference signal.

 Data Type Propagation

1-315

Dependencies

To enable this parameter, set Propagated scaling to Inherit via propagation rule.

Programmatic Use
Block Parameter: SlopeBase
Type: character vector
Values: 'Slope1' | 'Slope2' | 'max([Slope1 Slope2])' | 'min([Slope1 Slope2])' |
'Slope1*Slope2' | 'Slope1/Slope2' | 'PosRange1' | 'PosRange2' |
'max([PosRange1 PosRange2])' | 'min([PosRange1 PosRange2])' |
'PosRange1*PosRange2' | 'PosRange1/PosRange2'
Default: 'min([Slope1 Slope2])'

2.1.2. Slope: Multiplicative adjustment — Slope of multiplicative adjustment of propagated data
type
1 (default) | scalar

Specify the slope used by Prop by including a multiplicative adjustment that uses a data type of
double. For example, if you want 3 bits of additional precision (with a corresponding decrease in
range), the multiplicative adjustment is 2^-3.

Dependencies

To enable this parameter, set Propagated scaling to Inherit via propagation rule.

Programmatic Use
Block Parameter: SlopeMult
Type: character vector
Values: scalar
Default: '1'

2.1.3. Slope: Additive adjustment — Slope of additive adjustment of propagated data type
0 (default) | scalar

Specify the slope used by Prop by including an additive adjustment that uses a data type of double.
An additive slope adjustment is often not needed. The most likely use is to set the multiplicative
adjustment to 0, and set the additive adjustment to force the final slope to a specified value.

Dependencies

To enable this parameter, set Propagated scaling to Inherit via propagation rule.

Programmatic Use
Block Parameter: SlopeAdd
Type: character vector
Values: scalar
Default: '0'

2.2.1. Bias: Base — Base bias for Prop
Bias1 (default) | Bias2 | max([Bias1 Bias2]) | min([Bias1 Bias2]) | Bias1*Bias2 | Bias1/
Bias2 | Bias1+Bias2 | Bias1-Bias2

Specify the bias used by Prop for the base data type. The parameter values are described as follows:

1 Blocks

1-316

Parameter Value Description
Bias1 The bias of Prop is given by the bias of Ref1.
Bias2 The bias of Prop is given by the bias of Ref2.
max([Bias1 Bias2]) The bias of Prop is given by the maximum bias of the reference

signals.
min([Bias1 Bias2]) The bias of Prop is given by the minimum bias of the reference

signals.
Bias1*Bias2 The bias of Prop is given by the product of the reference signal

biases.
Bias1/Bias2 The bias of Prop is given by the ratio of the Ref1 bias to the Ref2

bias.
Bias1+Bias2 The bias of Prop is given by the sum of the reference biases.
Bias1-Bias2 The bias of Prop is given by the difference of the reference biases.

Dependencies

To enable this parameter, set Propagated scaling to Inherit via propagation rule.

Programmatic Use
Block Parameter: BiasBase
Type: character vector
Values: 'Bias1' | 'Bias2' | 'max([Bias1 Bias2])' | 'min([Bias1 Bias2])' |
'Bias1*Bias2' | 'Bias1/Bias2' | 'Bias1+Bias2' | 'Bias1-Bias2'
Default: 'Bias1'

2.2.2. Bias: Multiplicative adjustment — Multiplicative bias for propagated data type
1 (default) | scalar

Specify the bias used by Prop by including a multiplicative adjustment that uses a data type of
double.

This parameter is visible only when you set Propagated scaling to Inherit via propagation
rule.

Programmatic Use
Block Parameter: BiasMult
Type: character vector
Values: scalar
Default: '1'

2.3.2. Bias: Additive adjustment — Additive bias for propagated data type
0 (default) | scalar

Specify the bias used by Prop by including an additive adjustment that uses a data type of double.

If you want to guarantee that the bias associated with Prop is zero, configure both the multiplicative
adjustment and the additive adjustment to 0.

Dependencies

To enable this parameter, set Propagated scaling to Inherit via propagation rule.

 Data Type Propagation

1-317

Programmatic Use
Block Parameter: BiasAdd
Type: character vector
Values: scalar
Default: '0'

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to control scaling and data types of signals that are part of subsystems that
generate HDL code, but is not included in the hardware implementation.

Limitations

When this block is present inside the masked subsystem, the block is ignored in model generation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Type Conversion | Data Type Duplicate | Data Type Conversion Inherited

Topics
“Control Data Types of Signals”
“About Data Types in Simulink”

1 Blocks

1-318

“Fixed Point”

 Data Type Propagation

1-319

Data Type Scaling Strip
Remove scaling and map to built in integer

Libraries:
Simulink / Signal Attributes

Description
The Data Type Scaling Strip block strips the scaling off a fixed-point signal. It maps the input data
type to the smallest built-in data type that has enough data bits to hold the input. The stored integer
value of the input is the value of the output. The output always has nominal scaling (slope = 1.0 and
bias = 0.0), so the output does not distinguish between real world value and stored integer value.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The block strips the scaling off a fixed-point input
signal, and outputs the stored integer value with the smallest possible built-in data type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Input signal mapped to built-in data type
scalar | vector | matrix

Stored integer value of the input signal with the smallest possible built-in data type, and the same
dimensions as the input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes

1 Blocks

1-320

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Type Conversion | Data Type Duplicate | Data Type Propagation

Topics
“About Data Types in Simulink”
“Fixed Point”

 Data Type Scaling Strip

1-321

Dead Zone
Provide region of zero output

Libraries:
Simulink / Discontinuities
HDL Coder / Discontinuities

Description
The Dead Zone block generates zero output within a specified region, called its dead zone. You
specify the lower limit (LL) and upper limit (UL) of the dead zone as the Start of dead zone and End
of dead zone parameters. The block output depends on the input (U) and the values for the lower
and upper limits.

Input Output
U >= LL and U <= UL Zero
U > UL U – UL
U < LL U – LL

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal to the dead-zone algorithm.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector

Output signal after the dead-zone algorithm is applied to the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Start of dead zone — Specify the lower bound of the dead zone

'-0.5' (default) | scalar | vector

1 Blocks

1-322

Specify dead zone lower limit. Set the value for Start of dead zone less than or equal to End of
dead zone. When the input value is less than Start of dead zone, then the block shifts the output
value down by the Start of dead zone value.

Programmatic Use
Block Parameter: LowerValue
Type: character vector
Value: scalar or vector less than or equal to UpperValue.
Default: '-0.5'

End of dead zone — Specify the upper limit of the dead zone

'0.5' (default) | scalar | vector

Specify dead zone upper limit. Set the value for End of dead zone greater than or equal to Start of
dead zone. When the input value is greater than End of dead zone, then the block shifts the output
value down by the End of dead zone value.

Programmatic Use
Block Parameter: UpperValue
Type: character vector
Value: scalar or vector greater than or equal to LowerValue.
Default: '0.5'

Saturate on integer overflow — Choose the behavior when integer overflow occurs

off (default) | on

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this check
box.

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

 Dead Zone

1-323

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Do not select this
check box.

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. Usually, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Treat as gain when linearizing — Specify the gain value

On (default) | boolean

The linearization commands in Simulink software treat this block as a gain in state space. Select this
check box to cause the commands to treat the gain as 1. Clear the box to have the commands treat
the gain as 0.

Programmatic Use
Block Parameter: LinearizeAsGain
Type: character vector
Value: 'off' | 'on'
Default: 'on'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'
Default: 'on'

1 Blocks

1-324

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

 Dead Zone

1-325

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Dead Zone Dynamic | Backlash

1 Blocks

1-326

Dead Zone Dynamic
Provide dynamic region of zero output

Libraries:
Simulink / Discontinuities
HDL Coder / Discontinuities

Description
The Dead Zone Dynamic block generates a region of zero output based on dynamic input signals that
specify the upper and lower limit. The block output depends on the input u, and the values of the
input signals up and lo.

Input Output
u >= lo and u <= up Zero
u > up u – up
u < lo u – lo

The Dead Zone Dynamic block is a masked subsystem and does not have any parameters.

Ports
Input

u — Input signal
scalar | vector

Input signal to the dead zone algorithm.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

lo — Lower limit for the dead zone
scalar | vector

Dynamic value providing the lower bound of the region of zero output. When the input is less than lo
then the output value is shifted down by value of lo.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

up — Upper limit for the dead zone
scalar

Dynamic value providing the upper bound of the region of zero output. When the input is greater than
up then the output value is shifted down by value of up.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

 Dead Zone Dynamic

1-327

Output

y — Output signal
scalar | vector

Output signal after the dynamic dead zone algorithm is applied to the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

1 Blocks

1-328

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Dead Zone | Triggered Subsystem

 Dead Zone Dynamic

1-329

Decrement Real World
Decrease real-world value of signal by one

Libraries:
Simulink / Additional Math & Discrete / Additional Math: Increment -
Decrement
HDL Coder / Math Operations

Description
The Decrement Real World block decreases the real-world value of the signal by one. Overflows
always wrap.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output is the real-world value of the input signal decreased by one. Overflows always wrap. The
output has the same data type and dimensions as the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

1 Blocks

1-330

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked subsystem block to execute as an
atomic unit by selecting the Treat as atomic unit option.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Decrement Stored Integer | Decrement Time To Zero | Decrement To Zero | Increment Real World

Topics
“Fixed-Point Numbers”

 Decrement Real World

1-331

Decrement Stored Integer
Decrease stored integer value of signal by one

Libraries:
Simulink / Additional Math & Discrete / Additional Math: Increment -
Decrement
HDL Coder / Math Operations

Description
The Decrement Stored Integer block decreases the stored integer value of a signal by one.

Floating-point signals also decrease by one, and overflows always wrap.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output is the stored integer value of the input signal decreased by one. Floating-point signals also
decrease by one, and overflows always wrap. The output has the same data type and dimensions as
the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals yes

1 Blocks

1-332

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked subsystem block to execute as an
atomic unit by selecting the Treat as atomic unit option.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Decrement Real World | Decrement Time To Zero | Decrement To Zero | Increment Stored Integer

Topics
“Fixed-Point Numbers”

 Decrement Stored Integer

1-333

Decrement Time To Zero
Decrease real-world value of signal by sample time, but only to zero

Libraries:
Simulink / Additional Math & Discrete / Additional Math: Increment -
Decrement

Description
The Decrement Time To Zero block decreases the real-world value of the signal by the sample time,
Ts. The output never goes below zero.

Limitations

The Decrement Time To Zero block works only with fixed sample rates and does not work inside a
triggered subsystem.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output is the real-world value of the input signal decreased by the sample time, Ts. The output never
goes below zero. The output has the same data type and dimensions as the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

1 Blocks

1-334

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Decrement Real World | Decrement Stored Integer | Decrement To Zero

Topics
“Fixed-Point Numbers”

 Decrement Time To Zero

1-335

Decrement To Zero
Decrease real-world value of signal by one, but only to zero

Libraries:
Simulink / Additional Math & Discrete / Additional Math: Increment -
Decrement

Description
The Decrement To Zero block decreases the real-world value of the signal by one. The output never
goes below zero.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output is the real-world value of the input signal decreased by one. The output never goes below
zero. The output has the same data type and dimensions as the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

1 Blocks

1-336

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked subsystem block to execute as an
atomic unit by selecting the Treat as atomic unit option.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Decrement Real World | Decrement Stored Integer | Decrement Time To Zero

Topics
“Fixed-Point Numbers”

 Decrement To Zero

1-337

Delay
Delay input signal by fixed or variable sample periods

Libraries:
Simulink / Commonly Used Blocks
Simulink / Discrete
HDL Coder / Commonly Used Blocks
HDL Coder / Discrete

Description
The Delay block outputs the input of the block after a delay. The block determines the delay time
based on the value of the Delay length parameter. The block supports:

• Variable delay length
• Specification of the initial condition from an input port
• State storage
• Using a circular buffer instead of an array buffer for state storage
• Resetting the state to the initial condition with an external reset signal
• Controlling execution of the block at every time step with an external enable signal

The initial block output depends on several factors such as the Initial condition parameter and the
simulation start time. For more information, see “Initial Block Output” on page 1-338. The External
reset parameter determines if the block output resets to the initial condition on triggering. The Show
enable port parameter determines if the block execution is controlled in every time step by an
external enable signal.

Initial Block Output

The output in the first few time steps of the simulation depends on the block sample time, the delay
length, and the simulation start time. The block supports specifying or inheriting discrete sample
times to determine the time interval between samples. For more information, see “Specify Sample
Time”.

The table shows the Delay block output for the first few time steps with these settings. The block
inherits a discrete sample time as [Tsampling,Toffset], where Tsampling is the sampling period
and Toffset is the initial time offset. n is the value of the Delay length parameter and Tstart is
the simulation start time for the model

Simulation Time Range Block Output
(Tstart) to (Tstart + Toffset) Zero
(Tstart + Toffset) to (Tstart + Toffset + n * Tsampling) Initial condition

parameter
After (Tstart + Toffset + n * Tsampling) Input signal

1 Blocks

1-338

Behavior with External Enable Signal

Selecting the Show enable port check box enables the Enable port. If the enable port is enabled, the
block operates in this order

1 Checks if the enable condition is satisfied.
2 If the reset port is enabled, checks the reset condition.
3 Performs the Delay block functionality.

The block has this operation with the Enable port:

• At the first block enable, the block output is the initial condition value (x0).
• For consecutive enable signals, the block takes the last state of the input signal u.
• If the port is not enabled at the start of simulation, the Delay block outputs 0.
• During simulation, if the port becomes disabled after having been enabled, the block does not

execute and holds its last value.

Variable-Size Support

The Delay block provides the following support for variable-size signals:

• The data input port u accepts variable-size signals. The other input ports do not accept variable-
size signals.

• The output port has the same signal dimensions as the data input port u for variable-size inputs.

The rules that apply to variable-size signals depend on the input processing mode of the Delay block.

Input Processing Mode Rules for Variable-Size Signal Support
Elements as channels
(sample based)

• The signal dimensions change only during state reset when the
block is enabled.

• The initial condition must be scalar.
Columns as channels
(frame based)

• No support

Bus Support

The Delay block provides the following support for bus signals:

• The data input u accepts virtual and nonvirtual bus signals. Other than input port x0, the other
input ports do not accept bus signals.

• The initial condition x0 port accepts nonvirtual bus signals.
• The output port has the same bus type as the data input port u for bus inputs.
• Buses work with:

• Sample-based and frame-based processing
• Fixed and variable delay length
• Array and circular buffers

To use a bus signal as the input to a Delay block, specify the initial condition on the dialog box or
through the x0 port. Support for virtual and nonvirtual buses depends on the initial condition that

 Delay

1-339

you specify and whether the State name parameter is empty or not. For the x0 input port, only
nonvirtual buses are supported.

Initial Condition State Name
Empty Not Empty

Zero Virtual and nonvirtual bus
support

Nonvirtual bus support only

Nonzero scalar Virtual and nonvirtual bus
support

No bus support

Nonscalar No bus support No bus support
Structure Virtual and nonvirtual bus

support
Nonvirtual bus support only

Partial structure Virtual and nonvirtual bus
support

Nonvirtual bus support only

String Support

The Delay block can accept and output string data type only if:

• The block is configured for the default value of the Initial condition parameter (0).
• The Delay length value is 1 or less.

Ports
Input

u — Data input signal
scalar | vector

Input data signal delayed according to parameters settings.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

d — Delay length
scalar

Delay length specified as inherited from an input port. Enabled when you select the Delay length:
Source parameter as Input port.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
fixed point

Enable — External enable signal
scalar

Enable signal that enables or disables execution of the block. To create this port, select the Show
enable port parameter.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

1 Blocks

1-340

External reset — External reset signal
scalar

External signal that resets execution of the block to the initial condition. To create this port, select
the External reset parameter.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

x0 — Initial condition
scalar | vector

Initial condition specified as inherited from an input port. Enabled when you select the Initial
Condition: Source parameter as Input port.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point | bus

Output

Port_1 — Output signal
scalar | vector

Output signal that is the input signal delayed by the length of time specified by the parameter Delay
length. The initial value of the output signal depends on several conditions. See “Initial Block
Output” on page 1-338.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Parameters
Main

Delay length — Delay length

Dialog (default) | Input port

Specify whether to enter the delay length directly on the dialog box (fixed delay) or to inherit the
delay from an input port (variable delay).

• If you set Source to Dialog, enter the delay length in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies a delay length for the d

input port. You can also specify its maximum value by specifying the parameter Upper limit.

Specify the scalar delay length as a real, non-negative integer. An out-of-range or non-integer value in
the dialog box (fixed delay) returns an error. An out-of-range value from an input port (variable delay)
casts it into the range. A noninteger value from an input port (variable delay) truncates it to the
integer.

Programmatic Use
Block Parameter: DelayLengthSource
Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

 Delay

1-341

Block Parameter: DelayLength
Type: character vector
Values: scalar
Default: '2'
Block Parameter: DelayLengthUpperLimit
Type: character vector
Values: scalar
Default: '100'

Initial condition — Initial condition

Dialog (default) | Input port

Specify whether to enter the initial condition directly on the dialog box or to inherit the initial
condition from an input port.

• If you set Source to Dialog, enter the initial condition in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies an initial condition for

the x0 input port.

Simulink converts offline the data type of Initial condition to the data type of the input signal u
using a round-to-nearest operation and saturation.

Note When State name must resolve to Simulink signal object is selected on the State
Attributes pane, the block copies the initial value of the signal object to the Initial condition
parameter. However, when the source for Initial condition is Input port, the block ignores the
initial value of the signal object.

Programmatic Use
Block Parameter: InitialConditionSource
Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'
Block Parameter: InitialCondition
Type: character vector
Values: scalar
Default: '0.0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

1 Blocks

1-342

• Elements as channels (sample based) — Treat each element of the input as a separate
channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Use circular buffer for state — Circular buffer for storing state

off (default) | on

Select to use a circular buffer for storing the state in simulation and code generation. Otherwise, an
array buffer stores the state.

Using a circular buffer can improve execution speed when the delay length is large. For an array
buffer, the number of copy operations increases as the delay length goes up. For a circular buffer, the
number of copy operations is constant for increasing delay length.

If one of the following conditions is true, an array buffer always stores the state because a circular
buffer does not improve execution speed.

• For sample-based signals, the delay length is 1.
• For frame-based signals, the delay length is no larger than the frame size.

Programmatic Use
Block Parameter: UseCircularBuffer
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Prevent direct feedthrough — Prevent direct feedthrough

off (default) | on

Select to increase the delay length from zero to the lower limit for the Input processing mode.

• For sample-based signals, increase the minimum delay length to 1.
• For frame-based signals, increase the minimum delay length to the frame length.

Selecting this check box prevents direct feedthrough from the input port, u, to the output port.
However, this check box cannot prevent direct feedthrough from the initial condition port, x0, to the
output port.

Dependency

To enable this parameter, set Delay length: Source to Input port.

 Delay

1-343

Programmatic Use
Block Parameter: PreventDirectFeedthrough
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Remove delay length check in generated code — Remove delay length out-of-range check

off (default) | on

Select to remove code that checks for out-of-range delay length.

Check Box Result When to Use
Selected Generated code does not

include conditional statements
to check for out-of-range delay
length.

For code efficiency

Cleared Generated code includes
conditional statements to check
for out-of-range delay length.

For safety-critical applications

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: RemoveDelayLengthCheckInGeneratedCode
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for delay length — Diagnostic checks for delay length

None (default) | Warning | Error

Specify whether to produce a warning or error when the input d is less than the lower limit or greater
than the Delay length: Upper limit. The lower limit depends on the setting for Prevent direct
feedthrough.

• If the check box is cleared, the lower limit is zero.
• If the check box is selected, the lower limit is 1 for sample-based signals and frame length for

frame-based signals.

Options for the diagnostic include:

• None — Simulink software takes no action.
• Warning — Simulink software displays a warning and continues the simulation.
• Error — Simulink software terminates the simulation and displays an error.

Dependency

To enable this parameter, set Delay length: Source to Input port.

1 Blocks

1-344

Programmatic Use
Block Parameter: DiagnosticForDelayLength
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Show enable port — Create enable port

off (default) | on

Select to control execution of this block with an enable port. The block is considered enabled when
the input to this port is nonzero, and is disabled when the input is 0. The value of the input is checked
at the same time step as the block execution.

Programmatic Use
Block Parameter: ShowEnablePort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

External reset — External state reset

None (default) | Rising | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior
None No reset
Rising Reset on a rising edge
Falling Reset on a falling edge
Either Reset on either a rising or falling edge
Level Reset in either of these cases:

• When the reset signal is nonzero at the
current time step

• When the reset signal value changes from
nonzero at the previous time step to zero at
the current time step

Level hold Reset when the reset signal is nonzero at the
current time step

Programmatic Use
Block Parameter: ExternalReset
Type: character vector
Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'None'

Sample time (-1 for inherited) — Discrete interval between sample time hits

-1 (default) | scalar

 Delay

1-345

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. This
block supports discrete sample time, but not continuous sample time.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: real scalar
Default: '-1'

State Attributes

State name — Unique name for block state

'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click
Apply.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if you set the
model configuration parameter Signal resolution to a value other than None.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

1 Blocks

1-346

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides configuration options that affect HDL implementation and synthesized logic.

Block Parameter Setting Description
Set External reset to Level . Generates a reset port in the HDL code.
Select Show enable port. Generates an enable port in the HDL code.
For Initial condition, set Source to Dialog
and enter the value.

Specifies an initial condition for the block.

Set Input processing to Columns as
channels (frame based) or Elements as
channels (sample based).

Expects vector input data, where each element of
the vector represents a sample in time.

Additional Settings When Using State Control Block

If you use a State Control block with the Delay block inside a subsystem in your Simulink model, use
these additional settings.

Block Parameter Setting Description
Set External reset to Level hold for
Synchronous mode and Level for Classic
mode of the State Control block.

Generates a reset port in the HDL code.

 Delay

1-347

Block Parameter Setting Description
Set Delay length to zero for a Delay block with
an external enable port.

Treated as a wire in only Synchronous mode of
the State Control block.

Set Delay length to zero for a Delay block with
an external reset port.

Treated as a wire in Synchronous and Classic
modes of the State Control block.

For more information about the State Control block, see State Control (HDL Coder).
HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

UseRAM Map delays to RAM instead of registers. The default is off. See also
“UseRAM” (HDL Coder).

Variable Integer Delay Support

• You can generate HDL code for the Delay block that has Delay Length set through the Input
port. Input delay length can be integer types or floating-point types.

• The code generation supports positive integer values at the 'd' port of the delay block. The delay
length set through the input port must be between 0 and Upper limit, specified in the Block
Parameters dialog box.

• For negative delay length values, HDL Coder translates these negative delay length to 0.
• Similarly, if you specify delay length greater than the upper limit, HDL Coder translates the delay

length to the Upper limit value.
• Upper limit range is defined by the range of the delay length input data type. For example, if you

specify delay length input data type as uint8, then the upper limit must not exceed 255.
• You can use enable and reset ports for the variable integer Delay block.

Complex Data Support

This block supports code generation for complex signals.
Restrictions

• For Initial condition, Source set to Input port is not supported for HDL code generation.
• HDL code generation supports only the Boolean data type at the Reset and Enable ports.
• HDL Block Property UseRAM for RAM mapping is not supported for Delay block that has Delay

Length set through the Input port.

1 Blocks

1-348

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Resettable Delay | Unit Delay | Variable Integer Delay | Tapped Delay

Topics
“Using Enabled Subsystems”

 Delay

1-349

Demux
Extract and output elements of virtual vector signal

Libraries:
Simulink / Commonly Used Blocks
Simulink / Signal Routing
HDL Coder / Commonly Used Blocks
HDL Coder / Signal Routing

Description
The Demux block extracts the components of an input vector signal and outputs separate signals. The
output signal ports are ordered from top to bottom.

Examples

Extract Vector Elements and Distribute Evenly Across Outputs

You can use the Demux block to distribute an input signal evenly over the desired number of outputs.
For an input vector of length 6, when you set the Number of outputs parameter to 3, the Demux
block creates three output signals, each of size 2.

Extract Vector Elements Using Specified Output Dimensions

When using the Demux block to extract and output elements from a vector input, you can use -1 in a
vector expression to indicate that the block dynamically sizes the corresponding port. When a vector
expression comprises both positive values and -1 values, the block assigns as many elements as

1 Blocks

1-350

needed to the ports with positive values. The block distributes the remaining elements as evenly as
possible over the ports with -1 values.

In this example, the Number of outputs parameter of the Demux block is set to [-1, 3, -1]. Thus, the
block outputs three signals where the second signal always has three elements. The sizes of the first
and third signals depend on the size of the input signal. For an input vector with seven elements, the
Demux block outputs two elements on the first port, three elements on the second port, and two
elements on the third port.

Ports
Input

Port_1 — Accept nonbus vector signal to extract and output signals from
real or complex values of any nonbus data type supported by Simulink software

Vector input signal from which the Demux block selects scalar signals or smaller vectors.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | image

Output

Port_1 — Output signals extracted from input vector signal
nonbus signal with real or complex values of any data type supported by Simulink software

Output signals extracted from the input vector. The output signal ports are ordered from top to
bottom. For a description of the port order for various block orientations, see “Identify Port Location
on Rotated or Flipped Block”.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | image

 Demux

1-351

Parameters
Number of outputs — Number of outputs

2 (default) | scalar | vector

Specify the number of outputs and, optionally, the dimensionality of each output port.

The value can be a scalar specifying the number of outputs or a vector whose elements specify the
widths of the block output ports. The block determines the size of its outputs from the size of the
input signal and the value of the Number of outputs parameter.

If you specify a scalar for the Number of outputs parameter, and all of the output ports are
connected, as you draw a new signal line close to the output side of a Demux block, the software adds
a port and updates the Number of outputs parameter.

For an input vector of width n, this table describes what the block outputs.

Parameter Value Block Output Examples and Comments
p = n p scalar signals If the input is a three-element

vector and you specify three
outputs, the block outputs three
scalar signals.

p > n Error This value is not supported.
p < n

n mod p = 0

p vector signals each having n/p
elements

If the input is a six-element vector
and you specify three outputs, the
block outputs three two-element
vectors.

p < n

n mod p = m

m vector signals each having (n/p)
+1 elements and p-m signals having
n/p elements

If the input is a five-element vector
and you specify three outputs, the
block outputs two two-element
vector signals and one scalar signal.

[p1 p2 ... pm]

p1+p2+...+pm=n

pi > 0

m vector signals having widths p1,
p2, ... pm

If the input is a five-element vector
and you specify [3, 2] as the
output, the block outputs three of
the input elements on one port and
the other two elements on the other
port.

1 Blocks

1-352

Parameter Value Block Output Examples and Comments
An array that has one or more of m
elements with a value of -1, which
specifies that the software infers
the size for the element.

For example, suppose that you have
a four-element array with a total
width of 14 and you specify the
parameter to be [p1 p2 -1 p4].

The value for the third element (the
-1 element) is 14 - (p1 + p2 +
p4)

m vector signals If pi is greater than zero, the
corresponding output has width pi.
If pi is -1, the width of the
corresponding output is computed
dynamically.

[p1 p2 ... pm]

p1+p2+...+pm!=n

pi = > 0

Error This value is not supported.

If you specify a number of outputs that is smaller than the number of input elements, the block
distributes the elements as evenly as possible over the outputs.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: Outputs

Values: '2' (default) | character vector | string scalar
Data Types: char | string

Example: set_param(gcb,'Outputs','4')

Display option — Displayed block icon

bar (default) | none

By default, the block icon is a solid bar of the block foreground color. To display the icon as a box
containing the block type name, select none.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: DisplayOption

Values: 'bar' (default) | 'none'

Example: set_param(gcb,'DisplayOption','none')

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single

 Demux

1-353

Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1 Blocks

1-354

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Selector

Topics
“Virtual and Nonvirtual Signals”
“Composite Interface Guidelines”

 Demux

1-355

Derivative
Output time derivative of input

Libraries:
Simulink / Continuous

Description
The Derivative block approximates the derivative of the input signal u with respect to the simulation
time t. You obtain the approximation of

du
dt ,

by computing a numerical difference Δu/Δt,where Δu is the change in input value and Δt is the
change in time since the previous simulation (major) time step.

This block accepts one input and generates one output. The initial output for the block is zero.

The precise relationship between the input and output of this block is:

y(t) = Δu
Δt =

u(t)− u(Tprevious)
t − Tprevious

t > Tprevious,

where t is the current simulation time and Tprevious is the time of the last output time of the
simulation. The latter is the same as the time of the last major time step.

The Derivative block output might be sensitive to the dynamics of the entire model. The accuracy of
the output signal depends on the size of the time steps taken in the simulation. Smaller steps allow
for a smoother and more accurate output curve from this block. However, unlike with blocks that
have continuous states, the solver does not take smaller steps when the input to this block changes
rapidly. Depending on the dynamics of the driving signal and model, the output signal of this block
might contain unexpected fluctuations. These fluctuations are primarily due to the driving signal
output and solver step size.

Because of these sensitivities, structure your models to use integrators (such as Integrator blocks)
instead of Derivative blocks. Integrator blocks have states that allow solvers to adjust the step size
and improve simulation accuracy. See “Circuit Model” for an example of choosing the best-form
mathematical model to avoid using Derivative blocks in your models.

If you must use the Derivative block with a variable step solver, set the solver maximum step size to a
value such that the Derivative block can generate answers with adequate accuracy. To determine this
value, you might need to repeatedly run the simulation using different solver settings.

If the input to this block is a discrete signal, the continuous derivative of the input exhibits an impulse
when the value of the input changes. Otherwise, it is 0. Alternatively, you can define the discrete
derivative of a discrete signal using the difference of the last two values of the signal:

y(k) = 1
Δt (u(k)− u(k− 1))

1 Blocks

1-356

.

Taking the z-transform of this equation results in:

Y(z)
u(z) = 1− z−1

Δt = z − 1
Δt ⋅ z .

The Discrete Derivative block models this behavior. Use this block instead of the Derivative block to
approximate the discrete-time derivative of a discrete signal.

Ports
Input

Port_1 — Input signal
real scalar or vector

Signal to be differentiated, specified as a real scalar or vector.
Data Types: double

Output

Port_1 — Time derivative of input signal
real scalar or vector

Time derivative of input signal, specified as a real scalar or vector. The input signal is differentiated
with respect to time as:

y(t) = Δu
Δt =

u(t)− u(Tprevious)
t − Tprevious

t > Tprevious,

where t is the current simulation time and Tprevious is the time of the last output time of the
simulation. The latter is the same as the time of the last major time step.
Data Types: double

Parameters
Coefficient c in the transfer function approximation s/(c*s + 1) used for linearization —
Specify the time constant c to approximate the linearization of your system

inf (default)

The exact linearization of the Derivative block is difficult because the dynamic equation for the block
is y = u̇, which you cannot represent as a state-space system. However, you can approximate the
linearization by adding a pole to the Derivative block to create a transfer function s/(c ∗ s + 1) . The
addition of a pole filters the signal before differentiating it, which removes the effect of noise.

The default value inf corresponds to a linearization of 0.

Tips

• As a best practice, change the value of c to 1
fb

, where fb is the break frequency of the filter.

 Derivative

1-357

• The parameter must be a finite positive value.

Programmatic Use
Block Parameter: CoefficientInTFapproximation
Type: character vector, string
Values: 'inf'
Default: 'inf'

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Consider using the Model Discretizer to map the continuous blocks into discrete equivalents that
support code generation. To access the Model Discretizer, in the Apps tab, under Control Systems,
click Model Discretizer.

Not recommended for production code.

See Also
Discrete Derivative

Topics
“Improved Linearization with Transfer Fcn Blocks” on page 12-39

1 Blocks

1-358

Descriptor State-Space
Model linear implicit systems

Libraries:
Simulink / Continuous

Description
The Descriptor State-Space block allows you to model linear implicit systems that can be expressed in
the formEẋ = Ax + Bu where E is the mass matrix of the system. When E is nonsingular and therefore
invertible, the system can be written in its explicit form ẋ = E−1Ax + E−1Bu and modeled using the
State-Space block.

When the mass matrix E is singular, one or more derivatives of the dependent variables of the system
are not present in the equations. These variables are called algebraic variables. Differential equations
that contain such algebraic variables are called differential algebraic equations. Their state space
representation is of the form

Eẋ = Ax + Bu
y = Cx + Du

where the variables have the following meanings:

• x is the state vector
• u is the input vector
• y is the output vector

Ports
Input

Input 1 — Input signal
scalar | vector

Real-valued input vector of type double whose width is the number of columns in the B and D
matrices.
Data Types: double

Output

Output 1 — Output vector
scalar | vector

Real-valued input vector of type double whose width is the number of rows in the C and D matrices.
Data Types: double

 Descriptor State-Space

1-359

Parameters
E — Mass matrix

1 (default) | scalar | matrix

Specify the mass matrix E as a real-valued n-by-n matrix, where n is the number of states in the
system. E must be the same size as A. E can be singular or non-singular.
Programmatic Use
Block Parameter: E
Type: character vector, string
Values: scalar | matrix
Default: '1'

A — Matrix coefficient, A

1 (default) | scalar | matrix

Specify the matrix coefficient A as a real-valued n-by-n matrix, where n is the number of states in the
system. A must be the same size as E.
Programmatic Use
Block Parameter: A
Type: character vector, string
Values: scalar | matrix
Default: '1'

B — Matrix coefficient, B

1 (default) | scalar | vector | matrix

Specify the matrix coefficient B as a real-valued n-by-m matrix, where n is the number of states in the
system and m is the number of inputs.
Programmatic Use
Block Parameter: B
Type: character vector, string
Values: scalar | vector | matrix
Default: '1'

C — Matrix coefficient, C

1 (default) | scalar | vector | matrix

Specify the matrix coefficient C as a real-valued r-by-n matrix, where n is the number of states in the
system and r is the number of outputs.
Programmatic Use
Block Parameter: C
Type: character vector, string
Values: scalar | vector | matrix
Default: '1'

D — Matrix coefficient, D

1 Blocks

1-360

1 (default) | scalar | vector | matrix

Specify the matrix coefficient D as a real-valued r-by-m matrix, where r is the number of outputs of
the system and m is the number of inputs to the system.
Programmatic Use
Block Parameter: D
Type: character vector, string
Values: scalar | vector | matrix
Default: '1'

Initial condition — Initial condition of states

0 (default) | scalar | vector | matrix

Specify initial condition of the block states. The minimum and maximum values are bound by the
Output minimum and Output maximum block parameters.

Tip Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

To enable this parameter, set the Initial condition source to internal.
Programmatic Use
Block Parameter: InitialCondition
Type: character vector, string
Values: scalar | vector | matrix
Default: '0'

Direct feedthrough — Set output signal dependency on input

true (default) | false

Specify whether the output of the block has a direct dependency on the input signal. Use this
parameter for systems having more than 500 continuous states in order to speed up simulation. For
systems with 500 continuous states or less, Simulink automatically determines this setting.
Programmatic Use
Block Parameter: DirectFeedthrough
Type: character vector, string
Values: 'True' | 'False'
Default: 'True'

Linearize to sparse model — Linearize states to sparse matrices

on (default) | off

For Simulink Control Design™ workflows, linearize the system represented by the Descriptor State-
Space block to a sparse model during linearization.

Disable this parameter to linearize the system to a non-sparse explicit state-space model.

Absolute tolerance — Absolute tolerance for computing block states

 Descriptor State-Space

1-361

auto (default) | scalar | vector

Absolute tolerance for computing block states, specified as a positive, real-valued, scalar or vector. To
inherit the absolute tolerance from the Configuration Parameters, specify auto or -1.

• If you enter a real scalar, then that value overrides the absolute tolerance in the Configuration
Parameters dialog box for computing all block states.

• If you enter a real vector, then the dimension of that vector must match the dimension of the
continuous states in the block. These values override the absolute tolerance in the Configuration
Parameters dialog box.

• If you enter auto or –1, then Simulink uses the absolute tolerance value in the Configuration
Parameters dialog box (see “Solver Pane”) to compute block states.

Programmatic Use
Block Parameter: AbsoluteTolerance
Type: character vector, string
Values: 'auto' | '-1' | any positive real-valued scalar or vector
Default: 'auto'

State Name (e.g., 'position') — Assign unique name to each state

' ' (default) | 'position' | {'a', 'b', 'c'} | a | ...

Assign a unique name to each state. If this field is blank (' '), no name assignment occurs.

• To assign a name to a single state, enter the name between quotes, for example, 'position'.
• To assign names to multiple states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.
• To assign state names with a variable in the MATLAB workspace, enter the variable without

quotes. A variable can be a character vector, string, cell array, or structure.

Limitations

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector, string
Values: ' ' | user-defined
Default: ' '

Block Characteristics
Data Types double
Direct Feedthrough yes

1 Blocks

1-362

Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Consider using the Model Discretizer to map these continuous blocks into discrete equivalents
that support code generation. To access the Model Discretizer, in the Apps tab, under Control
Systems, click Model Discretizer.

2 Not recommended for production code.

See Also
Blocks
State-Space | Algebraic Constraint

Functions
dss | sparss

Topics
“Solve Differential Algebraic Equations (DAEs)”
“Model Differential Algebraic Equations”

External Websites
https://www.mathworks.com/matlabcentral/fileexchange/7481-manuscript-of-solving-index-1-daes-in-
matlab-and-simulink

 Descriptor State-Space

1-363

https://www.mathworks.com/matlabcentral/fileexchange/7481-manuscript-of-solving-index-1-daes-in-matlab-and-simulink
https://www.mathworks.com/matlabcentral/fileexchange/7481-manuscript-of-solving-index-1-daes-in-matlab-and-simulink

Detect Change
Detect change in signal value

Libraries:
Simulink / Logic and Bit Operations
HDL Coder / Logic and Bit Operations

Description
The Detect Change block determines if an input signal does not equal its previous value. The initial
condition determines the initial value of the previous input U/z.

This block supports only discrete sample times.

Ports
Input

Port_1 — Input signal
signal value

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | built-in integer | floating point

Output

Port_1 — Output signal
0 | 1

Output signal, true (equal to 1) when the input signal does not equal its previous value; false (equal to
0) when the input signal equals its previous value.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
Initial condition — Initial condition for the previous input

0 (default) | scalar | vector

Set the initial condition for the previous input U/z.

Programmatic Use
Block Parameter: vinit
Type: character vector

1 Blocks

1-364

Values: scalar | vector
Default:'0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Output data type — Data type of the output

boolean (default) | uint8

Set the output data type to boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

 Detect Change

1-365

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Detect Decrease | Detect Fall Negative | Detect Fall Nonpositive | Detect Increase | Detect Rise
Nonnegative | Detect Rise Positive

1 Blocks

1-366

Detect Decrease
Detect decrease in signal value

Libraries:
Simulink / Logic and Bit Operations
HDL Coder / Logic and Bit Operations

Description
The Detect Decrease block determines if an input is strictly less than its previous value.

This block supports only discrete sample times.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Output signal
0 | 1

Output signal, true (equal to 1) when the input signal is less than its previous value; false (equal to 0)
when the input signal is greater than or equal to its previous value.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Parameters
Initial condition — Initial condition for the previous input

0 (default) | scalar | vector

Set the initial condition for the previous input U/z.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar | vector

 Detect Decrease

1-367

Default: '0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Output data type — Data type of the output

boolean (default) | uint8

Set the output data type to boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

1 Blocks

1-368

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Detect Change | Detect Fall Negative | Detect Fall Nonpositive | Detect Increase | Detect Rise
Nonnegative | Detect Rise Positive

 Detect Decrease

1-369

Detect Fall Negative
Detect falling edge when signal value decreases to strictly negative value, and its previous value was
nonnegative

Libraries:
Simulink / Logic and Bit Operations

Description
The Detect Fall Negative block determines if the input is less than zero, and its previous value is
greater than or equal to zero.

This block supports only discrete sample times.

Ports
For more information, see “Data Types Supported by Simulink” in the Simulink documentation.

Input

Port_1 — Input signal
signal value

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Output signal
0 | 1

Output signal, true (equal to 1) when the input signal is less than zero, and its previous value was
greater than or equal to zero; false (equal to 0) when the input signal is greater than or equal to zero,
or if the input signal is negative, its previous value was also negative.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
Initial condition — Initial condition for the previous input

0 (default) | scalar | vector

1 Blocks

1-370

Set the initial condition of the Boolean expression U/z < 0.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar | vector
Default:'0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Output data type — Data type of the output

boolean (default) | uint8

Set the output data type to boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

 Detect Fall Negative

1-371

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Detect Decrease | Detect Change | Detect Fall Nonpositive | Detect Increase | Detect Rise
Nonnegative | Detect Rise Positive

1 Blocks

1-372

Detect Fall Nonpositive
Detect falling edge when signal value decreases to nonpositive value, and its previous value was
strictly positive

Libraries:
Simulink / Logic and Bit Operations

Description
The Detect Fall Nonpositive block determines if the input is less than or equal to zero, and its
previous value was greater than zero.

• The output is true (equal to 1) when the input signal is less than or equal to zero, and its previous
value was greater than zero.

• The output is false (equal to 0) when the input signal is greater than zero, or if it is nonpositive, its
previous value was also nonpositive.

This block supports only discrete sample times.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that detects a falling edge, specified as a scalar, vector, or matrix.

• The output is true (equal to 1) when the input signal is less than or equal to zero, and its previous
value was greater than zero.

• The output is false (equal to 0) when the input signal is greater than zero, or if it is nonpositive, its
previous value was also nonpositive.

Data Types: uint8 | Boolean

 Detect Fall Nonpositive

1-373

Parameters
Initial condition — Initial condition of Boolean expression U/z <= 0

0 (default) | scalar | vector | matrix

Set the initial condition of the Boolean expression U/z <= 0.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Output data type — Output data type

boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

1 Blocks

1-374

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

 Detect Fall Nonpositive

1-375

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Detect Change | Detect Decrease | Detect Fall Negative | Detect Increase | Detect Rise Nonnegative |
Detect Rise Positive

1 Blocks

1-376

Detect Increase
Detect increase in signal value

Libraries:
Simulink / Logic and Bit Operations
HDL Coder / Logic and Bit Operations

Description
The Detect Increase block determines if an input is strictly greater than its previous value.

• The output is true (equal to 1) when the input signal is greater than its previous value.
• The output is false (equal to 0) when the input signal is less than or equal to its previous value.

This block supports only discrete sample times.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal, detecting an increase in signal value, specified as a scalar, vector, or matrix.

• The output is true (equal to 1) when the input signal is greater than its previous value.
• The output is false (equal to 0) when the input signal is less than or equal to its previous value.

Data Types: uint8 | Boolean

Parameters
Initial condition — Initial condition of previous input

0.0 (default) | scalar | vector | matrix

Set the initial condition for the previous input U/z.

 Detect Increase

1-377

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar | vector | matrix
Default: '0.0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Output data type — Output data type

boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes

1 Blocks

1-378

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Detect Change | Detect Decrease | Detect Fall Negative | Detect Fall Nonpositive | Detect Rise
Nonnegative | Detect Rise Positive

 Detect Increase

1-379

Detect Rise Nonnegative
Detect rising edge when signal value increases to nonnegative value, and its previous value was
strictly negative

Libraries:
Simulink / Logic and Bit Operations

Description
The Detect Rise Nonnegative block determining if the input is greater than or equal to zero, and its
previous value was less than zero.

• The output is true (equal to 1) when the input signal is greater than or equal to zero, and its
previous value was less than zero.

• The output is false (equal to 0) when the input signal is less than zero, or if the input signal is
nonnegative, its previous value was also nonnegative.

This block supports only discrete sample times.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that indicates a rising edge whenever the signal value increases to a nonnegative value,
and its previous value was strictly negative. The output can be a scalar, vector, or matrix.

• The output is true (equal to 1) when the input signal is greater than or equal to zero, and its
previous value was less than zero.

• The output is false (equal to 0) when the input signal is less than zero, or if the input signal is
nonnegative, its previous value was also nonnegative.

Data Types: uint8 | Boolean

1 Blocks

1-380

Parameters
Initial condition — Initial condition of Boolean expression U/z >= 0

0 (default) | scalar | vector | matrix

Set the initial condition of the Boolean expression U/z >= 0.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Output data type — Output data type

boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

 Detect Rise Nonnegative

1-381

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1 Blocks

1-382

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Detect Change | Detect Decrease | Detect Fall Negative | Detect Fall Nonpositive | Detect Increase |
Detect Rise Positive

 Detect Rise Nonnegative

1-383

Detect Rise Positive
Detect rising edge when signal value increases to strictly positive value, and its previous value was
nonpositive

Libraries:
Simulink / Logic and Bit Operations

Description
The Detect Rise Positive block detects a rising edge by determining if the input is strictly positive,
and its previous value was nonpositive.

• The output is true (equal to 1) when the input signal is greater than zero, and the previous value
was less than or equal to zero.

• The output is false (equal to 0) when the input is negative or zero, or if the input is positive, the
previous value was also positive.

This block supports only discrete sample times.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that detects a rising edge whenever the input is strictly positive, and its previous value
was nonpositive. The output can be a scalar, vector, or matrix.

• The output is true (equal to 1) when the input signal is greater than zero, and the previous value
was less than or equal to zero.

• The output is false (equal to 0) when the input is negative or zero, or if the input is positive, the
previous value was also positive.

Data Types: uint8 | Boolean

1 Blocks

1-384

Parameters
Initial condition — Initial condition of Boolean expression U/z > 0

0 (default) | scalar | vector | matrix

Set the initial condition of the Boolean expression U/z > 0.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Output data type — Output data type

boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

 Detect Rise Positive

1-385

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1 Blocks

1-386

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Detect Change | Detect Decrease | Detect Fall Negative | Detect Fall Nonpositive | Detect Increase |
Detect Rise Nonnegative

 Detect Rise Positive

1-387

Difference
Calculate change in signal over one time step

Libraries:
Simulink / Discrete

Description
The Difference block outputs the current input value minus the previous input value.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array.

Dependencies

When you set Input processing to Columns as channels (frame based), the input signal must
have two dimensions or less.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Current input minus previous input
scalar | vector | matrix | N-D array

Current input minus previous input, specified as a scalar, vector, matrix, or N-D array.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Initial condition for previous input — Initial condition

0.0 (default) | scalar | vector | matrix | N-D array

Set the initial condition for the previous input.

1 Blocks

1-388

Programmatic Use
Parameter: ICPrevInput
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '0.0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Signal Attributes

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

 Difference

1-389

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Output data type

Inherit: Inherit via internal rule (default) | Inherit via back propagation |
double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back propagation
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

1 Blocks

1-390

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.
Dependencies

When input is a floating-point data type smaller than single precision, the Inherit: Inherit via
internal rule output data type depends on the setting of the “Inherit floating-point output type
smaller than single precision” configuration parameter. Data types are smaller than single precision
when the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.
Programmatic Use
Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via back
propagation' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' |
'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.
Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action

 Difference

1-391

off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Booleana | double | fixed point | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

a This block is not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation.
In certain cases, you can achieve grouping by configuring the masked subsystem block to execute
as an atomic unit by selecting the Treat as atomic unit option.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

1 Blocks

1-392

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
diff

Topics
“Sample- and Frame-Based Concepts” (DSP System Toolbox)

 Difference

1-393

Digital Clock
Output simulation time at specified sampling interval

Libraries:
Simulink / Sources

Description
The Digital Clock block outputs the simulation time only at the specified sampling interval. At other
times, the block holds the output at the previous value. To control the precision of this block, use the
Sample time parameter in the block dialog box.

Use this block rather than the Clock block (which outputs continuous time) when you need the
current simulation time within a discrete system.

Ports
Output

Port_1 — Sample time
scalar

Sample time, in seconds, at the specified sampling interval. At other times, the block holds the output
at the previous value.
Data Types: double

Parameters
Sample time — Sampling interval

1 (default) | scalar | vector

Specify the sampling interval in seconds. You can specify the sampling interval in one of two ways:

• As the period, specified as a real-valued scalar with data type double.
• As the period and offset, specified as a real-valued vector of length 2 with data type double. The

period and offset must be finite and non-negative, and the offset value must be less than the
period.

For more information, see Specifying Sample Time.

Tip Do not specify a continuous sample time, either 0 or [0,0]. Also, avoid specifying -1 (inheriting
the sample time) because this block is a source.

1 Blocks

1-394

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '1'

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times. While
the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code. Usually, blocks evolve toward being suitable for
production code. Thus, blocks suitable for production code remain suitable.

See Also
Clock

Topics
“Sample Time”

 Digital Clock

1-395

Direct Lookup Table (n-D)
Index into n-dimensional table to retrieve element, vector, or 2-D matrix

Libraries:
Simulink / Lookup Tables
HDL Coder / Lookup Tables

Description
The Direct Lookup Table (n-D) block indexes into an n-dimensional table to retrieve an element,
vector, or 2-D matrix. The first selection index corresponds to the top (or left) input port. You can
choose to provide the table data as an input to the block, or define the table data on the block dialog
box. The number of input ports and the size of the output depend on the number of table dimensions
and the output slice you select.

If you select a vector from a 2-D table, the output vector can be a column or a row, depending on the
model configuration parameter setting Math and Data Types > Use algorithms optimized for
row-major array layout. The block inputs are zero-based indices (for more information, see the
Inputs select this object from table parameter.

The Direct Lookup Table block supports symbolic dimensions.

Block Inputs and Outputs

The Direct Lookup Table (n-D) block uses inputs as zero-based indices into an n-dimensional table.
The number of inputs varies with the shape of the output: an element, vector, or 2-D matrix.

You define a set of output values as the Table data parameter. For the default column-major
algorithm behavior, the first input specifies the zero-based index to the table dimension that is one
higher than the output dimensionality. The next input specifies the zero-based index to the next table
dimension, and so on.

Output Shape Output Dimensionality Table Dimension that Maps to the First Input
Element 0 1
Vector 1 2
Matrix 2 3

Suppose that you want to select a vector of values from a 4-D table.

The following mapping of block input port to table dimension applies.

1 Blocks

1-396

This input port... Is the index for this table dimension...
1 2
2 3
3 4

Changes in Block Icon Appearance

Depending on parameters you set, the block icon changes appearance. For table dimensions higher
than 4, the icon matches the 4-D version but shows the exact number of dimensions at the top.

When you use the Table data parameter, you see these icons for the default column-major behavior.
Some icons are different when you select the configuration parameter Math and Data Types > Use
algorithms optimized for row-major array layout.

Object that Inputs
Select from the
Table

Number of Table Dimensions
1 2 3 4

Element

Vector

2-D Matrix Not applicable

When you use the table input port, you see these icons.

Object that Inputs
Select from the
Table

Number of Table Dimensions
1 2 3 4

Element

Vector

 Direct Lookup Table (n-D)

1-397

Object that Inputs
Select from the
Table

Number of Table Dimensions
1 2 3 4

2-D Matrix Not applicable

Ports
Input

Port_1 — Index i1 input values
scalar | vector

For the default column-major algorithm, the first input port, specifying the zero-based index to the
table dimension that is one higher than the output dimensionality (0, 1, or 2). The next input specifies
the zero-based index to the next table dimension, and so on. All index inputs must be real-valued.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Port_N — Index N input values
scalar | vector

For the default column-major algorithm, the N-th input port, specifying the zero-based index to the
table dimension that is N higher than the output dimensionality (0, 1, or 2). The number of inputs
varies with the shape of the output. All index inputs must be real-valued.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

T — Table data
vector | matrix | N-D array

Table data, specified as a vector, matrix, or N-D array. The table size must match the dimensions of
the Number of dimensions parameter. The block's output data type is the same as the table data
type.
Dependencies

To enable this port, select the Make table an input check box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Output element, vector, or 2-D matrix
scalar | vector | 2-D matrix

Output slice, provided as a scalar, vector, or 2-D matrix. The size of the block output is determined by
the setting of the Inputs select this object from table parameter. The output data type is the same
as the table data type.

1 Blocks

1-398

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Parameters
Main

Table

Number of table dimensions — Number of dimensions of table data

2 (default) | 1 | 3 | 4

Number of dimensions that the Table data parameter must have. This value determines the number
of independent variables for the table and the number of inputs to the block.

To specify... Do this...
1, 2, 3, or 4 Select the value from the drop-down list.
A higher number of table dimensions Enter a positive integer directly in the field.

The maximum number of table dimensions that
this block supports is 30.

Programmatic Use
Block Parameter: NumberOfTableDimensions
Type: character vector
Values: '1' | '2' | '3' | '4' | ... |'30'|
Default: '2'

Make table an input — Provide table data as a block input

off (default) | on

Select this check box to provide table data to the Direct Lookup Table (n-D) block as a block input.
When you select this check box, a new input port, T, appears. Use this port to input the table data.

Programmatic Use
Block Parameter: TableIsInput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Table data — Table of output values

[4 5 6; 16 19 20; 10 18 23] (default) | scalar, vector, matrix, or N-D array

Specify the table of output values. The table size must match the dimensions of the Number of table
dimensions parameter.

Tip During block diagram editing, you can leave the Table data field empty. But for simulation, you
must match the number of dimensions in Table data to the Number of table dimensions. For
details on how to construct multidimensional MATLAB arrays, see “Multidimensional Arrays”.

 Direct Lookup Table (n-D)

1-399

Click Edit to open the Lookup Table Editor. For more information, see “Edit Lookup Tables”.

Dependencies

To enable the Table data field, clear the Make table an input check box.

Programmatic Use
Block Parameter: Table
Type: character vector
Values: scalar, vector, matrix, or N-D array
Default: '[4 5 6;16 19 20;10 18 23]'

Algorithm

Inputs select this object from table — Specify whether output is an element, vector, or 2-D matrix

Element (default) | Vector | 2-D Matrix

Specify whether the output data is a single element, a vector, or a 2-D matrix. The number of input
ports for indexing depends on your selection.

Selection Number of Input Ports for Indexing
Element Number of table dimensions
Vector Number of table dimensions -1
2-D Matrix Number of table dimensions -2

This numbering matches MATLAB indexing. For example, if you have a 4-D table of data, follow these
guidelines.

To access... Specify... As in...
An element Four indices array(1,2,3,4)
A vector Three indices array(:,2,3,4) (default

column-major algorithm)
A 2-D matrix Two indices array(:,:,3,4) (default

column-major algorithm)

Tips

When the Math and Data Types > Use algorithms optimized for row-major array layout
configuration parameter is set, the Direct Lookup Table block behavior changes from column-major to
row-major. For this block, the column-major and row-major algorithms may differ semantically in
output calculations, resulting in different numerical values. For example, assume that Inputs select
this object from table parameter is set to Vector. The elements of the selected vector are
contiguous in the table storage memory. This table shows the column-major and row-major algorithm
depending on the table dimension:

Table Dimension Column-Major Algorithm Row-Major Algorithm
2-D table Column vector is selected Row vector is selected
3-D and higher table Output vector is selected from

the first dimension of the table
Output vector is selected from
the last dimension of the table

1 Blocks

1-400

Consider the row-major and column-major direct lookup algorithms with vector output from a 3-D
table. The last dimension is the third dimension of a 3-D table. Due to semantic changes, column-
major and row-major direct lookup may output different vector size and numerical values.

This figure shows a Direct Lookup Table (n-D) block configured with a 3-D table and a vector output.
By default, the block icon shows the column-major algorithm.

To have the same block use the row-major algorithm, change the Math and Data Types > Use
algorithm optimized for row-major layout configuration parameter of the model and recompile.
The block icon changes to reflect the change to the algorithm optimized for row-major behavior.

For more information on row-major support, see “Row-Major Array Layout: Simplify integration with
external C/C++ code for Lookup Table and other blocks” (Simulink Coder).

Programmatic Use
Block Parameter: InputsSelectThisObjectFromTable
Type: character vector
Values: 'Element' | 'Vector' | '2-D Matrix'
Default: 'Element'

Diagnostic for out-of-range input — Block action when input is out of range

Warning (default) | None | Error

Specify whether to show a warning or error when an index is out of range with respect to the table
dimension. Options include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

When you select None or Warning, the block clamps out-of-range indices to fit table dimensions. For
example, if the specified index is 5.3 and the maximum index for that table dimension is 4, the block
clamps the index to 4.

 Direct Lookup Table (n-D)

1-401

Programmatic Use
Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Code generation

Remove protection against out-of-range input in generated code — Remove code that checks
for out-of-range input values

off (default) | on

Specify whether or not to include code that checks for out-of-range input values.

Check Box Result When to Use
on Generated code does not

include conditional statements
to check for out-of-range
breakpoint inputs.

When the input is out-of-range,
it may cause undefined behavior
for generated code.

For code efficiency

off Generated code includes
conditional statements to check
for out-of-range inputs.

For safety-critical applications

If your input is not out of range, you can select the Remove protection against out-of-range index
in generated code check box for code efficiency. By default, this check box is cleared. For safety-
critical applications, do not select this check box. If you want to select the Remove protection
against out-of-range index in generated code check box, first check that your model inputs are in
range. For example:

1 Clear the Remove protection against out-of-range index in generated code check box.
2 Set the Diagnostic for out-of-range input parameter to Error.
3 Simulate the model in normal mode.

1 Blocks

1-402

4 If there are out-of-range errors, fix them to be in range and run the simulation again.
5 When the simulation no longer generates out-of-range input errors, select the Remove

protection against out-of-range index in generated code check box.

Note When you select the Remove protection against out-of-range index in generated
code check box and the input is out of range, the behavior is undefined for generated code.

Depending on your application, you can run the following Model Advisor checks to verify the usage of
this check box:

• By Product > Embedded Coder > Identify lookup table blocks that generate expensive
out-of-range checking code

• By Product > Simulink Check > Modeling Standards > DO-178C/DO-331 Checks > Check
usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Advisor Checks”.

Additionally, to determine if it is safe to select this check box, if you have a Simulink Design Verifier
license, consider using the “Detect Block Input Range Violations” (Simulink Design Verifier) check.

Programmatic Use
Block Parameter: RemoveProtectionInput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Table Attributes

Note The parameters in the Table Attributes pane are not available if you select Make table an
input. In this case, the block inherits all table attributes from the input port with the label T.

Table minimum — Minimum value table data can have

[] (default) | finite, real, double, scalar

Specify the minimum value for table data. The default value is [] (unspecified).

Programmatic Use
Block Parameter: TableMin
Type: character vector
Values: scalar
Default: '[]'

Table maximum — Maximum value table data can have

[] (default) | finite, real, double, scalar

Specify the maximum value for table data. The default value is [] (unspecified).

Programmatic Use
Block Parameter: TableMax
Type: character vector

 Direct Lookup Table (n-D)

1-403

Values: scalar
Default: '[]'

Table data type — Data type of table data

Inherit: Inherit from 'Table data' (default) | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit from 'Table data'
• The name of a built-in data type, for example, single
• The name of a data type class, for example, an enumerated data type class
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: TableDataTypeStr
Type: character vector
Values: 'Inherit: Inherit from 'Table data'' | 'double' | 'single' | 'half' |
'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'Enum: <class name>'|'<data type expression>'
Default: 'Inherit: Inherit from 'Table data''

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | double | enumerated | fixed pointa | half | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

yes

1 Blocks

1-404

Variable-Size Signals no
Zero-Crossing
Detection

no

a This block supports fixed-point data types for 'Table' data only.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

MAX 10 Device Settings

If you use Intel® MAX 10 device, to map the lookup table to RAM, add this Tcl command when
creating the project in the Quartus tool:

set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE IMAGE WITH
ERAM"

Required Block Settings

 Direct Lookup Table (n-D)

1-405

• Number of table dimensions: Select the table dimension between 1 to 30.
• Inputs select this object from table: Select Element.
• Make table an input: Clear this check box.
• Diagnostic for out-of-range input: Select None, Warning (default), or Error (recommended).

Select Error for efficient HDL code generation. If you select None or Warning, HDL Coder
generates additional logic to handle out-of-range inputs.

Table Data Typing and Sizing

• It is good practice to size each dimension in the table to be a power of two. If the length of a
dimension (except the innermost dimension) is not a power of two, HDL Coder issues a warning.
By following this practice, you can avoid multiplications during table indexing operations and
realize a more efficient table in hardware.

• All ports on the block require scalar values.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block supports fixed-point data types for Table data only. In addition to built-in data types, the
index input also supports fixed-point data type with bias equal to 0, slope equal to 1.0, fractional
length equal to 0, and word length less than or equal to 128.

See Also
n-D Lookup Table

Topics
“About Lookup Table Blocks”
“Anatomy of a Lookup Table”
“Enter Breakpoints and Table Data”
“Guidelines for Choosing a Lookup Table”
“Direct Lookup Table Algorithm for Row-Major Array Layout” (Simulink Coder)
“Column-Major Layout to Row-Major Layout Conversion of Models with Lookup Table Blocks”
(Simulink Coder)

1 Blocks

1-406

Discrete Derivative
Compute discrete-time derivative

Libraries:
Simulink / Discrete

Description
The Discrete Derivative block computes an optionally scaled discrete time derivative as follows

y(tn) = K
u(tn)− u(tn− 1)

Ts

where

• u(tn) and y(tn) are the block input and output at the current time step, respectively.
• u(tn− 1) is the block input at the previous time step.
• K is an optional scaling factor, specified using the Gain value parameter.
• Ts is the simulation's discrete step size, which must be fixed.

Note Do not use this block in subsystems with a nonperiodic trigger (for example, nonperiodic
function-call subsystems). This configuration produces inaccurate results.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Scaled discrete time derivative
scalar | vector | matrix

Optionally scaled discrete-time derivative, specified as a scalar, vector, or matrix. For more
information on how the block computes the discrete-time derivative, see “Description” on page 1-407.
You specify the data type of the output signal with the Output data type parameter.

 Discrete Derivative

1-407

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main

Gain value — Scaling factor

1.0 (default) | scalar

Scaling factor applied to the computed derivative, specified as a real scalar value.

Programmatic Use
Block Parameter: gainval
Type: character vector
Values: scalar
Default: '1.0'

Initial condition for previous weighted input K*u/Ts — Initial condition

0.0 (default) | scalar

Initial condition for the previous scaled input, specified as a scalar.

Programmatic Use
Block Parameter: ICPrevScaledInput
Type: character vector
Values: scalar
Default: '0.0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector

1 Blocks

1-408

Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Signal Attributes

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

 Discrete Derivative

1-409

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 |
uint64 | fixdt(1,16,0) | fixdt(1,16,2^0,0)

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back propagation
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via back
propagation' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' |
'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

1 Blocks

1-410

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action

off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Discrete Derivative

1-411

• Depends on absolute time when used inside a triggered subsystem hierarchy.
• Generated code relies on memcpy or memset functions (string.h) under certain conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Derivative | Discrete-Time Integrator

1 Blocks

1-412

Discrete Filter
Model Infinite Impulse Response (IIR) filters

Libraries:
Simulink / Discrete

Description
The Discrete Filter block independently filters each channel of the input signal with the specified
digital IIR filter. You can specify the filter structure as Direct form I, Direct form I
transposed, Direct form II, or Direct form II transposed. The block implements static
filters with fixed coefficients. You can tune the coefficients of these static filters.

This block filters each channel of the input signal independently over time. The Input processing
parameter allows you to specify how the block treats each element of the input. You can specify
treating input elements as an independent channel (sample-based processing), or treating each
column of the input as an independent channel (frame-based processing). To perform frame-based
processing, you must have a DSP System Toolbox license.

The output dimensions equal the input dimensions, except when you specify a matrix of filter taps for
the Numerator coefficients parameter. When you do so, the output dimensions depend on the
number of different sets of filter taps you specify.

Use the Numerator coefficients parameter to specify the coefficients of the discrete filter
numerator polynomial. Use the Denominator coefficients parameter to specify the coefficients of
the denominator polynomial of the function. The Denominator coefficients parameter must be a
vector of coefficients.

Specify the coefficients of the numerator and denominator polynomials in ascending powers of z-1.
The Discrete Filter block lets you use polynomials in z-1 (the delay operator) to represent a discrete
system. Signal processing engineers typically use this method. Conversely, the Discrete Transfer Fcn
block lets you use polynomials in z to represent a discrete system. Control engineers typically use this
method. When the numerator and denominator polynomials have the same length, the two methods
are identical.

Specifying Initial States

In Dialog parameters and Input port(s) modes, the block initializes the internal filter states to zero
by default, which is equivalent to assuming past inputs and outputs are zero. You can optionally use
the Initial states parameter to specify nonzero initial states for the filter delays.

To determine the number of initial state values you must specify, and how to specify them, see the
following table on valid initial states and Number of Delay Elements (Filter States). The Initial
states parameter can take one of four forms as described in the following table.

 Discrete Filter

1-413

Valid Initial States

Initial state Examples Description
Scalar 5

Each delay element for each channel is
set to 5.

The block initializes all delay elements in the
filter to the scalar value.

Vector
(for applying the
same delay
elements to each
channel)

For a filter with two delay elements:
[d1d2]

The delay elements for all channels are
d1 and d2.

Each vector element specifies a unique initial
condition for a corresponding delay element. The
block applies the same vector of initial conditions
to each channel of the input signal. The vector
length must equal the number of delay elements
in the filter (specified in the table Number of
Delay Elements (Filter States)).

Vector or matrix
(for applying
different delay
elements to each
channel)

For a three-channel input signal and a
filter with two delay elements:

[d1d2D1D2d1d2] or

d1 D1 d1
d2 D2 d2

• The delay elements for channel 1 are
d1 and d2.

• The delay elements for channel 2 are
D1 and D2.

• The delay elements for channel 3 are
d1and d2.

Each vector or matrix element specifies a unique
initial condition for a corresponding delay
element in a corresponding channel:

• The vector length must be equal to the
product of the number of input channels and
the number of delay elements in the filter
(specified in the table Number of Delay
Elements (Filter States)).

• The matrix must have the same number of
rows as the number of delay elements in the
filter (specified in the table Number of Delay
Elements (Filter States)), and must have one
column for each channel of the input signal.

Empty matrix []
Each delay element for each channel is
set to 0.

The empty matrix, [], is equivalent to setting the
Initial conditions parameter to the scalar value
0.

The number of delay elements (filter states) per input channel depends on the filter structure, as
indicated in the following table.

Number of Delay Elements (Filter States)

Filter Structure Number of Delay Elements Per Channel
Direct form I
Direct form I transposed

• number of zeros - 1
• number of poles - 1

Direct form II
Direct form II transposed

max(number of zeros, number of
poles)-1

The following tables describe the valid initial states for different sizes of input and different number
of channels depending on whether you set the Input processing parameter to frame based or
sample based.

1 Blocks

1-414

Frame-Based Processing

Input Number of Channels Valid Initial States
(Dialog Box)

Valid Initial States
(Input Port)

• Column vector (K-
by-1)

• Unoriented vector
(K)

1 • Scalar
• Column vector (M-

by-1)
• Row vector (1-by-M)

• Scalar
• Column vector (M-

by-1)

• Row vector (1-by-N)
• Matrix (K-by-N)

N • Scalar
• Column vector (M-

by-1)
• Row vector (1-by-M)
• Matrix (M-by-N)

• Scalar
• Matrix (M-by-N)

Sample-Based Processing

Input Number of Channels Valid Initial States
(Dialog Box)

Valid Initial States
(Input Port)

• Scalar 1 • Scalar
• Column vector (M-

by-1)
• Row vector (1-by-M)

• Scalar
• Column vector (M-

by-1)
• Row vector (1-by-M)

• Row vector (1-by-N)
• Column vector (N-

by–1)
• Unoriented vector

(N)

N • Scalar
• Column vector (M-

by-1)
• Row vector (1-by-M)
• Matrix (M-by-N)

• Scalar

• Matrix (K-by-N) K × N • Scalar
• Column vector (M-

by-1)
• Row vector (1-by-M)
• Matrix (M-by-(K×N))

• Scalar

When the Initial states is a scalar, the block initializes all filter states to the same scalar value. Enter
0 to initialize all states to zero. When the Initial states is a vector or a matrix, each vector or matrix
element specifies a unique initial state. This unique state corresponds to a delay element in a
corresponding channel:

• The vector length must equal the number of delay elements in the filter, M = max(number of
zeros, number of poles).

• The matrix must have the same number of rows as the number of delay elements in the filter, M =
max(number of zeros, number of poles). The matrix must also have one column for each
channel of the input signal.

The relationship between the initial filter output y1, the initial input u1, and the initial state [x1, x2] is
given by the following equation.

 Discrete Filter

1-415

y1 = b1
u1− a2x1− a3x2

a1
+ b2x1 + b3x2

where,

• b1, b2, and b3 are the numerator coefficients of the discrete filter.
• a1, a2, and a3 are the denominator coefficients of the discrete filter.

For an example that shows this relationship, see “Specify a Vector of Initial Conditions for a Discrete
Filter Block” on page 12-140.

Ports
Input

u — Input signal
scalar | vector | matrix

Input signal to filter, specified as a scalar, vector, or matrix.

Dependencies

The name of this port depends on the source you specify for the numerator coefficients, denominator
coefficients and initial states. When you set Numerator, Denominator, and Initial states to
Dialog, there is only one input port, and the port is unlabeled. When you set Numerator,
Denominator, or Initial states to Input port, this port is labeled u.
Data Types: single | double | int8 | int16 | int32 | fixed point

Num — Numerator coefficients
scalar | vector | matrix

Numerator coefficients of the discrete filter, specified as descending powers of z. Use a row vector to
specify the coefficients for a single numerator polynomial.

Dependencies

To enable this port, set Numerator to Input port.
Data Types: single | double | int8 | int16 | int32 | fixed point

Den — Denominator coefficients
scalar | vector

Specify the denominator coefficients of the discrete filter as descending powers of z. Use a row vector
to specify the coefficients for a single denominator polynomial.

Dependencies

To enable this port, set Denominator to Input port.
Data Types: single | double | int8 | int16 | int32 | fixed point

x0 — Initial states
scalar | vector | matrix

1 Blocks

1-416

Initial states, specified as a scalar, vector, or matrix. For more information about specifying states, see
“Specifying Initial States” on page 1-413.
Dependencies

To enable this port, set the Filter structure to Direct form II or Direct form II
transposed, and set Initial states to Input port.
Data Types: single | double | int8 | int16 | int32 | fixed point

Output

Port_1 — Filtered output signal
scalar | vector | matrix

Filtered output signal. The output dimensions equal the input dimensions, except when you specify a
matrix of filter taps for the Numerator coefficients parameter. When you do so, the output
dimensions depend on the number of different sets of filter taps you specify.
Data Types: single | double | int8 | int16 | int32 | fixed point

Parameters
Main

Filter structure — Filter structure

Direct form II (default) | Direct form I transposed | Direct form I | Direct form II
transposed

Specify the discrete IIR filter structure.
Dependencies

To use any filter structure other than Direct form II, you must have an available DSP System
Toolbox license.
Programmatic Use
Block Parameter: FilterStructure
Type: character vector
Values: 'Direct form II' | 'Direct form I transposed' | 'Direct form I' |
'Direct form II transposed'
Default: 'Direct form II'

Numerator Source — Source of numerator coefficients
Dialog (default) | Input port

Specify the source of the numerator coefficients as Dialog or Input port.
Programmatic Use
Block Parameter: NumeratorSource
Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Numerator Value — Numerator coefficients

 Discrete Filter

1-417

[1] (default) | scalar | vector | matrix

Specify the numerator coefficients of the discrete filter as descending powers of z. Use a row vector
to specify the coefficients for a single numerator polynomial.

Dependencies

To enable this parameter, set the Numerator Source to Dialog.

Programmatic Use
Block Parameter: Numerator
Type: character vector
Values: scalar | vector | matrix
Default: '[1]'

Denominator Source — Source of denominator coefficients
Dialog (default) | Input port

Specify the source of the denominator coefficients as Dialog or Input port.

Programmatic Use
Block Parameter: DenominatorSource
Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Denominator Value — Denominator coefficients

[1 0.5] (default) | vector

Specify the denominator coefficients of the discrete filter as descending powers of z. Use a row vector
to specify the coefficients for a single denominator polynomial.

Dependencies

To enable this parameter, set the Denominator Source to Dialog.

Programmatic Use
Block Parameter: Denominator
Type: character vector
Values: scalar | vector
Default: '[1 0.5]'

Initial states Source — Source of initial states
Dialog (default) | Input port

Specify the source of the initial states as Dialog or Input port.

Programmatic Use
Block Parameter: InitialStatesSource
Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Initial states Value — Initial filter states

0 (default) | scalar | vector | matrix

1 Blocks

1-418

Specify the initial filter states as a scalar, vector, or matrix. To learn how to specify initial states, see
“Specifying Initial States” on page 1-413.

Dependencies

To enable this parameter, set the Filter structure to Direct form II or Direct form II
transposed, and set Initial states Source to Dialog.

Programmatic Use
Block Parameter: InitialStates
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Initial states on numerator side — Initial numerator states
0 (default) | scalar | vector | matrix

Specify the initial numerator filter states as a scalar, vector, or matrix. To learn how to specify initial
states, see “Specifying Initial States” on page 1-413.

Dependencies

To enable this port, set the Filter structure to Direct form I or Direct form I transposed.

Programmatic Use
Block Parameter: InitialStates
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Initial states on denominator side — Initial denominator states
0 (default) | scalar | vector | matrix

Specify the initial denominator filter states as a scalar, vector, or matrix. To learn how to specify
initial states, see “Specifying Initial States” on page 1-413.

Dependencies

To enable this port, set the Filter structure to Direct form I or Direct form I transposed.

Programmatic Use
Block Parameter: InitialDenominatorStates
Type: character vector
Values: scalar | vector | matrix
Default: '0'

External reset — External state reset

None (default) | Rising | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior
None No reset
Rising Reset on a rising edge

 Discrete Filter

1-419

Reset Mode Behavior
Falling Reset on a falling edge
Either Reset on either a rising or falling edge
Level Reset in either of these cases:

• When the reset signal is nonzero at the
current time step

• When the reset signal value changes from
nonzero at the previous time step to zero at
the current time step

Level hold Reset when the reset signal is nonzero at the
current time step

Programmatic Use
Block Parameter: ExternalReset
Type: character vector
Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'None'

Input processing — Sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing.

• Elements as channels (sample based) — Process each element of the input as an
independent channel.

• Columns as channels (frame based) — Process each column of the input as an independent
channel.

Dependencies

Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Optimize by skipping divide by leading denominator coefficient (a0) — Skip divide by a0

off (default) | on

Select when the leading denominator coefficient, a0, equals one. This parameter optimizes your code.

When you select this check box, the block does not perform a divide-by-a0 either in simulation or in
the generated code. An error occurs if a0 is not equal to one.

1 Blocks

1-420

When you clear this check box, the block is fully tunable during simulation. It performs a divide-by-a0
in both simulation and code generation.

Programmatic Use
Block Parameter: a0EqualsOne
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time (-1 for inherited) — Interval between samples

-1 (default) | scalar | vector

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. For
more information, see “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

Data Types

State — State data type

Inherit: Same as input (default) | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data
type expression>

Specify the state data type. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same as input
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: StateDataTypeStr
Type: character vector
Values: 'Inherit: Same as input' | 'int8' | 'int16' | 'int32' | 'int64' |
'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Same as input'

Numerator coefficients — Numerator coefficient data type

Inherit: Inherit via internal rule (default) | int8 | int16 | int32 | int64 |
fixdt(1,16) | fixdt(1,16,0) | <data type expression>

Specify the numerator coefficient data type. You can set this parameter to:

 Discrete Filter

1-421

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in signed integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: NumCoeffDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'int8' | 'int16' | 'int32' |
'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Numerator coefficient minimum — Minimum value of numerator coefficients

[] (default) | scalar

Specify the minimum value that a numerator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: NumCoeffMin
Type: character vector
Values: scalar
Default: '[]'

Numerator coefficient maximum — Maximum value of numerator coefficients

[] (default) | scalar

Specify the maximum value that a numerator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: NumCoeffMax
Type: character vector
Values: scalar
Default: '[]'

Numerator product output — Numerator product output data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | int8 | int16 |
int32 | int64 | fixdt(1,16,0) | <data type expression>

1 Blocks

1-422

Specify the product output data type for the numerator coefficients. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: NumProductDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
'int8' | 'int16' | 'int32' | 'int64' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'Inherit: Inherit via interal rule'

Numerator accumulator — Numerator accumulator data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data type
expression>

Specify the accumulator data type for the numerator coefficients. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: NumAccumDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
'Inherit: Same as product output' | 'int8' | 'int16' | 'int32' | 'int64' |
'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via interal rule'

Denominator coefficients — Denominator coefficient data type

Inherit: Inherit via internal rule (default) | int8 | int16 | int32 | int64 |
fixdt(1,16) | fixdt(1,16,0) | <data type expression>

Specify the denominator coefficient data type. You can set this parameter to:

 Discrete Filter

1-423

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: DenCoeffDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'int8' | 'int16' | 'int32' |
'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Denominator coefficient minimum — Minimum value of denominator coefficients

[] (default) | scalar

Specify the minimum value that a denominator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: DenCoeffMin
Type: character vector
Values: scalar
Default: '[]'

Denominator coefficient maximum — Maximum value of denominator coefficients

[] (default) | scalar

Specify the maximum value that a denominator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: DenCoeffMax
Type: character vector
Values: scalar
Default: '[]'

Denominator product output — Denominator product output data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | int8 | int16 |
int32 | int64 | fixdt(1,16,0) | <data type expression>

1 Blocks

1-424

Specify the product output data type for the denominator coefficients. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: DenProductDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
'int8' | 'int16' | 'int32' | 'int64' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'Inherit: Inherit via internal rule'

Denominator accumulator — Denominator accumulator data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data type
expression>

Specify the accumulator data type for the denominator coefficients. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: DenAccumDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
'Inherit: Same as product output' | 'int8' | 'int16' | 'int32' | 'int64' |
'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Output — Output data type

Inherit: Inherit via internal rule (default) | int8 | int16 | int32 | int64 |
fixdt(1,16) | fixdt(1,16,0) | <data type expression>

Specify the output data type. You can set this parameter to:

 Discrete Filter

1-425

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'int8' | 'int16' | 'int32' |
'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Output minimum — Minimum value of output

[] (default) | scalar

Specify the minimum value that the block can output. The default value is [] (unspecified). Simulink
software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Output maximum — Maximum value of output

[] (default) | scalar

Specify the maximum value that the block can output. The default value is [] (unspecified). Simulink
software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Multiplicand data type — Multiplicand data type
Inherit: Same as input (default) | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data
type expression>

Specify the multiplicand data type. You can set this parameter to:

1 Blocks

1-426

• A rule that inherits a data type, for example, Inherit: Same as input
• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Dependencies

To enable this parameter, set the Filter structure to Direct form I transposed

Programmatic Use
Block Parameter: MultiplicandDataTypeStr
Type: character vector
Values: 'Inherit: Same as input' | 'int8' | 'int16' | 'int32' | 'int64' |
'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Same as input'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select to lock data type settings of this block against changes by the Fixed-Point Tool and the Fixed-
Point Advisor. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

 Discrete Filter

1-427

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

State name — Assign unique name to each state

' ' (default) | 'position' | {'a', 'b', 'c'} | a | ...

Assign a unique name to each state. If this field is blank (' '), no name assignment occurs.

• To assign a name to a single state, enter the name between quotes, for example, 'position'.
• To assign names to multiple states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.

1 Blocks

1-428

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Limitations

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

Dependencies

To enable this parameter, set Filter structure to Direct form II.

Programmatic Use
Block Parameter: StateName
Type: character vector
Values: ' ' | user-defined
Default: ' '

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, set Filter structure to Direct form II and specify a value for State
name. This parameter appears only if you set the model configuration parameter Signal resolution
to a value other than None.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | fixed pointa | integera | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

a This block only supports signed fixed-point data types.

 Discrete Filter

1-429

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block only supports signed fixed-point data types.

The Discrete Filter block accepts and outputs real and complex signals of any signed numeric data
type that Simulink supports. The block supports the same types for the numerator and denominator
coefficients.

Numerator and denominator coefficients must have the same complexity. They can have different
word lengths and fraction lengths.

The following diagrams show the filter structure and the data types used within the Discrete Filter
block for fixed-point signals.

The block omits the dashed divide when you select the Optimize by skipping divide by leading
denominator coefficient (a0) parameter.

1 Blocks

1-430

See Also
Discrete FIR Filter | Allpole Filter | Digital Filter Design | Filter Realization Wizard | dsp.IIRFilter
| dsp.AllpoleFilter | filterDesigner | fvtool

Topics
“Sample- and Frame-Based Concepts” (DSP System Toolbox)
“Working with States” on page 11-21

 Discrete Filter

1-431

Discrete FIR Filter
Model FIR filters

Libraries:
Simulink / Discrete
HDL Coder / Discrete
HDL Coder / HDL Floating Point Operations

Description
The Discrete FIR Filter block independently filters each channel of the input signal with the specified
digital FIR filter. The block can implement static filters with fixed coefficients, and time-varying filters
with coefficients that change over time. You can tune the coefficients of a static filter during
simulation.

This block filters each channel of the input signal independently over time. The Input processing
parameter allows you to specify whether the block treats each element of the input as an independent
channel (sample-based processing), or each column of the input as an independent channel (frame-
based processing). To perform frame-based processing, you must have a DSP System Toolbox license.

The output dimensions equal the input dimensions, except when you specify a matrix of filter taps for
the Coefficients parameter. When you do so, the output dimensions depend on the number of
different sets of filter taps you specify.

This block supports custom state attributes to customize and generate code more efficiently. For an
example, see “Custom State Attributes in Discrete FIR Filter block”. Under certain conditions, the
block also supports SIMD code generation. For details, see “Code Generation” on page 1-444.

The outputs of this block numerically match the outputs of the DSP System Toolbox Digital Filter
Design block.

This block supports the Simulink state logging feature. For more information, see “State”.

Filter Structure Support

You can change the filter structure implemented with the Discrete FIR Filter block by selecting one of
the following from the Filter structure parameter:

• Direct form
• Direct form symmetric
• Direct form antisymmetric
• Direct form transposed
• Lattice MA

You must have an available DSP System Toolbox license to run a model with any of these filter
structures other than Direct form.

1 Blocks

1-432

Specifying Initial States

The Discrete FIR Filter block initializes the internal filter states to zero by default, which has the
same effect as assuming that past inputs and outputs are zero. You can optionally use the Initial
states parameter to specify nonzero initial conditions for the filter delays.

To determine the number of initial states you must specify and how to specify them, see the table on
valid initial states. The Initial states parameter can take one of the forms described in the next
table.

Valid Initial States
Initial Condition Description
Scalar The block initializes all delay elements in the filter to the scalar value.
Vector or matrix
(for applying different delay
elements to each channel)

Each vector or matrix element specifies a unique initial condition for a
corresponding delay element in a corresponding channel:

• The vector length equals the product of the number of input channels and
the number of delay elements in the filter, #_of_filter_coeffs-1 (or
#_of_reflection_coeffs for Lattice MA).

• The matrix must have the same number of rows as the number of delay
elements in the filter, #_of_filter_coeffs-1
(#_of_reflection_coeffs for Lattice MA), and must have one column
for each channel of the input signal.

Ports
Input

In — Input signal
scalar | vector | matrix

Input signal to filter, specified as a scalar, vector, or matrix.
Dependencies

When you set Coefficient source to Dialog parameters, the port for the input signal is unlabeled.
When you set Coefficient source to Input port, the port for the input signal is labeled In.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Num — Filter coefficients
scalar | vector | matrix

Specify the filter coefficients as a scalar, vector, or matrix. When you specify a row vector of filter
taps, the block applies a single filter to the input. To apply multiple filters to the same input, specify a
matrix of coefficients, where each row represents a different set of filter taps.
Dependencies

To enable this port, set Coefficient source to Input port.

To implement multiple filters, Filter structure must be Direct form, and the input must be a
scalar.

 Discrete FIR Filter

1-433

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

External reset — External reset signal
scalar

External reset signal, specified as a scalar. When the specified trigger event occurs, the block resets
the states to their initial conditions.

Tip The icon for this port changes based on the value of the External reset parameter.

Dependencies

To enable this port, set External reset to Rising, Falling, Either, Level, or Level hold.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

⎍ — Enable signal
scalar

Enable signal, specified as a scalar. This port can control execution of the block. The block is enabled
when the input to this port is nonzero, and is disabled when the input is 0. The value of the input is
checked at the same time step as the block execution.

Dependencies

To enable this port, select the Show enable port check box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Filtered output signal
scalar | vector | matrix

Filtered output signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main

Coefficient source — Source of coefficients

Dialog parameters (default) | Input port

Choose to specify the filter coefficients using tunable dialog parameters or through an input port,
which is useful for time-varying coefficients.

1 Blocks

1-434

Programmatic Use
Block Parameter: CoefSource
Type: character vector
Values: 'Dialog parameters' | 'Input port'
Default: 'Dialog parameters'

Filter structure — Filter structure

Direct form (default) | Direct form symmetric | Direct form antisymmetric | Direct
form transposed | Lattice MA

Select the filter structure you want the block to implement.

Dependencies

You must have an available DSP System Toolbox license to run a model with a Discrete FIR Filter
block that implements any filter structure other than Direct form.

Programmatic Use
Block Parameter: FilterStructure
Type: character vector
Values: 'Direct form' | 'Direct form symmetric' | 'Direct form antisymmetric' |
'Direct form transposed' | 'Lattice MA'
Default: 'Direct form'

Coefficients — Filter coefficients

[0.5 0.5] (default) | vector | matrix

Specify the coefficient vector for the transfer function. Filter coefficients must be specified as a row
vector. When you specify a row vector of filter taps, the block applies a single filter to the input. To
apply multiple filters to the same input, specify a matrix of coefficients, where each row represents a
different set of filter taps.

Dependencies

To enable this parameter, set Coefficient source to Dialog parameters.

To implement multiple filters, Filter structure must be Direct form, and the input must be a
scalar.

Programmatic Use
Block Parameter: Coefficients
Type: character vector
Values: vector
Default: '[0.5 0.5]'

Input processing — Sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing. You can select one of the
following options:

• Elements as channels (sample based) — Treat each element of the input as an
independent channel (sample-based processing).

 Discrete FIR Filter

1-435

• Columns as channels (frame based) — Treat each column of the input as an independent
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Initial states — Initial conditions of filter states

0 (default) | scalar | vector | matrix

Specify the initial conditions of the filter states. To learn how to specify initial states, see “Specifying
Initial States” on page 1-433.

Programmatic Use
Block Parameter: InitialStates
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Show enable port — Create enable port

off (default) | on

Select to control execution of this block with an enable port. The block is considered enabled when
the input to this port is nonzero, and is disabled when the input is 0. The value of the input is checked
at the same time step as the block execution.

Programmatic Use
Block Parameter: ShowEnablePort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

External reset — External state reset

None (default) | Rising | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior
None No reset
Rising Reset on a rising edge
Falling Reset on a falling edge
Either Reset on either a rising or falling edge

1 Blocks

1-436

Reset Mode Behavior
Level Reset in either of these cases:

• When the reset signal is nonzero at the
current time step

• When the reset signal value changes from
nonzero at the previous time step to zero at
the current time step

Level hold Reset when the reset signal is nonzero at the
current time step

Programmatic Use
Block Parameter: ExternalReset
Type: character vector
Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'None'

Sample time (-1 for inherited) — Time interval between samples

-1 (default) | scalar | vector

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. For
more information, see “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

Data Types

Tap sum — Tap sum data type

Inherit: Same as input (default) | Inherit: Inherit via internal rule | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16,0) | <data type
expression>

Specify the tap sum data type of a direct form symmetric or direct form antisymmetric filter, which is
the data type the filter uses when it sums the inputs prior to multiplication by the coefficients. You
can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

 Discrete FIR Filter

1-437

Dependencies

This parameter is only visible when you set the Filter structure to Direct form symmetric or
Direct form antisymmetric.

Programmatic Use
Block Parameter: TapSumDataTypeStr
Type: character vector
Values: 'Inherit: Same as input' | 'int8' | 'uint8' | 'int16' | 'uint16' |
'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'Inherit: Same as input'

Coefficients — Coefficient data type

Inherit: Same wordlength as input (default) | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | fixdt(1,16,0) | <data type expression>

Specify the coefficient data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same word length as input
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: CoefDataTypeStr
Type: character vector
Values: 'Inherit: Same word length as input'| 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Same wordlength as input'

Coefficients minimum — Minimum value of coefficients

[] (default) | scalar

Specify the minimum value that a filter coefficient should have. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: CoeffMin
Type: character vector
Values: scalar
Default: '[]'

1 Blocks

1-438

Coefficients maximum — Maximum value of coefficients

[] (default) | scalar

Specify the maximum value that a filter coefficient should have. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: CoeffMax
Type: character vector
Values: scalar
Default: '[]'

Product output — Product output data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16,0) | <data type
expression>

Specify the product output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: ProductDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Accumulator — Accumulator data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
fixdt(1,16,0) | <data type expression>

Specify the accumulator data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in data type, for example, int8

 Discrete FIR Filter

1-439

• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: AccumDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
'Inherit: Same as product output' | 'int8' | 'uint8' | 'int16' | 'uint16' |
'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'Inherit: Inherit via internal rule'

State — State data type

Inherit: Same as accumulator (default) | Inherit: Same as input | int8 | uint8 | int16
| uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16,0) | <data type expression>

Specify the state data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Dependencies

To enable this parameter, set the Filter structure to Lattice MA.

Programmatic Use
Block Parameter: StateDataTypeStr
Type: character vector
Values: 'Inherit: Same as accumulator' | 'Inherit: Same as input' | 'int8' |
'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' |
'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Same as accumulator'

Output — Output data type

Inherit: Same as accumulator (default) | Inherit: Same as input | int8 | uint8 | int16
| uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) | <data type
expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object

1 Blocks

1-440

• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Same as accumulator' | 'Inherit: Same as input' | 'int8' |
'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' |
'fixdt(1,16)' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Same as accumulator'

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

 Discrete FIR Filter

1-441

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select to lock data type settings of this block against changes by the Fixed-Point Tool and the Fixed-
Point Advisor. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

1 Blocks

1-442

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

 Discrete FIR Filter

1-443

Version History
Introduced in R2008a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports custom state attributes to customize and generate code more efficiently. To
access or set these attributes, open the Model Data Editor. On the Modeling tab, click Model Data
Editor. For an example, see “Custom State Attributes in Discrete FIR Filter block”.

The Discrete FIR Filter block supports SIMD code generation using Intel AVX2 technology under
these conditions:

• Filter structure is set to Direct form or Direct form transposed.
• Input processing is set to Columns as channels (frame based).
• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

For hardware-friendly valid and reset control signals, and to model exact hardware latency behavior
in Simulink, use the Discrete FIR Filter block instead.

To reduce area or increase speed, the Discrete FIR Filter block supports either block-level
optimizations or subsystem-level optimizations. For details of available block-level optimization
parameters, see “Block Optimizations” on page 1-446. When you enable block optimizations, the
block cannot participate in subsystem optimizations. Use block optimizations when your design is a
single one-channel filter. Use subsystem optimizations to share resources across multiple channels or
multiple filters. For the block to participate in subsystem-level optimizations, set the Architecture to
Fully parallel. See “Subsystem Optimizations for Filters” (HDL Coder).

Multichannel Filter Support

HDL Coder supports the use of vector inputs to Discrete FIR Filter blocks, where each element of the
vector represents an independent channel.

1 Connect a vector signal to the Discrete FIR Filter block input port.
2 Specify Input processing as Elements as channels (sample based).
3 To reduce area by sharing the filter kernel between channels, set the ChannelSharing property

to the number of channels.

1 Blocks

1-444

Programmable Filter Support

HDL Coder supports programmable filters for Discrete FIR Filter blocks.

1 On the filter block mask, set Coefficient source to Input port.
2 Connect a vector signal to the Num coefficient port.

Programmable filters are not supported for:

• distributed arithmetic (DA)
• CoeffMultipliers set to csd or factored-csd

Frame-Based Input Support

HDL Coder supports the use of vector inputs to Discrete FIR Filter blocks, where each element of the
vector represents a sample in time. You can use an input vector of up to 512 samples. The frame-
based implementation supports fixed-point input and output data types, and uses full-precision
internal data types. You can use real input signals with real coefficients, complex input signals with
real coefficients, or real input signals with complex coefficients. You can also use frame-based input
with programmable coefficients.

1 Connect a vector signal to the Discrete FIR Filter block input port.
2 Specify Input processing as Columns as channels (frame based), and set Filter

structure to Direct form or Direct form transposed. For frame-based input with
programmable coefficients, set Filter structure to Direct form.

3 Right-click the block and open HDL Code > HDL Block Properties. Set the Architecture to
Frame Based. The block implements a direct form parallel HDL architecture. Other
architectures, including fully- or partly-serial, are not supported. See “Frame-Based
Architecture” (HDL Coder).

Frame-based input filters are not supported for:

• Optional block-level reset and enable control signals
• Resettable and enabled subsystems
• Complex input signals with complex coefficients. You can use either complex input signals and real
coefficients, or complex coefficients and real input signals.

• Multichannel input
• Sharing and streaming optimizations
• distributed arithmetic (DA)

Control Ports

You can generate HDL code for filters with or without the optional enable port, and with or without
the optional reset port.

Complex Data Support

You can use any combination of complex input and complex coefficients with fully-parallel filter
structures, when you use non-frame-based input data.

Complex coefficients are not supported with serial filter architectures.

 Discrete FIR Filter

1-445

When you use frame-based input data you can use either complex input signals and real coefficients,
or complex coefficients and real input signals.

You cannot use distributed arithmetic (DA) or CoeffMultipliers set to csd or factored-csd with
complex coefficients.

Block Optimizations

Area and Speed Optimizations
Serial Architecture To use block-level optimizations to reduce hardware resources, set

Architecture to one of the serial options. See “HDL Filter Architectures”
(HDL Coder).

When you specify SerialPartition and ReuseAccum for a Discrete FIR
Filter block, set Filter structure to Direct form, Direct form
symmetric, or Direct form antisymmetric. The Direct form
transposed structure is not supported with serial architectures.

Distributed Arithmetic To minimize multipliers by replacing them with LUTs and shift registers,
use a distributed arithmetic (DA) filter implementation. See “Distributed
Arithmetic for HDL Filters” (HDL Coder).

When you select the Distributed Arithmetic (DA) architecture and
use the DALUTPartition and DARadix distributed arithmetic properties,
set Filter structure to Direct form, Direct form symmetric, or
Direct form antisymmetric. The Direct form transposed
structure is not supported with distributed arithmetic.

Multichannel Area
Reduction

To share filter logic between channels, set the ChannelSharing property
to the number of channels. Using ChannelSharing excludes the filter
from other optimizations.

You can achieve the same logic sharing across all eligible logic in a
subsystem by using the StreamingFactor property. This option also
enables the filter to participate in other subsystem optimizations. See the
Streaming section of “Subsystem Optimizations for Filters” (HDL Coder).

Pipelining To improve clock speed, use AddPipelineRegisters to use a pipelined
adder tree rather than the default linear adder. You can also specify the
number of pipeline stages before and after the multipliers. See “HDL Filter
Architectures” (HDL Coder).

HDL Filter Properties
AddPipelineRegisters Insert a pipeline register between stages of computation in a filter. See

also AddPipelineRegisters (HDL Coder).
ChannelSharing For a multichannel filter, generate a single filter implementation to be

shared between channels. See also ChannelSharing (HDL Coder).
CoeffMultipliers Specify the use of canonical signed digit (CSD) optimization to decrease

filter area by replacing coefficient multipliers with shift-and-add logic.
When you choose a fully parallel filter implementation, you can set
CoeffMultipliers to csd or factored-csd. The default is multipliers,
which retains multipliers in the HDL. See also CoeffMultipliers (HDL
Coder).

1 Blocks

1-446

HDL Filter Properties
DALUTPartition Specify distributed arithmetic partial-product LUT partitions as a vector of

the sizes of each partition. The sum of all vector elements must be equal to
the filter length. The maximum size for a partition is 12 taps. Set
DALUTPartition to a scalar value equal to the filter length to generate DA
code without LUT partitions. See also DALUTPartition (HDL Coder).

DARadix Specify how many distributed arithmetic bit sums are computed in parallel.
A DA radix of 8 (2^3) generates a DA implementation that computes three
sums at a time. The default value is 2^1, which generates a fully serial DA
implementation. See also DARadix (HDL Coder).

MultiplierInputPipeli
ne

Specify the number of pipeline stages to add at filter multiplier inputs. See
also MultiplierInputPipeline (HDL Coder).

MultiplierOutputPipel
ine

Specify the number of pipeline stages to add at filter multiplier outputs.
See also MultiplierOutputPipeline (HDL Coder).

ReuseAccum Enable or disable accumulator reuse in a serial filter implementation. Set
ReuseAccum to on to use a cascade-serial implementation. See also
ReuseAccum (HDL Coder).

SerialPartition Specify partitions for partly serial or cascade-serial filter implementations
as a vector of the lengths of each partition. For a fully serial
implementation, set this parameter to the length of the filter. See also
SerialPartition (HDL Coder).

HDL Block Properties
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• HDL code generation is not supported for:

• Unsigned input data.
• Nonzero initial states. You must set Initial states to 0.
• Filter Structure: Lattice MA.

• CoeffMultipliers options are supported only when using a fully parallel architecture. When you
select a serial architecture, CoeffMultipliers is hidden from the HDL Block Properties dialog box.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

 Discrete FIR Filter

1-447

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The Discrete FIR Filter block accepts and outputs real and complex signals of any numeric data type
supported by Simulink. The block supports the same types for the coefficients.

The following diagrams show the filter structure and the data types used within the Discrete FIR
Filter block for fixed-point signals.

Direct Form

You cannot specify the state data type on the block mask for this structure because the input states
have the same data types as the input.

Direct Form Symmetric

1 Blocks

1-448

You cannot specify the state data type on the block mask for this structure because the input states
have the same data types as the input.

It is assumed that the filter coefficients are symmetric. The block only uses the first half of the
coefficients for filtering.

 Discrete FIR Filter

1-449

Direct Form Antisymmetric

You cannot specify the state data type on the block mask for this structure because the input states
have the same data types as the input.

It is assumed that the filter coefficients are antisymmetric. The block only uses the first half of the
coefficients for filtering.

1 Blocks

1-450

 Discrete FIR Filter

1-451

Direct Form Transposed

States are complex when either the inputs or the coefficients are complex.

1 Blocks

1-452

Lattice MA

 Discrete FIR Filter

1-453

See Also
Discrete Filter | Digital Filter Design

Topics
“Sample- and Frame-Based Concepts” (DSP System Toolbox)
“Custom State Attributes in Discrete FIR Filter block”
“Working with States” on page 11-21

1 Blocks

1-454

Discrete PID Controller
Discrete-time or continuous-time PID controller

Libraries:
Simulink / Discrete
HDL Coder / Discrete
HDL Coder / HDL Floating Point Operations

Description
The Discrete PID Controller block implements a PID controller (PID, PI, PD, P only, or I only). The
block is identical to the PID Controller block with the Time domain parameter set to Discrete-
time.

The block output is a weighted sum of the input signal, the integral of the input signal, and the
derivative of the input signal. The weights are the proportional, integral, and derivative gain
parameters. A first-order pole filters the derivative action.

The block supports several controller types and structures. Configurable options in the block include:

• Controller type (PID, PI, PD, P only, or I only) — See the Controller parameter.
• Controller form (Parallel or Ideal) — See the Form parameter.
• Time domain (continuous or discrete) — See the Time domain parameter.
• Initial conditions and reset trigger — See the Source and External reset parameters.
• Output saturation limits and built-in anti-windup mechanism — See the Limit output parameter.
• Signal tracking for bumpless control transfer and multiloop control — See the Enable tracking

mode parameter.

As you change these options, the internal structure of the block changes by activating different
variant subsystems. (For more information, see “Implement Variations in Separate Hierarchy Using
Variant Subsystems”). To examine the internal structure of the block and its variant subsystems,
right-click the block and select Mask > Look Under Mask.

Control Configuration

In one common implementation, the PID Controller block operates in the feedforward path of a
feedback loop.

 Discrete PID Controller

1-455

The input of the block is typically an error signal, which is the difference between a reference signal
and the system output. For a two-input block that permits setpoint weighting, see Discrete PID
Controller (2DOF).

PID Gain Tuning

The PID controller gains are tunable either manually or automatically. Automatic tuning requires
Simulink Control Design software. For more information about automatic tuning, see the Select
tuning method parameter.

Ports
Input

Port_1(u) — Error signal input
scalar | vector

Difference between a reference signal and the output of the system under control, as shown.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

P — Proportional gain
scalar | vector

Proportional gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

1 Blocks

1-456

Dependencies

To enable this port, set Controller parameters Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

I — Integral gain
scalar | vector

Integral gain, provided from a source external to the block. External gain input is useful, for example,
when you want to map a different PID parameterization to the PID gains of the block. You can also
use external gain input to implement gain-scheduled PID control. In gain-scheduled control, you
determine the PID coefficients by logic or other calculation in your model and feed them to the block.

When you supply gains externally, time variations in the integral gain are also integrated. This result
occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.
Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has integral action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

I*Ts — Integral gain multiplied by sample time
scalar | vector

Integral gain multiplied by the controller sample time, provided from a source external to the block.
External gain input is useful, for example, when you want to map a different PID parameterization to
the PID gains of the block. You can also use external gain input to implement gain-scheduled PID
control. In gain-scheduled control, you determine the PID coefficients by logic or other calculations in
your model and feed them to the block.

Note PID tuning tools, such as the PID Tuner app and Closed-Loop PID Autotuner block, tune the
gain I but not I*Ts. Therefore, multiply the integral gain value you obtain from a tuning tool by the
sample time before you supply it to this port.

When you use I*Ts instead of I, the block requires fewer calculations to perform integration. This
improves the execution time of the generated code.
Dependencies

To enable this port, set Controller parameters Source to external, set Controller to a controller
type that has integral action, and enable the Use I*Ts parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

D — Derivative gain
scalar | vector

Derivative gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You

 Discrete PID Controller

1-457

can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

When you supply gains externally, time variations in the derivative gain are also differentiated. This
result occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has derivative action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

N — Filter coefficient
scalar | vector

Derivative filter coefficient, provided from a source external to the block. External coefficient input is
useful, for example, when you want to map a different PID parameterization to the PID gains of the
block. You can also use the external input to implement gain-scheduled PID control. In gain-scheduled
control, you determine the PID coefficients by logic or other calculation in your model and feed them
to the block.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has a filtered derivative.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Reset — External reset trigger
scalar

Trigger to reset the integrator and filter to their initial conditions. The value of the External reset
parameter determines whether reset occurs on a rising signal, a falling signal, or a level signal. The
port icon indicates the selected trigger type. For example, the following illustration shows a
continuous-time PID block with External reset set to rising.

When the trigger occurs, the block resets the integrator and filter to the initial conditions specified by
the Integrator Initial condition and Filter Initial condition parameters or the I0 and D0 ports.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA™) software
standard, your model must use Boolean signals to drive the external reset ports of the PID controller
block.

1 Blocks

1-458

Dependencies

To enable this port, set External reset to any value other than none.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | Boolean

I0 — Integrator initial condition
scalar | vector

Integrator initial condition, provided from a source external to the block.

Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has integral action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

D0 — Filter initial condition
scalar | vector

Initial condition of the derivative filter, provided from a source external to the block.

Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has derivative action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

up — Output saturation upper limit
scalar | vector

Upper limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions exceeds the value provided at this port, the block
output is held at that value.

Dependencies

To enable this port, select Limit output and set the output saturation Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

lo — Output saturation lower limit
scalar | vector

Lower limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions goes below the value provided at this port, the block
output is held at that value.

Dependencies

To enable this port, select Limit output and set the output saturation Source to external.

 Discrete PID Controller

1-459

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

TR — Tracking signal
scalar | vector

Signal for controller output to track. When signal tracking is active, the difference between the
tracking signal and the block output is fed back to the integrator input. Signal tracking is useful for
implementing bumpless control transfer in systems that switch between two controllers. It can also
be useful to prevent block windup in multiloop control systems. For more information, see the Enable
tracking mode parameter.

Dependencies

To enable this port, select the Enable tracking mode parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

TDTI — Discrete-integrator time
scalar

Discrete-integrator time, provided as a scalar to the block. You can use your own value of discrete-
time integrator sample time that defines the rate at which the block is going to be run either in
Simulink or on external hardware. The value of the discrete-time integrator time should match the
average sampling rate of the external interrupts, when the block is used inside a conditionally-
executed subsystem.

In other words, you can specify Ts for any of the integrator methods below such that the value
matches the average sampling rate of the external interrupts. In discrete time, the derivative term of
the controller transfer function is:

D N
1 + Nα(z) ,

where α(z) depends on the integrator method you specify with this parameter.

1 Blocks

1-460

Forward Euler

α(z) =
Ts

z − 1 .
Backward Euler

α(z) =
Tsz

z − 1 .
Trapezoidal

α(z) =
Ts
2

z + 1
z − 1 .

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page. For more information on conditionally executed subsystems, see “Conditionally
Executed Subsystems Overview”.

 Discrete PID Controller

1-461

Dependencies

To enable this port, set Time Domain to Discrete-time and select the PID Controller is inside a
conditionally executed subsystem option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output

Port_1(y) — Controller output
scalar | vector

Controller output, generally based on a sum of the input signal, the integral of the input signal, and
the derivative of the input signal, weighted by the proportional, integral, and derivative gain
parameters. A first-order pole filters the derivative action. Which terms are present in the controller
signal depends on what you select for the Controller parameter. The base controller transfer
function for the current settings is displayed in the Compensator formula section of the block
parameters and under the mask. Other parameters modify the block output, such as saturation limits
specified by the Upper Limit and Lower Limit saturation parameters.

The controller output is a vector signal when any of the inputs is a vector signal. In that case, the
block acts as N independent PID controllers, where N is the number of signals in the input vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Controller — Controller type

PID (default) | PI | PD | P | I

Specify which of the proportional, integral, and derivative terms are in the controller.

PID
Proportional, integral, and derivative action.

PI
Proportional and integral action only.

PD
Proportional and derivative action only.

P
Proportional action only.

I
Integral action only.

Tip The controller transfer function for the current setting is displayed in the Compensator
formula section of the block parameters and under the mask.

1 Blocks

1-462

Programmatic Use
Block Parameter: Controller
Type: string, character vector
Values: "PID", "PI", "PD", "P", "I"
Default: "PID"

Form — Controller structure

Parallel (default) | Ideal

Specify whether the controller structure is parallel or ideal.

Parallel
The controller output is the sum of the proportional, integral, and derivative actions, weighted
independently by P, I, and D, respectively. For example, for a continuous-time parallel-form PID
controller, the transfer function is:

Cpar(s) = P + I 1
s + D Ns

s + N .

For a discrete-time parallel-form controller, the transfer function is:

Cpar(z) = P + Iα(z) + D N
1 + Nβ(z) ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

Ideal
The proportional gain P acts on the sum of all actions. For example, for a continuous-time ideal-
form PID controller, the transfer function is:

Cid(s) = P 1 + I 1
s + D Ns

s + N .
For a discrete-time ideal-form controller, the transfer function is:

Cid(z) = P 1 + Iα(z) + D N
1 + Nβ(z) ,

where the Integrator method and Filter method parameters determine a(z) and b(z),
respectively.

Tip The controller transfer function for the current settings is displayed in the Compensator
formula section of the block parameters and under the mask.

Programmatic Use
Block Parameter: Controller
Type: string, character vector

 Discrete PID Controller

1-463

Values: "Parallel", "Ideal"
Default: "Parallel"

Time domain — Specify discrete-time or continuous-time controller

Discrete-time (default) | Continuous-time

When you select Discrete-time, it is recommended that you specify an explicit sample time for the
block. See the Sample time (-1 for inherited) parameter. Selecting Discrete-time also enables
the Integrator method, and Filter method parameters.

When the PID Controller block is in a model with synchronous state control (see the State Control
block), you cannot select Continuous-time.

Note The PID Controller and Discrete PID Controller blocks are identical except for the default value
of this parameter.

Programmatic Use
Block Parameter: TimeDomain
Type: string, character vector
Values: "Continuous-time", "Discrete-time"
Default: "Discrete-time"

PID Controller is inside a conditionally executed subsystem — Enable the discrete-integrator
time port
off (default) | on

For discrete-time PID controllers, enable the discrete-time integrator port to use your own value of
discrete-time integrator sample time. To ensure proper integration, use the TDTI port to provide a
scalar value of Δt for accurate discrete-time integration.

Dependencies

To enable this parameter, set Time Domain to Discrete-time.

Programmatic Use
Block Parameter: UseExternalTs
Type: string, character vector
Values: "on", "off"
Default: "off"

Sample time (-1 for inherited) — Discrete interval between samples

–1 (default) | positive scalar

Specify a sample time by entering a positive scalar value, such as 0.1. The default discrete sample
time of –1 means that the block inherits its sample time from upstream blocks. However, it is
recommended that you set the controller sample time explicitly, especially if you expect the sample
time of upstream blocks to change. The effect of the controller coefficients P, I, D, and N depend on
the sample time. Thus, for a given set of coefficient values, changing the sample time changes the
performance of the controller.

See “Specify Sample Time” for more information.

1 Blocks

1-464

To implement a continuous-time controller, set Time domain to Continuous-time.

Tip If you want to run the block with an externally specified or variable sample time, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time.

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use
Block Parameter: SampleTime
Type: scalar
Values: -1, positive scalar
Default: -1

Integrator method — Method for computing integral in discrete-time controller

Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the integral term of the controller transfer function is Iα(z), where α(z) depends on
the integrator method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

α(z) =
Ts

z − 1 .
This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

Backward Euler
Backward rectangular (right-hand) approximation,

 Discrete PID Controller

1-465

α(z) =
Tsz

z − 1 .
An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal
Bilinear approximation,

α(z) =
Ts
2

z + 1
z − 1 .

An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,
the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

Note For the BackwardEuler or Trapezoidal methods, you cannot generate HDL code for the
block if either:

• Limit output is selected and Anti-Windup Method is anything other than none.
• Enable tracking mode is selected.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

1 Blocks

1-466

Dependencies

To enable this parameter, set Time Domain to Discrete-time and set Controller to a controller
type with integral action.
Programmatic Use
Block Parameter: IntegratorMethod
Type: string, character vector
Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Filter method — Method for computing derivative in discrete-time controller

Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the derivative term of the controller transfer function is:

D N
1 + Nα(z) ,

where α(z) depends on the filter method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

α(z) =
Ts

z − 1 .
This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

 Discrete PID Controller

1-467

Backward Euler
Backward rectangular (right-hand) approximation,

α(z) =
Tsz

z − 1 .
An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal
Bilinear approximation,

α(z) =
Ts
2

z + 1
z − 1 .

An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,
the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

Dependencies

To enable this parameter, set Time Domain to Discrete-time and enable Use filtered derivative.

1 Blocks

1-468

Programmatic Use
Block Parameter: FilterMethod
Type: string, character vector
Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Main

Source — Source for controller gains and filter coefficient

internal (default) | external

Enabling external inputs for the parameters allows you to compute PID gains and filter coefficients
externally to the block and provide them to the block as signal inputs.

internal
Specify the controller gains and filter coefficient using the block parameters P, I, D, and N.

external
Specify the PID gains and filter coefficient externally using block inputs. An additional input port
appears on the block for each parameter that is required for the current controller type.

External gain input is useful, for example, when you want to map a different PID parameterization
to the PID gains of the block. You can also use external gain input to implement gain-scheduled
PID control. In gain-scheduled control, you determine the PID gains by logic or other calculation
in your model and feed them to the block.

When you supply gains externally, time variations in the integral and derivative gain values are
integrated and differentiated, respectively. This result occurs because in both continuous time
and discrete time, the gains are applied to the signal before integration or differentiation. For
example, for a continuous-time PID controller with external inputs, the integrator term is
implemented as shown in the following illustration.

Within the block, the input signal u is multiplied by the externally supplied integrator gain, I,
before integration. This implementation yields:

yi =∫uI dt .

Thus, the integrator gain is included in the integral. Similarly, in the derivative term of the block,
multiplication by the derivative gain precedes the differentiation, which causes the derivative
gain D to be differentiated.

Programmatic Use
Block Parameter: ControllerParametersSource
Type: string, character vector
Values: "internal", "external"
Default: "internal"

 Discrete PID Controller

1-469

Proportional (P) — Proportional gain

1 (default) | scalar | vector

Specify a finite, real gain value for the proportional gain. When Controller form is:

• Parallel — Proportional action is independent of the integral and derivative actions. For
instance, for a continuous-time parallel PID controller, the transfer function is:

Cpar(s) = P + I 1
s + D Ns

s + N .

For a discrete-time parallel-form controller, the transfer function is:

Cpar(z) = P + Iα(z) + D N
1 + Nβ(z) ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

• Ideal — The proportional gain multiples the integral and derivative terms. For instance, for a
continuous-time ideal PID controller, the transfer function is:

Cid(s) = P 1 + I 1
s + D Ns

s + N .
For a discrete-time ideal-form controller, the transfer function is:

Cid(z) = P 1 + Iα(z) + D N
1 + Nβ(z) ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to PID, PD, PI, or P.

Programmatic Use
Block Parameter: P
Type: scalar, vector
Default: 1

Integral (I) — Integral gain

1 (default) | scalar | vector

Specify a finite, real gain value for the integral gain.

Tunable: Yes

1 Blocks

1-470

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to a type that has integral action.

Programmatic Use
Block Parameter: I
Type: scalar, vector
Default: 1

Integral (I*Ts) — Integral gain multiplied by sample time

1 (default) | scalar | vector

Specify a finite, real gain value for the integral gain multiplied by the sample time.

Note PID tuning tools, such as the PID Tuner app and Closed-Loop PID Autotuner block, tune the
gain I but not I*Ts. Therefore, multiply the integral gain value you obtain from a tuning tool by the
sample time before you write it to this parameter.

When you use I*Ts instead of I, the block requires fewer calculations to perform integration. This
improves the execution time of the generated code.

Tunable: No

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, set
Controller to a type that has integral action, and enable the Use I*Ts parameter.

Programmatic Use
Block Parameter: I
Type: scalar, vector
Default: 1

Use I*Ts — Use integral gain multiplied by sample time

off (default) | on

For discrete-time controllers with integral action, the block takes the integral gain as an input and
multiplies it by the sample time internally as a part of performing the integration. You can enable this
parameter to specify integral gain multiplied by sample time as input (I*Ts) in place of the integral
gain (I). Doing so reduces the number of internal calculations and is useful when you want to improve
the execution time of your generated code.

Dependencies

To enable this parameter, set Controller to a controller type that has integral action.

Programmatic Use
Block Parameter: UseKiTs
Type: string, character vector
Values: "on", "off"
Default: "on"

 Discrete PID Controller

1-471

Derivative (D) — Derivative gain

0 (default) | scalar | vector

Specify a finite, real gain value for the derivative gain.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to PID or PD.

Programmatic Use
Block Parameter: D
Type: scalar, vector
Default: 0

Use filtered derivative — Apply filter to derivative term

on (default) | off

For discrete-time PID controllers only, clear this option to replace the filtered derivative with an
unfiltered discrete-time differentiator. When you do so, the derivative term of the controller transfer
function becomes:

Dz − 1
zTs

.
For continuous-time PID controllers, the derivative term is always filtered.

1 Blocks

1-472

Dependencies

To enable this parameter, set Time domain to Discrete-time, and set Controller to a type that
has derivative action.
Programmatic Use
Block Parameter: UseFilter
Type: string, character vector
Values: "on", "off"
Default: "on"

Filter coefficient (N) — Derivative filter coefficient

100 (default) | scalar | vector

Specify a finite, real gain value for the filter coefficient. The filter coefficient determines the pole
location of the filter in the derivative action of the block. The location of the filter pole depends on the
Time domain parameter.

• When Time domain is Continuous-time, the pole location is s = -N.
• When Time domain is Discrete-time, the pole location depends on the Filter method

parameter.

Filter Method Location of Filter Pole
Forward Euler zpole = 1− NTs

Backward Euler zpole = 1
1 + NTs

Trapezoidal
zpole =

1− NTs/2
1 + NTs/2

The block does not support N = Inf (ideal unfiltered derivative). When the Time domain is
Discrete-time, you can clear Use filtered derivative to remove the derivative filter.

Tunable: Yes
Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to PID or PD.
Programmatic Use
Block Parameter: N
Type: scalar, vector
Default: 100

Select tuning method — Tool for automatic tuning of controller coefficients
Transfer Function Based (PID Tuner App) (default) | Frequency Response Based

If you have Simulink Control Design software, you can automatically tune the PID coefficients. To do
so, use this parameter to select a tuning tool, and click Tune.

Transfer Function Based (PID Tuner App)
Use PID Tuner, which lets you interactively tune PID coefficients while examining relevant
system responses to validate performance. By default, PID Tuner works with a linearization of

 Discrete PID Controller

1-473

your plant model. For models that cannot be linearized, you can tune PID coefficients against a
plant model estimated from simulated or measured response data. For more information, see
“Introduction to Model-Based PID Tuning in Simulink” (Simulink Control Design).

Frequency Response Based
Use Frequency Response Based PID Tuner, which tunes PID controller coefficients based on
frequency-response estimation data obtained by simulation. This tuning approach is especially
useful for plants that are not linearizable or that linearize to zero. For more information, see
“Design PID Controller from Plant Frequency-Response Data” (Simulink Control Design).

Both of these tuning methods assume a single-loop control configuration. Simulink Control Design
software includes other tuning approaches that suit more complex configurations. For information
about other ways to tune a PID Controller block, see “Choose a Control Design Approach” (Simulink
Control Design).

Enable zero-crossing detection — Detect zero crossings on reset and on entering or leaving a
saturation state

on (default) | off

Zero-crossing detection can accurately locate signal discontinuities without resorting to excessively
small time steps that can lead to lengthy simulation times. If you select Limit output or activate
External reset in your PID Controller block, activating zero-crossing detection can reduce
computation time in your simulation. Selecting this parameter activates zero-crossing detection:

• At initial-state reset
• When entering an upper or lower saturation state
• When leaving an upper or lower saturation state

For more information about zero-crossing detection, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: string, character vector
Values: "on", "off"
Default: "on"

Initialization

Source — Source for integrator and derivative initial conditions

internal (default) | external

Simulink uses initial conditions to initialize the integrator and derivative-filter (or the unfiltered
derivative) output at the start of a simulation or at a specified trigger event. (See the External reset
parameter.) These initial conditions determine the initial block output. Use this parameter to select
how to supply the initial condition values to the block.

internal
Specify the initial conditions using the Integrator Initial condition and Filter Initial
condition parameters. If Use filtered derivative is not selected, use the Differentiator
parameter to specify the initial condition for the unfiltered differentiator instead of a filter initial
condition.

1 Blocks

1-474

external
Specify the initial conditions externally using block inputs. Additional input ports Io and Do
appear on the block. If Use filtered derivative is not selected, supply the initial condition for the
unfiltered differentiator at Do instead of a filter initial condition.

Programmatic Use
Block Parameter: InitialConditionSource
Type: string, character vector
Values: "internal", "external"
Default: "internal"

Integrator — Integrator initial condition

0 (default) | scalar | vector

Simulink uses the integrator initial condition to initialize the integrator at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The integrator initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and set Controller to a
type that has integral action.

Programmatic Use
Block Parameter: InitialConditionForIntegrator
Type: scalar, vector
Default: 0

Filter — Filter initial condition

0 (default) | scalar | vector

Simulink uses the filter initial condition to initialize the derivative filter at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The filter initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and use a controller that
has a derivative filter.

Programmatic Use
Block Parameter: InitialConditionForFilter
Type: scalar, vector
Default: 0

Differentiator — Initial condition for unfiltered derivative
0 (default) | scalar | vector

 Discrete PID Controller

1-475

When you use an unfiltered derivative, Simulink uses this parameter to initialize the differentiator at
the start of a simulation or at a specified trigger event (see External reset). The integrator initial
condition and the derivative initial condition determine the initial output of the PID controller block.

The derivative initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, set Time domain to Discrete-time, clear the Use filtered derivative
check box, and in the Initialization tab, set Source to internal.

Programmatic Use
Block Parameter: DifferentiatorICPrevScaledInput
Type: scalar, vector
Default: 0

Initial condition setting — Location at which initial condition is applied
Auto (default) | Output

Use this parameter to specify whether to apply the Integrator Initial condition and Filter Initial
condition parameter to the corresponding block state or output. You can change this parameter at
the command line only, using set_param to set the InitialConditionSetting parameter of the
block.

Auto
Use this option in all situations except when the block is in a triggered subsystem or a function-
call subsystem and simplified initialization mode is enabled.

Output
Use this option when the block is in a triggered subsystem or a function-call subsystem and
simplified initialization mode is enabled.

For more information about the Initial condition setting parameter, see the Discrete-Time
Integrator block.

This parameter is only accessible through programmatic use.

Programmatic Use
Block Parameter: InitialConditionSetting
Type: string, character vector
Values: "Auto", "Output"
Default: "Auto"

External reset — Trigger for resetting integrator and filter values

none (default) | rising | falling | either | level

Specify the trigger condition that causes the block to reset the integrator and filter to initial
conditions. (If Use filtered derivative is not selected, the trigger resets the integrator and
differentiator to initial conditions.) Selecting any option other than none enables the Reset port on
the block for the external reset signal.

none
The integrator and filter (or differentiator) outputs are set to initial conditions at the beginning of
simulation, and are not reset during simulation.

1 Blocks

1-476

rising
Reset the outputs when the reset signal has a rising edge.

falling
Reset the outputs when the reset signal has a falling edge.

either
Reset the outputs when the reset signal either rises or falls.

level
Reset the outputs when the reset signal either:

• Is nonzero at the current time step
• Changes from nonzero at the previous time step to zero at the current time step

This option holds the outputs to the initial conditions while the reset signal is nonzero.

Dependencies

To enable this parameter, set Controller to a type that has derivative or integral action.
Programmatic Use
Block Parameter: ExternalReset
Type: string, character vector
Values: "none", "rising", "falling", "either","level"
Default: "none"

Ignore reset when linearizing — Force linearization to ignore reset

off (default) | on

Select to force Simulink and Simulink Control Design linearization commands to ignore any reset
mechanism specified in the External reset parameter. Ignoring reset states allows you to linearize a
model around an operating point even if that operating point causes the block to reset.
Programmatic Use
Block Parameter: IgnoreLimit
Type: string, character vector
Values: "off", "on"
Default: "off"

Enable tracking mode — Activate signal tracking

off (default) | on

Signal tracking lets the block output follow a tracking signal that you provide at the TR port. When
signal tracking is active, the difference between the tracking signal and the block output is fed back
to the integrator input with a gain Kt, specified by the Tracking gain (Kt) parameter. Signal
tracking has several applications, including bumpless control transfer and avoiding windup in
multiloop control structures.
Bumpless control transfer

Use signal tracking to achieve bumpless control transfer in systems that switch between two
controllers. Suppose you want to transfer control between a PID controller and another controller. To
do so, connecting the controller output to the TR input as shown in the following illustration.

 Discrete PID Controller

1-477

For more information, see “Bumpless Control Transfer” on page 12-104.

Multiloop control

Use signal tracking to prevent block windup in multiloop control approaches, as in the following
model.

The Inner Loop subsystem contains the blocks shown in the following diagram.

Because the PID controller tracks the output of the inner loop, its output never exceeds the saturated
inner-loop output. For more details, see “Prevent Block Windup in Multiloop Control” on page 12-103.

Dependencies

To enable this parameter, set Controller to a type that has integral action.

Programmatic Use
Block Parameter: TrackingMode
Type: string, character vector
Values: "off", "on"

1 Blocks

1-478

Default: "off"

Tracking coefficient (Kt) — Gain of signal-tracking feedback loop

1 (default) | scalar

When you select Enable tracking mode, the difference between the signal TR and the block output
is fed back to the integrator input with a gain Kt. Use this parameter to specify the gain in that
feedback loop.

Dependencies

To enable this parameter, select Enable tracking mode.

Programmatic Use
Block Parameter: Kt
Type: scalar
Default: 1

Saturation

Output saturation

Limit Output — Limit block output to specified saturation values

off (default) | on

Activating this option limits the block output, so that you do not need a separate Saturation on page
1-1896 block after the controller. It also allows you to activate the anti-windup mechanism built into
the block (see the Anti-windup method parameter). Specify the output saturation limits using the
Lower limit and Upper limit parameters. You can also specify the saturation limits externally as
block input ports.

Programmatic Use
Block Parameter: LimitOutput
Type: string, character vector
Values: "off", "on"
Default: "off"

Source — Source for output saturation limits

internal (default) | external

Use this parameter to specify how to supply the upper and lower saturation limits of the block output.

internal
Specify the output saturation limits using the Upper limit and Lower limit parameters.

external
Specify the output saturation limits externally using block input ports. The additional input ports
up and lo appear on the block. You can use the input ports to implement the upper and lower
output saturation limits determined by logic or other calculations in the Simulink model and
passed to the block.

 Discrete PID Controller

1-479

Programmatic Use
Block Parameter: SatLimitsSource
Type: string, character vector
Values: "internal", "external"
Default: "internal"

Upper limit — Upper saturation limit for block output

Inf (default) | scalar

Specify the upper limit for the block output. The block output is held at the Upper saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions exceeds that value.

Dependencies

To enable this parameter, select Limit output.
Programmatic Use
Block Parameter: UpperSaturationLimit
Type: scalar
Default: Inf

Lower limit — Lower saturation limit for block output

-Inf (default) | scalar

Specify the lower limit for the block output. The block output is held at the Lower saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions goes below that
value.

Dependencies

To enable this parameter, select Limit output.
Programmatic Use
Block Parameter: LowerSaturationLimit
Type: scalar
Default: -Inf

Ignore saturation when linearizing — Force linearization to ignore output limits

off (default) | on

Force Simulink and Simulink Control Design linearization commands to ignore block output limits
specified in the Upper limit and Lower limit parameters. Ignoring output limits allows you to
linearize a model around an operating point even if that operating point causes the block to exceed
the output limits.

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use
Block Parameter: LinearizeAsGain
Type: string, character vector
Values: "off", "on"

1 Blocks

1-480

Default: "off"

Anti-windup method — Integrator anti-windup method

none (default) | back-calculation | clamping

When you select Limit output and the weighted sum of the controller components exceeds the
specified output limits, the block output holds at the specified limit. However, the integrator output
can continue to grow (integrator windup), increasing the difference between the block output and the
sum of the block components. In other words, the internal signals in the block can be unbounded
even if the output appears bounded by saturation limits. Without a mechanism to prevent integrator
windup, two results are possible:

• If the sign of the input signal never changes, the integrator continues to integrate until it
overflows. The overflow value is the maximum or minimum value for the data type of the
integrator output.

• If the sign of the input signal changes once the weighted sum has grown beyond the output limits,
it can take a long time to unwind the integrator and return the weighted sum within the block
saturation limit.

In either case, controller performance can suffer. To combat the effects of windup without an anti-
windup mechanism, it may be necessary to detune the controller (for example, by reducing the
controller gains), resulting in a sluggish controller. To avoid this problem, activate an anti-windup
mechanism using this parameter.

none
Do not use an anti-windup mechanism.

back-calculation
Unwind the integrator when the block output saturates by feeding back to the integrator the
difference between the saturated and unsaturated control signal. The following diagram
represents the back-calculation feedback circuit for a continuous-time controller. To see the
actual feedback circuit for your controller configuration, right-click on the block and select Mask
> Look Under Mask.

 Discrete PID Controller

1-481

Use the Back-calculation coefficient (Kb) parameter to specify the gain of the anti-windup
feedback circuit. It is usually satisfactory to set Kb = I, or for controllers with derivative action,
Kb = sqrt(I*D). Back-calculation can be effective for plants with relatively large dead time [1].

clamping
Integration stops when the sum of the block components exceeds the output limits and the
integrator output and block input have the same sign. Integration resumes when the sum of the
block components exceeds the output limits and the integrator output and block input have
opposite sign. Clamping is sometimes referred to as conditional integration.

Clamping can be useful for plants with relatively small dead times, but can yield a poor transient
response for large dead times [1].

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use
Block Parameter: AntiWindupMode
Type: string, character vector
Values: "none", "back-calculation","clamping"
Default: "none"

Back-calculation coefficient (Kb) — Gain coefficient of anti-windup feedback loop

1 (default) | scalar

The back-calculation anti-windup method unwinds the integrator when the block output
saturates. It does so by feeding back to the integrator the difference between the saturated and
unsaturated control signal. Use the Back-calculation coefficient (Kb) parameter to specify the
gain of the anti-windup feedback circuit. For more information, see the Anti-windup method
parameter.

Dependencies

To enable this parameter, select the Limit output parameter, and set the Anti-windup method
parameter to back-calculation.

Programmatic Use
Block Parameter: Kb
Type: scalar
Default: 1

Integrator saturation

Limit Output — Limit integrator output to specified saturation limits

off (default) | on

Enable this parameter to limit the integrator output to be within a specified range. When the
integrator output reaches the limits, the integral action turns off to prevent integral windup. Specify
the saturation limits using the Lower limit and Upper limit parameters.

Dependencies

To enable this parameter, set Controller to a controller type that has integral action.

1 Blocks

1-482

Programmatic Use
Block Parameter: LimitIntegratorOutput
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper limit — Upper saturation limit for integrator

Inf (default) | scalar

Specify the upper limit for the integrator output. The integrator output is held at this value whenever
it would otherwise exceed this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.
Programmatic Use
Block Parameter: UpperIntegratorSaturationLimit
Type: scalar
Default: Inf

Lower limit — Lower saturation limit for integrator

-Inf (default) | scalar

Specify the lower limit for the integrator output. The integrator output is held at this value whenever
it would otherwise go below this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.
Programmatic Use
Block Parameter: LowerIntegratorSaturationLimit
Type: scalar
Default: -Inf

Data Types

The parameters in this tab are primarily of use in fixed-point code generation using Fixed-Point
Designer. They define how numeric quantities associated with the block are stored and processed
when you generate code.

If you need to configure data types for fixed-point code generation, click Open Fixed-Point Tool and
use that tool to configure the rest of the parameters in the tab. For information about using Fixed-
Point Tool, see “Autoscaling Data Objects Using the Fixed-Point Tool” (Fixed-Point Designer).

After you use Fixed-Point Tool, you can use the parameters in this tab to make adjustments to fixed-
point data-type settings if necessary. For each quantity associated with the block, you can specify:

• Floating-point or fixed-point data type, including whether the data type is inherited from upstream
values in the block.

• The minimum and maximum values for the quantity, which determine how the quantity is scaled
for fixed-point representation.

 Discrete PID Controller

1-483

For assistance in selecting appropriate values, click to open the Data Type Assistant for the
corresponding quantity. For more information, see “Specify Data Types Using Data Type Assistant”.

The specific quantities listed in the Data Types tab vary depending on how you configure the PID
controller block. In general, you can configure data types for the following types of quantities:

• Product output — Stores the result of a multiplication carried out under the block mask. For
example, P product output stores the output of the gain block that multiplies the block input
with the proportional gain P.

• Parameter — Stores the value of a numeric block parameter, such as P, I, or D.
• Block output — Stores the output of a block that resides under the PID controller block mask. For

example, use Integrator output to specify the data type of the output of the block called
Integrator. This block resides under the mask in the Integrator subsystem, and computes
integrator term of the controller action.

• Accumulator — Stores values associated with a sum block. For example, SumI2 Accumulator
sets the data type of the accumulator associated with the sum block SumI2. This block resides
under the mask in the Back Calculation subsystem of the Anti-Windup subsystem.

In general, you can find the block associated with any listed parameter by looking under the PID
Controller block mask and examining its subsystems. You can also use the Model Explorer to search
under the mask for the listed parameter name, such as SumI2. (See Model Explorer.)

Matching Input and Internal Data Types

1 Blocks

1-484

By default, all data types in the block are set to Inherit: Inherit via internal rule. With
this setting, Simulink chooses data types to balance numerical accuracy, performance, and generated
code size, while accounting for the properties of the embedded target hardware.

Under some conditions, incompatibility can occur between data types within the block. For instance,
in continuous time, the Integrator block under the mask can accept only signals of type double. If
the block input signal is a type that cannot be converted to double, such as uint16, the internal
rules for type inheritance generate an error when you generate code.

To avoid such errors, you can use the Data Types settings to force a data type conversion. For
instance, you can explicitly set P product output, I product output, and D product output to
double, ensuring that the signals reaching the continuous-time integrators are of type double.

In general, it is not recommended to use the block in continuous time for code generation
applications. However, similar data type errors can occur in discrete time, if you explicitly set some
values to data types that are incompatible with downstream signal constraints within the block. In
such cases, use the Data Types settings to ensure that all data types are internally compatible.

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.
Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type can

represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

• Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

 Discrete PID Controller

1-485

• Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

• In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

The parameters in this tab are primarily of use in code generation.

State name (e.g., 'position') — Name for continuous-time filter and integrator states
'' (default) | character vector

Assign a unique name to the state associated with the integrator or the filter, for continuous-time PID
controllers. (For information about state names in a discrete-time PID controller, see the State name
parameter.) The state name is used, for example:

• For the corresponding variable in generated code
• As part of the storage name when logging states during simulation
• For the corresponding state in a linear model obtain by linearizing the block

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

Dependencies

To enable this parameter, set Time domain to Continuous-time.

1 Blocks

1-486

Programmatic Use
Parameter: IntegratorContinuousStateAttributes, FilterContinuousStateAttributes
Type: character vector
Default: ''

State name — Names for discrete-time filter and integrator states
empty string (default) | string | character vector

Assign a unique name to the state associated with the integrator or the filter, for discrete-time PID
controllers. (For information about state names in a continuous-time PID controller, see the State
name (e.g., 'position') parameter.)

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters. The state name is used, for example:

• For the corresponding variable in generated code
• As part of the storage name when logging states during simulation
• For the corresponding state in a linear model obtain by linearizing the block

For more information about the use of state names in code generation, see “C Code Generation
Configuration for Model Interface Elements” (Simulink Coder).

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use
Parameter: IntegratorStateIdentifier, FilterStateIdentifier
Type: string, character vector
Default: ""

State name must resolve to Simulink signal object — Require that state name resolve to a signal
object
off (default) | on

Select this parameter to require that the discrete-time integrator or filter state name resolves to a
Simulink signal object.

Dependencies

To enable this parameter for the discrete-time integrator or filter state:

1 Set Time domain to Discrete-time.
2 Specify a value for the integrator or filter State name.
3 Set the model configuration parameter Signal resolution to a value other than None.

Programmatic Use
Block Parameter: IntegratorStateMustResolveToSignalObject,
FilterStateMustResolveToSignalObject
Type: string, character vector
Values: "off", "on"
Default: "off"

 Discrete PID Controller

1-487

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2009b

R2022b: Issues error when integrator and filter initial conditions lie outside saturation
limits
Behavior changed in R2022b

The block now issues an error when the integrator or filter initial condition value lies outside the
output saturation limits. In previous releases, the block did not issue an error when these initial
conditions had such values.

If this change impacts your model, update the PID integrator or filter initial condition values such
that they are within the output saturation limits.

R2021b: ReferenceBlock parameter returns different path
Behavior changed in R2021b

Starting in R2021b, the get_param function returns a different value for the ReferenceBlock
parameter. The ReferenceBlock parameter is a property common to all Simulink blocks and gives
the path of the library block to which a block links. The PID Controller and Discrete PID Controller
blocks now link to 'slpidlib/PID Controller'. Previously, the blocks linked to 'pid_lib/PID
Controller'.

This change does not affect any other functionality or workflows. You can still use the previous path
with the set_param function.

R2020b: ReferenceBlock parameter returns different path
Behavior changed in R2020b

Starting in R2020b, the get_param function returns a different value for the ReferenceBlock
parameter. The ReferenceBlock parameter is a property common to all Simulink blocks and gives
the path of the library block to which a block links. The PID Controller and Discrete PID Controller
blocks now link to 'pid_lib/PID Controller'. Previously, the blocks linked to 'simulink/
Continuous/PID Controller'.

This change does not affect any other functionality or workflows. You can still use the previous path
with the set_param function.

1 Blocks

1-488

References
[1] Visioli, A., "Modified Anti-Windup Scheme for PID Controllers," IEE Proceedings - Control Theory

and Applications, Vol. 150, Number 1, January 2003

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For continuous-time PID controllers (Time domain set to Continuous-time):

• Consider using “Model Discretizer” to map continuous-time blocks to discrete equivalents that
support code generation. To access Model Discretizer, from your model, in the Apps tab, under
Control Systems, click Model Discretizer.

• Not recommended for production code.

For discrete-time PID controllers (Time domain set to Discrete-time):

• Depends on absolute time when placed inside a triggered subsystem hierarchy.
• Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• HDL code generation is supported for discrete-time PID controllers only (Time domain set to
Discrete-time).

 Discrete PID Controller

1-489

• If the Integrator method is set to BackwardEuler or Trapezoidal, you cannot generate HDL
code for the block under either of the following conditions:

• Limit output is selected and the Anti-Windup Method is anything other than none.
• Enable tracking mode is selected.

• To generate HDL code:

• Use a discrete-time PID controller. On the Time domain section, specify Discrete-time.
• Leave the Use filtered derivative check box selected.
• Specify the initial conditions of the filter and integrator internally. On the Initialization tab,

specify Source as internal.

You can specify the filter coefficients internally and externally for HDL code generation. On the
Main tab, for Source, you can use internal or external.

• Set External reset to none.
• When you use double inputs, do not set Anti-windup Method to clamping.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Fixed-point code generation is supported for discrete-time PID controllers only (Time domain set to
Discrete-time).

See Also
Gain | Discrete-Time Integrator | Discrete Derivative | PID Controller | Discrete PID Controller
(2DOF)

1 Blocks

1-490

Discrete PID Controller (2DOF)
Discrete-time or continuous-time two-degree-of-freedom PID controller

Libraries:
Simulink / Discrete

Description
The Discrete PID Controller (2DOF) block implements a two-degree-of-freedom PID controller (PID,
PI, or PD). The block is identical to the PID Controller (2DOF) block with the Time domain
parameter set to Discrete-time.

The block generates an output signal based on the difference between a reference signal and a
measured system output. The block computes a weighted difference signal for the proportional and
derivative actions according to the setpoint weights (b and c) that you specify. The block output is the
sum of the proportional, integral, and derivative actions on the respective difference signals, where
each action is weighted according to the gain parameters P, I, and D. A first-order pole filters the
derivative action.

The block supports several controller types and structures. Configurable options in the block include:

• Controller type (PID, PI, or PD) — See the Controller parameter.
• Controller form (Parallel or Ideal) — See the Form parameter.
• Time domain (discrete or continuous) — See the Time domain parameter.
• Initial conditions and reset trigger — See the Source and External reset parameters.
• Output saturation limits and built-in anti-windup mechanism — See the Limit output parameter.
• Signal tracking for bumpless control transfer and multiloop control — See the Enable tracking

mode parameter.

As you change these options, the internal structure of the block changes by activating different
variant subsystems. (See “Implement Variations in Separate Hierarchy Using Variant Subsystems”.)
To examine the internal structure of the block and its variant subsystems, right-click the block and
select Mask > Look Under Mask.

Control Configuration

In one common implementation, the PID Controller block operates in the feedforward path of a
feedback loop.

 Discrete PID Controller (2DOF)

1-491

For a single-input block that accepts an error signal (a difference between a setpoint and a system
output), see Discrete PID Controller.

PID Gain Tuning

The PID controller coefficients and the setpoint weights are tunable either manually or automatically.
Automatic tuning requires Simulink Control Design software. For more information about automatic
tuning, see the Select tuning method parameter.

Ports
Input

Ref — Reference signal
scalar | vector

Reference signal for plant to follow, as shown.

When the reference signal is a vector, the block acts separately on each signal, vectorizing the PID
coefficients and producing a vector output signal of the same dimensions. You can specify the PID
coefficients and some other parameters as vectors of the same dimensions as the input signal. Doing
so is equivalent to specifying a separate PID controller for each entry in the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Port_1(y) — Measured system output
scalar | vector

Feedback signal for the controller, from the plant output.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

1 Blocks

1-492

P — Proportional gain
scalar | vector

Proportional gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

Dependencies

To enable this port, set Controller parameters Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

I — Integral gain
scalar | vector

Integral gain, provided from a source external to the block. External gain input is useful, for example,
when you want to map a different PID parameterization to the PID gains of the block. You can also
use external gain input to implement gain-scheduled PID control. In gain-scheduled control, you
determine the PID coefficients by logic or other calculation in your model and feed them to the block.

When you supply gains externally, time variations in the integral gain are also integrated. This result
occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has integral action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

I*Ts — Integral gain multiplied by sample time
scalar | vector

Integral gain multiplied by the controller sample time, provided from a source external to the block.
External gain input is useful, for example, when you want to map a different PID parameterization to
the PID gains of the block. You can also use external gain input to implement gain-scheduled PID
control. In gain-scheduled control, you determine the PID coefficients by logic or other calculations in
your model and feed them to the block.

Note PID tuning tools, such as the PID Tuner app and Closed-Loop PID Autotuner block, tune the
gain I but not I*Ts. Therefore, multiply the integral gain value you obtain from a tuning tool by the
sample time before you supply it to this port.

When you use I*Ts instead of I, the block requires fewer calculations to perform integration. This
improves the execution time of the generated code.

 Discrete PID Controller (2DOF)

1-493

Dependencies

To enable this port, set Controller parameters Source to external, set Controller to a controller
type that has integral action, and enable the Use I*Ts parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

D — Derivative gain
scalar | vector

Derivative gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

When you supply gains externally, time variations in the derivative gain are also differentiated. This
result occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.
Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has derivative action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

N — Filter coefficient
scalar | vector

Derivative filter coefficient, provided from a source external to the block. External coefficient input is
useful, for example, when you want to map a different PID parameterization to the PID gains of the
block. You can also use the external input to implement gain-scheduled PID control. In gain-scheduled
control, you determine the PID coefficients by logic or other calculation in your model and feed them
to the block.
Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has a filtered derivative.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

b — Proportional setpoint weight
scalar | vector

Proportional setpoint weight, provided from a source external to the block. External input is useful,
for example, when you want to map a different PID parameterization to the PID gains of the block.
You can also use the external input to implement gain-scheduled PID control. In gain-scheduled
control, you determine the PID coefficients by logic or other calculation in your model and feed them
to the block.
Dependencies

To enable this port, set Controller parameters Source to external.

1 Blocks

1-494

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

c — Derivative setpoint weight
scalar | vector

Derivative setpoint weight, provided from a source external to the block. External input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use the external input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has derivative action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Reset — External reset trigger
scalar

Trigger to reset the integrator and filter to their initial conditions. Use the External reset parameter
to specify what kind of signal triggers a reset. The port icon indicates the trigger type specified in
that parameter. For example, the following illustration shows a continuous-time PID Controller
(2DOF) block with External reset set to rising.

When the trigger occurs, the block resets the integrator and filter to the initial conditions specified by
the Integrator Initial condition and Filter Initial condition parameters or the I0 and D0 ports.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA) software
standard, your model must use Boolean signals to drive the external reset ports of the PID controller
block.

Dependencies

To enable this port, set External reset to any value other than none.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | Boolean

I0 — Integrator initial condition
scalar | vector

Integrator initial condition, provided from a source external to the block.

 Discrete PID Controller (2DOF)

1-495

Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has integral action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

D0 — Filter initial condition
scalar | vector

Initial condition of the derivative filter, provided from a source external to the block.

Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has derivative action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

up — Output saturation upper limit
scalar | vector

Upper limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions exceeds the value provided at this port, the block
output is held at that value.

Dependencies

To enable this port, select Limit output and set the output saturation Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

lo — Output saturation lower limit
scalar | vector

Lower limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions goes below the value provided at this port, the block
output is held at that value.

Dependencies

To enable this port, select Limit output and set the output saturation Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

TR — Tracking signal
scalar | vector

Signal for controller output to track. When signal tracking is active, the difference between the
tracking signal and the block output is fed back to the integrator input. Signal tracking is useful for
implementing bumpless control transfer in systems that switch between two controllers. It can also
be useful to prevent block windup in multiloop control systems. For more information, see the Enable
tracking mode parameter.

1 Blocks

1-496

Dependencies

To enable this port, select the Enable tracking mode parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

TDTI — Discrete-integrator time
scalar

Discrete-integrator time, provided as a scalar to the block. You can use your own value of discrete-
time integrator sample time that defines the rate at which the block is going to be run either in
Simulink or on external hardware. The value of the discrete-time integrator time should match the
average sampling rate of the external interrupts, when the block is used inside a conditionally-
executed subsystem.

In other words, you can specify Ts for any of the integrator methods below such that the value
matches the average sampling rate of the external interrupts. In discrete time, the derivative term of
the controller transfer function is:

D N
1 + Nα(z) ,

where α(z) depends on the integrator method you specify with this parameter.

Forward Euler

α(z) =
Ts

z − 1 .

 Discrete PID Controller (2DOF)

1-497

Backward Euler

α(z) =
Tsz

z − 1 .
Trapezoidal

α(z) =
Ts
2

z + 1
z − 1 .

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page. For more information on conditionally executed subsystems, see “Conditionally
Executed Subsystems Overview”.
Dependencies

To enable this port, set Time Domain to Discrete-time and select the PID Controller is inside a
conditionally executed subsystem option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output

Port_1(u) — Controller output
scalar | vector

Controller output, generally based on a sum of the input signal, the integral of the input signal, and
the derivative of the input signal, weighted by the setpoint weights and by the proportional, integral,
and derivative gain parameters. A first-order pole filters the derivative action. Which terms are
present in the controller signal depends on what you select for the Controller parameter. The base
controller transfer function for the current settings is displayed in the Compensator formula
section of the block parameters and under the mask. Other parameters modify the block output, such
as saturation limits specified by the Upper Limit and Lower Limit saturation parameters.

1 Blocks

1-498

The controller output is a vector signal when any of the inputs is a vector signal. In that case, the
block acts as N independent PID controllers, where N is the number of signals in the input vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Controller — Controller type

PID (default) | PI | PD

Specify which of the proportional, integral, and derivative terms are in the controller.

PID
Proportional, integral, and derivative action.

PI
Proportional and integral action only.

PD
Proportional and derivative action only.

Tip The controller output for the current setting is displayed in the Compensator formula section
of the block parameters and under the mask.

Programmatic Use
Block Parameter: Controller
Type: string, character vector
Values: "PID", "PI", "PD"
Default: "PID"

Form — Controller structure

Parallel (default) | Ideal

Specify whether the controller structure is parallel or ideal.

Parallel
The proportional, integral, and derivative gains P, I, and D, are applied independently. For
example, for a continuous-time 2-DOF PID controller in parallel form, the controller output u is:

u = P br − y + I1
s r − y + D N

1 + N 1
s

cr − y ,

where r is the reference signal, y is the measured plant output signal, and b and c are the
setpoint weights.

For a discrete-time 2-DOF controller in parallel form, the controller output is:

u = P br − y + Iα z r − y + D N
1 + Nβ z cr − y ,

 Discrete PID Controller (2DOF)

1-499

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

Ideal
The proportional gain P acts on the sum of all actions. For example, for a continuous-time 2-DOF
PID controller in ideal form, the controller output is:

u = P br − y + I1
s r − y + D N

1 + N 1
s

cr − y .

For a discrete-time 2-DOF PID controller in ideal form, the transfer function is:

u = P br − y + Iα z r − y + D N
1 + Nβ z cr − y ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

Tip The controller output for the current settings is displayed in the Compensator formula
section of the block parameters and under the mask.

Programmatic Use
Block Parameter: Controller
Type: string, character vector
Values: "Parallel", "Ideal"
Default: "Parallel"

Time domain — Specify discrete-time or continuous-time controller

Discrete-time (default) | Continuous-time

When you select Discrete-time, it is recommended that you specify an explicit sample time for the
block. See the Sample time (-1 for inherited) parameter. Selecting Discrete-time also enables
the Integrator method, and Filter method parameters.

When the PID Controller block is in a model with synchronous state control (see the State Control
block), you cannot select Continuous-time.

Note The PID Controller (2DOF) and Discrete PID Controller (2DOF) blocks are identical except for
the default value of this parameter.

Programmatic Use
Block Parameter: TimeDomain
Type: string, character vector
Values: "Continuous-time", "Discrete-time"
Default: "Discrete-time"

PID Controller is inside a conditionally executed subsystem — Enable the discrete-integrator
time port
off (default) | on

1 Blocks

1-500

For discrete-time PID controllers, enable the discrete-time integrator port to use your own value of
discrete-time integrator sample time. To ensure proper integration, use the TDTI port to provide a
scalar value of Δt for accurate discrete-time integration.

Dependencies

To enable this parameter, set Time Domain to Discrete-time.

Programmatic Use
Block Parameter: UseExternalTs
Type: string, character vector
Values: "on", "off"
Default: "off"

Sample time (-1 for inherited) — Discrete interval between samples

–1 (default) | positive scalar

Specify a sample time by entering a positive scalar value, such as 0.1. The default discrete sample
time of –1 means that the block inherits its sample time from upstream blocks. However, it is
recommended that you set the controller sample time explicitly, especially if you expect the sample
time of upstream blocks to change. The effect of the controller coefficients P, I, D, and N depend on
the sample time. Thus, for a given set of coefficient values, changing the sample time changes the
performance of the controller.

See “Specify Sample Time” for more information.

To implement a continuous-time controller, set Time domain to Continuous-time.

Tip If you want to run the block with an externally specified or variable sample time, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time.

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use
Block Parameter: SampleTime
Type: scalar
Values: -1, positive scalar
Default: -1

Integrator method — Method for computing integral in discrete-time controller

Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the integral term of the controller transfer function is Ia(z), where a(z) depends on
the integrator method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

 Discrete PID Controller (2DOF)

1-501

α(z) =
Ts

z − 1 .
This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

Backward Euler
Backward rectangular (right-hand) approximation,

α(z) =
Tsz

z − 1 .
An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal
Bilinear approximation,

1 Blocks

1-502

α(z) =
Ts
2

z + 1
z − 1 .

An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,
the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

Dependencies

To enable this parameter, set Time Domain to Discrete-time and set Controller to a controller
type with integral action.

Programmatic Use
Block Parameter: IntegratorMethod
Type: string, character vector
Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Filter method — Method for computing derivative in discrete-time controller

Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the derivative term of the controller transfer function is:

 Discrete PID Controller (2DOF)

1-503

D N
1 + Nα(z) ,

where α(z) depends on the filter method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

α(z) =
Ts

z − 1 .
This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

Backward Euler
Backward rectangular (right-hand) approximation,

1 Blocks

1-504

α(z) =
Tsz

z − 1 .
An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal
Bilinear approximation,

α(z) =
Ts
2

z + 1
z − 1 .

An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,
the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

Dependencies

To enable this parameter, set Time Domain to Discrete-time and enable Use filtered derivative.

Programmatic Use
Block Parameter: FilterMethod
Type: string, character vector

 Discrete PID Controller (2DOF)

1-505

Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Main

Source — Source for controller gains and filter coefficient

internal (default) | external

internal
Specify the controller gains, filter coefficient, and setpoint weights using the block parameters P,
I, D, N, b, and c respectively.

external
Specify the PID gains, filter coefficient, and setpoint weights externally using block inputs. An
additional input port appears on the block for each parameter that is required for the current
controller type.

Enabling external inputs for the parameters allows you to compute their values externally to the
block and provide them to the block as signal inputs.

External input is useful, for example, when you want to map a different PID parameterization to the
PID gains of the block. You can also use external gain input to implement gain-scheduled PID control.
In gain-scheduled control, you determine the PID gains by logic or other calculation in your model
and feed them to the block.

When you supply gains externally, time variations in the integral and derivative gain values are
integrated and differentiated, respectively. The derivative setpoint weight c is also differentiated. This
result occurs because in both continuous time and discrete time, the gains are applied to the signal
before integration or differentiation. For example, for a continuous-time PID controller with external
inputs, the integrator term is implemented as shown in the following illustration.

Within the block, the input signal u is multiplied by the externally supplied integrator gain, I, before
integration. This implementation yields:

ui =∫ r − y I dt .

Thus, the integrator gain is included in the integral. Similarly, in the derivative term of the block,
multiplication by the derivative gain precedes the differentiation, which causes the derivative gain D
and the derivative setpoint weight c to be differentiated.

Programmatic Use
Block Parameter: ControllerParametersSource
Type: string, character vector
Values: "internal", "external"
Default: "internal"

1 Blocks

1-506

Proportional (P) — Proportional gain

1 (default) | scalar | vector

Specify a finite, real gain value for the proportional gain. When Controller form is:

• Parallel — Proportional action is independent of the integral and derivative actions. For
example, for a continuous-time 2-DOF PID controller in parallel form, the controller output u is:

u = P br − y + I1
s r − y + D N

1 + N 1
s

cr − y ,

where r is the reference signal, y is the measured plant output signal, and b and c are the setpoint
weights.

For a discrete-time 2-DOF controller in parallel form, the controller output is:

u = P br − y + Iα z r − y + D N
1 + Nβ z cr − y ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

• Ideal — The proportional gain multiples the integral and derivative terms. For example, for a
continuous-time 2-DOF PID controller in ideal form, the controller output is:

u = P br − y + I1
s r − y + D N

1 + N 1
s

cr − y .

For a discrete-time 2-DOF PID controller in ideal form, the transfer function is:

u = P br − y + Iα z r − y + D N
1 + Nβ z cr − y ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

Tunable: Yes

Dependencies

To enable this parameter, set the Controller parameters Source to internal.

Programmatic Use
Block Parameter: P
Type: scalar, vector
Default: 1

Integral (I) — Integral gain

1 (default) | scalar | vector

Specify a finite, real gain value for the integral gain.

Tunable: Yes

 Discrete PID Controller (2DOF)

1-507

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to a type that has integral action.

Programmatic Use
Block Parameter: I
Type: scalar, vector
Default: 1

Integral (I*Ts) — Integral gain multiplied by sample time

1 (default) | scalar | vector

Specify a finite, real gain value for the integral gain multiplied by the sample time.

Note PID tuning tools, such as the PID Tuner app and Closed-Loop PID Autotuner block, tune the
gain I but not I*Ts. Therefore, multiply the integral gain value you obtain from a tuning tool by the
sample time before you write it to this parameter.

When you use I*Ts instead of I, the block requires fewer calculations to perform integration. This
improves the execution time of the generated code.

Tunable: No

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, set
Controller to a type that has integral action, and enable the Use I*Ts parameter.

Programmatic Use
Block Parameter: I
Type: scalar, vector
Default: 1

Use I*Ts — Use integral gain multiplied by sample time

off (default) | on

For discrete-time controllers with integral action, the block takes the integral gain as an input and
multiplies it by the sample time internally as a part of performing the integration. You can enable this
parameter to specify integral gain multiplied by sample time as input (I*Ts) in place of the integral
gain (I). Doing so reduces the number of internal calculations and is useful when you want to improve
the execution time of your generated code.

Dependencies

To enable this parameter, set Controller to a controller type that has integral action.

Programmatic Use
Block Parameter: UseKiTs
Type: string, character vector
Values: "on", "off"
Default: "on"

1 Blocks

1-508

Derivative (D) — Derivative gain

0 (default) | scalar | vector

Specify a finite, real gain value for the derivative gain.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to PID or PD.

Programmatic Use
Block Parameter: D
Type: scalar, vector
Default: 0

Use filtered derivative — Apply filter to derivative term

on (default) | off

For discrete-time PID controllers only, clear this option to replace the filtered derivative with an
unfiltered discrete-time differentiator. When you do so, the derivative term of the controller output
becomes:

Dz − 1
zTs

cr − y .
For continuous-time PID controllers, the derivative term is always filtered.

Dependencies

To enable this parameter, set Time domain to Discrete-time, and set Controller to a type that
has a derivative term.

Programmatic Use
Block Parameter: UseFilter
Type: string, character vector
Values: "on", "off"
Default: "on"

Filter coefficient (N) — Derivative filter coefficient

100 (default) | scalar | vector

 Discrete PID Controller (2DOF)

1-509

Specify a finite, real gain value for the filter coefficient. The filter coefficient determines the pole
location of the filter in the derivative action of the block. The location of the filter pole depends on the
Time domain parameter.

• When Time domain is Continuous-time, the pole location is s = -N.
• When Time domain is Discrete-time, the pole location depends on the Filter method

parameter.

Filter Method Location of Filter Pole
Forward Euler zpole = 1− NTs

Backward Euler zpole = 1
1 + NTs

Trapezoidal
zpole =

1− NTs/2
1 + NTs/2

The block does not support N = Inf (ideal unfiltered derivative). When the Time domain is
Discrete-time, you can clear Use filtered derivative to remove the derivative filter.

Tunable: Yes
Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to PID or PD.
Programmatic Use
Block Parameter: N
Type: scalar, vector
Default: 100

Setpoint weight (b) — Proportional setpoint weight

1 (default) | scalar | vector

Setpoint weight on the proportional term of the controller. The proportional term of a 2-DOF
controller output is P(br–y), where r is the reference signal and y is the measured plant output.
Setting b to 0 eliminates proportional action on the reference signal, which can reduce overshoot in
the system response to step changes in the setpoint. Changing the relative values of b and c changes
the balance between disturbance rejection and setpoint tracking.

Tunable: Yes
Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal.
Programmatic Use
Block Parameter: b
Type: scalar, vector
Default: 1

Setpoint weight (c) — Derivative setpoint weight

1 (default) | scalar | vector

1 Blocks

1-510

Setpoint weight on the derivative term of the controller. The derivative term of a 2-DOF controller
acts on cr–y, where r is the reference signal and y is the measured plant output. Thus, setting c to 0
eliminates derivative action on the reference signal, which can reduce transient response to step
changes in the setpoint. Setting c to 0 can yield a controller that achieves both effective disturbance
rejection and smooth setpoint tracking without excessive transient response. Changing the relative
values of b and c changes the balance between disturbance rejection and setpoint tracking.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to a type that has derivative action.

Programmatic Use
Block Parameter: c
Type: scalar, vector
Default: 1

Select tuning method — Tool for automatic tuning of controller coefficients
Transfer Function Based (PID Tuner App) (default) | Frequency Response Based

If you have Simulink Control Design software, you can automatically tune the PID coefficients when
they are internal to the block. To do so, use this parameter to select a tuning tool, and click Tune.

Transfer Function Based (PID Tuner App)
Use PID Tuner, which lets you interactively tune PID coefficients while examining relevant
system responses to validate performance. PID Tuner can tune all the coefficients P, I, D, and N,
and the setpoint coefficients b and c. By default, PID Tuner works with a linearization of your
plant model. For models that cannot be linearized, you can tune PID coefficients against a plant
model estimated from simulated or measured response data. For more information, see “Design
Two-Degree-of-Freedom PID Controllers” (Simulink Control Design).

Frequency Response Based
Use Frequency Response Based PID Tuner, which tunes PID controller coefficients based on
frequency-response estimation data obtained by simulation. This tuning approach is especially
useful for plants that are not linearizable or that linearize to zero. Frequency Response Based
PID Tuner tunes the coefficients P, I, D, and N, but does not tune the setpoint coefficients b and
c. For more information, see “Design PID Controller from Plant Frequency-Response Data”
(Simulink Control Design).

Both of these tuning methods assume a single-loop control configuration. Simulink Control Design
software includes other tuning approaches that suit more complex configurations. For information
about other ways to tune a PID Controller block, see “Choose a Control Design Approach” (Simulink
Control Design).

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal.

Enable zero-crossing detection — Detect zero crossings on reset and on entering or leaving a
saturation state

on (default) | off

 Discrete PID Controller (2DOF)

1-511

Zero-crossing detection can accurately locate signal discontinuities without resorting to excessively
small time steps that can lead to lengthy simulation times. If you select Limit output or activate
External reset in your PID Controller block, activating zero-crossing detection can reduce
computation time in your simulation. Selecting this parameter activates zero-crossing detection:

• At initial-state reset
• When entering an upper or lower saturation state
• When leaving an upper or lower saturation state

For more information about zero-crossing detection, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: string, character vector
Values: "on", "off"
Default: "on"

Initialization

Source — Source for integrator and derivative initial conditions

internal (default) | external

Simulink uses initial conditions to initialize the integrator and derivative-filter (or the unfiltered
derivative) output at the start of a simulation or at a specified trigger event. (See the External reset
parameter.) These initial conditions determine the initial block output. Use this parameter to select
how to supply the initial condition values to the block.

internal
Specify the initial conditions using the Integrator Initial condition and Filter Initial
condition parameters. If Use filtered derivative is not selected, use the Differentiator
parameter to specify the initial condition for the unfiltered differentiator instead of a filter initial
condition.

external
Specify the initial conditions externally using block inputs. Additional input ports Io and Do
appear on the block. If Use filtered derivative is not selected, supply the initial condition for the
unfiltered differentiator at Do instead of a filter initial condition.

Programmatic Use
Block Parameter: InitialConditionSource
Type: string, character vector
Values: "internal", "external"
Default: "internal"

Integrator — Integrator initial condition

0 (default) | scalar | vector

Simulink uses the integrator initial condition to initialize the integrator at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The integrator initial condition cannot be NaN or Inf.

1 Blocks

1-512

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and set Controller to a
type that has integral action.

Programmatic Use
Block Parameter: InitialConditionForIntegrator
Type: scalar, vector
Default: 0

Filter — Filter initial condition

0 (default) | scalar | vector

Simulink uses the filter initial condition to initialize the derivative filter at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The filter initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and use a controller that
has a derivative filter.

Programmatic Use
Block Parameter: InitialConditionForFilter
Type: scalar, vector
Default: 0

Differentiator — Initial condition for unfiltered derivative
0 (default) | scalar | vector

When you use an unfiltered derivative, Simulink uses this parameter to initialize the differentiator at
the start of a simulation or at a specified trigger event (see External reset). The integrator initial
condition and the derivative initial condition determine the initial output of the PID controller block.

The derivative initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, set Time domain to Discrete-time, clear the Use filtered derivative
check box, and in the Initialization tab, set Source to internal.

Programmatic Use
Block Parameter: DifferentiatorICPrevScaledInput
Type: scalar, vector
Default: 0

Initial condition setting — Location at which initial condition is applied
Auto (default) | Output

Use this parameter to specify whether to apply the Integrator Initial condition and Filter Initial
condition parameter to the corresponding block state or output. You can change this parameter at
the command line only, using set_param to set the InitialConditionSetting parameter of the
block.

 Discrete PID Controller (2DOF)

1-513

Auto
Use this option in all situations except when the block is in a triggered subsystem or a function-
call subsystem and simplified initialization mode is enabled.

Output
Use this option when the block is in a triggered subsystem or a function-call subsystem and
simplified initialization mode is enabled.

For more information about the Initial condition setting parameter, see the Discrete-Time
Integrator block.

This parameter is only accessible through programmatic use.

Programmatic Use
Block Parameter: InitialConditionSetting
Type: string, character vector
Values: "Auto", "Output"
Default: "Auto"

External reset — Trigger for resetting integrator and filter values

none (default) | rising | falling | either | level

Specify the trigger condition that causes the block to reset the integrator and filter to initial
conditions. (If Use filtered derivative is not selected, the trigger resets the integrator and
differentiator to initial conditions.) Selecting any option other than none enables the Reset port on
the block for the external reset signal.

none
The integrator and filter (or differentiator) outputs are set to initial conditions at the beginning of
simulation, and are not reset during simulation.

rising
Reset the outputs when the reset signal has a rising edge.

falling
Reset the outputs when the reset signal has a falling edge.

either
Reset the outputs when the reset signal either rises or falls.

level
Reset the outputs when the reset signal either:

• Is nonzero at the current time step
• Changes from nonzero at the previous time step to zero at the current time step

This option holds the outputs to the initial conditions while the reset signal is nonzero.

Dependencies

To enable this parameter, set Controller to a type that has derivative or integral action.

Programmatic Use
Block Parameter: ExternalReset

1 Blocks

1-514

Type: string, character vector
Values: "none", "rising", "falling", "either","level"
Default: "none"

Ignore reset when linearizing — Force linearization to ignore reset

off (default) | on

Select to force Simulink and Simulink Control Design linearization commands to ignore any reset
mechanism specified in the External reset parameter. Ignoring reset states allows you to linearize a
model around an operating point even if that operating point causes the block to reset.

Programmatic Use
Block Parameter: IgnoreLimit
Type: string, character vector
Values: "off", "on"
Default: "off"

Enable tracking mode — Activate signal tracking

off (default) | on

Signal tracking lets the block output follow a tracking signal that you provide at the TR port. When
signal tracking is active, the difference between the tracking signal and the block output is fed back
to the integrator input with a gain Kt, specified by the Tracking gain (Kt) parameter. Signal
tracking has several applications, including bumpless control transfer and avoiding windup in
multiloop control structures.

Bumpless control transfer

Use signal tracking to achieve bumpless control transfer in systems that switch between two
controllers. Suppose you want to transfer control between a PID controller and another controller. To
do so, connecting the controller output to the TR input as shown in the following illustration.

 Discrete PID Controller (2DOF)

1-515

For more information, see “Bumpless Control Transfer with a Two-Degree-of-Freedom PID Controller”
on page 12-105.
Multiloop control

Use signal tracking to prevent block windup in multiloop control approaches. For an example
illustrating this approach with a 1DOF PID controller, see “Prevent Block Windup in Multiloop
Control” on page 12-103.
Dependencies

To enable this parameter, set Controller to a type that has integral action.
Programmatic Use
Block Parameter: TrackingMode
Type: string, character vector
Values: "off", "on"
Default: "off"

Tracking coefficient (Kt) — Gain of signal-tracking feedback loop

1 (default) | scalar

When you select Enable tracking mode, the difference between the signal TR and the block output
is fed back to the integrator input with a gain Kt. Use this parameter to specify the gain in that
feedback loop.
Dependencies

To enable this parameter, select Enable tracking mode.
Programmatic Use
Block Parameter: Kt
Type: scalar
Default: 1

Saturation
Output saturation

Limit Output — Limit block output to specified saturation values

off (default) | on

Activating this option limits the block output, so that you do not need a separate Saturation on page
1-1896 block after the controller. It also allows you to activate the anti-windup mechanism built into
the block (see the Anti-windup method parameter). Specify the output saturation limits using the
Lower limit and Upper limit parameters. You can also specify the saturation limits externally as
block input ports.
Programmatic Use
Block Parameter: LimitOutput
Type: string, character vector
Values: "off", "on"
Default: "off"

Source — Source for output saturation limits

1 Blocks

1-516

internal (default) | external

Use this parameter to specify how to supply the upper and lower saturation limits of the block output.

internal
Specify the output saturation limits using the Upper limit and Lower limit parameters.

external
Specify the output saturation limits externally using block input ports. The additional input ports
up and lo appear on the block. You can use the input ports to implement the upper and lower
output saturation limits determined by logic or other calculations in the Simulink model and
passed to the block.

Programmatic Use
Block Parameter: SatLimitsSource
Type: string, character vector
Values: "internal", "external"
Default: "internal"

Upper limit — Upper saturation limit for block output

Inf (default) | scalar

Specify the upper limit for the block output. The block output is held at the Upper saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions exceeds that value.

Dependencies

To enable this parameter, select Limit output.

Programmatic Use
Block Parameter: UpperSaturationLimit
Type: scalar
Default: Inf

Lower limit — Lower saturation limit for block output

-Inf (default) | scalar

Specify the lower limit for the block output. The block output is held at the Lower saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions goes below that
value.

Dependencies

To enable this parameter, select Limit output.

Programmatic Use
Block Parameter: LowerSaturationLimit
Type: scalar
Default: -Inf

Ignore saturation when linearizing — Force linearization to ignore output limits

off (default) | on

 Discrete PID Controller (2DOF)

1-517

Force Simulink and Simulink Control Design linearization commands to ignore block output limits
specified in the Upper limit and Lower limit parameters. Ignoring output limits allows you to
linearize a model around an operating point even if that operating point causes the block to exceed
the output limits.

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use
Block Parameter: LinearizeAsGain
Type: string, character vector
Values: "off", "on"
Default: "off"

Anti-windup method — Integrator anti-windup method

none (default) | back-calculation | clamping

When you select Limit output and the weighted sum of the controller components exceeds the
specified output limits, the block output holds at the specified limit. However, the integrator output
can continue to grow (integrator windup), increasing the difference between the block output and the
sum of the block components. In other words, the internal signals in the block can be unbounded
even if the output appears bounded by saturation limits. Without a mechanism to prevent integrator
windup, two results are possible:

• If the sign of the signal entering the integrator never changes, the integrator continues to
integrate until it overflows. The overflow value is the maximum or minimum value for the data
type of the integrator output.

• If the sign of the signal entering the integrator changes once the weighted sum has grown beyond
the output limits, it can take a long time to unwind the integrator and return the weighted sum
within the block saturation limit.

In either case, controller performance can suffer. To combat the effects of windup without an anti-
windup mechanism, it may be necessary to detune the controller (for example, by reducing the
controller gains), resulting in a sluggish controller. To avoid this problem, activate an anti-windup
mechanism using this parameter.

none
Do not use an anti-windup mechanism.

back-calculation
Unwind the integrator when the block output saturates by feeding back to the integrator the
difference between the saturated and unsaturated control signal. The following diagram
represents the back-calculation feedback circuit for a continuous-time controller. To see the
actual feedback circuit for your controller configuration, right-click on the block and select Mask
> Look Under Mask.

1 Blocks

1-518

Use the Back-calculation coefficient (Kb) parameter to specify the gain of the anti-windup
feedback circuit. It is usually satisfactory to set Kb = I, or for controllers with derivative action,
Kb = sqrt(I*D). Back-calculation can be effective for plants with relatively large dead time [1].

clamping
Integration stops when the sum of the block components exceeds the output limits and the
integrator output and block input have the same sign. Integration resumes when the sum of the
block components exceeds the output limits and the integrator output and block input have
opposite sign. Clamping is sometimes referred to as conditional integration.

Clamping can be useful for plants with relatively small dead times, but can yield a poor transient
response for large dead times [1].

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use
Block Parameter: AntiWindupMode
Type: string, character vector
Values: "none", "back-calculation","clamping"
Default: "none"

Back-calculation coefficient (Kb) — Gain coefficient of anti-windup feedback loop

1 (default) | scalar

The back-calculation anti-windup method unwinds the integrator when the block output
saturates. It does so by feeding back to the integrator the difference between the saturated and
unsaturated control signal. Use the Back-calculation coefficient (Kb) parameter to specify the
gain of the anti-windup feedback circuit. For more information, see the Anti-windup method
parameter.

 Discrete PID Controller (2DOF)

1-519

Dependencies

To enable this parameter, select the Limit output parameter, and set the Anti-windup method
parameter to back-calculation.

Programmatic Use
Block Parameter: Kb
Type: scalar
Default: 1

Integrator saturation

Limit Output — Limit integrator output to specified saturation limits

off (default) | on

Enable this parameter to limit the integrator output to be within a specified range. When the
integrator output reaches the limits, the integral action turns off to prevent integral windup. Specify
the saturation limits using the Lower limit and Upper limit parameters.

Dependencies

To enable this parameter, set Controller to a controller type that has integral action.

Programmatic Use
Block Parameter: LimitIntegratorOutput
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper limit — Upper saturation limit for integrator

Inf (default) | scalar

Specify the upper limit for the integrator output. The integrator output is held at this value whenever
it would otherwise exceed this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.

Programmatic Use
Block Parameter: UpperIntegratorSaturationLimit
Type: scalar
Default: Inf

Lower limit — Lower saturation limit for integrator

-Inf (default) | scalar

Specify the lower limit for the integrator output. The integrator output is held at this value whenever
it would otherwise go below this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.

1 Blocks

1-520

Programmatic Use
Block Parameter: LowerIntegratorSaturationLimit
Type: scalar
Default: -Inf

Data Types

The parameters in this tab are primarily of use in fixed-point code generation using Fixed-Point
Designer. They define how numeric quantities associated with the block are stored and processed
when you generate code.

If you need to configure data types for fixed-point code generation, click Open Fixed-Point Tool and
use that tool to configure the rest of the parameters in the tab. For information about using Fixed-
Point Tool, see “Autoscaling Data Objects Using the Fixed-Point Tool” (Fixed-Point Designer).

After you use Fixed-Point Tool, you can use the parameters in this tab to make adjustments to fixed-
point data-type settings if necessary. For each quantity associated with the block, you can specify:

• Floating-point or fixed-point data type, including whether the data type is inherited from upstream
values in the block.

• The minimum and maximum values for the quantity, which determine how the quantity is scaled
for fixed-point representation.

For assistance in selecting appropriate values, click to open the Data Type Assistant for the
corresponding quantity. For more information, see “Specify Data Types Using Data Type Assistant”.

 Discrete PID Controller (2DOF)

1-521

The specific quantities listed in the Data Types tab vary depending on how you configure the PID
controller block. In general, you can configure data types for the following types of quantities:

• Product output — Stores the result of a multiplication carried out under the block mask. For
example, P product output stores the output of the gain block that multiplies the block input
with the proportional gain P.

• Parameter — Stores the value of a numeric block parameter, such as P, I, or D.
• Block output — Stores the output of a block that resides under the PID controller block mask. For

example, use Integrator output to specify the data type of the output of the block called
Integrator. This block resides under the mask in the Integrator subsystem, and computes
integrator term of the controller action.

• Accumulator — Stores values associated with a sum block. For example, SumI2 Accumulator
sets the data type of the accumulator associated with the sum block SumI2. This block resides
under the mask in the Back Calculation subsystem of the Anti-Windup subsystem.

In general, you can find the block associated with any listed parameter by looking under the PID
Controller block mask and examining its subsystems. You can also use the Model Explorer to search
under the mask for the listed parameter name, such as SumI2. (See Model Explorer.)

Matching Input and Internal Data Types

By default, all data types in the block are set to Inherit: Inherit via internal rule. With
this setting, Simulink chooses data types to balance numerical accuracy, performance, and generated
code size, while accounting for the properties of the embedded target hardware.

Under some conditions, incompatibility can occur between data types within the block. For instance,
in continuous time, the Integrator block under the mask can accept only signals of type double. If
the block input signal is a type that cannot be converted to double, such as uint16, the internal
rules for type inheritance generate an error when you generate code.

To avoid such errors, you can use the Data Types settings to force a data type conversion. For
instance, you can explicitly set P product output, I product output, and D product output to
double, ensuring that the signals reaching the continuous-time integrators are of type double.

In general, it is not recommended to use the block in continuous time for code generation
applications. However, similar data type errors can occur in discrete time, if you explicitly set some
values to data types that are incompatible with downstream signal constraints within the block. In
such cases, use the Data Types settings to ensure that all data types are internally compatible.

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth

1 Blocks

1-522

Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type can

represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

• Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

• In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'

 Discrete PID Controller (2DOF)

1-523

Default: 'off'

State Attributes

The parameters in this tab are primarily of use in code generation.

State name (e.g., 'position') — Name for continuous-time filter and integrator states
'' (default) | character vector

Assign a unique name to the state associated with the integrator or the filter, for continuous-time PID
controllers. (For information about state names in a discrete-time PID controller, see the State name
parameter.) The state name is used, for example:

• For the corresponding variable in generated code
• As part of the storage name when logging states during simulation
• For the corresponding state in a linear model obtain by linearizing the block

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

Dependencies

To enable this parameter, set Time domain to Continuous-time.

Programmatic Use
Parameter: IntegratorContinuousStateAttributes, FilterContinuousStateAttributes
Type: character vector
Default: ''

State name — Names for discrete-time filter and integrator states
empty string (default) | string | character vector

Assign a unique name to the state associated with the integrator or the filter, for discrete-time PID
controllers. (For information about state names in a continuous-time PID controller, see the State
name (e.g., 'position') parameter.)

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters. The state name is used, for example:

• For the corresponding variable in generated code
• As part of the storage name when logging states during simulation
• For the corresponding state in a linear model obtain by linearizing the block

For more information about the use of state names in code generation, see “C Code Generation
Configuration for Model Interface Elements” (Simulink Coder).

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use
Parameter: IntegratorStateIdentifier, FilterStateIdentifier
Type: string, character vector
Default: ""

1 Blocks

1-524

State name must resolve to Simulink signal object — Require that state name resolve to a signal
object
off (default) | on

Select this parameter to require that the discrete-time integrator or filter state name resolves to a
Simulink signal object.

Dependencies

To enable this parameter for the discrete-time integrator or filter state:

1 Set Time domain to Discrete-time.
2 Specify a value for the integrator or filter State name.
3 Set the model configuration parameter Signal resolution to a value other than None.

Programmatic Use
Block Parameter: IntegratorStateMustResolveToSignalObject,
FilterStateMustResolveToSignalObject
Type: string, character vector
Values: "off", "on"
Default: "off"

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Decomposition of 2-DOF PID Controllers

A 2-DOF PID controller can be interpreted as a PID controller with a prefilter, or a PID controller with
a feedforward element.

Prefilter Decomposition

In parallel form, a two-degree-of-freedom PID controller can be equivalently modeled by the following
block diagram, where C is a single degree-of-freedom PID controller and F is a prefilter on the
reference signal.

 Discrete PID Controller (2DOF)

1-525

Ref is the reference signal, y is the feedback from the measured system output, and u is the controller
output. For a continuous-time 2-DOF PID controller in parallel form, the transfer functions for F and
C are

Fpar(s) = (bP + cDN)s2 + (bPN + I)s + IN
(P + DN)s2 + (PN + I)s + IN

,

Cpar(s) = (P + DN)s2 + (PN + I)s + IN
s(s + N) ,

where b and c are the setpoint weights.

For a 2-DOF PID controller in ideal form, the transfer functions are

Fid(s) = (b + cDN)s2 + (bN + I)s + IN
(1 + DN)s2 + (N + I)s + IN

,

Cid(s) = P (1 + DN)s2 + (N + I)s + IN
s(s + N) .

A similar decomposition applies for a discrete-time 2-DOF controller.
Feedforward Decomposition

Alternatively, the parallel two-degree-of-freedom PID controller can be modeled by the following
block diagram.

In this realization, Q acts as feed-forward conditioning on the reference signal. For a continuous-time
2-DOF PID controller in parallel form, the transfer function for Q is

Qpar(s) = (b− 1)P + (c− 1)DN s + (b− 1)PN
s + N .

1 Blocks

1-526

For a 2-DOF PID controller in ideal form, the transfer function is

Qid(s) = P (b− 1) + (c− 1)DN s + (b− 1)N
s + N .

The transfer functions for C are the same as in the filter decomposition.

A similar decomposition applies for a discrete-time 2-DOF controller.

Version History
Introduced in R2009b

R2022b: Issues error when integrator and filter initial conditions lie outside saturation
limits
Behavior changed in R2022b

The block now issues an error when the integrator or filter initial condition value lies outside the
output saturation limits. In previous releases, the block did not issue an error when these initial
conditions had such values.

If this change impacts your model, update the PID integrator or filter initial condition values such
that they are within the output saturation limits.

R2021b: ReferenceBlock parameter returns different path
Behavior changed in R2021b

Starting in R2021b, the get_param function returns a different value for the ReferenceBlock
parameter. The ReferenceBlock parameter is a property common to all Simulink blocks and gives
the path of the library block to which a block links. The PID Controller (2DOF) and Discrete PID
Controller (2DOF) blocks now link to 'slpidlib/PID Controller (2DOF)'. Previously, the
blocks linked to 'pid_lib/PID Controller (2DOF)'.

This change does not affect any other functionality or workflows. You can still use the previous path
with the set_param function.

R2020b: ReferenceBlock parameter returns different path
Behavior changed in R2020b

Starting in R2020b, the get_param function returns a different value for the ReferenceBlock
parameter. The ReferenceBlock parameter is a property common to all Simulink blocks and gives
the path of the library block to which a block links. The PID Controller (2DOF) and Discrete PID
Controller (2DOF) blocks now link to 'pid_lib/PID Controller (2DOF)'. Previously, the blocks
linked to 'simulink/Continuous/PID Controller (2DOF)'.

This change does not affect any other functionality or workflows. You can still use the previous path
with the set_param function.

References
[1] Visioli, A., "Modified Anti-Windup Scheme for PID Controllers," IEE Proceedings - Control Theory

and Applications, Vol. 150, Number 1, January 2003

 Discrete PID Controller (2DOF)

1-527

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For continuous-time PID controllers (Time domain set to Continuous-time):

• Consider using “Model Discretizer” to map continuous-time blocks to discrete equivalents that
support code generation. To access Model Discretizer, in the Apps tab, under Control Systems,
click Model Discretizer.

• Not recommended for production code.

For discrete-time PID controllers (Time domain set to Discrete-time):

• Depends on absolute time when placed inside a triggered subsystem hierarchy.
• Generated code relies on memcpy or memset functions (string.h) under certain conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Fixed-point code generation is supported for discrete-time PID controllers only (Time domain set to
Discrete-time).

See Also
Gain | Discrete-Time Integrator | Discrete Derivative | PID Controller (2DOF) | Discrete PID
Controller

1 Blocks

1-528

Discrete State-Space
Implement discrete state-space system

Libraries:
Simulink / Discrete

Description
Block Behavior for Non-Empty Matrices

The Discrete State-Space block implements the system described by

x(n + 1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n),

where u is the input, x is the state, and y is the output. The matrix coefficients must have these
characteristics, as illustrated in the following diagram:

• A must be an n-by-n matrix, where n is the number of states.
• B must be an n-by-m matrix, where m is the number of inputs.
• C must be an r-by-n matrix, where r is the number of outputs.
• D must be an r-by-m matrix.

The block accepts one input and generates one output. The width of the input vector is the number of
columns in the B and D matrices. The width of the output vector is the number of rows in the C and
D matrices. To define the initial state vector, use the Initial conditions parameter.

To specify a vector or matrix of zeros for A, B, C, D, or Initial conditions, use the zeros function.

Block Behavior for Empty Matrices

When the matrices A, B, and C are empty (for example, []), the functionality of the block becomes
y(n) = Du(n). If the Initial conditions vector is also empty, the block uses an initial state vector
of zeros.

Ports
Input

Port_1 — Input signal
scalar | vector

Input vector, where the width equals the number of columns in the B and D matrices. For more
information, see “Description” on page 1-529.

 Discrete State-Space

1-529

Tip For integer and fixed-point input signals, use the Fixed-Point State-Space block.

Data Types: single | double

Output

Port_1 — Output vector
scalar | vector

Output vector, with width equal to the number of rows in the C and D matrices. For more information,
see “Description” on page 1-529.
Data Types: single | double

Parameters
Main

A — Matrix coefficient A

1 (default) | scalar | vector | matrix

Specify the matrix coefficient A, as a real-valued n-by-n matrix, where n is the number of states. For
more information on the matrix coefficients, see “Description” on page 1-529.

Programmatic Use
Block Parameter: A
Type: character vector
Values: scalar | vector | matrix
Default: '1'

B — Matrix coefficient B

1 (default) | scalar | vector | matrix

Specify the matrix coefficient B, as a real-valued n-by-m matrix, where n is the number of states, and
m is the number of inputs. For more information on the matrix coefficients, see “Description” on page
1-529.

Programmatic Use
Block Parameter: B
Type: character vector
Values: scalar | vector | matrix
Default: '1'

C — Matrix coefficient, C

1 (default) | scalar | vector | matrix

Specify the matrix coefficient C, as a real-valued r-by-n matrix, where r is the number of outputs, and
n is the number of states. For more information on the matrix coefficients, see “Description” on page
1-529.

1 Blocks

1-530

Programmatic Use
Block Parameter: C
Type: character vector
Values: scalar | vector | matrix
Default: '1'

D — Matrix coefficient, D

1 (default) | scalar | vector | matrix

Specify the matrix coefficient D, as a real-valued r-by-m matrix, where r is the number of outputs, and
m is the number of inputs. For more information on the matrix coefficients, see “Description” on page
1-529.
Programmatic Use
Block Parameter: D
Type: character vector
Values: scalar | vector | matrix
Default: '1'

Initial conditions — Initial state vector

0 (default) | scalar | vector

Specify the initial state vector as a scalar or vector. The initial state vector cannot include inf or NaN
values.
Programmatic Use
Block Parameter: InitialCondition
Type: character vector
Values: scalar | vector
Default: '0'

Sample time (–1 for inherited) — Interval between samples

-1 (default) | scalar | vector

Specify the time interval between samples. See “Specify Sample Time”.
Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

State Attributes

State name — Unique name for block state

'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

 Discrete State-Space

1-531

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click
Apply.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).
Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.
Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if you set the
model configuration parameter Signal resolution to a value other than None.
Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

1 Blocks

1-532

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
State-Space | Fixed-Point State-Space

Topics
“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)
“Organize Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder)
“Data Objects”

 Discrete State-Space

1-533

Discrete-Time Integrator
Perform discrete-time integration or accumulation of signal

Libraries:
Simulink / Commonly Used Blocks
Simulink / Discrete
HDL Coder / Discrete
HDL Coder / HDL Floating Point Operations

Description
Use the Discrete-Time Integrator block in place of the Integrator block to create a purely discrete
model. With the Discrete-Time Integrator block, you can:

• Define initial conditions on the block dialog box or as input to the block
• Define an input gain (K) value
• Output the block state
• Define upper and lower limits on the integral
• Reset the state with an additional reset input

Output Equations

With the first time step, block state n = 0, with either initial output y(0) = IC or initial state x(0)
= IC, depending on the Initial condition setting parameter value.

For a given step n > 0 with simulation time t(n), Simulink updates output y(n) as follows:

• Forward Euler method:

y(n) = y(n-1) + K*[t(n) - t(n-1)]*u(n-1)
• Backward Euler method:

y(n) = y(n-1) + K*[t(n) - t(n-1)]*u(n)
• Trapezoidal method:

y(n) = y(n-1) + K*[t(n)-t(n-1)]*[u(n)+u(n-1)]/2

Simulink automatically selects a state-space realization of these output equations depending on the
block sample time, which can be explicit or triggered. When using explicit sample time, t(n)-
t(n-1) reduces to the sample time T for all n > 0.

Integration and Accumulation Methods

This block can integrate or accumulate a signal using a forward Euler, backward Euler, or trapezoidal
method. Assume that u is the input, y is the output, and x is the state. For a given step n, Simulink
updates y(n) and x(n+1). In integration mode, T is the block sample time (delta T in the case of
triggered sample time). In accumulation mode, T = 1. The block sample time determines when the
output is computed but not the output value. K is the gain value. Values clip according to upper or
lower limits.

1 Blocks

1-534

Forward Euler Method

Forward Euler method (default), also known as forward rectangular, or left-hand approximation

The software approximates 1/s as T/(z-1). The expressions for the output of the block at step n
are:

x(n+1) = x(n) + K*T*u(n)
y(n) = x(n)

The block uses these steps to compute the output:

Step 0: y(0) = IC (clip if necessary)
 x(1) = y(0) + K*T*u(0)

Step 1: y(1) = x(1)
 x(2) = x(1) + K*T*u(1)

Step n: y(n) = x(n)
 x(n+1) = x(n) + K*T*u(n) (clip if necessary)

Using this method, input port 1 does not have direct feedthrough.

Backward Euler Method

Backward Euler method, also known as backward rectangular or right-hand approximation

The software approximates 1/s as T*z/(z-1). The resulting expression for the output of the block
at step n is

y(n) = y(n-1) + K*T*u(n).

Let x(n) = y((n)-1). The block uses these steps to compute the output.

• If the parameter Initial condition setting is set to Output or Auto for triggered and function-
call subsystems:

Step 0: y(0) = IC (clipped if necessary)
 x(1) = y(0)

• If the parameter Initial condition setting is set to Auto for non-triggered subsystems:

Step 0: x(0) = IC (clipped if necessary)
 x(1) = y(0) = x(0) + K*T*u(0)

Step 1: y(1) = x(1) + K*T*u(1)
 x(2) = y(1)

Step n: y(n) = x(n) + K*T*u(n)
 x(n+1) = y(n)

Using this method, input port 1 has direct feedthrough.

Trapezoidal Method

For this method, the software approximates 1/s as T/2*(z+1)/(z-1).

When T is fixed (equal to the sampling period), the expressions to compute the output are:

 Discrete-Time Integrator

1-535

x(n) = y(n-1) + K*T/2*u(n-1)
y(n) = x(n) + K*T/2*u(n)

• If the parameter Initial condition setting is set to Output or Auto for triggered and function-
call subsystems:

Step 0: y(0) = IC (clipped if necessary)
 x(1) = y(0) + K*T/2*u(0)

• If the parameter Initial condition setting is set to Auto for non-triggered subsystems:

Step 0: x(0) = IC (clipped if necessary)
 y(0) = x(0) + K*T/2*u(0)
 x(1) = y(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + K*T/2*u(1)
 x(2) = y(1) + K*T/2*u(1)

Step n: y(n) = x(n) + K*T/2*u(n)
 x(n+1) = y(n) + K*T/2*u(n)

Here, x(n+1) is the best estimate of the next output. It is not the same as the state, in that x(n) is
not equal to y(n).

Using this method, input port 1 has direct feedthrough.

When T is a Variable

WhenT is a variable (for example, obtained from the triggering times), the block uses these steps to
compute the output.

• If the parameter Initial condition setting is set to Output or Auto for triggered and function-
call subsystems:

Step 0: y(0) = IC (clipped if necessary)
 x(1) = y(0)

• If the parameter Initial condition setting is set to Auto for non-triggered subsystems:

Step 0: x(0) = IC (clipped if necessary)
 x(1) = y(0) = x(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + K*T/2*(u(1) + u(0))
 x(2) = y(1)

Step n: y(n) = x(n) + K*T/2*(u(n) + u(n-1))
 x(n+1) = y(n)

Define Initial Conditions

You can define the initial conditions as a parameter on the block dialog box or input them from an
external signal:

• To define the initial conditions as a block parameter, set the Initial condition source parameter
to internal and enter the value in the Initial condition text box.

• To provide the initial conditions from an external source, set the Initial condition source
parameter to external. An additional input port appears on the block.

1 Blocks

1-536

When to Use the State Port

Use the state port instead of the output port:

• When the output of the block is fed back into the block through the reset port or the initial
condition port, causing an algebraic loop. For an example, see the
sldemo_bounce_two_integrators model.

• When you want to pass the state from one conditionally executed subsystem to another, which can
cause timing problems. For an example, see “Building a Clutch Lock-Up Model” on page 13-156.

You can work around these problems by passing the state through the state port rather than the
output port. Simulink generates the state at a slightly different time from the output, which protects
your model from these problems. To output the block state, select the Show state port check box.
The state port appears on the top of the block.

Limit the Integral

To keep the output within certain levels, select the Limit output check box and enter the limits in
the corresponding text box. Doing so causes the block to function as a limited integrator. When the
output reaches the limits, the integral action turns off to prevent integral windup. During a
simulation, you can change the limits but you cannot change whether the output is limited. The table
shows how the block determines output.

Integral Output
Less than or equal to the Lower saturation
limit and the input is negative

Held at the Lower saturation limit

Between the Lower saturation limit and the
Upper saturation limit

The integral

Greater than or equal to the Upper saturation
limit and the input is positive

Held at the Upper saturation limit

To generate a signal that indicates when the state is being limited, select the Show saturation port
check box. A new saturation port appears below the block output port.

 Discrete-Time Integrator

1-537

The saturation signal has one of three values:

• 1 indicates that the upper limit is being applied.
• 0 indicates that the integral is not limited.
• -1 indicates that the lower limit is being applied.

Reset the State

The block resets its state to the specified initial condition, based on an external signal. To cause the
block to reset its state, select one of the External reset parameter options. A reset port appears that
indicates the reset trigger type.

The reset port has direct feedthrough. If the block output feeds back into this port, either directly or
through a series of blocks with direct feedthrough, an algebraic loop results. To resolve this loop,
feed the output of the block state port into the reset port instead. To access the block state, select the
Show state port check box.

Reset Trigger Types

The External reset parameter lets you determine the attribute of the reset signal that triggers the
reset. The trigger options include:

• rising – Resets the state when the reset signal has a rising edge. For example, this figure shows
the effect that a rising reset trigger has on backward Euler integration.

1 Blocks

1-538

• falling — Resets the state when the reset signal has a falling edge. For example, this figure
shows the effect that a falling reset trigger has on backward Euler integration.

• either — Resets the state when the reset signal rises or falls. For example, the following figure
shows the effect that an either reset trigger has on backward Euler integration.

• level — Resets and holds the output to the initial condition while the reset signal is nonzero. For
example, this figure shows the effect that a level reset trigger has on backward Euler integration.

• sampled level — Resets the output to the initial condition when the reset signal is nonzero. For
example, this figure shows the effect that a sampled level reset trigger has on backward Euler
integration.

 Discrete-Time Integrator

1-539

The sampled level reset option requires fewer computations, making it more efficient than the
level reset option.

Note For the Discrete-Time Integrator block, all trigger detections are based on signals with
positive values. For example, a signal changing from -1 to 0 is not considered a rising edge, but a
signal changing from 0 to 1 is.

Behavior in Simplified Initialization Mode

Simplified initialization mode is enabled when you set Underspecified initialization detection to
Simplified in the Configuration Parameters dialog box. If you use simplified initialization mode, the
behavior of the Discrete-Time Integrator block differs from classic initialization mode. The new
initialization behavior is more robust and provides more consistent behavior in these cases:

• In algebraic loops
• On enable and disable
• When comparing results using triggered sample time against explicit sample time, where the

block is triggered at the same rate as the explicit sample time

Simplified initialization mode enables easier conversion from Continuous-Time Integrator blocks to
Discrete-Time Integrator blocks, because the initial conditions have the same meaning for both
blocks.

For more information on classic and simplified initialization modes, see “Underspecified initialization
detection”.

Enable and Disable Behavior with Initial Condition Setting set to Output

When you use simplified initialization mode with Initial condition setting set to Output for
triggered and function-call subsystems, the enable and disable behavior of the block is simplified as
follows.

At disable time td:

 y(td) = y(td-1)

At enable time te:

• If the parent subsystem control port has States when enabling set to reset:

1 Blocks

1-540

y(te) = IC.
• If the parent subsystem control port has States when enabling set to held:

y(te) = y(td).

The following figure shows this condition.

Iterator Subsystems

When using simplified initialization mode, you cannot place the Discrete-Time Integrator block in an
iterator subsystem block.

In simplified initialization mode, Iterator subsystems do not maintain elapsed time. Thus, if a
Discrete-Time Integrator block, which needs elapsed time, is placed inside an iterator subsystem
block, Simulink reports an error.

Behavior in an Enabled Subsystem Inside a Function-Call Subsystem

Suppose you have a function-call subsystem that includes an enabled subsystem, which contains a
Discrete-Time Integrator block. The following behavior applies.

 Discrete-Time Integrator

1-541

Integrator Method Sample Time Type of
Function-Call Trigger
Port

Value of delta T When
Function-Call
Subsystem Executes for
the First Time After
Enabled

Reason for Behavior

Forward Euler Triggered t — tstart When the function-call
subsystem executes for the
first time, the integrator
algorithm uses tstart as
the previous simulation
time.

Backward Euler and
Trapezoidal

Triggered t — tprevious When the function-call
subsystem executes for the
first time, the integrator
algorithm uses
tprevious as the
previous simulation time.

Forward Euler, Backward
Euler, and Trapezoidal

Periodic Sample time of the
function-call generator

In periodic mode, the
Discrete-Time Integrator
block uses sample time of
the function-call generator
for delta T.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

IC — Initial conditions of the states
scalar | vector | matrix

Initial conditions of the states, specified as a finite scalar, vector, or matrix.

Dependencies

To enable this port, set Initial condition source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Discrete-time integration or accumulation of input
scalar | vector | matrix

Discrete-time integration or accumulation of the input signal, specified as a scalar, vector, or matrix.

1 Blocks

1-542

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Port_2 — Saturation output
scalar | vector | matrix

Signal indicating when the state is being limited, specified as a scalar, vector, or matrix. The signal
has one of three values:

• 1 indicates that the upper limit is being applied.
• 0 indicates that the integral is not limited.
• -1 indicates that the lower limit is being applied.

Dependencies

To enable this port, select the Show saturation port check box.
Data Types: single | double | int8

Port_3 — State output
scalar | vector | matrix

Block states, output as a scalar, vector, or matrix. By default, the block adds this port to the top of the
block icon. Use the state port when:

• The output of the block is fed back into the block through the reset port or the initial condition
port, causing an algebraic loop. For an example, see the sldemo_bounce_two_integrators
model.

• You want to pass the state from one conditionally executed subsystem to another, which can cause
timing problems. For an example, see the sldemo_clutch model.

For more information, see “When to Use the State Port” on page 1-537.

Dependencies

To enable this port, select the Show state port check box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main

Integrator method — Accumulation method

Integration: Forward Euler (default) | Integration: Backward Euler | Integration:
Trapezoidal | Accumulation: Forward Euler | Accumulation: Backward Euler |
Accumulation: Trapezoidal

Specify the integration or accumulation method. See “Output Equations” on page 1-534 and
“Integration and Accumulation Methods” on page 1-534 for more information.

Programmatic Use
Block Parameter: IntegratorMethod

 Discrete-Time Integrator

1-543

Type: character vector
Values: 'Integration: Forward Euler' | 'Integration: Backward Euler' |
'Integration: Trapezoidal' | 'Accumulation: Forward Euler' | 'Accumulation:
Backward Euler' | 'Accumulation: Trapezoidal'
Default: 'Integration: Forward Euler'

Gain value — Value to multiply with integrator input

1.0 (default) | scalar | vector

Specify a scalar, vector, or matrix by which to multiply the integrator input. Each element of the gain
must be a positive real number.

• Specifying a value other than 1.0 (the default) is semantically equivalent to connecting a Gain
block to the input of the integrator.

• Valid entries include:

• double(1.0)
• single(1.0)
• [1.1 2.2 3.3 4.4]
• [1.1 2.2; 3.3 4.4]

Tip Using this parameter to specify the input gain eliminates a multiplication operation in the
generated code. However, this parameter must be nontunable to realize this benefit. If you want to
tune the input gain, set this parameter to 1.0 and use an external Gain block to specify the input gain.

Programmatic Use
Block Parameter: gainval
Type: character vector
Values: scalar | vector
Default: '1.0'

External reset — Select when to reset states to initial conditions

none (default) | rising | falling | either | level | sampled level

Select the type of trigger event that resets the states to their initial conditions:

• none — Do not reset the state to initial conditions.
• rising — Reset the state when the reset signal has a rising edge.
• falling — Reset the state when the reset signal has a falling edge.
• either — Reset the state when the reset signal rises or falls.
• level — Reset and hold the output to the initial condition while the reset signal is nonzero.
• sampled level — Reset the output to the initial condition when the reset signal is nonzero.

For more information, see “Reset the State” on page 1-538 and “Reset Trigger Types” on page 1-538.

Programmatic Use
Block Parameter: ExternalReset

1 Blocks

1-544

Type: character vector
Values: 'none' | 'rising' | 'falling' | 'either' | 'level' | 'sampled level'
Default: 'none'

Initial condition source — Option to set initial condition using external signal

internal (default) | external

Select source of initial condition:

• internal — Get the initial conditions of the states from the Initial condition parameter.
• external — Get the initial conditions of the states from an external signal. When you select this

option, an input port appears on the block.

Programmatic Use
Block Parameter: InitialConditionSource
Type: character vector, string
Values: 'internal' | 'external'
Default: 'internal'

Initial condition — Initial condition of states

0 (default) | scalar | vector | matrix

Specify initial condition of the block states. The minimum and maximum values are bound by the
Output minimum and Output maximum block parameters.

Tip Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

To enable this parameter, set the Initial condition source to internal.
Programmatic Use
Block Parameter: InitialCondition
Type: character vector, string
Values: scalar | vector | matrix
Default: '0'

Initial condition setting — Select where to apply the initial condition

Auto (default) | Output | Compatibility

Select whether to apply the value of the Initial condition parameter to the block state or block
output. The initial condition is also the reset value.

• Auto — Block chooses where to apply the Initial condition parameter.

• If the block is in a non-triggered subsystem and Integrator method is set to an integration
method, set initial conditions:

x(0) = IC

At reset:

 Discrete-Time Integrator

1-545

x(n) = IC
• If the block is in a triggered or function-call subsystem and Integrator method is set to an

integration method, set initial conditions as if output was selected.
• Output — Use this option when the block is in a triggered or a function-call subsystem and

Integrator method is set to an integration method.

Set initial conditions:

y(0) = IC

At reset:

y(n) = IC
• Compatibility — This option is present to provide backward compatibility. You cannot select

this option for Discrete-Time Integrator blocks in Simulink models but you can select it for
Discrete-Time Integrator blocks in a library. Use this option to maintain compatibility with
Simulink models created before R2014a.

Prior to R2014a, the option Auto was known as State only (most efficient). The option
Output was known as State and output. The behavior of the block with the option
Compatibility is as follows.

• If Underspecified initialization detection is set to Classic, the Initial condition setting
parameter behaves as Auto.

• If Underspecified initialization detection is set to Simplified, the Initial condition
setting parameter behaves as Output.

Note This parameter was named Use initial condition as initial and reset value for in Simulink
before R2014a.

Programmatic Use
Block Parameter: InitialConditionSetting
Type: character vector
Value: 'Auto' | 'Output' | 'Compatibility'
Default: 'Auto'

Sample time (-1 for inherited) — Interval between samples

-1 (default) | scalar | vector

Enter the discrete time interval between steps.

By default, the block uses a discrete sample time of 1. To set a different sample time, enter another
discrete value, such as 0.1.

See “Specify Sample Time” for more information.

Tips

• Do not specify a sample time of 0. This value specifies a continuous sample time, which the
Discrete-Time Integrator block does not support.

1 Blocks

1-546

• Do not specify a sample time of inf or NaN because these values are not discrete.
• If you specify -1 to inherit the sample time from an upstream block, verify that the upstream block

uses a discrete sample time. For example, the Discrete-Time Integrator block cannot inherit a
sample time of 0.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

Limit output — Limit block output values to specified range

off (default) | on

Limit the block's output to a value between the Lower saturation limit and Upper saturation limit
parameters.

• Selecting this check box limits the block's output to a value between the Lower saturation limit
and Upper saturation limit parameters.

• Clearing this check box does not limit the block's output values.

Dependencies

Selecting this parameter enables the Lower saturation limit and Upper saturation limit
parameters.
Programmatic Use
Block Parameter: LimitOutput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Upper saturation limit — Upper limit for the integral

inf (default) | scalar | vector | matrix

Specify the upper limit for the integral as a scalar, vector, or matrix. You must specify a value
between the Output minimum and Output maximum parameter values.
Dependencies

To enable this parameter, select the Limit output check box.
Programmatic Use
Block Parameter: UpperSaturationLimit
Type: character vector, string
Values: scalar | vector | matrix
Default: 'inf'

Lower saturation limit — Lower limit for the integral

-inf (default) | scalar | vector | matrix

Specify the lower limit for the integral as a scalar, vector, or matrix. You must specify a value between
the Output minimum and Output maximum parameter values.

 Discrete-Time Integrator

1-547

Dependencies

To enable this parameter, select the Limit output check box.

Programmatic Use
Block Parameter: LowerSaturationLimit
Type: character vector , string
Values: scalar | vector | matrix
Default: '-inf'

Show saturation port — Enable saturation output port

off (default) | on

Select this check box to add a saturation output port to the block. When you clear this check box, the
block does not have a saturation output port.

Dependencies

Selecting this parameter enables a saturation output port.

Programmatic Use
Block Parameter: ShowSaturationPort
Type: character vector , string
Values: 'off' | 'on'
Default: 'off'

Show state port — Enable state output port

off (default) | on

Select this check box to add a state output port to the block. When you clear this check box, the block
does not have a state output port.

Dependencies

Selecting this parameter enables a state output port.

Programmatic Use
Block Parameter: ShowStatePort
Type: character vector , string
Values: 'off' | 'on'
Default: 'off'

Ignore limit and reset when linearizing — Treat block as not resettable

off (default) | on

Select this check box to have Simulink linearization commands treat this block as not resettable and
as having no limits on its output, regardless of the settings of the block reset and output limitation
options.

Tip Ignoring the limit and resetting allows you to linearize a model around an operating point. This
point may cause the integrator to reset or saturate.

1 Blocks

1-548

Programmatic Use
Block Parameter: IgnoreLimit
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Signal Attributes

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.

 Discrete-Time Integrator

1-549

For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Data type — Output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 |
uint64 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType. For more information, see “Control Data Types of
Signals”.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule — Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. For example, if the block multiplies an input of type int8 by a
gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is
sfix24. If Unspecified (assume 32-bit Generic), i.e., a generic 32-bit microprocessor, is
specified as the target hardware, the output data type is int32. If none of the word lengths
provided by the target microprocessor can accommodate the output range, Simulink software
displays an error in the Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical accuracy at the
same time. If the internal rule doesn’t meet your specific needs for numerical accuracy or
performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point

Tool to propose data types for your model. For more information, see fxptdlg.
• To specify your own inheritance rule, use Inherit: Inherit via back propagation and

then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

• Inherit: Inherit via back propagation — Use data type of the driving block.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector

1 Blocks

1-550

Values: 'Inherit: Inherit via internal rule | 'Inherit: Inherit via back
propagation' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'
| '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the MATLAB
ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the MATLAB
floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate rounding
code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

 Discrete-Time Integrator

1-551

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Default: 'Floor'
See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type can

represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

• Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

• In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Mode — Select data type mode

Inherit (default) | Built in | Fixed Point

Select the category of data to specify.

• Inherit — Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right where you can select the inheritance mode.

1 Blocks

1-552

• Built in — Built-in data types. Selecting Built in enables a second menu/text box to the right
where you can select a built-in data type.

• Fixed point — Fixed-point data types. Selecting Fixed point enables additional parameters
that you can use to specify a fixed-point data type.

• Expression — Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, click the Show data type assistant button.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies

To enable this parameter, set Mode to Built in or Fixed point.

Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Signedness of fixed-point data

Signed (default) | Unsigned

Specify whether you want the fixed-point data as signed or unsigned. Signed data can represent
positive and negative values, but unsigned data represents positive values only. For more information,
see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

 Discrete-Time Integrator

1-553

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type

0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Binary point.

Slope — Specify slope for the fixed-point data type

2^0 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

State Attributes

State name — Unique name for block state

'' (default) | alphanumeric string

1 Blocks

1-554

Use this parameter to assign a unique name to the block state. The default is ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

• The state name applies only to the selected block.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

Dependencies

When you specify a value for State name and click Apply, you enable the State name must resolve
to Simulink signal object parameter.

Programmatic Use
Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Option to require that state names resolve
to signal object

off (default) | on

Specify whether state names are required to resolve to signal objects. If selected, the software
generates an error at run time if you specify a state name that does not match the name of a signal
object.

Selecting this parameter disables the Code generation storage class parameter.

Dependencies

Enabled when you specify a value for the State name parameter and set the Signal resolution
model configuration parameter to a value other than None.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

 Discrete-Time Integrator

1-555

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Depends on absolute time when used inside a triggered subsystem hierarchy.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Native Floating Point
HandleDenormals Specify whether you want HDL Coder to insert additional logic to handle

denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min, or
Zero for the floating-point operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

MantissaMultiplyStra
tegy

Specify how to implement the mantissa multiplication operation during
code generation. By using different settings, you can control the DSP usage
on the target FPGA device. The default is inherit. See also
“MantissaMultiplyStrategy” (HDL Coder).

1 Blocks

1-556

Restrictions

• State ports are not supported for HDL code generation. Clear the Show state port option.
• External initial conditions are not supported for HDL code generation. Set Initial condition

source to Internal.
• External Reset must be set to none, rising, falling or level.
• Continuous sample time is not supported. Use a discrete sample time for the block.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Integrator

Topics
“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)
“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)
“Organize Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder)

 Discrete-Time Integrator

1-557

Discrete Transfer Fcn
Implement discrete transfer function

Libraries:
Simulink / Discrete
HDL Coder / Discrete
HDL Coder / HDL Floating Point Operations

Description
The Discrete Transfer Fcn block implements the z-transform transfer function as follows:

H(z) = num(z)
den(z) =

num0zm + num1zm− 1 + ... + numm
den0zn + den1zn− 1 + ... + denn

where m+1 and n+1 are the number of numerator and denominator coefficients, respectively. num
and den contain the coefficients of the numerator and denominator in descending powers of z. num
can be a vector or matrix, while den must be a vector. The order of the denominator must be greater
than or equal to the order of the numerator.

Specify the coefficients of the numerator and denominator polynomials in descending powers of z.
This block lets you use polynomials in z to represent a discrete system, a method that control
engineers typically use. Conversely, the Discrete Filter block lets you use polynomials in z-1 (the delay
operator) to represent a discrete system, a method that signal processing engineers typically use. The
two methods are identical when the numerator and denominator polynomials have the same length.

The Discrete Transfer Fcn block applies the z-transform transfer function to each independent
channel of the input. The Input processing parameter allows you to specify whether the block treats
each column of the input as an individual channel (frame-based processing) or each element of the
input as an individual channel (sample-based processing). To perform frame-based processing, you
must have a DSP System Toolbox license.

Specifying Initial States

Use the Initial states parameter to specify initial filter states. To determine the number of initial
states you must specify and how to specify them, use the following tables.

1 Blocks

1-558

Frame-Based Processing
Input Number of Channels Valid Initial States

(Dialog Box)
Valid Initial States
(Input Port)

• Column vector (K-
by-1)

• Unoriented vector
(K)

1 • Scalar
• Column vector (M-

by-1)
• Row vector (1-by-M)

• Scalar
• Column vector (M-

by-1)

• Row vector (1-by-N)
• Matrix (K-by-N)

N • Scalar
• Column vector (M-

by-1)
• Row vector (1-by-M)
• Matrix (M-by-N)

• Scalar
• Matrix (M-by-N)

Sample-Based Processing
Input Number of Channels Valid Initial States

(Dialog Box)
Valid Initial States
(Input Port)

• Scalar 1 • Scalar
• Column vector (M-

by-1)
• Row vector (1-by-M)

• Scalar
• Column vector (M-

by-1)
• Row vector (1-by-M)

• Row vector (1-by-N)
• Column vector (N-

by-1)
• Unoriented vector

(N)

N • Scalar
• Column vector (M-

by-1)
• Row vector (1-by-M)
• Matrix (M-by-N)

• Scalar

• Matrix (K-by-N) K × N • Scalar
• Column vector (M-

by-1)
• Row vector (1-by-M)
• Matrix (M-by-(K×N))

• Scalar

When the Initial states is a scalar, the block initializes all filter states to the same scalar value. To
initialize all states to zero, enter 0. When the Initial states is a vector or a matrix, each vector or
matrix element specifies a unique initial state for a corresponding delay element in a corresponding
channel:

• The vector length must equal the number of delay elements in the filter, M = max(number of
zeros, number of poles).

• The matrix must have the same number of rows as the number of delay elements in the filter, M =
max(number of zeros, number of poles). The matrix must also have one column for each
channel of the input signal.

The following example shows the relationship between the initial filter output and the initial input
and state. Given an initial input u1, the first output y1 is related to the initial state [x1, x2] and initial
input by as follows:

 Discrete Transfer Fcn

1-559

y1 = 4x1
x2 = 1/2(u1− 3x1)

Ports
Input

u — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | fixed point

Num — Numerator coefficients
scalar | vector | matrix

Coefficients of the numerator polynomial specified as a vector or matrix in descending powers of z.
Use a row vector to specify the coefficients for a single numerator polynomial. Use a matrix to specify

1 Blocks

1-560

coefficients for multiple filters to be applied to the same input. Each matrix row represents a set of
filter taps. The order of the denominator must be greater than or equal to the order of the numerator.

Dependencies

To enable this port, set Numerator Source to Input port.

Numerator and denominator coefficients must have the same complexity. They can have different
word lengths and fraction lengths.
Data Types: single | double | int8 | int16 | int32 | fixed point

Den — Denominator coefficients
scalar | vector | matrix

Coefficients of the denominator polynomial specified as a vector in descending powers of z. Use a row
vector to specify the coefficients for a single denominator polynomial. Use a matrix to specify
coefficients for multiple filters to be applied to the same input. Each matrix row represents a set of
filter taps. The order of the denominator must be greater than or equal to the order of the numerator.
The leading denominator coefficient cannot be 0.

Dependencies

To enable this port, set Denominator Source to Input port.

Numerator and denominator coefficients must have the same complexity. They can have different
word lengths and fraction lengths.
Data Types: single | double | int8 | int16 | int32 | fixed point

External reset — External reset signal
scalar

External reset signal, specified as a scalar. When the specified trigger event occurs, the block resets
the states to their initial conditions.

Tip The icon for this port changes based on the value of the External reset parameter.

Dependencies

To enable this port, set External reset to Rising, Falling, Either, Level, or Level hold.

Limitations

The reset signal must be a scalar of type single, double, Boolean, or integer. Fixed-point data types,
except for ufix1, are not supported.
Data Types: single | double | Boolean | int8 | int16 | int32 | fixed point

x0 — Initial states
scalar | vector | matrix

Initial states, specified as a scalar, vector, or matrix. For more information about specifying states, see
“Specifying Initial States” on page 1-558. States are complex when either the input or the coefficients
are complex.

 Discrete Transfer Fcn

1-561

Dependencies

To enable this port, set Initial states Source to Input port.
Data Types: single | double | int8 | int16 | int32 | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | fixed point

Parameters
Main

Numerator Source — Source of numerator coefficients
Dialog (default) | Input port

Specify the source of the numerator coefficients as Dialog or Input port.

Programmatic Use
Block Parameter: NumeratorSource
Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Numerator Value — Numerator coefficients

[1] (default) | scalar | vector | matrix

Numerator coefficients of the discrete transfer function. To specify the coefficients, set the Source to
Dialog. Then, enter the coefficients in Value as descending powers of z. Use a row vector to specify
the coefficients for a single numerator polynomial. Use a matrix to specify coefficients for multiple
filters to be applied to the same input. Each matrix row represents a set of filter taps.

Dependencies

To enable this parameter, set the Numerator Source to Dialog.

Programmatic Use
Block Parameter: Numerator
Type: character vector
Values: scalar | vector | matrix
Default: '[1]'

Denominator Source — Source of denominator coefficients
Dialog (default) | Input port

Specify the source of the denominator coefficients as Dialog or Input port.

Programmatic Use
Block Parameter: DenominatorSource

1 Blocks

1-562

Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Denominator Value — Denominator coefficients

[1 0.5] (default) | scalar | vector | matrix

Denominator coefficients of the discrete transfer function. To specify the coefficients, set the Source
to Dialog. Then, enter the coefficients in Value as descending powers of z. Use a row vector to
specify the coefficients for a single denominator polynomial. Use a matrix to specify coefficients for
multiple filters to be applied to the same input. Each matrix row represents a set of filter taps.

Dependencies

To enable this parameter, set the Denominator Source to Dialog.

Programmatic Use
Block Parameter: Denominator
Type: character vector
Values: scalar | vector | matrix
Default: '[1 0.5]'

Initial states Source — Source of initial states
Dialog (default) | Input port

Specify the source of the initial states as Dialog or Input port.

Programmatic Use
Block Parameter: InitialStatesSource
Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Initial states Value — Initial filter states

0 (default) | scalar | vector | matrix

Specify the initial filter states as a scalar, vector, or matrix. To learn how to specify initial states, see
“Specifying Initial States” on page 1-558.

Dependencies

To enable this parameter, set Initial states Source to Dialog.

Programmatic Use
Block Parameter: InitialStates
Type: character vector
Values: scalar | vector | matrix
Default: '0'

External reset — External state reset

None (default) | Rising | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

 Discrete Transfer Fcn

1-563

Reset Mode Behavior
None No reset
Rising Reset on a rising edge
Falling Reset on a falling edge
Either Reset on either a rising or falling edge
Level Reset in either of these cases:

• When the reset signal is nonzero at the
current time step

• When the reset signal value changes from
nonzero at the previous time step to zero at
the current time step

Level hold Reset when the reset signal is nonzero at the
current time step

Programmatic Use
Block Parameter: ExternalReset
Type: character vector
Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'None'

Input processing — Sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing.

• Elements as channels (sample based) — Process each element of the input as an
independent channel.

• Columns as channels (frame based) — Process each column of the input as an independent
channel.

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Elements as channels (sample based)' | 'Columns as channels (frame
based)'
Default: 'Elements as channels (sample based)'

Optimize by skipping divide by leading denominator coefficient (a0) — Skip divide by a0

off (default) | on

Select when the leading denominator coefficient, a0, equals 1. This parameter optimizes your code.

When you select this check box, the block does not perform a divide-by-a0 either in simulation or in
the generated code. An error occurs if a0 is not equal to one.

1 Blocks

1-564

When you clear this check box, the block is fully tunable during simulation, and performs a divide-by-
a0 in both simulation and code generation.

Programmatic Use
Block Parameter: a0EqualsOne
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time (-1 for inherited) — Interval between samples

-1 (default) | scalar | vector

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. For
more information, see “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

Data Types

State — State data type

Inherit: Same as input (default) | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data
type expression>

Specify the state data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Numerator coefficients — Numerator coefficient data type

Inherit: Inherit via internal rule (default) | int8 | int16 | int32 | int64 |
fixdt(1,16) | fixdt(1,16,0) | <data type expression>

Specify the numerator coefficient data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

 Discrete Transfer Fcn

1-565

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: NumCoeffDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'int8' | 'int16' | 'int32' |
'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Numerator coefficient minimum — Minimum value of numerator coefficients

[] (default) | scalar

Specify the minimum value that a numerator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: NumCoeffMin
Type: character vector
Values: scalar
Default: '[]'

Numerator coefficient maximum — Maximum value of numerator coefficients

[] (default) | scalar

Specify the maximum value that a numerator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: NumCoeffMax
Type: character vector
Values: scalar
Default: '[]'

Numerator product output — Numerator product output data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | int8 | int16 |
int32 | int64 | fixdt(1,16,0) | <data type expression>

Specify the product output data type for the numerator coefficients. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in data type, for example, int8

1 Blocks

1-566

• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: NumProductDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
'int8' | 'int16' | 'int32' | 'int64' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'Inherit: Inherit via interal rule'

Numerator accumulator — Numerator accumulator data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data type
expression>

Specify the accumulator data type for the numerator coefficients. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: NumAccumDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
'Inherit: Same as product output' | 'int8' | 'int16' | 'int32' | 'int64' |
'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via interal rule'

Denominator coefficients — Denominator coefficient data type

Inherit: Inherit via internal rule (default) | int8 | int16 | int32 | int64 |
fixdt(1,16) | fixdt(1,16,0) | <data type expression>

Specify the denominator coefficient data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object

 Discrete Transfer Fcn

1-567

• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: DenCoeffDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'int8' | 'int16' | 'int32' |
'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Same wordlength as input'

Denominator coefficient minimum — Minimum value of denominator coefficients

[] (default) | scalar

Specify the minimum value that a denominator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: DenCoeffMin
Type: character vector
Values: scalar
Default: '[]'

Denominator coefficient maximum — Maximum value of denominator coefficients

[] (default) | scalar

Specify the maximum value that a denominator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: DenCoeffMax
Type: character vector
Values: scalar
Default: '[]'

Denominator product output — Denominator product output data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | int8 | int16 |
int32 | int64 | fixdt(1,16,0) | <data type expression>

Specify the product output data type for the denominator coefficients. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule

1 Blocks

1-568

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: DenProductDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
'int8' | 'int16' | 'int32' | 'int64' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'Inherit: Inherit via interal rule'

Denominator accumulator — Denominator accumulator data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data type
expression>

Specify the accumulator data type for the denominator coefficients. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: DenAccumDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
'Inherit: Same as product output' | 'int8' | 'int16' | 'int32' | 'int64' |
'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via interal rule'

Output — Output data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | int8 | int16 |
int32 | int64 | fixdt(1,16) | fixdt(1,16,0) | <data type expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• A built-in data type, for example, int8

 Discrete Transfer Fcn

1-569

• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
'int8' | 'int16' | 'int32' | 'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'<data type expression>'
Default: 'Inherit: Inherit via interal rule'

Output minimum — Minimum value of output

[] (default) | scalar

Specify the minimum value that the block can output. The default value is [] (unspecified). Simulink
uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Output maximum — Maximum value of output

[] (default) | scalar

Specify the maximum value that the block can output. The default value is [] (unspecified). Simulink
uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

1 Blocks

1-570

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

 Discrete Transfer Fcn

1-571

Action Rationale Impact on Overflows Example
Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

State name — Unique name for block state

'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click
Apply.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

1 Blocks

1-572

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if you set the
model configuration parameter Signal resolution to a value other than None.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | fixed pointa | integera | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

a This block only supports signed fixed-point data types.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

 Discrete Transfer Fcn

1-573

HDL Block Properties

General
ConstMultiplierOptim
ization

Canonical signed digit (CSD) or factored CSD optimization. The default is
none. See also “ConstMultiplierOptimization” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Native Floating Point
HandleDenormals Specify whether you want HDL Coder to insert additional logic to handle

denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min, or
Zero for the floating-point operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

MantissaMultiplyStra
tegy

Specify how to implement the mantissa multiplication operation during
code generation. By using different settings, you can control the DSP usage
on the target FPGA device. The default is inherit. See also
“MantissaMultiplyStrategy” (HDL Coder).

Restrictions

• Double data types are not supported for this block. Use single data types instead.
• Frame, matrix, and vector input data types are not supported.
• The leading denominator coefficient (a0) must be 1 or -1.
• Setting output data type as Inherit: Inherit via internal rule is not supported.

The Discrete Transfer Fcn block is excluded from the following optimizations:

• Resource sharing
• Distributed pipelining

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1 Blocks

1-574

This block only supports signed fixed-point data types.

See Also
Discrete Filter | Transfer Fcn

Topics
“Working with States” on page 11-21
“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)

 Discrete Transfer Fcn

1-575

Discrete Zero-Pole
Model system defined by zeros and poles of discrete transfer function

Libraries:
Simulink / Discrete

Description
The Discrete Zero-Pole block models a discrete system defined by the zeros, poles, and gain of a z-
domain transfer function. This block assumes that the transfer function has the following form:

H(z) = K Z(z)
P(z) = K

(z − Z1)(z − Z2)...(z − Zm)
(z − P1)(z − P2)...(z − Pn) ,

where Z represents the zeros vector, P the poles vector, and K the gain. The number of poles must be
greater than or equal to the number of zeros (n ≥ m). If the poles and zeros are complex, they must
be complex conjugate pairs.

The block displays the transfer function depending on how the parameters are specified. See Zero-
Pole for more information.

Modeling a Single-Output System

For a single-output system, the input and the output of the block are scalar time-domain signals. To
model this system:

1 Enter a vector for the zeros of the transfer function in the Zeros field.
2 Enter a vector for the poles of the transfer function in the Poles field.
3 Enter a 1-by-1 vector for the gain of the transfer function in the Gain field.

Modeling a Multiple-Output System

For a multiple-output system, the block input is a scalar and the output is a vector, where each
element is an output of the system. To model this system:

1 Enter a matrix of zeros in the Zeros field.

Each column of this matrix contains the zeros of a transfer function that relates the system input
to one of the outputs.

2 Enter a vector for the poles common to all transfer functions of the system in the Poles field.
3 Enter a vector of gains in the Gain field.

Each element is the gain of the corresponding transfer function in Zeros.

Each element of the output vector corresponds to a column in Zeros.

1 Blocks

1-576

Ports
Input

Port_1 — Input signal
scalar

Input signal specified as a real-valued scalar.
Data Types: single | double

Output

Port_1 — Model of discrete system
scalar | vector

Model of system as defined by zeros, poles, and gain of discrete transfer function. The width of the
output is equal to the number of columns in the Zeros matrix, or one if Zeros is a vector.
Data Types: single | double

Parameters
Main

Zeros — Matrix of zeros

[1] (default) | vector | matrix

Specify the vector or matrix of zeros. The number of zeros must be less than or equal to the number
of poles. If the poles and zeros are complex, they must be complex conjugate pairs.

• For a single-output system, enter a vector for the zeros of the transfer function.
• For a multiple-output system, enter a matrix. Each column of the matrix contains the zeros of a

transfer function that relates the system input to one of the outputs.

Programmatic Use
Block Parameter: Zeros
Type: character vector
Values: vector
Default: '[1]'

Poles — Vector of poles

[0 0.5] (default) | vector

Specify the vector of poles. The number of poles must be greater than or equal to the number of
zeros. If the poles and zeros are complex, they must be complex conjugate pairs.

• For a single-output system, enter a vector for the poles of the transfer function.
• For a multiple-output system, enter a vector for the poles common to all transfer functions of the

system.

 Discrete Zero-Pole

1-577

Programmatic Use
Block Parameter: Poles
Type: character vector
Values: vector
Default: '[0 0.5]'

Gain — Gain value

1 (default) | scalar | vector

Specify vector of gain values.

• For a single-output system, enter a scalar or 1-by-1 vector for the gain of the transfer function.
• For a multiple-output system, enter a vector of gains. Each element is the gain of the

corresponding transfer function in Zeros.

Programmatic Use
Block Parameter: Gain
Type: character vector
Values: scalar | vector
Default: '1'

Sample time (-1 for inherited) — Interval between samples

-1 | scalar | vector

Specify the time interval between samples. For more information, see Specifying Sample Time.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

State Attributes

State name — Unique name for block state

'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click
Apply.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

1 Blocks

1-578

Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if you set the
model configuration parameter Signal resolution to a value other than None.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

See Also
Zero-Pole | Discrete Transfer Fcn

Topics
“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)

 Discrete Zero-Pole

1-579

“Organize Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder)
“Data Objects”

1 Blocks

1-580

Display
Display signal value during simulation

Libraries:
Simulink / Dashboard

Description
The Display block connects to a signal in your model and displays its value during simulation. You can
configure the appearance and format of the Display block to make intuitive sense for the value it
displays. You can edit the parameters of the Display block during simulation. The Display block can
display complex, vector, and 2-D matrix signals. Use the Display block with other dashboard blocks to
build an interactive dashboard of controls and indicators for your model.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

 Display

1-581

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations
• You cannot use the Connection table to connect a dashboard block to a block that is commented

out. When you connect a dashboard block to a commented block using connect mode, the
dashboard block does not display the connected value until the you uncomment the block.

• The toolstrip does not support dashboard blocks that are in a panel.
• Dashboard blocks cannot connect to signals inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

• You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

• Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Connection

Connection — Signal to connect and display
signal connection options

Use the connection table to select the signal to connect to the block. To connect the block to a signal:

1 Make a selection in the model that includes one or more signals.
2 In the table, select the signal you want to connect.
3 Click Apply.

Tip You can connect dashboard blocks to signals in the model during simulation.

Programmatic Use
Block Parameter: Binding
Type: Simulink.HMI.SignalSpecification
Default: []

Main

Format — Format for displaying signal values

1 Blocks

1-582

short (default) | long | shortE | longE | ...

Format for displaying signal values, specified as one of these values:

• short — Scaled fixed-decimal format with four digits after the decimal point
• long — Scaled fixed-decimal format with fifteen digits after the decimal point for double values

and seven digits after the decimal point for single values
• shortE — Scientific notation format with four digits
• longE — Scientific notation format with fifteen digits after the decimal point for double values

and seven digits after the decimal point for single values
• shortG — Data takes the more compact format between fixed-decimal or scientific notation, with

a total of five digits
• longG — Data takes the more compact format between fixed-decimal or scientific notation, with a

total of fifteen digits for double values and seven digits for single values
• shortEng — Engineering notation where the exponent is a multiple of 3, with 4 digits after the

decimal point
• longEng — Engineering notation where the exponent is a multiple of 3, with 15 significant digits
• + — Positive/negative format. +, -, and blank characters are displayed for positive, negative, and

zero values, respectively
• bank — Currency format with 2 digits after the decimal point
• hex — Hexadecimal representation
• rat — Ratio
• Custom — Custom string format. Data is displayed in a custom string that you specify using the

Format String parameter.
• Integer — Data rounded to the nearest whole number.

 Display

1-583

Programmatic Use
Block Parameter: Format
Type: character array | string
Values: 'short' | 'long' | 'shortE' | 'longE' | 'shortG' | 'longG' | 'shortEng' |
'longEng' | 'bank' | '+' | 'hex' | 'rat' | 'Custom' | 'Integer'
Default: 'short'

Format String — Custom string to format data

'%d' (default) | string

Custom string to format displayed signal data, specified as a string. The format string consists of text
and format operators, which start with a % sign and end with a conversion character. Use the format
operators at the place in the string where you want the signal data to display. For more information
about supported formatting operators, see the formatSpec input of the compose function.
Example: The value of pi is %.2f displays the value of the connected signal within a sentence.
Example: $%.2f displays the value of the connected signal with a dollar sign and two decimal places.

Dependencies

To enable this parameter, set the Format parameter to Custom.

Programmatic Use
Block Parameter: FormatString
Type: character array | string
Default: '%d'

1 Blocks

1-584

Alignment — Text alignment in block

Center (default) | Left | Right

Text alignment in the Display block.

Programmatic Use
Block Parameter: Alignment
Type: character array
Values: 'Left' | 'Center' | 'Right'
Default: 'Center'

Label — Block label position

Hide (default) | Bottom | Top

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Layout — How to arrange elements of non-scalar data

Preserve dimensions (default) | Fill available space

How to arrange elements of non-scalar data, specified as one of these options:

• Preserve dimensions — Display elements arranged to match signal dimensions.
• Fill available space — Display as many elements as possible within available space.

Programmatic Use
Block Parameter: Layout
Type: character array | string
Values: 'Preserve dimensions' | 'Fill available space'
Default: 'Preserve dimensions'

Format

Show grid for non-scalar signals — Whether to show grid

on (default) | off

Whether to show a grid on the block when the block displays non-scalar data. Specify the color of the
grid using the Grid Color parameter.

Programmatic Use
Block Parameter: ShowGrid
Type: character array | string
Values: 'on' | 'off'
Default: 'on'

 Display

1-585

Opacity — Block background opacity

1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.
Example: 0.5

Programmatic Use
Block Parameter: Opacity
Type: scalar
Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, including the text. You can select a color from a palette of standard colors or
specify a custom color.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Background Color — Block background color
[r g b] vector

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Grid Color — Block grid color
[r g b] vector

Block grid color. The grid shows when the block displays non-scalar data. You can select a color from
a palette of standard colors or specify a custom color.

Programmatic Use

Specify the GridColor parameter for the block as a 1-by-3 [r g b] vector with values between 0
and 1.
Block Parameter: GridColor
Type: [r g b] vector
Default: [0.502 0.502 0.502]

1 Blocks

1-586

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2017b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Dashboard Scope | Gauge | Lamp | MultiStateImage

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 Display

1-587

Display
Show value of input

Libraries:
Simulink / Sinks
HDL Coder / Sinks

Description
The Display block shows the value of the input data. You can specify the frequency of the display. For
numeric input data, you can also specify the format of display.

If the block input is an array, you can resize the block vertically or horizontally to show more than just
the first element. If the block input is a vector, the block sequentially adds display fields from left to
right and top to bottom. The block displays as many values as possible. A black triangle indicates that
the block is not displaying all input array elements.

The Display block shows the first 200 elements of a vector signal and the first 20 rows and 10
columns of a matrix signal.

Note If you specify a numeric display format that is not large enough to display all the digits of a
value, the displayed values may lose precision. The result depends on your computer hardware and
operating system.

Display Abbreviations

The following abbreviations appear on the Display block to help you identify the format of the value.

When You See... The Value That Appears Is...
(SI) The stored integer value

Note (SI) does not appear when the signal is of an integer data type.
hex In hexadecimal format
bin In binary format
oct In octal format

Displaying Strings

When working with strings, the Display block displays:

• Strings with double quotes.
• Special characters such as newline are shown as escaped sequences, for example '\n'.
• Non-displayable characters as escaped octal number, for example '\201'.

1 Blocks

1-588

If the incoming signal is of type string, the Numeric display format parameter selection does not
affect the display of the string.

Ports
Input

Port_1 — Input data
scalar | vector

Input data to display.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated

Parameters
Numeric display format — Format to display numeric input data

short (default) | long | short_e | long_e | bank | hex (Stored Integer) | binary (Stored
Integer) | decimal (Stored Integer) | octal (Stored Integer)

Specify the format of the numeric data that appears.

If You Select... The Block Displays...
short A 5-digit scaled value with fixed decimal point
long A 15-digit scaled value with fixed decimal point
short_e A 5-digit value with a floating decimal point
long_e A 16-digit value with a floating decimal point
bank A value in fixed dollars and cents format (but with

no $ or commas)
hex (Stored Integer) The stored integer value of a fixed-point input in

hexadecimal format
binary (Stored Integer) The stored integer value of a fixed-point input in

binary format
decimal (Stored Integer) The stored integer value of a fixed-point input in

decimal format
octal (Stored Integer) The stored integer value of a fixed-point input in

octal format

If the numeric input to a Display block has an enumerated data type (see “Simulink Enumerations”
and “Define Simulink Enumerations”):

• The block displays enumerated values, not the values of underlying integers.
• Setting Numeric display format to any of the Stored Integer settings causes an error.

If the incoming signal is of type string, the selection of the Numeric display format parameter does
not affect the display of the string.

 Display

1-589

Programmatic Use
Block Parameter: Format
Type: character vector
Values: 'short' | 'long' | 'short_e' | 'long_e' | 'bank' | 'hex (Stored Integer)' |
'binary (Stored Integer)' | 'decimal (Stored Integer)' | 'octal (Stored
Integer)'
Default: 'short'

Decimation — Display rate

1 (default) | integer

Specify how often to display data.

The amount of data that appears and the time steps at which the data appears depend on the
Decimation block parameter and the SampleTime property.

• The Decimation parameter enables you to display data at every nth sample, where n is the
decimation factor. The default decimation, 1, displays data at every time step.

Note The Display block updates its display at the initial time, even when the Decimation value is
greater than one.

• The SampleTime property, which you can set with set_param, enables you to specify a sampling
interval at which to display points. This property is useful when you are using a variable-step
solver where the interval between time steps is not the same. The default sample time, -1, causes
the block to ignore the sampling interval when determining the points to display.

Note If the block inherits a sample time of Inf, the Decimation parameter is ignored.

Programmatic Use
Block Parameter: Decimation
Type: character vector
Values: '1' | integer
Default: '1'

Floating display — Floating display

off (default) | on

To use the block as a floating display, select the Floating display check box. The block input port
disappears and the block displays the value of the signal on a selected line.

If you select Floating display:

• Turn off signal storage reuse for your model. See Signal storage reuse (Simulink Coder) for more
information.

• Do not connect a multidimensional signal to a floating display.

Programmatic Use
Block Parameter: Floating
Type: character vector
Values: 'on' | 'off'

1 Blocks

1-590

Default: 'on'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single | string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Ignored for code generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Scope | To File | To Workspace

 Display

1-591

Divide
Divide one input by another

Libraries:
Simulink / Math Operations
HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description
The Divide block outputs the result of dividing its first input by its second. The inputs can be scalars,
a scalar and a nonscalar, or two nonscalars that have the same dimensions. This block supports only
complex input values at division ports when all ports have the same single or double data type.

The Divide block is functionally a Product block that has two block parameter values preset:

• Multiplication — Element-wise(.*)
• Number of Inputs — */

Setting nondefault values for either of those parameters can change a Divide block to be functionally
equivalent to a Product block or a Product of Elements block.

Ports
Input

X — Input signal to multiply
scalar | vector | matrix | N-D array

Input signal to be multiplied with other inputs.

Dependencies

To enable one or more X ports, specify one or more * characters for the Number of inputs
parameter and set the Multiplication parameter to Element-wise(.*).
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

÷ — Input signal to divide or invert
scalar | vector | matrix | N-D array

Input signal for division or inversion operations.

Dependencies

To enable one or more ÷ ports, specify one or more / characters for the Number of inputs
parameter and set the Multiplication parameter to Element-wise(.*).

1 Blocks

1-592

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Port_1 — First input to multiply or divide
scalar | vector | matrix | N-D array

First input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Port_N — Nth input to multiply or divide
scalar | vector | matrix | N-D array

Nth input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

* — Input signal to multiply
scalar | vector | matrix | N-D array

Input signal to be multiplied with other inputs.

Dependencies

To enable one or more * ports, specify one or more * characters for the Number of inputs
parameter and set the Multiplication parameter to Matrix(*).
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Inv — Input signal to divide or invert
scalar | vector | matrix | N-D array

Input signal for division or inversion operations.

Dependencies

To enable one or more Inv ports, specify one or more / characters for the Number of inputs
parameter and set the Multiplication parameter to Matrix(*).
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Output computed by multiplying, dividing, or inverting inputs
scalar | vector | matrix | N-D array

Output computed by multiplying, dividing, or inverting inputs.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

 Divide

1-593

Parameters
Main

Number of inputs — Control number of inputs and type of operation

*/ (default) | positive integer scalar | * or / for each input port

Control two properties of the block:

• The number of input ports on the block
• Whether each input is multiplied or divided into the output

When you specify:

• 1 or * or /

The block has one input port. In element-wise mode, the block processes the input as described
for the Product of Elements block. In matrix mode, if the parameter value is 1 or *, the block
outputs the input value. If the value is /, the input must be a square matrix (including a scalar as a
degenerate case) and the block outputs the matrix inverse. See “Element-Wise Mode” on page 1-
1611 and “Matrix Mode” on page 1-1612 for more information.

• Integer value > 1

The block has the number of inputs given by the integer value. The inputs are multiplied together
in element-wise mode or matrix mode, as specified by the Multiplication parameter. See
“Element-Wise Mode” on page 1-1611 and “Matrix Mode” on page 1-1612 for more information.

• Unquoted string of two or more * and / characters

The block has the number of inputs given by the length of the character vector. Each input that
corresponds to a * character is multiplied into the output. Each input that corresponds to a /
character is divided into the output. The operations occur in element-wise mode or matrix mode,
as specified by the Multiplication parameter. See “Element-Wise Mode” on page 1-1611 and
“Matrix Mode” on page 1-1612 for more information.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: '2' | '*' | '**' | '*/' | '*/*' | ...
Default: '*/'

Multiplication — Element-wise (.*) or Matrix (*) multiplication

Element-wise(.*) (default) | Matrix(*)

Specify whether the block performs Element-wise(.*) or Matrix(*) multiplication.

Programmatic Use
Block Parameter: Multiplication
Type: character vector
Values: 'Element-wise(.*)' | 'Matrix(*)'
Default: 'Element-wise(.*)'

1 Blocks

1-594

Multiply over — All dimensions or specified dimension

All dimensions (default) | Specified dimension

Specify the dimension to multiply over as All dimensions, or Specified dimension. When you
select Specified dimension, you can specify the Dimension as 1 or 2.

Dependencies

To enable this parameter, set Number of inputs to * and Multiplication to Element-wise (.*).

Programmatic Use
Block Parameter: CollapseMode
Type: character vector
Values: 'All dimensions' | 'Specified dimension'
Default: 'All dimensions'

Dimension — Dimension to multiply over

1 (default) | 2 | ... | N

Specify the dimension to multiply over as an integer less than or equal to the number of dimensions
of the input signal.

Dependencies

To enable this parameter, set:

• Number of inputs to *
• Multiplication to Element-wise (.*)
• Multiply over to Specified dimension

Programmatic Use
Block Parameter: CollapseDim
Type: character vector
Values: '1' | '2' | ...
Default: '1'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

 Divide

1-595

Signal Attributes

Require all inputs to have the same data type — Require that all inputs have the same data type

off (default) | on

Specify if input signals must all have the same data type. If you enable this parameter, then an error
occurs during simulation if the input signal types are different.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

1 Blocks

1-596

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first input | double | single | int8 | uint8 | int16 |
uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType. For more information, see “Control Data Types of
Signals”.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule — Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. For example, if the block multiplies an input of type int8 by a
gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is
sfix24. If Unspecified (assume 32-bit Generic), in other words, a generic 32-bit
microprocessor, is specified as the target hardware, the output data type is int32. If none of the
word lengths provided by the target microprocessor can accommodate the output range, Simulink
software displays an error in the Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical accuracy at the
same time. If the internal rule doesn’t meet your specific needs for numerical accuracy or
performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point

Tool to propose data types for your model. For more information, see fxptdlg.
• To specify your own inheritance rule, use Inherit: Inherit via back propagation and

then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

 Divide

1-597

• Inherit: Inherit via back propagation — Use data type of the driving block.
• Inherit: Same as first input — Use data type of first input signal.

Dependencies

When input is a floating-point data type smaller than single precision, the Inherit: Inherit via
internal rule output data type depends on the setting of the “Inherit floating-point output type
smaller than single precision” configuration parameter. Data types are smaller than single precision
when the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as first input' |
'Inherit: Inherit via back propagation' | 'double' | 'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode for fixed-point operations. You can select:

Ceiling
Rounds positive and negative numbers toward positive infinity. Equivalent to the MATLAB ceil
function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds positive and negative numbers toward negative infinity. Equivalent to the MATLAB floor
function.

1 Blocks

1-598

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest
Chooses between rounding toward floor and rounding toward zero to generate rounding code
that is as efficient as possible. This rounding mode is affected by these configuration parameters
on the Hardware Implementation pane.

• If the Signed integer division rounds to parameter is set to Zero or Undefined,
Simplest resolves to zero.

• If the Signed integer division rounds to parameter is set to Floor, Simplest resolves to
floor.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

 Divide

1-599

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.
Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Mode — Select data type mode

Inherit (default) | Built in | Fixed Point

Select the category of data to specify.

• Inherit — Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right where you can select the inheritance mode.

• Built in — Built-in data types. Selecting Built in enables a second menu/text box to the right
where you can select a built-in data type.

• Fixed point — Fixed-point data types. Selecting Fixed point enables additional parameters
that you can use to specify a fixed-point data type.

1 Blocks

1-600

• Expression — Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

For more information, see “Specify Data Types Using Data Type Assistant”.
Dependencies

To enable this parameter, click the Show data type assistant button.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.
Dependencies

To enable this parameter, set Mode to Built in or Fixed point.
Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Specify signed or unsigned

Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

• Signed, specifies the fixed-point data as signed.
• Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.
Dependencies

To enable this parameter, set the Mode to Fixed point.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

 Divide

1-601

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type

0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Binary point.

Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Slope — Specify slope for the fixed-point data type

2^0 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

1 Blocks

1-602

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Expected Differences Between Simulation and Code Generation

These conditions may yield different results between simulation and the generated code:

• The Divide block inputs contain a NaN or inf value
• The Divide block generates NaN or inf during execution

This difference is due to the nonfinite NaN or inf values. In such cases, inspect your model
configuration and eliminate the conditions that produce NaN or inf.

Code Optimizations

The Simulink Coder build process provides efficient code for matrix inverse and division operations.
This table describes the benefits and when each benefit is available.

Benefit Small Matrices
(2-by-2 to 5-by-5)

Medium Matrices
(6-by-6 to 20-by-20)

Large Matrices
(larger than 20-
by-20)

Faster code execution
time, compared to
R2011a and earlier
releases

Yes No Yes

Reduced ROM and RAM
usage, compared to
R2011a and earlier
releases

Yes, for real values Yes, for real values Yes, for real values

Reuse of variables Yes Yes Yes
Dead code elimination Yes Yes Yes
Constant folding Yes Yes Yes
Expression folding Yes Yes Yes
Consistency with
MATLAB Coder results

Yes Yes Yes

For blocks that have three or more inputs of different dimensions, the code might include an extra
buffer to store temporary variables for intermediate results.

 Divide

1-603

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Note When you deploy the generated HDL code onto the target hardware, make sure that you set
the signed integer division rounds to parameter in the Hardware Implementation pane of the
Configuration Parameters dialog box to Zero or Floor.

To perform an HDL-optimized divide operation, connect a Product block to a Divide block in
reciprocal mode.

HDL Architecture

The Divide block is the same as a Product block with Number of Inputs set to */.

Architecture Parameters Description
Linear(Default) None Generate a divide (/) operator in the

HDL code.
ShiftAdd UsePipelines Perform divide operations on fixed-point

types by using a non-restoring division
algorithm that performs multiple shift
and add operations to compute the
quotient. This architecture provides
improved accuracy compared to the
Newton-Raphson approximation
method.

When you use this architecture, to
achieve a higher maximum clock
frequency on the target FPGA device,
leave the UsePipelines HDL block
property to on.

When you use fixed-point data types,
following criteria must be satisfied for
generating the HDL code:

• Inputs word length (WL) must be less
than 63.

• [Max(WL input1, WL input2) +
Abs(FL Difference)] must be
less than 63. Where, Fractional
length (FL) Difference is given by,

FL Difference = FL input1 -
(FL input2 + FL output)

Reciprocal Mode

1 Blocks

1-604

When Number of Inputs is set to /, the Divide block is in reciprocal mode.

This block has multi-cycle implementations that introduce additional latency in the generated code.
To see the added latency, view the generated model or validation model. See “Generated Model and
Validation Model” (HDL Coder).

In reciprocal mode, the Divide block has the HDL block implementations described in the following
table.

Architectures Parameters Additional
cycles of
latency

Description

Linear(default) None 0 When you compute a
reciprocal, use the HDL
divide (/) operator to
implement the division.

ReciprocalRsqrtBasedNewton Iterations Signed input:
Iterations
+ 5

Unsigned
input:
Iterations
+ 3

Use the iterative Newton
method. Select this option
to optimize area.

The default value for
Iterations is 3.

The recommended value for
Iterations is between 2
and 10. If Iterations is
outside the recommended
range, HDL Coder displays
a message.

ReciprocalRsqrtBasedNewtonSingleRate Iterations Signed input:
(Iteration
s * 4) + 8

Unsigned
input:
(Iteration
s * 4) + 6

Use the single rate
pipelined Newton method.
Select this option to
optimize speed, or if you
want a single rate
implementation.

The default value for
Iterations is 3.

The recommended value for
Iterations is between 2
and 10. If Iterations is
outside the recommended
range, the coder displays a
message.

 Divide

1-605

Architectures Parameters Additional
cycles of
latency

Description

ShiftAdd UsePipelines Signed input:
(Input word
length + 4)

Unsigned
input: (Input
word length
+ 4)

Perform reciprocal
operation on a fixed-point
input by using a non-
restoring division algorithm
that performs multiple shift
and add operations to
compute the reciprocal.
This architecture provides
improved accuracy
compared to the Newton-
Raphson approximation
method.

When you use this
architecture, to achieve a
higher maximum clock
frequency on the target
FPGA device, leave the
UsePipelines HDL block
property to on.

When you use fixed-point
data types, following
criteria must be satisfied
for generating the HDL
code:

• Input word length (WL)
must be less than or
equal to 63.

• [WL input + Abs(FL
Sum)] must be less than
or equal to 63. Where,
FL Sum is given by,

FL sum = FL input +
FL output

The Newton-Raphson iterative method:

xi + 1 = xi−
f (xi)
f ′(xi)

= xi(1.5− 0.5axi2)

ReciprocalRsqrtBasedNewton and ReciprocalRsqrtBasedNewtonSingleRate implement the
Newton-Raphson method with:

f (x) = 1
x2 − 1

1 Blocks

1-606

HDL code generation supports different output data types for divide (*/) and reciprocal (/)
operations in ShiftAdd. You can use these output data types for the blocks:

• Inherit: Inherit via internal rule
• Inherit: Keep MSB
• Inherit: Match scaling
• Inherit: Inherit via back propagation
• Inherit: Same as first input
• Integer types (uint8,int8,uint16,int16,uint32,int32,uint64,int64)
• Fixed point types

HDL Block Properties

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

Use this property with:

• Product block
• Divide and Reciprocal blocks with Linear architecture

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

LatencyStrategy To enable this property, set HDL architecture to ShiftAdd. Specify
whether to map the blocks in your design to MAX, CUSTOM, or ZERO latency
for fixed-point and floating-point types. The default is MAX. See also
“LatencyStrategy” (HDL Coder).

CustomLatency To enable this property, set HDL architecture to ShiftAdd. When
LatencyStrategy is set to CUSTOM, use this property to specify a custom
latency value between ZERO and MAX for fixed-point types. See also
“LatencyStrategy” (HDL Coder).

 Divide

1-607

Native Floating Point
HandleDenormals Specify whether you want HDL Coder to insert additional logic to handle

denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

NFPCustomLatency To specify a value, set LatencyStrategy to Custom. HDL Coder adds
latency equal to the value that you specify for the NFPCustomLatency
setting. See also “NFPCustomLatency” (HDL Coder).

MantissaMultiplyStra
tegy

Specify how to implement the mantissa multiplication operation during
code generation. By using different settings, you can control the DSP usage
on the target FPGA device. The default is inherit. See also
“MantissaMultiplyStrategy” (HDL Coder).

DivisionAlgorithm Specify whether to use the Radix-2 or Radix-4 algorithm to perform the
floating-point division. The Radix-2 mode offers a trade-off between latency
and frequency. The Radix-4 mode offers a trade-off between latency and
resource usage. For more information, see “DivisionAlgorithm” (HDL
Coder).

To see the latency calculation for fixed-point types with Divide and Reciprocal blocks, at the MATLAB
command prompt, enter:

HDLMathLib

Complex Data Support

This block does not support code generation for division with complex signals.

Restrictions

When you use the Divide block in reciprocal mode, the following restrictions apply:

• When you use fixed-point types, the input and output must be scalar. To use vector inputs, specify
the Math architecture and input a floating-point value.

• Only the Zero rounding mode is supported.
• You must select the Saturate on integer overflow option on the block.

For the Divide block, only the Zero and Simplest rounding modes are supported.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Product | Dot Product | Product of Elements

1 Blocks

1-608

DocBlock
Create text that documents model and save text with model

Libraries:
Simulink / Model-Wide Utilities
HDL Coder / Model-Wide Utilities

Description
The DocBlock allows you to create and edit text that documents a model, and save that text with the
model. Double-clicking an instance of the block creates a temporary file containing the text
associated with this block and opens the file in an editor. Use the editor to modify the text and save
the file. Simulink software stores the contents of the saved file in the model file.

The DocBlock supports HTML, Rich Text Format (RTF), and ASCII text document types. The default
editors for these different document types are

• HTML — Microsoft® Word (if available). Otherwise, the DocBlock opens HTML documents using
the editor specified on the Editor/Debugger Preferences pane of the Preferences dialog box.

• RTF — Microsoft Word (if available). Otherwise, the DocBlock opens RTF documents using the
editor specified on the Editor/Debugger Preferences pane of the Preferences dialog box.

• Text — The DocBlock opens text documents using the editor specified on the Editor/Debugger
Preferences pane of the Preferences dialog box.

Use the docblock command to change the default editors.

Tip To edit the block parameters of the DocBlock, right-click the block icon and select Mask > Mask
Parameters....

Parameters
Code generation template symbol — Template symbol for generated code

' ' | Abstract | Description | History | Modified History | Notes

Enter a template symbol name in this field. Embedded Coder® software uses this symbol to add
comments to the code generated from the model. For more information, see “Add Global Comments in
the Generated Code” (Embedded Coder).

Dependencies

For comments to appear in the generated code, you must also set the Document type to Text.

Programmatic Use
Block Parameter: ECoderFlag

 DocBlock

1-609

Type: character vector
Values: Abstract | Description | History | Modified History | Notes
Default: '0'

Document type — Type of document

Text (default) | RTF | HTML

Select the type of document associated with the DocBlock. The options are:

• Text
• RTF
• HTML

Dependencies

If you are using a DocBlock to add comments to your code during code generation, ensure that you
set the Document Type as Text. If you set the Document Type as RTF or HTML, your comments will
not appear in the code.
Programmatic Use
Block Parameter: DocumentType
Type: character vector
Values: Text | RTF | HTML
Default: 'Text'

Block Characteristics
Data Types
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Uses the template symbol you specify for the Embedded Coder Flag block parameter to add
comments to generated code. Requires an Embedded Coder license. For more information, see “Use a
Simulink DocBlock to Add a Comment” (Embedded Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

1 Blocks

1-610

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic. See also “Generate Code with Annotations or Comments” (HDL Coder) and “Integrate Custom
HDL Code by Using DocBlock” (HDL Coder).

HDL Architecture

Architecture Description
Annotation (default) Insert text as comment in the generated code.
HDLText Integrate text as custom HDL code.
No HDL Do not generate HDL code for this block.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

TargetLanguage Language of the text, either Verilog® or VHDL®. The default is VHDL.

When Architecture is HDLText, this property is available. To learn more,
see “Integrate Custom HDL Code by Using DocBlock” (HDL Coder).

Restrictions

• Document type must be Text.

HDL Coder does not support the HTML or RTF options.
• You can have a maximum of two DocBlock blocks with Architecture set to HDLText in the same

subsystem.

If you have two DocBlock blocks, one must have TargetLanguage set to VHDL, and the other must
have TargetLanguage set to Verilog. When generating code, HDL Coder only integrates the
custom code from the DocBlock that matches the target language for code generation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Model Info | docblock

 DocBlock

1-611

Topics
“Add Global Comments in the Generated Code” (Embedded Coder)

1 Blocks

1-612

Dot Product
Generate dot product of two vectors

Libraries:
Simulink / Math Operations
HDL Coder / Math Operations

Description
The Dot Product block generates the dot product of the input vectors. The scalar output, y, is equal to
the MATLAB operation

y = sum(conj(u1) .* u2)

where u1 and u2 represent the input vectors. The inputs can be vectors, column vectors (single-
column matrices), or scalars. If both inputs are vectors or column vectors, they must be the same
length. If u1 and u2 are both column vectors, the block outputs the equivalent of the MATLAB
expression u1'*u2.

The elements of the input vectors can be real- or complex-valued signals. The signal type (complex or
real) of the output depends on the signal types of the inputs.

Input 1 Input 2 Output
real real real
real complex complex
complex real complex
complex complex complex

Ports
Input

Port_1 — First operand input signal
scalar | vector

Signal representing the first operand to the dot product calculation.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Port_2 — Second operand input signal
scalar | vector

Signal representing the second operand to the dot product calculation.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

 Dot Product

1-613

Output

Port_1 — Dot product output signal
scalar | vector

Output signal resulting from the dot product calculation of the two input signals.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
Require all inputs to have the same data type — Require all inputs to have the same data type

on (default) | off

Clear this check box for all the inputs to have different data types.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

1 Blocks

1-614

Output maximum — Maximum output value for range checking

[] (default) | scalar

Specify the upper value of the output range that Simulink checks as a finite, real, double, scalar
value.

Note If you specify a bus object as the data type for this block, do not set the maximum value for
bus data on the block. Simulink ignores this setting. Instead, set the maximum values for bus
elements of the bus object specified as the data type. For information on the Maximum parameter for
a bus element, see Simulink.BusElement.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Output data type — Specify the output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first input | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType. For more information, see “Control Data Types of
Signals”.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule — Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. For example, if the block multiplies an input of type int8 by a

 Dot Product

1-615

gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is
sfix24. If Unspecified (assume 32-bit Generic), in other words, a generic 32-bit
microprocessor, is specified as the target hardware, the output data type is int32. If none of the
word lengths provided by the target microprocessor can accommodate the output range, Simulink
software displays an error in the Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical accuracy at the
same time. If the internal rule doesn’t meet your specific needs for numerical accuracy or
performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point

Tool to propose data types for your model. For more information, see fxptdlg.
• To specify your own inheritance rule, use Inherit: Inherit via back propagation and

then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

Note When input is a floating-point data type smaller than single precision, Inherit: Inherit
via internal rule depends on the setting of the “Inherit floating-point output type smaller
than single precision” configuration parameter. Data types are smaller than single precision when
the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.

• Inherit: Inherit via back propagation — Use data type of the driving block.
• Inherit: Same as first input — Use data type of first input signal.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as first input' |
'Inherit: Inherit via back propagation' | 'double' | 'single' | 'half' | 'int8' |
'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data types

off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

1 Blocks

1-616

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type can

represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

• Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

• In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

 Dot Product

1-617

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

Architecture Description
Linear (default) Generates a linear chain of adders to compute the sum of

products.
Tree Generates a tree structure of adders to compute the sum

of products.

HDL Block Properties

General
InputPipeline Number of input pipeline stages to insert in the generated

code. Distributed pipelining and constrained output
pipelining can move these registers. The default is 0. For
more details, see “InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and constrained
output pipelining can move these registers. The default is
0. For more details, see “OutputPipeline” (HDL Coder).

1 Blocks

1-618

General
ConstrainedOutputPipeline Number of registers to place at the outputs by moving

existing delays within your design. Distributed pipelining
does not redistribute these registers. The default is 0. For
more details, see “ConstrainedOutputPipeline” (HDL
Coder).

Native Floating Point
HandleDenormals Specify whether you want HDL Coder to insert additional

logic to handle denormal numbers in your design.
Denormal numbers are numbers that have magnitudes
less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The
default is inherit. See also “HandleDenormals” (HDL
Coder).

LatencyStrategy Specify whether to map the blocks in your design to
inherit, Max, Min, or Zero for the floating-point
operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

MantissaMultiplyStrategy Specify how to implement the mantissa multiplication
operation during code generation. By using different
settings, you can control the DSP usage on the target
FPGA device. The default is inherit. See also
“MantissaMultiplyStrategy” (HDL Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Product | Product of Elements

 Dot Product

1-619

Edit
Enter new value for parameter

Libraries:
Simulink / Dashboard

Description
The Edit block allows you to type in new values for block parameters during simulation. Use the Edit
block with other Dashboard blocks to build an interactive dashboard of controls and indicators for
your model.

Double-clicking the Edit block does not open its dialog box during simulation and when the block is
selected. To edit the block parameters, you can use the Property Inspector, or you can right-click
the block and select Block Parameters from the context menu.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top

1 Blocks

1-620

level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

 Edit

1-621

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection

Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

1 Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

1 Blocks

1-622

Main

Align — Text alignment

Center (default) | Left | Right

Alignment of the text in the Edit block.

Programmatic Use
Block Parameter: Alignment
Type: string or character vector
Values: 'Center' | 'Left' | 'Right'
Default: 'Center'

Label — Block label position

Hide (default) | Bottom | Top

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Format

Opacity — Block background opacity

1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.
Example: 0.5

Programmatic Use
Block Parameter: Opacity
Type: scalar
Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, including the text. You can select a color from a palette of standard colors or
specify a custom color.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

 Edit

1-623

Background Color — Block background color
[r g b] vector

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2017b

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a
dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Background Color, Foreground Color, and Opacity properties added for several
dashboard blocks

Starting in R2020b, you can specify a background color, a foreground color, and opacity for these
blocks from the Dashboard library:

• Check Box
• Combo Box
• Edit
• Push Button
• Radio Button

1 Blocks

1-624

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add_block and set_param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Knob | Slider | Display

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 Edit

1-625

Enable
Add enable port to subsystem or model

Libraries:
Simulink / Ports & Subsystems
HDL Coder / Ports & Subsystems

Description
The Enable block allows an external signal to control execution of a subsystem or a model. To enable
this functionality, add the block to a Subsystem block or at the root level of a model that is referenced
by a Model block.

If you use an enable port at the root-level of a model:

• For multi-rate models, set the solver to single-tasking.
• For models with a fixed-step size, at least one block in the model must run at the specified fixed-
step size rate.

Ports
Output

Enable signal — External enable signal for a subsystem or model
scalar

Enable signal attached externally to the outside of an Enabled Subsystem block and passed to the
inside of the subsystem. An enable signal port is added to an Enable block when you select the Show
output port parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | expression

Parameters
States when enabling — Select block states when subsystem or model is disabled
held (default) | reset

When a Subsystem block or Model block is disabled, select what happens to block states for the
blocks within the subsystem or model.

held
Hold block states at their previous values.

reset
Reset block states to their initial conditions (zero if not defined).

1 Blocks

1-626

Programmatic Use
Block parameter: StatesWhenEnabling
Type: character vector
Values: 'held' | 'reset'
Default: 'held'

Propagate sizes of variable-size signals — Select when to propagate a variable-size signal
Only when enabling (default) | During execution

Select when to propagate a variable-size signal.

Only when enabling
Propagate a variable-size signal when reenabling a Subsystem block or Model block containing an
Enable port block. When you select this option, sample time must be periodic.

During execution
Propagate variable-size signals at each time step.

Programmatic Use
Block parameter: PropagateVarSize
Type: character vector
Values: 'Only when enabling' | 'During execution'
Default: 'Only when enabling'

Show output port — Control display of output port for enable signal
off (default) | on

The output port passes the enable signal attached externally to the outside of an Enabled Subsystem
block or enabled Model block to the inside.

 off
Remove the output port on the Enable port block.

 on
Display an output port on the Enable port block. Selecting this option allows the subsystem or
model to process the enable signal.

Programmatic Use
Block parameter: ShowOutputPort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Enable zero-crossing detection — Control zero-crossing detection
on (default) | off

Control zero-crossing detection for a model.

 on
Detect zero crossings.

 Enable

1-627

 off
Do not detect zero crossings.

Programmatic Use
Block parameter: ZeroCross
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Port dimensions — Specify dimensions for the enable signal
1 (default) | [n] | [m n]

Specify dimensions for the enable signal attached externally to a Model block and passed to the
inside of the block.

1
Scalar signal.

[n]
Vector signal of width n.

[m n]
Matrix signal having m rows and n columns.

Programmatic Use
Block parameter: PortDimensions
Type: character vector
Values: '1' | '[n]' | '[m n]'
Default: '1'

Sample time — Specify time interval
-1 (default) | Ts | [Ts, To]

Specify time interval between block method execution. See “Specify Sample Time”.

-1
Sample time inherited from the model.

Ts
Scalar where Ts is the time interval.

[Ts, To]
Vector where Ts is the time interval and To is the initial time offset.

Programmatic Use
Block parameter: SampleTime
Type: character vector
Values: '-1' | 'Ts'| '[Ts, To]'
Default: '-1'

Minimum — Specify minimum output value for the enable signal
[] (default) | real scalar

1 Blocks

1-628

Specify minimum value for the enable signal attached externally to a Model block and passed to the
inside of the block.

Simulink uses this value to perform:

• Simulation range checking. See “Specify Signal Ranges”.
• Automatic scaling of fixed-point data types.
• Optimization of generated code. This optimization can remove algorithmic code and affect the

results of some simulation modes such as SIL or external mode. See Optimize using the specified
minimum and maximum values (Embedded Coder).

[]
Unspecified minimum value.

real scalar
Real double scalar value.

Programmatic Use
Block parameter: OutMin
Type: character vector
Values: '[]' | '<real scalar>'
Default: '[]'

Maximum — Specify maximum output value for the enable signal
[] (default) | real scalar

Specify maximum value for the enable signal attached externally to a Model block and passed to the
inside of the block.

Simulink uses this value to perform:

• Simulation range checking. See “Specify Signal Ranges”.
• Automatic scaling of fixed-point data types.
• Optimization of generated code. This optimization can remove algorithmic code and affect the

results of some simulation modes such as SIL or external mode. See Optimize using the specified
minimum and maximum values (Embedded Coder).

[]
Unspecified maximum value.

real scalar
Real double scalar value.

Programmatic Use
Block parameter: OutMax
Type: character vector
Values: '[]' | '<real scalar>'
Default: '[]'

 Enable

1-629

Data type — Specify output data type for the enable signal
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^,0) | <data type expression>

Specify data type for the enable signal attached externally to a Model block and passed to the inside
of the block.

double
Double-precision floating point.

single
Single-precision floating point.

int8
Signed 8-bit integer.

uint8
Unsigned 8-bit integer.

int16
Signed 16-bit integer.

uint16
Unsigned 16-bit integer.

int32
Signed 32-bit integer.

uint32
Unsigned 32-bit integer.

int64
Signed 64-bit integer.

uint64
Unsigned 64-bit integer.

boolean
Boolean with a value of true or false.

fixdt(1,16)
Signed 16-bit fixed point number with binary point undefined.

fixdt(1,16,0)
Signed 16-bit fixed point number with binary point set to zero.

fixdt(1,16,2^,0)
Signed 16-bit fixed point number with slope set to 2^0 and bias set to 0.

<data type expression>
Data type object, for example Simulink.NumericType. You cannot enter the name of a
Simulink.Bus object as a data type expression.

Programmatic Use
Block parameter: OutDataTypeStr
Type: character vector

1 Blocks

1-630

Values: 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' |
'int64' | 'uint64' | 'boolean' | '<fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'double'

Mode — Select data type category
Build in (default) | Fixed point | Expression

Select data type category and display drop-down lists to help you define the data type.

Build in
Display drop-down lists for data type and Data type override.

Fixed point
Display drop-down lists for Signedness, Scaling, and Data type override.

Expression
Display text box for entering an expression.

Dependency

To enable this parameter, select the Show data type assistant button.

Programmatic Use

No equivalent command-line parameter.

Interpolate data — Specify value of missing workspace data
on (default) | off

Specify value of missing workspace data when loading data from the workspace.

 on
Linearly Interpolate output at time steps for which no corresponding workspace data exists.

 off
Do not interpolate output at time steps. The current output equals the output at the most recent
time step for which data exists.

Programmatic Use
Block parameter: Interpolate
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no

 Enable

1-631

Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Subsystem | Enabled and Triggered Subsystem | Enabled Subsystem

1 Blocks

1-632

Topics
“Conditionally Executed Subsystems Overview”
“Using Enabled Subsystems”
“Using Enabled and Triggered Subsystems”

 Enable

1-633

Enabled and Triggered Subsystem
Subsystem whose execution is enabled and triggered by external inputs

Libraries:
Simulink / Ports & Subsystems

Description
The Enabled and Triggered Subsystem block is a Subsystem block preconfigured as a starting point
for creating a subsystem that executes when both of these conditions occur:

• Enable control signal has a positive value.
• Trigger control signal has a trigger value.

Use Enabled and Triggered Subsystem blocks to model:

• Optional functionality.
• Alternative functionality.

For an explanation of the Enabled and Triggered Subsystem block parameters, see Subsystem.

Ports
Input

In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem adds an external input port to the Subsystem block. The port
label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

1 Blocks

1-634

Enable — Control signal input to a subsystem block
scalar

Placing an Enable block in a subsystem adds an external input port to the Subsystem block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Trigger — Control signal input to a subsystem block
scalar

Placing a Trigger block in a subsystem adds an external input port to the Subsystem block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem adds an output port from the Subsystem block. The port
label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

 Enabled and Triggered Subsystem

1-635

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Triggered Subsystem | Enabled Subsystem | Message Triggered Subsystem | Function-Call
Subsystem | Subsystem | Enable | Trigger

Topics
“Conditionally Executed Subsystems Overview”
“Using Enabled Subsystems”
“Using Triggered Subsystems”
“Using Enabled and Triggered Subsystems”
“Using Function-Call Subsystems”

1 Blocks

1-636

Enabled Subsystem
Subsystem whose execution is enabled by external input

Libraries:
Simulink / Ports & Subsystems
HDL Coder / Ports & Subsystems

Description
The Enabled Subsystem block is a Subsystem block preconfigured as a starting point for creating a
subsystem that executes when a control signal has a positive value.

Use Enabled Subsystem blocks to model:

• Discontinuities
• Optional functionality
• Alternative functionality

For an explanation of the Enabled Subsystem block parameters, see Subsystem.

Ports
Input

In — Signal input to Subsystem block
scalar | vector | matrix

Signal input to a Subsystem block, specified as a scalar, vector, or matrix. Placing an Inport block in a
subsystem adds an external input port to the Subsystem block. The port label matches the name of
the Inport block.

Use Inport blocks to receive signals from the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

 Enabled Subsystem

1-637

Enable — Control signal input to Subsystem block
scalar | vector | matrix

An Enable block in a subsystem adds an external input port to the Subsystem block and makes the
block an Enabled Subsystem block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Out — Signal output from Subsystem block
scalar | vector | matrix

Signal output from a Subsystem block, returned as a scalar, vector, or matrix. Placing an Outport
block in a subsystem adds an external output port to the Subsystem block. The port label matches the
name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

1 Blocks

1-638

Best Practices

When using enabled subsystems in models targeted for HDL code generation, it is good practice to
consider the following:

• For synthesis results to match Simulink results, the Enable port must be driven by registered logic
(with a synchronous clock) on the FPGA.

• Put unit delays on Enabled Subsystem output signals. Doing so prevents the code generator from
inserting extra bypass registers in the HDL code.

• Enabled subsystems can affect synthesis results in the following ways:

• In some cases, the system clock speed can drop by a small percentage.
• Generated code uses more resources, scaling with the number of enabled subsystem instances

and the number of output ports per subsystem.

HDL Architecture

Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only the input/

output port definitions for the subsystem. Therefore, you can use a subsystem in
your model to generate an interface to existing, manually written HDL code.

The black-box interface generation for subsystems is similar to the Model block
interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the subsystem in
simulation, however, treat it as a “no-op” in the HDL code.

HDL Block Properties

General
AdaptivePipelining Automatic pipeline insertion based on the synthesis tool, target frequency,

and multiplier word-lengths. The default is inherit. See also
“AdaptivePipelining” (HDL Coder).

BalanceDelays Detects introduction of new delays along one path and inserts matching
delays on the other paths. The default is inherit. See also
“BalanceDelays” (HDL Coder).

ClockRatePipelining Insert pipeline registers at a faster clock rate instead of the slower data
rate. The default is inherit. See also “ClockRatePipelining” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

 Enabled Subsystem

1-639

General
FlattenHierarchy Remove subsystem hierarchy from generated HDL code. The default is

inherit. See also “FlattenHierarchy” (HDL Coder).
InputPipeline Number of input pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

StreamingFactor Number of parallel data paths, or vectors, that are time multiplexed to
transform into serial, scalar data paths. The default is 0, which implements
fully parallel data paths. See also “Streaming” (HDL Coder).

Target Specification

This block cannot be the DUT, so the block property settings in the Target Specification tab are
ignored.

Restrictions

HDL Coder supports HDL code generation for enabled subsystems that meet the following conditions:

• The enabled subsystem is not the DUT.
• The subsystem is not both triggered and enabled.
• The enable signal is a scalar.
• The input datatype for the enable signal is boolean.
• If the output of the subsystem is a bus then Initial condition of the outport must be 0.
• All inputs and outputs of the enabled subsystem (including the enable signal) run at the same rate.
• The Show output port parameter of the Enable block is set to Off.
• The States when enabling parameter of the Enable block is set to held (i.e., the Enable block

does not reset states when enabled).
• The Output when disabled parameter for the enabled subsystem output ports is set to held (i.e.,

the enabled subsystem does not reset output values when disabled).
• If the DUT contains the following blocks, RAMArchitecture is set to WithClockEnable:

• Dual Port RAM
• Simple Dual Port RAM
• Single Port RAM

• The enabled subsystem does not contain the following blocks:

• CIC Decimation
• CIC Interpolation
• FIR Decimation

1 Blocks

1-640

• FIR Interpolation
• Downsample
• Upsample
• HDL FIFO
• HDL Cosimulation blocks (HDL Verifier™)
• Rate Transition
• NR Polar Encoder and NR Polar Decoder (Wireless HDL Toolbox™)

Example

The Automatic Gain Controller example shows how you can use enabled subsystems in HDL code
generation. To open the example, enter:

hdlcoder_agc

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Triggered Subsystem | Enabled and Triggered Subsystem | Function-Call Subsystem | Subsystem |
Enable

Topics
“Conditionally Executed Subsystems Overview”
“Using Enabled Subsystems”
“Using Triggered Subsystems”
“Using Enabled and Triggered Subsystems”
“Using Function-Call Subsystems”

 Enabled Subsystem

1-641

Enumerated Constant
Generate enumerated constant value

Libraries:
Simulink / Sources
HDL Coder / Sources

Description
The Enumerated Constant block outputs a scalar, array, or matrix of enumerated values. You can also
use the Constant block to output enumerated values, but it provides block parameters that do not
apply to enumerated types, such as Output minimum and Output maximum. When you need a
block that outputs only constant enumerated values, use Enumerated Constant rather than Constant.
For more information, see “Simulink Enumerations”.

Ports
Output

Port_1 — Enumerated constant
scalar | vector | matrix

Enumerated constant value, specified as a scalar, vector, or matrix.
Data Types: enumerated

Parameters
Output data type — Output data type

Enum: SlDemoSign (default) | Enum:<ClassName>

Specify the enumerated type from which you want the block to output one or more values. The initial
value, Enum:SlDemoSign, is a dummy enumerated type that prevents a newly cloned block from
causing an error. To specify the desired enumerated type, select it from the drop-down list or enter
Enum:ClassName in the Output data type field, where ClassName is the name of the MATLAB
class that defines the type.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Enum:<ClassName>'
Default: 'Enum: SlDemoSign'

Mode — Category of data to specify

Enumerated (default)

Select the category of data to specify.

1 Blocks

1-642

Enumerated
Enumerated data types. Selecting Enumerated enables a second menu/text box to the right,
where you can enter the class name.

Value — Enumerated value

SlDemoSign.Positive (default) | Enum:<ClassName.Value>

Specify the value or values that the block outputs. The output of the block has the same dimensions
and elements as the Value parameter. The initial value, SlDemoSign.Positive, is a dummy
enumerated value that prevents a newly cloned block from causing an error.

To specify the desired enumerated values, select from the drop-down list or enter any MATLAB
expression that evaluates to the desired result, including an expression that uses tunable parameters.
All specified values must be of the type indicated by the Output data type. To specify an array that
includes every value in the enumerated type, use the enumeration function.

Programmatic Use
Block Parameter: Value
Type: character vector
Values: 'Enum:<ClassName.Value>'
Default: 'SlDemoSign.Positive'

Sample time — Sample time

inf (default) | scalar | vector

Specify the interval between times that the block output can change during simulation (for example,
due to tuning the Value parameter). The default value of inf indicates that the block output can
never change. A sample time of inf speeds the simulation and generated code by avoiding the need
to recompute the block output. For more information, see “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: 'inf'

Block Characteristics
Data Types enumerated
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2009b

 Enumerated Constant

1-643

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Constant | enumeration

Topics
“Use Enumerated Data in Simulink Models”
“Simulink Enumerations”
“Code Generation for Enumerations”
“Specify Sample Time”

1 Blocks

1-644

Environment Controller
(Removed) Create branches of block diagram that apply only to simulation or only to code generation

Note Environment Controller block has been removed. Use the Variant Source block instead. For
more information, see “Compatibility Considerations”.

Libraries:
Simulink / Signal Routing

Description
The Environment Controller block outputs the signal at its Sim port only if the model that contains it
is being simulated. It outputs the signal at its Coder port only if code is being generated from the
model. This option enables you to create branches of a block diagram that apply only to simulation or
code generation. This table describes various scenarios where either the Sim or Coder port applies.

Scenario Output
Normal mode simulation Sim
Accelerator mode simulation Sim
Rapid accelerator mode simulation Sim
Simulation of a referenced model in normal or
accelerator modes

Sim

Simulation of a referenced model in processor-in-
the-loop (PIL) mode

Coder
(uses the same code generated for a referenced
model)

External mode simulation Coder
Standard code generation Coder
Code generation of a referenced model Coder

Simulink Coder software does not generate code for blocks connected to the Sim port if these
conditions hold:

• On the Code Generation > Optimization pane of the Configuration Parameters dialog box, you
set Default parameter behavior to Inlined.

• The blocks connected to the Sim port do not have external signals.
• The Sim port input path does not contain an S-function or an Interpreted MATLAB Function block.

If you enable block reduction optimization, Simulink eliminates blocks in the branch connected to the
Coder port when compiling the model for simulation. For more information, see “Block reduction”.

Note Simulink Coder code generation eliminates the blocks connected to the Sim branch only if the
Sim branch has the same signal dimensions as the Coder branch. Regardless of whether it eliminates

 Environment Controller

1-645

the Sim branch, Simulink Coder uses the sample times on the Sim branch as well as the Coder branch
to determine the fundamental sample time of the generated code and might, in some cases, generate
sample-time handling code that applies only to sample times specified on the Sim branch.

Ports
Input

Sim — Simulation input
scalar | vector | matrix

Simulation input values, specified as a scalar, vector, or matrix. Input signal must have the same
width as the input to the Coder port.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Coder — Code generation input
scalar | vector | matrix

Code generation input values, specified as a scalar, vector, or matrix. Input signal must have the same
width as the input to the Sim port.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Out — Values from Sim or Coder input port
scalar | vector | matrix

Values from the Sim or Coder input port, depending on the current environment. For more
information on what the block outputs in various simulation and code generation modes, see
“Description” on page 1-645.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

1 Blocks

1-646

R2021b: Environment Controller block has been removed
Warns starting in R2021b

The Environment Controller block has been removed from the Signal Routing library. Existing models
that use this block continue to work with a warning. Use the Variant Source block with the Variant
control mode parameter set to sim codegen switching instead. You can use Model Advisor or
Upgrade Advisor to automatically identify and replace all instances of the Environment Controller
block with the Variant Source block. For information on the Model advisor check, see “Identify
Environment Controller Blocks and Replace Them with Variant Source Blocks” on page 9-66.

Variant blocks offer these advantages over the Environment Controller block:

• Variant Source block with the Variant control mode parameter set to sim codegen
switching allows you to automatically switch between simulation and code generation
workflows. In this mode, Variant Source block supports these activation times:

Variant activation time Behavior
update diagram Simulink sets the active choice during update diagram

before the propagation of signal attributes. Inactive
choices are removed prior to propagation of signal
attributes, so the generated code contains only the
active choice.

update diagram analyze all
choices

Simulink sets the active choice during update diagram
after the propagation of signal attributes. Signal
attributes are propagated to both active and inactive
choices to check for consistency. Inactive choices are
removed at the end of update diagram before model
start occurs. The generated code contains only active
choices.

• Variant Sink block enables branching on the output side (destination of a signal).
• Variant blocks highlight the path of the active variant choice during simulation and code

generation.
• Variant Source block offers optimal code generation compared to the Environment Controller

block. The Environment Controller block can retain blocks connected to the Sim port in the
generated code.

• Variant blocks can be centrally managed using the Variant Manager tool, which offers these key
capabilities:

• Visualize the variant model hierarchy.
• Define and validate multiple variant configurations of the model.
• Generate a simplified model for a variant configuration using the Variant Reducer tool. For

variant blocks with the Variant control mode parameter set to sim codegen switching,
you can choose to retain the simulation branch or the code generation branch in the reduced
model.

• Compare variant configurations using the Variant Configuration Analysis tool.

For more information, see “Variant Manager for Simulink”.

 Environment Controller

1-647

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times. While
the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code. Usually, blocks evolve toward being suitable for
production code. Thus, blocks suitable for production code remain suitable.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Variant Source | Default parameter behavior (Simulink Coder)

Topics
“Spawn and Synchronize Execution of RTOS Task” (Simulink Coder)
“Dual-Model Approach: Code Generation” (Simulink Coder)
“Block reduction”

1 Blocks

1-648

Event Listener
Event port for Initialize Function, Reinitialize Function, Reset Function, and Terminate Function
blocks

Description
The Event Listener block serves as an event port for the Initialize Function, Reinitialize Function,
Reset Function, and Terminate Function blocks.

Parameters
Event type — Select event type for subsystem

Initialize (default) | Reinitialize | Reset | Terminate

Select event type for subsystem to execute initialize, reinitialize, reset, or terminate algorithms.

Initialize
Select to trigger the execution of an Initialize Function block with an initialize event.

Reinitialize
Select to trigger the execution of an Reinitialize Function block with an reinitialize event.

Reset
Select to trigger the execution of a Reset Function block with a reset event.

Terminate
Select to trigger the execution of a Terminate Function block with a terminate event.

Programmatic Use
Block Parameter: EventType
Type: character vector
Value: 'Initialize' | 'Reinitialize' | 'Reset' | 'Terminate'
Default: 'Initialize'

Event name — Specify event name

reinit | reset | event name

Specify event name for Reinitialize Function or Reset Function block. Simulink displays the name on
the face of the Reinitialize Function or Reset Function block. The event name is also the name of the
reinitialize event port on the Model or Subsystem block containing the Reinitialize Function block or
the name of the reset event port on the Model block containing the Reset Function block.

reinit
Default event name when Event type is set to Reinitialize.

reset
Default event name when Event type is set to Reset.

 Event Listener

1-649

When entering the Event name, the auto-completion list provides some suggestions. The list is not
complete.

The Event name must be a valid MATLAB variable name.
Dependency

To enable this parameter, set the Event type parameter to Reinitialize or Reset.
Programmatic Use
Block Parameter: EventName
Type: character vector
Value: 'reinit' | 'reset' | '<event name>'
Default: 'reinit' or 'reset'

Enable variant condition — Control activating the variant control (condition)

off (default) | on

Control activating the variant control (condition) defined with the Variant control parameter.

 off
Deactivate variant control of subsystem.

 on
Activate variant control of subsystem.

When you select Enable variant condition, a badge indicates the change:

Programmatic Use
Block Parameter: Variant
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Note

• A reinitialize event port of a Model or Subsystem block can be conditional and propagates the net
variant conditions defined on the corresponding Reinitialize Function block in the referenced
model or subsystem.

• A reset event port of a Model block can be conditional and propagates the net variant conditions
defined on the corresponding Reset Function block in the referenced model.

• Initialize and terminate event ports are always unconditional because they control both the model
default and block-specific initialize and terminate events of the referenced model. If you define an
Initialize Function block in the referenced model, it corresponds to an explicit initialize event.

Variant control — Specify variant control (condition) expression

1 Blocks

1-650

Variant (default) | logical expression

Specify variant control (condition) expression that executes a variant Initialize Function, Reinitialize
Function, Reset Function, or Terminate Function block when the expression evaluates to true.

Variant
Default name for a logical (Boolean) expression.

logical expression
A logical (Boolean) expression or a Simulink.Variant object representing a Boolean
expression.

If you want to generate code for your model, define the variables in the expression as
Simulink.Parameter objects.

Dependency

To enable this parameter, select the Enable variant condition parameter.

Programmatic Use
Block Parameter: VariantControl
Type: character vector
Value: 'Variant' | '<logical expression>'
Default: 'Variant'

Generate preprocessor conditionals — Select if variant choices are enclosed within C preprocessor
conditional statements

off (default) | on

Select if variant choices are enclosed within C preprocessor conditional statements.

 off
Do not enclose variant choices within C preprocessor conditional statements.

 on
When generating code for an ERT target, enclose variant choices within C preprocessor
conditional statements (#if).

Dependency

To enable this parameter, select the Enable variant condition parameter.

When you select Generate preprocessor conditionals, a badge indicates the change:

Programmatic Use
Block Parameter: GeneratePreprocessorConditionals
Type: character vector
Value: 'off' | 'on'
Default: 'off'

 Event Listener

1-651

See Also
Initialize Function | Reinitialize Function | Reset Function | Terminate Function | State Reader | State
Writer

Topics
“Using Initialize, Reinitialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”

1 Blocks

1-652

Extract Bits
Output selection of contiguous bits from input signal

Libraries:
Simulink / Logic and Bit Operations
HDL Coder / Logic and Bit Operations

Description
The Extract Bits block allows you to output a contiguous selection of bits from the stored integer
value of the input signal. Use the Bits to extract parameter to define the method for selecting the
output bits.

• Select Upper half to output the half of the input bits that contain the most significant bit. If
there is an odd number of bits in the input signal, the number of output bits is given by the
equation

number of output bits = ceil(number of input bits/2)

• Select Lower half to output the half of the input bits that contain the least significant bit. If
there is an odd number of bits in the input signal, the number of output bits is given by the
equation

number of output bits = ceil(number of input bits/2)

• Select Range starting with most significant bit to output a certain number of the most
significant bits of the input signal. Specify the number of most significant bits to output in the
Number of bits parameter.

• Select Range ending with least significant bit to output a certain number of the least
significant bits of the input signal. Specify the number of least significant bits to output in the
Number of bits parameter.

• Select Range of bits to indicate a series of contiguous bits of the input to output in the Bit
indices parameter. You indicate the range in [start end] format, and the indices of the input
bits are labeled contiguously starting at 0 for the least significant bit.

This block does not report wrap on overflow warnings during simulation. To report these warnings,
see the Simulink.restoreDiagnostic reference page. The block does report errors due to wrap
on overflow.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array. Floating-point inputs are passed
through the block unchanged. boolean inputs are treated as uint8 signals.

 Extract Bits

1-653

Note Performing bit operations on a signed integer is difficult. You can avoid difficulty by converting
the data type of your input signals to unsigned integer types.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Extracted bits
scalar | vector | matrix | N-D array

Contiguous selection of extracted bits, specified as a scalar, vector, matrix, or N-D array. Floating-
point inputs are passed through the block unchanged.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Bits to extract — Method for extracting bits

Upper half (default) | Lower half | Range starting with most significant bit | Range
ending with least significant big | Range of bits

Select the method for extracting bits from the input signal.

Consider an input signal that is represented in binary by 110111001:

• If you select Upper half for the Bits to extract parameter, the output is 11011 in binary.
• If you select Lower half for the Bits to extract parameter, the output is 11001 in binary.
• If you select Range starting with most significant bit for the Bits to extract

parameter, and specify 3 for the Number of bits parameter, the output is 110 in binary.
• If you select Range ending with least significant bit for the Bits to extract

parameter, and specify 8 for the Number of bits parameter, the output is 10111001 in binary.
• If you select Range of bits for the Bits to extract parameter, and specify [4 7] for the Bit

indices parameter, the output is 1011 in binary.

Programmatic Use
Block Parameter: bitsToExtract
Type: character vector
Values: 'Upper half' | 'Lower half' | 'Range starting with most significant
bit' | 'Range ending with least significant bit' | 'Range of bits'
Default: 'Upper half'

Number of bits — Number of bits to output

8 (default) | positive integer

Select the number of bits to output from the input signal. Signed integer data types must have at
least two bits. Unsigned data integer types can be as short as a single bit.

1 Blocks

1-654

Dependencies

To enable this parameter, set Bits to extract to Range starting with most significant bit
or Range ending with least significant bit.

Programmatic Use
Block Parameter: numBits
Type: character vector
Values: positive integer
Default: '8'

Bit indices — Contiguous range of bits to output

[0 7] (default) | contiguous range

Specify a contiguous range of bits of the input signal to output. Specify the range in [start end]
format. The indices are assigned to the input bits starting with 0 at the least significant bit.

Dependencies

To enable this parameter, set Bits to extract to Range of bits.

Programmatic Use
Block Parameter: bitIdxRange
Type: character vector
Values: contiguous range
Default: '[0 7]'

Output scaling mode — Output scaling mode

Preserve fixed-point scaling (default) | Treat bit field as an integer

Select the scaling mode to use on the output bit selection:

• When you select Preserve fixed-point scaling, the fixed-point scaling of the input is used
to determine the output scaling during the data type conversion.

• When you select Treat bit field as an integer, the fixed-point scaling of the input is
ignored, and only the stored integer is used to compute the output data type.

Programmatic Use
Block Parameter: outScalingMode
Type: character vector
Values: 'Preserve fixed-point scaling' | 'Treat bit field as an integer'
Default: 'Preserve fixed-point scaling'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no

 Extract Bits

1-655

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Bitwise Operator | Bit Clear | Bit Set | Float Extract Bits | Bit Slice

1 Blocks

1-656

Extract Diagonal
Extract main diagonal of input matrix

Libraries:
Simulink / Matrix Operations

Description
The Extract Diagonal block populates the unoriented output vector with the elements on the main
diagonal of the M-by-N input matrix A. Equivalent MATLAB code is given by:

D = diag(A)

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input matrix to extract the diagonal from, specified as a scalar, vector, or matrix .
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Output

Port_1 — Output signal
vector

Output vector of each diagonal element.

The output is the same data type and complexity as the input. The output vector has length
min(M,N).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no

 Extract Diagonal

1-657

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

R2021b: Extract Diagonal Block Moved to Simulink Matrix Operations Library
Behavior changed in R2021b

The Extract Diagonal block has been moved from the DSP System Toolbox > Math Functions >
Matrices and Linear Algebra > Matrix Operations library to the Simulink > Matrix
Operationslibrary. All existing models continue to work.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on the memcpy or memset function (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Create Diagonal Matrix

Functions
diag

1 Blocks

1-658

Fcn
Apply specified expression to input

Libraries:
Simulink / User-Defined Functions

Description
The Fcn block applies the specified mathematical expression to its input. The expression can include
one or more of these components:

• u — The input to the block. If u is a vector, u(i) represents the ith element of the vector; u(1) or
u alone represents the first element.

• Numeric constants.
• Arithmetic operators (+ - * / ^).
• Relational operators (== != > < >= <=) — The expression returns 1 if the relation is true;

otherwise, it returns 0.
• Logical operators (&& || !) — The expression returns 1 if the relation is true; otherwise, it returns

0.
• Parentheses.
• Mathematical functions — abs, acos, asin, atan, atan2, ceil, cos, cosh, exp, floor, hypot,

log, log10, power, rem, sgn (equivalent to sign in MATLAB), sin, sinh, sqrt, tan, and tanh.

Note The Fcn block does not support round and fix. Use the Rounding Function block to apply
these rounding modes.

• Workspace variables — Variable names that are not recognized in the preceding list of items are
passed to MATLAB for evaluation. Matrix or vector elements must be specifically referenced (e.g.,
A(1,1) instead of A for the first element in the matrix).

The Fcn block observes the following rules of operator precedence:

1 ()
2 ^
3 + - (unary)
4 !
5 * /
6 + -
7 > < <= >=
8 == !=
9 &&

 Fcn

1-659

10 ||

The expression differs from a MATLAB expression in that the expression cannot perform matrix
computations. Also, this block does not support the colon operator (:).

Block input can be a scalar or vector. The output is always a scalar. For vector output, consider using
the Math Function block. If a block input is a vector and the function operates on input elements
individually (for example, the sin function), the block operates on only the first vector element.

Limitations
• You cannot tune the expression during simulation in Normal or Accelerator mode (see “How

Acceleration Modes Work”), or in generated code. To implement tunable expressions, tune the
expression outside the Fcn block. For example, use the Relational Operator block to evaluate the
expression outside.

• The Fcn block does not support custom storage classes. See “Organize Parameter Data into a
Structure by Using Struct Storage Class” (Embedded Coder).

Ports
Input

In — Input to a Fcn block
scalar | vector

The Fcn block accepts and outputs signals of type single or double.

For more information, see “Data Types Supported by Simulink” in the Simulink documentation.
Data Types: single | double

Output

Out — Output from a Fcn block
scalar

The Fcn block accepts and outputs signals of type single or double.

For more information, see “Data Types Supported by Simulink” in the Simulink documentation.
Data Types: single | double

Parameters
Expression — Specify the mathematical expression

mathematical expression

Specify the mathematical expression to apply to the input. Expression components are listed above.
The expression must be mathematically well-formed (uses matched parentheses, proper number of
function arguments, and so on). The expression has restrictions on tunability (see “Limitations” on
page 1-660).

1 Blocks

1-660

Programmatic Use
Block Parameter: Expr
Type: character vector
Value: mathematical expression
Default: 'sin(u(1)*exp(2.3*(-u(2))))'

Sample time — Specify sample time in the block

scalar

Note This parameter is not visible in the block dialog box unless it is explicitly set to a value other
than -1. To learn more, see “Blocks for Which Sample Time Is Not Recommended”.

Block Characteristics
Data Types double | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

R2023a: Fcn Block Restored to User-Defined Library
Behavior changed in R2023a

The Fcn block has been restored to the Simulink > User-Defined library.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
MATLAB System | MATLAB Function | Interpreted MATLAB Function

 Fcn

1-661

Find Nonzero Elements
Find nonzero elements in array

Libraries:
Simulink / Math Operations

Description
The Find Nonzero Elements block locates all nonzero elements of the input signal and returns the
linear indices of those elements. If the input is a multidimensional signal, the Find Nonzero Elements
block can also return the subscripts of the nonzero input elements. In both cases, you can show an
output port with the nonzero input values.

The Find Nonzero Elements block outputs a variable-size signal. The sample time for any variable-
size signal must be discrete. If your model does not already use a fixed-step solver, you may need to
select a fixed-step solver in the Configuration Parameters dialog. For more information, see “Compare
Solvers” and “Choose a Solver”.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal from which the block finds all nonzero elements.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Indices of nonzero elements
variable-size signal

The Find Nonzero Elements block outputs the indices of nonzero elements as a variable-size signal.
You control the data type of the output using the Output data type block parameter.

Dependencies

By default, the block outputs linear indices from the first output port. When you change the Index
output format to Subscripts, the block instead provides the element indices of a two-dimension or
larger signal in a subscript form. In this mode, you must specify the Number of input dimensions,
and the block creates a separate output port for each dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Port_2 — Values of nonzero elements
variable-size signal

1 Blocks

1-662

The Find block can optionally output the values of all nonzero elements as a variable-size signal.

Dependencies

To enable this port, select Show output port for nonzero input values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Main

Index output format — Format for indices of nonzero elements

Linear indices (default) | Subscripts

Select the output format for the indices of the nonzero input values.

• Selecting Linear indices provides the element indices of any dimension signal in a vector
form. For one dimension (vector) signals, indices correspond to the position of nonzero values
within the vector. For signals with more than one dimension, the conversion of subscripts to
indices is along the first dimension. You do not need to know the signal dimension of the input
signal.

• Selecting Subscripts provides the element indices of a two-dimension or larger signal in a
subscript form. Because the block shows an output port for each dimension, this option requires
you to specify the Number of input dimensions.

Programmatic Use
Block Parameter: IndexOutputFormat
Type: character vector
Values: 'Linear indices' | 'Subscripts'
Default: 'Linear indices'

Number of input dimensions — Number of dimensions for the input signal

1 (default) | scalar

Specify the number of dimensions for the input signal as a positive integer value from 1 to 32.

Dependencies

To enable this parameter, set Index output format to Subscripts.

Programmatic Use
Block Parameter: NumberOfInputDimensions
Type: character vector
Values: scalar
Default: '1'

Index mode — Specify zero- or one-based indexing

Zero-based (default) | One-based

Specify the indexing mode as Zero-based or One-based.

 Find Nonzero Elements

1-663

• For Zero-based indexing, an index of 0 specifies the first element of the input vector. An index of
1 specifies the second element, and so on.

• For One-based indexing, an index of 1 specifies the first element of the input vector. An index of
2, specifies the second element, and so on.

Programmatic Use
Block Parameter: IndexMode
Type: character vector
Values: 'Zero-based' | 'One-based'
Default: 'Zero-based'

Show output port for nonzero input values — Enable output port for nonzero values

off (default) | on

Show or hide the output port for nonzero input values.

• When you clear this check box (off), the block hides the output port for nonzero input values.
• When you select this check box (on), the block displays the output port for nonzero input values.

The additional output port provides values of the nonzero input elements.

Programmatic Use
Block Parameter: ShowOutputPortForNonzeroInputValues
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.
Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.
Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Data Types

Output data type — Output data type

Inherit: Inherit via internal rule (default) | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | fixdt(1,16) | <data type expression>

Specify the output data type.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

1 Blocks

1-664

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32'| 'int64' | 'uint64'| 'fixdt(1,16)'| '<data type
expression>'
Default: 'Inherit: Inherit via internal rule'

Mode — Select data type mode

Inherit (default) | Built in | Fixed Point

Select the category of data to specify.

• Inherit — Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right where you can select the inheritance mode.

• Built in — Built-in data types. Selecting Built in enables a second menu/text box to the right
where you can select a built-in data type.

• Fixed point — Fixed-point data types. Selecting Fixed point enables additional parameters
that you can use to specify a fixed-point data type.

• Expression — Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, click the Show data type assistant button.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies

To enable this parameter, set Mode to Built in or Fixed point.

Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

 Find Nonzero Elements

1-665

Signedness — Specify signed or unsigned

Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

• Signed, specifies the fixed-point data as signed.
• Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, set the Mode to Fixed point.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Scaling — Method for scaling your fixed-point data

Integer (default)

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. Selecting Integer specifies a binary point location for fixed-point data and sets
the fraction length to 0. For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2010a

1 Blocks

1-666

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
find

Topics
“Array Indexing”
“Variable-Size Signal Basics”
“Inspect Variable-Size Signals on Simulink Models”
“Control Data Types of Signals”

 Find Nonzero Elements

1-667

First Order Hold
Implement linearly extrapolated first order hold on input signal

Libraries:
Simulink / Continuous

Description
The First Order Hold block generates a continuous piecewise linear approximation of the input
signal. Use the First Order Hold block to convert a sampled discrete signal to a continuous signal
without triggering a solver reset.

You can also use the First Order Hold block to break algebraic loops in your model.

Ports
Input

Port 1 — Input signal
scalar | vector | matrix

Input signal, specified as a real scalar, vector, or matrix.
Data Types: double

Output

Port 1 — Linearly approximated output signal
scalar | vector | matrix

Piecewise linear approximation of the input signal.
Data Types: double

Parameters
Initial output — Initial output

0 (default) | scalar | vector

Specify the output that the block generates until the simulation time exceeds the first sample hit time
of the discrete input.
Dependencies

• The initial output of this block cannot be inf or NaN.
• A Run-to-run tunable parameter cannot be changed during simulation run time. However,

changing it before a simulation begins does not cause Accelerator or Rapid Accelerator to
regenerate code.

1 Blocks

1-668

Programmatic Use
Block Parameter: InitialOutput
Type: character vector, string
Values: scalar | vector
Default: '0'

Output algorithm — Output signal approximation technique

Slow (Avoid Overshoot) (default) | Fast (Minimize Error)

Specify the approximation technique used to generate the output signal. The slow, low pass algorithm
avoids overshooting the input signal. The fast, high pass algorithm minimizes error in the
approximated output but can overshoot the input signal.

Programmatic Use
Block Parameter: OutputAlgorithm
Type: character vector, string
Values: Slow (Avoid Overshoot)| Fast (Minimize Error)
Default: 'Slow (Avoid Overshoot)'

Reset if relative extrapolation error exceeds — Error tolerance for solver reset

inf (default) | non-negative real scalar

Specify the tolerance level for the extrapolation error of the output algorithm. Extrapolation error
greater than the specified value causes Simulink to reset the solver for the model.

Tip Enabling the Allow continuous input parameter when this parameter is set to inf can lead to
numerical inaccuracies in simulation.

Programmatic Use
Block Parameter: ErrorTolerance
Type: character vector, string
Values: scalar
Default: 'inf'

Allow continuous input — Apply hold on continuous signals

off (default) | on

Select this parameter to enable the block to accept continuous signals as input. Enabling this
parameter creates a delay between the input and output continuous signals.

Note Enable this parameter when using this block to break an algebraic loop.

Programmatic Use
Block Parameter: AllowContinuousInput
Type: character vector, string
Values: 'off'| 'on'
Default: 'off'

 First Order Hold

1-669

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
Slow (Avoid overshoot)

The linear extrapolation performed by the slow or low pass algorithm can be described as:

y(t) = Mk t − Tk + Ck ∀ Tk ≤ t < tk + 1

where:

• Tk is the time at kth major step.
• Uk is the input at kth major step.
• Ck and Mk are the linear extrapolation coefficients.
• yk is the continuous output at time Tk.

The coefficients, or slope Mk and y-intercept Ck, are calculated as follows

Hk = Tk− Tk− 1

Mk + 1 =
Uk−Uk− 1

Hk
Ck = yk

Fast (Minimize Error)

The linear extrapolation performed by the fast, or high pass, algorithm can be described as:

y(t) = Nk t − Tk + Ck ∀ Tk ≤ t < Tk + 1

where:

• Tk is the time at kth major step.
• Uk is the input at kth major step.
• U is the predicted value of the input at (k+1)th major step.
• (Ck and Nk are the linear extrapolation coefficients.
• yk is the continuous output at time Tk.

The coefficients, or slope Nk and y-intercept Ck, are calculated as follows

1 Blocks

1-670

Hk = Tk− Tk− 1

Mk + 1 =
Uk−Uk− 1

Hk

U = Uk + Mk + 1 HK

Nk + 1 =
U − yk

HK
Ck = yk

The fast algorithm minimizes error by attempting to predict the next input during the update method
of the block. This error reduction in predicted output of the block is traded off against a tendency to
overshoot the input signal.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code generation.

Consider discretizing your model.

See Also
Memory | Zero-Order Hold

 First Order Hold

1-671

Fixed-Point State-Space
Implement discrete-time state space

Libraries:
Simulink / Additional Math & Discrete / Additional Discrete

Description
The Fixed-Point State-Space block implements the system described by

y(n) = Cx(n) + Du(n)

x(n + 1) = Ax(n) + Bu(n)

where u is the input, x is the state, and y is the output. Both equations have the same data type.

• A must be an n-by-n matrix, where n is the number of states.
• B must be an n-by-m matrix, where m is the number of inputs.
• C must be an r-by-n matrix, where r is the number of outputs.
• D must be an r-by-m matrix.

In addition:

• The state x must be an n-by-1 vector.
• The input u must be an m-by-1 vector.
• The output y must be an r-by-1 vector.

The block accepts one input and generates one output. The width of the input vector is the number of
columns in the B and D matrices. The width of the output vector is the number of rows in the C and
D matrices. To define the initial state vector, use the Initial conditions parameter.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input vector, where the width equals the number of columns in the B and D matrices. For more
information, see “Description” on page 1-672.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

1 Blocks

1-672

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal, with width equal to the number of rows in the C and D matrices. For more information,
see “Description” on page 1-672.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Main

State Matrix A — Matrix of states

[2.6020 -2.2793 0.6708; 1 0 0; 0 1 0] (default) | scalar | vector | matrix

Specify the matrix of states as an n-by-n matrix of real or complex values, where n is the number of
states. For more information on the matrix coefficients, see “Description” on page 1-672.

Programmatic Use
Block Parameter: A
Type: character vector
Values: scalar | vector | matrix
Default: '[2.6020 -2.2793 0.6708; 1 0 0; 0 1 0]'

Input Matrix B — Column vector of inputs

[1; 0; 0] (default) | scalar | vector | matrix

Specify the column vector of inputs as an n-by-m matrix of real or complex values, where n is the
number of states, and m is the number of inputs. For more information on the matrix coefficients, see
“Description” on page 1-672.

Programmatic Use
Block Parameter: B
Type: character vector
Values: scalar | vector | matrix
Default: '[1; 0; 0]'

Output Matrix C — Column vector of outputs

[0.0184 0.0024 0.0055] (default) | scalar | vector | matrix

Specify the column vector of outputs as an r-by-n matrix of real or complex values, where r is the
number of outputs, and n is the number of states. For more information on the matrix coefficients, see
“Description” on page 1-672.

Programmatic Use
Block Parameter: C
Type: character vector
Values: scalar | vector | matrix
Default: '[0.0184 0.0024 0.0055]'

 Fixed-Point State-Space

1-673

Direct Feedthrough Matrix D — Matrix for direct feedthrough

[0.0033] (default) | scalar | vector | matrix

Specify the matrix for direct feedthrough as an r-by-m matrix of real or complex values, where r is the
number of outputs, and m is the number of inputs. For more information on the matrix coefficients,
see “Description” on page 1-672.

Programmatic Use
Block Parameter: D
Type: character vector
Values: scalar | vector | matrix
Default: '[0.0033]'

Initial condition for state — Initial state vector

0.0 (default) | scalar | vector | matrix

Specify the initial condition for the state.

Limitations

The initial state cannot be inf or NaN.

Programmatic Use
Block Parameter: X0
Type: character vector
Values: scalar | vector | matrix
Default: '0.0'

Signal Attributes

Data type for internal calculations — Data type for internal calculations

fixdt('double') (default) | data type string

Specify the data type the block uses for internal calculations.

Programmatic Use
Block Parameter: InternalDataType
Type: character vector
Values: data type string
Default: 'fixdt('double')'

Scaling for State Equation AX+BU — Scaling for state equations

2^0 (default) | scalar

Specify the scaling for the state equation AX+BU.

Programmatic Use
Block Parameter: StateEqScaling
Type: character vector
Values: scalar
Default: '2^0'

1 Blocks

1-674

Scaling for Output Equation CX+DU — Scaling for output equations

2^0 (default) | scalar

Specify the scaling for the output equation CX+DU.

Programmatic Use
Block Parameter: OutputEqScaling
Type: character vector
Values: scalar
Default: '2^0'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data types

off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action

off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector

 Fixed-Point State-Space

1-675

Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Booleana | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

a This block is not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

If you use the block in matrix multiplication mode, you can specify the DotProductStrategy. This
setting determines whether you want to implement the matrix multiplication by using a tree of adders
and multipliers, or use the Multiply-Accumulate block implementation. The default is Fully
Parallel.

Note The DotProductStrategy must be set to Fully Parallel when you use the Native
Floating Point mode.

For more information, see “DotProductStrategy” (HDL Coder).

1 Blocks

1-676

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Discrete State-Space | State-Space

Topics
“State”
“Fixed-Point Numbers”

 Fixed-Point State-Space

1-677

Float Extract Bits
Extract bits from floating-point input samples

Libraries:
Simulink / Logic and Bit Operations

Description
The Float Extract Bits block accepts a signal containing floating-point data and outputs a signal
containing the binary representation of the data. For more information on this binary representation,
see the IEEE Standard for Floating Point Arithmetic.

Ports
Input

Port_1 — Signal containing floating-point data
scalar | vector | matrix

Signal containing floating-point data, specified as a scalar, vector, or matrix.
Data Types: single | double | half | bus

Output

Port_1 — Binary representation of data
scalar | vector | matrix

Binary representation of data, returned as a scalar, vector, or matrix.
Data Types: single | double | half

Parameters
Output mode — Parts of data to output

All bits (default) | Range of bits | Sign | Mantissa | Exponent

Parts of data to output as its binary representation, specified as:

• All bits
• Range of bits
• Sign
• Mantissa
• Exponent

1 Blocks

1-678

https://standards.ieee.org/ieee/754/6210/

Programmatic Use
Block Parameter: OutputMode
Type: character vector
Values: 'All bits' | 'Range of bits' | 'Sign' | 'Mantissa' | 'Exponent'
Default: 'All bits'

Bit range ([start end], 0-based relative to LSB) — Range of bits to return

[0 15] (default) | vector

Range of bits of the signal to return, specified as a vector.

Programmatic Use
Block Parameter: BitRange
Type: character vector
Values: '[0 15]' | vector
Default: '[0 15]'

Block Characteristics
Data Types double | half | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Extract Bits

External Websites
IEEE Standard for Floating Point Arithmetic

 Float Extract Bits

1-679

https://standards.ieee.org/ieee/754/6210/

Floating Scope and Scope Viewer
Display signals generated during simulation without signal lines

Libraries:
Simulink / Sinks
HDL Coder / Sinks

Description
The Simulink Scope Viewer and Floating Scope block display time domain signals with respect to
simulation time. The Scope Viewer and Floating Scope block have the same functionality as the Scope
block, but they are not connected to signal lines.

For information on controlling a Floating Scope block from the command line, see “Control Scope
Blocks Programmatically” in the Simulink documentation.

Connect Signals

In the Floating Scope window or Scope viewer window, use the button to connect signals.

To add a viewer with a connected signal, select a signal in the model. Then, on the Simulation tab, in
the Prepare gallery, click Add Viewer.

For more details, see “Add Signals to an Existing Floating Scope or Scope Viewer”.

1 Blocks

1-680

Key Features

• Multiple y-axes (displays) — Display multiple y-axes with multiple input ports. All the y-axes have a
common time range on the x-axis.

• Multiple signals — Show multiple signals on the same y-axis (display) from one or more input
ports.

• Modify parameters — Modify scope parameter values before and during a simulation.
• Display data after simulation — If a scope is closed at the start of a simulation, scope data is still

written to the scope during the simulation. If you open the scope after a simulation, the scope
displays simulation results for input signals.

Oscilloscope Measurements

• Triggers — Set triggers on repeating signals and pause the display when events occur.
• Cursor Measurements — Measure signal values using vertical and horizontal cursors.
• Signal Statistics1 — Display the maximum, minimum, peak-to-peak difference, mean, median, and

RMS values of a selected signal.
• Peak Findera — Find maxima, showing the x-axis values at which they occur.
• Bilevel Measurementsa — Measure transitions, overshoots, undershoots, and cycles.

Limitations
When you use model configuration parameters that optimize the simulation, such as Signal storage
reuse or Block reduction, Simulink eliminates storage for some signals during simulation. You are
unable to apply a Floating Scope to these eliminated signals. To work around this issue, configure an
eliminated signal as a test point. You can then apply a Floating Scope to the signal regardless of
optimization settings. To configure test points, see “Configure Signals as Test Points”.

• If you step back the simulation after adding or removing a signal, the Floating Scope clears the
existing data. New data does not appear until the simulation steps forward again.

• When connected to a constant signal, the scope plots a single point.
• Simulink messages are not supported for Floating Scope block and Scope Viewer.
• You cannot connect signals from ForEach subsystems.
• Scope displays have limitations in Rapid Accelerator mode. See “Behavior of Scopes and Viewers

with Rapid Accelerator Mode”

Ports
Input

Port_1 — Signal or signals to visualize
scalar | vector | matrix | array | bus | nonvirtual bus

Connect the signals you want to visualize. You can have up to 96 input ports. Input signals can have
these characteristics:

1 You must have a Simscape™ or DSP System Toolbox license to use the Peak Finder, Bilevel Measurements, and Signal
Statistics.

 Floating Scope and Scope Viewer

1-681

• Type — Continuous (sample-based) or discrete (sample-based and frame-based).
• Data type — Any data type that Simulink supports. See “Data Types Supported by Simulink”.
• Dimension — Scalar, one dimensional (vector), two dimensional (matrix), or multidimensional

(array). Display multiple channels within one signal depending on the dimension. See “Signal
Dimensions” and “Determine Signal Dimensions”.

Input Limitations

• When the input is a constant signal, the scope plots a single point.
• The scope shows gaps in the display when the signal value is NaN.
• When you visualize multiple frame-based signals in the scope, some samples of signals with a

frame size of 1 might not be displayed. To visualize these signals, move the signals with frame size
of 1 to a separate scope.

Bus Support

You can connect nonvirtual bus and arrays of bus signals to a scope. To display the bus signals, use
normal or accelerator simulation mode. The scope displays each bus element signal in the order the
elements appear in the bus, from the top to the bottom. Nested bus elements are flattened.

To log nonvirtual bus signals with a scope, set the Save format parameter to Dataset. You can use
any Save format to log virtual bus signals.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Properties
Configuration Properties

The Configuration Properties dialog box controls various properties about the scope displays. From
the scope menu, select View > Configuration Properties.

Main

Open at simulation start — Specify when scope window opens
off (default) | on

Select this check box to open the scope window when simulation starts.

Programmatic Use

See OpenAtSimulationStart.

Display the full path — Display block path on scope title bar
off (default) | on

Select this check box to display the block path in addition to the block name.

Layout — Number and arrangement of displays
1-by-1 display (default) | an arrangement of m-by-n displays

Specify number and arrangement of displays. To expand the layout grid beyond 4 by 4, click within
the dialog box and drag. The maximum layout is 16 rows by 16 columns.

1 Blocks

1-682

If the number of displays is equal to the number of ports, signals from each port appear on separate
displays. If the number of displays is less than the number of ports, signals from additional ports
appear on the last display. For layouts with multiple columns and rows, ports are mapped down and
then across.

Programmatic Use

See LayoutDimensions.

Input processing — Channel or element signal processing
Elements as channels (sample based) (default) | Columns as channels (frame based)

• Elements as channels (sample based) — Process each element as a unique sample.
• Columns as channels (frame based) — Process signal values in a column as a group of

values from multiple time intervals. Frame-based processing is available only with discrete input
signals.

Programmatic Use

See FrameBasedProcessing.

Maximize axes — Maximize size of plots
Off (default) | Auto | On

• Auto — If “Title” on page 1-0 and “Y-label” on page 1-0 properties are not specified,
maximize all plots.

• On — Maximize all plots. Values in Title and Y-label are hidden.
• Off — Do not maximize plots.

Programmatic Use

See MaximizeAxes.

Time

Time span — Length of x-axis to display

Auto (default) | User defined | One frame period

 Floating Scope and Scope Viewer

1-683

• Auto — Difference between the simulation start and stop times.

The block calculates the beginning and end times of the time range using the “Time display offset”
on page 1-0 and “Time span” on page 1-0 properties. For example, if you set the Time
display offset to 10 and the Time span to 20, the scope sets the time range from 10 to 30.

• User defined — Enter any value less than the total simulation time.
• One frame period — Use the frame period of the input signal to the Time Scope block. This

option is only available when the Input processing parameter is set to Columns as channels
(frame based).

Programmatic Use

See TimeSpan.

Time span overrun action — Display data beyond visible x-axis

Wrap (default) | Scroll

Specify how to display data beyond the visible x-axis range.

You can see the effects of this option only when plotting is slow with large models or small step sizes.

• Wrap — Draw a full screen of data from left to right, clear the screen, and then restart drawing
the data from the left.

• Scroll — Move data to the left as new data is drawn on the right. This mode is graphically
intensive and can affect run-time performance.

Programmatic Use

See TimeSpanOverrunAction.

Time units — x-axis units

None (default for Scope) | Metric (default for Time Scope) | Seconds

• Metric — Display time units based on the length of “Time span” on page 1-0 .
• Seconds — Display time in seconds.
• None — Do not display time units.

Programmatic Use

See TimeUnits.

Time display offset — x-axis offset

0 (default) | scalar | vector

Offset the x-axis by a specified time value, specified as a real number or vector of real numbers.

For input signals with multiple channels, you can enter a scalar or vector:

• Scalar — Offset all channels of an input signal by the same time value.
• Vector — Independently offset the channels.

1 Blocks

1-684

Programmatic Use

See TimeDisplayOffset.

Time-axis labels — Display of x-axis labels

Bottom Displays Only (default for Scope) | All (default for Time Scope) | None

Specify how x-axis (time) labels display:

• All — Display x-axis labels on all y-axes.
• None — Do not display labels. Selecting None also clears the Show time-axis label check box.
• Bottom displays only — Display x-axis label on the bottom y-axis.

Dependencies

To enable this property, set:

• “Show time-axis label” on page 1-0 to on.
• “Maximize axes” on page 1-0 to off.

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See TimeAxisLabels.

Show time-axis label — Display or hide x-axis labels

off (default for Scope) | on (default for Time Scope)

Select this check box to show the x-axis label for the active display

Dependencies

To enable this property, set “Time-axis labels” on page 1-0 to All or Bottom Displays Only.

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See ShowTimeAxisLabel.

Display

Active display — Selected display

1 (default) | positive integer

Selected display. Use this property to control which display is changed when changing style
properties and axes-specific properties.

Specify the desired display using a positive integer that corresponds to the column-wise placement
index. For layouts with multiple columns and rows, display numbers are mapped down and then
across.

 Floating Scope and Scope Viewer

1-685

Programmatic Use

See ActiveDisplay.

Title — Display name

%<SignalLabel> (default) | string

Title for a display. The default value %<SignalLabel> uses the input signal name for the title.

Dependency

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See Title.

Show legend — Display signal legend

off (default) | on

Toggle signal legend. The names listed in the legend are the signal names from the model. For signals
with multiple channels, a channel index is appended after the signal name. Continuous signals have
straight lines before their names, and discrete signals have step-shaped lines.

From the legend, you can control which signals are visible. This control is equivalent to changing the
visibility in the Style properties. In the scope legend, click a signal name to hide the signal in the
scope. To show the signal, click the signal name again. To show only one signal, right-click the signal
name, which hides all other signals. To show all signals, press Esc.

Note The legend only shows the first 20 signals. Any additional signals cannot be controlled from the
legend.

Dependency

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See ShowLegend.

Show grid — Show internal grid lines

on (default) | off

Select this check box to show grid lines.

Dependency

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See ShowGrid.

1 Blocks

1-686

Plot signals as magnitude and phase — Split display into magnitude and phase plots

off (default) | on

• On — Display magnitude and phase plots. If the signal is real, plots the absolute value of the
signal for the magnitude. The phase is 0 degrees for positive values and 180 degrees for negative
values. This feature is useful for complex-valued input signals. If the input is a real-valued signal,
selecting this check box returns the absolute value of the signal for the magnitude.

• Off — Display signal plot. If the signal is complex, plots the real and imaginary parts on the same
y-axis.

Dependency

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See PlotAsMagnitudePhase.

Y-limits (Minimum) — Minimum y-axis value

-10 (default) | real scalar

Specify the minimum value of the y-axis as a real number.

Tunable: Yes

Dependency

If you select Plot signals as magnitude and phase, this property only applies to the magnitude
plot. The y-axis limits of the phase plot are always [-180 180].

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See YLimits.

Y-limits (Maximum) — Maximum y-axis value

10 (default) | real scalar

Specify the maximum value of the y-axis as a real number.

Tunable: Yes

Dependency

If you select Plot signals as magnitude and phase, this property only applies to the magnitude
plot. The y-axis limits of the phase plot are always [-180 180].

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See YLimits.

 Floating Scope and Scope Viewer

1-687

Y-label — Y-axis label

none (default for Scope) | Amplitude (default for Time Scope) | string

Specify the text to display on the y-axis. To display signal units, add (%<SignalUnits>) to the label.
At the beginning of a simulation, Simulink replaces (%SignalUnits) with the units associated with
the signals.
Example: For a velocity signal with units of m/s, enter Velocity (%<SignalUnits>).

Dependency

If you select Plot signals as magnitude and phase, this property does not apply. The y-axes are
labeled Magnitude and Phase.

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See YLabel.

Logging

Limit data points to last — Limit buffered data values

off (default) | on

Limit buffered data values before plotting and saving signals. Data values are from the end of a
simulation. To use this property, you must also specify the number of data values by entering a
positive integer in the text box.

• On — Specify the number of data values saved for each signal (5000 by default). If the signal is
frame-based, the number of buffered data values is the specified number of data values multiplied
by the frame size.

For simulations with Stop time set to inf, consider selecting Limit data points to last.

Sometimes, selecting this parameter cause signals to be plotted for less than the entire time range
of a simulation. For example, where the sample time is small. If a scope plots a portion of your
signals, consider increasing the number of data values the simulation saves.

• Off — Save and plot all data values. Clearing Limit data points to last can cause an out-of-
memory error for simulations that generate a large amount of data or for systems without enough
available memory.

Dependency

To enable this property, select “Log data to workspace” on page 1-0 .

This property limits the data values plotted in the scope and the data values saved to a MATLAB
variable specified in “Variable name” on page 1-0 .

Programmatic Use

See DataLoggingLimitDataPoints and DataLoggingMaxPoints.

Decimation — Reduce amount of scope data to display and save

1 Blocks

1-688

off (default) | on

• On — Plot and log (save) scope data every Nth data point, where N is the decimation factor
entered in the text box. The default decimation factor is 2. A value of 1 buffers all data values.

• Off — Save all scope data values.

Dependency

To enable this property, select “Log data to workspace” on page 1-0 .

This property limits the data values plotted in the scope and the data values saved to a MATLAB
variable specified in “Variable name” on page 1-0 .
Programmatic Use

See DataLoggingDecimateData and DataLoggingDecimation.

Log/Unlog Viewed Signals to Workspace — Toggle logging
on | off

For signals selected with the Signal Selector, clicking this button toggles the state of the Log signal
data check boxes in the Signals Properties dialog boxes.

Axes Scaling Properties

The Axes Scaling Properties dialog controls the axes limits of the scope. To open the Axes Scaling
properties, in the scope menu, select Tools > Axes Scaling > Axes Scaling Properties.

Axes scaling — Y-axis scaling mode

Manual (default) | Auto | After N Updates

• Manual — Manually scale the y-axis range with the Scale Y-axis Limits toolbar button.
• Auto — Scale the y-axis range during and after simulation. Selecting this option displays the Do

not allow Y-axis limits to shrink check box. If you want the y-axis range to increase and
decrease with the maximum value of a signal, set Axes scaling to Auto and clear the Do not
allow Y-axis limits to shrink check box.

• After N Updates — Scale y-axis after the number of time steps specified in the Number of
updates text box (10 by default). Scaling occurs only once during each run.

Programmatic Use

See AxesScaling.

Do not allow Y-axis limits to shrink — When y-axis limits can change

on (default) | off

Allow y-axis range limits to increase but not decrease during a simulation.
Dependency

To use this property, set Axes scaling to Auto.

Number of updates — Number of updates before scaling

 Floating Scope and Scope Viewer

1-689

10 (default) | integer

Set this property to delay auto scaling the y-axis.

Dependency

To use this property, set Axes scaling to After N Updates.

Programmatic Use

See AxesScalingNumUpdates.

Scale axes limits at stop — When y-axis limits can change

on (default) | off

• On — Scale axes when simulation stops.
• Off — Scale axes continually.

Dependency

To use this property, set Axes scaling to Auto.

Y-axis Data range (%) — Percent of y-axis to use for plotting

80 (default) | integer between [1, 100]

Specify the percentage of the y-axis range used for plotting data. If you set this property to 100, the
plotted data uses the entire y-axis range.

Y-axis Align — Alignment along y-axis

Center (default) | Top | Bottom

Specify where to align plotted data along the y-axis data range when Y-axis Data range is set to less
than 100 percent.

• Top — Align signals with the maximum values of the y-axis range.
• Center — Center signals between the minimum and maximum values.
• Bottom — Align signals with the minimum values of the y-axis range.

Autoscale X-axis limits — Scale x-axis range limits

off (default) | on

Scale x-axis range to fit all signal values. If Axes scaling is set to Auto, the data currently within the
axes is scaled, not the entire signal in the data buffer.

X-axis Data range (%) — Percent of x-axis to use for plotting

100 (default) | integer in the range [1, 100]

Specify the percentage of the x-axis range to plot data on. For example, if you set this property to
100, plotted data uses the entire x-axis range.

1 Blocks

1-690

X-axis Align — Alignment along x-axis

Center (default) | Left | Right

Specify where to align plotted data along the x-axis data range when X-axis Data range is set to less
than 100 percent.

• Right — Align signals with the maximum values of the x-axis range.
• Center — Center signals between the minimum and maximum values.
• Left — Align signals with the minimum values of the x-axis range.

Style Properties

To open the Style dialog box, from the scope menu, select View > Style.

Figure color — Background color for window
black (default) | color

Background color for the scope.

Plot type — How to plot signal

Auto (default for Scope) | Line (default for Time Scope) | Stairs | Stem

When you select Auto, the plot type is a line graph for continuous signals, a stair-step graph for
discrete signals, and a stem graph for Simulink message signals.

Axes colors — Background and axes color for individual displays
black (default) | color

Select the background color for axes (displays) with the first color palette. Select the grid and label
color with the second color palette.

Preserve colors for copy to clipboard — Copy scope without changing colors
off (default) | on

Specify whether to use the displayed color of the scope when copying.

When you select File > Copy to Clipboard, the software changes the color of the scope to be printer
friendly (white background, visible lines). If you want to copy and paste the scope with the colors
displayed, select this check box.

Properties for line — Line to change
Channel 1 (default)

Select active line for setting line style properties.

Visible — Line visibility
on (default) | off

Show or hide a signal on the plot.
Dependency

The values of “Active display” on page 1-0 and “Properties for line” on page 1-0 determine
which line is affected.

 Floating Scope and Scope Viewer

1-691

Line — Line style
solid line (default style) | 0.75 (default width) | yellow (default color)

Select line style, width, and color.

Dependency

The values of “Active display” on page 1-0 and “Properties for line” on page 1-0 determine
which line is affected.

Marker — Data point marker style
None (default) | marker shape

Select marker shape.

Dependency

The values of “Active display” on page 1-0 and “Properties for line” on page 1-0 determine
which line is affected.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block can be used for simulation visibility in systems that generate code, but is not included in
the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1 Blocks

1-692

This block can be used for simulation visibility in systems that generate code, but is not included in
the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block accepts fixed-point input, but converts it to double for display.

See Also
Blocks
Scope

Topics
“Scope Blocks and Scope Viewer Overview”
“Common Scope Block Tasks”
“Simulate a Model Interactively”
“Monitor Test Points in Stateflow Charts” (Stateflow)

 Floating Scope and Scope Viewer

1-693

For Each
Control block for for-each subsystem

Description
The For Each block serves as a control block for the For Each Subsystem block. Specifically, the For
Each block enables the blocks inside the for-each subsystem to process the elements of either input
signals or mask parameters independently. Each block inside this subsystem that has states maintains
a separate set of states for each element or subarray that it processes. As the set of blocks in the
subsystem processes the elements or subarrays, the subsystem concatenates the results to form
output signals.

Use a for-each subsystem to iteratively compute outputs after changing inputs or mask parameters.
To do so, configure the partitioning of input signals or mask parameters in the For Each block dialog
box.

Partition Input Signals to the Subsystem

To specify which input signals to partition for each iteration in a for-each subsystem, use the Input
Partition tab in the dialog box of the For Each block. When specifying a signal to be partitioned,
specify the Partition Dimension, Partition Width, and Partition Offset parameters.

Partition Mask Parameters of the Subsystem

You can partition the mask parameters of a For Each Subsystem block. Partitioning is useful for
systems that have identical structures in each iteration but different parameter values. In this case,
changing the model to partition extra input signals for each parameter is cumbersome. Instead, add a
mask parameter to a for-each subsystem. For more information, see “Create a Simple Mask”. To
select the mask parameter for partitioning, use the Parameter Partition tab of the For Each block
dialog box. For more information, see “Select Partition Parameters” on page 1-695, below.

Concatenate Output

Define the dimension along which to concatenate the results by specifying the Concatenation
Dimension in the Output Concatenation tab.

The results generated by the block for each subarray are stacked along the concatenation dimension.
By default, dimension 1 (y-axis) is used, meaning that the results are stacked vertically. However, if
you specify a concatenation dimension of 2, the results concatenate along the horizontal direction (x-

1 Blocks

1-694

axis). Thus, if the process generates row vectors, then the concatenated result is a matrix in the first
case and a row vector in the second case.

Select Partition Parameters

When selecting an input signal or subsystem mask parameter for partitioning, you need to specify
how to decompose it into elements or subarrays for each iteration. Do this by setting integer values
for the Partition Dimension, Partition Width, and Partition Offset parameters.

As an illustration, consider an input signal matrix A of the form:

The labels d1 and d2, respectively, define dimensions 1 and 2. If you retain the default setting of 1 for
both the partition dimension and the partition width, and 0 for the partition offset, then Simulink
slices perpendicular to partition dimension 1 at a width equal to the partition width, that is one
element:

Matrix A decomposes into these three row vectors:

If instead you specify 2 as the partition dimension, Simulink slices perpendicular to dimension 2 to
form three column vectors:

 For Each

1-695

In addition to setting the Partition Dimension to 2, if you set the Partition Width to 2 and the
Partition Offset to -1, Simulink uses two overlapping 3-by-2 partitions for processing.

By default, all partitions of the input signal or mask parameter are processed. To process a subset of
the partitions, enter the number of partitions to process as the Number of iterations. In the matrix
examples above, if Partition Offset is set to 0 (the default) and Number of iterations is set to 2,
only the first 2 rows or columns of the input matrix A are processed.

Note Only signals are considered one-dimensional in Simulink. Mask parameters are row or column
vectors, according to their orientation. To partition a row vector, specify the partition dimension as 2
(along the columns). To partition a column vector, specify the partition dimension as 1 (along the
rows).

Ports
Output

Partition index — Index of current partition
scalar

Index of current partition (starting at zero), returned as a scalar.

Dependencies

To enable this port, select Show partition index output port.
Data Types: int32 | double

Parameters
Input Partition Tab

Select each input signal you want to partition and specify the corresponding Partition Dimension,
Partition Width, and Partition offset parameters. See the Inport block reference page for more
information.

Port — List of input ports

no default (default) | input port name

This parameter is read-only.

List of input ports connected to the For Each Subsystem block.

1 Blocks

1-696

Partition — Select input port signals to partition

off (default) | on

Select input port signals connected to the For Each Subsystem block to partition into subarrays or
elements. For each port listed in the Port column, select the corresponding check box to partition
that signal.

Programmatic Use
Block Parameter: InputPartition
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Partition Dimension — Specify dimension

1 (default) | 2 | positive integer

Specify the dimension through which to slice the selected input signal array. The resulting slices are
perpendicular to the dimension that you specify. The slices partition the array into subarrays or
elements, as appropriate.

1
Slice input array along the columns.

2
Slice input array along the rows.

n
Slice input array along dimension n.

Dependencies

To enable this parameter, select Partition for the relevant input port.

Programmatic Use
Block Parameter: InputPartitionDimension
Type: character vector
Values: '1' | '2' | '<positive integer>'
Default: '1'

Partition Width — Specify width

1 (default) | positive integer

Specify the width of each partition slice of the selected input signal.

Dependencies

To enable this parameter, select Partition for the relevant input port.

Programmatic Use
Block Parameter: InputPartitionWidth
Type: character vector
Values: '1' | '<integer>'
Default: '1'

 For Each

1-697

Partition Offset — Specify partition offset
0 (default) | integer

Specify the offset for each partition slice of the selected input signal.

0
No offset between partition slices, that is, partition slices have no gaps between them and do not
overlap.

integer
Specify partition offset, using a positive integer to specify a gap between slices or a negative
integer to indicate an overlap. The sum of the Partition Width and the Partition Offset must be
a positive integer.

For example, a Partition Width of 3 and a Partition Offset of -2 indicates that each 3-element
slice overlaps its neighboring slices by 2 elements; whereas a Partition Width of 2 and a
Partition Offset of 1 indicates that there is a 1-element-wide gap between each pair of
neighboring 2-element-wide slices.

Dependencies

To enable this parameter, select Partition for the relevant input port.

Programmatic Use
Block Parameter: InputPartitionOffset
Type: character vector
Values: '0' | '<integer>'
Default: '0'

Parameter Partition Tab

Select each mask parameter you want to partition and specify the corresponding Partition
Dimension and Partition Width parameters.

Parameter — List of mask parameters

parameter name

This parameter is read-only.

List of mask parameters for the For Each Subsystem block. Mask parameters appear in the list only if
you have added an editable parameter to the mask of the For Each Subsystem block. See “Create
Block Masks”.

Partition — Select mask parameters to partition

off (default) | on

Select mask parameters for the For Each Subsystem block to partition into subarrays or elements.
For each port listed in the Parameter column, select the corresponding check box to partition that
mask parameter.

Programmatic Use
Block Parameter: SubsysMaskParameterPartition
Type: character vector

1 Blocks

1-698

Values: 'off' | 'on'
Default: 'off'

Partition Dimension — Specify dimension

1 (default) | 2 | positive integer

Specify the dimension through which to slice the selected mask parameter array. The resulting slices
are perpendicular to the dimension that you specify. The slices partition the array into subarrays or
elements, as appropriate.

1
Slice mask parameter array along the columns.

2
Slice mask parameter array along the rows.

n
Slice mask parameter array along dimension n.

Dependencies

To enable this parameter, select Partition for the relevant mask parameter.

Programmatic Use
Block Parameter: SubsysMaskParameterPartitionDimension
Type: character vector
Values: '1' | '<integer>'
Default: '1'

Partition Width — Specify partition width

1 (default) | positive integer

Specify the width of each partition slice of the selected mask parameter array.

Dependencies

To enable this parameter, select Partition for the relevant mask parameter.

Programmatic Use
Block Parameter: SubsysMaskParameterPartitionWidth
Type: character vector
Values: '1' | '<positive integer>'
Default: '1'

Output Concatenation Tab

For each output port, specify the dimension along which to stack (concatenate) the For Each
Subsystem block results. See the Outport block reference page for more information.

Port — List of output ports

none (default) | output port name

This parameter is read-only.

 For Each

1-699

List of output ports connected to the For Each Subsystem block.

Concatenation Dimension — Specify dimension

1 (default) | 2 | positive integer

For each output port, specify the dimension along which to stack the results of the For Each
Subsystem block .

1
Stack the results in the d1 direction, that is, vertically. If the block generates column vectors, the
concatenation process results in a single column vector. If the block generates row vectors, the
concatenation process results in a matrix.

2
Stack the results in the d2 direction, that is, horizontally. If the block generates row vectors, the
concatenation process results in a single row vector. If the block generates row vectors, the
concatenation process results in a matrix.

n
Stack the results in the dn direction.

Programmatic Use
Block Parameter: OutputConcatenationDimension
Type: character vector
Values: '1' | '<integer>'
Default: '1'

Other Parameters

Show partition index output port (zero-based indexing) — Control display of output port

off (default) | on

Control display of output port for partition index.

off
Hide output port.

on
Display output port on block.

Programmatic Use
Block Parameter: ShowIterationIndex
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Partition index output data type — Specify partition index data type

'int32' (default) | 'double'

Specify partition index data type for output port.

1 Blocks

1-700

int32
Select signed 32-bit integer.

double
Select double real.

Dependencies

To enable this parameter, select Show partition index output port.
Programmatic Use
Block Parameter: IterationIndexDataType
Type: character vector
Values: 'int32' | 'double'
Default: 'int32'

Number of iterations — Specify number of partitions to process

-1 (default) | integer

To process a subset of data, specify the number of partition slices of the input signal or mask
parameter array to process, else specify -1 to process all slices. The number must not be greater
than the total number of slices available.

-1
Process all slices

integer
Number of slices to process

For example, a Number of iterations of 3 indicates that only the first 3 slices are to be
processed.

Programmatic Use
Block Parameter: SpecifiedNumIters
Type: character vector
Values: '-1' | '<integer>'
Default: '-1'

Version History
Introduced in R2010a

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
HDL Architecture

This block has one default HDL architecture.

 For Each

1-701

See Also
For Each Subsystem | Subsystem

Topics
“Repeat an Algorithm Using a For-Each Subsystem”
“Log Signals in For-Each Subsystems”

1 Blocks

1-702

For Each Subsystem
Apply algorithm to individual elements or subarrays of input signals or mask parameters

Libraries:
Simulink / Ports & Subsystems
HDL Coder / Ports & Subsystems

Description
The For Each Subsystem block is a Subsystem block preconfigured as a starting point for creating a
subsystem that repeats execution during a simulation time step on each element or subarray of an
input signal or mask parameter array.

The set of blocks within the subsystem represents the algorithm applied to a single element or
subarray of the original signal or mask parameter array. Inside the subsystem, each block that has
states maintains separate sets of states for each element or subarray that it processes. Consequently,
the operation of this subsystem is similar in behavior to copying the contents of the subsystem for
each element in the original input signal or mask parameter array and then processing each element
using its respective copy of the subsystem. As the set of blocks in the subsystem processes the
elements or subarrays, the subsystem concatenates the results to form output signals.

Configure the Subsystem

The For Each Subsystem block contains a For Each block that acts as a control block for the
subsystem. Specify the parameters of the For Each block to configure the decomposition of the
subsystem inputs or mask parameters into elements or subarrays and to configure the concatenation
of the individual results into output signals. The block parameters Partition Dimension and
Partition Width specify the dimension through which to slice the input signal or mask parameter
array and the width of each slice, respectively. To partition a row vector, specify the Partition
Dimension as 2. To partition a column vector, specify the Partition Dimension as 1. Use the
parameter Partition Offset to specify a gap or an overlap between partitions. Specify a Number of
iterations to limit processing to a subset of the data. To learn more about the block parameters, see
For Each.

 For Each Subsystem

1-703

Partition Input Signals to the Subsystem

To specify which input signals to partition for each iteration in a for-each subsystem, use the Input
Partition tab in the dialog box of the For Each block. When specifying a signal to be partitioned,
specify the Partition Dimension, Partition Width, and Partition Offset parameters.
Partition Mask Parameters of the Subsystem

You can partition the mask parameters of a For Each Subsystem block. Partitioning is useful for
systems that have identical structures in each iteration but different parameter values. In this case,
changing the model to partition extra input signals for each parameter is cumbersome. Instead, add a
mask parameter to a for-each subsystem. For more information, see “Create a Simple Mask”. To
select the mask parameter for partitioning, use the Parameter Partition tab of the For Each block
dialog box. For more information, see “Select Partition Parameters” on page 1-695, below.
Concatenate Output

Define the dimension along which to concatenate the results by specifying the Concatenation
Dimension in the Output Concatenation tab.

The results generated by the block for each subarray are stacked along the concatenation dimension.
By default, dimension 1 (y-axis) is used, meaning that the results are stacked vertically. However, if
you specify a concatenation dimension of 2, the results concatenate along the horizontal direction (x-
axis). Thus, if the process generates row vectors, then the concatenated result is a matrix in the first
case and a row vector in the second case.
Select Partition Parameters

When selecting an input signal or subsystem mask parameter for partitioning, you must specify how
to decompose it into elements or subarrays for each iteration. Set integer values for the Partition
Dimension, Partition Width, and Partition Offset parameters.

As an illustration, consider an input signal matrix A of the form:

The labels d1 and d2 define dimensions 1 and 2, respectively. If you retain the default setting of 1 for
both the partition dimension and the partition width and 0 for the partition offset, then Simulink
slices perpendicular to partition dimension 1 at a width equal to the partition width, that is one
element:

1 Blocks

1-704

Matrix A decomposes into these three row vectors:

If you specify 2 as the partition dimension instead, Simulink slices perpendicular to dimension 2 to
form three column vectors:

In addition to setting the Partition Dimension to 2, if you set the Partition Width to 2 and the
Partition Offset to -1, Simulink uses two overlapping 3-by-2 partitions for processing.

For an example using the Partition Offset parameter, open the model
slexForEachOverlapExample.

By default, all partitions of the input signal or mask parameter are processed. To process a subset of
the partitions, enter the number of partitions to process as the Number of iterations. In the matrix
examples above, if Partition Offset is set to 0 (the default) and Number of iterations is set to 2,
only the first 2 rows or columns of the input matrix A are processed.

Note Only signals are considered one-dimensional in Simulink. Mask parameters are row or column
vectors, according to their orientation. To partition a row vector, specify the partition dimension as 2,
along the columns. To partition a column vector, specify the partition dimension as 1, along the rows.

Code Reuse Support

For certain models, the For Each Subsystem block improves code reuse in Simulink Coder generated
code. Consider a model containing two reusable Atomic Subsystem blocks with the same scalar
algorithm applied to each element of the signal. If the input signal dimensions of these subsystems
are different, Simulink Coder generated code includes two distinct functions. You can replace these
two subsystems with two identical For Each Subsystem blocks that are configured to process each

 For Each Subsystem

1-705

matlab:slexForEachOverlapExample

element of their respective inputs using the same algorithm. In this case, Simulink Coder generated
code consists of a single function parameterized by the number of input signal elements. This
function is invoked twice, once for each unique instance of the For Each Subsystem block in the
model. For each of these cases, the input signal elements have different values.

Multicore Execution Support

When you simulate your model in rapid accelerator mode, Simulink uses multicore execution for
faster simulation of for-each subsystems. Simulink automatically profiles each eligible for-each
subsystem the first two time steps it runs in rapid accelerator mode to compare parallel and serial
execution times. Simulink then designates the for-each subsystem for parallel, multicore execution in
subsequent time steps of the simulation run if doing so would speed up execution time. For nested
for-each subsystems, multicore execution applies only to the top-level subsystem. Multicore execution
does not apply to for-each subsystems containing continuous states or Function Caller blocks.

To suppress multicore execution for a given for-each subsystem, set the MultithreadedSim
parameter of the For Each block within the subsystem to 'off'.

set_param(ForEachBlockName,'MultithreadedSim','off')

Note that this is a parameter of the For Each block within the subsystem, not the For Each Subsystem
block itself. To suppress multicore execution for all for-each subsystems in a model, set the
MultithreadedSim parameter of the model to 'off'.

set_param(ModelName,'MultithreadedSim','off')

To re-enable multicore execution, set the relevant MultithreadedSim parameter to its default value
of 'auto'.

For an example, see “Multithreaded Simulation Using For Each Subsystem”.

Note If you simulate your model in rapid accelerator mode or generate code from your model, and
you partition mask parameters in a for-each subsystem, then any expression inside the for-each
subsystem that references a partitioned parameter must be a tunable expression. See “Tunable
Expression Limitations” (Simulink Coder).

S-Function Support

The For Each Subsystem block supports both C-MEX S-functions and Level-2 MATLAB S-functions,
provided that the S-function supports multiple execution instances using one of these techniques:

• A C-MEX S-function must declare ssSupportsMultipleExecInstances(S, true) in the
mdlSetWorkWidths method.

• A Level-2 MATLAB S-function must declare block.SupportsMultipleExecInstances =
true in the setup method.

If you use these specifications:

• Do not cache run-time data such as DWork and Block I/O using global or persistent variables or
within the user data of the S-function.

• In a For Each Subsystem block, every S-function execution method from mdlStart up to
mdlTerminate is called once for each element processed by the S-function. Consequently, you
must make sure not to free the same memory on repeated calls to mdlTerminate. For example,

1 Blocks

1-706

consider a C-MEX S-function that allocates memory for a run-time parameter within
mdlSetWorkWidths. The memory only needs to be freed once in mdlTerminate. As a solution,
set the pointer to be empty after the first call to mdlTerminate.

Limitations
For information regarding limitations of the For Each Subsystem block, see “Limitations of For-Each
Subsystems”.

Ports
Input

In — Signal input to Subsystem block
scalar | vector | matrix

Signal input to a Subsystem block, specified as a scalar, vector, or matrix. Placing an Inport block in a
Subsystem block adds an external input port to the block. The port label matches the name of the
Inport block.

Use Inport blocks to receive signals from the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Out — Signal output from Subsystem block
scalar | vector | matrix

Signal output from a Subsystem block, returned as a scalar, vector, or matrix. Placing an Outport
block in a Subsystem block adds an external output port to the block. The port label matches the
name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals no
Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

 For Each Subsystem

1-707

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

When you generate HDL code for the For Each Subsystem, the code generator attempts to use a
for-generate loop that iterates through elements of the input and output signals. The for-generate
loop improves readability and reduces the number of lines of code, which could otherwise be
hundreds of lines of code for large vector signals. The subsystem supports vector and 2D matrix input
signals. See “Generate HDL Code for Blocks Inside For Each Subsystem” (HDL Coder).

You can use a nonzero partition offset for HDL code generation. The code generator supports a scalar,
vector, or matrix as mask parameter values. You can generate HDL code for element, 1D, and 2D
partitions of mask parameters inside a For Each Subsystem block. Inside the For Each Subsystem
block, use the mask parameter as the Constant value parameter in Constant blocks or as the Gain
parameter in Gain blocks.

Limitations

• You cannot use the For Each Subsystem block as the DUT.
• You cannot set the SpecifiedNumIters parameter of the For Each block for HDL code

generation. HDL code generation returns an error when the value of SpecifiedNumIters is not
equal to the default value of -1.

HDL Architecture

Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only the input/

output port definitions for the subsystem. Therefore, you can use a subsystem in
your model to generate an interface to existing, manually written HDL code.

The black-box interface generation for subsystems is similar to the Model block
interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the subsystem in
simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization

For the BlackBox architecture, you can customize port names and set attributes of the external
component interface. See “Customize Black Box or HDL Cosimulation Interface” (HDL Coder).

1 Blocks

1-708

HDL Block Properties

General
AdaptivePipelining Automatic pipeline insertion based on the synthesis tool, target frequency,

and multiplier word-lengths. The default is inherit. See also
“AdaptivePipelining” (HDL Coder).

BalanceDelays Detects introduction of new delays along one path and inserts matching
delays on the other paths. The default is inherit. See also
“BalanceDelays” (HDL Coder).

ClockRatePipelining Insert pipeline registers at a faster clock rate instead of the slower data
rate. The default is inherit. See also “ClockRatePipelining” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

FlattenHierarchy Remove subsystem hierarchy from generated HDL code. The default is
inherit. See also “FlattenHierarchy” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

StreamingFactor Number of parallel data paths, or vectors, that are time multiplexed to
transform into serial, scalar data paths. The default is 0, which implements
fully parallel data paths. See also “Streaming” (HDL Coder).

Target Specification

This block cannot be the DUT, so the block property settings in the Target Specification tab are
ignored.
Complex Data Support

The block does not support complex data signals for HDL code generation. To input complex signals,
convert the complex signal to an array of signals, and then input to the block. To learn more, see
“Generate HDL Code for Blocks Inside For Each Subsystem” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

 For Each Subsystem

1-709

See Also
For Each | Subsystem

Topics
“Repeat an Algorithm Using a For-Each Subsystem”
“Log Signals in For-Each Subsystems”

1 Blocks

1-710

For Iterator
Control block for for-iterator subsystem

Description
The For Iterator block, when placed in a Subsystem block, repeats the execution of a subsystem
during the current time step until an iteration variable exceeds the specified iteration limit. You can
use this block to implement the block diagram equivalent of a for loop in a programming language.

The output of a For Iterator Subsystem block cannot be a function-call signal. Simulink displays an
error message when the model updates.

Ports
Input

Number of Iterations — External value for iterator variable
scalar | vector, size 1 | matrix, size 1x1

• The input port accepts data of mixed numeric types.
• If the input port value is non-integer, it is first truncated to an integer.
• Internally, the input value is cast to an integer of the type specified for the iteration variable

output port.
• If no output port is specified, the input port value is cast to type int32.
• If the input port value exceeds the maximum value of the output port type, the overflow wraps

around.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

Iterator value — Value of iterator variable during time step
scalar | vector, size 1 | matrix, size 1-by-1

Selecting the Show iteration variable parameter check box adds an output port to this block.
Data Types: double | int8 | int16 | int32 | uint8 | uint16 | uint32

Parameters
States when starting — Select block states between time steps

held (default) | reset

Select how to handle block states between time steps.

held
Hold block states between time steps. Block state values persist across time steps.

 For Iterator

1-711

reset
Reset block states to their initial values at the beginning of each time step and before the first
iteration loop.

Programmatic Use
Block Parameter: ResetStates
Type: character vector
Values: 'held' | 'reset'
Default: 'held'

Iteration limit source — Select source for number of iterations

internal (default) | external

Select source for number of iterations.

internal
Value of the Iteration limit parameter determines the number of iterations.

external
Value of the signal at the N port determines the number of iterations. The signal source must
reside outside the For Iterator Subsystem block.

Dependencies

Selecting internal displays and enables the Iteration limit parameter. Selecting external adds
an input port labeled N.

Programmatic Use
Block Parameter: IterationSource
Type: character vector
Values: 'internal' | 'external'
Default: 'internal'

Iteration limit — Specify number of iterations

5 (default) | integer

Specify the number of iterations. This parameter supports storage classes. You can define the named
constant in the base workspace of the Model Explorer as a Simulink.Parameter object of the built-
in storage class Define (custom) type.

5
Iterate blocks in the For Iterator Subsystem block 5 times.

integer
Specify an integer or a named constant variable.

Dependencies

To enable this parameter, select internal from the Iteration limit source drop-down list.

Programmatic Use
Block Parameter: IterationLimit
Type: character vector

1 Blocks

1-712

Values: '5' | '<integer>'
Default: '5'

Set Next i (iteration variable) externally — Control display of input port

off (default) | on

Control display of an input port.

off
Remove input port.

on
Add input port labeled Next_i for connecting to an external iteration variable source. The value of
the input at the current iteration is used as the value of the iteration variable at the next
iteration.

Dependencies

To enable this parameter, select the Show iteration variable parameter which also displays an
output port labeled 1:N.

Programmatic Use
Block Parameter: ExternalIncrement
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show iteration variable — Control display of output port

on (default) | off

Control the display of an output port with the current iterator value for a loop.

on
Add output port labeled 1:N to the For Iterator block.

off
Remove output port.

Dependencies

Selecting this parameter enables the Set next i (iteration variable) externally parameter.

Programmatic Use
Block Parameter: ShowIterationPort
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Index mode — Select initial iteration number

One-based (default) | Zero-based

Select an initial iteration number of 0 or 1.

 For Iterator

1-713

One-based
Iteration number starts at one.

Zero-based
Iteration number starts at zero.

Programmatic Use
Block Parameter: IndexMode
Type: character vector
Values: 'One-based' | 'Zero-based'
Default: 'One-based'

Iteration variable data type — Select data type

int32 (default) | uint32 | int16 | uint16 | int8 | uint8 | double

Set the data type for the iteration value output from the iteration number port.

int32
Set data type to int32.

uint32
Set data type to uint32.

int16
Set data type to int16.

uint16
Set data type to uint16.

int8
Set data type to int8.

uint8
Set data type to uint8.

double
Set data type to double.

Programmatic Use
Block Parameter: IterationVariableDataType
Type: character vector
Value: 'int32' | 'uint32'|'int16' | 'uint16'|'int8' | 'uint8'|'double'
Default: 'int32'

Version History
Introduced before R2006a

See Also
For Iterator Subsystem | Subsystem

Topics
Iterator Subsystem Execution

1 Blocks

1-714

For Iterator Subsystem
Repeat subsystem execution during simulation time step for specified number of iterations

Libraries:
Simulink / Ports & Subsystems

Description
The For Iterator Subsystem block is a Subsystem block preconfigured as a starting point for creating
a subsystem that repeats the execution during a simulation time step for a specified number of
iterations. The number of iterations is controlled by a For Iterator block inside the subsystem. For an
example, see ex_for_iterator_block.

When using simplified initialization mode, if you place a block that needs elapsed time (such as a
Discrete-Time Integrator block) in a For Iterator Subsystem block, Simulink displays an error.

Ports
Input

In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem adds an external input port to the Subsystem block. The port
label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Output

Out — Signal output from a subsystem
scalar | vector | matrix

 For Iterator Subsystem

1-715

Placing an Outport block in a subsystem adds an output port from the Subsystem block. The port
label on the Subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
For Iterator | Subsystem

Topics
“Iterate Subsystem Execution with While Iterator and For Iterator Subsystems”

1 Blocks

1-716

From
Accept input from Goto block

Libraries:
Simulink / Signal Routing
HDL Coder / Signal Routing

Description
The From block accepts a signal from a corresponding Goto block, then passes it as output. The data
type of the output is the same as that of the input from the Goto block. From and Goto blocks allow
you to pass a signal from one block to another without actually connecting them.

For example, this model uses a Goto block and a From block.

An equivalent model passes the Sine Wave block signal directly to the Gain block.

A From block can receive its signal from only one Goto block, although a Goto block can pass its
signal to more than one From block.

To associate a Goto block with a From block, enter the Goto block tag in the Goto Tag parameter.

The visibility of a Goto block tag determines the From blocks that can receive its signal. For more
information, see Goto and Goto Tag Visibility. The block indicates the visibility of the Goto block tag:

• A local tag name is enclosed in brackets ([]).
• A scoped tag name is enclosed in braces ({}).
• A global tag name appears without additional characters.

The From block supports signal label propagation. For more information, see “Signal Label
Propagation”.

Ports
Output

Port_1 — Signal from connected Goto block
scalar | vector | matrix | N-D array

 From

1-717

Signal from connected Goto block, output with the same dimensions and data type as the input to the
Goto block.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
Goto Tag — Tag of the Goto block that forwards its signal to this block
A (default) | <More Tags...> | ...

Specify the tag of the Goto block that forwards its signal to this From block. To change the tag, select
a new tag from the drop-down list.

The drop-down list displays the Goto tags that the From block can currently see. An item labeled
<More Tags...> appears at the end of the list the first time you display the list in a Simulink
session. Selecting this item causes the block to update the tags list to include the tags of Goto blocks
residing in library subsystems referenced by the model containing this From block. Simulink software
displays a progress bar while building the list of library tags. Simulink saves the updated tags list for
the duration of the Simulink session or until the next time you select the adjacent Update Tags
button. You need to update the tags list again in the current session only if the libraries referenced by
the model have changed since the last time you updated the list.

Tip If you use multiple From and Goto Tag Visibility blocks to refer to the same Goto tag, you can
simultaneously rename the tag in all of the blocks. To do so, use the Rename All button in the Goto
block dialog box. Alternatively, when you change the tag on the Goto block icon, propagate the new
name to all corresponding From and Goto Tag Visibility blocks by pressing Shift+Enter.

To find the relevant Goto block, use the Goto Source hyperlink in the From block dialog box.

Programmatic Use
Block Parameter: GotoTag
Type: character vector
Values: 'A' | ...
Default: 'A'

Update Tags — Update list of visible tags

Updates the list of tags visible to this From block, including tags residing in libraries referenced by
the model containing this From block. Update the tags list again in the current session only if the
libraries referenced by the model have changed since the last time you updated the list.

Goto Source — Path to connected Goto block
block path

Path of the Goto block connected to this From block. Clicking the path displays and highlights the
Goto block in your model.

In the Simulink Editor, selecting the From block highlights the corresponding Goto and Goto Tag
Visibility blocks.

1 Blocks

1-718

When a corresponding Goto or Goto Tag Visibility block is not in the current diagram, the Subsystem
block that contains the block is highlighted.

To show a corresponding block in an open diagram or new tab, select the From block and pause on

the ellipsis. Then, select Related Blocks from the action bar. When multiple blocks correspond
to the selected block, a list of related blocks opens. You can filter the list of related blocks by entering
a search term in the text box. After you select a related block from the list, window focus goes to the
open diagram or new tab that shows the related block.

Icon Display — Text to display on block icon
Tag | Tag and signal name | Signal name

Specifies the text to display on the From block icon. The options are the block tag, the name of the
signal that the block represents, or both the tag and the signal name.

Programmatic Use
Block Parameter: IconDisplay
Type: character vector
Values: 'Signal name' | 'Tag' | 'Tag and signal name'
Default: 'Tag'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
Search for Goto Tags

To search for Goto tags in libraries referenced by the model when opening the From block dialog box,
use the FollowLinksWhenOpeningFromGotoBlocks model parameter with the set_param
function.

• 'off' — Do not search for Goto tags (default).
• 'on' — Search for Goto tags.

 From

1-719

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic. See also “Required HDL Settings for Goto and From Blocks” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Goto | Goto Tag Visibility

Topics
“Signal Label Propagation”

1 Blocks

1-720

From File
Load data from MAT file into Simulink model

Libraries:
Simulink / Sources

Description
The From File block reads data into a Simulink model from a MAT file and provides the data as a
signal or nonvirtual bus at the block output. You can load data from a MAT file that is on or off the
MATLAB path. A model can contain multiple From File blocks that load data from the same MAT file.

You can specify how the block constructs the output from the data in the file, including the sample
time for the output, interpolation and extrapolation behavior, and whether to use zero-crossing
detection.

The From File block icon shows the name of the MAT file that supplies the data to the block. For
example, if you use the From File block to load data from the file myData.mat, the block displays
myData.mat.

MAT File Data

The From File block can load data from a MAT file that is stored in a timeseries object or in an
array where the first row contains time data and subsequent rows contain data for a scalar or vector
signal. Loading data stored in a timeseries object supports a wider range of data and output types
and requires that the MAT file is Version 7.3.

Note Logging outputs, states, or a signal connected to a To Workspace block using the Array format
generates an array in a different format than the From File block expects. In the Array format for
logging, the first column contains time values, and in the array format for the From File block, the
first row contains time values. The From File block and To File block use the same array format.

Data Consideration timeseries Format Array Format
Supported signal data types • Any built-in data types

except half, int64, and
uint64

• Enumerated data type
• Fixed-point data type with up

to a 32-bit word length

double

Signal data complexity Real or complex Real
Signal data requirements Must not contain NaN, Inf, or -

Inf values
Must not contain NaN, Inf, or -
Inf values

 From File

1-721

Data Consideration timeseries Format Array Format
Type of output • Scalar, vector, or

multidimensional signal
• Bus

Scalar or vector signal

Time data requirements • Data type must be double
• Values must increase

monotonically

• Data type must be double
• Values must increase

monotonically
MAT file version Version 7.3 All versions

The From File block loads data from only one variable in the MAT file, regardless of the number of
variables the MAT file contains. When you load data from a Version 7.3 MAT file that contains
multiple variables, the From File block loads the data in the variable that is first alphabetically. The
ordering algorithm used by Version 7.0 and earlier MAT files is more complicated, so ensure that the
MAT file only contains data for a single variable when you load data from a Version 7.0 or earlier MAT
file.

MAT File Version

The version of the MAT file also affects how the From File block loads the data. When you load data
from a Version 7.3 MAT file, data is loaded incrementally during simulation. When you load data from
a Version 7.0 or earlier MAT file, all the data is loaded into memory at the start of simulation.

To convert a MAT file to Version 7.3, use the load function to load the data in the Version 7.0 or
earlier MAT file into the base workspace, then save the data to a Version 7.3 MAT file using the save
function with the version specified as '-v7.3'. For example, suppose you want to convert the file
myData.mat that contains the variable inputData to Version 7.3. Use these commands:

load("myData.mat");
save("myData.mat","inputData","-v7.3");

For more information, see “MAT-File Versions”.

Ports
Output

Port_1 — Output created using MAT file data
scalar | vector | matrix | array

Output created using data loaded from the specified MAT file. Depending on the data you load, the
output may be a scalar or multidimensional signal or a nonvirtual bus. The From File block supports
loading real and complex data of all built-in data types except half, int64, and uint64.

The From File block does not support loading data for an array of buses.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Parameters
File name — MAT file name or path to MAT file

1 Blocks

1-722

untitled.mat (default) | MAT file name | path to MAT file

MAT file name or path to MAT file with data you want to load. Specify the path to the file when the
file is not on the MATLAB path or in the current working directory.

You can type the path or file name into the text box, or you can browse to the MAT file by clicking the

Browse for a MAT-file button . On UNIX® systems, the path can start with a tilde (~), which
indicates your home folder.

You cannot load data from a file to which the model logs data.

Tips

• The From File block supports loading data from a file created using a To File block without any
modification to the data or file.

• To determine the current working directory, enter pwd into the MATLAB Command Window.
• For information about data requirements for C/C++ code generation with the From File block, see

“Code Generation” on page 1-731.

Programmatic Use
Block Parameter: FileName
Type: character vector
Values: MAT file name | path to MAT file
Default: 'untitled.mat'

Output data type — Data type of data in MAT file

Inherit: auto (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
boolean | fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class_name> | Bus:
<bus_object> | <data type expression>

Data type of the data in the MAT file loaded by the From File block. By default, the From File block
inherits the output signal data type from the data in the file or from a downstream block that defines
the data type for the signal. An error occurs if the data type of the data in the MAT file does not
match the inherited data type.

When you load data for a scalar or multidimensional signal, you can choose to inherit the output data
type, or you can specify the output data type to match the data type of the data in the MAT file.

To load data for a bus, set the Output data type to Bus: <bus object> and specify the name of
the Simulink.Bus object that defines the output bus.

To load enumerated data, set the Output data type to Enum: <class name> and specify the name
of the enumeration class that defines the enumerated data values.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector

 From File

1-723

Values: 'Inherit: auto' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'boolean' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | 'Enum: <class name>' | 'Bus: <object name>' | '<data
type expression>'
Default: 'Inherit: auto'

Sample time — Output sample period and optional time offset

0 | scalar | vector

The Sample time parameter specifies when the block computes a new output value during
simulation. For details, see “Specify Sample Time”.

Specify the Sample time parameter as a scalar when you do not want the output to have a time
offset. To add a time offset to the output, specify the Sample time parameter as a 1-by-2 vector
where the first element is the sampling period and the second element is the offset.

By default, the Sample time parameter value is 0, which indicates continuous sample time with no
time offset. For a discrete signal, specify the Sample time as the discrete sampling interval. For
example, specify the Sample time as 0.1 to model a discrete signal sampled every 100ms. Specify
the Sample time as -1 to inherit the value.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '0'

Data extrapolation before first data point — Method to determine block output before first data
point in MAT file

Linear extrapolation (default) | Hold first value | Ground value

Extrapolation method used to determine output values for simulation times before the first sample in
the MAT file data.

1 Blocks

1-724

Method Description Example
Linear
extrapolation

How the block determines the output value
depends on the type of data in the MAT file.

• For double data, the From File block
linearly extrapolates the output value
using the first two samples.

• For Boolean data, the From File block
uses the first value in MAT file data for the
output value.

• For all other built-in data types, the From
File block:

1 Upcasts the data to double.
2 Linearly extrapolates the output value

using the first two samples in the
MAT file data.

3 Downcasts the extrapolated data
value to the original data type.

If the MAT file data only contains one sample,
the From File block provides that value at the
output.

Do not use the Linear extrapolation
option when the From File block loads
enumerated or fixed-point data.

The extrapolation setting is applied to all
signals in a bus. If any signal in the bus
contains enumerated or fixed-point data, do
not use the Linear extrapolation option.

Hold first
value

The From File block uses the first data value
in the MAT file as the output value.

 From File

1-725

Method Description Example
Ground value The From File block output value depends on

the type of data in the MAT file.

• Built-in numeric types — 0
• Boolean — false
• Fixed-point data types — Representation

for value of 0, which may not be exactly 0
due to scaling and limited precision.

• Enumerated data types — Default value

Tips

To generate code that builds ERT or GRT targets or uses SIL or PIL simulation modes, specify Data
extrapolation before first data point as Linear extrapolation. For more information about
C/C++ code generation with the From File block, see “Code Generation” on page 1-731.

Programmatic Use
Block Parameter: ExtrapolationBeforeFirstDataPoint
Type: character vector
Values: 'Linear extrapolation' | 'Hold first value' | 'Ground value'
Default: 'Linear extrapolation'

Data interpolation within time range — Interpolation method

Linear interpolation (default) | Zero order hold

Interpolation method used to determine output values for simulation times between samples in the
MAT file data.

1 Blocks

1-726

Method Description Example
Linear
interpolation

How the block determines the output value
depends on the type of data in the MAT file.

• For double data, the From File block
linearly interpolates the output value
using data values before and after the
simulation time that needs an output
value.

• For all other built-in numeric data types,
the From File block:

1 Upcasts the data to double.
2 Linearly interpolates the output value

using the MAT file data values before
and after the simulation time that
needs an output value.

3 Downcasts the extrapolated data
value to the original data type.

• For Boolean data, if the simulation time
is between two workspace data points
with different values, the From File block
positions the value transition halfway
between the MAT file data points. For
example, if the data transitions from true
to false, the From File block provides an
output value of true for simulation times
in the first half of the interval between the
MAT file data points and an output value
of false for simulation times in the latter
half of the interval.

If the MAT file data only contains one sample,
the From File block provides that value at the
output.

Do not use the Linear interpolation
option when the From File block loads
enumerated or fixed-point data.

The interpolation setting is applied to all
signals in a bus. If any signal in the bus
contains enumerated data, do not use the
Linear interpolation option.

 From File

1-727

Method Description Example
Zero order hold The From File block holds each data value

from one sample to the next. The output
value for a simulation time between two
samples in the MAT file data is the value of
the sample that precedes the simulation time.

Tips

To generate code that builds ERT or GRT targets or uses SIL or PIL simulation modes, specify Data
interpolation within time range as Linear interpolation. For more information on C/C++
code generation with the From File block, see “Code Generation” on page 1-731.

Programmatic Use
Block Parameter: InterpolationWithinTimeRange
Type: character vector
Values: 'Linear interpolation' | 'Zero order hold'
Default: 'Linear interpolation'

Data extrapolation after last data point — Method to determine block output after final data point
in MAT file

Linear extrapolation (default) | Hold last value | Ground value

Extrapolation method used to determine output values for simulation times after the last sample in
the MAT file data.

1 Blocks

1-728

Method Description Example
Linear
extrapolation

How the block determines the output value
depends on the type of data in the MAT file.

• For double data, the From File block
linearly extrapolates the output value
using the last two samples in the MAT file.

• For Boolean data, the From File block
uses the sample value in MAT file for the
output value.

• For all other built-in data types, the From
File block:

1 Upcasts the data to double.
2 Linearly extrapolates the output value

using the last two samples in the MAT
file data.

3 Downcasts the extrapolated data
value to the original data type.

If the MAT file data only contains one sample,
the From File block uses that value as the
output.

Do not use the Linear extrapolation
option when the From File block loads
enumerated or fixed-point data.

The extrapolation setting is applied to all
signals in a bus. If any signal in the bus
contains enumerated data, do not use the
Linear extrapolation option.

Hold last value The From File block uses the last data value
in the MAT file as the output value.

 From File

1-729

Method Description Example
Ground value The From File block output value depends on

the type of data in the MAT file.

• Built-in numeric types — 0
• Boolean — false
• Fixed-point data types — Representation

for value of 0, which may not be exactly 0
due to scaling and limited precision.

• Enumerated data types — Default value

Tips

To generate code that builds ERT or GRT targets or uses SIL or PIL simulation modes, specify Data
extrapolation after last data point as Linear extrapolation. For more information on C/C++
code generation with the From File block, see “Code Generation” on page 1-731.

Programmatic Use
Block Parameter: ExtrapolationAfterLastDataPoint
Type: character vector
Values: 'Linear extrapolation' | 'Hold last value' | 'Ground value'
Default: 'Linear extrapolation'

Enable zero-crossing detection — Zero-crossing detection

off (default) | on

Zero-crossing detection locates discontinuities, or zero crossings, in the block output and prevents
excessively small time steps near the discontinuities, which can slow down a simulation. The From
File block can detect zero crossings when the Sample time parameter is set to 0 for continuous
sample time.

The loaded data creates a discontinuity in the block output when the data includes multiple samples
with the same time. For example, for this input data, a discontinuity occurs at time 2.

time: 0 1 2 2 3
signal: 2 3 4 5 6

The From File block can also create discontinuities in the output based on how you configure
interpolation and extrapolation.

• Setting Data extrapolation before first data point to Ground value can create a discontinuity
at the first sample in the loaded data.

• Setting Data extrapolation after the last data point to Ground value can create a
discontinuity at the last sample in the loaded data.

• Setting Data interpolation within time range to Zero-order hold creates a discontinuity at
each sample in the loaded data, including the last.

1 Blocks

1-730

This block supports zero-crossing detection only in simulations that use a variable-step solver. When
you use a fixed-step solver for simulation, the software does not detect or locate zero crossings for
this block.

For more information, see “Zero-Crossing Detection”.

Tips

To generate code that builds ERT or GRT targets or uses SIL or PIL simulation modes, clear this
check box. For more information on C/C++ code generation with the From File block, see “Code
Generation” on page 1-731.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed pointa | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

yes

a Supports up to 32-bit fixed-point data types.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

Generating code for an RSim target has no special requirements or limitations. All other code
generation targets support loading only real, double, one-dimensional signal data from an array in a
MAT file where the first column contains time data and subsequent columns contain the signal data.
Generating code that builds ERT or GRT targets or uses SIL or PIL simulation modes requires that:

• The loaded MAT file contains an array with at least two rows and no NaN, Inf, or -Inf values.
• The Data extrapolation before first data point and Data extrapolation after last data point

parameters are set to Linear extrapolation.
• The Data interpolation within time range parameter is set to Linear interpolation.

 From File

1-731

• The Enable zero-crossing detection parameter is cleared.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The From File block supports fixed-point data types up to 32 bits.

See Also
Blocks
To File | From Workspace | From Spreadsheet | Playback | Signal Editor

Objects
timeseries | Simulink.Bus | Simulink.BusElement

Functions
save

Topics
“Overview of Signal Loading Techniques”
“Comparison of Signal Loading Techniques”
“MAT-File Versions”

1 Blocks

1-732

From Spreadsheet
Read data from spreadsheet

Libraries:
Simulink / Sources

Description
The From Spreadsheet block reads data from Microsoft Excel® (all platforms) or CSV (Microsoft
Windows platform with Microsoft Office installed only) spreadsheets and outputs the data as a signal.
The From Spreadsheet block does not support Microsoft Excel spreadsheet charts.

The From Spreadsheet icon displays the spreadsheet file name and sheet name specified in the block
File name and Sheet name parameters.

Storage Formats

The data that the From Spreadsheet block reads from a spreadsheet must be appropriately
formatted.

For Microsoft Excel spreadsheets:

• The From Spreadsheet block interprets the first row as a signal name. If you do not specify a
signal name, the From Spreadsheet block assigns a default one with the format Signal #, where
increments with each additional unnamed signal.

• The From Spreadsheet block interprets the first column as time. In this column, the time values
must monotonically increase.

• The From Spreadsheet block interprets the remaining columns as signals.

This example shows an acceptably formatted Microsoft Excel spreadsheet. The first column is Time
and the first row contains signal names. Each worksheet contains a signal group.

 From Spreadsheet

1-733

For CSV text files (Microsoft platform with Microsoft Office installed only):

• The From Spreadsheet block interprets the first column as time. In this column, the time values
must increase.

• The From Spreadsheet block interprets the remaining columns as signals.
• Each column must have the same number of entries.
• The From Spreadsheet block interprets each file as one signal group.

This example shows an acceptably formatted CSV file. The contents represent one signal group.

0,0,0,5,0
1,0,1,5,0
2,0,1,5,0
3,0,1,5,0
4,5,1,5,0
5,5,1,5,0
6,5,1,5,0
7,0,1,5,0
8,0,1,5,1
9,0,1,5,1
10,0,1,5,0

Block Behavior During Simulation

The From Spreadsheet block incrementally reads data from the spreadsheet during simulation.

The Sample time parameter specifies the sample time that the From Spreadsheet block uses to read
data from the spreadsheet. For details, see “Parameters” on page 1-736. The time stamps in the file
must be monotonically nondecreasing.

1 Blocks

1-734

For each simulation time hit for which the spreadsheet contains no matching time stamp, Simulink
software interpolates or extrapolates to obtain the needed data using the selected method. For
details, see “Simulation Time Hits That Have No Corresponding Spreadsheet Time Stamps” on page
1-735.

Simulation Time Hits That Have No Corresponding Spreadsheet Time Stamps

If the simulation time hit does not have a corresponding spreadsheet time stamp, the From
Spreadsheet block output depends on:

• Whether the simulation time hit occurs before the first time stamp, within the range of time
stamps, or after the last time stamp

• The interpolation or extrapolation methods that you select
• The data type of the spreadsheet data

For details about interpolation and extrapolation options, see the descriptions of these parameters:

• “Data extrapolation before first data point” on page 1-0
• “Data interpolation within time range” on page 1-0
• “Data extrapolation after last data point” on page 1-0

Sometimes the spreadsheet includes two or more data values that have the same time stamp. In such
cases, the From Spreadsheet block action depends on when the simulation time hit occurs, relative to
the duplicate time stamps in the spreadsheet.

For example, suppose that the spreadsheet contains this data. Three data values have a time stamp
value of 2.

time stamps: 0 1 2 2 2 3 4
data values: 2 3 6 4 9 1 5

The table describes the From Spreadsheet block output.

Simulation Time, Relative to Duplicate Time
Stamp Values in Spreadsheet

From Spreadsheet Block Action

Before the duplicate time stamps Performs the same actions as when the time
stamps are distinct, using the first of the
duplicate time stamp values as the basis for
interpolation. (In this example, the time stamp
value is 6.)

At or after the duplicate time stamps Performs the same actions as when the times
stamps are distinct, using the last of the duplicate
time stamp values as the basis for interpolation.
(In this example, that time stamp value is 9.)

Read Issue with COM

By default, the From Spreadsheet block reads spreadsheets using the Component Object Model
(COM) interface on Windows platforms and the LibXL library on other platforms. If the From
Spreadsheet block has a problem reading the spreadsheet on Windows, use the set_param function
to set 'ReaderLibrary' to 'LibXL'. For example:

set_param(blockPath,‘ReaderLibrary’,‘LibXL’);

 From Spreadsheet

1-735

where blockPath is the model block path.

Ports
Output

Port_1 — Data from spreadsheet
scalar | vector | matrix

Incremental data from the specified spreadsheet.

The Sample time parameter specifies the sample time that the From Spreadsheet block uses to read
data from the spreadsheet. For details, see “Parameters” on page 1-736. The time stamps in the file
must be monotonically nondecreasing.

For each simulation time hit for which the spreadsheet contains no matching time stamp, Simulink
software interpolates or extrapolates to obtain the needed data using the selected method. For
details, see “Simulation Time Hits That Have No Corresponding Spreadsheet Time Stamps” on page
1-735.

The From Spreadsheet block accepts data type specifications at a block level. If you want to specify
different data types for each signal, consider selecting Output Data Type > Inherit: Auto. This
option resolves back signal data types using back propagation. For example, assume that there are
two signals in the From Spreadsheet block, In1 and In2, which the block sends to ports that have int8
and Boolean data types. With back propagation, the block recasts In1 as int8 and In2 as Boolean.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Parameters
File name — Full path and file name

untitled.xlsx (default) | full path and file name

Enter full path and file name of a spreadsheet file, including the file extension. If you do not include a
file extension, the block assumes .xlsx as the extension.

This block supports non-English full paths and file names only on Microsoft platforms.
Programmatic Use
Block Parameter: FileName
Type: character vector
Value: full path and file name
Default: 'untitled.xlsx'

Sheet name — Name of sheet in spreadsheet

Sheet1 (default) | sheet name

Enter the name of the sheet in the spreadsheet. You can type the sheet name in this edit box or select
the sheet name after you open the sheet.

If your spreadsheet is the CSV format, the block populates this parameter with the name of the CSV
file without the extension. Do not change this value.

1 Blocks

1-736

To open the sheet, click . In the sheet, you can select the range of data by dragging over the
desired range of values.

Alternatively, you can select the range of data by specifying the range of values in the Range
parameter.

Programmatic Use
Block Parameter: SheetName
Type: character vector
Value: Sheet name
Default: 'Sheet1'

Range — Cell range

entire range of used cells in sheet (default) | comma-separated list of column:row

To specify the range, use the format column:row, with multiple specifications separated by commas.
For example, A1:B3,D1:D3,A7:B9,D7:D9. If unspecified, or empty, the block automatically detects
the used range, which is all the data in the sheet.

 From Spreadsheet

1-737

If the selections overlap, the block resolves the selection information as appropriate. For example, if
you specify multiple ranges that overlap, such as A1:B4,B1:E7, the block resolves the selection to
A1 to E7, inclusive.

Selection/History contains the list of selected ranges during this session. The block does not store
the ranges after you close Range Selection.

An alternate to using the Range parameter is to open the sheet, by clicking . In the sheet, you
can select the range of data by dragging over the desired range of values. The range selection
reflects in the Range parameter text box.

To apply a new range from the block dialog, click Apply.

Programmatic Use
Block Parameter: Range
Type: character vector
Value: entire range of used cells in sheet | comma-separated list of column:row
Default: ''

Output data type — Output data type

Inherit: auto (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
int64 | uint64 | boolean | fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class_name> |
<data type expression>

The data type for the From Spreadsheet block output. The From Spreadsheet block accepts
spreadsheets that contain many data types. However, the block reads the spreadsheet data type as
doubles. It then outputs the data type according to the value of Output data type.

1 Blocks

1-738

If you want to specify different data types for each signal, consider selecting Output Data Type >
Inherit: auto. This option resolves back signal data types using back propagation. For example,
assume that there are two signals in the From Spreadsheet block, In1 and In2, which the block sends
to ports that have int8 and Boolean data types. With back propagation, the block recasts In1 as int8
and In2 as boolean.

To allow the block to cast the output data type to match that of the receiving block, use Inherit:
auto.

For more information, see “Control Data Types of Signals”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum: <class name>' | '<data type
expression>'
Default: 'Inherit: auto'

Treat first column as — Time or data

Time (default) | Data

Select how the block should treat the first column of the spreadsheet:

• Time — Treat first column as time.
• Data — Treat first column as data.

Dependencies

When you select Data, the block disables:

• Data extrapolation before first data point
• Data interpolation within time range
• Data extrapolation after last data point

And enables:

• Output after last data point

Programmatic Use
Block Parameter: TreatFirstColumnAs
Type: character vector
Value: 'Time' | 'Data'
Default: 'Time'

Sample time — Sampling period and offset

0 (default) | scalar | vector

The sample period and offset.

The From Spreadsheet block reads data from a spreadsheet using a sample time that either:

 From Spreadsheet

1-739

• You specify for the From Spreadsheet block
• The From Spreadsheet block inherits from the blocks into which the From Spreadsheet block

feeds data

The default is 0, which specifies a continuous sample time. The spreadsheet is read at the base
(fastest) rate of the model. For details, see “Specify Sample Time”.

Programmatic Use
Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '0'

Data extrapolation before first data point — Extrapolation method for simulation times before
initial time stamp in MAT-file

Linear extrapolation (default) | Hold first value | Ground value

Extrapolation method that Simulink uses for a simulation time hit that is before the first time stamp
in the spreadsheet. Choose one of these extrapolation methods.

Method Description
Linear extrapolation (Default)

If the spreadsheet contains only one sample, the From Spreadsheet
block outputs the corresponding data value.

If the spreadsheet contains more than one sample, the From
Spreadsheet block linearly extrapolates using the first two samples:

• For double data, linearly extrapolates the value using the first
two samples

• For Boolean data, outputs the first data value
• For a built-in data type other than double or Boolean:

• Upcasts the data to double
• Performs linear extrapolation (as described above for double

data)
• Downcasts the extrapolated data value to the original data

type

You cannot use the Linear extrapolation option with
enumerated (enum) data.

Hold first value Uses the first data value in the file

1 Blocks

1-740

Method Description
Ground value Uses a value that depends on the data type of spreadsheet sample

data values:

• Fixed-point data types — Uses the ground value
• Numeric types other than fixed–point — Uses 0
• Boolean — Uses false
• Enumerated data types — Uses default value

Dependencies

To enable this parameter, set Treat first column as to Time.

Programmatic Use
Parameter: ExtrapolationBeforeFirstDataPoint
Type: character vector
Values: 'Linear extrapolation' | 'Hold first value' | 'Ground value'
Default: 'Linear extrapolation'

Data interpolation within time range — Interpolation method for simulation times that fall
between two time stamps in the MAT-file

Linear interpolation (default) | Zero order hold

The interpolation method that Simulink uses for a simulation time hit between two time stamps in the
spreadsheet. Choose one of the following interpolation methods.

 From Spreadsheet

1-741

Method Description
Linear interpolation (Default)

The From Spreadsheet block interpolates using the two
corresponding spreadsheet samples:

• For double data, linearly interpolates the value using the two
corresponding samples

• For Boolean data, if the simulation time is between two
spreadsheet data points with different values, the From
Spreadsheet block positions the value transition halfway between
the spreadsheet data points. For example, if the spreadsheet data
transitions from true to false, the From Spreadsheet data
provides an output value of true for simulation times in the first
half of the interval between the spreadsheet data points. It
provides an output value of false for simulation times in the latter
half of the interval.

• For a built-in data type other than double or Boolean:

• Upcasts the data to double
• Performs linear interpolation (as described above for double

data)
• Downcasts the interpolated value to the original data type

You cannot use the Linear interpolation option with
enumerated (enum) data.

Zero order hold Uses the data from the first of the two samples

Dependencies

To enable this parameter, set Treat first column as to Time.

Programmatic Use
Parameter: InterpolationWithinTimeRange
Type: character vector
Values: 'Linear interpolation' | 'Zero order hold'
Default: 'Linear interpolation'

Data extrapolation after last data point — Extrapolation method for simulation times after last
time stamp in MAT-file

Linear extrapolation (default) | Hold last value | Ground value

The extrapolation method that Simulink uses for a simulation time hit that is after the last time stamp
in the spreadsheet. Choose one of the following extrapolation methods.

1 Blocks

1-742

Method Description
Linear extrapolation (Default)

If the spreadsheet contains only one sample, the From Spreadsheet
block outputs the corresponding data value.

If the spreadsheet contains more than one sample, the From
Spreadsheet block linearly extrapolates using data values of the last
two samples:

• For double data, extrapolates the value using the last two
samples

• For Boolean data, outputs the last data value
• For a built-in data type other than double or Boolean:

• Upcasts the data to double.
• Performs linear extrapolation (as described above for double

data).
• Downcasts the extrapolated value to the original data type.

You cannot use the Linear extrapolation option with
enumerated (enum) data.

Hold last value Uses the last data value in the file
Ground value Uses a value that depends on the data type of spreadsheet sample

data values:

• Fixed-point data types — Uses the ground value
• Numeric types other than fixed–point — uses 0
• Boolean — Uses false
• Enumerated data types — Uses default value

Dependencies

To enable this parameter, set Treat first column as to Time.

Programmatic Use
Parameter: ExtrapolationAfterLastDataPoint
Type: character vector
Values: 'Linear extrapolation' | 'Hold last value' | 'Ground value'
Default: 'Linear extrapolation'

Output after last data point — Action after last data point

Repeating sequence (default) | Hold final value | Ground value

Select action after last data point:

• Repeating sequence — Repeat the sequence by reading the data from the first row of the
range specified in Range

• Hold final value — Output the last defined value for the remainder of the simulation.

 From Spreadsheet

1-743

• Ground value — Output a ground value depending on the data type value specified in Output
data type.

Dependencies

To enable this parameter, set Treat first column as to Data.

Programmatic Use
Parameter: OutputAfterLastPoint
Type: character vector
Values: 'Repeating sequence' | 'Hold final value' | 'Ground value'
Default: 'Repeating sequence'

Enable zero-crossing detection — Option to enable zero-crossing detection

off (default) | on

Select to enable zero-crossing detection.

The “Zero-Crossing Detection” parameter applies only if the Sample time parameter is set to 0
(continuous).

This block supports zero-crossing detection only in simulations that use a variable-step solver. When
you use a fixed-step solver for simulation, the software does not detect or locate zero crossings for
this block.

Simulink uses a technique known as zero-crossing detection to locate accurately a discontinuity,
without resorting to excessively small time steps. In this context, zero-crossing is used to represent
discontinuities.

For the From Spreadsheet block, zero-crossing detection can only occur at time stamps in the file.
Simulink examines only the time stamps, not the data values.

If the input array contains duplicate time stamps (more than one entry with the same time stamp),
Simulink detects a zero crossing at that time stamp. For example, suppose that the input array has
this data.

time: 0 1 2 2 3
signal: 2 3 4 5 6

At time 2, there is a zero crossing from the input signal discontinuity.

For data with nonduplicate time stamps, zero-crossing detection depends on the settings of the
following parameters:

• Data extrapolation before first data point
• Data interpolation within time range
• Data extrapolation after last data point

The block applies the following rules when determining when:

• Zero-crossing occurs for the first time stamp
• For time stamps between the first and last time stamp
• For the last time stamp

1 Blocks

1-744

Time Stamp When Zero-Crossing Detection Occurs
First Data extrapolation before first data point is set to Ground value.
Between first and last Data interpolation within time range is set to Zero-order hold.
Last One or both of these settings occur:

• Data extrapolation after last data point is set to Ground value.
• Data interpolation within time range is set to Zero-order hold.

The figure illustrates zero-crossing detection for data accessed by a From Spreadsheet block that has
these settings:

• Data extrapolation before first data point — Linear extrapolation
• Data interpolation within time range (for internal points) — Zero order hold
• Data extrapolation after last data point — Linear extrapolation

The figure illustrates zero-crossing detection for data accessed by a From Spreadsheet block. The
block has these settings for the time stamps (points):

• Data extrapolation before first data point — Hold first value
• Data interpolation within time range — Zero order hold
• Data extrapolation after last data point — Hold last value

 From Spreadsheet

1-745

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Mode — Category of data to specify

Inherit (default) | Built in | Fixed point | Enumerated | Expression

Select the category of data to specify. For more information, see “Control Data Types of Signals”.

• Inherit

Inheritance rule for data types. Selecting Inherit enables a second menu/text box to the right.
• Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Select one of
these choices:

• double — Default
• single
• int8
• uint8
• int16

1 Blocks

1-746

• uint16
• int32
• uint32
• int64
• uint64
• boolean

• Fixed point — Fixed-point data types.
• Enumerated — Enumerated data types. Selecting Enumerated enables a second menu/text box

to the right, where you can enter the class name.
• Expression — Expression that evaluates to a data type. Selecting Expression enables a second

menu/text box to the right, where you enter the expression.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.
Dependencies

To enable this parameter, set Mode to Built in or Fixed point.
Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Specify signed or unsigned

Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

• Signed, specifies the fixed-point data as signed.
• Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.
Dependencies

To enable this parameter, set the Mode to Fixed point.

 From Spreadsheet

1-747

Scaling — Method for scaling fixed-point data

Binary point (default) | Best precision | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.
Dependencies

To enable this parameter, set Mode to Fixed point.

Setting Scaling to Binary point enables:

• Fraction length
• Calculate Best-Precision Scaling

Setting Scaling to Slope and bias enables:

• Slope
• Bias
• Calculate Best-Precision Scaling

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.
Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type

0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.
Dependencies

To enable this parameter, set Scaling to Binary point.

Slope — Specify slope for the fixed-point data type

2^0 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.
Dependencies

To enable this parameter, set Scaling to Slope and bias.

Bias — Specify bias for the fixed-point data type

1 Blocks

1-748

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.
Dependencies

To enable this parameter, set Scaling to Slope and bias.

Block Characteristics
Data Types Boolean | double | enumerated | fixed pointa | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

yes

a Supports up to 32-bit fixed-point data types.

Algorithms
When the From Spreadsheet block reads data from a spreadsheet, it reads all signals with double
precision and then casts them to the data type specified in the Output data type parameter for the
output signal. During casting, the block uses rounding mode and saturation on integer overflow as
follows.

Rounding Mode

The From Spreadsheet block rounds positive and negative numbers toward negative infinity. This
mode is equivalent to the MATLAB floor function.

Saturation on Integer Overflow

For data type conversion, the From Spreadsheet block deals with saturation overflow by wrapping to
the appropriate value that the data type can represent. For example, the number 130 does not fit in a
signed 8-bit integer and wraps to –126.

Version History
Introduced in R2015b

R2022b: Read Issue with COM
Behavior changed in R2022b

'LibXL' is a new value for the 'ReaderLibrary' parameter of the set_param function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 From Spreadsheet

1-749

• Not recommended for production code.
• Code generation for RSim target provides identical support as Simulink; all other code generation

targets support only double, one-dimensional, real signals in array with time format.
• Simulating in accelerator, rapid accelerator, model reference accelerator mode, or model

reference rapid accelerator mode behaves the same way, and has the same requirements, as
simulating in normal mode.

• The From Spreadsheet block does not support generating code that involves building ERT or GRT
targets, or using SIL or PIL simulation modes.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Supports up to 32-bit fixed-point data types.

See Also
From File | From Workspace

Topics
“Overview of Signal Loading Techniques”
“Comparison of Signal Loading Techniques”
“Spreadsheets”

1 Blocks

1-750

From Workspace
Load signal data from workspace into Simulink model

Libraries:
Simulink / Sources

Description
The From Workspace block reads data into a Simulink model from a workspace and provides the data
as a signal or a nonvirtual bus at the block's output. You can load data from the base workspace,
model workspace, or mask workspace. You can use the From Workspace block to load signal data into
any model or subsystem in a model hierarchy from a workspace accessible to the referenced model or
subsystem.

You can specify how the block constructs the output from the workspace data, including the output
sample period, interpolation and extrapolation behavior, and whether to use zero-crossing detection.

The From Workspace block icon shows the value of the Data parameter. For example, if you use the
From Workspace block to load data in the variable x, you specify x as the value for the Data
parameter, and the block displays x.

Specify Data to Load

Specify data for the From Workspace block to load using the Data parameter. You can specify the
value of the Data parameter as a MATLAB expression, such as a variable name. The expression in the
Data parameter must evaluate to data in a format that the From Workspace block supports. For
details about how the expression is evaluated, see “Symbol Resolution”.

The From Workspace block does not load data from a data dictionary. Use a data dictionary to store
only design data for a model, not simulation input data. You can store design data related to the From
Workspace block, such as the value for the Sample time parameter, in a data dictionary.

Ports
Output

Port_1 — Data loaded from workspace
scalar | vector | matrix | array

Data loaded from workspace, provided at the block output as a signal or a nonvirtual bus. Depending
on the data you load, the output signal may be a scalar, vector, multidimensional, or variable-size
signal, a bus, or an array of buses. The From Workspace block supports loading real and complex
data of all built-in data types except int64 and uint64.
Data Types: single | double | half | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean |
fixed point | enumerated | bus

 From Workspace

1-751

Parameters
Data — Data to load from workspace

timeseries object | timetable object | structure | 2-D array | MATLAB expression

Data to load from workspace, specified as a variable name or MATLAB expression that evaluates to
data in a format supported by the From Workspace block. The expression could create the data the
From Workspace block provides at its output, or it could reference a workspace variable that contains
the data to load. For more information about how the expression is evaluated, see “Symbol
Resolution”.

The From Workspace block can load data for scalar, multidimensional, and variable-size signals as
well as data for a bus or array of buses. The From Workspace block supports loading data in these
formats:

• timeseries object.
• timetable with only one column and time values defined as a duration vector.
• Simulink.SimulationData.Signal object
• Structure that represents bus data. The structure hierarchy must match the hierarchy of the bus

and use timeseries and timetable objects to represent the signal data.
• Structure that represents data for a single signal, with fields and hierarchy that match the

Structure or Structure with time logging format.
• Two-dimensional array that represents data for a single signal. The first column in the array

represents time and one or more additional columns contain the signal data.

For details, see “Load Data Using the From Workspace Block”.

When you load data for a bus, specify the Output data type parameter as the Simulink.Bus object
that defines the bus.

Real signals of type double can be in any data format that the From Workspace block supports. For
complex signals and real signals of a data type other than double, use any format except Array.

The From Workspace block supports loading variable-size signal data in the Structure or
Structure with time formats.

Programmatic Use
Block Parameter: VariableName
Type: character vector
Values: MATLAB expression | timeseries object | timetable object | structure | 2-D array
Default: 'simin'

Output data type — Loaded workspace data type

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | boolean | fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class_name> | Bus:
<bus_object> | <data type expression>

Data type of the workspace data the From Workspace block loads. By default, the From Workspace
block inherits the output signal data type from the workspace data or from a downstream block that
defines the data type for the signal.

1 Blocks

1-752

When you load data for a scalar or multidimensional signal, you can choose to inherit the output data
type or you can specify the output data type to match the data type of the workspace data.

To load data for a bus or an array of buses, set the Output data type to Bus: <bus_object> and
specify the name of the Simulink.Bus object that defines the output bus.

When you load enumerated data, set the Output data type to Enum: <class_name> and specify
the name of the enumeration class that defines the enumerated data values.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'boolean' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | 'Enum: <class name>' | 'Bus: <object name>' | '<data
type expression>'
Default: 'Inherit: auto'

Sample time — Output sample period and optional time offset

0 (default) | scalar | vector

The Sample time parameter specifies when the block computes a new output value during
simulation. For details, see “Specify Sample Time”.

Specify the Sample time parameter as a scalar when you do not want the output to have a time
offset. To add a time offset to the output, specify the Sample time parameter as a 1-by-2 vector
where the first element is the sampling period and the second element is the offset.

By default, the Sample time parameter value is 0, which indicates continuous sample time with no
time offset. For a discrete signal, specify the Sample time as the discrete sampling interval. For
example, specify the Sample time as 0.1 to model a discrete signal sampled every 100ms. Specify
the Sample time as -1 to inherit the value.
Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '0'

Interpolate data — Interpolation method

on (default) | off

Interpolation method used to provide output values for simulation times that are in between time
values in the loaded workspace data. When you select Interpolate data, the From Workspace block
linearly interpolates an output value using adjacent values in the loaded workspace data. When
Interpolate data is not selected, the From Workspace block provides the value of the previous data
point in the loaded workspace data. For more information about the interpolation algorithm, see
“Interpolation” on page 1-756.

 From Workspace

1-753

When you load enumerated, fixed-point, or variable-size signal data, clear the Interpolate data
parameter.

To provide output values after the last value in the loaded workspace data, the From Workspace block
uses a combination of the Interpolate data parameter and the Form output after final data value
by parameter.

The Interpolate data parameter value also affects how the From Workspace block extrapolates
output values for simulation times prior to the first data point in the loaded workspace data. When
Interpolate data is selected, the From Workspace block uses the first two data points in the
workspace data to linearly extrapolate output values for simulation times prior to the first data point.
When Interpolate data is not selected, the block provides ground as the output value for simulation
times prior to the first workspace data point. For complete information regarding the From
Workspace block extrapolation behavior, see “Extrapolation” on page 1-757.

Programmatic Use
Block Parameter: Interpolate
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Enable zero-crossing detection — Zero-crossing detection

on (default) | off

Zero-crossing detection is a technique used to locate discontinuities in the block output and avoid
using excessively small time steps near the discontinuities, which can slow down a simulation. A zero
crossing refers to a discontinuity in the data. The From Workspace block can detect zero crossings
when the sample time is continuous (0).

The loaded workspace data creates a discontinuity in the block output when the data includes
multiple samples with the same time. For example, for this input data, a discontinuity occurs at time
2.

time: 0 1 2 2 3
signal: 2 3 4 5 6

The From Workspace block can also create a discontinuity in the output at the last sample in the
workspace data when you set Form output after final data value by to Setting to zero.

When you load input data for a bus, the From Workspace block detects zero crossings for all bus
elements.

This block supports zero-crossing detection only in simulations that use a variable-step solver. When
you use a fixed-step solver for simulation, the software does not detect or locate zero crossings for
this block.

For more information, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'on'

1 Blocks

1-754

Form output after final data value by — Method to determine block output after final data point

Extrapolation (default) | Setting to zero | Holding final value | Cyclic repetition

The From Workspace block uses the Interpolate data and Form output after final data value by
settings to determine the block output for simulation times after the last sample available in the
workspace data.

Setting for Form output after
final data value by

Setting for
Interpolate data

Block Output After Final Data

Extrapolation On Extrapolated from final data value
Off Error

Setting to zero On Zero
Off

Holding final value On Final value from workspace
Off

Cyclic repetition On Error
Off When the loaded workspace data uses the

structure without time format, repeats
workspace data from the first value.

Errors for workspace data formats other than
structure with time.

For complete information regarding the From Workspace block extrapolation behavior, see
“Extrapolation” on page 1-757.

Programmatic Use
Block Parameter: OutputAfterFinalValue
Type: character vector
Values: 'Extrapolation' | 'Setting to zero' | 'Holding final value' | 'Cyclic
repetition'
Default: 'Extrapolation'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed pointa | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

yes

a Supports input via fi objects created using Fixed-Point Designer.

 From Workspace

1-755

Tips
• The From Workspace block supports loading partially specified data for a bus. To partially specify

bus data, set bus elements for which you do not need to load data to [].
• To load data that was logged in array format using the To File block, transpose the array so that

the time values are in a single column rather than a single row. You can use the transpose
function and save the transposed data to a new file.

• For programmatic simulations using the sim, parsim, or batchsim functions, you can use the
Simulink.SimulationInput object to specify the data for the From Workspace block to load.

Algorithms
Interpolation

Interpolation is the process the From Workspace block uses to provide output values for simulation
times that are between sample times in the loaded workspace data. When you select Interpolate
data, the From Workspace block linearly interpolates the output value using two adjacent points in
the workspace data. When you do not select Interpolate data, the From Workspace block uses the
value of the prior workspace data point as the output value. For example, this model has one From
Workspace block with Interpolate data selected and another with Interpolate data cleared. Both
blocks load the same sine wave data from the base workspace.

When you select the Interpolate data parameter, the From Workspace block performs different
steps, depending on the type of data you load.

For double data, the From Workspace block linearly interpolates the value using the workspace data
values before and after the simulation time.

1 Blocks

1-756

For Boolean data, if the simulation time is between two workspace data points with different values,
the From Workspace block positions the value transition halfway between the workspace data points.
For example, if the workspace data transitions from true to false, the From Workspace data
provides an output value of true for simulation times in the first half of the interval between the
workspace data points and provides an output value of false for simulation times in the latter half of
the interval.

For built-in data types other than double and Boolean, the From Workspace block performs these
steps:

1 Upcast the data to double data type.
2 Linearly interpolate the output value using the double values.
3 Downcast the interpolated value to the original data type.

The From Workspace block does not support interpolation for enumerated, fixed-point, or variable-
size signal data.

Extrapolation

Extrapolation is the process the From Workspace block uses to provide output values for simulation
times that are before the first data point and after the last data point in the loaded workspace data.
You can control how the From Workspace block extrapolates output values before the first workspace
data value using the Interpolate data parameter. Use the Interpolate data and Form output after
final data value by parameters to specify how the block extrapolates output values for simulation
times after the final workspace data point.

Interpolate data Output Before First
Data Point

Form output
value after
final data by

Output After Final Data Point

On Linearly extrapolated
using first two
workspace data points

Extrapolation Linearly extrapolated using final
two workspace data values

Setting to zero Zero
Holding final
value

Final workspace data value

Cyclic
repetition

Error

Off Zero Extrapolation Error
Setting to zero Zero
Holding final
data value

Final workspace data value

Cyclic
repetition

When the loaded workspace data
uses the structure without time
format, repeats workspace data
from the first value.

Errors for workspace data
formats other than structure with
time.

 From Workspace

1-757

For example, consider this model that has a From Workspace block with Interpolate data enabled
and Form output after final data value by set to Extrapolation. The From Workspace block
reads workspace data that was created by logging the output of the Sine Wave block for a 16-second
simulation. The Dashboard Scope blocks display the Sine Wave block output and the From Workspace
block output for a 20-second simulation. After the simulation reaches 16 seconds, the From
Workspace block output diverges from the Sine Wave block output as the From Workspace block
linearly extrapolates output values for the remainder of the simulation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. The data the From Workspace block loads is hard coded as a
statically allocated array in the generated code. Using the From Workspace block for code generation
can increase the size of the generated code and memory usage significantly. To implement an input
port in generated code, use the Inport block or In Bus Element block.

For software-in-the-loop (SIL) testing, consider using the SIL/PIL Manager. You can use a From
Workspace block to provide input for SIL testing on code generated for a model reference. For more
information, see “Test Generated Code with SIL and PIL Simulations” (Embedded Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1 Blocks

1-758

Supports input via fi objects created using Fixed-Point Designer.

See Also
To Workspace | From File | To File | From Spreadsheet | Inport | Outport | Playback

Topics
“Comparison of Signal Loading Techniques”
“Control How Models Load Input Data”
“Load Input Data for Basic Test Cases”
“Load Signal Data That Uses Units”
“Load Signal Data for Simulation”

 From Workspace

1-759

Function-Call Feedback Latch
Break feedback loop involving data signals between function-call blocks

Libraries:
Simulink / Ports & Subsystems

Description
Use the Function-Call Feedback Latch block to break a feedback loop of data signals between one or
more function-call blocks. Specifically, break a feedback loop formed in one of the following ways.

• When function-call blocks connect to branches of the same function-call signal

Place the Function-Call Feedback Latch block on the feedback signal between the branched
blocks. As a result, the latch block delays the signal at the input of the destination function-call
block, and the destination function-call block executes prior to the source function-call block of
the latch block.

To run this model, see “Function-Call Blocks Connected to Branches of the Same Function-Call
Signal” on page 12-157.

• When the loop involves parent and child function-call blocks, where the child initiator is
inside the parent

Place the Function-Call Feedback Latch block on the feedback signal between the child and the
parent. This arrangement prevents the signal value, read by the parent (FCSS1), from changing
during execution of the child. In other words, the parent reads the value from the previous
execution of the child (FCSS2).

1 Blocks

1-760

To run this model, see “Function-Call Feedback Latch on Feedback Signal Between Child and
Parent” on page 12-158.

Using the latch block is equivalent to selecting the Latch input for function-call feedback signals
check box on the Inport block in the destination function-call subsystem or model. However, an
advantage of the latch block over using the dialog parameter is that one can design the destination
function-call subsystem or model in a modular fashion and then use it either in or out of the context
of loops.

The Function-Call Feedback Latch block is better suited than Unit Delay or Memory blocks in
breaking function-call feedback loops for the following reasons:

• The latch block delays the feedback signal for exactly one execution of the source function-call
block. This behavior is different from the Unit Delay or Memory blocks for cases where the
function-call subsystem blocks may execute multiple times in a given simulation step.

• Unlike the Unit Delay or Memory blocks, the latch block may be used to break loops involving
asynchronous function-call subsystems.

• The latch block can result in better performance, in terms of memory optimization, for generated
code.

Ports
Input

In — Signal from a function-call subsystem block
scalar | vector | matrix
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Output

Out — Signal to a function-call subsystem
scalar | vector | matrix
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

 Function-Call Feedback Latch

1-761

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Function-Call Subsystem | Function-Call Generator | Function-Call Split | Trigger

Topics
“Using Function-Call Subsystems”

1 Blocks

1-762

Function-Call Generator
Provide function-call events to control execution of subsystem or model

Libraries:
Simulink / Ports & Subsystems

Description
The Function-Call Generator block provides function-call events that execute a function-call
subsystem or function-call model at the rate you specify with the Sample time parameter. A function-
call subsystem or function-call model is a subsystem or model containing a Trigger block with its
Trigger type parameter set to function-call.

To iteratively execute each function-call subsystem or function-call model multiple times at each time
step, use the Number of iterations parameter.

To execute multiple function-call subsystems or function-call models in a specified order, use the
Function-Call Generator block with a Function-Call Split block. For an example, see Function-Call
Split.

To execute a function-call subsystem or function-call model intermittently, meaning not at every time
step, select the Show enable port parameter. You can then use the input at the enable port to
control when the block outputs function-call events. In effect, you can turn the block on and off as
needed.

Ports
Input

Enable — Control signal input
scalar

The block outputs function-call events only when the input at this port is a positive number.

Dependencies

To enable this port, select the Show enable port check box.

Output

Function Call — Function-call event output
scalar | vector

Sends function-call events to the function-call input port of a function-call subsystem or function-call
model.

 Function-Call Generator

1-763

Parameters
Sample time — Specify time interval

1 (default) | scalar | vector | -1

Specify the time interval between function-call events to a function-call subsystem or function-call
model. If the actual calling rate for the subsystem or model differs from the time interval this
parameter specifies, Simulink displays an error.

By default, the block uses a time interval of 1. To set a different interval, enter a valid sample time
based on the table in “Types of Sample Time”, or specify -1 to inherit the time interval from the
model.

Dependencies

To enable this parameter, clear the Show enable port check box. If you select Show enable port,
sample time is automatically set to -1 (inherited).

Programmatic Use
Block Parameter: sample_time
Type: character vector
Values: '1' | scalar expression | vector expression | '-1'
Default: '1'

Number of iterations — Specify number of times to provide a function-call at each time step

1 (default) | integer

The value of this parameter can be a vector, where each element of the vector specifies a number of
times to execute a function-call subsystem or model. If a vector is specified, then the block outputs a
vector of function-call events, which can be split into individual function-call events using a Demux
block and used to drive multiple function-call subsystems or models.

Suppose that you specify Number of iterations to be [3 2] and connect the output of this block to
a Demux block, which is connected to the control ports of two function-call subsystems. In this case,
the first function-call subsystem executes three times at each time step, and the second function-call
subsystem executes two times at each time step.

If, however, you connect the output of this block to a single function-call subsystem or model, the
total number of times that the function-call subsystem or model executes per time step is equal to the
sum of the vector element values. So in the example above, specifying Number of iterations to be
[3 2] and connecting the output of this block to a single function-call subsystem results in the
function-call subsystem executing five times at each time step.

Settings

1
Provide function-call once during each time step.

integer
Signed or unsigned integer number. Provide the specified number of function calls at each time
step.

1 Blocks

1-764

Programmatic Use
Block Parameter: numberOfIterations
Type: character vector
Values: '1' | '<integer>''<vector of integers>'
Default: '1'

Disallow wide output — Prevent implicit expansion of output signal

off (default) | on

Unless this parameter is selected, the output of this block is expanded into a vector, if necessary, to
drive the blocks to which it is connected. For example, if Number of iterations is set to 2 and
Disallow wide output is not selected, and the output of this block is connected to a Demux block,
which is in turn connected to three separate function-call subsystems, then each function-call
subsystem receives two function-call events at each time step. A similar result occurs if the output of
this block is connected to a Stateflow chart with multiple events. If Disallow wide output is selected
in these situations, Simulink produces an error.

Select this parameter to prevent implicit expansion of the output signal.

Clear this parameter to allow implicit expansion of the output signal when appropriate.

Programmatic Use
Block Parameter: DisallowWideOutput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show enable port — Add input port for control signal

off (default) | on

Select this parameter to add a control signal input port to the block. The block outputs function-call
events only when the value at the control signal input port is a positive number.

Clear this parameter to remove the control signal input port. The block outputs function-call events at
every time step.

Programmatic Use
Block Parameter: ShowEnablePort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no

 Function-Call Generator

1-765

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Function-Call Subsystem | Function-Call Feedback Latch | Function-Call Split | Trigger

Topics
“Using Function-Call Subsystems”

1 Blocks

1-766

Function-Call Split
Provide junction for splitting function-call line

Libraries:
Simulink / Ports & Subsystems

Description
The Function-Call Split block allows a function-call line to branch and connect to several function-call
subsystems or function-call models.

The function-call subsystem or function-call model connected to the output port of the Function-Call
Split block that is marked with a dot executes before the subsystems or models connected to other
output ports. If data dependencies between subsystems or models do not support the specified
execution order, the Function-Call Split block returns an error. To eliminate this error, consider
selecting the Latch input for feedback signals of function-call subsystem outputs parameter
on one or more Inport blocks of the function-call subsystems or models involved in a data-dependency
loop. Selecting this option delays the corresponding function-call, thereby eliminating the data-
dependency loop.

If you select the model menu option Display > Blocks > Sorted Execution Order, then the
execution order of function-call subsystems connected to branches of a given function-call signal
appears on the blocks. Each subsystem has an execution order of the form s:[B#], where # is a
number that ranges from 0 to one less than the total number of subsystems or models connected to
branches of a given signal. The subsystems execute in ascending order based on this number.

The Function-Call Split block supports “Signal Label Propagation”.

The following model shows how to apply the Latch input for feedback signals of function-call
subsystem outputs parameter to work around a data-dependency error caused by a Function-Call
Split block. By turning this parameter on in the f1 subsystem's Inport block, the Function-Call Split
block ignores the data dependency of signal b. The block breaks the loop of data dependencies
between subsystems f1 and g1. The model achieves the behavior of consistently calling f1 to execute
before g1. For a given execution step, subsystem f1 uses the g1 output computed at the previous
execution step.

 Function-Call Split

1-767

Limitations
The Function-Call Split block has these limitations:

• All function-call subsystems and models connected to a given function-call signal must reside
within the same nonvirtual layer of the model hierarchy.

• You cannot connect branched function-call subsystems or models and their children directly back
to the function-call initiator.

• Function-call subsystems and models connected to branches of a function-call signal cannot have
multiple (muxed) initiators.

• A Function-Call Split block cannot have its input from a signal with multiple function-call
elements.

Ports
Input

Function Call — Function-call line
scalar

A Function-Call Generator block, an S-Function block, a Hit Crossing block, or a Stateflow chart can
provide function-call events.

Output

Function Call — Function-call signal
scalar

Function-call line connected to a function-call subsystem or function-call model.

1 Blocks

1-768

Parameters
Icon shape — Select block icon shape

distinctive (default) | round

Select block icon shape.

Settings

distinctive
Rectangular block icon.

round
Circular block icon.

Programmatic Use
Block Parameter: IconShape
Type: character vector
Values: 'distinctive' | 'round'
Default: 'distinctive'

Number of output ports — Specify number of output ports

2 (default) | integer

Specify the number of function-call signal output ports.

Settings

2
Two function-call output ports.

integer
Integer number

Programmatic Use
Block Parameter: NumOutputPorts
Type: character vector
Values: '2' | '<integer>'
Default: '2'

Output port layout — Select order of output ports

default (default) | reverse

Select the order of function-call output ports with respect to which port provides a function-call first.

Settings

default
Top port provides function-call first.

reverse
Bottom port provides function-call first.

 Function-Call Split

1-769

Programmatic Use
Block Parameter: OutputPortLayout
Type: character vector
Values: 'default' | 'reverse'
Default: 'default'

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Function-Call Subsystem | Function-Call Generator | Function-Call Feedback Latch

Topics
“Using Function-Call Subsystems”

1 Blocks

1-770

Function-Call Subsystem
Subsystem whose execution is controlled by external function-call input

Libraries:
Simulink / Ports & Subsystems

Description
The Function-Call Subsystem block is a Subsystem block preconfigured as a starting point for
creating a subsystem that executes when a function-call input port receives a function-call event. A
Stateflow chart, Function-Call Generator block, S-Function block, or Hit Crossing block can provide
function-call events. See “Using Function-Call Subsystems”.

Use Function-Call Subsystem blocks to:

• Schedule the execution order of model components.
• Control the rate of model component execution.

Simulink ignores any priority set on a Function-Call Subsystem block, but you can set the priority on
a block connected to the function-call port of the subsystem. The function-call port can receive a
function-call event from a Stateflow chart, MATLAB Function block, Function-Call Generator block, S-
Function block, or Hit Crossing block.

Ports
Input

In — Signal input to Subsystem block
scalar | vector | matrix

Signal input to a Subsystem block, specified as a scalar, vector, or matrix. Placing an Inport block in a
Subsystem block adds an external input port to the block. The port label matches the name of the
Inport block.

Use Inport blocks to receive signals from the local environment.

 Function-Call Subsystem

1-771

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus | image

Function Call — Function-call input to Subsystem block
scalar

A Trigger block in a Subsystem block adds an external input port to the block. A Trigger type of
function-call makes the block a Function-Call port block that accepts function-call events.

Output

Out — Signal output from Subsystem block
scalar | vector | matrix

Signal output from a Subsystem block, returned as a scalar, vector, or matrix. Placing an Outport
block in a Subsystem block adds an external output port to the block. The port label matches the
name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus | image

Parameters
For an explanation of the Function-Call Subsystem block parameters, see Subsystem.

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

1 Blocks

1-772

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Function-Call Generator | Function-Call Feedback Latch | Function-Call Split | Subsystem

Topics
“Using Function-Call Subsystems”

 Function-Call Subsystem

1-773

Function Caller
Call Simulink or exported Stateflow function

Libraries:
Simulink / User-Defined Functions

Description
A Function Caller block calls and executes a function defined with a Simulink Function block or an
exported Stateflow function. Using Function Caller blocks, you can call a function from anywhere in a
model or chart hierarchy.

You can select a Simulink Function or Function Caller block to highlight related blocks. If one or more
of the related blocks are in a subsystem or referenced model, the related blocks and the Subsystem
block or Model block that contains the related blocks are also highlighted.

To show a related block in an open diagram or new tab, pause on the ellipsis that appears after you

select a Simulink Function or Function Caller block. Then, select Related Blocks from the
action bar. When multiple blocks correspond to the selected block, a list of related blocks opens. You
can filter the list by entering a search term in the text box. After you select a related block from the
list, window focus goes to the open diagram or new tab that shows the related block.

Ports
Input

Input argument — Input signal for input argument
scalar | vector | matrix

Input signal for an input argument that is sent to the function.

The function prototype determines the number and name of input ports that appear on the Function
Caller block. Connect signal lines to the input ports to send data to a function through the function
input arguments.

For example, y = myfunction(u) creates one input port (u) on the Function Caller block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Output

Output argument — Output signal or message for output argument
scalar | vector | matrix | message

Output signal for an output argument that the function returns.

1 Blocks

1-774

The function prototype determines the number and name of output ports that appear on the Function
Caller block. Connect signal or message lines to the output ports to receive data from a function
through the function output arguments. The Function Caller block outputs messages when you select
the Execute function call asynchronously check box.

For example, y = myfunction(u) creates one output port (y) on the Function Caller block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
Function prototype — Specify function interface

y=f(u) (default) | <function prototype>

Specify the function interface between a Function Caller block and a Simulink function. A Simulink
function can be a Simulink Function block, an exported Stateflow graphical function, or an exported
Stateflow MATLAB function. For a call to a Simulink Function block:

• Function call argument names must match the function arguments.
• Function names, input arguments, and output arguments must be valid MATLAB identifiers.

Programmatic Use
Block Parameter: FunctionPrototype
Type: character vector
Values: 'y=f(u)' | '<function prototype>'
Default: 'y=f(u)'

Input argument specifications — Specify input argument data type, dimensions, and complexity

<Enter example> (default) | <MATLAB expression>

Specify a comma-separated list of MATLAB expressions that combine data type, dimensions, and
complexity (real or imaginary) for each input argument. For examples, see “Argument Specification
for Simulink Function Blocks”.

This specification must match the Simulink Function block data type specified with the Data type
parameter of the Argument Inport block.

Programmatic Use
Block Parameter: InputArgumentSpecifications
Type: character vector
Values: '' | '<MATLAB expression>'
Default: ''

Output argument specifications — Specify output argument data type, dimensions, and complexity

<Enter example> (default) | <MATLAB Expression>

Specify a comma-separated list of MATLAB expressions that combine data type, dimensions, and
complexity (real or imaginary) for each output argument. For examples, see “Argument Specification
for Simulink Function Blocks”.

 Function Caller

1-775

This specification must match the Simulink Function block data type specified with the Data type
parameter of the Argument Outport Block.

Programmatic Use
Block Parameter: OutputArgumentSpecifications
Type: character vector
Values: '' | '<MATLAB expression>'
Default: ''

Sample time — Time interval between function calls

-1 (default) | <sample time>

Specify the interval between times that the Function Caller block calls the specified Simulink
function.

By default, the block inherits its sample time based on the context of the block in the model.

To set a different sample time, enter a value using a sample time format from the table in “Specify
Sample Time”.

If the Function Caller block has any inputs, it is a nonsource block, and you must set the sample time
to -1.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: '-1' | sample time
Default: '-1'

Execute function call asynchronously — Whether caller request to call function can wait for service
execution

off (default) | on

Specify whether to execute function calls asynchronously for the Simulink Function block associated
with this Function Caller block.

• Select this check box to model asynchronous execution where the caller (client) makes a request
to call the function (server). The function is executed based on the ordering defined in the
Schedule Editor and then returns the output arguments to the caller. The block outputs these
arguments using a message output port.

• If there is one function output argument, the output argument becomes the message payload.
• If there is more than one function output argument, the Function Caller block bundles the

output arguments as a structure that becomes the message payload.

Connect the message output port to a Message Triggered Subsystem block in immediate mode.
The Message Triggered Subsystem block acts as a callback for the function.

• Clear this check box to model synchronous execution where the caller calls the function and the
function runs immediately then returns the output arguments to the caller.

Programmatic Use
Block Parameter: AsynchronousCaller

1 Blocks

1-776

Type: character vector
Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2014b

R2022b: Highlight related Simulink Function blocks in referenced model

Starting in R2022b, when you select a Function Caller block whose related Simulink Function block is
in a referenced model, both the Simulink Function block and the Model block of the referenced model
are highlighted.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Argument Inport | Argument Outport | Trigger | Simulink Function | MATLAB Function | Chart |
Subsystem | Function-Call Subsystem | Inport | Outport | Function Element Call

Topics
“Simulink Functions Overview”
“Scoped Simulink Function Blocks in Models”
“Add a Simulink Function to a Model”

 Function Caller

1-777

Function Element
Specify function to be called via exporting function port

Libraries:
Simulink / Ports & Subsystems

Description
The Function Element block allows a Simulink function in a referenced model to be called by a
function caller in another referenced model. The Function Element block, when placed at the root
level of a model referenced by a Model block, creates an exporting function port in the Model block.
When the exporting function port is connected to an invoking function port of another Model block, a
function caller in that other Model block can issue function calls and receive return values through
the respective function ports of the Model blocks.

By using multiple Function Element blocks, multiple Simulink functions in a referenced model can be
called through a single exporting function port. All Function Element blocks that use the same port
share a dialog box. A model can have more than one exporting function port.

A Function Element block must be placed at the root level of model designated as an export-function
model. See “Export-Function Models Overview”. For each Function Element block, a port-scoped
Simulink Function block should also be placed at the root level of the model, defining the function to
be called through the Function Element block.

Create Port and Related Blocks

When you insert an Function Element block, the block label populates with default values. The label
consists of two interactive text fields: the port name and the function element name. To change the
name of the port associated with the block, edit the first text field in the label by clicking the text.

To allow multiple functions to be called through a port, create a Function Element block for each

function that you want to include. In the block dialog box, you can click the Add a new function
button. Alternatively, hold Ctrl while you drag an existing Function Element block to a new location.
Upon releasing the pointer, select Use Existing Port.

1 Blocks

1-778

If multiple blocks are associated with the same port and you change the name of the port, all blocks
that share the port update to reflect the new port name.

To create a port, hold Ctrl while you drag an existing Function Element block to a new location. Upon
releasing the pointer, select Create New Port.

Modify Port Characteristics

In the block dialog box, you can:

• Change port and function element names.
• Reorder function elements by dragging an element into the list of elements.
• Remove blocks associated with selected function elements by clicking the Remove blocks of

selected function elements button .
• Use the Filter box to specify a search term to use for filtering a long list of function elements. Do

not enclose the search term in quotation marks. The filter does a partial string search and
supports regular expressions. To use a regular expression character as a literal, include an escape
character (\). For example, to use a question mark, type fcn\?1.

Specify Function Element Name

To change the name of the function element associated with the block, edit the second text field in
the label by clicking the text.

All function element names associated with the port must be unique. Each function element name
should match the function name of one of the Simulink Function blocks to be called through the port.

Specify Service Interface

To associate the port with a service interface authored in System Composer™, in the block dialog box,
pause on the name of the port where it appears at the top of the list of function elements. Then, click
the pencil button that appears next to the port name.

Select a service interface from the Data type list or enter it as Bus: ServiceInterfaceName. The
service interface name now appears in parentheses next to the port name.

 Function Element

1-779

You can associate a service interface definition only with the port as a whole, not with individual
function elements within the port.

Parameters
Port name — Name of exporting function port
server (default) | port name

Specify a port name that is not already in use by another port. The name appears as a port label on
the parent Model block. The name also appears next to the block. Multiple blocks can access the
same port.

Use the same port name in the Scope to port parameter of the Trigger block inside the port-scoped
Simulink Function block to be called through the port.

Programmatic Use
Block Parameter: PortName
Type: character vector
Values: 'server' | '<port name>'
Default: 'server'

Port number — Position of port on parent block
1 (default) | real integer

Specify the order in which the port that corresponds to the block appears on the parent Model block.

• If you add a block that creates another port, the port number is the next available number.
• Deleting all blocks associated with a port deletes the port. Other ports are renumbered so that

they are sequential and do not skip any numbers.
• Specifying a port number that exceeds the number of ports creates a port for that number and for

any skipped sequential numbers.

Programmatic Use
Block Parameter: Port
Type: character vector
Values: real integer
Default: '1'

Set color — Specify block background color
Black (default) | White | Red | Green | Blue | Cyan | Magenta | Yellow | Gray | Light Blue |
Orange | Dark Green | More Colors

Specify the block background color. This specification sets the color of blocks associated with
selected function elements, or of all blocks associated with the port if you do not select any function
elements.

Programmatic Use
Block Parameter: BackgroundColor
Type: character vector
Values: 'black' | 'white | 'red' | 'green' | 'blue' | 'cyan' | 'magenta' | 'yellow' |
'gray' | 'lightBlue' | 'orange' | 'darkGreen' | '[r,g,b]' where r, g, and b, are the red,
green, blue values of the color in the range 0.0 to 1.0
Default: 'black'

1 Blocks

1-780

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Function Element Call | Function Caller | Simulink Function

Topics
“Call Simulink Functions in Other Models Using Function Ports”
“Author Service Interfaces for Client-Server Communication” (System Composer)

 Function Element

1-781

Function Element Call
Specify function call to be issued via invoking function port

Libraries:
Simulink / Ports & Subsystems

Description
The Function Element Call block allows a Function Caller block in a referenced model to call a
Simulink function in another referenced model. The Function Element Call block, when placed at the
root level of a model referenced by a Model block, creates an invoking function port in the Model
block. When the invoking function port is connected to an exporting function port of another Model
block, a Function Caller block in the Model block can issue function calls to Simulink functions in that
other Model block and receive return values through the respective function ports of the Model
blocks.

By using multiple Function Element Call blocks, multiple Function Caller blocks in a referenced
model can issue function calls through a single invoking function port. All Function Element Call
blocks that use the same port share a dialog box. A model can have more than one invoking function
port.

A Function Element Call block must be placed at the root level of model designated as an export-
function model. See “Export-Function Models Overview”. For each Function Element Call block, a
Function-Call Subsystem block should also be placed at the root level of the model, and a Function
Caller block should be placed inside the subsystem, designating the function to call through the
Function Element Call block.

Create Port and Related Blocks

When you insert an Function Element Call block, the block label populates with default values. The
label consists of two interactive text fields: the port name and the function element name. To change
the name of the port associated with the block, edit the first text field in the label by clicking the text.

1 Blocks

1-782

To allow multiple functions to be called through a port, create a Function Element Call block for each

function that you want to include. In the block dialog box, you can click the Add a new function
button. Alternatively, hold Ctrl while you drag an existing Function Element Call block to a new
location. Upon releasing the pointer, select Use Existing Port.

If multiple blocks are associated with the same port and you change the name of the port, all blocks
that share the port update to reflect the new port name.

To create a port, hold Ctrl while you drag an existing Function Element Call block to a new location.
Upon releasing the pointer, select Create New Port.

Modify Port Characteristics

In the block dialog box, you can:

• Change port and function element names.
• Reorder function elements by dragging an element into the list of elements.
• Remove blocks associated with selected function elements by clicking the Remove blocks of

selected function elements button .
• Use the Filter box to specify a search term to use for filtering a long list of function elements. Do

not enclose the search term in quotation marks. The filter does a partial string search and
supports regular expressions. To use a regular expression character as a literal, include an escape
character (\). For example, to use a question mark, type fcn\?1.

Specify Function Element Name

To change the name of the function element associated with the block, edit the second text field in
the label by clicking the text.

All function element names associated with the port must be unique. Each function element name
should match the function name of one of the Simulink Function blocks to call through the port.

Use the function element name as the function name in the Function prototype parameter of the
Function Caller block issuing function calls through the port, qualified by the port name. See “Port
name” on page 1-0 .

Specify Service Interface

To associate the port with a service interface authored in System Composer, in the block dialog box,
pause on the name of the port where it appears at the top of the list of function elements. Then, click
the pencil button that appears next to the port name.

 Function Element Call

1-783

Select a service interface from the Data type list or enter it as Bus: ServiceInterfaceName. The
service interface name now appears in parentheses next to the port name.

You can associate a service interface definition only with the port as a whole, not with individual
function elements within the port.

Parameters
Port name — Name of invoking function port
client (default) | port name

Specify a port name that is not already in use by another port. The name appears as a port label on
the parent Model block. The name also appears next to the block. Multiple blocks can access the
same port.

Use the same port name to qualify, with dot notation, the function name in the Function prototype
parameter of the Function Caller block issuing function calls through the port:

[OutputArg1,OutputArg2,...] = PortName.FunctionElementName(InputArg1,InputArg2,...)

Programmatic Use
Block Parameter: PortName
Type: character vector
Values: 'client' | '<port name>'
Default: 'client'

Port number — Position of port on parent block
1 (default) | real integer

Specify the order in which the port that corresponds to the block appears on the parent Model block.

• If you add a block that creates another port, the port number is the next available number.
• Deleting all blocks associated with a port deletes the port. Other ports are renumbered so that

they are sequential and do not skip any numbers.
• Specifying a port number that exceeds the number of ports creates a port for that number and for

any skipped sequential numbers.

1 Blocks

1-784

Programmatic Use
Block Parameter: Port
Type: character vector
Values: real integer
Default: '1'

Set color — Specify block background color
Black (default) | White | Red | Green | Blue | Cyan | Magenta | Yellow | Gray | Light Blue |
Orange | Dark Green | More Colors

Specify the block background color. This specification sets the color of blocks associated with
selected function elements, or of all blocks associated with the port if you do not select any function
elements.

Programmatic Use
Block Parameter: BackgroundColor
Type: character vector
Values: 'black' | 'white | 'red' | 'green' | 'blue' | 'cyan' | 'magenta' | 'yellow' |
'gray' | 'lightBlue' | 'orange' | 'darkGreen' | '[r,g,b]' where r, g, and b, are the red,
green, blue values of the color in the range 0.0 to 1.0
Default: 'black'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Function Element | Function Caller | Simulink Function

Topics
“Call Simulink Functions in Other Models Using Function Ports”
“Author Service Interfaces for Client-Server Communication” (System Composer)

 Function Element Call

1-785

Gain
Multiply input by constant

Libraries:
Simulink / Commonly Used Blocks
Simulink / Math Operations
HDL Coder / Commonly Used Blocks
HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description
The Gain block multiplies the input by a constant value (gain). The input and the gain can each be a
scalar, vector, or matrix.

You specify the value of gain in the Gain parameter. The Multiplication parameter lets you specify
element-wise or matrix multiplication. For matrix multiplication, this parameter also lets you indicate
the order of the multiplicands.

Gain is converted from doubles to the data type specified in the block mask offline using round-to-
nearest and saturation. The input and gain are then multiplied, and the result is converted to the
output data type using the specified rounding and overflow modes.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

The Gain block accepts real or complex-valued scalar, vector, or matrix input. The Gain block supports
fixed-point data types. If the input of the Gain block is real and gain is complex, the output is
complex.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Input multiplied by gain
scalar | vector | matrix

The Gain block outputs the input multiplied by a constant gain value. When the input to the Gain
block is real and gain is complex, the output is complex.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

1 Blocks

1-786

Parameters
Main

Gain — Value by which to multiply the input

1 (default) | real or complex-valued scalar, vector, or matrix

Specify the value by which to multiply the input. Gain can be a real or complex-valued scalar, vector,
or matrix.

Programmatic Use
Block Parameter: Gain
Type: character vector
Values: '1' | real- or complex-valued scalar, vector, or matrix
Default: '1'

Multiplication — Specify the multiplication mode

Element-wise(K.*u) (default) | Matrix(K*u) | Matrix(u*K) | Matrix(K*u) (u vector)

Specify one of these multiplication modes:

• Element-wise(K.*u) — Each element of the input is multiplied by each element of the gain.
The block performs expansions, if necessary, so that the input and gain have the same dimensions.

• Matrix(K*u) — The input and gain are matrix-multiplied with the input as the second operand.
• Matrix(u*K) — The input and gain are matrix-multiplied with the input as the first operand.
• Matrix(K*u) (u vector) — The input and gain are matrix multiplied with the input as the

second operand. This mode is identical to Matrix(K*u), except for how dimensions are
determined.

Suppose that K is an m-by-n matrix. Matrix(K*u)(u vector) sets the input to a vector of
length n and the output to a vector of length m. In contrast, Matrix(K*u) uses propagation to
determine dimensions for the input and output. For an m-by-n gain matrix, the input can
propagate to an n-by-q matrix, and the output becomes an m-by-q matrix.

Programmatic Use
Parameter: Multiplication
Type: character vector
Value: 'Element-wise(K.*u)' | 'Matrix(K*u)' | 'Matrix(u*K)' | 'Matrix(K*u) (u
vector)'
Default: 'Element-wise(K.*u)'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

 Gain

1-787

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Signal Attributes

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

1 Blocks

1-788

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

Inherit: Inherit via internal rule (default) | Inherit: Keep MSB | Inherit: Match
scaling | Inherit: Inherit via back propagation | Inherit: Same as input | double |
single | half | int8 | uint8 | int16 | uint16 | int32 | int64 | uint64 | uint32 | fixdt(1,16)
| fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

When you select an inherited option, the block exhibits these behaviors:

• Inherit: Inherit via internal rule — Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. For example, if the block multiplies an input of type int8 by a
gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is
sfix24. If Unspecified (assume 32-bit Generic), in other words, a generic 32-bit
microprocessor, is specified as the target hardware, the output data type is int32. If none of the
word lengths provided by the target microprocessor can accommodate the output range, Simulink
software displays an error in the Diagnostic Viewer.

• Inherit: Keep MSB– Simulink chooses a data type that maintains the full range of the
operation, then reduces the precision of the output to a size appropriate for the embedded target
hardware.

Tip For more efficient generated code, deselect the Saturate on integer overflow parameter.

This rule never produces overflows.
• Inherit: Match scaling– Simulink chooses a data type whose scaling matches the scaling of

the input types. If the full range of the type does not fit on the embedded target hardware, the
range is reduced yielding a type appropriate for the embedded target hardware. This rule can
produce overflows.

It is not always possible for the software to optimize code efficiency and numerical accuracy at the
same time. If these internal rules do not meet your specific needs for numerical accuracy or
performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point

Tool to propose data types for your model. For more information, see fxptdlg.

 Gain

1-789

• To specify your own inheritance rule, use Inherit: Inherit via back propagation and
then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

• Inherit: Inherit via back propagation — Use data type of the driving block.
• Inherit: Same as input — Use data type of input signal.

Dependencies

When input is a floating-point data type smaller than single precision, the Inherit: Inherit via
internal rule output data type depends on the setting of the “Inherit floating-point output type
smaller than single precision” configuration parameter. Data types are smaller than single precision
when the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Keep MSB' | 'Inherit:
Match scaling' | 'Inherit: Same as input' | 'Inherit: Inherit via back
propagation' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'
| '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'

1 Blocks

1-790

Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.
Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Mode — Select data type mode

Inherit (default) | Built in | Fixed Point

Select the category of data to specify.

 Gain

1-791

• Inherit — Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right where you can select the inheritance mode.

• Built in — Built-in data types. Selecting Built in enables a second menu/text box to the right
where you can select a built-in data type.

• Fixed point — Fixed-point data types. Selecting Fixed point enables additional parameters
that you can use to specify a fixed-point data type.

• Expression — Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, click the Show data type assistant button.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies

To enable this parameter, set Mode to Built in or Fixed point.

Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Specify signed or unsigned

Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

• Signed, specifies the fixed-point data as signed.
• Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.

1 Blocks

1-792

Dependencies

To enable this parameter, set the Mode to Fixed point.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.
Dependencies

To enable this parameter, set Mode to Fixed point.

Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.
Dependencies

To enable this parameter, set Mode to Fixed point.

Slope — Specify slope for the fixed-point data type

2^0 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.
Dependencies

To enable this parameter, set Scaling to Slope and bias.

Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.
Dependencies

To enable this parameter, set Scaling to Slope and bias.

Fraction length — Specify fraction length for fixed-point data type

0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.
Dependencies

To enable this parameter, set Scaling to Binary point.

 Gain

1-793

Parameter Attributes

Parameter minimum — Specify the minimum value of gain

[] (default) | scalar

Specify the minimum value of gain. The default value is [] (unspecified). Simulink uses this value to
perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: ParamMin
Type: character vector
Value: scalar
Default: '[]'

Parameter maximum — Specify the maximum value of gain

[] (default) | scalar

Specify the maximum value of gain. The default value is [] (unspecified). Simulink uses this value to
perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: ParamMax
Type: character vector
Value: scalar
Default: '[]'

Parameter data type — Specify the data type of the Gain parameter

Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Inherit from 'Gain' | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type
expression>

Specify the data type of the Gain parameter.
Tuning Gain Parameter Value When Parameter Data Type is set to Inherit via internal rule

Setting Parameter Data type to Inherit: Inherit via internal rule lets the Gain block
select a data type based on an internal heuristic that looks at the current gain value and provides a
full precision data type to represent the current gain value. When you update the diagram, Simulink
deduces a data type to fit the gain value 3 with high precision and no range loss. For example, with
this heuristic, if the specified gain value is 3, the Gain block deduces a selected data type of
sfix32_En29. Consequently, this deduced data type cannot hold values greater than 4. During
simulation, if you tune the gain value to 6, an overflow occurs in the selected data type and the
behavior is unexpected.

While tuning a parameter with this Parameter Data type setting, specify the Parameter Minimum
and Parameter Maximum parameters. These settings tell Simulink about the range of values you

1 Blocks

1-794

want during the simulation and allows Simulink to provide a full precision data type with sufficient
range to allow safe tuning of the gain value within the specified range.

Programmatic Use
Block Parameter: ParamDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as input' | 'Inherit:
Inherit via back propagation' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16', 'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Tunable Parameters

You can use a tunable parameter in a Gain block intended for HDL code generation. For details, see
“Generate DUT Ports for Tunable Parameters” (HDL Coder).

HDL Architecture

ConstMultiplierOptimization Description
none(Default) By default, HDL Coder does not perform CSD or FCSD optimizations.

Code generated for the Gain block retains multiplier operations.

 Gain

1-795

ConstMultiplierOptimization Description
csd When you specify this option, the generated code decreases the area

used by the model while maintaining or increasing clock speed, using
canonical signed digit (CSD) techniques. CSD replaces multiplier
operations with add and subtract operations.

CSD minimizes the number of addition operations required for constant
multiplication by representing binary numbers with a minimum count of
nonzero digits.

fcsd This option uses factored CSD (FCSD) techniques, which replace
multiplier operations with shift and add/subtract operations on certain
factors of the operands. These factors are generally prime but can also
be a number close to a power of 2, which favors area reduction. You can
achieve a greater area reduction with FCSD at the cost of decreasing
clock speed.

auto When you specify this option, the coder chooses between the CSD or
FCSD optimizations. The coder chooses the optimization that yields the
most area-efficient implementation, based on the number of adders
required. When you specify auto, the coder does not use multipliers,
unless conditions are such that CSD or FCSD optimizations are not
possible (for example, if the design uses floating-point arithmetic).

HDL Block Properties

General
ConstMultiplierOptim
ization

Canonical signed digit (CSD) or factored CSD optimization. The default is
none. See also “ConstMultiplierOptimization” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Note For certain values of the Gain parameter, native floating point implements the algorithm
differently instead of using multipliers. For example, if you set the Gain parameter to 1, the
generated model uses a wire to pass the input to the output. If you set the Gain parameter to -1, the
generated model shows a Unary Minus block that inverts the polarity of the input signal. This
implementation reduces the latency and resource usage on the target platform.

1 Blocks

1-796

Native Floating Point
HandleDenormals Specify whether you want HDL Coder to insert additional logic to handle

denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min,
Zero, or Custom for the floating-point operator. The default is inherit.
See also “LatencyStrategy” (HDL Coder).

NFPCustomLatency To specify a value, set LatencyStrategy to Custom. HDL Coder adds
latency equal to the value that you specify for the NFPCustomLatency
setting. See also “NFPCustomLatency” (HDL Coder).

MantissaMultiplyStra
tegy

Specify how to implement the mantissa multiplication operation during
code generation. By using different settings, you can control the DSP usage
on the target FPGA device. The default is inherit. See also
“MantissaMultiplyStrategy” (HDL Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Slider Gain | Product

Topics
“Model a Continuous System”

 Gain

1-797

Gauge
Display signal value on circular scale

Libraries:
Simulink / Dashboard

Description
The Gauge block displays the connected signal on a circular scale during simulation. You can use the
Gauge block with other Dashboard blocks to build an interactive dashboard of controls and indicators
for your model. The Gauge block provides an indication of the instantaneous value of the connected
signal throughout simulation. You can modify the range of the Gauge block to fit your data. You can
also change the appearance of the dial to provide more information about your signal. For example,
you can color-code in-specification and out-of-specification ranges.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

1 Blocks

1-798

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations

• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect
to real scalar signals.

• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

• You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

• Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Signal

Connection — Signal to connect and display
signal connection options

Use the connection table to select the signal to connect to the block. To connect the block to a signal:

1 Make a selection in the model that includes one or more signals.
2 In the table, select the signal you want to connect.
3 Click Apply.

Tip You can connect dashboard blocks to signals in the model during simulation.

Programmatic Use
Block Parameter: Binding
Type: Simulink.HMI.SignalSpecification

 Gauge

1-799

Default: []

Main

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The minimum
must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The maximum
must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Scale Colors — Color indications on gauge scale
colors for scale ranges

1 Blocks

1-800

Color specifications for value ranges on the scale. Press the + button to add a scale color. For each
color added, specify the minimum and maximum values of the range in which you want to display that
color.
Programmatic Use

To programmatically specify the Scale Colors parameter, use an array of structures with the fields:

• Min — Minimum value for the color range on the scale
• Max — Maximum value for the color range on the scale
• Color — 1-by-3 vector of double values between 0 and 1 that specify the color for the range in

the form [r g b]

Include a structure in the array for each scale range for which you want to specify a color.

range1.Min = 0;
range1.Max = 10;
range1.Color = [0 0 1];
range2.Min = 10;
range2.Max = 15;
range2.Color = [0 1 0];
scaleRanges = [range1 range2];

Block Parameter: ScaleColors
Type: structure array
Default: 0x1 struct array

Label — Block label position

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.
Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Scale Direction — Gauge scale direction

Clockwise (default) | Counterclockwise

Gauge scale direction.
Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Format

Opacity — Block background opacity

 Gauge

1-801

1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.
Example: 0.5

Programmatic Use
Block Parameter: Opacity
Type: scalar
Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, excluding the text. The Foreground Color applies to the scale and the block
name. You can select a color from a palette of standard colors or specify a custom color. To specify the
color for the block text, use the Font Color.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Background Color — Block background color
[r g b] vector

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Font Color — Block font color
[r g b] vector

Block font color. The Font Color applies to the tick labels on the scale. You can select a color from a
palette of standard colors or specify a custom color.

Programmatic Use

Specify the FontColor parameter for the block as a 1-by-3 [r g b] vector with values between 0
and 1.
Block Parameter: FontColor
Type: [r g b] vector

1 Blocks

1-802

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Half Gauge | Quarter Gauge | Linear Gauge | Circular Gauge

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 Gauge

1-803

Goto
Pass block input to From blocks

Libraries:
Simulink / Signal Routing
HDL Coder / Signal Routing

Description
The Goto block passes its input to its corresponding From blocks. The input can be a real- or complex-
valued signal or vector of any data type. From and Goto blocks allow you to pass a signal from one
block to another without actually connecting them.

A Goto block can pass its input signal to more than one From block, although a From block can
receive a signal from only one Goto block. The input to that Goto block is passed to the From blocks
associated with it as though the blocks were physically connected.

For example, this model uses a Goto block and a From block.

An equivalent model passes the Sine Wave block signal directly to the Gain block.

Goto blocks and From blocks are matched by the use of Goto tags.

The Tag visibility parameter determines where From blocks can access the signal.

The Goto block supports signal label propagation. For more information, see “Signal Label
Propagation”.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal to be passed to the corresponding From block, specified as a scalar, vector, matrix, or N-
D array.

1 Blocks

1-804

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
Goto tag — Block identifier
A (default) | ...

The Goto block identifier. This parameter identifies the Goto block whose scope is defined in this
block.

Programmatic Use
Block Parameter: GotoTag
Type: character vector
Values: 'A' | ...
Default: 'A'

Tag visibility — Scope of the Goto block tag
local (default) | scoped | global

The scope of the Goto block tag, specified as local, scoped, or global. When you set this
parameter to scoped, you must use a Goto Tag Visibility block to define the scope of tag visibility.

• local (default) — From and Goto blocks that use the same tag must be in the same subsystem. A
local tag name is enclosed in brackets ([]).

• scoped — From and Goto blocks that use the same tag must be either:

• In the same subsystem.
• At any level in the model hierarchy below the Goto Tag Visibility block that does not entail

crossing a nonvirtual subsystem boundary. In other words, they must be within the boundary of
an atomic, conditionally executed, or function-call subsystem or a model reference.

A scoped tag name is enclosed in braces ({}).
• global — From and Goto blocks using the same tag can be anywhere in the model except in

locations that span nonvirtual subsystem boundaries.

The rule that From-Goto block connections cannot cross nonvirtual subsystem boundaries has the
following exception. A Goto block connected to a state port in one conditionally executed subsystem
is visible to a From block inside another conditionally executed subsystem.

Note A scoped Goto block in a masked system is visible only in that subsystem and in the nonvirtual
subsystems it contains. Simulink generates an error if you run or update a diagram that has a Goto
Tag Visibility block at a higher level in the block diagram than the corresponding scoped Goto block
in the masked subsystem.

Use local tags when the Goto and From blocks using the same tag name reside in the same
subsystem. You must use global or scoped tags when the Goto and From blocks using the same tag
name reside in different subsystems. When you define a tag as global, all uses of that tag access the
same signal. A tag defined as scoped can be used in more than one place in the model.

 Goto

1-805

Programmatic Use
Block Parameter: TagVisibility
Type: character vector
Values: 'local' | 'scoped' | 'global'
Default: 'local'

Icon display — Text to display on block icon
Tag (default) | Signal name | Tag and signal name

Specifies the text to display on the block icon. The options are the block tag, the name of the signal
that the block represents, or both the tag and the signal name.

Programmatic Use
Block Parameter: IconDisplay
Type: character vector
Values: 'Signal name' | 'Tag' | 'Tag and signal name'
Default: 'Tag'

Rename All — Propagate name throughout model
button

Rename the Goto tag. The new name propagates to all From and Goto Tag Visibility blocks that are
listed in the Corresponding blocks box.

Alternatively, when you change the tag on the Goto block icon, propagate the new name to all
corresponding From and Goto Tag Visibility blocks by pressing Shift+Enter.

Corresponding blocks — Blocks connected to this Goto block
block path | ...

List of the From blocks and Goto Tag Visibility blocks connected to this Goto block. Click an entry in
the list to display and highlight the corresponding From and Goto Tag Visibility blocks.

Alternatively, in the Simulink Editor, select the Goto block to highlight the corresponding From and
Goto Tag Visibility blocks.

When a corresponding From or Goto Tag Visibility block is not in the current diagram, the Subsystem
block that contains the block is highlighted.

To show a corresponding block in an open diagram or new tab, select the Goto block and pause on

the ellipsis. Then, select Related Blocks from the action bar. When multiple blocks correspond
to the selected block, a list of related blocks opens. You can filter the list of related blocks by entering
a search term in the text box. After you select a related block from the list, window focus goes to the
open diagram or new tab that shows the related block.

1 Blocks

1-806

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic. HDL code generation does not support Tag Visibility of the blocks set to global. See also
“Required HDL Settings for Goto and From Blocks” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
From | Goto Tag Visibility

Topics
“Signal Label Propagation”

 Goto

1-807

Goto Tag Visibility
Define scope of Goto block tag

Libraries:
Simulink / Signal Routing

Description
The Goto Tag Visibility block defines the accessibility of Goto block tags that have scoped visibility.
The value you specify for the Goto tag block parameter is accessible by From blocks in the same
subsystem that contains the Goto Tag Visibility block and in subsystems below it in the model
hierarchy.

A Goto Tag Visibility block is required for Goto blocks whose Tag Visibility parameter value is
scoped. No Goto Tag Visibility block is needed if the tag visibility is either local or global. The
block shows the tag name enclosed in braces ({}).

Note A scoped Goto block in a masked system is visible only in that subsystem and in the nonvirtual
subsystems it contains. Simulink generates an error if you run or update a diagram that has a Goto
Tag Visibility block at a lower level in the block diagram than the corresponding scoped Goto block
in the masked subsystem.

In the Simulink Editor, select the Goto Tag Visibility block to highlight the corresponding Goto and
From blocks. When a corresponding From or Goto block is not in the current diagram, the Subsystem
block that contains the block is highlighted.

To show a corresponding block in an open diagram or new tab, select the Goto Tag Visibility block

and pause on the ellipsis. Then, select Related Blocks from the action bar. When multiple blocks
correspond to the selected block, a list of related blocks opens. You can filter the list of related blocks
by entering a search term in the text box. After you select a related block from the list, window focus
goes to the open diagram or new tab that shows the related block.

Parameters
Goto tag — Goto block tag whose visibility is defined by the location of this block

A (default) | ...

The Goto block tag whose visibility is defined by the location of this block. From and Goto blocks
using the specified tag must be in the same subsystem or at any level in the model hierarchy below
the Goto Tag Visibility block that does not entail crossing a nonvirtual subsystem boundary, in other
words, the boundary of an atomic, conditionally executed, or function-call subsystem or a model
reference. A scoped tag name is enclosed in braces ({}).

1 Blocks

1-808

Tip If you use multiple From and Goto Tag Visibility blocks to refer to the same Goto tag, you can
simultaneously rename the tag in all of the blocks. Use the Rename All button in the Goto block
dialog box. Alternatively, when you change the tag on the Goto block icon, propagate the new name to
all corresponding From and Goto Tag Visibility blocks by pressing Shift+Enter.

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Goto | From

Topics
“Signal Label Propagation”

 Goto Tag Visibility

1-809

Ground
Ground unconnected input port

Libraries:
Simulink / Commonly Used Blocks
Simulink / Sources
HDL Coder / Sources

Description
The Ground block connects to blocks whose input ports do not connect to other blocks. If you run a
simulation with blocks that have unconnected input ports, Simulink issues warnings. Using a Ground
block to ground those unconnected blocks can prevent these warnings.

Working with Fixed-Point Data Types

When working with fixed-point data types, there may be instances where the fixed-point data type
cannot represent zero exactly. In these cases, the Ground block outputs a nonzero value that is the
closest possible value to zero. This behavior applies only to fixed-point data types with nonzero bias.
These expressions are examples of fixed-point data types that cannot represent zero:

• fixdt(0, 8, 1, 1) — an unsigned 8-bit type with slope of 1 and bias of 1
• fixdt(1, 8, 6, 3) — a signed 8-bit type with slope of 6 and bias of 3

Working with Enumerated Data Types

When working with enumerated data types, the Ground block outputs the default value of the
enumeration. This behavior applies whether:

• The enumeration can represent zero
• The default value of the enumeration is zero

If the enumerated type does not have a default value, the Ground block outputs the first enumeration
value in the type definition.

Ports
Output

Port_1 — Ground signal
scalar

The Ground block outputs a scalar signal with zero value, and the same data type as the port to which
it connects.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus | image

1 Blocks

1-810

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 Ground

1-811

See Also
Topics
“Unconnected block input ports”

1 Blocks

1-812

Half Gauge
Display input value on semicircular scale

Libraries:
Simulink / Dashboard

Description
The Half Gauge block displays the connected signal on a semicircular scale during simulation. You
can use the Half Gauge block with other Dashboard blocks to build an interactive dashboard of
controls and indicators for your model. The Half Gauge block provides an indication of the
instantaneous value of the connected signal throughout simulation. You can modify the range of the
Half Gauge block to fit your data. You can also customize the appearance of the Half Gauge block to
provide more information about your signal. For example, you can color-code in-specification and out-
of-specification ranges.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

 Half Gauge

1-813

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations

• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect
to real scalar signals.

• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

• You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

• Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Signal

Connection — Signal to connect and display
signal connection options

Use the connection table to select the signal to connect to the block. To connect the block to a signal:

1 Make a selection in the model that includes one or more signals.
2 In the table, select the signal you want to connect.
3 Click Apply.

Tip You can connect dashboard blocks to signals in the model during simulation.

Programmatic Use
Block Parameter: Binding
Type: Simulink.HMI.SignalSpecification

1 Blocks

1-814

Default: []

Main

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The minimum
must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The maximum
must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Scale Colors — Color indications on gauge scale
colors for scale ranges

 Half Gauge

1-815

Color specifications for value ranges on the scale. Press the + button to add a scale color. For each
color added, specify the minimum and maximum values of the range in which you want to display that
color.
Programmatic Use

To programmatically specify the Scale Colors parameter, use an array of structures with the fields:

• Min — Minimum value for the color range on the scale
• Max — Maximum value for the color range on the scale
• Color — 1-by-3 vector of double values between 0 and 1 that specify the color for the range in

the form [r g b]

Include a structure in the array for each scale range for which you want to specify a color.

range1.Min = 0;
range1.Max = 10;
range1.Color = [0 0 1];
range2.Min = 10;
range2.Max = 15;
range2.Color = [0 1 0];
scaleRanges = [range1 range2];

Block Parameter: ScaleColors
Type: structure array
Default: 0x1 struct array

Label — Block label position

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.
Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Scale Direction — Gauge scale direction

Clockwise (default) | Counterclockwise

Gauge scale direction.
Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Format

Opacity — Block background opacity

1 Blocks

1-816

1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.
Example: 0.5

Programmatic Use
Block Parameter: Opacity
Type: scalar
Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, excluding the text. The Foreground Color applies to the scale and the block
name. You can select a color from a palette of standard colors or specify a custom color. To specify the
color for the block text, use the Font Color.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Background Color — Block background color
[r g b] vector

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Font Color — Block font color
[r g b] vector

Block font color. The Font Color applies to the tick labels on the scale. You can select a color from a
palette of standard colors or specify a custom color.

Programmatic Use

Specify the FontColor parameter for the block as a 1-by-3 [r g b] vector with values between 0
and 1.
Block Parameter: FontColor
Type: [r g b] vector

 Half Gauge

1-817

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Gauge | Linear Gauge | Quarter Gauge | Circular Gauge

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1 Blocks

1-818

Hermitian Transpose
Compute hermitian transpose of matrix

Libraries:
Simulink / Matrix Operations

Description
The Hermitian Transpose block computes the hermitian transpose of an M-by-N matrix.

Ports
Input

Port_1 — Matrix
M-by-N matrix

Matrix, specified as an M-by-N matrix.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Output

Port_1 — Transposed matrix
N-by-M matrix

Transposed matrix, returned as an N-by-M matrix.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2021b

 Hermitian Transpose

1-819

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Cross Product | Identity Matrix | IsHermitian | IsSymmetric | IsTriangular | Matrix Square |
Transpose

Topics
“Compatible Array Sizes for Basic Operations”
MATLAB Matrix Operations

1 Blocks

1-820

Hit Crossing
Detect crossing point

Libraries:
Simulink / Discontinuities
Simulink / Messages & Events
HDL Coder / Discontinuities
SimEvents

Description
The Hit Crossing block detects when the input reaches the Hit crossing offset parameter value in
the direction specified by the Hit crossing direction property.

You can configure the block to output a 1 or 0 signal, a message, or a function-call event. See
“Output” on page 1-821 for more information.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal that the block detects when it reaches the offset in the specified direction.
Data Types: double

Output

Port_1 — Output signal
scalar | vector | message | function-call event

Output indicating if the input signal crossed the hit offset. This port is visible only when you select
the Show output port parameter check box.

Signal Output

If you select the Show output port check box and set the Output type parameter to Signal, the
block output indicates when the crossing occurs.

• If the input signal is exactly the value of the offset value after the hit crossing is detected in the
specified direction, the block continues to output a value of 1.

• If the input signals at two adjacent points brackets the offset value, the block outputs a value of 1
at the second time step.

• If the Show output port check box is not selected, the block ensures that the simulation finds the
crossing point but does not generate output.

• If the initial signal is equal to the offset value, the block outputs 1 only if the Hit crossing
direction property is set to either.

 Hit Crossing

1-821

• If Boolean logic signals are enabled, then the output is a Boolean.

Message Output

The Hit Crossing block can also output a message when the Output type parameter is set to
Message.

• If the input signal crosses the offset value in the specified direction, the block outputs a message.
• If the input signal reaches the offset value in the specified direction and remains there, block

outputs one message at the hit time and one message when the signal leaves the offset value.
• If the initial input signal is equal to the offset value, the block outputs a message with Crossing

Type value None only if the Hit crossing direction is set to either.

The message output signal is a struct with four fields.

Note If the message output signal crosses model reference boundaries or is used as an input to a
Stateflow chart, you need to create a bus object for the message. See “Tips” on page 1-825.

Function-Call Output

The Hit Crossing block can also output a function-call event when the Output type parameter is set
to Function-Call.

• Each time the input signal crosses the offset value in the specified direction, the block outputs a
single function-call event.

• The function-call event can be sent to the function-call input port of a function-call subsystem or
function-call model.

• The output is equivalent to the output of a Function-Call Generator block at each time step with
the Number of iterations parameter of that block set to 1.

CrossingType — Direction of zero-crossing
None | NegativeToPositive | NegativeToZero | ZeroToPositive | PositiveToNegative |
PositiveToZero | ZeroToNegative

This field shows the direction in which the signal crosses the Hit crossing offset value. Negative,
Zero, and Positive are defined relative to the offset value. The data type is slHitCrossingType
which is an enumerated data type. See “Use Enumerated Data in Simulink Models” for more
information. For example, if HitCrossingOffset is set to 2, a rising signal crossing this offset value
would be recorded as a NegativeToPositive hit crossing.

Note A hit crossing is recorded based on the Hit crossing direction setting. In other words, if you
set Hit crossing direction to detect a falling hit crossing, a NegativeToPositive hit is not
recorded.

Note In a SimEvents® block, if the Crossing Type of an entity is a NegativeToPositive
hitcrossing then entity.CrossingType == slHitCrossingType.NegativeToPositive
returns logical 1 (true).

1 Blocks

1-822

If the signal reaches the HitCrossingOffset value and holds it, a single NegativeToZero or
PositiveToZero, depending on the direction, hit is registered at the time of the hit crossing.
Data Types: slHitCrossingType

Index — Index of the input signal at which the hit crossing event occurs
nonnegative integer

For n signals being passed to the Hit Crossing block, this field denotes which signal had a hit crossing
event. For a matrix input, this field follows MATLAB linear indexing. See “Array Indexing”.
Data Types: uint32

Time — Time of hit crossing event
real, finite

Time T of the hit crossing event.
Data Types: double

Offset — Hit crossing value for detection
0 (default) | real values

Hit crossing offset value as specified by the “Hit crossing offset” on page 1-0 parameter.
Data Types: double

Data Types: double | Boolean | struct

Parameters
Hit crossing offset — Hit crossing value for detection

0 (default) | real values

Specify the value the block detects when the input crosses in the direction specified by Hit crossing
direction.
Programmatic Use
Block Parameter: HitCrossingOffset
Type: character vector
Values: real values
Default: '0'

Hit crossing direction — Input signal direction to hit crossing

either (default) | falling | rising

Direction from which the input signal approaches the hit crossing offset for a crossing to be detected.

When set to either, the block serves as an almost equal block, useful in working around limitations
in finite mathematics and computer precision. Used for these reasons, this block might be more
convenient than adding logic to your model to detect this condition.

When the Hit crossing direction property is set to either and the model uses a fixed-step solver,
the block has the following behavior. If the output signal is 1, the block sets the output signal to 0 at
the next time step, unless the input signal equals the offset value.

 Hit Crossing

1-823

Programmatic Use
Block Parameter: HitCrossingDirection
Type: character vector
Values: 'either' | 'rising' |'falling'
Default: 'either'

Show output port — Display an output port

off (default) | on

If selected, create an output port on the block icon.

Programmatic Use
Block Parameter: ShowOutputPort
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Output type — Choose signal, message, or function-call output

Signal (default for Simulink) | Message (default for SimEvents) | Function-Call

When Output type is set to Signal, the output signal is set to one whenever the input signal crosses
the Hit crossing offset value in the Hit crossing direction and is zero at other times.

When the Output type is set to Message, the output signal becomes a message.

When Output type is set to Function-Call, the output signal becomes a function-call event.

Programmatic Use
Block Parameter: HitCrossingOutputType
Type: character vector
Values: 'Signal' | 'Message' | 'Function-Call'
Default: 'Signal'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

Programmatic Use
Parameter: ZeroCross
Type: character vector, string
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

no

1 Blocks

1-824

Variable-Size Signals no
Zero-Crossing
Detection

yes

Tips
If the Hit Crossing block is configured to output a message and the output signal:

• Crosses into or out of a referenced model
• Is fed to the input of a Stateflow chart

then you need to create a bus object for the message signal. In the MATLAB Command Window, run
Simulink.createHitCrossMessage to check for and, if needed, create a hit crossing message bus
object in the base workspace.

Set the data type of the corresponding port to Bus: HitCrossMessage.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

Does not support non-floating data type for ert targets.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

 Hit Crossing

1-825

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restriction

The Hit crossing direction must be rising or falling.

HDL code generation is not supported when the Output Type is set to Message.

See Also
“Zero-Crossing Detection” | “Implement logic signals as Boolean data (vs. double)”

1 Blocks

1-826

Hit Scheduler
Schedule major time steps for variable-step solver

Libraries:
Simulink / Messages & Events

Description
Use the Hit Scheduler block to schedule major time steps for a variable-step solver during simulation.
With the Hit Scheduler block, you can implement dynamic solver hit event scheduling based on the
behavior of your model during simulation.

To schedule a major time step, you provide the block two inputs:

• En — The enable input controls when the block schedules a time step. The block schedules a time
step when the input is logical true.

• Δt — The time interval input specifies when the scheduled time step occurs. The Hit Scheduler
block calculates the time hit to schedule, in seconds, as the sum of the current simulation time
and the time interval input.

When the simulation reaches the scheduled time hit, the simulation takes a major time step and the
block output updates. You can configure the block to produce either a signal output or a function-call
output using the Output type parameter.

You can use the Hit Scheduler block to schedule multiple future time steps. The block stores the
future time steps in a queue you can configure using the Initial buffer size and Use fixed buffer
size parameters.

Vector Signal Inputs and Outputs

When you configure the block to produce a signal output, you can use a single block to schedule time
hits based on multiple signals in the model by using vector inputs. Each element in the En input
vector indicates when the block should schedule a time hit based on the same element in the Δt
vector. The block output signal has the same dimensions as the input signals. When the simulation
takes a scheduled step, the element in the output vector that corresponds to the input vector element
that scheduled the time step changes from logical false to logical true.

Ports
Input

En — Enable signal for scheduling time step
scalar | vector

When the enable input value is logical true, the block schedules a simulation time step.

 Hit Scheduler

1-827

When you set Output type to Signal, the input can be a scalar or a vector. When the En input is a
vector, the Δt input must be a vector with the same dimensions.

When you set Output type to Function call, the input must be a scalar.
Data Types: Boolean

Δt — Interval between current simulation time and time step to schedule
scalar | vector

The block calculates the time step to schedule, in seconds, as the sum of the current simulation time
and the current value of the time interval input.

When you set Output type to Signal, the input can be a scalar or a vector. When the Δt input is a
vector, the En input must be a vector with the same dimensions.

When you set Output type to Function call, the input must be a scalar.
Data Types: double

Output

Port_1 — Indication of scheduled time step
scalar | vector

The block output value indicates when the simulation takes a time step the block scheduled. You can
configure the block to produce a signal or a function-call event using the Output type parameter.
The value of the block output depends on the type of output and the dimensions of the input signal.

• When you set Output type to Signal and the input signal is a scalar, the block output becomes
logical true when the simulation takes a scheduled time step.

• When you set Output type to Signal and the input signal is a vector, the element in the output
vector that corresponds to the input vector element that scheduled the time step changes from
logical false to logical true.

• When you set Output type to Function-Call, the input must be scalar, and the block generates
a function-call event when the simulation takes a scheduled time step.

Because the Hit Scheduler block explicitly schedules solver time hits that affect when the block
executes, the output has variable sample time for both output types. For more information about
variable sample time, see “Types of Sample Time”.
Data Types: Boolean

Parameters
Output type — Type of block output

Signal (default) | Function Call

The block output indicates when the simulation takes a time step that the block scheduled. You can
configure the block to produce a Boolean signal or a function-call event.

• Signal — Block output becomes logical true when the simulation takes a scheduled time step.
Scalar and vector input and output signals are supported.

1 Blocks

1-828

• Function Call — Block generates a function-call event when the simulation takes a scheduled
time step. Only scalar input signals are supported.

Programmatic Use
Block Parameter: HitSchedulerOutputType
Type: string | character vector
Values: 'Signal' | 'Function-Call'
Default: 'Signal'

Initial buffer size — Initial size of buffer for scheduled time steps

256 (default) | integer

Specify the size of the buffer that stores scheduled time steps as a positive, scalar integer value.

By default, the buffer size is dynamic so that the software can increase the size if the buffer fills
during simulation. When you select Use fixed buffer size, the Initial buffer size parameter value
specifies the fixed size for the buffer. If the buffer overflows during simulation, the Hit Scheduler
block overwrites scheduled time hits on a first-in, first-out basis.

Programmatic Use
Block Parameter: InitialBufferSize
Type: string | character vector
Values: positive, whole, numeric scalar
Default: '256'

Use fixed buffer size — Option to use fixed-size buffer

off (default) | on

When you select this option, the block uses a fixed buffer size, and the Initial buffer size parameter
specifies the size of the buffer. If the buffer overflows during simulation, the Hit Scheduler block
overwrites scheduled time hits on a first-in, first-out basis. By default, the buffer size is dynamic so
that the software can adjust the size during simulation as needed.

Programmatic Use
Block Parameter: FixedBuffer
Type: string | character vector
Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types Boolean | double
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

 Hit Scheduler

1-829

Version History
Introduced in R2022b

See Also
Topics
“Types of Sample Time”

1 Blocks

1-830

Horizontal Gauge
Display signal value during simulation on horizontal gauge with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
The Horizontal Gauge block displays the value of the connected signal on a linear gauge that you can
customize to look like a gauge in a real system.

The Horizontal Gauge block displays the instantaneous value of the connected signal throughout
simulation. You can modify the range and tick values on the Horizontal Gauge block to fit your data.
Use the Horizontal Gauge block with other dashboard blocks to build an interactive dashboard of
controls and indicators for your model.

Customize Horizontal Gauge Blocks

When you add a Horizontal Gauge block to your model, the block is preconfigured with a default
design. You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

 Horizontal Gauge

1-831

In design mode, you can:

• Upload a needle image.
• Upload a background image or set a solid background color.
• Change the color and opacity of the scale, tick labels, and value bar.
• Change the size of the scale and needle.
• Reposition the scale and needle.
• Specify the scale direction as left to right or right to left.
• Specify the location of the origin from which the value bar grows.
• Upload a foreground image.

You can use the toolbar above the block to upload a needle or a background image and to change the
color and opacity of the scale, tick labels, and value bar. To change the color and opacity, in the
second section of the toolbar from the left, select a component. Then, click the color wheel in the
toolbar to change the color of the component. Move the slider to change the opacity.

To resize the scale or needle, select the component you want to change in the canvas. Then, click and
drag the grab points that define its dimensions.

To reposition the scale or needle, click and drag it in the canvas.

You can use the Design tab in the Property Inspector for fine control over the block design, and to
enter exact values for design settings.

Use the Design tab to:

• Specify the scale direction.

1 Blocks

1-832

• Specify the origin.
• Upload a foreground image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

 Horizontal Gauge

1-833

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

• You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

• Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Connection — Signal to connect and display
signal connection options

Use the Connection table in the Block Parameters dialog box to select or change the signal that the
block connects to. To connect the block to a signal:

1 If the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

2 Select a signal in the model.
3 In the table, select the signal you want to connect.
4 Click Apply.

To help understand and debug your model, you can connect dashboard blocks to signals in the model
during simulation.

Tip You can also use bind mode select or change the signal that the block connects to. To enter bind
mode:

• If you are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

• Click the dashboard block in the canvas. If the dashboard block is not connected, the Connect

button and an ellipsis appear over the dashboard block. If the dashboard block is already
connected, only the ellipsis appears.

1 Blocks

1-834

• If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
signals that are available for connection appears.

To connect the dashboard block in bind mode:

• From the list, select the signal you want to connect.
•

To exit bind mode, click Done Connecting over the dashboard block.

Programmatic Use
Block Parameter: Binding
Type: Simulink.HMI.SignalSpecification
Default: []

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.

 Horizontal Gauge

1-835

Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Scale Direction — Direction of increasing scale values
'Left to right' (default) | 'Right to left'

Set the direction of increasing scale values.

Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Label — Position of label displaying name of connected element

Top (default) | Bottom | Hide

You can display the name of the element to which the dashboard block connects in a label positioned
at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

1 Blocks

1-836

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Scale Colors — Color indications on gauge scale
colors for scale ranges

Color specifications for value ranges on the scale. Click the + button to add a scale color. For each
color added, specify the minimum and maximum values of the range in which you want to display that
color.

Programmatic Use

To programmatically specify the Scale Colors parameter, use an array of structures with these
fields:

• Min — Minimum value for the color range on the scale
• Max — Maximum value for the color range on the scale
• Color — 1-by-3 vector of double values between 0 and 1 that specify the color for the range in

the form [r g b]

Include a structure in the array for each scale range for which you want to specify a color.

range1.Min = 0;
range1.Max = 10;
range1.Color = [0 0 1];
range2.Min = 10;
range2.Max = 15;
range2.Color = [0 1 0];
scaleRanges = [range1 range2];

Block Parameter: ScaleColors
Type: structure array
Default: 0x1 struct array

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Linear Gauge

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

 Horizontal Gauge

1-837

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Scale

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.

1 Blocks

1-838

Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Origin — Value on scale from which needle moves and value bar grows
auto (default) | scalar

Specify the value on the scale from which the needle moves and the value bar grows. When set to
auto, the Origin is the minimum of the scale.
Example: 0

Scale Direction — Direction of increasing scale values
'Left to right' (default) | 'Right to left'

Set the direction of increasing scale values.

Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

X Offset — Horizontal offset of left edge of scale bounding box from left edge of block
scalar

Specify the horizontal offset of the left edge of the bounding box of the scale from the left edge of the
block as a ratio of the block width. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale left, and an offset with a positive value moves the scale right.
Example: 1

Y Offset — Vertical offset of top edge of scale bounding box from top edge of block
scalar

Specify the vertical offset of the top edge of the bounding box of the scale from the top edge of the
block as a ratio of the block height. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale up, and an offset with a positive value moves the scale down.
Example: 1

Width — Scale width
scalar

Specify the width of the bounding box of the scale as a ratio of the block width.
Example: 2

Height — Scale height
scalar

Specify the height of the bounding box of the scale as a ratio of the block height.
Example: 2

Lock Aspect Ratio — Option to maintain scale aspect ratio
on (default) | off

 Horizontal Gauge

1-839

Enable on this option to maintain the aspect ratio when resizing the scale using the Property
Inspector.

Tick Color — Color of scale tick marks, span line, and block name
[r g b] vector

Set the color of the scale tick marks, the span line, and the block name. Choose a color from the
palette of standard colors, or specify a custom color.

Tip You can also set the Tick Color by choosing a Foreground Color on the Format tab of the
Simulink Toolstrip.

To specify the color of the block text, use the Label Color parameter.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Label Color — Scale label font color
[r g b] vector

Choose a font color for the scale label from the palette of standard colors, or specify a custom color.

Tip To specify the color of the scale, use the Tick Color parameter.

Label Offset — Vertical distance of scale labels from free end of scale tick marks
0.3 (default) | scalar

Specify the vertical distance from the scale labels to the free end of their corresponding tick marks
on the scale as a ratio of the height of the bounding box of the scale.
Example: 0.5

Needle

Width — Needle image width
scalar

Specify the width of the needle image as a ratio of the block width.
Example: 1

Height — Needle image height
scalar

Specify the height of the needle image as a ratio of the block height.
Example: 1

1 Blocks

1-840

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

X Offset — Horizontal offset of needle image center from the scale origin
scalar

Specify the horizontal offset of the needle image center from the scale origin as a ratio of the needle
image width. Relative to the position of the needle image when the offset is 0, an offset with a
negative value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Y Offset — Vertical offset of top edge of needle image from scale span line
scalar

Specify the vertical offset of the top edge of the needle image from the span line of the scale as a
ratio of the needle image height. Relative to the position of the needle image when the offset is 0, an
offset with a negative value moves the image up, and an offset with a positive value moves the image
down.
Example: 1

Value Bar

Offset from Scale — Distance of top edge of value bar from span line
0 (default) | scalar

Specify the distance from the top edge of the value bar to the span line as a ratio of the height of the
bounding box of the scale. Relative to the position of the value bar when the offset is 0, an offset with
a negative value moves the value bar up, and an offset with a positive value moves the value bar
down.
Example: 0.25

Size — Value bar thickness
scalar

Specify the thickness of the value bar as a ratio of the height of the bounding box of the scale.
Example: 0.3

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can provide a background image or select a solid color. To select a
solid background color, select this parameter. To provide a background image, clear this parameter.

Note Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and enables the Use Background Color parameter.

Example: on

 Horizontal Gauge

1-841

Color — Block background color
[r g b] vector

To select a solid background color, enable the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Corner Radius — Corner radius of area with block background color
scalar

Specify the corner radius of the area covered by the block background color as a ratio of half of the
smaller of the two block dimensions, width or height.
Example: 0.25

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

1 Blocks

1-842

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2020a

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

 Horizontal Gauge

1-843

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (⌘) instead of Ctrl.

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2022b: Extended support for customizable Dashboard blocks on Raspberry Pi boards

Starting in R2022b, the Simulink Support Package for Raspberry Pi Hardware supports deploying
these blocks from the Customizable Blocks library on your Raspberry Pi boards:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on a web browser you launch from a Raspberry Pi terminal.

1 Blocks

1-844

R2022b: Extended support for customizable Dashboard blocks on Android devices

Starting in R2022b, the Simulink Support Package for Android Devices supports deploying these
blocks from the Customizable Blocks library on your Android devices:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

R2022a: Change scale direction

Starting in R2022a, you can change the direction of the scale of these blocks from the Customizable
Blocks library:

• Circular Gauge
• Horizontal Gauge
• Horizontal Slider
• Knob
• Vertical Gauge
• Vertical Slider

R2022a: Specify origin for value bar and needle

The origin of a scale is the value on the scale from which the needle moves and the value bar grows.
Starting in R2022a, you can specify an origin for the scales of these blocks from the Customizable
Blocks library:

• Circular Gauge
• Horizontal Gauge
• Horizontal Slider
• Knob
• Vertical Gauge
• Vertical Slider

 Horizontal Gauge

1-845

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

R2021a: Customizable dashboard block gauges move to Customizable Blocks library
Behavior changed in R2021a

In prior releases, the Dashboard library contained the Circular Gauge, Horizontal Gauge, and Vertical
Gauge blocks. Starting in R2021a, these blocks are in the Customizable Blocks sublibrary within the
Dashboard library.

R2021a: Dashboard gauge blocks support foreground, background, and font color

Starting in R2021a, you can change the foreground, background, and font color of these blocks:

• Gauge
• Half Gauge
• Linear Gauge
• Quarter Gauge
• Circular Gauge
• Horizontal Gauge
• Vertical Gauge

R2020b: Simulink toolstrip support for dashboard blocks

Starting in R2020b, the Simulink Toolstrip opens a block-specific tab when you select a block in your
model from the Simulink Dashboard library or from the Flight Instruments library in the Aerospace
Blockset Flight Control Analysis Library. From the toolstrip, you can connect, disconnect, and modify
connections for the selected block. You can also jump to the model element connected to the selected
block and add the selected block to a panel.

R2020b: Add a foreground image to the Horizontal Gauge, Vertical Gauge, and Circular
Gauge blocks

Starting in R2020b, you can add a foreground image to a Horizontal Gauge, Vertical Gauge, or
Circular Gauge block in your model.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Circular Gauge | Vertical Gauge | Gauge | Half Gauge | Linear Gauge | Quarter Gauge

1 Blocks

1-846

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”
“Getting Started with Panels”

 Horizontal Gauge

1-847

Horizontal Slider
Change parameter or variable value using horizontal slider with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
Use the Horizontal Slider block to tune the value of a variable or block parameter during simulation.
You can customize the appearance of the Horizontal Slider block to look like a control in a real
system. You can adjust the scale range and tick values to fit the desired range for the value you want
to tune. Use the Horizontal Slider block with other dashboard blocks to create an interactive
dashboard to control your model.

Customize Horizontal Slider Blocks

When you add a Horizontal Slider block to your model, the block is preconfigured with a default
design. You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

1 Blocks

1-848

In design mode, you can:

• Upload a handle image.
• Upload a background image or set a solid background color.
• Change the color and opacity of the scale, tick labels, and value bar.
• Change the size of the scale and handle.
• Reposition the scale and handle.
• Specify the scale direction as left to right or right to left.
• Specify the location of the origin from which the value bar grows.
• Upload a foreground image.

You can use the toolbar above the block to upload a handle or a background image and to change the
color and opacity of the scale, tick labels, and value bar. To change the color and opacity, in the
second section of the toolbar from the left, select a component. Then, click the color wheel in the
toolbar to change the color of the component. Move the slider to change the opacity.

To resize the scale or handle, select the component you want to change in the canvas. Then, click and
drag the grab points that define its dimensions.

To reposition the scale or handle, click and drag it in the canvas.

You can use the Design tab in the Property Inspector for fine control over the block design, and to
enter exact values for design settings.

Use the Design tab to:

• Specify the scale direction.
• Specify the origin.
• Upload a foreground image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.

 Horizontal Slider

1-849

In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.

1 Blocks

1-850

• You cannot use the Connection table in the block dialog to connect a dashboard block to a block
that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Connection

Connection — Select variable or block parameter to connect
variable and parameter connection options

Use the Connection table in the Block Parameters dialog box to select or change the variable or
block parameter to control. To connect the block to a variable or block parameter:

1 If the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

2 Select a block in the model.
3 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy. Omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

 Horizontal Slider

1-851

4 Click Apply.

To help understand and debug your model, you can connect Dashboard blocks to variables and
parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Tip You can also use bind mode to select or change the variable or block parameter to control. To
enter bind mode:

• If you are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

•
Click the dashboard block in the canvas. If the dashboard block is not connected, Connect
and an ellipsis appear over the dashboard block. If the dashboard block is already connected, only
the ellipsis appears.

• If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
parameters and variables available for connection appears.

To connect the dashboard block in bind mode:

• From the list, select the variable or parameter you want to connect.
•

To exit bind mode, click Done Connecting over the dashboard block.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some properties apply to connecting dashboard blocks to parameters. Some
properties apply to connecting dashboard blocks to variables. Not all fields have a value for a
connection because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

Main

Minimum — Minimum tick mark value

1 Blocks

1-852

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Scale Direction — Direction of increasing scale values
'Left to right' (default) | 'Right to left'

Set the direction of increasing scale values.

Programmatic Use
Block Parameter: ScaleDirection
Type: character vector

 Horizontal Slider

1-853

Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Label — Position of label displaying name of connected element

Top (default) | Bottom | Hide

You can display the name of the element to which the dashboard block connects in a label positioned
at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Slider

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

1 Blocks

1-854

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Scale

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector

 Horizontal Slider

1-855

Default: [0 -1 100]

Origin — Value on scale from which handle moves and value bar grows
auto (default) | scalar

Specify the value on the scale from which the handle moves and the value bar grows. When set to
auto, the Origin is the minimum of the scale.
Example: 0

Scale Direction — Direction of increasing scale values
'Left to right' (default) | 'Right to left'

Set the direction of increasing scale values.
Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

X Offset — Horizontal offset of left edge of scale bounding box from left edge of block
scalar

Specify the horizontal offset of the left edge of the bounding box of the scale from the left edge of the
block as a ratio of the block width. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale left, and an offset with a positive value moves the scale right.
Example: 1

Y Offset — Vertical offset of top edge of scale bounding box from top edge of block
scalar

Specify the vertical offset of the top edge of the bounding box of the scale from the top edge of the
block as a ratio of the block height. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale up, and an offset with a positive value moves the scale down.
Example: 1

Width — Scale width
scalar

Specify the width of the bounding box of the scale as a ratio of the block width.
Example: 2

Height — Scale height
scalar

Specify the height of the bounding box of the scale as a ratio of the block height.
Example: 2

Lock Aspect Ratio — Option to maintain scale aspect ratio
on (default) | off

Enable on this option to maintain the aspect ratio when resizing the scale using the Property
Inspector.

1 Blocks

1-856

Tick Color — Color of scale tick marks, span line, and block name
[r g b] vector

Set the color of the scale tick marks, the span line, and the block name. Choose a color from the
palette of standard colors, or specify a custom color.

Tip You can also set the Tick Color by choosing a Foreground Color on the Format tab of the
Simulink Toolstrip.

To specify the color of the block text, use the Label Color parameter.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Label Color — Scale label font color
[r g b] vector

Choose a font color for the scale label from the palette of standard colors, or specify a custom color.

Tip To specify the color of the scale, use the Tick Color parameter.

Label Offset — Vertical distance of scale labels from free end of scale tick marks
0.3 (default) | scalar

Specify the vertical distance from the scale labels to the free end of their corresponding tick marks
on the scale as a ratio of the height of the bounding box of the scale.
Example: 0.5

Handle

Width — Handle image width
scalar

Specify the width of the handle image as a ratio of the block width.
Example: 1

Height — Handle image height
scalar

Specify the height of the handle image as a ratio of the block height.
Example: 1

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

 Horizontal Slider

1-857

X Offset — Horizontal offset of handle image center from scale origin
scalar

Specify the horizontal offset of the handle image center from the scale origin as a ratio of the handle
image width. Relative to the position of the handle image when the offset is 0, an offset with a
negative value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Y Offset — Vertical offset of top edge of handle image from scale span line
scalar

Specify the vertical offset of the top edge of the handle image from the span line of the scale as a
ratio of the handle image height. Relative to the position of the needle image when the offset is 0, an
offset with a negative value moves the image up, and an offset with a positive value moves the image
down.
Example: 1

Value Bar

Offset from Scale — Distance of top edge of value bar from span line
0 (default) | scalar

Specify the distance from the top edge of the value bar to the span line as a ratio of the height of the
bounding box of the scale. Relative to the position of the value bar when the offset is 0, an offset with
a negative value moves the value bar up, and an offset with a positive value moves the value bar
down.
Example: 0.25

Size — Value bar thickness
scalar

Specify the thickness of the value bar as a ratio of the height of the bounding box of the scale.
Example: 0.3

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can provide a background image or select a solid color. To select a
solid background color, select this parameter. To provide a background image, clear this parameter.

Note Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and enables the Use Background Color parameter.

Example: on

Color — Block background color
[r g b] vector

To select a solid background color, enable the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

1 Blocks

1-858

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Corner Radius — Corner radius of area with block background color
scalar

Specify the corner radius of the area covered by the block background color as a ratio of half of the
smaller of the two block dimensions, width or height.
Example: 0.25

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

 Horizontal Slider

1-859

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2021a

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (⌘) instead of Ctrl.

1 Blocks

1-860

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2022b: Extended support for customizable Dashboard blocks on Raspberry Pi boards

Starting in R2022b, the Simulink Support Package for Raspberry Pi Hardware supports deploying
these blocks from the Customizable Blocks library on your Raspberry Pi boards:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on a web browser you launch from a Raspberry Pi terminal.

R2022b: Extended support for customizable Dashboard blocks on Android devices

Starting in R2022b, the Simulink Support Package for Android Devices supports deploying these
blocks from the Customizable Blocks library on your Android devices:

• Horizontal Gauge
• Horizontal Slider
• Lamp

 Horizontal Slider

1-861

• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

R2022a: Change scale direction

Starting in R2022a, you can change the direction of the scale of these blocks from the Customizable
Blocks library:

• Circular Gauge
• Horizontal Gauge
• Horizontal Slider
• Knob
• Vertical Gauge
• Vertical Slider

R2022a: Specify origin for value bar and needle

The origin of a scale is the value on the scale from which the needle moves and the value bar grows.
Starting in R2022a, you can specify an origin for the scales of these blocks from the Customizable
Blocks library:

• Circular Gauge
• Horizontal Gauge
• Horizontal Slider
• Knob
• Vertical Gauge
• Vertical Slider

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks

1-862

Dashboard blocks are ignored for code generation.

See Also
Blocks
Vertical Slider | Slider

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”
“Getting Started with Panels”

 Horizontal Slider

1-863

IC
Set initial value of signal

Libraries:
Simulink / Signal Attributes

Description
The IC block sets the initial condition of the signal at its input port, for example, the value of the
signal at the simulation start time (tstart). To do so, the block outputs the specified initial condition
when you start the simulation, regardless of the actual value of the input signal. Thereafter, the block
outputs the actual value of the input signal.

The IC block is useful for providing an initial guess for the algebraic state variables in a loop. For
more information, see “Algebraic Loop Concepts”.

Behavior for Nonzero Sample Time Offset

If an IC block has a nonzero sample time offset (toffset), the IC block outputs its initial value at time
t,

t = n * tperiod + toffset

where n is the smallest integer such that t ≥ tstart.

That is, the IC block outputs its initial value the first-time blocks with sample time [tperiod, toffset]
execute, which can be after tstart.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array. The block sets the initial condition of
this signal to the Initial value you specify.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Output

Port_1 — Output signal
scalar | vector | matrix | N-D array

1 Blocks

1-864

Output signal provided as the Initial value you specify, followed by the actual values of the input
signal. See “Behavior for Nonzero Sample Time Offset” on page 1-864 for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
Initial value — Initial value

1 (default) | real, finite scalar, vector, matrix, or N-D array

Specify the initial value of the input signal as a finite, real-valued scalar, vector, matrix, or N-D array.
The value must be a scalar, or have the same dimensions as the input signal.

Programmatic Use
Block Parameter: Value
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '1'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

 IC

1-865

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely varying execution times. While
the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code. Usually, blocks evolve toward being suitable for
production code. Thus, blocks suitable for production code remain suitable.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Topics
“What Is Sample Time?”
“Algebraic Loop Concepts”

1 Blocks

1-866

Identity Matrix
Generate matrix with ones on main diagonal and ground values elsewhere

Libraries:
Simulink / Matrix Operations

Description
The Identity Matrix block outputs an identity matrix, similar to the MATLAB eye function. The block
generates a square or rectangular matrix with ones on the main diagonal and zeros elsewhere.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal used to determine dimensions of the output matrix, specified as a scalar, vector, or
matrix. When the input signal is an M-by-N matrix, the block generates an M-by-N matrix output with
the same sample period as the input. The values in the input matrix are ignored.

Dependencies

To enable this port, select the Inherit output port attributes from input port check box.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Identity matrix
scalar | vector | matrix

Identity matrix, specified as a scalar, vector, or matrix.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Inherit output port attributes from input port — Option for output port to inherit attributes from
input port

off (default) | on

Select this check box for the output port to inherit its dimensions, sample period, and data type from
the input port. Otherwise, clear this check box.

 Identity Matrix

1-867

Programmatic Use
Block Parameter: InheritOutputPortAttributes
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Output dimensions — Size of output matrix

5 (default) | scalar | two-element vector

The number of rows and columns in the output matrix. You can specify:

• A positive integer scalar M to create a square M-by-M output.
• A vector of positive integers, [M N], to create an M-by-N output.

Dependencies

To enable this parameter, clear the Inherit output port attributes from input port check box.
Programmatic Use
Block Parameter: OutputDimensions
Type: character vector
Values: scalar | two-element vector
Default: '5'

Output data type — Output data type

double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
boolean | fixdt(1,16,0) | Inherit: Inherit via back propagation | <data type
expression>

Specify the output data type for this block. You can select one of these options:

• A rule that inherits a data type, for example, Inherit: Inherit via back propagation.
When you select this option, the output data type and scaling matches that of the next
downstream block.

• A built-in data type, such as double.
• An expression that evaluates to a valid data type, for example, fixdt(1,16).

For help setting data type parameters, display the Data Type Assistant by clicking the Show data

type assistant button .

See “Control Data Types of Signals” for more information.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'double' | 'single' | 'half' |
'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | |
'fixdt(1,16,0)' | '<data type expression>'
Default: 'double'

Mode — Data type mode

1 Blocks

1-868

Inherit (default) | Built in | Fixed point | Expression

Select how you would like to specify the data type properties of the Output data type. You can
choose:

• Inherit — Specify a rule for inheriting a data type, for example, Inherit: Same as input.
• Built in— Specify a built-in data type, for example, double.
• Fixed point — Specify the fixed-point attributes of the data type.
• Expression — Specify an expression that evaluates to a valid data type, for example,

fixdt(1,16).

For more information, see “Specify Data Types Using Data Type Assistant”.

Signedness — Signedness of fixed-point data

Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but Unsigned data represents positive values only. For more information, see
“Specify Data Types Using Data Type Assistant”.

Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, set Mode to Fixed point

Word length — Bit size of word that holds quantized integer

16 (default) | integer from 2 to 128

Specify the bit size of the word that holds the quantized integer as a positive integer from 2 to 128.
For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Fraction length for fixed-point data type

0 (default) | integer scalar

Specify the fraction length of the fixed-point data type as a positive or negative integer scalar.

Dependencies

To enable this parameter, set Mode to Fixed point and Scaling to Binary point.

Data type override — Data type override mode

 Identity Matrix

1-869

Inherit (default) | Off

Select the data type override mode for this signal. You can select:

• Inherit — Inherits the data type override setting specified for the model.
• Off — Ignores the data type override setting specified for the model and uses the fixed-point data

type you specify.

Dependencies

To enable this parameter, set Mode to Built in or Fixed point. For more information, see
“Specify Data Types Using Data Type Assistant”.

Sample time — Output sample period

1 (default) | scalar

The discrete sample period of the output, specified as a real-valued scalar.

Dependencies

To enable this parameter, clear the Inherit output port attributes from input port check box.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar or vector
Default: '1'

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2021b

R2022a: Identity Matrix Block Added to Simulink Matrix Operations Library
Behavior changed in R2022a

The Identity Matrix block has been removed from the DSP System Toolbox > Math Functions >
Matrices and Linear > Matrix Operations library. For equivalent functionality, use the Identity
Matrix block in the Simulink > Matrix Operations library. All existing models continue to work.

1 Blocks

1-870

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
eye | Cross Product | Hermitian Transpose | IsSymmetric | IsTriangular | Matrix Square | Transpose

Topics
“Compatible Array Sizes for Basic Operations”
MATLAB Matrix Operations

 Identity Matrix

1-871

If
Select subsystem execution using logic similar to if-else statement

Libraries:
Simulink / Ports & Subsystems

Description
The If block, along with If Action Subsystem blocks that contain an Action Port block, implements if-
else logic to control subsystem execution. For an example that uses the If block, see “Select
Subsystem Execution”.

Limitations
The If block has the following limitations:

• It does not support tunable parameters. Values for an if or elseif expression cannot be tuned
during a simulation in normal or accelerator mode, or when running generated code.

To implement tunable if-else expressions, tune the expression outside the If block. For example,
use the Relational Operator block to evaluate the expression outside of the If block or add the
tunable parameter as an input to the If block.

• It does not support custom storage classes. See “Organize Parameter Data into a Structure by
Using Struct Storage Class” (Embedded Coder).

• The If expression and Elseif expressions cannot accept certain operators, such as +, -, *,
and /.

1 Blocks

1-872

Ports
Input

Logical operands — Values for evaluating logical expressions
scalar | vector

Inputs u1,u2,...,un must have the same data type. The inputs cannot be of any user-defined type,
such as an enumerated type.

The If block does not directly support fixed-point data types. However, you can use the Compare To
Constant block to work around this limitation. See Support for Fixed-Point Data Type in “Select
Subsystem Execution”.

The If block does not support a boolean data type. If you want to input a boolean signal to an If block,
convert the signal to an integer type using the Data Type Conversion block.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

Action — Action signal for an If Action Subsystem block
scalar

Outputs from the if, else, and elseif ports are action signals to If Action Subsystem blocks.

Parameters
Number of inputs — Specify number of input ports

1 (default) | integer

1
Specify one input port.

integer
Specify the number of input ports. Block ports are labeled with a 'u' character followed by a
number, 1,2,...,n, where n equals the number of inputs that you specify.

Programmatic Use
Block Parameter: NumInputs
Type: character vector
Values: '1' | '<integer>'
Default: '1'

If expression — Specify logical expression

u1 > 0 (default) | logical expression

The If Action Subsystem attached to the if port executes when its associated expression evaluates to
true.

u1 > 0
Specify sending an action signal on the output port when the input u1 is greater than 0.

 If

1-873

logical expression
Specify logical expression. This expression appears on the If block adjacent to the if output port.

The expression can include only the operators <, <=, ==, ~=, >, >=, &, |, ~, (),
unary-minus. Operators such as +, -, *, /, and ^ are not allowed. The expression must not
contain data type expressions, for example, int8(6), and must not reference workspace
variables whose data type is other than double or single.

Programmatic Use
Block Parameter: IfExpression
Type: character vector
Values: 'u1 > 0' | '<logical expression>'
Default: 'u1 > 0'

Elseif expressions — Specify logical expression

empty (default) | list of logical expressions

The If Action Subsystem attached to an elseif port executes when its expression evaluates to true
and all if and elseif expressions are false.

empty
Logical expressions not specified.

list of logical expressions
Specify a list of logical expressions delimited by commas. The expressions appear on the If block
below the if port and above the else port when you select the Show else condition check box.

Expressions can include only the operators <, <=, ==, ~=, >, >=, &, |, ~, (), unary-
minus. Operators such as +, -, *, /, and ^ are not allowed. The expressions must not contain
data type expressions, for example, int8(6), and must not reference workspace variables whose
data type is other than double or single.

Programmatic Use
Block Parameter: ElseIfExpressions
Type: character vector
Values: '' | '<list of logical expressions>'
Default: ''

Show else condition — Control display of else port

on (default) | off

When the if port and all elseif port expressions are false, the else port sends an action signal to
execute the attached If Action Subsystem block.

 on
Display else port.

 off
Hide else port.

1 Blocks

1-874

Programmatic Use
Block Parameter: ShowElse
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Enable zero-crossing detection — Control zero-crossing detection

on (default) | off

Control zero-crossing detection.

 on
Detect zero crossings.

 off
Do not detect zero crossings.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types Boolean | double | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

 If

1-875

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Subsystem | Action Port | If Action Subsystem

Topics
Select Subsystem Execution

1 Blocks

1-876

If Action Subsystem
Subsystem whose execution is enabled by If block

Libraries:
Simulink / Ports & Subsystems

Description
The If Action Subsystem block is a Subsystem block preconfigured as a starting point for creating a
subsystem whose execution is controlled by an If block. The If block evaluates a logical expression
and then, depending on the result of the evaluation, outputs an action signal. Execution of the
subsystem is controlled by an Action Port block placed inside the subsystem.

Simulink ignores a priority set on an If Action Subsystem block. Instead, set the priority on the If
block that initiates execution of the subsystem.

Merge Signals from If Action Subsystem Blocks

This example shows how to merge signals controlled by an If block. For more information, see “Select
Subsystem Execution”.

 If Action Subsystem

1-877

The If block selects the execution of an If Action Subsystem block from a set of subsystems.
Regardless of which subsystem the If block selects, you can create one output signal with a Merge
block.

All blocks in an If Action Subsystem block must execute at the same rate as the driving If block. To
satisfy this requirement, set the sample time parameter for each block to either inherited (-1) or the
same value as the If block sample time.

Support for Fixed-Point Data Type

The If block does not directly support fixed-point data types. However, you can use the Compare To
Constant block to work around this limitation. For more information, “Fixed-Point Data Type Support
for If Block”.

Ports
Input

In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the block. The port label
matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Action — Control signal input to a subsystem block
scalar | vector | matrix

Placing an Action Port block in a subsystem block adds an external input port to the block and
changes the block to an If Action Subsystem.

Dot-dash lines from a Switch Case block to an Switch Case Action Subsystem block represent action
signals. An action signal is a control signal connected to the action port of a Switch Case Action
Subsystem block. A message on the action signal initiates execution of the subsystem.
Data Types: action

Output

Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The port label on
the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

1 Blocks

1-878

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Best Practices

When using If Action Subsystems in models targeted for HDL code generation, it is good practice to
consider the following:

• Specify a initial output value for the outports in the If Action Subsystem. You can initialize the
output value for the Outport blocks by using one of these methods:

• Specify a numeric value to the Initial output block parameter of the Outport blocks.
• Inherit initial output values from input signals connected to the Outport blocks. For more

information, see “Conditional Subsystem Initial Output Values”.

For HDL code generation, the valid input signal to the Outport blocks for setting initial output
values include:

• Output ports from another conditionally executed subsystem
• Constant blocks

 If Action Subsystem

1-879

HDL Architecture

Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only the input/

output port definitions for the subsystem. Therefore, you can use a subsystem in
your model to generate an interface to existing, manually written HDL code.

The black-box interface generation for subsystems is similar to the Model block
interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the subsystem in
simulation, however, treat it as a “no-op” in the HDL code.

HDL Block Properties

General
AdaptivePipelining Automatic pipeline insertion based on the synthesis tool, target frequency,

and multiplier word-lengths. The default is inherit. See also
“AdaptivePipelining” (HDL Coder).

BalanceDelays Detects introduction of new delays along one path and inserts matching
delays on the other paths. The default is inherit. See also
“BalanceDelays” (HDL Coder).

ClockRatePipelining Insert pipeline registers at a faster clock rate instead of the slower data
rate. The default is inherit. See also “ClockRatePipelining” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

FlattenHierarchy Remove subsystem hierarchy from generated HDL code. The default is
inherit. See also “FlattenHierarchy” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

StreamingFactor Number of parallel data paths, or vectors, that are time multiplexed to
transform into serial, scalar data paths. The default is 0, which implements
fully parallel data paths. See also “Streaming” (HDL Coder).

1 Blocks

1-880

Target Specification

This block cannot be the DUT, so the block property settings in the Target Specification tab are
ignored.

Restrictions

If the output of the subsystem is a bus then Initial Output of the outport must be 0.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Action Port | If | Subsystem

Topics
Select Subsystem Execution

 If Action Subsystem

1-881

In Bus Element
Select input from external port

Libraries:
Simulink / Ports & Subsystems
Simulink / Sources
HDL Coder / Ports & Subsystems
HDL Coder / Sources

Alternative Configurations of In Bus Element Block:
Bus Element In

Description
The In Bus Element block, also known as the Bus Element In block, combines the functionality of an
Inport block and a Bus Selector block. This block is of the Inport block type, and all In Bus Element
blocks that correspond with the same port share a dialog box.

Use an In Bus Element block to select a bus element, bus, nonbus signal, or message associated with
the port. To select multiple elements from a bus, use multiple In Bus Element blocks.

For interfaces that include buses composed of many bus elements, In Bus Element blocks:

• Reduce signal line complexity and clutter in a block diagram.
• Allow you to more easily make incremental changes to the interface.
• Allow access to a bus element closer to the point of usage, avoiding the use of a Bus Selector and

Goto block configuration.

To convert an interface to use In Bus Element blocks, see “Simplify Subsystem and Model Interfaces
with Bus Element Ports”.

The In Bus Element block does not support mixing message and signal elements as outputs.

Examples

Create Input Bus Element Port

In a model component, each input bus element port is represented by one or more In Bus Element
blocks.

Open the example model named CreateInputBusElementPort.

1 Blocks

1-882

To add an input bus element port for a model, add an In Bus Element block to the top level of the
model. For example, double-click the canvas and start typing the block name. Then, select the In Bus
Element block.

To add an input bus element port to a subsystem, add an In Bus Element block to the subsystem or
click the edge of the Subsystem block and select Create in bus port.

To open the subsystem, double-click the Subsystem block.

The subsystem contains a default In Bus Element block that corresponds to the input port you
created on the Subsystem block. The block label uses default values for its two interactive text fields:
the port name (InBus) and the bus element (signal1).

To create another input bus element port from inside a model component, hold Ctrl while you drag an
existing In Bus Element block to a new location. Upon releasing the pointer, click Create New Port.

 In Bus Element

1-883

An In Bus Element block with a unique port name appears.

In this example, the new port is named InBus1.

To edit the port name, click the port name in the block label. Then, enter a new name.

Alternatively, set the Port name block parameter to the desired name for the port.

When multiple blocks are associated with the same port and you change the name of the port, all
blocks that share the port update to reflect the new port name.

Select Entire Input from Bus Element Port

The input to a bus element port can be a bus, signal, or message. To pass the entire input through an
In Bus Element block instead of selecting an element of an input bus, remove the part of the block
label that represents an element.

For example, in the InBus.signal1 label of a default In Bus Element block, click signal1.

Delete the text from this field. Then, click elsewhere on the canvas to commit the change.

To change the name of the port associated with the block, edit the first text field in the block label.

For example, suppose the port expects a chirp signal. In the block label, click InBus.

Delete InBus and enter chirp. Ignore the placeholder text that shows where you can enter an
element name.

Alternatively, set the Port name block parameter to the desired name for the port.

1 Blocks

1-884

Select Elements of Subsystem Input Port

To select elements of an input bus element port of a subsystem, use an In Bus Element block for each
element that you want to select.

Open and compile the example model named SelectInputBusElements. To compile the model, on
the Modeling tab of the Simulink Toolstrip, click Update Model or Run. Compiling the model
updates the line styles, which you can use to visually identify buses.

A Bus Creator block creates a virtual bus that contains two elements: a nested bus named
nonconstant and a signal named constant. The nonconstant bus contains two signals named
sine and chirp. The top-level bus connects to the input port of the Subsystem block.

To open the subsystem, double-click the Subsystem block.

The subsystem contains an In Bus Element block that corresponds to the input port. The block label
indicates that the block selects the signal named constant from the input port.

To change the element that the block selects, edit the second text field in the block label. When the
second text field is empty, a menu provides the elements of the port along with the previously
selected element.

When the list of input elements is long, filter the list of elements by starting to type the name of the
element you want to select.

For this example, type chirp.

 In Bus Element

1-885

The list provides the text you type as an option. However, the top-level input bus does not contain a
signal named chirp. The nested bus named nonconstant contains the signal named chirp.
Therefore, select the option named nonconstant.chirp. Each dot in the label follows the name of a
bus in the input bus hierarchy.

Open the Property Inspector. Then, select the In Bus Element block. Alternatively, double-click the
block to open a dialog box.

The element that the block selects is highlighted. The elements that an In Bus Element block does not
select are gray and italicized.

To add blocks for additional input elements, click an element name or hold Ctrl as you click multiple
element names. Then, click Add blocks for selected signals.

Corresponding In Bus Element blocks appear in the block diagram.

Multiple In Bus Element blocks can select the same element. For example, add another block that
selects the element named constant.

1 Blocks

1-886

The duplicate block is highlighted.

To find duplicate blocks when the block diagram is complicated, select the block, pause on the
ellipsis, and in the action bar, click Related Blocks.

When multiple blocks correspond to the selected block, a list of related blocks opens. You can filter
the list of related blocks by entering a search term in the text box. Clicking a related block in the list
selects the block in the block diagram.

Specify and Select Elements of Model Interface

To specify the elements of an input bus element port at a model interface, you can:

• Define the bus hierarchy with a Simulink.Bus object.
• Add elements with or without adding blocks to the block diagram.

Referenced models support passing through an entire bus with an In Bus Element block in either of
these scenarios:

• The bus is defined by a Simulink.Bus object.
• Additional In Bus Element blocks pass each leaf element of the bus into the referenced model.

Note Only elements that are selected by blocks support Simulink.Bus object data types.

This example shows how to define an input bus element port at a model interface without a
Simulink.Bus object.

In a blank model, add an In Bus Element block.

Open the Property Inspector. Then, select the In Bus Element block. Alternatively, double-click the
block to open a dialog box.

To add an element to the port with a block, select the element that you want to contain the new
element. Then, click the Add element button.

 In Bus Element

1-887

The new element is nested under the previously selected element. In the block diagram, a block that
selects the new element appears.

To add an element without a block, in the Property Inspector or dialog box, select the element that
you want to contain a new element. Then, click the Add element button arrow, and select Add
element without block.

The new element is nested under the previously selected element in the Property Inspector or dialog
box. The block diagram is unchanged.

Optionally, reorder input elements by dragging them to new locations in the list of elements.

To add blocks for additional input elements, click an element name or hold Ctrl as you click multiple
element names. Then, click Add blocks for selected signals.

1 Blocks

1-888

Corresponding In Bus Element blocks appear in the block diagram.

When multiple In Bus Element blocks select the same element, selecting one of the blocks highlights
the other blocks that select the same element.

To find duplicate blocks when the block diagram is complicated, select the block, pause on the
ellipsis, and in the action bar, click Related Blocks.

When multiple blocks correspond to the selected block, a list of related blocks opens. You can filter
the list of related blocks by entering a search term in the text box. Clicking a related block in the list
selects the block in the block diagram.

Customize Appearance of In Bus Element and Out Bus Element Blocks

Use compact labels and block colors to customize the appearance of In Bus Element and Out Bus
Element blocks.

Open the example model named BusElementPortBlocks.

 In Bus Element

1-889

The model contains:

• In Bus Element blocks that represent two unique bus element ports named Inbus and pulse
• Out Bus Element blocks that represent a bus element port named OutBus

To reduce the size of the block labels, display only the leaf element names. Select an In Bus Element
or Out Bus Element block, pause on the ellipsis, and in the action bar, click Compact Notation.

All In Bus Element and Out Bus Element blocks in the block diagram display shortened block labels
that use only the leaf element name.

To show the full block label, in the action bar, you can click Expanded Notation. For this example,
keep the compact block labels.

Block colors can help differentiate unique ports when the block labels are compact.

1 Blocks

1-890

Open the Property Inspector. Then, select an In Bus Element block that corresponds with the port
named InBus. For example, select the block labeled constant. Alternatively, double-click the block
to open a dialog box.

In the Property Inspector or dialog box, select InBus. Then, click Set color and select a color from
the menu.

The blocks related to the port use the chosen color.

To identify the blocks that select the nested bus named nonconstant or its elements, select
nonconstant. Then, click Set color and select a different color from the menu.

 In Bus Element

1-891

The blocks related to the nested bus use the chosen color.

Remove Blocks That Select Invalid Elements

To remove all In Bus Element blocks associated with the selected element or elements in the Property
Inspector or dialog box, you can click a button.

•
For a subsystem interface, click Remove blocks of selected signals . This operation removes
all blocks that select the highlighted elements. When a corresponding element is available at the
input port, it remains in the list of elements.

•
For a model interface, click Remove selected elements . This operation removes the
highlighted elements and all In Bus Element blocks that select them.

For example, suppose you have a subsystem interface that receives a bus named InBus. One of the
elements of the bus, named pulse, has been removed. However, at least one In Bus Element block
selects the element.

1 Blocks

1-892

To remove the blocks that select the invalid pulse element, click the element name. Then, click
Remove blocks of selected signals.

The operation removes the invalid element and corresponding block.

Ports
Output

Port_1 — Selected input from external port
scalar | vector | matrix | array | bus

Select a bus, signal, or message from the corresponding external input port of the parent subsystem
or model.

While you can select bus elements, you cannot select elements of arrays of buses.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

 In Bus Element

1-893

Parameters
To interactively edit the parameters of the block, the corresponding port, and the elements at the
port, double-click the block or open the Property Inspector and select the block.

Port name — Name of input port
InBus (default) | port name

Specify a port name that is not already in use by another block or port. The name appears on the
parent Subsystem or Model block. The name also appears next to the block. Multiple blocks can
access the same port.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: PortName

Values: 'InBus' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/PortBlock','PortName','myBus')

Port number — Position of port on parent block

1 (default) | real integer

Specify the order in which the port that corresponds to the block appears on the parent Subsystem or
Model block.

• If you add a block that creates another port, the port number is the next available number.
• Deleting all blocks associated with a port deletes the port. Other ports are renumbered so that

they are sequential and do not skip any numbers.
• Specifying a port number that exceeds the number of ports creates a port for that number and for

any skipped sequential numbers.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: Port

Values: '1' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/PortBlock','Port','5')

Set color — Block background color
Black (default) | White | Red | Green | Blue | Cyan | Magenta | Yellow | Gray | Light Blue |
Orange | Dark Green | More Colors

Specify the block background color. This specification sets the color of blocks associated with
selected bus elements, or of all blocks associated with the port if you do not select any bus elements.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: BackgroundColor

1 Blocks

1-894

Values: 'black' (default) | 'white | 'red' | 'green' | 'blue' | 'cyan' | 'magenta' |
'yellow' | 'gray' | 'lightBlue' | 'orange' | 'darkGreen' | '[r,g,b]' where
r, g, and b, are the red, green, blue values of the color in the range 0.0 to 1.0

Example: set_param('mymodel/Subsystem1/PortBlock','BackgroundColor','magenta')

Filter — Filter for set of displayed signals
no default

Specify a search term to use for filtering a long list of bus elements. Do not enclose the search term
in quotation marks. The filter does a partial string search and supports regular expressions. To use a
regular expression character as a literal, include an escape character (\). For example, to use a
question mark, type sig\?1.

Attributes

To specify attributes, such as data type, pause on the name of a bus, signal, or message. Then, click

the pencil button that appears.

When you specify attributes, they appear next to the name of the bus, signal, or message. Click an
attribute summary to edit the attributes of the bus, signal, or message.

Data type — Data type
Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | ...

The data type of a bus, signal, or message can be inherited, specified directly, or expressed as a data
type object such as a Simulink.NumericType object.

You can specify any of these options:

• Inherited data type
• Built-in Simulink data type — For example, specify single or uint8. See “Data Types Supported

by Simulink”.
• Fixed-point data type — Use the fixdt function. For example, specify fixdt(1,16,0).
• Enumerated data type — Use the name of the type preceded by Enum:. For example, specify

Enum: myEnumType.
• Bus data type — Use the name of the Simulink.Bus object preceded by Bus:. For example,

specify Bus: myBusObject.
• Value type — Use the name of the Simulink.ValueType object preceded by ValueType:. For

example, specify ValueType: windVelocity.
• Custom data type — Use a MATLAB expression that specifies the type. For example, you can

specify a Simulink.NumericType object whose DataTypeMode property is set to a value other
than 'Fixed-point: unspecified scaling'.

 In Bus Element

1-895

When you specify a Simulink.ValueType object as the data type, some parameters of the element
are ignored. For example, the Min, Max, and Unit parameters are ignored. The software uses the
corresponding properties of the Simulink.ValueType object. For example, suppose you set Unit to
ft/s for an element. When the Data type of the element specifies a ValueType object that has m/s
as its unit, the element uses m/s instead of ft/s.

When you specify a Simulink.Bus object as the data type, some parameters of the element are reset
to their default values. For example, the Min, Max, and Unit parameters are reset. The software
uses the corresponding properties of the Simulink.BusElement objects in the Simulink.Bus
object instead.
Tips

When you specify a bus using a Simulink.Bus object or a Simulink.ValueType object with a
Simulink.Bus object data type, the Property Inspector and block dialog box display the elements
defined by the corresponding Simulink.BusElement objects.
Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: OutDataTypeStr

Values: 'Inherit: auto' (default) | 'double' | 'single' | 'half' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' |
'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'string' |
'Enum: <class name>' | 'Bus: <object name>' | 'ValueType: <object
name>' | '<data type expression>'

Example: set_param('mymodel/Subsystem1/myBus.signal1','OutDataTypeStr','int32')

Bus virtuality — Virtual or nonvirtual bus
inherit (default) | virtual | nonvirtual

Specify whether to inherit the bus virtuality or define the bus as virtual or nonvirtual. For more
information, see “Composite Interface Guidelines”.

This parameter determines whether the blocks inherit or define the bus virtuality. If the blocks define
the bus virtuality and the virtuality of the input bus does not match, compiling the model produces an
error.
Dependencies

To enable this parameter, Data type must resolve to a Simulink.Bus object. For example, set Data
type to a Simulink.Bus object or a Simulink.ValueType object that specifies a Simulink.Bus
object as its data type.
Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: BusVirtuality

Values: 'inherit' (default) | 'virtual' | 'nonvirtual'

Example: set_param('mymodel/Subsystem1/
myBus.nestedBus','BusVirtuality','nonvirtual')

1 Blocks

1-896

Data mode — Data mode of bus elements
inherit (default) | signal | message

Specify the data mode of the elements of the bus.

• inherit — Bus elements inherit their data modes.
• signal — Bus elements must be signals.
• message — Bus elements must be messages.

When you choose message as the data mode, an envelope button appears next to the bus or bus
element. Use the envelope button to specify custom queue properties for each message element.

Dependencies

To enable this parameter, the block must be at the top level of a model.
Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: DataMode

Values: 'inherit' (default) | 'signal' | 'message'

Example: set_param('mymodel/InBus','DataMode','signal')

Dimensions — Signal dimensions
-1 (default) | integer | [integer, integer]

Specify the dimensions of a signal.

• -1 — The signal can have any dimensions.
• N — The signal must be a vector of size N.
• [R C] — The signal must be a matrix having R rows and C columns.

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to 1. The
software uses the dimensions specified by the Simulink.BusElement objects in the
Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the dimensions specified by the Simulink.ValueType object
instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: PortDimensions

Values: '-1' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/myBus.signal1','PortDimensions','[1 3]')

Dims mode — Option to allow only variable-size or fixed-size signals
Inherit (default) | Fixed | Variable

 In Bus Element

1-897

Specify the type of signals allowed.

• Inherit — Allow variable-size and fixed-size signals.
• Variable — Allow only variable-size signals.
• Fixed — Allow only fixed-size signals. Do not allow variable-size signals.

When the signal is variable-sized, the Dimensions parameter specifies the maximum dimensions of
the signal.

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to Inherit.
The software uses the dimensions modes specified by the Simulink.BusElement objects in the
Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the dimensions mode specified by the Simulink.ValueType object
instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: VarSizeSig

Values: 'Inherit' (default) | 'No' | 'Yes'

Example: set_param('mymodel/Subsystem1/myBus.signal1','VarSizeSig','No')

Unit — Physical unit
inherit (default) | unit supported by Simulink software

Specify the physical unit of the signal. For a list of supported units, in the MATLAB Command
Window, enter showunitslist.

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to inherit.
The software uses the units specified by the Simulink.BusElement objects in the
Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the unit specified by the Simulink.ValueType object instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: Unit

Values: 'inherit' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/myBus.signal1','Unit','m/s')

Complexity — Numeric type
auto (default) | real | complex

1 Blocks

1-898

Specify the numeric type of the signal. To choose the numeric type of the signal, select auto.
Otherwise, choose a real or complex signal type.

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to auto. The
software uses the complexity specified by the Simulink.BusElement objects in the
Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the complexity specified by the Simulink.ValueType object
instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: SignalType

Values: 'auto' (default) | 'real' | 'complex'

Example: set_param('mymodel/Subsystem1/myBus.signal1','SignalType','real')

Minimum — Minimum value
[] (default) | scalar

Lower value of the range that the software checks.

This number must be a finite real double scalar value.

The software uses this value to perform:

• Simulation range checking. For more information, see “Specify Signal Ranges”.
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to []. The
software uses the minimum values specified by the Simulink.BusElement objects in the
Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the minimum value specified by the Simulink.ValueType object
instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: OutMin

Values: '[]' (default) | character vector | string scalar

 In Bus Element

1-899

Example: set_param('mymodel/Subsystem1/myBus.signal1','OutMin','0')

Maximum — Maximum value
[] (default) | scalar

Upper value of the range that the software checks.

This number must be a finite real double scalar value.

The software uses this value to perform:

• Simulation range checking. For more information, see “Specify Signal Ranges”.
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to []. The
software uses the maximum values specified by the Simulink.BusElement objects in the
Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the maximum value specified by the Simulink.ValueType object
instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: OutMax

Values: '[]' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/myBus.signal1','OutMax','2')

Description — Description of bus, bus element, signal, or message
no default

Use the description to document information about the bus, signal, or message, such as where it is
used. This information does not affect processing.

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to ''
(empty). The software uses the description specified by the Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the description specified by the Simulink.ValueType object
instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.

1 Blocks

1-900

Parameter: Description

Values: '' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/myBus.signal1','Description','This
signal is used by...')

Execution Attributes

To specify execution attributes, such as sample time, pause on the name of a bus, signal, or message.

Then, click Specify execution attributes .

Sample time — Sample time
-1 (default) | scalar

Specify the discrete interval between sample time hits or specify another type of sample time, such as
continuous (0) or inherited (-1). For more options, see “Types of Sample Time”.

By default, the signal inherits its sample time.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: SampleTime

Values: '-1' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/InBus.signal1','SampleTime','2')

Events — Option to trigger model partition based on flow of data into port
cell array of event trigger objects

In a rate-based system, you can configure an input port in the top model or on a model reference
interface to trigger the execution of one or more model partitions in response to the flow of data into
the port. The parameter stores the event triggers associated with the port. Each event trigger maps
an input event to the name of the schedule event it triggers. The schedule for the model specifies the
partition to execute in response to the schedule event and the priority of execution.

The table summarizes the event triggers you can configure. You can configure an input port with one
event trigger for each input event.

Input Event Input Event Description Event Trigger Object
Input write Value for input port updates. simulink.event.InputWrit

e
Input write timeout Input port value does not update

within a specified amount of
time.

simulink.event.InputWrit
eTimeout

 In Bus Element

1-901

Input Event Input Event Description Event Trigger Object
Input write lost Input port value update

overwrites unprocessed data.
simulink.event.InputWrit
eLost

To configure the schedule for your model, use the Schedule Editor.

When you configure input events on a bus port, where you specify the event triggers depends on the
virtuality of the bus.

• For a virtual bus, specify event triggers on leaf elements of the bus. Specifying input events on the
virtual bus itself is not supported.

• For a nonvirtual bus, specify event triggers on the bus. Specifying input events on elements of a
nonvirtual bus is not supported.

In Bus Element blocks must select each element with event triggers.

Dependencies

To enable this parameter, the block must be at the top level of a model.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: EventTriggers

Values: [] (default) | 1-by-1 cell array | 2-by-1 cell array | 3-by-1 cell array

Example: set_param('mymodel/PortBlock','EventTriggers',
{inputWrite,writeTimeout,writeLost})

Example: set_param('mymodel/InBus.signal1','EventTriggers',
{inputWrite,writeTimeout,writeLost})

Queue Attributes

Queue attributes are visible only when the block is at the top level of a model and you set the Data
mode parameter to message.

To specify queue attributes, click the envelope button next to the name of a bus or message.

Use default queue attributes — Default or custom queue specifications
on (default) | off

Use this parameter to select between default or custom queue specifications.

To use the default queue properties, leave the parameter selected. In this case, for each message bus
element, a LIFO overwriting queue of capacity 1 is automatically inserted.

1 Blocks

1-902

To use custom specifications, clear the parameter and configure the queue properties. Queue
attributes are applicable if there is no storage block placed outside a component.

For more information, see “Specify Queue Properties for Message Interface”.

Dependencies

To enable this parameter for an element, set the Data mode of the element to message.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: MessageQueueUseDefaultAttributes

Values: 'on' (default) | 'off'

Example: set_param('mymodel/
InBus.message1','MessageQueueUseDefaultAttributes','off')

Queue capacity — Message storage capacity
1 (default) | scalar

Specify the number of messages elements the queue can store.

Dependencies

To enable this parameter for an element, set the Data mode of the element to message.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: MessageQueueCapacity

Values: '1' (default) | character vector | string scalar

Example: set_param('mymodel/InBus.message1','MessageQueueCapacity','10')

Queue type — Choose FIFO or LIFO queue
LIFO (default) | FIFO

Choose one of these queue types:

• FIFO — First-in-first-out
• LIFO — Last-in-first-out

Dependencies

To enable this parameter for an element, set the Data mode of the element to message.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: MessageQueueType

 In Bus Element

1-903

Values: 'LIFO' (default) | 'FIFO'

Example: set_param('mymodel/InBus.message1','MessageQueueType','FIFO')

Queue overwriting — Queue message overwriting policy
on (default) | off

Select this parameter to choose between two queue overwriting policies.

• If you select the parameter, an incoming message element overwrites the oldest message if the
queue is full.

• If you clear the parameter, the block does not accept new messages if the queue is full.

Dependencies

To enable this parameter for an element, set the Data mode of the element to message.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: MessageQueueOverwriting

Values: 'on' (default) | 'off'

Example: set_param('mymodel/InBus.message1','MessageQueueOverwriting','off')

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Bus Element In — Select input from external port

The Bus Element In block differs from the In Bus Element block by name only.
Libraries:
Simulink / Signal Routing
HDL Coder / Signal Routing

Version History
Introduced in R2017a

1 Blocks

1-904

R2023a: Property Inspector supports In Bus Element blocks

The Property Inspector supports In Bus Element and Out Bus Element blocks.

R2023a: Messages link to related In Bus Element blocks

Warning and error messages for In Bus Element and Out Bus Element blocks now link to the
corresponding block in the block diagram, helping you quickly find the source of the warning or error.
In previous releases, warning and error messages refer to a hidden block and do not provide a link.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used to simplify subsystem bus interfaces when you use the block in subsystems
that generate HDL code, but it is not included in the hardware implementation.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Out Bus Element | Inport | Bus Selector

Functions
Simulink.Bus.addElementToPort

Topics
“Simplify Subsystem and Model Interfaces with Bus Element Ports”
“Composite Interface Guidelines”
“Group Signals or Messages into Virtual Buses”

 In Bus Element

1-905

Increment Real World
Increase real-world value of signal by one

Libraries:
Simulink / Additional Math & Discrete / Additional Math: Increment -
Decrement
HDL Coder / Math Operations

Description
The Increment Real World block increases the real-world value of the signal by one.

Overflows always wrap.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output is the real-world value of the input signal increased by one. Overflows always wrap. The
output has the same data type and dimensions as the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

1 Blocks

1-906

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked subsystem block to execute as an
atomic unit by selecting the Treat as atomic unit option.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Decrement Stored Integer | Decrement Time To Zero | Decrement To Zero

Topics
“Fixed-Point Numbers”

 Increment Real World

1-907

Increment Stored Integer
Increase stored integer value of signal by one

Libraries:
Simulink / Additional Math & Discrete / Additional Math: Increment -
Decrement
HDL Coder / Math Operations

Description
The Increment Stored Integer block increases the stored integer value of a signal by one.

Floating-point signals also increase by one, and overflows always wrap.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output is the stored integer value of the input signal increased by one. Floating-point signals also
increase by one, and overflows always wrap. The output has the same data type and dimensions as
the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes

1 Blocks

1-908

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked subsystem block to execute as an
atomic unit by selecting the Treat as atomic unit option.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Decrement Stored Integer | Increment Real World

Topics
“Fixed-Point Numbers”

 Increment Stored Integer

1-909

Index Vector
Switch output between different inputs based on value of first input

Libraries:
Simulink / Signal Routing
HDL Coder / Signal Routing

Description
The Index Vector block is a special configuration of the Multiport Switch block in which you specify
one data input and the control input is zero-based. The block output is the element of the input vector
whose index matches the control input. For example, if the input vector is [18 15 17 10] and the
control input is 3, the element that matches the index of 3 (zero-based) is 10, and that becomes the
output value.

To configure a Multiport Switch block to work as an Index Vector block set Number of data ports to
1 and Data port order to Zero-based contiguous.

For more information about the Multiport Switch block, see the Multiport Switch block reference
page.

Ports
Input

Port_1 — Control signal
scalar

Control signal, specified as a scalar. When the control input is not an integer value, the block
truncates the value to an integer by rounding to zero.

For information on control signals of enumerated type, see “Guidelines on Setting Parameters for
Enumerated Control Port” on page 1-1410 on the Multiport Switch block ref page.

Limitations

• If the control signal is numeric, the control signal cannot be complex.
• If the control signal is an enumerated signal, the block uses the value of the underlying integer to

select a data port.
• If the underlying integer does not correspond to a data input, an error occurs.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

0 or 1 — First data input
scalar | vector

1 Blocks

1-910

First data input, specified as a scalar or vector. The port is labeled 0 when you set Data port order
to Zero-based contiguous, and labeled 1 when you set Data port order to One-based
contiguous.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | bus | enumerated | string

Output

Port_1 — Selected data input, based on control signal value
scalar

The block outputs the selected value from the input data vector, according to the control signal value.
The output is a scalar.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
Main

Data port order — Type of ordering for data input ports
Zero-based contiguous (default) | One-based contiguous | Specify indices

Specify the type of ordering for your data input ports.

• Zero-based contiguous — Block uses zero-based indexing for ordering contiguous data ports.
This is the default value of the Index Vector block.

• One-based contiguous — Block uses one-based indexing for ordering contiguous data ports.
This is the default value of the Multiport Switch block.

• Specify indices — Block uses noncontiguous indexing for ordering data ports. This value is
supported only for configurations with two or more input data ports.

Tips

• When the control port is of enumerated type, select Specify indices.
• If you select Zero-based contiguous or One-based contiguous, verify that the control port

is not of enumerated type. This configuration is deprecated and produces an error. You can run the
Upgrade Advisor on your model to replace each Multiport Switch block of this configuration with a
block that explicitly specifies data port indices. See “Model Upgrades”.

• Avoid situations where the block contains unused data ports for simulation or code generation.
When the control port is of fixed-point or built-in data type, verify that all data port indices are
representable with that type. Otherwise, the following block behavior occurs:

If the block has unused data ports and
data port order is:

The block produces:

Zero-based contiguous or One-based
contiguous

A warning

Specify indices An error

 Index Vector

1-911

Dependencies

Selecting Zero-based contiguous or One-based contiguous enables the Number of data
ports parameter.

Selecting Specify indices enables the Data port indices parameter.
Programmatic Use
Block Parameter: DataPortOrder
Type: character vector
Values: 'Zero-based contiguous' | 'One-based contiguous' | 'Specify indices'
Default: 'Zero-based contiguous'

Number of data ports — Number of data input ports
1 (default) | integer between 1 and 65536

Specify the number of data input ports to the block.
Dependencies

To enable this parameter, set Data port order to Zero-based contiguous or One-based
contiguous.
Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: integer between 1 and 65536
Default: '1'

Signal Attributes

Require all data port inputs to have the same data type — Require all inputs to have the same
data type

off (default) | on

Select this check box to require that all data input ports have the same data type. When you clear this
check box, the block allows data port inputs to have different data types.
Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

1 Blocks

1-912

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first data input | double | single | half | int8 | uint8
| int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | string | Simulink.ImageType(480,640,3) | <data type
expression>

 Index Vector

1-913

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule—Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet your specific
needs for numerical accuracy or performance, use one of the following options:

• Specify the output data type explicitly.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point

Tool to propose data types for your model. For more information, see fxptdlg.
• To specify your own inheritance rule, use Inherit: Inherit via back propagation and

then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

• Inherit: Inherit via back propagation — Uses the data type of the driving block.
• Inherit: Same as first data input — Uses the data type of the first data input port.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Inherit via back
propagation' | 'Inherit: Same as first input' | 'double' | 'single' | 'half' | 'int8'
| 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'string' | Simulink.ImageType(480,640,3) |
'<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data types

off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

1 Blocks

1-914

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the MATLAB
ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the MATLAB
floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate rounding
code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Default: 'Floor'
See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type can

represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

• Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

 Index Vector

1-915

• Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

• In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Allow different data input sizes (Results in variable-size output signal) — Allow input signals
with different sizes

off (default) | on

Select this check box to allow input signals with different sizes.

• On — Allows input signals with different sizes, and propagate the input signal size to the output
signal. In this mode, the block produces a variable-size output signal.

• Off — Requires that all nonscalar data input signals be the same size.

Programmatic Use
Parameter: AllowDiffInputSizes
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

1 Blocks

1-916

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

The Index Vector block is a Multiport Switch block with Number of data ports set to 1. For HDL
code generation information, see Multiport Switch.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Multiport Switch | Switch

Topics
“Variable-Size Signal Basics”

 Index Vector

1-917

Initialize Function
Execute subsystem on model initialize event

Libraries:
Simulink / User-Defined Functions

Description
The Initialize Function block is a preconfigured Subsystem block that executes on a model initialize
event. By default, the Initialize Function block includes:

• An Event Listener block with the Event type set to Initialize
• A Constant block with the Constant value set to 0
• A State Writer block with no State owner block set

Customize the contents of the Initialize Function block by, for example, replacing the Constant block
with source blocks that generate the state value for the State Writer block and specifying a State
owner block for the State Writer block.

Conditionally executed subsystems with output ports are fully supported within Initialize Function
blocks.

For a list of unsupported blocks and features, see “Initialize, Reinitialize, Reset, and Terminate
Function Limitations”.

The input and output ports of a component containing Initialize Function and Terminate Function
blocks must connect to input and output port blocks.

The code generated from this block is part of the model_initialize function that is called once at
the beginning of model execution.

You can select an Initialize Function, Reinitialize Function, Reset Function, or Terminate Function
block or a corresponding state owner block to highlight blocks related to it. To show a related block
in an open diagram or new tab, pause on the ellipsis that appears after selection. Then, select

Related Blocks from the action bar. When multiple blocks correspond to the selected block, a

1 Blocks

1-918

list of related blocks opens. You can filter the list of related blocks by entering a search term in the
text box. After you select a related block from the list, window focus goes to the open diagram or new
tab that shows the related block.

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals no
Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Reinitialize Function | Reset Function | Terminate Function | Event Listener | State Reader | State
Writer

Topics
“Using Initialize, Reinitialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”
“Startup, Reset, and Shutdown Function Interfaces” (Simulink Coder)

 Initialize Function

1-919

Inport
Create input port for subsystem or external input

Libraries:
Simulink / Commonly Used Blocks
Simulink / Ports & Subsystems
Simulink / Sources
HDL Coder / Commonly Used Blocks
HDL Coder / Ports & Subsystems
HDL Coder / Sources

Description
Inport blocks link signals from outside a system into the system.

The software assigns Inport block port numbers according to these rules:

• Inport blocks within a top-level system or subsystem are numbered sequentially, starting with 1.
• If you add an Inport block, the label is the next available number.
• If you delete an Inport block, other port numbers are renumbered to ensure that the Inport blocks

are in sequence and that no numbers are omitted.
• If you copy an Inport block into a system, its port number is not renumbered unless its current

number conflicts with an input port already in the system. If the port number for the copied Inport
block is not in sequence, renumber the block. Otherwise, you get an error message when you
simulate the model or update the block diagram.

Inport Blocks in Top-Level Systems

You can use an Inport block in a top-level system to:

• Supply external inputs from a workspace using the Input parameter. If you do not provide
external input data, the output from the Inport block is the ground value. For more information,
see “Load Data to Root-Level Input Ports”.

• To load data for several signals using root-level input ports, consider using the Root Inport
Mapper tool. See “Map Data Using Root Inport Mapper Tool”.

• Use the createInputDataset function to create a Simulink.SimulationData.Dataset
object that contains an element for each root-level Inport block in the model you specify.

• Provide a means for perturbation of the model by the linmod and trim analysis functions. For
more information, see “Linearizing Models”.

Inport Blocks in Subsystems

Inport blocks in a subsystem represent inputs to the subsystem. A signal arriving at an input port on
a Subsystem block flows out of the associated Inport block in that subsystem. The Inport block
associated with an input port on a Subsystem block is the block whose Port number parameter
matches the relative position of the input port on the Subsystem block. For example, the Inport block
whose Port number parameter is 1 gets its signal from the block connected to the topmost port on
the Subsystem block.

1 Blocks

1-920

If you renumber the Port number of an Inport block, the block becomes connected to a different
input port. The block continues to receive its signal from the same block outside the subsystem.

Inport blocks inside a subsystem support signal label propagation, but root-level Inport blocks do not.

You can directly edit port labels on a Subsystem block. For more information, see “Edit Port Labels on
Subsystems”.

Tip For models that include buses composed of many bus elements, consider using In Bus Element
and Out Bus Element blocks. These blocks:

• Reduce signal line complexity and clutter in a block diagram.
• Make it easier to change the interface incrementally.
• Allow access to a bus element closer to the point of usage, avoiding the use of a Bus Selector and

Goto block configuration.

The In Bus Element block is of block type Inport and the Out Bus Element block is of block type
Outport.

Create Duplicate Inport Blocks

You can create any number of duplicates of an Inport block. The duplicates are graphical
representations of the original intended to simplify block diagrams by eliminating unnecessary lines.
The duplicate has the same port number, properties, and output as the original.

To create a duplicate of an Inport block:

1 In the block diagram, select the unconnected Inport block that you want to duplicate.
2 Press and hold the Ctrl key and drag the block.
3 Release the pointer, and then select Duplicate from the context menu.

You can select an Inport block that has duplicates to highlight the duplicate blocks. To show a related
block in an open diagram or new tab, pause your cursor on the ellipsis that appears after selection.

Then, select Related Blocks from the action menu. When multiple blocks correspond to the
selected block, a list of related blocks opens. You can filter the list of related blocks by entering a
search term in the text box. After you select a related block from the list, window focus goes to the
open diagram or new tab that shows the related block.

Connect Buses to Root-Level Inport Blocks

If you want a root-level Inport block of a model to produce a bus, set the Data type parameter to the
name of a bus object that defines the bus that the Inport block produces. For more information, see
“Specify Bus Properties with Simulink.Bus Object Data Types”.

Ports
Output

Port_1 — Input signal
scalar | vector

 Inport

1-921

Input signal that flows into the system through the input port.

You can use an Inport block in a subsystem to supply fixed-point data in a structure or in any other
format.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus | image

Parameters
Main

Port number — Position of port on parent block

1 (default) | real integer

Specify the order in which the port that corresponds to the block appears on the parent Subsystem or
Model block.

• If you add a block that creates another port, the port number is the next available number.
• Deleting all blocks associated with a port deletes the port. Other ports are renumbered so that

they are sequential and do not skip any numbers.
• Specifying a port number that exceeds the number of ports creates a port for that number and for

any skipped sequential numbers.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: Port

Values: '1' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/PortBlock','Port','5')

Icon display — Icon display

Port number (default) | Signal name | Port number and signal name

Specify the information displayed on the block icon.

Programmatic Use
Block Parameter: IconDisplay
Type: character vector
Values: 'Signal name' | 'Port number' | 'Port number and signal name'
Default: 'Port number'

Latch input by delaying outside signal — Option to latch signal by delay

off (default) | on

Select to specify that the block output is the value of the input signal at the previous time step.

Selecting this option enables the software to resolve data dependencies among triggered subsystems
that are part of a loop.

1 Blocks

1-922

The Inport block indicates that this option is selected by displaying <Lo>.

Dependencies

This parameter is enabled only when the block represents an input port in a triggered subsystem.

Programmatic Use
Block Parameter: LatchByDelayingOutsideSignal
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Latch input for feedback signals of function-call subsystem outputs — Latch signal from
changing

off (default) | on

Select to specify that the block latches the input value and prevents it from changing during the
execution of the function-call subsystem. For a single function call that is branched to invoke multiple
function-call subsystems, this option breaks a loop formed when a signal feeds back from one
function-call subsystem into another. Selecting this option prevents any change to the values of a
feedback signal from a function-call subsystem that is invoked during the execution of the subsystem
that contains this block.

The Inport block indicates that this option is selected by displaying .

Dependencies

This option is enabled only when the block represents an input port in a function-call subsystem.

Programmatic Use
Block Parameter: LatchInputForFeedbackSignals
Type: character vector
Values: 'on' | 'off'

 Inport

1-923

Default: 'off'

Connect Inputs — Option to open Root Inport Mapper tool
button

To import, visualize, and map signal and bus data to root-level Inport blocks, click this button. The
Root Inport Mapper tool opens.

Dependencies

This button appears only when the block is at the root level for the model.

Signal Attributes

Output function call — Option to produce function-call event

off (default) | on

Specify that the input signal produces a function-call event signal.

Select this option if a current model must accept a function-call event signal when referenced in the
top model.

Dependencies

• To enable this option, the block must be in an asynchronous function call.
• The software ignores the value of this parameter when Data type specifies a

Simulink.ValueType object.

Minimum — Minimum output value

[] (default) | scalar

Lower value of the output range that the software checks.

This number must be a finite real double scalar value.

The software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the minimum values specified by the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead.

Programmatic Use
Block Parameter: OutMin

1 Blocks

1-924

Type: character vector
Values: '[]'| scalar
Default: '[]'

Maximum — Maximum output value

[] (default) | scalar

Upper value of the output range that the software checks.

This number must be a finite real double scalar value.

The software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the maximum values specified by the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead.
Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Data type — Output data type

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | ...

Specify the output data type of the external input. The type can be inherited, specified directly, or
expressed as a data type object, such as Simulink.NumericType.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

You can specify any of these options:

• Inherited data type
• Built-in Simulink data type — For example, specify single or uint8. See “Data Types Supported

by Simulink”.
• Fixed-point data type — Use the fixdt function. For example, specify fixdt(1,16,0).
• Enumerated data type — Use the name of the type preceded by Enum:. For example, specify

Enum: myEnumType.

 Inport

1-925

• Bus data type — Use the name of the Simulink.Bus object preceded by Bus:. For example,
specify Bus: myBusObject.

• Simulink image data type — If you have Computer Vision Toolbox, use the constructor for the
Simulink.ImageType object and specify the properties to describe the image. By default, the
data type uses the Simulink.ImageType(480,640,3) expression that represents the rows,
columns, and channels of the image respectively.

• Value type — Use the name of the Simulink.ValueType object preceded by ValueType:. For
example, specify ValueType: windVelocity.

• Custom data type — Use a MATLAB expression that specifies the type. For example, you can
specify a Simulink.NumericType object whose DataTypeMode property is set to a value other
than 'Fixed-point: unspecified scaling'.

When you specify a Simulink.ValueType or Simulink.Bus object as the data type, some
parameters of the Inport block are ignored. For example, the Min, Max, and Unit parameters of the
Inport block are ignored. The software uses the corresponding properties of the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead. For example, suppose a block sets Unit to ft/s. When the Data type of the block specifies a
ValueType object that has m/s as its unit, the block uses m/s instead of ft/s.

Lock output data type setting against changes by the fixed-point tools — Option to prevent
fixed-point tools from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the output data type you specify
on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
object.

Programmatic Use
Block Parameter: LockScale
Values: 'off' | 'on'
Default: 'off'

Output as nonvirtual bus — Option to specify virtuality of bus output

off (default) | on

Specify whether the output for a top-level Inport block used to load bus data is virtual or nonvirtual.

• Select this parameter to specify a nonvirtual bus output.
• Clear this parameter to specify a virtual bus output.

Tips

• All signals in a nonvirtual bus must have the same sample time, even if the associated bus object
specifies inherited sample time for some elements. Any operation that would result in a nonvirtual
bus containing signals with different sample rates generates an error. You cannot load multirate
data for a nonvirtual bus. See “Modify Sample Times for Nonvirtual Buses” for details on how to
pass signals with different sample rates into a referenced model as a nonvirtual bus.

1 Blocks

1-926

To load multirate data for a bus, clear the Output as nonvirtual bus parameter, and set the
Sample time parameter to inherited (-1).

• For the top model in a model reference hierarchy, code generation creates a C structure to
represent the nonvirtual bus output.

• For referenced models, select this option to create a C structure in generated code. Otherwise,
code generation creates an argument for each leaf element of the bus.

Dependencies

To enable this parameter:

• The block must be at the top level of a model.
• The Data type block parameter must resolve to a Simulink.Bus object. For example, set Data

type to a Simulink.Bus object or a Simulink.ValueType object that specifies a
Simulink.Bus object as its data type.

Programmatic Use
Block Parameter: BusOutputAsStruct
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Unit (e.g., m, m/s^2, N*m) — Physical unit of the input signal to the block

inherit (default) | <Enter unit>

Specify the physical unit of the input signal to the block. To specify a unit, begin typing in the text
box. As you type, the parameter displays potential matching units. For a list of supported units, see
Allowed Unit Systems.

To constrain the unit system, click the link to the right of the parameter:

• If a Unit System Configuration block exists in the component, its dialog box opens. Use that dialog
box to specify allowed and disallowed unit systems for the component.

• If a Unit System Configuration block does not exist in the component, the model Configuration
Parameters dialog box displays. Use that dialog box to specify allowed and disallowed unit systems
for the model.

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the units specified by the Simulink.ValueType object
or the Simulink.BusElement objects in the Simulink.Bus object instead.
Programmatic Use
Block Parameter: Unit
Type: character vector
Values: 'inherit' | '<Enter unit>'
Default: 'inherit'

Port dimensions (-1 for inherited) — Port dimensions

-1 (default) | integer | [integer integer]

Specify the dimensions of the output signal.

 Inport

1-927

matlab:showunitslist

-1 The port can load data for a signal with any dimensions. The port inherits
dimensions from the connected signal.

N The port can load data for a signal that is a vector of size N.
[R C] The port can load data for a matrix signal having R rows and C columns.

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
object. The software uses the dimensions specified by the Simulink.ValueType object instead.

Programmatic Use
Block Parameter: PortDimensions
Type: character vector
Values: '-1' | integer | [integer integer]
Default: '-1'

Variable-size signal — Option to allow or disallow variable-size signals

Inherit (default) | No | Yes

Specify the type of signals allowed for this port. To allow variable-size and fixed-size signals, select
Inherit. To allow only variable-size signals, select Yes. To allow only fixed-size signals, select No.

When the signal at this port is a variable-size signal, the Port dimensions parameter specifies the
maximum dimensions of the signal.

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
object. The software uses the dimensions mode specified by the Simulink.ValueType object
instead.

Programmatic Use
Parameter: VarSizeSig
Type: character vector
Value: 'Inherit '| 'No' | 'Yes'
Default: 'Inherit'

Signal type — Output signal type

auto (default) | real | complex

Specify the complexity of the signal output. To inherit the complexity from the signal that is
connected to its input, select auto. Otherwise, choose a real or complex signal type.

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the complexity specified by the Simulink.ValueType
object or the Simulink.BusElement objects in the Simulink.Bus object instead.

Programmatic Use
Block Parameter: SignalType
Type: character vector
Values: 'auto' | 'real' | 'complex'

1 Blocks

1-928

Default: 'auto'

Execution

Sample time (-1 for inherited) — Option to specify sample time

-1 (default) | scalar

Specify the discrete interval between sample time hits or specify another type of sample time, such as
continuous (0) or inherited (-1). For more options, see “Types of Sample Time”.

By default, the block inherits its sample time based upon the context of the block within the model.
Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

Interpolate data — Option to linearly interpolate output data

on (default) | off

When loading data from the workspace into a root-level Inport block, specify whether the block
linearly interpolates and extrapolates output values at time steps for which no corresponding data
exists.

To load discrete data from the workspace:

1 Set the Sample time to a discrete rate, such as 2.
2 Clear Interpolate data.

For more information, see “Control How Models Load Input Data”.

The software uses the following interpolation and extrapolation:

• For time steps between the first specified data point and the last specified data point — zero-order
hold.

• For time steps before the first specified data point and after the last specified data point — ground
value.

• For variable-size signals for time steps before the first specified data point — a NaN value is logged
for single or double data types and ground for other data types. For time steps after the last
specified data point, the software uses ground values.

Programmatic Use
Block Parameter: Interpolate
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Events — Option to trigger model partition based on flow of data into port
cell array of event trigger objects

In a rate-based system, you can configure an input port in the top model or on a model reference
interface to trigger the execution of one or more model partitions in response to the flow of data into

 Inport

1-929

the port. The Events parameter stores the event triggers associated with the port. Each event trigger
maps an input event to the name of the schedule event it triggers. The schedule for the model
specifies the partition to execute in response to the schedule event and the priority of execution.

The table summarizes the event triggers you can configure. For each input port, you can configure
one event trigger for each input event.

Input Event Input Event Description Event Trigger Object
Input write Value for input port updates. simulink.event.InputWrit

e
Input write timeout Input port value does not update

within a specified amount of
time.

simulink.event.InputWrit
eTimeout

Input write lost Input port value update
overwrites unprocessed data.

simulink.event.InputWrit
eLost

To configure the schedule for your model, use the Schedule Editor.

Dependencies

This parameter is visible only when the block represents a root-level input port.

Programmatic Use
Block Parameter: EventTriggers
Values: 1-by-1 cell array | 2-by-1 cell array | 3-by-1 cell array
Default: []

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

1 Blocks

1-930

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
BalanceDelays BalanceDelays

Setting
Description

on (default) Detects introduction of delays on other paths in
the DUT and inserts matching delays on the
Inport block path.

off Disable delay balancing on input ports in your
DUT subsystem to prevent HDL Coder from
inserting matching delays when they are
unnecessary. For example, disable
BalanceDelays on an Inport block in your DUT
subsystem if it is on a path with a stable input,
meaning the input signal to the input port is a
stable input signal outside of the DUT.

Note This property affects only DUT-level Inport blocks.
BidirectionalPort BidirectionalPort

Setting
Description

on Specify the port as bidirectional.

The following requirements apply:

• The port must be in a Subsystem block with
black box implementation.

• There must also be no logic between the
bidirectional port and the corresponding top-
level DUT subsystem port.

For more information, see “Specify Bidirectional
Ports” (HDL Coder).

off (default) Do not specify the port as bidirectional.

 Inport

1-931

Target Specification
IOInterface Target platform interface type for DUT ports, specified as a character

vector. The IOInterface block property is ignored for Inport and Outport
blocks that are not DUT ports.

To specify valid IOInterface settings, use the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, in the Set Target > Set Target
Interface step, in the Target platform interface table, in the
Target Platform Interfaces column, use the drop-down list to set the
target platform interface type.

2 Save the model.

The IOInterface value is saved as an HDL block property of the
port.

For example, to view the IOInterface value, if the full path to your
DUT port is hdlcoder_led_blinking/led_counter/LED, enter:

hdlget_param('hdlcoder_led_blinking/led_counter/LED', 'IOInterface')

IOInterfaceMapping Target platform interface port mapping for DUT ports, specified as a
character vector. The IOInterfaceMapping block property is ignored for
Inport and Outport blocks that are not DUT ports.

To specify valid IOInterfaceMapping settings, use the HDL Workflow
Advisor:

1 In the HDL Workflow Advisor, in the Set Target > Set Target
Interface step, in the Target platform interface table, in the
Target Platform Interfaces column, use the drop-down list to set the
target platform interface type.

2 In the Bit Range / Address / FPGA Pin column, if you want to
change the default value, enter a target platform interface mapping.

3 Save the model.

The IOInterfaceMapping value is saved as an HDL block property
of the port.

For example, to view the IOInterfaceMapping value, if the full path
to your DUT port is hdlcoder_led_blinking/led_counter/LED,
enter:

hdlget_param('hdlcoder_led_blinking/led_counter/LED',...
 'IOInterfaceMapping')

1 Blocks

1-932

Target Specification
IOInterfaceOptions Target platform interface port mapping options for DUT ports, specified as

a character vector. The IOInterfaceOptions block property is ignored
for Inport and Outport blocks that are not DUT ports.

To specify valid IOInterfaceOptions settings, use the HDL Workflow
Advisor:

1 In the HDL Workflow Advisor, on the Set Target > Set Target
Interface step, in the Target platform interface table, in the
Target Platform Interfaces column, map the input or output ports to
an AXI4 subordinate interface.

2 In the Interface Options column, if you want to change the default
initial value, click the Options button and enter a value for
RegisterInitialValue.

3 Save the model.

The IOInterfaceOptions value is saved as an HDL block property
of the port.

For example, to view the IOInterfaceOptions value, if the full path
to your DUT port is hdlcoder_led_blinking/led_counter/LED,
enter:

hdlget_param('hdlcoder_led_blinking/led_counter/LED',...
 'IOInterfaceOptions')

Frame to Sample Conversion
ConvertToSamples ConvertToSamples

Setting
Description

on Convert the incoming matrix input signal to
samples by using the frame to sample conversion
optimization.

To use this property, enable the model
configuration parameter Enable frame to
sample conversion. For more information, see
“Enable frame to sample conversion” (HDL
Coder).

off (default) Do not convert the incoming matrix input signal
to samples.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Outport | Asynchronous Task Specification | In Bus Element

 Inport

1-933

Topics
“Load Data to Root-Level Input Ports”
“Using Function-Call Subsystems”
“Map Data Using Root Inport Mapper Tool”
“Load Big Data for Simulations”
“Comparison of Signal Loading Techniques”
“Map Root Inport Signal Data”

1 Blocks

1-934

Integer to Bit Converter
Map vector of integers to vector of bits

Libraries:
Simulink / Logic and Bit Operations
Communications Toolbox / Utility Blocks

Description
The Integer to Bit Converter block maps each integer (or fixed-point value) in the input vector to a
group of bits in the output vector.

This block is single-rate and single-channel. The block maps each integer value (or stored integer
when you use a fixed point input) to a group of M bits, using the selection for the Output bit order
to determine the most significant bit. The resulting output vector length is M times the input vector
length.

Ports
Input

In — Input signal
integer | column vector of integers

Input signal, specified as an integer or a length N column vector of integers.

If M is specified by the Number of bits per integer(M) parameter:

• When the Number of bits per integer parameter is set to Unsigned, input values must be
integers in the range [0, (2M – 1)].

• When the Number of bits per integer parameter is set to Signed, input values must be integers
in the range [(–2M-1), (2M – 1 – 1)].

During simulation, the block performs a run-time check and issues an error if any input value is
outside of the appropriate range. When the block generates code, it does not perform this run-time
check.
Data Types: double

Output

Out — Output signal
bit scalar | column vector of bits

Output signal, returned as a scalar or column vector of bits of length M·N.

 Integer to Bit Converter

1-935

Parameters
Number of bits per integer(M) — Number of bits per integer

3 (default) | integer in the range [1, 32]

Number of input bits mapped to each integer in the input, specified as an integer in the range [1, 32].

Programmatic Use
Block Parameter: nbits
Type: character vector
Values: integer in the range [1, 32]
Default: '3'

Treat input values as — Treat input values as

Unsigned (default) | Signed

Indicate if the integer value input ranges should be treated as signed or unsigned.

Programmatic Use
Block Parameter: signedInputValues
Type: character vector
Values: 'Unsigned' | 'Signed'
Default: 'Unsigned'

Output bit order — Output bit order

MSB first (default) | LSB first

Define whether the first bit of the output signal is the most significant bit (MSB) or the least
significant bit (LSB).

Programmatic Use
Block Parameter: bitOrder
Type: character vector
Values: 'MSB first' | 'LSB first'
Default: 'MSB first'

Output data type — Output data type

Inherit via internal rule (default) | Smallest unsigned integer | Same as input |
double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

Specify the data type of the output bits. You can choose one of the following Output data type
options:

• Inherit via internal rule –– The block determines the output data type based on the input
data type.

• If the input signal is floating-point (either single or double), the output data type is the same
as the input data type.

• If the input data type is not floating-point, the output data type is determined as if the
parameter is set to Smallest integer.

1 Blocks

1-936

• Smallest integer ––The block selects the output data type based on settings used in the
“Hardware Implementation Pane” of the Configuration Parameters dialog box.

• If you select ASIC/FPGA for the device vendor, the output data type is the ideal one-bit size
(ufix1).

• For all other device vendor selections, the output data type is an unsigned integer with the
smallest available word length, as defined in the Hardware Implementation settings (for
example, uint8)

• Same as input
• double
• single
• uint8
• uint16
• uint32

Programmatic Use
Block Parameter: outDtype
Type: character vector
Values: 'Inherit via internal rule' | 'Smallest unsigned integer' | 'Same as
input' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32'|
'boolean'
Default: 'Inherit via internal rule'

Block Characteristics
Data Types Boolean | double | fixed pointa | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

a ufix(1) only at the output when ASIC/FPGA is selected in the Hardware Implementation Pane.

Version History
Introduced before R2006a

R2022a: Integer to Bit Converter Block Added to Simulink Logic and Bit Operations Library
Behavior changed in R2022a

The Integer to Bit Converter block has been added from the Communications Toolbox > Utility
Blocks library to the Simulink > Logic and Bit Operations library. All existing models continue to
work.

 Integer to Bit Converter

1-937

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Bit to Integer Converter on page 1-65

Functions
int2bit | bit2int

1 Blocks

1-938

Integrator
Integrate signal

Libraries:
Simulink / Commonly Used Blocks
Simulink / Continuous

Description
The Integrator block integrates an input signal with respect to time and provides the result as an
output signal.

Simulink treats the Integrator block as a dynamic system with one state. The block dynamics are
given by:

ẋ(t) = u(t)
y(t) = x(t)

 x(t0) = x0

where:

• u is the block input.
• y is the block output.
• x is the block state.
• x0 is the initial condition of x.

While these equations define an exact relationship in continuous time, Simulink uses numerical
approximation methods to evaluate them with finite precision. Simulink can use several different
numerical integration methods to compute the output of the block, each with advantages in particular
applications. Use the Solver pane of the Configuration Parameters dialog box (see “Solver Pane”) to
select the technique best suited to your application.

The selected solver computes the output of the Integrator block at the current time step, using the
current input value and the value of the state at the previous time step. To support this computational
model, the Integrator block saves its output at the current time step for use by the solver to compute
its output at the next time step. The block also provides the solver with an initial condition for use in
computing the block's initial state at the beginning of a simulation. The default value of the initial
condition is 0. Use the block parameter dialog box to specify another value for the initial condition or
create an initial value input port on the block.

Use the parameter dialog box to:

• Define upper and lower limits on the integral
• Create an input that resets the block's output (state) to its initial value, depending on how the

input changes
• Create an optional state output so that the value of the block's output can trigger a block reset

 Integrator

1-939

Use the Discrete-Time Integrator block to create a purely discrete system.

Defining Initial Conditions

You can define the initial conditions as a parameter on the block dialog box or input them from an
external signal:

• To define the initial conditions as a block parameter, specify the Initial condition source
parameter as internal and enter the value in the Initial condition field.

• To provide the initial conditions from an external source, set the Initial condition source
parameter to external. An additional input port appears on the block.

Note If you select the Limit output parameter, the initial condition must be within the saturation
limits. If the initial condition is not within the block saturation limits, the block displays an error
message.

Limiting the Integral

To limit the output signal to a specified range of values, select Limit output and specify the
saturation limits. When the output reaches one of the limits, the integral action is disabled to prevent
integral wind up. During a simulation, you can change the limits but not whether the output is
limited. The block determines output signal value using these criteria:

• When the integral value is less than or equal to the lower saturation limit, the output signal value
is the lower saturation limit.

• When the integral value is between the lower saturation limit and the upper saturation limit, the
output is the integral value.

• When the integral value is greater than or equal to the upper saturation limit, the output signal
value is the upper saturation limit.

To generate a signal that indicates when the state is limited by the saturation limits, select Show
saturation port. A second output port appears on the block.

The saturation signal has one of three values:

• 1 — State limited by upper saturation limit
• 0 — State not limited
• –1 — State limited by lower saturation limit

1 Blocks

1-940

When you limit the Integrator block output, the block has three zero crossing signals: one to detect
when the integral value exceeds the upper saturation limit, one to detect when the integral value is
less than the lower saturation limit, and one to detect when the integral value changes from being
saturated to not being saturated.

Note By default, the Limit output parameter is enabled for the Integrator Limited block, with the
Upper saturation limit parameter value set to 1, and the Lower saturation limit parameter value
set to 0.

Wrapping Cyclic States

Several physical phenomena, such as oscillators and machinery that exhibits rotational movement,
are cyclic, periodic, or rotary in nature. Modeling these phenomena in a Simulink block diagram
involves integrating the rate of change for the periodic or cyclic signals to obtain the state of the
movement. Over long simulation time spans, this approach can result in the states that represent
periodic or cyclic signals integrating to large values. Computing trigonometric values, such as sine or
cosine, for these signals takes longer as the values become larger due to angle reduction. As the
signal values become larger, solver performance and accuracy degrades.

One approach for overcoming this drawback is to reset the angular state to 0 when it reaches 2π (or
to –π when it reaches π, for numerical symmetry). This approach improves the accuracy of sine and
cosine computations and reduces angle reduction time. But it also requires zero-crossing detection
and introduces solver resets, which slow down the simulation for variable step solvers, particularly in
large models.

To eliminate solver resets at wrap points, the Integrator block supports wrapped states that you can
enable by checking Wrap state on the block parameter dialog box. When you enable Wrap state, the
block icon changes to indicate that the block has wrapping states.

The Integrator block supports wrapping states that are bounded by upper and lower values
parameters of the wrapped state. The algorithm for determining wrapping states is given by:

y =
x x ∈ [xl, xu)

x− (xu− xl)
x− xl
xu− xl

otherwise

where:

• xl is the lower value of the wrapped state.
• xu is the upper value of the wrapped state.
• y is the output.

The support for wrapping states provides these advantages.

 Integrator

1-941

• It eliminates simulation instability when your model approaches large angles and large state
values.

• It reduces the number of solver resets during simulation and eliminates the need for zero-crossing
detection, improving simulation time.

• It eliminates large angle values, speeding up computation of trigonometric functions on angular
states.

• It improves solver accuracy and performance and enables unlimited simulation time.

Resetting the State

The block can reset its state to the specified initial condition based on an external signal. To cause the
block to reset its state, select one of the External reset choices. A trigger port appears below the
block's input port and indicates the trigger type.

• Select rising to reset the state when the reset signal rises from a negative or zero value to a
positive value.

• Select falling to reset the state when the reset signal falls from a positive value to a zero or
negative value.

• Select either to reset the state when the reset signal changes from zero to a nonzero value, from
a nonzero value to zero, or changes sign.

• Select level to reset the state when the reset signal is nonzero at the current time step or
changes from nonzero at the previous time step to zero at the current time step.

• Select level hold to reset the state when the reset signal is nonzero at the current time step.

The reset port has direct feedthrough. If the block output feeds back into this port, either directly or
through a series of blocks with direct feedthrough, an algebraic loop results (see “Algebraic Loop
Concepts”). Use the Integrator block's state port to feed back the block's output without creating an
algebraic loop.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA) software
standard, your model must use Boolean signals to drive the external reset ports of Integrator blocks.

About the State Port

Selecting the Show state port check box on the Integrator block's parameter dialog box causes an
additional output port, the state port, to appear at the top of the Integrator block.

The output of the state port is the same as the output of the block's standard output port except for
the following case. If the block is reset in the current time step, the output of the state port is the

1 Blocks

1-942

value that would have appeared at the block's standard output if the block had not been reset. The
state port's output appears earlier in the time step than the output of the Integrator block's output
port. Use the state port to avoid creating algebraic loops in these modeling scenarios:

• Systems that use self-resetting integrators
• Passing states from one enabled subsystem to another

Note When updating a model, Simulink checks that the state port applies to one of these two
scenarios. If not, an error message appears. Also, you cannot log the output of this port in a
referenced model that executes in Accelerator mode. If logging is enabled for the port, Simulink
generates a "signal not found" warning during execution of the referenced model.

Specifying the Absolute Tolerance for the Block Outputs

By default Simulink software uses the absolute tolerance value specified in the Configuration
Parameters dialog box (see “Error Tolerances for Variable-Step Solvers”) to compute the output of the
Integrator block. If this value does not provide sufficient error control, specify a more appropriate
value in the Absolute tolerance field of the Integrator block dialog box. The value that you specify is
used to compute all the block outputs.

Examples

Create Self-Resetting Integrator

When you need an Integrator block to reset based on the block output value, you can use the state
port to avoid creating an algebraic loop.

Open the model SelfResettingIntegratorAlgLoop. The Integrator block in the model is
configured to reset when the reset signal changes from a positive value to a value of zero or a
negative value. The reset signal is created by subtracting the current block output value from 1 so
that the block resets itself each time the output value reaches 1.

mdl = "SelfResettingIntegratorAlgLoop";
open_system(mdl)

 Integrator

1-943

Because the reset port has direct feedthrough, using the output signal to calculate the value of the
reset signal creates an algebraic loop. The output signal value depends on the value of the reset
signal and vice versa. Because of this mutual dependence, the software cannot calculate either value.

When you try to simulate the model, the software issues diagnostics about the algebraic loop. To see
the algebraic loop in the model, use the Simulink.BlockDiagram.getAlgebraicLoops function.
The Algebraic Loops viewer opens and shows that the model contains one real algebraic loop.

Simulink.BlockDiagram.getAlgebraicLoops(mdl);

The algebraic loop is highlighted in the model.

The Integrator block calculates the state value before the output value in each time step. Because the
state value is available before the output value, you can use the state value to create a self-resetting
Integrator block without creating an algebraic loop.

To see this solution, open the model SelfResettingIntegrator. The Integrator block has the state
port enabled. Instead of using the output signal to calculate the value of the reset signal, the model
uses the state value.

mdl2 = "SelfResettingIntegrator";
open_system(mdl2)

1 Blocks

1-944

To verify that using the state instead of the output breaks the algebraic loop, call the
Simulink.BlockDiagram.getAlgebraicLoops function again.

Simulink.BlockDiagram.getAlgebraicLoops(mdl2);

No algebraic loops were found.

To see the self-resetting Integrator in action, simulate the model.

simOut = sim(mdl2);

To view the output and reset signals in the Scope, double-click the Scope block. The Integrator block
output signal oscillates between a value of 0 and 1. The output value resets to 0 each time the reset
signal value is 0.

 Integrator

1-945

Pass States Between Enabled Subsystems

You can use the state port to prevent creating an algebraic loop when you need an Integrator block in
one enabled subsystem to use the state of an Integrator block in another enabled subsystem.

Open the model EnabledSubsystemStatesAlgLoop. The model contains two enabled subsystems,
A and B. A Constant block provides the first input to each subsystem. The output from subsystem A is
the other input for subsystem B. The output from subsystem B is the other input for subsystem A. A
Pulse block provides the enable signal for both subsystems. The Pulse block enables subsystem B
directly. The Pulse block output is inverted using a Logical Operator block to create the enable signal
for subsystem A. As a result, the execution of the enabled subsystems alternates between subsystem
A and subsystem B as the value of the Pulse block output changes.

mdl = "EnabledSubsystemStatesAlgLoop";
open_system(mdl);

The enabled subsystems each contain an Integrator block that uses an input port to provide the initial
condition for the block. The Enable block in each subsystem is configured to reset the states each
time the subsystem executes. When the state of the Integrator block resets, the initial value comes
from the initial condition input port, which is connected to the output of the Integrator block in the
other subsystem. Passing the state from one subsystem to another allows for continual integration of
the signal while alternating execution between the subsystems.

1 Blocks

1-946

However, to compute the output value from subsystem B, the solver needs the output from subsystem
A and vice versa. Connecting the output of one Integrator block to the input of the other creates an
algebraic loop. To see the loop in the model, use the
Simulink.BlockDiagram.getAlgebraicLoops function. The Algebraic Loops viewer opens and
shows that the model contains one real algebraic loop.

Simulink.BlockDiagram.getAlgebraicLoops(mdl);

The algebraic loop is highlighted in the model.

 Integrator

1-947

To avoid creating this algebraic loop, you can use the state port instead of the output port to pass the
state of the Integrator block in one subsystem to the initial condition of the Integrator block in the
other. The solver computes the block state value at an earlier point in each time step, so the output
for subsystem B no longer depends on the output from subsystem A and vice versa.

To see this solution, open the model EnabledSubsystemStates. The input, enable, and output
signals are the same, but the output from subsystem A no longer acts as a second input for subsystem
B and vice versa.

mdl2 = "EnabledSubsystemStates";
open_system(mdl2)

1 Blocks

1-948

The software does not support connecting the state port of the Integrator block to an output port on
an enabled subsystem. The state port of the Integrator block in subsystem A is connected to the initial
condition port for the Integrator block in subsystem B using GoTo and From blocks with global
visibility. The state port of the Integrator block in subsystem B connects to the initial condition port
for the Integrator block in subsystem B using the same strategy.

To verify that using the state port resolved the algebraic loop, use the
Simulink.BlockDiagram.getAlgebraicLoops function again.

Simulink.BlockDiagram.getAlgebraicLoops(mdl2);

No algebraic loops were found.

Simulate the model. To view the results, double-click the Scope block. The Scope window displays the
enable signal and the output signals from each subsystem.

out = sim(mdl2);

 Integrator

1-949

For another example of a system that passes state values between enabled subsystems, see “Building
a Clutch Lock-Up Model” on page 13-156.

Ports
Input

Port_1 — Signal to integrate
scalar | vector | matrix

The input signal is a real-valued scalar, vector, or matrix that this block integrates.

This port does not have direct feedthrough.
Data Types: double

External Reset — Signal for resetting state to initial condition
scalar | vector | matrix

The external reset signal is a Boolean scalar, vector, or matrix that resets the block state to the initial
condition. See “Resetting the State” on page 1-942.

This port has direct feedthrough.

Dependencies

To enable this port, select External Reset.

1 Blocks

1-950

Data Types: Boolean

x0 — Initial condition
scalar | vector | matrix

The initial condition signal is a real-valued scalar, vector, or matrix that sets the initial condition for
the block.

This port has direct feedthrough.

Dependencies

To enable this port, set the Initial Conditions parameter to external.
Data Types: double

Output

Port_1 — Integrated signal
scalar | vector | matrix

The output signal is a scalar, vector, or matrix with the value of the integrated input signal. The
dimensions of the integrated signal match the dimensions of the input signal.
Data Types: double

Port_2 — Output saturation signal
scalar | vector | matrix

The output saturation signal is a scalar, vector, or matrix that indicates when each element in the
block state is limited by the upper or lower saturation limit. The signal value indicates whether the
value is limited and which limit is applied.

• -1 — Value limited by lower saturation limit
• 0 — Value not limited by either saturation limit
• 1 — Value limited by upper saturation limit

For more information, see “Limiting the Integral” on page 1-940.

Dependencies

To enable this port, select Show saturation port.
Data Types: double

Port_3 — Block state
scalar | vector | matrix

The block state signal is a real-valued scalar, vector, or matrix with a value that matches the block
state value.

For more information, see “About the State Port” on page 1-942.

Dependencies

To enable this port, select Show state port.
Data Types: double

 Integrator

1-951

Parameters
External reset — Reset states to their initial conditions

none (default) | rising | falling | either | level | level hold

Specify the type of trigger to use for the external reset signal.

• Select rising to reset the state when the reset signal rises from a negative or zero value to a
positive value, or a negative value to zero value.

• Select falling to reset the state when the reset signal falls from a positive value to a zero or
negative value, or from a zero value to negative value.

• Select either to reset the state when the reset signal changes from zero to a nonzero value, from
a nonzero value to zero, or changes sign.

• Select level to reset the state when the reset signal is nonzero at the current time step or
changes from nonzero at the previous time step to zero at the current time step.

• Select level hold to reset the state when the reset signal is nonzero at the current time step.

Programmatic Use
Block Parameter: ExternalReset
Type: character vector , string
Values: 'none' | 'rising' | 'falling' | 'either' | 'level' | 'level hold'
Default: 'none'

Initial condition source — Option to set initial condition using external signal

internal (default) | external

Select source of initial condition:

• internal — Get the initial conditions of the states from the Initial condition parameter.
• external — Get the initial conditions of the states from an external signal. When you select this

option, an input port appears on the block.

Programmatic Use
Block Parameter: InitialConditionSource
Type: character vector, string
Values: 'internal' | 'external'
Default: 'internal'

Initial condition — Initial state

0 (default) | real scalar or array

Set the initial state of the Integrator block.

Tips

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Setting Initial condition source to internal enables this parameter.

1 Blocks

1-952

Setting Initial condition source to external disables this parameter.
Programmatic Use

Block Parameter: InitialCondition
Type: scalar or vector
Default: '0'

Limit output — Limit block output values to specified range

off (default for Integrator) | on (default for Integrator Limited)

Limit the block's output to a value between the Lower saturation limit and Upper saturation limit
parameters.

• Selecting this check box limits the block output to a value between the Lower saturation limit
and Upper saturation limit parameters.

• Clearing this check box does not limit the block output values.

Dependencies

Selecting this parameter enables the Lower saturation limit and Upper saturation limit
parameters.
Programmatic Use
Block Parameter: LimitOutput
Type: character vector , string
Values: 'off' | 'on'
Default: 'off'

Upper saturation limit — Upper limit for the integral

inf (default) | scalar | vector | matrix

Specify the upper limit for the integral as a scalar, vector, or matrix. You must specify a value
between the Output minimum and Output maximum parameter values.
Dependencies

To enable this parameter, select the Limit output check box.
Programmatic Use
Block Parameter: UpperSaturationLimit
Type: character vector, string
Values: scalar | vector | matrix
Default: 'inf'

Lower saturation limit — Lower limit for the integral

-inf (default) | scalar | vector | matrix

Specify the lower limit for the integral as a scalar, vector, or matrix. You must specify a value between
the Output minimum and Output maximum parameter values.
Dependencies

To enable this parameter, select the Limit output check box.

 Integrator

1-953

Programmatic Use
Block Parameter: LowerSaturationLimit
Type: character vector , string
Values: scalar | vector | matrix
Default: '-inf'

Wrap state — Enable wrapping of states

off (default) | on

Enable wrapping of states between the Wrapped state upper value and Wrapped state lower
value parameters. Enabling wrap states eliminates the need for zero-crossing detection, reduces
solver resets, improves solver performance and accuracy, and increases simulation time span when
modeling rotary and cyclic state trajectories.

If you specify Wrapped state upper value as inf and Wrapped state lower value as -inf,
wrapping does not occur.

Dependencies

Selecting this parameter enables Wrapped state upper value and Wrapped state lower value
parameters.

Programmatic Use
Block Parameter: WrapState
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Wrapped state upper value — Specify upper value for wrapped state

pi (default) | scalar or vector

Upper limit of the block output.

Dependencies

Selecting Wrap state enables this parameter.

Programmatic Use
Block Parameter: WrappedStateUpperValue
Type: scalar or vector
Values: '2*pi'
Default: 'pi'

Wrapped state lower value — Specify lower value for wrap state

-pi (default) | scalar or vector

Lower limit of the block output.

Dependencies

Selecting Wrap state enables this parameter.

1 Blocks

1-954

Programmatic Use
Block Parameter: WrappedStateLowerValue
Type: scalar or vector
Values: '0'
Default: '-pi'

Show saturation port — Enable saturation output port

off (default) | on

Select this check box to add a saturation output port to the block. When you clear this check box, the
block does not have a saturation output port.

Dependencies

Selecting this parameter enables a saturation output port.

Programmatic Use
Block Parameter: ShowSaturationPort
Type: character vector , string
Values: 'off' | 'on'
Default: 'off'

Show state port — Enable state output port

off (default) | on

Select this check box to add a state output port to the block. When you clear this check box, the block
does not have a state output port.

Dependencies

Selecting this parameter enables a state output port.

Programmatic Use
Block Parameter: ShowStatePort
Type: character vector , string
Values: 'off' | 'on'
Default: 'off'

Absolute tolerance — Absolute tolerance for block states

auto (default) | real scalar or vector

• If you enter auto or –1, then Simulink uses the absolute tolerance value in the Configuration
Parameters dialog box (see “Solver Pane”) to compute block states.

• If you enter a real scalar, then that value overrides the absolute tolerance in the Configuration
Parameters dialog box for computing all block states.

• If you enter a real vector, then the dimension of that vector must match the dimension of the
continuous states in the block. These values override the absolute tolerance in the Configuration
Parameters dialog box.

Programmatic Use
Block Parameter: AbsoluteTolerance
Type: character vector, string, scalar, or vector

 Integrator

1-955

Values: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

Ignore limit and reset when linearizing — Treat block as unresettable and output unlimited

off (default) | on

Cause Simulink linearization commands to treat this block as unresettable and as having no limits on
its output, regardless of the settings of the reset and output limitation options of the block.

Tip

Use this check box to linearize a model around an operating point that causes the integrator to reset
or saturate.

Programmatic Use

Block Parameter: IgnoreLimit
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'
Default: 'on'

State Name (e.g., 'position') — Assign unique name to each state

' ' (default) | character vector | string

• To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
• To assign names to multiple states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.
• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, string, cell array, or structure.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector, string

1 Blocks

1-956

Values: ' ' | user-defined
Default: ' '

Block Characteristics
Data Types double
Direct Feedthrough yesa

Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

yes

a Ports of this block have different direct feedthrough characteristics. See port descriptions for details.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• Consider discretizing the model
• Not recommended for production code

See Also
Discrete-Time Integrator | Second-Order Integrator

 Integrator

1-957

Integrator Limited
Integrate signal

Libraries:
Simulink / Continuous

Description
The Integrator Limited block is identical to the Integrator block with the exception that the output of
the block is limited based on the upper and lower saturation limits. See “Limiting the Integral” on
page 1-960 for details.

Simulink treats the Integrator block as a dynamic system with one state. The block dynamics are
given by:

ẋ(t) = u(t)
y(t) = x(t)

 x(t0) = x0

where:

• u is the block input.
• y is the block output.
• x is the block state.
• x0 is the initial condition of x.

While these equations define an exact relationship in continuous time, Simulink uses numerical
approximation methods to evaluate them with finite precision. Simulink can use several different
numerical integration methods to compute the output of the block, each with advantages in particular
applications. Use the Solver pane of the Configuration Parameters dialog box (see “Solver Pane”) to
select the technique best suited to your application.

The selected solver computes the output of the Integrator block at the current time step, using the
current input value and the value of the state at the previous time step. To support this computational
model, the Integrator block saves its output at the current time step for use by the solver to compute
its output at the next time step. The block also provides the solver with an initial condition for use in
computing the block's initial state at the beginning of a simulation. The default value of the initial
condition is 0. Use the block parameter dialog box to specify another value for the initial condition or
create an initial value input port on the block.

Use the parameter dialog box to:

• Define upper and lower limits on the integral
• Create an input that resets the block's output (state) to its initial value, depending on how the

input changes

1 Blocks

1-958

• Create an optional state output so that the value of the block's output can trigger a block reset

Use the Discrete-Time Integrator block to create a purely discrete system.

Defining Initial Conditions

You can define the initial conditions as a parameter on the block dialog box or input them from an
external signal:

• To define the initial conditions as a block parameter, specify the Initial condition source
parameter as internal and enter the value in the Initial condition field.

• To provide the initial conditions from an external source, set the Initial condition source
parameter to external. An additional input port appears on the block.

Note If you select the Limit output parameter, the initial condition must be within the saturation
limits. If the initial condition is not within the block saturation limits, the block displays an error
message.

Wrapping Cyclic States

Several physical phenomena, such as oscillators and machinery that exhibits rotational movement,
are cyclic, periodic, or rotary in nature. Modeling these phenomena in a Simulink block diagram
involves integrating the rate of change for the periodic or cyclic signals to obtain the state of the
movement. Over long simulation time spans, this approach can result in the states that represent
periodic or cyclic signals integrating to large values. Computing trigonometric values, such as sine or
cosine, for these signals takes longer as the values become larger due to angle reduction. As the
signal values become larger, solver performance and accuracy degrades.

One approach for overcoming this drawback is to reset the angular state to 0 when it reaches 2π (or
to –π when it reaches π, for numerical symmetry). This approach improves the accuracy of sine and
cosine computations and reduces angle reduction time. But it also requires zero-crossing detection
and introduces solver resets, which slow down the simulation for variable step solvers, particularly in
large models.

To eliminate solver resets at wrap points, the Integrator block supports wrapped states that you can
enable by checking Wrap state on the block parameter dialog box. When you enable Wrap state, the
block icon changes to indicate that the block has wrapping states.

 Integrator Limited

1-959

The Integrator block supports wrapping states that are bounded by upper and lower values
parameters of the wrapped state. The algorithm for determining wrapping states is given by:

y =
x x ∈ [xl, xu)

x− (xu− xl)
x− xl
xu− xl

otherwise

where:

• xl is the lower value of the wrapped state.
• xu is the upper value of the wrapped state.
• y is the output.

The support for wrapping states provides these advantages.

• It eliminates simulation instability when your model approaches large angles and large state
values.

• It reduces the number of solver resets during simulation and eliminates the need for zero-crossing
detection, improving simulation time.

• It eliminates large angle values, speeding up computation of trigonometric functions on angular
states.

• It improves solver accuracy and performance and enables unlimited simulation time.

Limiting the Integral

To limit the output signal to a specified range of values, select Limit output and specify the
saturation limits. When the output reaches one of the limits, the integral action is disabled to prevent
integral wind up. During a simulation, you can change the limits but not whether the output is
limited. The block determines output signal value using these criteria:

• When the integral value is less than or equal to the lower saturation limit, the output signal value
is the lower saturation limit.

• When the integral value is between the lower saturation limit and the upper saturation limit, the
output is the integral value.

• When the integral value is greater than or equal to the upper saturation limit, the output signal
value is the upper saturation limit.

To generate a signal that indicates when the state is limited by the saturation limits, select Show
saturation port. A second output port appears on the block.

The saturation signal has one of three values:

• 1 — State limited by upper saturation limit
• 0 — State not limited
• –1 — State limited by lower saturation limit

1 Blocks

1-960

When you limit the Integrator block output, the block has three zero crossing signals: one to detect
when the integral value exceeds the upper saturation limit, one to detect when the integral value is
less than the lower saturation limit, and one to detect when the integral value changes from being
saturated to not being saturated.

Note By default, the Limit output parameter is enabled for the Integrator Limited block, with the
Upper saturation limit parameter value set to 1, and the Lower saturation limit parameter value
set to 0.

Resetting the State

The block can reset its state to the specified initial condition based on an external signal. To cause the
block to reset its state, select one of the External reset choices. A trigger port appears below the
block's input port and indicates the trigger type.

• Select rising to reset the state when the reset signal rises from a negative or zero value to a
positive value.

• Select falling to reset the state when the reset signal falls from a positive value to a zero or
negative value.

• Select either to reset the state when the reset signal changes from zero to a nonzero value, from
a nonzero value to zero, or changes sign.

• Select level to reset the state when the reset signal is nonzero at the current time step or
changes from nonzero at the previous time step to zero at the current time step.

• Select level hold to reset the state when the reset signal is nonzero at the current time step.

The reset port has direct feedthrough. If the block output feeds back into this port, either directly or
through a series of blocks with direct feedthrough, an algebraic loop results (see “Algebraic Loop
Concepts”). Use the Integrator block's state port to feed back the block's output without creating an
algebraic loop.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA) software
standard, your model must use Boolean signals to drive the external reset ports of Integrator blocks.

About the State Port

Selecting the Show state port check box on the Integrator block's parameter dialog box causes an
additional output port, the state port, to appear at the top of the Integrator block.

 Integrator Limited

1-961

The output of the state port is the same as the output of the block's standard output port except for
the following case. If the block is reset in the current time step, the output of the state port is the
value that would have appeared at the block's standard output if the block had not been reset. The
state port's output appears earlier in the time step than the output of the Integrator block's output
port. Use the state port to avoid creating algebraic loops in these modeling scenarios:

• Systems that use self-resetting integrators
• Passing states from one enabled subsystem to another

Note When updating a model, Simulink checks that the state port applies to one of these two
scenarios. If not, an error message appears. Also, you cannot log the output of this port in a
referenced model that executes in Accelerator mode. If logging is enabled for the port, Simulink
generates a "signal not found" warning during execution of the referenced model.

Specifying the Absolute Tolerance for the Block Outputs

By default Simulink software uses the absolute tolerance value specified in the Configuration
Parameters dialog box (see “Error Tolerances for Variable-Step Solvers”) to compute the output of the
Integrator block. If this value does not provide sufficient error control, specify a more appropriate
value in the Absolute tolerance field of the Integrator block dialog box. The value that you specify is
used to compute all the block outputs.

Examples

Create Self-Resetting Integrator

When you need an Integrator block to reset based on the block output value, you can use the state
port to avoid creating an algebraic loop.

Open the model SelfResettingIntegratorAlgLoop. The Integrator block in the model is
configured to reset when the reset signal changes from a positive value to a value of zero or a
negative value. The reset signal is created by subtracting the current block output value from 1 so
that the block resets itself each time the output value reaches 1.

mdl = "SelfResettingIntegratorAlgLoop";
open_system(mdl)

1 Blocks

1-962

Because the reset port has direct feedthrough, using the output signal to calculate the value of the
reset signal creates an algebraic loop. The output signal value depends on the value of the reset
signal and vice versa. Because of this mutual dependence, the software cannot calculate either value.

When you try to simulate the model, the software issues diagnostics about the algebraic loop. To see
the algebraic loop in the model, use the Simulink.BlockDiagram.getAlgebraicLoops function.
The Algebraic Loops viewer opens and shows that the model contains one real algebraic loop.

Simulink.BlockDiagram.getAlgebraicLoops(mdl);

The algebraic loop is highlighted in the model.

The Integrator block calculates the state value before the output value in each time step. Because the
state value is available before the output value, you can use the state value to create a self-resetting
Integrator block without creating an algebraic loop.

To see this solution, open the model SelfResettingIntegrator. The Integrator block has the state
port enabled. Instead of using the output signal to calculate the value of the reset signal, the model
uses the state value.

mdl2 = "SelfResettingIntegrator";
open_system(mdl2)

 Integrator Limited

1-963

To verify that using the state instead of the output breaks the algebraic loop, call the
Simulink.BlockDiagram.getAlgebraicLoops function again.

Simulink.BlockDiagram.getAlgebraicLoops(mdl2);

No algebraic loops were found.

To see the self-resetting Integrator in action, simulate the model.

simOut = sim(mdl2);

To view the output and reset signals in the Scope, double-click the Scope block. The Integrator block
output signal oscillates between a value of 0 and 1. The output value resets to 0 each time the reset
signal value is 0.

1 Blocks

1-964

Pass States Between Enabled Subsystems

You can use the state port to prevent creating an algebraic loop when you need an Integrator block in
one enabled subsystem to use the state of an Integrator block in another enabled subsystem.

Open the model EnabledSubsystemStatesAlgLoop. The model contains two enabled subsystems,
A and B. A Constant block provides the first input to each subsystem. The output from subsystem A is
the other input for subsystem B. The output from subsystem B is the other input for subsystem A. A
Pulse block provides the enable signal for both subsystems. The Pulse block enables subsystem B
directly. The Pulse block output is inverted using a Logical Operator block to create the enable signal
for subsystem A. As a result, the execution of the enabled subsystems alternates between subsystem
A and subsystem B as the value of the Pulse block output changes.

mdl = "EnabledSubsystemStatesAlgLoop";
open_system(mdl);

The enabled subsystems each contain an Integrator block that uses an input port to provide the initial
condition for the block. The Enable block in each subsystem is configured to reset the states each
time the subsystem executes. When the state of the Integrator block resets, the initial value comes
from the initial condition input port, which is connected to the output of the Integrator block in the
other subsystem. Passing the state from one subsystem to another allows for continual integration of
the signal while alternating execution between the subsystems.

 Integrator Limited

1-965

However, to compute the output value from subsystem B, the solver needs the output from subsystem
A and vice versa. Connecting the output of one Integrator block to the input of the other creates an
algebraic loop. To see the loop in the model, use the
Simulink.BlockDiagram.getAlgebraicLoops function. The Algebraic Loops viewer opens and
shows that the model contains one real algebraic loop.

Simulink.BlockDiagram.getAlgebraicLoops(mdl);

The algebraic loop is highlighted in the model.

1 Blocks

1-966

To avoid creating this algebraic loop, you can use the state port instead of the output port to pass the
state of the Integrator block in one subsystem to the initial condition of the Integrator block in the
other. The solver computes the block state value at an earlier point in each time step, so the output
for subsystem B no longer depends on the output from subsystem A and vice versa.

To see this solution, open the model EnabledSubsystemStates. The input, enable, and output
signals are the same, but the output from subsystem A no longer acts as a second input for subsystem
B and vice versa.

mdl2 = "EnabledSubsystemStates";
open_system(mdl2)

 Integrator Limited

1-967

The software does not support connecting the state port of the Integrator block to an output port on
an enabled subsystem. The state port of the Integrator block in subsystem A is connected to the initial
condition port for the Integrator block in subsystem B using GoTo and From blocks with global
visibility. The state port of the Integrator block in subsystem B connects to the initial condition port
for the Integrator block in subsystem B using the same strategy.

To verify that using the state port resolved the algebraic loop, use the
Simulink.BlockDiagram.getAlgebraicLoops function again.

Simulink.BlockDiagram.getAlgebraicLoops(mdl2);

No algebraic loops were found.

Simulate the model. To view the results, double-click the Scope block. The Scope window displays the
enable signal and the output signals from each subsystem.

out = sim(mdl2);

1 Blocks

1-968

For another example of a system that passes state values between enabled subsystems, see “Building
a Clutch Lock-Up Model” on page 13-156.

Ports
Input

Port_1 — Integrand signal
real scalar or array

Signal that needs to be integrated.
Data Types: double

External Reset — Reset state to initial conditions
real scalar or array

Reset the state to the specified initial conditions based on an external signal. See “Resetting the
State” on page 1-961.
Dependencies

To enable this port, enable the External Reset parameter.
Data Types: Boolean

x0 — Initial condition
real scalar or array

 Integrator Limited

1-969

Set the initial condition of the block's state from an external signal.

Dependencies

To enable this port, set the Initial Conditions parameter to external.
Data Types: double

Output

Port_1 — Output signal
real scalar or array

Output the integrated state.
Data Types: double

Port_2 — Show output saturation
-1 | 0 | 1

Indicate when the state is being limited. The signal has a value of 1 when the integral is limited by
the specified Upper saturation limit. When the signal is limited by the Lower saturation limit, the
signal value is -1. When the integral is between the saturation limits, the signal value is 0. See
“Limiting the Integral” on page 1-960.
Data Types: double

Port_3 — State
real scalar or array

Output the state of the block. See “About the State Port” on page 1-961.

Dependencies

Enable this port by enabling the Show state port parameter.
Data Types: double

Parameters
External reset — Reset states to their initial conditions

none (default) | rising | falling | either | level | level hold

Specify the type of trigger to use for the external reset signal.

• Select rising to reset the state when the reset signal rises from a negative or zero value to a
positive value, or a negative value to zero value.

• Select falling to reset the state when the reset signal falls from a positive value to a zero or
negative value, or from a zero value to negative value.

• Select either to reset the state when the reset signal changes from zero to a nonzero value, from
a nonzero value to zero, or changes sign.

• Select level to reset the state when the reset signal is nonzero at the current time step or
changes from nonzero at the previous time step to zero at the current time step.

• Select level hold to reset the state when the reset signal is nonzero at the current time step.

1 Blocks

1-970

Programmatic Use
Block Parameter: ExternalReset
Type: character vector , string
Values: 'none' | 'rising' | 'falling' | 'either' | 'level' | 'level hold'
Default: 'none'

Initial condition source — Option to set initial condition using external signal

internal (default) | external

Select source of initial condition:

• internal — Get the initial conditions of the states from the Initial condition parameter.
• external — Get the initial conditions of the states from an external signal. When you select this

option, an input port appears on the block.

Programmatic Use
Block Parameter: InitialConditionSource
Type: character vector, string
Values: 'internal' | 'external'
Default: 'internal'

Initial condition — Initial state

0 (default) | real scalar or array

Set the initial state of the Integrator block.

Tips

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Setting Initial condition source to internal enables this parameter.

Setting Initial condition source to external disables this parameter.

Programmatic Use

Block Parameter: InitialCondition
Type: scalar or vector
Default: '0'

Limit output — Limit block output values to specified range

off (default for Integrator) | on (default for Integrator Limited)

Limit the block's output to a value between the Lower saturation limit and Upper saturation limit
parameters.

• Selecting this check box limits the block output to a value between the Lower saturation limit
and Upper saturation limit parameters.

• Clearing this check box does not limit the block output values.

 Integrator Limited

1-971

Dependencies

Selecting this parameter enables the Lower saturation limit and Upper saturation limit
parameters.

Programmatic Use
Block Parameter: LimitOutput
Type: character vector , string
Values: 'off' | 'on'
Default: 'off'

Upper saturation limit — Upper limit for the integral

inf (default) | scalar | vector | matrix

Specify the upper limit for the integral as a scalar, vector, or matrix. You must specify a value
between the Output minimum and Output maximum parameter values.

Dependencies

To enable this parameter, select the Limit output check box.

Programmatic Use
Block Parameter: UpperSaturationLimit
Type: character vector, string
Values: scalar | vector | matrix
Default: 'inf'

Lower saturation limit — Lower limit for the integral

-inf (default) | scalar | vector | matrix

Specify the lower limit for the integral as a scalar, vector, or matrix. You must specify a value between
the Output minimum and Output maximum parameter values.

Dependencies

To enable this parameter, select the Limit output check box.

Programmatic Use
Block Parameter: LowerSaturationLimit
Type: character vector , string
Values: scalar | vector | matrix
Default: '-inf'

Wrap state — Enable wrapping of states

off (default) | on

Enable wrapping of states between the Wrapped state upper value and Wrapped state lower
value parameters. Enabling wrap states eliminates the need for zero-crossing detection, reduces
solver resets, improves solver performance and accuracy, and increases simulation time span when
modeling rotary and cyclic state trajectories.

If you specify Wrapped state upper value as inf and Wrapped state lower value as -inf,
wrapping does not occur.

1 Blocks

1-972

Dependencies

Selecting this parameter enables Wrapped state upper value and Wrapped state lower value
parameters.

Programmatic Use
Block Parameter: WrapState
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Wrapped state upper value — Specify upper value for wrapped state

pi (default) | scalar or vector

Upper limit of the block output.

Dependencies

Selecting Wrap state enables this parameter.

Programmatic Use
Block Parameter: WrappedStateUpperValue
Type: scalar or vector
Values: '2*pi'
Default: 'pi'

Wrapped state lower value — Specify lower value for wrap state

-pi (default) | scalar or vector

Lower limit of the block output.

Dependencies

Selecting Wrap state enables this parameter.

Programmatic Use
Block Parameter: WrappedStateLowerValue
Type: scalar or vector
Values: '0'
Default: '-pi'

Show saturation port — Enable saturation output port

off (default) | on

Select this check box to add a saturation output port to the block. When you clear this check box, the
block does not have a saturation output port.

Dependencies

Selecting this parameter enables a saturation output port.

Programmatic Use
Block Parameter: ShowSaturationPort
Type: character vector , string

 Integrator Limited

1-973

Values: 'off' | 'on'
Default: 'off'

Show state port — Enable state output port

off (default) | on

Select this check box to add a state output port to the block. When you clear this check box, the block
does not have a state output port.

Dependencies

Selecting this parameter enables a state output port.

Programmatic Use
Block Parameter: ShowStatePort
Type: character vector , string
Values: 'off' | 'on'
Default: 'off'

Absolute tolerance — Absolute tolerance for block states

auto (default) | real scalar or vector

• If you enter auto or –1, then Simulink uses the absolute tolerance value in the Configuration
Parameters dialog box (see “Solver Pane”) to compute block states.

• If you enter a real scalar, then that value overrides the absolute tolerance in the Configuration
Parameters dialog box for computing all block states.

• If you enter a real vector, then the dimension of that vector must match the dimension of the
continuous states in the block. These values override the absolute tolerance in the Configuration
Parameters dialog box.

Programmatic Use
Block Parameter: AbsoluteTolerance
Type: character vector, string, scalar, or vector
Values: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

Ignore limit and reset when linearizing — Treat block as unresettable and output unlimited

off (default) | on

Cause Simulink linearization commands to treat this block as unresettable and as having no limits on
its output, regardless of the settings of the reset and output limitation options of the block.

Tip

Use this check box to linearize a model around an operating point that causes the integrator to reset
or saturate.

Programmatic Use

Block Parameter: IgnoreLimit
Type: character vector, string
Values: 'off' | 'on'

1 Blocks

1-974

Default: 'off'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.
Programmatic Use
Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'
Default: 'on'

State Name (e.g., 'position') — Assign unique name to each state

' ' (default) | character vector | string

• To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
• To assign names to multiple states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.
• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, string, cell array, or structure.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector, string
Values: ' ' | user-defined
Default: ' '

Block Characteristics
Data Types double
Direct Feedthrough yesa

Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

yes

a Ports of this block have different direct feedthrough characteristics. See port descriptions for details.

Version History
Introduced before R2006a

 Integrator Limited

1-975

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• Consider discretizing the model
• Not recommended for production code

See Also
Discrete-Time Integrator | Second-Order Integrator

1 Blocks

1-976

Interpolation Using Prelookup
Use precalculated index and fraction values to accelerate approximation of N-dimensional function

Libraries:
Simulink / Lookup Tables

Description
The Interpolation Using Prelookup block is most efficient when used with the Prelookup block. The
Prelookup block calculates the index and interval fraction that specify how its input value u relates to
the breakpoint data set. Feed the resulting index and fraction values into an Interpolation Using
Prelookup block to interpolate an n-dimensional table. These two blocks have distributed algorithms.
When combined together, they perform the same operation as the integrated algorithm in the n-D
Lookup Table block. However, the Prelookup and Interpolation Using Prelookup blocks offer greater
flexibility that can provide more efficient simulation and code generation. For more information, see
“Efficiency of Performance”.

Supported Block Operations

To use the Interpolation Using Prelookup block, you specify a set of table data values directly on the
dialog box or feed values into the T input port. Typically, these table values correspond to the
breakpoint data sets specified in Prelookup blocks. The Interpolation Using Prelookup block
generates output by looking up or estimating table values based on index and interval fraction values
fed from Prelookup blocks. Labels for the index and interval fraction appear as k and f on the
Interpolation Using Prelookup block icon.

When inputs for index and interval
fraction...

The Interpolation Using Prelookup block...

Map to values in breakpoint data sets Outputs the table value at the intersection of the
row, column, and higher dimension breakpoints

Do not map to values in breakpoint data sets, but
are within range

Interpolates appropriate table values using the
Interpolation method you select

Do not map to values in breakpoint data sets, and
are out of range

Extrapolates the output value using the
Extrapolation method you select

How The Block Interpolates a Subset of Table Data

You can use the Number of sub-table selection dimensions parameter to specify that
interpolation occur only on a subset of the table data. To activate this interpolation mode, set this
parameter to a positive integer. This value defines the number of dimensions to select, starting from
the highest dimension of table data for the default column-major algorithm. Therefore, the value must
be less than or equal to the Number of table dimensions.

For row-major algorithms, the interpolation starts from the first or lowest dimension of the table data.

 Interpolation Using Prelookup

1-977

For nonzero values, the subtable selection behavior is optimized for row-major layout when you select
the Math and Data Types > Use algorithms optimized for row-major array layout configuration
parameter.

Suppose that you have 3-D table data in your Interpolation Using Prelookup block. This behavior
applies for the column-major algorithm.

Number of Selection
Dimensions

Action by the Block Block Appearance

0 Interpolates the entire table and
does not activate subtable selection

Does not change

1 Interpolates the first two
dimensions and selects the third
dimension

Displays an input port with the
label s3 that you use to select and
interpolate 2-D tables

2 Interpolates the first dimension
and selects the second and third
dimensions

Displays two input ports with the
labels s2 and s3 that you use to
select and interpolate 1-D tables

Subtable selection uses zero-based indexing. For an example of interpolating a subset of table data,
see “Using the Prelookup and Interpolation Blocks” on page 13-577.

For 2-D or n-D interpolation without subtable selection, the column-major and row-major algorithms
may differ in the order of output calculations, causing slight different numerical results.

Ports
Input

k1 — Index, k, for the first dimension of the table
scalar | vector | matrix

Zero-based index, k, specifying the interval containing the input u for the first dimension of the table.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

f1 — Fraction, f, for the first dimension of the table
scalar | vector | matrix

Fraction, f, representing the normalized position of the input within the interval, k, for the first
dimension of the table.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

kn — Index, k, for the n-th dimension of the table
scalar | vector | matrix

Zero-based index, k, specifying the interval containing the input u for the n-th dimension of the table.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

1 Blocks

1-978

fn — Fraction, f, for the n-th dimension of the table
scalar | vector | matrix

Fraction, f, representing the normalized position of the input within the interval, k, for the n-th
dimension of the table.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

kf1 — Input containing index k and fraction f
bus object

Inputs to the kf1 port contain index k and fraction f specified as a bus object.

Dependencies

To enable this port, select the Require index and fraction as a bus check box.

The number of available kf input ports depends on the value of the Number of dimensions and
Number of sub-table selection dimensions parameters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | bus

kfn — Input containing index k and fraction f
bus object

Inputs to the kfn port contain index k and fraction f for the n-th dimension of the input, specified as
a bus object.

Dependencies

To enable this port, select the Require index and fraction as a bus check box.

The number of available kf input ports depends on the value of the Number of dimensions and
Number of sub-table selection dimensions parameters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | bus

sm — Select and interpolate a subset of the table data
scalar | vector | matrix

For column-major algorithm, the block uses inputs to the sm, sm+1, ... sn port to perform selection
and interpolation within the subtables. m maps to the mth dimension of the table. n equals the
Number of dimensions.

For row-major algorithm, the block uses inputs to the s1, s2,... ,sm port to perform selection and
interpolation within the subtables. m maps to the mth dimension of the table. m equals the Number of
sub-table selection dimensions.

Dependencies

To enable this port, the Number of sub-table selection dimensions must be a positive integer less
than or equal to the Number of dimensions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

 Interpolation Using Prelookup

1-979

T — Table data
scalar | vector | matrix | n-d array

Table data values provided as input to port T. Typically, these table values correspond to the
breakpoint data sets specified in Prelookup blocks. The Interpolation Using Prelookup block
generates output by looking up or estimating table values based on index (k) and interval fraction (f)
values fed from Prelookup blocks.
Dependencies

To enable this port, set Source to Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Approximation of N-dimensional function
scalar | vector | matrix

Approximation of N-dimensional function, computed by interpolating (or extrapolating) table data
using values from the input index, k, and fraction, f.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main

Table data

Number of dimensions — Number of table data dimensions

2 (default) | integer between 1 and 30

Specify the number of dimensions that the table data must have. The Number of dimensions
defines the number of independent variables for the table.

To specify... Do this...
1, 2, 3, or 4 Select the value from the drop-down list.
A higher number of table dimensions Enter a positive integer directly in the field.

The maximum number of table dimensions that
this block supports is 30.

Programmatic Use
Block Parameter: NumberOfTableDimensions
Type: character vector
Values: '1' | '2' | '3' |'4' | ... | '30'
Default: '2'

Require index and fraction as bus — Index and fraction inputs can be combined in a bus

off (default) | on

1 Blocks

1-980

Select this check box to combine index and fraction inputs in a bus.

To enable the Prelookup block to supply input to the Interpolation Using Prelookup block, set:

• Output selection to Index and fraction as bus
• Output to Bus: <object name>, where <object name> must be a valid bus object name

accessible to the model

Regardless of this check box setting, the selection port always operates in nonbus mode.

Programmatic Use
Block Parameter: RequireIndexFractionAsBus
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Specification — Choose how to enter table data

Explicit values (default) | Lookup table object

Specify whether to enter table data directly or use a lookup table object. If you set this parameter to:

• Explicit values, the Source and Value parameters are visible on the dialog box.
• Lookup table object, the Name parameter is visible on the dialog box.

Programmatic Use
Block Parameter: TableSpecification
Type: character vector
Values: 'Explicit values' | 'Lookup table object'
Default: 'Explicit values'

Source — Source of table data

Dialog (default) | Input port

Specify whether to enter table data in the dialog box or to inherit the data from an input port. If you
set Source to:

• Dialog, enter table data in the text box under Value
• Input port, verify that an upstream signal supplies table data to the table input port

Dependencies

To enable this parameter, set Specification to Explicit values.

Programmatic Use
Block Parameter: TableSource
Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Value — Specify table data values

sqrt([1:11]' * [1:11]) (default) | multidimensional array of table data

 Interpolation Using Prelookup

1-981

Specify table data as an N-D array, where N is the value of the Number of dimensions parameter.
You can edit the block diagram without specifying a correctly dimensioned matrix by entering an
empty matrix ([]) or an undefined workspace variable in the Value edit field. For information about
how to construct multidimensional arrays in MATLAB, see “Multidimensional Arrays”.

If you set Source to Input port, verify that an upstream signal supplies table data to the T input
port. The size of table data must match the Number of table dimensions. For this option, the block
inherits table attributes from the T input port.

To edit lookup tables using the Lookup Table Editor, click Edit (see “Edit Lookup Tables”).

Dependencies

To enable this parameter and explicitly specify table values on the dialog box, you must set
Specification to Explicit values and Source to Dialog.

Programmatic Use
Block Parameter: Table
Type: character vector
Values: scalar, vector, matrix, or N-D array
Default: 'sqrt([1:11]' * [1:11])'

Name — Name of a Simulink.LookupTable object

Simulink.LookupTable object

Specify the name of a Simulink.LookupTable object. A lookup table object references Simulink

breakpoint objects. If a Simulink.LookupTable object does not exist, click the action button and
select Create. The corresponding parameters of the new lookup table object are automatically
populated with the block information.

Dependencies

To enable this parameter, set Specification to Lookup table object.

Programmatic Use
Block Parameter: LookupTableObject
Type: character vector
Value: Simulink.LookupTable object
Default: ''

Algorithm

Interpolation method — Select Linear point-slope, Flat, Nearest, or Linear Lagrange

Linear point-slope (default) | Nearest | Flat | Linear Lagrange

Specify the method the block uses to interpolate table data. You can select Linear point-slope,
Flat, Nearest, or Linear Lagrange. See “Interpolation Methods” for more information.

Programmatic Use
Block Parameter: InterpMethod
Type: character vector

1 Blocks

1-982

Values: 'Flat' | 'Linear point-slope' | 'Nearest' | 'Linear Lagrange'
Default: 'Linear point-slope'

Extrapolation method — Method of handling input that falls outside the range of the breakpoint data
set

Linear (default) | Clip

Specify the method the block uses to extrapolate values for all inputs that fall outside the range of the
breakpoint data set. You can select Clip or Linear. See “Extrapolation Methods” for more
information.

If the extrapolation method is Linear, the extrapolation value is calculated based on the selected
linear interpolation method. For example, if the interpolation method is Linear Lagrange, the
extrapolation method inherits the Linear Lagrange equation to compute the extrapolated value.

Dependencies

To enable the Extrapolation method parameter, set the Interpolation method to Linear.

The Interpolation Using Prelookup block does not support Linear extrapolation when the input or
output signals specify integer or fixed-point data types.

Programmatic Use
Block Parameter: ExtrapMethod
Type: character vector
Values: 'Clip' | 'Linear'
Default: 'Linear'

Valid index input may reach last index — Allow inputs to access the last elements of table data

off (default) | on

Specify how block inputs for index (k) and interval fraction (f) access the last elements of n-
dimensional table data. Index values are zero based.

This check box is relevant if the input index is equal to or larger than the table's last index for that
dimension. Due to rounding, selecting and clearing this check box may result in differing results for
the last index between simulation and code generation.

Check Box Block Behavior
on Returns the value of the last element in a dimension of its table when:

• k indexes the last table element in the corresponding dimension
• f is 0

off Returns the value of the last element in a dimension of its table when:

• k indexes the next-to-last table element in the corresponding dimension
• f is 1

Dependencies

This check box is visible only when:

 Interpolation Using Prelookup

1-983

• Interpolation method is Linear point-slope or Linear Lagrange
• Extrapolation method is Clip

Tip When you select Valid index input may reach last index for an Interpolation Using Prelookup
block, you must also select Use last breakpoint for input at or above upper limit for all
Prelookup blocks that feed it. This action allows the blocks to use the same indexing convention when
accessing the last elements of their breakpoint and table data sets.

Programmatic Use
Block Parameter: ValidIndexMayReachLast
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for out-of-range input — Block action when input is out of range

None (default) | Warning | Error

Specify whether to produce a warning or error when the input is out of range. Options include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Number of sub-table selection dimensions — Number of dimensions of the output computation
subtable

0 (default) | positive integer, less than or equal to the number of table dimensions

Specify the number of dimensions of the subtable that the block uses to compute the output. Follow
these rules:

• To enable subtable selection, enter a positive integer.

This integer must be less than or equal to the Number of table dimensions.
• To disable subtable selection, enter 0 to interpolate the entire table.

For nonzero values, the subtable selection behavior is optimized for row-major layout when you select
the Math and Data Types > Use algorithms optimized for row-major array layout configuration
parameter.

For more information, see “How The Block Interpolates a Subset of Table Data” on page 1-977.

Programmatic Use
Block Parameter: NumSelectionDims
Type: character vector

1 Blocks

1-984

Values: '0' | '1' | '2' | '3' | '4' | ... | Number of table dimensions
Default: '0'

Code generation

Remove protection against out-of-range index in generated code — Remove code that checks
for out-of-range index inputs

off (default) | on

Check Box Result When to Use
on Generated code does not

include conditional statements
to check for out-of-range index
inputs.

When the input k or f is out of
range, it may cause undefined
behavior for generated code.

For code efficiency

off Generated code includes
conditional statements to check
for out-of-range index inputs.

For safety-critical applications

If your input is not out of range, you can select the Remove protection against out-of-range index
in generated code check box for code efficiency. By default, this check box is cleared. For safety-
critical applications, do not select this check box. If you want to select the Remove protection
against out-of-range index in generated code check box, first check that your model inputs are in
range. For example:

1 Clear the Remove protection against out-of-range index in generated code check box.
2 Set the Diagnostic for out-of-range input parameter to Error.
3 Simulate the model in normal mode.
4 If there are out-of-range errors, fix them to be in range and run the simulation again.
5 When the simulation no longer generates out-of-range input errors, select the Remove

protection against out-of-range index in generated code check box.

Note When you select the Remove protection against out-of-range index in generated
code check box and the input k or f is out of range, the behavior is undefined for generated
code.

Depending on your application, you can run the following Model Advisor checks to verify the usage of
this check box:

• By Product > Embedded Coder > Identify lookup table blocks that generate expensive
out-of-range checking code

• By Product > Simulink Check > Modeling Standards > DO-178C/DO-331 Checks > Check
usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Advisor Checks”.

 Interpolation Using Prelookup

1-985

Additionally, to determine if it is safe to select this check box, if you have a Simulink Design Verifier
license, consider using the “Detect Block Input Range Violations” (Simulink Design Verifier) check.

This check box has no effect on the generated code when one of the following is true:

• The Prelookup block feeds index values to the Interpolation Using Prelookup block.

Because index values from the Prelookup block are always valid, no check code is necessary.
• The data type of the input k restricts the data to valid index values.

For example, unsigned integer data types guarantee nonnegative index values. Therefore,
unsigned input values of k do not require check code for negative values.

Programmatic Use
Block Parameter: RemoveProtectionIndex
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Data Types

Table data — Data type of table values

Inherit: Same as output (default) | Inherit: Inherit from 'Table data' | double |
single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) |
fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the table data type.

1 Blocks

1-986

Tip Specify a table data type different from the output data type for these cases:

• Lower memory requirement for storing table data that uses a smaller type than the output signal
• Sharing of prescaled table data between two Interpolation Using Prelookup blocks with different

output data types
• Sharing of custom storage table data in Simulink Coder generated code for blocks with different

output data types

Programmatic Use
Block Parameter: TableDataTypeStr
Type: character vector
Values: 'Inherit: Inherit from table data' | 'Inherit: Same as output' |
'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Same as input'

Table minimum — Minimum value of table data

[] (default) | scalar

Specify the minimum value for table data as a finite, real, double, scalar. The default value is []
(unspecified).

Programmatic Use
Block Parameter: TableMin
Type: character vector
Values: scalar
Default: '[]'

Table maximum — Maximum value of table data

[] (default) | scalar

Specify the maximum value for table data as a finite, real, double, scalar. The default value is []
(unspecified).

Programmatic Use
Block Parameter: TableMax
Type: character vector
Values: scalar
Default: '[]'

Intermediate results — Data type of intermediate results

Inherit: Inherit via internal rule (default) | Inherit: Same as output | double |
single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) |
fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Specify the intermediate results data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output

 Interpolation Using Prelookup

1-987

• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Tip Use this parameter to specify higher precision for internal computations than for table data or
output data.

Programmatic Use
Block Parameter: IntermediateResultsDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as output' |
'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Same as input'

Output — Output data type

Inherit: Inherit from 'Table data' (default) | Inherit: Inherit via back
propagation | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 |
uint64 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back propagation
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the output data type.

See “Control Data Types of Signals” in the Simulink User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: Inherit from table
data' | 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32'
| 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit from table data'

Output minimum — Minimum value the block can output

1 Blocks

1-988

[] (default) | scalar

Specify the minimum value that the block should output as a finite, real-valued scalar. The default
value is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”).
• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Output maximum — Maximum value the block can output

[] (default) | scalar

Specify the maximum value that the block should output as a finite, real-valued scalar. The default
value is [] (unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”).
• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Internal rule priority — Internal rule for intermediate calculations

Speed (default) | Precision

Specify the internal rule for intermediate calculations. Select Speed for faster calculations. If you do,
a loss of accuracy might occur, usually up to 2 bits.

Programmatic Use
Block Parameter: InternalRulePriority
Type: character vector
Values: 'Speed' | 'Precision'
Default: 'Speed'

 Interpolation Using Prelookup

1-989

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Convergent | Ceiling | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function in the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

1 Blocks

1-990

Action Rationale Impact on Overflows Example
Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.
Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2006b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Simulink PLC Coder™ has limited support for lookup table blocks. The coder does not support:

 Interpolation Using Prelookup

1-991

• Number of dimensions greater than 2
• Cubic spline interpolation method
• Begin index search using a previous index mode
• Cubic spline extrapolation method

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Prelookup

Topics
“About Lookup Table Blocks”
“Anatomy of a Lookup Table”
“Enter Breakpoints and Table Data”
“Guidelines for Choosing a Lookup Table”
“Column-Major Layout to Row-Major Layout Conversion of Models with Lookup Table Blocks”
(Simulink Coder)
“Interpolation with Subtable Selection Algorithm for Row-Major Array Layout” (Simulink Coder)

1 Blocks

1-992

Interpreted MATLAB Function
(To be removed) Apply MATLAB function or expression to input

Note The Interpreted MATLAB Function block will be removed in a future release. Use built-in
blocks instead. For more information on updating your code, see “Version History”.

Libraries:
Simulink / User-Defined Functions

Description
The Interpreted MATLAB Function block applies the specified MATLAB function or expression to the
input. The output of the function must match the output dimensions of the block.

Some valid expressions for this block are:

sin
atan2(u(1), u(2))
u(1)^u(2)

Note This block is slow because it calls the MATLAB parser during each integration step. Consider
using built-in blocks such as the Math Function block instead. Alternatively, you can write the
function as a MEX-file S-function, then access it using the S-Function block.

Ports
Input

In — Input of a Interpreted MATLAB function
scalar | vector | matrix

The Interpreted MATLAB Function block accepts one real or complex input of type double and
generates real or complex output of type double, depending on the setting of the Output signal
type parameter.
Data Types: double

Output

Out — Output of a Interpreted MATLAB function
scalar | vector | matrix

The Interpreted MATLAB Function block accepts one real or complex input of type double and
generates real or complex output of type double, depending on the setting of the Output signal
type parameter.

 Interpreted MATLAB Function

1-993

Data Types: double

Parameters
MATLAB Function — Specify the function or expression

function (default)

Specify the function or expression. If you specify a function only, it is not necessary to include the
input argument in parentheses.

Output dimensions — Specify the dimensions of the block output signal

scalar | matrix | vector | inherited

Specify the dimensions of the block output signal, for example, 2 for a two-element vector. The output
dimensions must match the dimensions of the value returned by the function or expression in the
MATLAB function field.

Specify -1 to inherit the dimensions from the output of the specified function or expression. To
determine the output dimensions, Simulink runs the function or expression once before simulation
starts.

Note If you specify -1 for this parameter and your function has persistent variables, then the
variables might update before the simulation starts. If you need to use persistent variables, consider
setting this parameter to a value other than -1.

Output signal type — Specify the block output signal type

auto (default) | real | complex

Specify the output signal type of the block as real, complex, or auto. A value of auto sets the
output type to be the same as the type of the input signal.

Collapse 2-D results to 1-D — Output a 2-D array as a 1-D array

off (default) | on

Select this check box to output a 2-D array as a 1-D array containing the 2-D array's elements in
column-major order.

Sample time — Specify sample time in the block

scalar

Note This parameter is not visible in the block dialog box unless it is explicitly set to a value other
than -1. To learn more, see “Blocks for Which Sample Time Is Not Recommended”.

1 Blocks

1-994

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2011a

R2022b: To be removed
Not recommended starting in R2022b

The Interpreted MATLAB Function block will be removed in a future release. Use built-in blocks
instead is recommended. Use the MATLAB Function block if MATLAB code is required for modeling.
You can also consider writing the function as a MEX file S-function and implement it using the S-
Function block.

See Also
MATLAB Function | MATLAB System

 Interpreted MATLAB Function

1-995

Interval Test
Determine if signal is in specified interval

Libraries:
Simulink / Logic and Bit Operations

Description
The Interval Test block outputs true (1) if the input is between the values specified by the Lower
limit and Upper limit parameters. The block outputs false (0) if the input is outside those values.
The output of the block when the input is equal to the Lower limit or the Upper limit is determined
by whether you select the Interval closed on left and Interval closed on right check boxes.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array.

Limitations

When the input signal is an enumerated type, the Upper limit and Lower limit values must be of the
same enumerated type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Output signal
scalar | vector | matrix | N-D array

Output signal indicating whether the input values fall within the specified interval. You can specify
the Output data type as boolean or uint8.
Data Types: uint8 | Boolean

Parameters
Interval closed on right — Include upper limit value

on (default) | off

When you select this check box, the Upper limit is included in the interval for which the block
outputs true (1).

1 Blocks

1-996

Programmatic Use
Block Parameter: IntervalClosedRight
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Upper limit — Upper limit of interval

0.5 (default) | scalar | vector | matrix | N-D array

The upper limit of the interval for which the block outputs true (1).

Programmatic Use
Block Parameter: uplimit
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '0.5'

Interval closed on left — Include lower limit value

on (default) | off

When you select this check box, the Lower limit is included in the interval for which the block
outputs true (1).

Programmatic Use
Block Parameter: IntervalClosedLeft
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Lower limit — Lower limit of interval

-0.5 (default) | scalar | vector | matrix | N-D array

The lower limit of the interval for which the block outputs true (1).

Programmatic Use
Block Parameter: lowlimit
Type: character vector
Values: scalar | vector | matrix | N-D array
Default: '-0.5'

Output data type — Output data type

boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

 Interval Test

1-997

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only the input/

output port definitions for the subsystem. Therefore, you can use a subsystem in
your model to generate an interface to existing, manually written HDL code.

The black-box interface generation for subsystems is similar to the Model block
interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the subsystem in
simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization

For the BlackBox architecture, you can customize port names and set attributes of the external
component interface. See “Customize Black Box or HDL Cosimulation Interface” (HDL Coder).

1 Blocks

1-998

HDL Block Properties

General
AdaptivePipelining Automatic pipeline insertion based on the synthesis tool, target frequency,

and multiplier word-lengths. The default is inherit. See also
“AdaptivePipelining” (HDL Coder).

BalanceDelays Detects introduction of new delays along one path and inserts matching
delays on the other paths. The default is inherit. See also
“BalanceDelays” (HDL Coder).

ClockRatePipelining Insert pipeline registers at a faster clock rate instead of the slower data
rate. The default is inherit. See also “ClockRatePipelining” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

FlattenHierarchy Remove subsystem hierarchy from generated HDL code. The default is
inherit. See also “FlattenHierarchy” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

StreamingFactor Number of parallel data paths, or vectors, that are time multiplexed to
transform into serial, scalar data paths. The default is 0, which implements
fully parallel data paths. See also “Streaming” (HDL Coder).

If this block is not the DUT, the block property settings in the Target Specification tab are ignored.
In the HDL Workflow Advisor, if you use the IP Core Generation workflow, these target specification
block property values are saved with the model. If you specify these target specification block
property values using hdlset_param, when you open HDL Workflow Advisor, the fields are
populated with the corresponding values.

 Interval Test

1-999

Target Specification
AdditionalTargetInter
faces

Additional target interfaces, specified as a character vector.

To save this block property on the model, in the Set Target Interface task
of the IP Core Generation workflow, corresponding to the DUT ports that
you want to add more interfaces, select Add more.... You can then add
more interfaces in the Add New Target Interfaces dialog box. Specify the
type of interface, number of additional interfaces, and a unique name for
each additional interface.

Values: '' (default) | cell array of character vectors

Example: '{{'AXI4-Stream','InterfaceID','AXI4-Stream1'}}'
ProcessorFPGASynch
ronization

Processor/FPGA synchronization mode, specified as a character vector.

To save this block property on the model, specify the Processor/FPGA
Synchronization in the Set Target Interface task of the IP Core
Generation workflow.

Values: Free running (default) | Coprocessing - blocking

Example: 'Free running'
TestPointMapping To save this block property on the model, specify the mapping of test point

ports to target platform interfaces in the Set Target Interface task of the
IP Core Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'TestPoint','AXI4-Lite','x"108"'}}'
TunableParameterMa
pping

To save this block property on the model, specify the mapping of tunable
parameter ports to target platform interfaces in the Set Target Interface
task of the IP Core Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'myParam','AXI4-Lite','x"108"'}}'
AXI4RegisterReadbac
k

To save this block property on the model, specify whether you want to
enable readback on AXI4 subordinate write registers in the Generate RTL
Code and IP Core task of the IP Core Generation workflow. To learn
more, see “Model Design for AXI4 Slave Interface Generation” (HDL
Coder).

Values: 'off' (default) | 'on'
AXI4SlaveIDWidth To save this block property on the model, specify the number of AXI

manager interfaces that you want to connect the DUT IP core to by using
the AXI4 Slave ID Width setting in the Generate RTL Code and IP
Core task of the IP Core Generation workflow. To learn more, see “Define
Multiple AXI Master Interfaces in Reference Designs to Access DUT AXI4
Slave Interface” (HDL Coder).

Values: 'off' (default) | 'on'

1 Blocks

1-1000

Target Specification
AXI4SlavePortToPipel
ineRegisterRatio

To save this block property on the model, specify the number of AXI4
subordinate ports for which you want a pipeline register to be inserted by
using the AXI4 Slave port to pipeline register ratio setting in the
Generate RTL Code and IP Core task of the IP Core Generation
workflow. To learn more, see “Model Design for AXI4 Slave Interface
Generation” (HDL Coder).

Values: 'off' (default) | 'on''10''20''35''50'
GenerateDefaultAXI4
Slave

To save this block property on the model, specify whether you want to
disable generation of default AXI4 subordinate interfaces in the Generate
RTL Code and IP Core task of the IP Core Generation workflow.

Values: 'on' (default) | 'off'
IPCoreAdditionalFiles Verilog or VHDL files for black boxes in your design. Specify the full path

to each file, and separate file names with a semicolon (;).

You can set this property in the HDL Workflow Advisor, in the Additional
source files field.

Values: '' (default) | character vector

Example: 'C:\myprojfiles
\led_blinking_file1.vhd;C:\myprojfiles
\led_blinking_file2.vhd;'

IPCoreName IP core name, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core
name field. If this property is set to the default value, the HDL Workflow
Advisor constructs the IP core name based on the name of the DUT.

Values: '' (default) | character vector

Example: 'my_model_name'
IPCoreVersion IP core version number, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core
version field. If this property is set to the default value, the HDL Workflow
Advisor sets the IP core version.

Values: '' (default) | character vector

Example: '1.3'

 Interval Test

1-1001

Target Specification
IPDataCaptureBuffer
Size

FPGA Data Capture buffer size, specified as a character vector. Use FPGA
Data Capture to observe signals in a design when running on an FPGA.

The buffer size uses values that are 128*2^n, where n is an integer. By
default, the buffer size is 128 (n=0). The maximum value of n is 13, which
means that the maximum value for buffer size is 1048576 (=128*2^13).

Values: '' (default) | character vector

Example: '1.3'

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Interval Test Dynamic

1 Blocks

1-1002

Interval Test Dynamic
Determine if signal is in specified interval

Libraries:
Simulink / Logic and Bit Operations

Description
The Interval Test Dynamic block outputs true (1) if the input is between the values of the external
signals up and lo. The block outputs false (0) if the input is outside those values. To control how the
block handles input values that are equal to the signal lo or the signal up, use the Interval closed
on left and Interval closed on right check boxes.

Ports
Input

up — Upper limit of interval
scalar | vector | matrix | N-D array

Upper limit of interval, specified as a scalar, vector, matrix, or N-D array.
Limitations

When the input signal is an enumerated type, the up and lo signals must be of the same enumerated
type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

u — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array.
Limitations

When the input signal is an enumerated type, the up and lo signals must be of the same enumerated
type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

lo — Lower limit of interval
scalar | vector | matrix | N-D array

Lower limit of interval, specified as a scalar, vector, matrix, or N-D array.
Limitations

When the input signal is an enumerated type, the up and lo signals must be of the same enumerated
type.

 Interval Test Dynamic

1-1003

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

y — Output signal
scalar | vector | matrix | N-D array

Output signal indicating whether the input values fall within the specified interval. You can specify
the Output data type as boolean or uint8.
Data Types: uint8 | Boolean

Parameters
Interval closed on right — Include upper limit value

on (default) | off

When you select this check box, the value of the signal connected to the up input port is included in
the interval for which the block outputs true (1).

Programmatic Use
Block Parameter: IntervalClosedRight
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Interval closed on left — Include lower limit value

on (default) | off

When you select this check box, the value of the signal connected to the lo input port is included in
the interval for which the block outputs true (1).

Programmatic Use
Block Parameter: IntervalClosedLeft
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Output data type — Output data type

boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'boolean' | 'uint8'
Default: 'boolean'

1 Blocks

1-1004

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 Interval Test Dynamic

1-1005

See Also
Interval Test

1 Blocks

1-1006

IsHermitian
Check if matrix is Hermitian or skew-Hermitian

Libraries:
Simulink / Matrix Operations

Description
The IsHermitian block determines if the input is a Hermitian or a skew-Hermitian matrix.

Ports
Input

Port_1 — Input matrix
matrix

Input matrix, specified as a matrix.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Output

Port_1 — Hermitian or skew-Hermitian matrix
real scalar Boolean

A Hermitian or skew-Hermitian matrix, returned as a real scalar Boolean.
Data Types: Boolean

Parameters
Mode — Whether matrix is Hermitian or skew-Hermitian

Hermitian (default) | Skew-Hermitian

Identify the matrix as Hermitian or Skew-Hermitian.

Programmatic Use
Block Parameter: Mode
Type: character vector
Values: 'Hermitian' | 'Skew-Hermitian'
Default: 'Hermitian'

 IsHermitian

1-1007

Block Characteristics
Data Types Boolean | double | fixed point | half | integera | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

a This block only supports signed integer types for the skew-symmetric mode.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Cross Product | Hermitian Transpose | Identity Matrix | IsTriangular | Matrix Square | Transpose |
ishermitian

Topics
“Compatible Array Sizes for Basic Operations”
MATLAB Matrix Operations

1 Blocks

1-1008

IsSymmetric
Check if matrix is symmetric or skew-symmetric

Libraries:
Simulink / Matrix Operations

Description
The IsSymmetric block determines if the input is a symmetric or skew-symmetric matrix.

Ports
Input

Port_1 — Input matrix
matrix

Input, specified as a matrix.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Output

Port_1 — Symmetric or skew-symmetric matrix
real scalar boolean

A symmetric or skew-symmetric matrix, returned as a real scalar boolean.
Data Types: Boolean

Parameters
Mode — Whether matrix is symmetric or skew-symmetric

Symmetric (default) | Skew-Symmetric

Identify the matrix as Symmetric or Skew-Symmetric.

Programmatic Use
Block Parameter: Mode
Type: character vector
Values: 'Symmetric' | 'Skew-Symmetric'
Default: 'Symmetric'

 IsSymmetric

1-1009

Block Characteristics
Data Types Boolean | double | fixed point | half | integera | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

a This block only supports signed integer types for the skew-symmetric mode.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Cross Product | Hermitian Transpose | Identity Matrix | IsTriangular | Matrix Square | Transpose

Topics
“Compatible Array Sizes for Basic Operations”
MATLAB Matrix Operations

1 Blocks

1-1010

IsTriangular
Check if matrix is upper or lower triangular

Libraries:
Simulink / Matrix Operations

Description
The IsTriangular block determines if the input is an upper triangular or lower triangular matrix.

Ports
Input

Port_1 — Input matrix
matrix

Input matrix, specified as a matrix.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

Port_2 — Upper triangular or lower triangular matrix
real scalar boolean

Upper triangular or lower triangular matrix, specified scalar, returned as a real scalar boolean.
Data Types: Boolean

Parameters
Mode — Whether matrix is upper triangular or lower triangular

Upper (default) | Lower

Identify the matrix as Upper or Lower.

Programmatic Use
Block Parameter: Mode
Type: character vector
Values: 'Upper' | 'Lower'
Default: 'Upper'

 IsTriangular

1-1011

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Cross Product | Hermitian Transpose | Identity Matrix | Matrix Square | IsSymmetric | Transpose

Topics
“Compatible Array Sizes for Basic Operations”
MATLAB Matrix Operations

1 Blocks

1-1012

Knob
Change parameter or variable value using knob with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
Use the Knob block to tune the value of a variable or block parameter to during simulation. When you
use the Knob block in the Customizable Blocks library, you can customize the appearance of the block
so that it looks like a control in a real system. You can modify the range and tick values on the Knob
block to fit the desired range for the value you want to tune. Use the Knob block with other
dashboard blocks to create an interactive dashboard to control your model.

Customize Knob Blocks

When you add a Knob block to your model, the block is preconfigured with a default design. You can
use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

 Knob

1-1013

In design mode, you can:

• Upload a handle image.
• Upload a background image or set a solid background color.
• Change the color and opacity of the scale, tick labels, and value bar.
• Change the size of the scale and handle.
• Change the arc length of the scale.
• Reposition the scale and handle.
• Specify the scale direction as clockwise or counterclockwise.
• Specify the location of the origin from which the value bar grows.
• Upload a foreground image.

You can use the toolbar above the block to upload a handle or a background image and to change the
color and opacity of the scale, tick labels, and value bar. To change the color and opacity, in the
second section of the toolbar from the left, select a component. Then, click the color wheel in the
toolbar to change the color of the component. Move the slider to change the opacity.

To resize the scale or handle, or to change the arc length of the scale, select the component you want
to change in the canvas. Then, click and drag the grab points that define its dimensions.

To reposition the scale or handle, click and drag it in the canvas. The movement of the handle is
limited to the radial line that goes from the center of the block to the minimum value on the scale.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

1 Blocks

1-1014

Use the Design tab to:

• Specify the scale direction.
• Specify the origin.
• Upload a foreground image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

 Knob

1-1015

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to

1 Blocks

1-1016

the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Connection

Connection — Select variable or block parameter to connect
variable and parameter connection options

Use the Connection table in the Block Parameters dialog box to select or change the variable or
block parameter to control. To connect the block to a variable or block parameter:

1 If the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

2 Select a block in the model.
3 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy. Omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

4 Click Apply.

To help understand and debug your model, you can connect Dashboard blocks to variables and
parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Tip You can also use bind mode to select or change the variable or block parameter to control. To
enter bind mode:

• If you are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

 Knob

1-1017

•
Click the dashboard block in the canvas. If the dashboard block is not connected, Connect
and an ellipsis appear over the dashboard block. If the dashboard block is already connected, only
the ellipsis appears.

• If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
parameters and variables available for connection appears.

To connect the dashboard block in bind mode:

• From the list, select the variable or parameter you want to connect.
•

To exit bind mode, click Done Connecting over the dashboard block.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some properties apply to connecting dashboard blocks to parameters. Some
properties apply to connecting dashboard blocks to variables. Not all fields have a value for a
connection because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

Main

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

1 Blocks

1-1018

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Scale Direction — Direction of increasing scale values
Clockwise (default) | Counterclockwise

Set the direction of increasing scale values.

Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Label — Position of label displaying name of connected element

Top (default) | Bottom | Hide

You can display the name of the element to which the dashboard block connects in a label positioned
at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

 Knob

1-1019

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Knob

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Scale

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

1 Blocks

1-1020

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Origin — Value on scale from which handle moves and value bar grows
auto (default) | scalar

Specify the value on the scale from which the handle moves and the value bar grows. When set to
auto, the Origin is the minimum of the scale.
Example: 0

Scale Direction — Direction of increasing scale values
Clockwise (default) | Counterclockwise

Set the direction of increasing scale values.

 Knob

1-1021

Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Arc — Arc length of scale
270 (default) | scalar

Specify the arc length of the scale as a scalar value, measured in degrees.
Example: 90

Start Angle — Angular location of scale minimum
135 (default) | scalar

Specify the angular location of the minimum scale value, measured in degrees clockwise from the
horizontal axis pointing right.
Example: 0

Inner Radius — Radius of free end of scale tick marks
scalar

Specify the radius of the free end of the scale tick marks as a ratio of the smaller of the two
dimensions of the bounding box of the scale, width or height. The Inner Radius can be larger than
the Outer Radius.
Example: 0.5

Outer Radius — Span line radius
scalar

Specify the span line radius as a ratio of the smaller of the two dimensions of the bounding box of the
scale, width or height. The Outer Radius can be smaller than the Inner Radius.
Example: 0.5

X Offset — Horizontal offset of left edge of scale bounding box from left edge of block
scalar

Specify the horizontal offset of the left edge of the bounding box of the scale from the left edge of the
block as a ratio of the block width. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale left, and an offset with a positive value moves the scale right.
Example: 1

Y Offset — Vertical offset of top edge of scale bounding box from top edge of block
scalar

Specify the vertical offset of the top edge of the bounding box of the scale from the top edge of the
block as a ratio of the block height. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale up, and an offset with a positive value moves the scale down.
Example: 1

Width — Scale width
scalar

1 Blocks

1-1022

Specify the width of the bounding box of the scale as a ratio of the block width.
Example: 2

Height — Scale height
scalar

Specify the height of the bounding box of the scale as a ratio of the block height.
Example: 2

Lock Aspect Ratio — Option to maintain scale aspect ratio
on (default) | off

Enable on this option to maintain the aspect ratio when resizing the scale using the Property
Inspector.

Tick Color — Color of scale tick marks, span line, and block name
[r g b] vector

Set the color of the scale tick marks, the span line, and the block name. Choose a color from the
palette of standard colors, or specify a custom color.

Tip You can also set the Tick Color by choosing a Foreground Color on the Format tab of the
Simulink Toolstrip.

To specify the color of the block text, use the Label Color parameter.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Label Color — Scale label font color
[r g b] vector

Choose a font color for the scale label from the palette of standard colors, or specify a custom color.

Tip To specify the color of the scale, use the Tick Color parameter.

Label Radius — Distance of labels from scale center
scalar

Specify the distance of the labels from the center of the scale as a ratio of the smaller of the two
block dimensions, width or height.
Example: 0.5

 Knob

1-1023

Handle

Width — Handle image width
scalar

Specify the width of the handle image as a ratio of the smaller of the two dimensions of the bounding
box of the scale, width or length.
Example: 1

Height — Handle image height
scalar

Specify the height of the handle image as a ratio of the smaller of the two dimensions of the bounding
box of the scale, width or length.
Example: 1

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Rotate Image — Rotation of handle image
180 (default) | scalar

Rotate the handle image about its center in 90 degree increments.
Example: 90

Offset from Center — Offset of handle image center from scale center
0 (default) | scalar

Specify the distance from the center of the handle image to the center of the scale as a ratio of the
diameter of the scale.
Example: 1

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can provide a background image, or to select a solid color. To select a
solid background color, turn Use Background Color on. To provide a background image, turn Use
Background Color off.

Note Changing the background color using the toolstrip removes the background image and enables
the Use Background Color option.

When you use a solid background with the Circular Gauge block, you can design noncircular gauges.
When the scale arc angle is 180° or smaller, the background shape conforms to the scale.

1 Blocks

1-1024

Example: on

Background Color — Block background color
[r g b] vector

To select a solid background color, enable the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

Note When you use a solid background with the Circular Gauge block, you can design noncircular
gauges. When the scale arc angle is 180° or smaller, the background shape conforms to the scale.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Offset from Scale — Offset of outer edge of area with block background color from scale
scalar

Set the offset of the outer edge of the area covered by the block background color from the scale
span line, specified as a scalar value from 0 to 1.

 Knob

1-1025

Example: 0.1

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2021a

1 Blocks

1-1026

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (⌘) instead of Ctrl.

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2022a: Change scale direction

 Knob

1-1027

Starting in R2022a, you can change the direction of the scale of these blocks from the Customizable
Blocks library:

• Circular Gauge
• Horizontal Gauge
• Horizontal Slider
• Knob
• Vertical Gauge
• Vertical Slider

R2022a: Specify origin for value bar and needle

The origin of a scale is the value on the scale from which the needle moves and the value bar grows.
Starting in R2022a, you can specify an origin for the scales of these blocks from the Customizable
Blocks library:

• Circular Gauge
• Horizontal Gauge
• Horizontal Slider
• Knob
• Vertical Gauge
• Vertical Slider

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

R2021b: Deploy customizable Gauge and Knob Dashboard blocks on Raspberry Pi boards
Behavior changed in R2021b

Starting in 2021b, the Simulink Support Package for Raspberry Pi Hardware supports deploying the
Circular Gauge block and the Knob block on your Raspberry Pi hardware boards.

You can customize the visual aspects of the blocks in the Simulink model and obtain the what you see
is what you get (WYSIWYG) visualization on a web browser you launch from the Raspberry Pi
terminal.

R2021b: Deploy customizable Gauge and Knob Dashboard blocks on Android device
Behavior changed in R2021b

Starting in 2021b, the Simulink Support Package for Android Devices supports deploying the Circular
Gauge block and the Knob block on your Android device.

You can customize the visual aspects of the blocks in the Simulink model and obtain the what you see
is what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

1 Blocks

1-1028

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Blocks
Customizable Rotary Switch | Knob | Rotary Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”
“Getting Started with Panels”

 Knob

1-1029

Knob
Tune parameter value with dial

Libraries:
Simulink / Dashboard

Description
The Knob block tunes the value of the connected block parameter to during simulation. For example,
you can connect the Knob block to a Gain block in your model and adjust its value during simulation.
You can modify the range of the Knob block's scale to fit your data. Use the Knob block with other
Dashboard blocks to create an interactive dashboard to control your model.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

1 Blocks

1-1030

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

 Knob

1-1031

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

1 Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

Scale Type — Type of scale

Linear (default) | Log

Type of scale displayed on the block. Linear specifies a linear scale, and Log specifies a logarithmic
scale.

Programmatic Use
Block Parameter: ScaleType

1 Blocks

1-1032

Type: string or character vector
Values: 'Linear' | 'Log'
Default: 'Linear'

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The minimum
must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The maximum
must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Label — Block label position

 Knob

1-1033

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015a

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a
dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add_block and set_param to create and
configure blocks from the Dashboard library in your model.

1 Blocks

1-1034

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Rotary Switch | Slider

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 Knob

1-1035

Lamp
Display color that reflects signal value on lamp with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
The Lamp block displays a color that reflects the value of the connected signal. When you use the
Lamp block in the Customizable Blocks library, you can modify the appearance of the block so it looks
like a real indicator lamp in your system. Use the Lamp block with other dashboard blocks to build an
interactive dashboard of controls and indicators for your model.

To configure the Lamp block, specify one or more states. A state pairs a State Value with a color for
the Lamp block to display. When the value of the connected signal is the same as the State Value, the
Lamp block displays the color. You can also specify the State Value as a range, such that the block
displays the color when the value of the connected signal falls into the specified range.

Customize Lamp Blocks

When you add a Lamp block to your model, the block is preconfigured with a default design. You can
use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

1 Blocks

1-1036

In design mode, you can add any number of states to the block. To add or delete states, use the
toolbar above the block.

For each state, you can:

• Select a shape for the region that changes color to reflect the value of the connected signal.
• Select the color of the shape in the state that you are configuring.
• Select an icon from a built-in set of shapes, wireless icons, and automotive indicator lamps, or

upload your own custom icon.
• Specify how to combine the shape and the icon.
• Specify the State Value as a number or a range.

You can also upload a foreground or a background image, or set a solid background color. The
foreground and background apply to all states.

To specify the shape, shape color, icon, and shape-icon combination style, use the toolbar above the
block.

To combine the shape and icon, in the third section of the toolbar from the left, choose one of these
combination styles:

• Simple — Overlay the icon on top of the shape.
• Intersect — Retain the intersection of the shape and icon as the area that changes color to reflect

the signal value.
• Subtract — Subtract the icon from the shape, producing a cutout in the shape of the icon in the

area that changes color to reflect the signal value.

Note The intersect and subtract combination styles use transparency in the icon asset to produce the
area that changes color. When you design a Lamp block that uses a custom icon, consider using an
SVG or PNG file for the icon if you want your design to use the intersect or subtract options. Both
formats support transparency, and SVG files also scale well in response to zoom operations.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

Use the Design tab to:

• Specify the State Value.
• Upload a foreground image.

 Lamp

1-1037

• Upload a background image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

1 Blocks

1-1038

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

• You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

• Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Signal

Connection — Signal to connect and display
signal connection options

Use the Connection table in the Block Parameters dialog box to select or change the signal that the
block connects to. To connect the block to a signal:

1 If the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

2 Select a signal in the model.
3 In the table, select the signal you want to connect.
4 Click Apply.

To help understand and debug your model, you can connect dashboard blocks to signals in the model
during simulation.

Tip You can also use bind mode select or change the signal that the block connects to. To enter bind
mode:

• If you are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

 Lamp

1-1039

• Click the dashboard block in the canvas. If the dashboard block is not connected, the Connect

button and an ellipsis appear over the dashboard block. If the dashboard block is already
connected, only the ellipsis appears.

• If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
signals that are available for connection appears.

To connect the dashboard block in bind mode:

• From the list, select the signal you want to connect.
•

To exit bind mode, click Done Connecting over the dashboard block.

Programmatic Use
Block Parameter: Binding
Type: Simulink.HMI.SignalSpecification
Default: []

Main

Label — Position of label displaying name of connected element

Hide (default) | Bottom | Top

You can display the name of the element to which the dashboard block connects in a label positioned
at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

1 Blocks

1-1040

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States

Specify State Values as Ranges — Option to specify ranges of values that activate states
off (default) | on

You can specify ranges of signal values that activate the Lamp block states. Select Specify State
Values as Ranges and specify the minimum and maximum of the value range that activates each
state.

Programmatic Use

To programmatically specify whether the states are each activated by a signal value or by a range of
signal values, specify the StateValueType parameter as a string or a character vector. To activate
each state with a signal value, set StateValueType to "Discrete". To activate each state with a
range of signal values, set StateValueType to "Range".
Block Parameter: StateValueType
Type: character vector | string
Values: "Discrete" | "Range"
Default: "Discrete"

States — Pairings of lamp color with signal value
scalar and [r g b] vector

States pair a lamp color with a value of the connected signal. Each state consists of a Color and a
State.

• State — Connected signal value or range of signal values that cause the Lamp block to display the
specified color. To specify a range of values, select Specify State Values as Ranges and specify
the minimum and maximum of the range of values that activates each state.

• Color — Lamp color when the connected signal value matches the corresponding State value. You
can select from a palette of standard colors or specify a custom color with RGB values.

The [undefined] state specifies the color of the Lamp block when the connected signal value does
not match any of the values specified in the States table. Click the + button to add another state.

Programmatic Use

To programmatically specify the State and Color parameter values for a Lamp block, use an array
of structures that contain these fields:

• Value — Scalar double signal value or vector specifying the minimum and maximum of a range
of double signal values that cause the Lamp block to display the specified color indication.

 Lamp

1-1041

Note Specifying a vector enables the Specify State Values as Ranges option.
• Color — 1-by-3 [r g b] vector with values between 0 and 1 that specifies the color for the

Lamp block to display.

lampState1.Value = [1 2];
lampState1.Color = [0 0 1];
lampState2.Value = [2 3];
lampState2.Color = [1 0 0];
lampStates = [lampState1 lampState2];

Block Parameter: StateColors
Type: structure array
Default: structure

The ColorDefault parameter specifies the color for the Lamp block when the value of the
connected signal does not match any of the specified state values. Specify the ColorDefault
parameter as a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ColorDefault
Type: [r g b] vector
Default: [0.7529 0.7529 0.7529]

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Lamp

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States

Select State — Selection of state to configure
scalar and [r g b] vector

Select a state that you want to configure from the drop-down menu in the Select State section of the
States component. You can use a customizable Lamp block to design a lamp with any number of
states greater than or equal to 1. Click + to add another state. Click X to delete the current state.

States match a display color to the value of the connected signal. Each state consists of a State and a
Color.

1 Blocks

1-1042

• State — Connected signal value or range of signal values that cause the Lamp block to display the
specified color. To specify a range of values, select Specify State Values as Ranges and specify
the minimum and maximum of the range of values that activates each state.

• Color — Lamp color when the connected signal value matches the corresponding State value. You
can select from a palette of standard colors or specify a custom color with RGB values.

The [default] state specifies the color of the Lamp block when the connected signal value does not
match any of the values specified in the States table.

Note You can configure more than the value and color of a state: you can configure all of the
parameters in the States component of the Design tab for a state. For example, you can select an
icon that will appear on the lamp when it is in the state. When you configure any of the parameters in
the States component, the changes are applied to the state that is selected in the Select State
section of the States component.

Tips

You can also configure the values and colors of the states for the block using the Parameters tab in
the Property Inspector.

Programmatic Use

To programmatically specify the State and Color parameter values for a Lamp block, use an array
of structures that contain these fields:

• Value — Scalar double signal value or vector specifying the minimum and maximum of a range
of double signal values that cause the Lamp block to display the specified color indication.

Note Specifying a vector enables the Specify State Values as Ranges option.
• Color — 1-by-3 [r g b] vector with values between 0 and 1 that specifies the color for the

Lamp block to display.

lampState1.Value = [1 2];
lampState1.Color = [0 0 1];
lampState2.Value = [2 3];
lampState2.Color = [1 0 0];
lampStates = [lampState1 lampState2];

Block Parameter: StateColors
Type: structure array
Default: structure

The ColorDefault parameter specifies the color for the Lamp block when the value of the
connected signal does not match any of the specified state values. Specify the ColorDefault
parameter as a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ColorDefault
Type: [r g b] vector
Default: [0.7529 0.7529 0.7529]

Apply Default Settings to All States — Option to apply settings of default state to all other states
off (default) | on

 Lamp

1-1043

Apply the settings of the default state to all other states. This option applies to all settings in the
States component except for the settings in the Value and Color section.

Specify State Values as Ranges — Option to specify ranges of values that activate states
off (default) | on

You can specify ranges of signal values that activate the states. Select Specify State Values as
Ranges and specify the minimum and maximum of the value range that activates each state.

Programmatic Use

To programmatically specify whether the states are each activated by a signal value or by a range of
signal values, specify the StateValueType parameter as a string or a character vector. To activate
each state with a signal value, set StateValueType to "Discrete". To activate each state with a
range of signal values, set StateValueType to "Range".
Block Parameter: StateValueType
Type: character vector | string
Values: "Discrete" | "Range"
Default: "Discrete"

Value — State value
scalar

Each state pairs a Value with a Color. Specify the Value that activates the state selected in the
Design tab.

Note When the Specify State Values as Ranges option is enabled, the Value parameter changes to
the parameters Minimum and Maximum, which allow you to define a range by specifying its minimum
and maximum values.

Example: 0

Color — State color
[r g b] vector

Each state pairs a Value with a Color. Choose the Color of the state selected in the Design tab from
the palette of standard colors, or specify a custom color.
Example: [1 0 0]

Opacity — State color opacity
1 (default) | scalar

Specify the opacity of the state Color as a scalar value from 0 to 1.
Example: 0.5

Style — Shape and icon combination style
Intersect (default) | Simple | Subtract

A lamp can show up to three different colors:

• State Color
• Color of the selected icon in the Property Inspector

1 Blocks

1-1044

• Background color or the background image, depending on which is activated

The colors that show on the lamp depend on how the shape and icon layers of the Lamp block are
combined. Select how to combine the layers:

• In the Intersect style, the area where the shape and icon overlap has the state Color. The area
where the shape and icon do not overlap has the background color or image.

• In the Simple style, the area of the shape that is not covered by the icon has the state Color. The
icon on the lamp has the same colors as its counterpart in the Property Inspector. The remaining
area has the background color or image.

• In the Subtract style, the area of the shape that is not covered by the icon has the state Color.
The remaining area has the background color or image.

Example: 'Simple'

Shape — State shape
Image

Select a shape that, in combination with the icon, determines the area on the lamp to which the state
Color is applied. Choose a circle, a square, or a triangle.

Icon — Lamp block appearance
SVG image

Use an icon to configure the appearance of the Lamp block in the model. You can choose from built-in
shape, automotive, and wireless icons, or you can upload your own custom SVG file as an icon.

To view icon options, in the Icon section, select an Icon Type. To use your own SVG file as the block
icon, in the Icon section, select Custom as the Icon Type, and in the Custom Icon section, click the
plus button to upload the SVG file.

 Lamp

1-1045

Shape Icons

Icon Icon Name Programmatic Use Value
Lamp Default

Check1 Check1

1 Blocks

1-1046

Icon Icon Name Programmatic Use Value
Check2 Check2

 Lamp

1-1047

Icon Icon Name Programmatic Use Value
Check3 Check3

1 Blocks

1-1048

Icon Icon Name Programmatic Use Value
Check4 Check4

 Lamp

1-1049

Icon Icon Name Programmatic Use Value
Circle Circle

1 Blocks

1-1050

Icon Icon Name Programmatic Use Value
Ex1 Ex1

 Lamp

1-1051

Icon Icon Name Programmatic Use Value
Ex2 Ex2

1 Blocks

1-1052

Icon Icon Name Programmatic Use Value
Ex3 Ex3

 Lamp

1-1053

Icon Icon Name Programmatic Use Value
Ex4 Ex4

1 Blocks

1-1054

Icon Icon Name Programmatic Use Value
Face Face

 Lamp

1-1055

Icon Icon Name Programmatic Use Value
Frown1 Frown1

1 Blocks

1-1056

Icon Icon Name Programmatic Use Value
Frown2 Frown2

 Lamp

1-1057

Icon Icon Name Programmatic Use Value
Hexagon Hexagon

L-shaped Membrane Membrane

1 Blocks

1-1058

Icon Icon Name Programmatic Use Value
Pentagon Pentagon

 Lamp

1-1059

Icon Icon Name Programmatic Use Value
Rectangle Rectangle

1 Blocks

1-1060

Icon Icon Name Programmatic Use Value
Smile1 Smile1

 Lamp

1-1061

Icon Icon Name Programmatic Use Value
Smile2 Smile2

1 Blocks

1-1062

Icon Icon Name Programmatic Use Value
Solid Face SolidFace

 Lamp

1-1063

Icon Icon Name Programmatic Use Value
Solid Frown1 SolidFrown1

1 Blocks

1-1064

Icon Icon Name Programmatic Use Value
Solid Frown2 SolidFrown2

 Lamp

1-1065

Icon Icon Name Programmatic Use Value
Solid Smile1 SolidSmile1

1 Blocks

1-1066

Icon Icon Name Programmatic Use Value
Solid Smile2 SolidSmile2

 Lamp

1-1067

Icon Icon Name Programmatic Use Value
Square Square

1 Blocks

1-1068

Icon Icon Name Programmatic Use Value
Triangle Triangle

 Lamp

1-1069

Automotive Icons

Icon Icon Name Programmatic Use Value
Adaptive Cruise Control AdaptiveCruiseControl

1 Blocks

1-1070

Icon Icon Name Programmatic Use Value
Adaptive Cruise Control Failure AdaptiveCruiseControlFai

lure

 Lamp

1-1071

Icon Icon Name Programmatic Use Value
Antilock Brake System AntilockBrakeSystem

1 Blocks

1-1072

Icon Icon Name Programmatic Use Value
Battery Battery

 Lamp

1-1073

Icon Icon Name Programmatic Use Value
Check Engine CheckEngine

1 Blocks

1-1074

Icon Icon Name Programmatic Use Value
Check Engine2 CheckEngine2

 Lamp

1-1075

Icon Icon Name Programmatic Use Value
Cruise Control CruiseControl

1 Blocks

1-1076

Icon Icon Name Programmatic Use Value
Eco Mode EcoMode

 Lamp

1-1077

Icon Icon Name Programmatic Use Value
Electronic Stability ElectronicStability

1 Blocks

1-1078

Icon Icon Name Programmatic Use Value
Engine Engine

 Lamp

1-1079

Icon Icon Name Programmatic Use Value
Engine Coolant Temp EngineCoolantTemp

1 Blocks

1-1080

Icon Icon Name Programmatic Use Value
Engine Failure EngineFailure

 Lamp

1-1081

Icon Icon Name Programmatic Use Value
Engine Heating EngineHeating

1 Blocks

1-1082

Icon Icon Name Programmatic Use Value
Engine Oil EngineOil

 Lamp

1-1083

Icon Icon Name Programmatic Use Value
Exterior Bulb Failure ExteriorBulbFailure

1 Blocks

1-1084

Icon Icon Name Programmatic Use Value
Front Fog Light FrontFogLight

 Lamp

1-1085

Icon Icon Name Programmatic Use Value
Fuel Fuel

1 Blocks

1-1086

Icon Icon Name Programmatic Use Value
Hazards Hazards

 Lamp

1-1087

Icon Icon Name Programmatic Use Value
Headlamp Leveling HeadlampLeveling

1 Blocks

1-1088

Icon Icon Name Programmatic Use Value
High Beams HighBeams

 Lamp

1-1089

Icon Icon Name Programmatic Use Value
Hill Descent Control HillDescentControl

1 Blocks

1-1090

Icon Icon Name Programmatic Use Value
Lighting Switch LightingSwitch

 Lamp

1-1091

Icon Icon Name Programmatic Use Value
Low Beams LowBeams

1 Blocks

1-1092

Icon Icon Name Programmatic Use Value
Parking Assistance ParkingAssistance

 Lamp

1-1093

Icon Icon Name Programmatic Use Value
Rear Fog Light RearFogLight

1 Blocks

1-1094

Icon Icon Name Programmatic Use Value
Side Lights SideLights

 Lamp

1-1095

Icon Icon Name Programmatic Use Value
Stability Control StabilityControl

1 Blocks

1-1096

Icon Icon Name Programmatic Use Value
Stability Control Off StabilityControlOff

 Lamp

1-1097

Icon Icon Name Programmatic Use Value
Tire Monitor TireMonitor

1 Blocks

1-1098

Icon Icon Name Programmatic Use Value
Traction Control TractionControl

 Lamp

1-1099

Icon Icon Name Programmatic Use Value
Traction Control Off TractionControlOff

1 Blocks

1-1100

Icon Icon Name Programmatic Use Value
Traction Control Failure TractionControlFailure

 Lamp

1-1101

Icon Icon Name Programmatic Use Value
Turn Signal Left TurnSignalLeft

1 Blocks

1-1102

Icon Icon Name Programmatic Use Value
Turn Signal Right TurnSignalRight

 Lamp

1-1103

Wireless Icons

Icon Icon Name Programmatic Use Value
Network Network

1 Blocks

1-1104

Icon Icon Name Programmatic Use Value
Network No Signal NetworkNoSignal

 Lamp

1-1105

Icon Icon Name Programmatic Use Value
Network Transmission NetworkTransmission

1 Blocks

1-1106

Icon Icon Name Programmatic Use Value
Network3G Network3G

 Lamp

1-1107

Icon Icon Name Programmatic Use Value
Network4G Network4G

1 Blocks

1-1108

Icon Icon Name Programmatic Use Value
Network5G Network5G

Tip The Dashboard library has libraries with a preconfigured Lamp block for each icon.

Programmatic Use
Block Parameter: Icon
Type: string | character vector
Default: 'Default'

X Offset — Horizontal offset of left edge of shape icon combination bounding box from left edge of
block
scalar

Specify the horizontal offset of the left edge of the bounding box of the shape and icon combination
from the left edge of the block as a ratio of the block width. Relative to the position of the shape and
icon combination when the offset is 0, an offset with a negative value moves the combination left and
an offset with a positive value moves the combination right.
Example: 1

Y Offset — Vertical offset of top edge of shape icon combination bounding box from top edge of block
scalar

Specify the vertical offset of the top edge of the bounding box of the shape and icon combination from
the top edge of the block as a ratio of the block height. Relative to the position of the shape and icon

 Lamp

1-1109

combination when the offset is 0, an offset with a negative value moves the combination up and an
offset with a positive value moves the combination down.
Example: 1

Width — Width of shape icon combination
scalar

Specify the width of the bounding box of the shape and icon combination as a ratio of the block width.
Example: 0.5

Height — Height of shape icon combination
scalar

Specify the height of the bounding box of the shape and icon combination as a ratio of the block
height.
Example: 0.5

Icon Size — Icon image zoom level
scalar

You can modify how the icon is shown on the lamp by zooming in or out on its center. Specify the
zoom level as a scalar value from 0 to 2. When the Icon Size is 1, the icon is zoomed to show the
whole image as large as is possible within the limits of the bounding box of the shape and icon
combination. When the Icon Size is larger than 1, the image is cut off at the limits of the bounding
box.
Example: 0.5

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can provide a background image or select a solid color. To select a
solid background color, select this parameter. To provide a background image, clear this parameter.

Note Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and enables the Use Background Color parameter.

Example: on

Color — Block background color
[r g b] vector

To select a solid background color, enable the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

1 Blocks

1-1110

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Offset from Scale — Corner radius of area with block background color
scalar

Specify the corner radius of the area covered by the block background color as a ratio of half of the
smaller of the two block dimensions, width or height.
Example: 0.25

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

 Lamp

1-1111

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2021b

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (⌘) instead of Ctrl.

1 Blocks

1-1112

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2022b: Extended support for customizable Dashboard blocks on Raspberry Pi boards

Starting in R2022b, the Simulink Support Package for Raspberry Pi Hardware supports deploying
these blocks from the Customizable Blocks library on your Raspberry Pi boards:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on a web browser you launch from a Raspberry Pi terminal.

R2022b: Extended support for customizable Dashboard blocks on Android devices

Starting in R2022b, the Simulink Support Package for Android Devices supports deploying these
blocks from the Customizable Blocks library on your Android devices:

• Horizontal Gauge
• Horizontal Slider
• Lamp

 Lamp

1-1113

• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

R2022a: View and edit each state in design mode

Starting in R2022a, you can view and edit each state for the customizable Lamp block in design
mode. You can modify more aspects of the block appearance for each state. For example, you can now
design a lamp that uses a different icon for each state.

R2022a: Lamp block supports specifying state values as ranges

In previous releases, the Lamp block would only enter a state if the connected signal had a single
unique value that you specified for that state. Starting in R2022a, you can specify a range of signal
values that activate each state.

R2022a: Change opacity of state colors

Starting in R2022a, for the customizable Lamp block, you can change the opacity of the state color.

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Lamp | MultiStateImage

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”
“Getting Started with Panels”

1 Blocks

1-1114

Lamp
Display color that reflects signal value on lamp

Libraries:
Simulink / Dashboard

Description
The Lamp block displays a color that indicates the value of the connected signal. To configure the
Lamp block to provide the information you need during simulation, specify one or more states, which
pair a signal value with a color for the Lamp block to display. You can use the Lamp block with other
Dashboard blocks to build an interactive dashboard of controls and indicators for your model.

Lamp Icons

You can change the appearance of the Lamp block by selecting one of the built-in icons or uploading
your own custom icon. The built-in icons include basic shapes, automotive indicator lamps, and
wireless icons. You can change the icon for a Lamp block by using the Icon parameter or by using the
block tab in the toolstrip. The Dashboard library also includes libraries that have a preconfigured
version of the Lamp block for each icon. For complete details, see “Icon” on page 1-0 .

 Lamp

1-1115

If you want to customize the appearance of the Lamp block beyond the ability to select an icon,
consider designing your own indicator lamp using the Lamp block in the Customizable Blocks library.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

1 Blocks

1-1116

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

• You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

• Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Connection — Signal to connect and display
signal connection options

Use the connection table to select the signal to connect to the block. To connect the block to a signal:

1 Make a selection in the model that includes one or more signals.
2 In the table, select the signal you want to connect.

 Lamp

1-1117

3 Click Apply.

Tip You can connect dashboard blocks to signals in the model during simulation.

Programmatic Use
Block Parameter: Binding
Type: Simulink.HMI.SignalSpecification
Default: []

States — Signal value and color pairs
scalar and RGB vector

States match a display color to the value of the connected signal. Each state consists of a State and a
Color.

• State — Connected signal value that causes the Lamp block to display the specified color.
• Color — Lamp color when the connected signal value matches the corresponding State value. You

can select from a palette of standard colors or specify a custom color with RGB values.

The [undefined] state specifies the color of the Lamp block when the connected signal value does
not match any of the values specified in the States table. Click the + button to add another state.
Programmatic Use

To programmatically specify the State and Color parameter values for a Lamp block, use an array
of structures that contain these fields:

• Value — Scalar double signal value that causes the Lamp block to display the specified color
indication.

• Color — 1-by-3 [r g b] vector with values between 0 and 1 that specifies the color for the
Lamp block to display.

lampState1.Value = 1;
lampState1.Color = [0 0 1];
lampState2.Value = 2;
lampState2.Color = [1 0 0];
lampStates = [lampState1 lampState2];

Block Parameter: StateColors
Type: structure array
Default: structure

The ColorDefault parameter specifies the color for the Lamp block when the value of the
connected signal does not match any of the specified state values. Specify the ColorDefault
parameter as a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ColorDefault
Type: [r g b] vector
Default: [0.7529 0.7529 0.7529]

Icon — Lamp block appearance
SVG image

Use an icon to configure the appearance of the Lamp block in the model. You can choose from built-in
shape, automotive, and wireless icons, or you can upload your own custom SVG file as an icon.

1 Blocks

1-1118

To view icon options, on the Icon tab, select an Icon Type. To use your own SVG file as the block
icon, select Custom as the Icon Type and upload the SVG file. The state colors for the Lamp block
can apply to these SVG elements:

• altGlyph
• circle
• ellipse
• path
• polygon
• rect
• text
• textPath
• tref
• tspan

 Lamp

1-1119

Shape Icons

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Lamp Default

Check1 Check1

1 Blocks

1-1120

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Check2 Check2

 Lamp

1-1121

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Check3 Check3

1 Blocks

1-1122

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Check4 Check4

 Lamp

1-1123

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Circle Circle

1 Blocks

1-1124

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Ex1 Ex1

 Lamp

1-1125

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Ex2 Ex2

1 Blocks

1-1126

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Ex3 Ex3

 Lamp

1-1127

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Ex4 Ex4

1 Blocks

1-1128

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Face Face

 Lamp

1-1129

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Frown1 Frown1

1 Blocks

1-1130

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Frown2 Frown2

 Lamp

1-1131

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Hexagon Hexagon

1 Blocks

1-1132

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Pentagon Pentagon

 Lamp

1-1133

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Rectangle Rectangle

1 Blocks

1-1134

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Smile1 Smile1

 Lamp

1-1135

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Smile2 Smile2

1 Blocks

1-1136

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Solid Face SolidFace

 Lamp

1-1137

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Solid Frown1 SolidFrown1

1 Blocks

1-1138

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Solid Frown2 SolidFrown2

 Lamp

1-1139

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Solid Smile1 SolidSmile1

1 Blocks

1-1140

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Solid Smile2 SolidSmile2

 Lamp

1-1141

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Square Square

1 Blocks

1-1142

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Triangle Triangle

 Lamp

1-1143

Automotive Icons

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Adaptive Cruise Control AdaptiveCruiseControl

1 Blocks

1-1144

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Adaptive Cruise Control Failure AdaptiveCruiseControlFai
lure

 Lamp

1-1145

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Antilock Brake System AntilockBrakeSystem

1 Blocks

1-1146

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Battery Battery

 Lamp

1-1147

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Check Engine CheckEngine

1 Blocks

1-1148

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Check Engine2 CheckEngine2

 Lamp

1-1149

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Cruise Control CruiseControl

1 Blocks

1-1150

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Eco Mode EcoMode

 Lamp

1-1151

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Electronic Stability ElectronicStability

1 Blocks

1-1152

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Engine Engine

 Lamp

1-1153

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Engine Coolant Temp EngineCoolantTemp

1 Blocks

1-1154

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Engine Failure EngineFailure

 Lamp

1-1155

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Engine Heating EngineHeating

1 Blocks

1-1156

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Engine Oil EngineOil

 Lamp

1-1157

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Exterior Bulb Failure ExteriorBulbFailure

1 Blocks

1-1158

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Front Fog Light FrontFogLight

 Lamp

1-1159

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Fuel Fuel

1 Blocks

1-1160

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Hazards Hazards

 Lamp

1-1161

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Headlamp Leveling HeadlampLeveling

1 Blocks

1-1162

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

High Beams HighBeams

 Lamp

1-1163

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Hill Descent Control HillDescentControl

1 Blocks

1-1164

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Lighting Switch LightingSwitch

 Lamp

1-1165

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Low Beams LowBeams

1 Blocks

1-1166

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Parking Assistance ParkingAssistance

 Lamp

1-1167

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Rear Fog Light RearFogLight

1 Blocks

1-1168

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Side Lights SideLights

 Lamp

1-1169

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Stability Control StabilityControl

1 Blocks

1-1170

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Stability Control Off StabilityControlOff

 Lamp

1-1171

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Tire Monitor TireMonitor

1 Blocks

1-1172

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Traction Control TractionControl

 Lamp

1-1173

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Traction Control Off TractionControlOff

1 Blocks

1-1174

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Traction Control Failure TractionControlFailure

 Lamp

1-1175

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Turn Signal Left TurnSignalLeft

1 Blocks

1-1176

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Turn Signal Right TurnSignalRight

 Lamp

1-1177

Wireless Icons

Icon Icon Name Programmatic Use Value
Network Network

1 Blocks

1-1178

Icon Icon Name Programmatic Use Value
Network No Signal NetworkNoSignal

 Lamp

1-1179

Icon Icon Name Programmatic Use Value
Network Transmission NetworkTransmission

1 Blocks

1-1180

Icon Icon Name Programmatic Use Value
Network3G Network3G

 Lamp

1-1181

Icon Icon Name Programmatic Use Value
Network4G Network4G

1 Blocks

1-1182

Icon Icon Name Programmatic Use Value
Network5G Network5G

Tips

• You can change the icon for a Lamp block using the block tab in the toolstrip.
• The Dashboard library has libraries with a preconfigured Lamp block for each icon.
• If you want to customize the appearance of the Lamp block beyond the ability to select an icon,

consider designing your own indicator lamp using the Lamp block in the Customizable Blocks
library.

Programmatic Use
Block Parameter: Icon
Type: string | character vector
Default: 'Default'

Label — Block label position

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

 Lamp

1-1183

Opacity — Block opacity

1 (default) | scalar

Block opacity, specified as a scalar value between 0 and 1.
Example: 0.5

Programmatic Use
Block Parameter: Opacity
Type: scalar
Default: 1

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
MultiStateImage

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1 Blocks

1-1184

Level-2 MATLAB S-Function
Use Level-2 MATLAB S-function in model

Libraries:
Simulink / User-Defined Functions

Description
This block allows you to use a Level-2 MATLAB S-function (see “Write Level-2 MATLAB S-Functions”)
in a model. To do this, create an instance of this block in the model. Then enter the name of the
Level-2 MATLAB S-function in the S-function name field of the block's parameter dialog box.

Note Use the S-Function block to include a Level-1 MATLAB S-function in a block.

If the Level-2 MATLAB S-function defines any additional parameters, you can enter them in the
Parameters field of the block's parameter dialog box. Enter the parameters as MATLAB expressions
that evaluate to their values in the order defined by the MATLAB S-function. Use commas to separate
each expression.

If a model includes a Level-2 MATLAB S-Function block, and an error occurs in the S-function, the
Level-2 MATLAB S-Function block displays MATLAB stack trace information for the error in a dialog
box. Click OK to close the dialog box.

Parameters
S-Function Name — Specify S-Function name
matlabfile (default) | S-Function name

Specify the name of a MATLAB function that defines the behavior of this block. The MATLAB function
must follow the Level-2 standard for writing MATLAB S-functions (see “Write Level-2 MATLAB S-
Functions” for details).

Programmatic Use
Block Parameter: FunctionName
Type: character vector
Values: 'matlabfile' | S-Function name
Default: 'matlabfile'

Parameters — Specify values of parameters for this block
no default (default)

Specify values of parameters for this block.

 Level-2 MATLAB S-Function

1-1185

Programmatic Use
Block Parameter: Parameters
Type: character vector
Values: values of block parameters
Default: ' '

Block Characteristics
Data Types Booleana | doublea | fixed pointa | integera | singlea

Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

a Level-1 MATLAB S-functions support only the double data type. Level-2 MATLAB S-functions support all data types that
Simulink supports.

Version History
Introduced in R2010b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• If a corresponding TLC file is available, the Level-2 MATLAB S-Function block uses the TLC file to
generate code, otherwise code generation throws an error.

• Real-time code generation does not support S-functions that call MATLAB.
• Actual data type or capability support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Level-1 MATLAB S-functions support only the double data type. Level-2 MATLAB S-functions
support all data types that Simulink supports.

See Also
Blocks
MATLAB Function | MATLAB System | Simulink Function | Subsystem, Atomic Subsystem, Nonvirtual
Subsystem, CodeReuse Subsystem | S-Function | S-Function Builder

Topics
“What Is an S-Function?”
“Write Level-2 MATLAB S-Functions”
“Design and Create a Custom Block”

1 Blocks

1-1186

Linear Gauge
Display input value on linear scale

Libraries:
Simulink / Dashboard

Description
The Linear Gauge block displays the connected signal on a straight linear scale during simulation.
Use the Linear Gauge block with other Dashboard blocks to build an interactive dashboard of
controls and indicators for your model. The Linear Gauge block provides an indication of the
instantaneous value of the connected signal throughout simulation. You can modify the range of the
Linear Gauge block to fit your data. You can also customize the appearance of the Linear Gauge block
to provide more information about your signal. For example, you can color-code in-specification and
out-of-specification ranges.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

 Linear Gauge

1-1187

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations

• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect
to real scalar signals.

• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

• You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

• Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Signal

Connection — Signal to connect and display
signal connection options

Use the connection table to select the signal to connect to the block. To connect the block to a signal:

1 Make a selection in the model that includes one or more signals.
2 In the table, select the signal you want to connect.
3 Click Apply.

Tip You can connect dashboard blocks to signals in the model during simulation.

Programmatic Use
Block Parameter: Binding
Type: Simulink.HMI.SignalSpecification

1 Blocks

1-1188

Default: []

Main

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The minimum
must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The maximum
must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Scale Colors — Color indications on gauge scale
colors for scale ranges

 Linear Gauge

1-1189

Color specifications for value ranges on the scale. Press the + button to add a scale color. For each
color added, specify the minimum and maximum values of the range in which you want to display that
color.
Programmatic Use

To programmatically specify the Scale Colors parameter, use an array of structures with the fields:

• Min — Minimum value for the color range on the scale
• Max — Maximum value for the color range on the scale
• Color — 1-by-3 vector of double values between 0 and 1 that specify the color for the range in

the form [r g b]

Include a structure in the array for each scale range for which you want to specify a color.

range1.Min = 0;
range1.Max = 10;
range1.Color = [0 0 1];
range2.Min = 10;
range2.Max = 15;
range2.Color = [0 1 0];
scaleRanges = [range1 range2];

Block Parameter: ScaleColors
Type: structure array
Default: 0x1 struct array

Label — Block label position

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.
Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Format

Opacity — Block background opacity

1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.
Example: 0.5
Programmatic Use
Block Parameter: Opacity
Type: scalar
Default: 1

Foreground Color — Block foreground color
[r g b] vector

1 Blocks

1-1190

Block foreground color, excluding the text. The Foreground Color applies to the scale and the block
name. You can select a color from a palette of standard colors or specify a custom color. To specify the
color for the block text, use the Font Color.
Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Background Color — Block background color
[r g b] vector

Block background color. You can select a color from a palette of standard colors or specify a custom
color.
Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Font Color — Block font color
[r g b] vector

Block font color. The Font Color applies to the tick labels on the scale. You can select a color from a
palette of standard colors or specify a custom color.
Programmatic Use

Specify the FontColor parameter for the block as a 1-by-3 [r g b] vector with values between 0
and 1.
Block Parameter: FontColor
Type: [r g b] vector

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015a

 Linear Gauge

1-1191

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Gauge | Half Gauge | Quarter Gauge | Circular Gauge

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1 Blocks

1-1192

Logical Operator
Perform specified logical operation on input

Libraries:
Simulink / Commonly Used Blocks
Simulink / Logic and Bit Operations
HDL Coder / Commonly Used Blocks
HDL Coder / Logic and Bit Operations

Description
The Logical Operator block performs the specified logical operation on its inputs. An input value is
true (1) if it is nonzero and false (0) if it is zero.

You select the Boolean operation connecting the inputs with the Operator parameter list. If you
select rectangular as the Icon shape property, the name of the selected operator displays on the
block icon. If you select distinctive as the Icon shape property, the name of the selected operator
does not display on the block icon. This table shows supported operations:

Operation Description
AND TRUE if all inputs are TRUE
OR TRUE if at least one input is TRUE
NAND TRUE if at least one input is FALSE
NOR TRUE when no inputs are TRUE
XOR TRUE if an odd number of inputs are TRUE
NXOR TRUE if an even number of inputs are TRUE
NOT TRUE if the input is FALSE

If you select distinctive as the Icon shape, the block appearance indicates its function. Simulink
software displays a distinctive shape for the selected operator, conforming to the IEEE Standard
Graphic Symbols for Logic Functions.

To specify the number of input ports, use the Number of input ports parameter. The output type is
specified using the Output data type parameter. An output value is 1 if TRUE and 0 if FALSE.

Note The output data type should represent zero exactly. Data types that satisfy this condition
include signed and unsigned integers, and any floating-point data type.

 Logical Operator

1-1193

The size of the output depends on input vector size and the selected operator:

• If the block has more than one input, any nonscalar inputs must have the same dimensions. For
example, if any input is a 2-by-2 array, all other nonscalar inputs must also be 2-by-2 arrays.

Scalar inputs are expanded to have the same dimensions as the nonscalar inputs.

If the block has more than one input, the output has the same dimensions as the inputs (after
scalar expansion) and each output element is the result of applying the specified logical operation
to the corresponding input elements. For example, if the specified operation is AND and the inputs
are 2-by-2 arrays, the output is a 2-by-2 array whose top left element is the result of applying AND
to the top left elements of the inputs, and so on.

• For a single vector input, the block applies the operation (except the NOT operator) to all
elements of the vector. The output is always a scalar.

• The NOT operator accepts only one input, which can be a scalar or a vector. If the input is a
vector, the output is a vector of the same size containing the logical complements of the input
vector elements.

When configured as a multi-input XOR gate, this block performs an addition modulo two operation as
mandated by the IEEE Standard for Logic Elements.

Ports
Input

Port_1 — First input signal
scalar | vector | matrix

First input signal, specified as a scalar, vector, or matrix.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Port_2 — Second input signal
scalar | vector | matrix

Second input signal, specified as a scalar, vector, or matrix.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Port_N — Nth input signal
scalar | vector | matrix

Nth input signal, specified as a scalar, vector, or matrix.

Dependencies

To enable additional input ports, use the Number of input ports parameter.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

1 Blocks

1-1194

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal, consisting of zeros and ones, with the same dimensions as the input. You control the
output data type with the Require all inputs and output to have the same data type and Output
data type parameters.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Operator — Logical operator

AND (default) | OR | NAND | NOR | XOR | NXOR | NOT

Select the logical operator to apply to block inputs.

• AND — TRUE if all inputs are TRUE
• OR — TRUE if at least one input is TRUE
• NAND — TRUE if at least one input is FALSE
• NOR — TRUE when no inputs are TRUE
• XOR — TRUE if an odd number of inputs are TRUE
• NXOR — TRUE if an even number of inputs are TRUE
• NOT — TRUE if the input is FALSE

Programmatic Use
Block Parameter: Operator
Type: character vector
Values: 'AND' | 'OR' | 'NAND' | 'NOR' | 'XOR' | 'NXOR' | 'NOT'
Default: 'AND'

Number of input ports — Number of inputs

2 (default) | positive integer

Specify the number of block inputs as a positive integer.
Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: positive integer
Default: '2'
Dependencies

This parameter is not available when you set the Operator to NOT.

Icon shape — Icon shape

 Logical Operator

1-1195

rectangular (default) | distinctive

Specify the shape of the block icon.

• rectangular — Results in a rectangular block that displays the name of the selected operator.
• distinctive — Use the graphic symbol for the selected operator as specified by the IEEE

standard.

Programmatic Use
Block Parameter: IconShape
Type: character vector
Values: 'rectangular' | 'distinctive'
Default: 'rectangular'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Data Type

Require all inputs and output to have the same data type — Require all ports to have same data
type

off (default) | on

To require that all block inputs and the output have the same data type, select this check box. When
you clear this check box, the inputs and output can have different data types.

Programmatic Use
Block Parameter: AllPortsSameDT
Type: character vector
Values: 'off' | 'on
Default: 'off'

Output data type — Output data type

boolean (default) | Inherit: Logical (see Configuration Parameters: Optimization) |
fixdt(1,16) | <data type expression>

Specify the output data type. When you select:

• boolean — The block output has data type boolean.

1 Blocks

1-1196

• Inherit: Logical (see Configuration Parameters: Optimization) — The block uses
the Implement logic signals as Boolean data configuration parameter to specify the output
data type (see “Implement logic signals as Boolean data (vs. double)”) .

Note This option supports models created before the boolean option was available. Use one of
the other options, preferably boolean, for new models.

• fixdt(1,16) — The block output has the specified fixed-point data type fixdt(1,16).

Tip The Data Type Assistant helps you set data attributes. To use the Data Type Assistant,

click Show data type assistant . For more information, see “Specify Data Types Using
Data Type Assistant”.

• <data type expression> — The block output has the data type you specify as a data type
expression, for example, Simulink.NumericType.

Tip To enter a built-in data type (double, single, int8, uint8, int16, uint16, int32, or
uint32), enclose the expression in single quotes. For example, enter 'double' instead of
double.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Logical (see Configuration Parameters: Optimization)' |
'boolean' | 'fixdt(1,16)' | '<data type expression>'
Default: 'boolean'

Mode — Category of data to specify

Built in (default) | Inherit | Fixed point | Expression

Select the category of data to specify.

• Built in — Specifies built-in data types. Selecting Built in enables boolean.
• Inherit — Specifies inheritance rules for data types. Selecting Inherit enables Logical (see

Configuration Parameters: Optimization).
• Fixed point — Specifies fixed-point data types.
• Expression — Specifies expressions that evaluate to data types.

Dependencies

To enable this parameter, click the Show data type assistant button.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

 Logical Operator

1-1197

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies

To enable this parameter, set Mode to Built in or Fixed point.

Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Signedness of fixed-point data

Signed (default) | Unsigned

Specify whether you want the fixed-point data as signed or unsigned. Signed data can represent
positive and negative values, but unsigned data represents positive values only. For more information,
see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Scaling — Method of scaling

Integer (default)

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. Specifying Integer has the same result as specifying a binary point location and
setting the fraction length to 0.

Dependencies

To enable this parameter, click the Show data type assistant button and set Mode to Fixed
point.

1 Blocks

1-1198

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 Logical Operator

1-1199

See Also
Relational Operator | Combinatorial Logic | “Implement logic signals as Boolean data (vs. double)”

1 Blocks

1-1200

1-D Lookup Table
Approximate one-dimensional function

Libraries:
Simulink / Lookup Tables
HDL Coder / Lookup Tables

Description
Supported Block Operations

The 1-D, 2-D, and n-D Lookup Table blocks evaluate a sampled representation of a function in N
variables

y = F(x1, x2, x3, ..., xN)

where the function F can be empirical. The block maps inputs to an output value by looking up or
interpolating a table of values you define with block parameters. The block supports flat (constant),
linear (linear point-slope), Lagrange (linear Lagrange), nearest, cubic-spline, and Akima spline
interpolation methods. You can apply these methods to a table of any dimension from 1 through 30.

In the following block, the first input identifies the first dimension (row) breakpoints, the second input
identifies the second dimension (column) breakpoints, and so on.

See “Identify Port Location on Rotated or Flipped Block” for a description of the port order for
various block orientations.

When the Math and Data Types > Use algorithms optimized for row-major array layout
configuration parameter is set, the 2-D and n-D Lookup Table block behavior changes from column-
major to row-major. For these blocks, the column-major and row-major algorithms may differ in the
order of the output calculations, possibly resulting in slightly different numerical values. This
capability requires a Simulink Coder or Embedded Coder license. For more information on row-major
support, see “Code Generation of Matrices and Arrays” (Simulink Coder).

Specification of Breakpoint and Table Data

These block parameters define the breakpoint and table data.

 1-D Lookup Table

1-1201

Block Parameter Purpose
Number of table dimensions Specifies the number of dimensions of your

lookup table.
Breakpoints Specifies a breakpoint vector that corresponds to

each dimension of your lookup table.
Table data Defines the associated set of output values.

Tip Evenly spaced breakpoints can make the generated code division-free. For more information, see
fixpt_evenspace_cleanup and “Identify questionable fixed-point operations” (Embedded Coder).

How the Block Generates Output

The n-D, 1-D and 2-D Lookup Table blocks generate output by looking up or estimating table values
based on the input values.

Block Inputs n-D Lookup Table Block Behavior
Match the values of indices in breakpoint vectors Outputs the table value at the intersection of the

row, column, and higher dimension breakpoints
Do not match the values of indices in breakpoint
vectors, but are within range

Interpolates appropriate table values, using the
Interpolation method you select

Do not match the values of indices in breakpoint
vectors, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

Other Blocks that Perform Equivalent Operations

You can use the Interpolation Using Prelookup block with the Prelookup block to perform the
equivalent operation of one n-D Lookup Table block. This combination of blocks offers greater
flexibility that can result in more efficient simulation performance for linear interpolations.

When the lookup operation is an array access that does not require interpolation, use the Direct
Lookup Table (n-D) block. For example, if you have an integer value k and you want the kth element
of a table, y = table(k), interpolation is unnecessary.

Ports
Input

u1 — First-dimension (row) inputs
scalar | vector | matrix

Real-valued inputs to the u1 port, mapped to an output value by looking up or interpolating the table
of values that you define.
Example: 0:10
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | enumerated | fixed point

1 Blocks

1-1202

T — Define the table of output values
matrix of values with dimensions that match the Number of table dimensions and the breakpoint
lengths for each dimension of the table

Specify the table of output values with a signal that is tunable at runtime.

During simulation, the matrix size must match the dimensions defined by the Number of table
dimensions parameter. However, during block diagram editing, you can enter an empty matrix
(specified as []) or an undefined workspace variable. This technique lets you postpone specifying a
correctly dimensioned matrix for the table data and continue editing the block diagram.

Dependencies

To enable this port, set:

• Data specification to Table and breakpoints.
• Table data to Input port.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

bp1 — Explicit breakpoint values
1-by-n or n-by-1 vector of monotonically increasing values

Specify the breakpoint data explicitly, based on the value of the Breakpoints specification
parameter, with a signal that is tunable at runtime.

• If you set Breakpoints specification to Explicit values, enter the breakpoint vector that
corresponds to each dimension of table data in each Breakpoints row. For each dimension,
specify breakpoints as a 1-by-n or n-by-1 vector whose values are strictly monotonically
increasing.

Note To specify breakpoints in the even spacing specification format, set Breakpoints
specification to Even spacing and use the Breakpoints First point and Spacing parameters.

Dependencies

To enable this port, set:

• Data specification to Table and breakpoints.
• Breakpoints specification to Explicit values.
• Breakpoints 1 to Input port.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | enumerated | fixed point

Output

Port_1 — Output computed by looking up or estimating table values
scalar | vector | matrix

Output generated by looking up or estimating table values based on the input values.

 1-D Lookup Table

1-1203

When block inputs... The n-D Lookup Table block...
Match the values of indices in breakpoint vectors Outputs the table value at the intersection of the

row, column, and higher dimension breakpoints
Do not match the values of indices in breakpoint
vectors, but are within range

Interpolates appropriate table values, using the
Interpolation method you select

Do not match the values of indices in breakpoint
vectors, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
Table and Breakpoints

Number of table dimensions — Number of lookup table dimensions
1 (default) | 2 | 3 | 4 | ... | 30

Enter the number of dimensions of the lookup table. This parameter determines:

• The number of independent variables for the table and the number of block inputs
• The number of breakpoint vectors to specify

To specify... Do this...
1, 2, 3, or 4 Select the value from the drop-down list.
A higher number of table dimensions Enter a positive integer directly in the field.

The maximum number of table dimensions that
this block supports is 30.

For example, a table with a size of M x N x ... means that the size of dimension 1 is M, the size of
dimension 2 is N, and so forth. M must match the first breakpoint length, N must match the second
breakpoint length, and so forth.

Programmatic Use
Block Parameter: NumberOfTableDimensions
Type: character vector
Values: '1' | '2' | '3' | '4' | ... | 30
Default: '1'

Data specification — Method of table and breakpoint specification
Table and breakpoints (default) | Lookup table object

From the list, select:

• Table and breakpoints — Specify the table data and breakpoints. Selecting this option
enables these parameters:

• Table data
• Breakpoints specification

1 Blocks

1-1204

• Breakpoints 1
• Edit table and breakpoints

To specify the table and breakpoints using input ports, see the Source parameter.
• Lookup table object — Use an existing lookup table (Simulink.LookupTable) object.

Selecting this option enables the Name field and Edit table and breakpoints button.

Programmatic Use
Block Parameter: DataSpecification
Type: character vector
Values: 'Table and breakpoints' | 'Lookup table object'
Default: 'Table and breakpoints'

Name — Name of the lookup table object
[] (default) | Simulink.LookupTable object

Enter the name of the lookup table (Simulink.LookupTable) object. If a Simulink.LookupTable

object does not exist, click the action button and select Create. The corresponding parameters of
the new lookup table object are automatically populated with the block information.

Dependencies

To enable this parameter, set Data specification to Lookup table object.

Programmatic Use
Block Parameter: LookupTableObject
Type: character vector
Values: name of a Simulink.LookupTable object
Default: ''

Breakpoints specification — Method of breakpoint specification
Explicit values (default) | Even spacing

Specify whether to enter data as explicit breakpoints or as parameters that generate evenly spaced
breakpoints.

• To explicitly specify breakpoint data, set this parameter to Explicit values and enter
breakpoint data in the text box next to the Breakpoints parameters.

• To specify parameters that generate evenly spaced breakpoints, set this parameter to Even
spacing and enter values for the First point and Spacing parameters for each dimension of
breakpoint data. The block calculates the number of points to generate from the table data.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints.

Programmatic Use
Block Parameter: BreakpointsSpecification
Type: character vector
Values: 'Explicit values' | 'Even spacing'
Default: 'Explicit values'

Source — Source of table and breakpoint data
Dialog (default) | Input port

 1-D Lookup Table

1-1205

Source of table and breakpoint data, specified as:

• Dialog — Specify the table or breakpoint data in Value parameter.
• Input port — Specify the table or breakpoint data through the associated input port.

You can create up to three breakpoint data input ports. For breakpoints 4 to 30, you can specify
breakpoints data only through the corresponding Breakpoints parameter.

Note Using the input port to specify table or breakpoint data might negatively affect block
performance for simulation due to runtime checks.

Dependencies

• To enable this parameter, set Data specification to Table and breakpoints.
• To enable the associated Value, set this parameter to Dialog.
• To enable the associated input port, set this parameter to Input port.
• Setting this parameter to Input port disables the Value field and hides the corresponding

parameter on the Data Types tab.
• Setting this parameter to Input port for any one of the parameters disables the Edit Table and

Breakpoints button.

Programmatic Use
Block Parameter: TableSource | BreakpointsForDimension1Source |
BreakpointsForDimension2Source | BreakpointsForDimension3Source
Type: character vector
Values: Dialog | Input port
Default: 'Dialog'

Table data — Define the table of output values
tanh([-5:5]) (default) | vector of values

Enter the table of output values in the associated Value field.

During simulation, the matrix size must match the dimensions defined by the Number of table
dimensions parameter. However, during block diagram editing, you can enter an empty matrix
(specified as []) or an undefined workspace variable. This technique lets you postpone specifying a
correctly dimensioned matrix for the table data and continue editing the block diagram.

Dependencies

To enable this parameter, set:

• Data specification to Table and breakpoints.
• Table data: Source to Dialog.

Programmatic Use
Block Parameter: Table
Type: character vector
Values: vector of table values
Default: 'tanh([-5:5])'

1 Blocks

1-1206

Breakpoints — Explicit breakpoint values, or first point and spacing of breakpoints
[-5:5] (default) | 1-by-n or n-by-1 vector of monotonically increasing values

Specify the breakpoint data explicitly or as evenly-spaced breakpoints, based on the value of the
Breakpoints specification parameter.

• If you set Breakpoints specification to Explicit values, enter the breakpoint vector that
corresponds to each dimension of table data in each Breakpoints row. For each dimension,
specify breakpoints as a 1-by-n or n-by-1 vector whose values are strictly monotonically
increasing.

• If you set Breakpoints specification to Even spacing, enter the parameters First point and
Spacing in each Breakpoints row to generate evenly spaced breakpoints in the respective
dimension. Your table data determines the number of evenly spaced points.

Dependencies

• To enable this parameter, set:

• Data specification to Table and breakpoints.
• Table data: Source to Dialog.

• When the Breakpoints specification parameter is set to Even spacing, you can only specify
breakpoints data through the dialog.

Programmatic Use
Block Parameter: BreakpointsForDimension1
Type: character vector
Values: 1-by-n or n-by-1 vector of monotonically increasing values
Default: '[10, 22, 31]'

First point — First point in evenly spaced breakpoint data
1 (default) | scalar

Specify the first point in your evenly spaced breakpoint data as a real-valued, finite, scalar. This
parameter is available when Breakpoints specification is set to Even spacing.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints, and Breakpoints
specification to Even spacing.

Programmatic Use
Block Parameter: BreakpointsForDimension1FirstPoint
Type: character vector
Values: real-valued, finite, scalar
Default: '1'

Spacing — Spacing between evenly spaced breakpoints
1 (default) | scalar

Specify the spacing between points in your evenly spaced breakpoint data.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints, and Breakpoints
specification to Even spacing.

 1-D Lookup Table

1-1207

Programmatic Use
Block Parameter: BreakpointsForDimension1Spacing
Type: character vector
Values: positive, real-valued, finite, scalar
Default: '1'

Edit table and breakpoints — Launch Lookup Table Editor dialog box
button

Click this button to open the Lookup Table Editor. For more information, see “Edit Lookup Tables”.

Clicking this button for a lookup table object lets you edit the object and save the new values for the
object.

Algorithm

Lookup method

Interpolation method — Method of interpolation between breakpoint values

Linear point-slope (default) | Flat | Nearest | Linear Lagrange | Cubic spline | Akima
spline

When an input falls between breakpoint values, the block interpolates the output value using
neighboring breakpoints. For more information on interpolation methods, see “Interpolation
Methods”.

Dependencies

• If you select Cubic spline, the block supports only scalar signals. The other interpolation
methods support nonscalar signals.

• If you select Akima spline, the extrapolation method can only be Akima spline.

When set to the modified Akima interpolation method, this block does not support:

• Row-major array layout and algorithms optimized for row-major array layout
• Scaled double and fixed-point data types
• Simulink.LookupTable objects
• Code generation when the configuration parameter Code Generation > Interface > Support
non-finite numbers check box is selected

When set to the modified Akima interpolation method, this block is known to run more slowly
when these conditions are true:

• Code generation-based simulation targets, such as those for accelerator mode, rapid
accelerator mode, protected models, and so forth.

• Code generated for large breakpoint and data table sizes. For example with a table size of
629x1601.

Programmatic Use
Block Parameter: InterpMethod
Type: character vector

1 Blocks

1-1208

Values: 'Linear point-slope' | 'Flat' | 'Nearest' | 'Linear Lagrange' | 'Cubic
spline' | 'Akima spline'
Default: 'Linear point-slope'

Extrapolation method — Method of handling input values that fall outside the range of a breakpoint
vector

Linear (default) | Clip | Cubic spline | Akima spline

Select Clip, Linear, or Cubic spline. See “Extrapolation Methods” for more information.

If the extrapolation method is Linear, the extrapolation value is calculated based on the selected
linear interpolation method. For example, if the interpolation method is linear Lagrange, the
extrapolation method inherits the linear Lagrange equation to compute the extrapolated value.

Dependencies

• To select Cubic spline for Extrapolation method, you must also select Cubic spline for
Interpolation method.

• To select Akima spline for Extrapolation method, you must also select Akima spline for
Interpolation method.

Programmatic Use
Block Parameter: ExtrapMethod
Type: character vector
Values: 'Linear' | 'Clip' | 'Cubic spline' | 'Akima spline'
Default: 'Linear'

Index search method — Method of calculating table indices

Evenly spaced points (default) | Linear search | Binary search

Select Evenly spaced points, Linear search, or Binary search. Each search method has
speed advantages in different circumstances:

• For evenly spaced breakpoint vectors (for example, 10, 20, 30, and so on), you achieve optimal
speed by selecting Evenly spaced points to calculate table indices.

This algorithm uses only the first two breakpoints of a set to determine the offset and spacing of
the remaining points.

Note Set Index search method to Evenly spaced points when using the
Simulink.LookupTable object to specify table data and the Breakpoints Specification
parameter of the referenced Simulink.LookupTable object is set to Even spacing.

• For unevenly spaced breakpoint vectors, follow these guidelines:

• If input signals do not vary much between time steps, selecting Linear search with Begin
index search using previous index result produces the best performance.

• If input signals jump more than one or two table intervals per time step, selecting Binary
search produces the best performance.

A suboptimal choice of index search method can lead to slow performance of models that rely heavily
on lookup tables.

 1-D Lookup Table

1-1209

Note The generated code stores only the first breakpoint, the spacing, and the number of
breakpoints when:

• The breakpoint data is not tunable.
• The index search method is Evenly spaced points.

Programmatic Use
Block Parameter: IndexSearchMethod
Type: character vector
Values: 'Binary search' | 'Evenly spaced points' | 'Linear search'
Default: 'Binary search'

Begin index search using previous index result — Start using the index from the previous time
step

off (default) | on

Select this check box when you want the block to start its search using the index found at the
previous time step. For inputs that change slowly with respect to the interval size, enabling this
option can improve performance. Otherwise, the linear search and binary search methods can take
longer, especially for large breakpoint vectors.

Dependencies

To enable this parameter, set Index search method to Linear search or Binary search.

Programmatic Use
Block Parameter: BeginIndexSearchUsingPreviousIndexResult
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for out-of-range input — Block action when input is out of range

None (default) | Warning | Error

Specify whether to produce a warning or error when the input is out of range. Options include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Apply full precision fixed-point algorithm when possible — More accurate fixed-point table
lookup

off (default) | on

1 Blocks

1-1210

Use this check box to enable full-precision fixed-point algorithm lookup for linear interpolation lookup
when possible. This algorithm generally achieves better precision for hardware-efficient fixed-point
rounding modes.
Dependencies

To enable this parameter, set:

• Number of table dimensions to 1.
• Interpolation method to Linear point-slope.
• Extrapolation method to Clip.

Programmatic Use
Block Parameter: ApplyFullPrecisionForLinearInterpolation
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Use last table value for inputs at or above last breakpoint — Method for computing output for
inputs at or above last breakpoint

off (default) | on

Using this check box, specify the indexing convention that the block uses to address the last element
of a breakpoint vector and its corresponding table value. This check box is relevant if the input is
equal to or larger than the last element of the breakpoint data. Due to rounding, selecting and
clearing this check box may result in differing results for the last breakpoint between simulation and
code generation.

Check Box Index Used by Block Interval Fraction
Selected Last element of breakpoint data on the

Table and Breakpoints tab
0

Cleared Next-to-last element of breakpoint data
on the Table and Breakpoints tab

1

Given an input u within range of a breakpoint vector bp, the interval fraction f, in the range 0≦f<1, is
computed as shown below.

 1-D Lookup Table

1-1211

Suppose the breakpoint vector is [1 4 5] and input u is 5.5. If you select this check box, the index
is that of the last element (5) and the interval fraction is 0. If you clear this check box, the index is
that of the next-to-last element (4) and the interval fraction is 1.

Dependencies

To enable this parameter, set:

• Interpolation method to Linear.
• Extrapolation method to Clip.

Programmatic Use
Block Parameter: UseLastTableValue
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Input settings

Use one input port for all input data — Use only one input port

off (default) | on

Select this check box to use only one input port that expects a signal that is n elements wide for an n-
dimensional table. This option is useful for removing line clutter on a block diagram with many
lookup tables.

Note When you select this check box, one input port with the label u appears on the block.

Programmatic Use
Block Parameter: UseOneInputPortForAllInputData
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Code generation

Remove protection against out-of-range input in generated code — Remove code that checks
for out-of-range input values

off (default) | on

Specify whether or not to include code that checks for out-of-range input values.

1 Blocks

1-1212

Check Box Result When to Use
on Generated code does not

include conditional statements
to check for out-of-range
breakpoint inputs.

When the input is out-of-range,
it may cause undefined behavior
for generated code.

For code efficiency

off Generated code includes
conditional statements to check
for out-of-range inputs.

For safety-critical applications

If your input is not out of range, you can select the Remove protection against out-of-range index
in generated code check box for code efficiency. By default, this check box is cleared. For safety-
critical applications, do not select this check box. If you want to select the Remove protection
against out-of-range index in generated code check box, first check that your model inputs are in
range. For example:

1 Clear the Remove protection against out-of-range index in generated code check box.
2 Set the Diagnostic for out-of-range input parameter to Error.
3 Simulate the model in normal mode.
4 If there are out-of-range errors, fix them to be in range and run the simulation again.
5 When the simulation no longer generates out-of-range input errors, select the Remove

protection against out-of-range index in generated code check box.

Note When you select the Remove protection against out-of-range index in generated
code check box and the input is out of range, the behavior is undefined for generated code.

Depending on your application, you can run the following Model Advisor checks to verify the usage of
this check box:

• By Product > Embedded Coder > Identify lookup table blocks that generate expensive
out-of-range checking code

• By Product > Simulink Check > Modeling Standards > DO-178C/DO-331 Checks > Check
usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Advisor Checks”.

Additionally, to determine if it is safe to select this check box, if you have a Simulink Design Verifier
license, consider using the “Detect Block Input Range Violations” (Simulink Design Verifier) check.
Programmatic Use
Block Parameter: RemoveProtectionInput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Support tunable table size in code generation — Enable tunable table size in the generated code

off (default) | on

 1-D Lookup Table

1-1213

Select this check box to enable tunable table size in the generated code. This option enables you to
change the size and values of the lookup table and breakpoint data in the generated code without
regenerating or recompiling the code. You can only decrease the size of the lookup table and
breakpoint data.

Dependencies

If you set Interpolation method to Cubic spline, this check box is not available.

Programmatic Use
Block Parameter: SupportTunableTableSize
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Maximum indices for each dimension — Maximum index value for each table dimension

[] (default) | scalar or vector of positive integer values
Example: [4 6] for a 5-by-7 table

Specify the maximum index values for each table dimension using zero-based indexing. You can
specify a scalar or vector of positive integer values using the following data types:

• Built-in floating-point types: double and single
• Built-in integer types: int8, int16, int32, uint8, uint16, and uint32

Examples of valid specifications include:

• [4 6] for a 5-by-7 table
• [int8(2) int16(5) int32(9)] for a 3-by-6-by-10 table
• A Simulink.Parameter whose value on generating code is one less than the dimensions of the

table data. For more information, see “Tunable Table Size in the Generated Code” on page 1-1222.

Dependencies

To enable this parameter, select Support tunable table size in code generation. On tuning this
parameter in the generated code, provide the new table data and breakpoints along with the tuned
parameter value.

1 Blocks

1-1214

Programmatic Use
Block Parameter: MaximumIndicesForEachDimension
Type: character vector
Values: scalar or vector of positive integer values
Default: '[]'

Data Types

Table data — Data type of table data

Inherit: Same as output (default) | double | single | half | int8 | uint8 | int16 | uint16 |
int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Tip Specify a table data type different from the output data type for these cases:

• Lower memory requirement for storing table data that uses a smaller type than the output signal
• Sharing of prescaled table data between two n-D Lookup Table blocks with different output data

types
• Sharing of custom storage table data in the generated code for blocks with different output data

types

Dependencies

To enable this parameter, set Table data from the Table and Breakpoints tab to Dialog.

Programmatic Use
Block Parameter: TableDataTypeStr
Type: character vector
Values: 'Inherit: Inherit from 'Table data'' | 'Inherit: Same as output' |
'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' |
'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as output'

Table data Minimum — Minimum value of the table data

[] | scalar

 1-D Lookup Table

1-1215

Specify the minimum value for table data. The default value is [] (unspecified).
Programmatic Use
Block Parameter: TableMin
Type: character vector
Values: scalar
Default: '[]'

Table data Maximum — Maximum value of the table data

[] | scalar

Specify the maximum value for table data. The default value is [] (unspecified).
Programmatic Use
Block Parameter: TableMax
Type: character vector
Values: scalar
Default: '[]'

Breakpoints — Breakpoint data type

Inherit: Same as corresponding input (default) | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the data type for a set of breakpoint data. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as corresponding input
• The name of a built-in data type, for example, single
• The name of a data type class, for example, an enumerated data type class
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Tip

• Breakpoints support unordered enumerated data. As a result, linear searches are also unordered,
which offers flexibility but can impact performance. The search begins from the first element in
the breakpoint.

• If the Begin index search using previous index result check box is selected, you must use
ordered monotonically increasing data. This ordering improves performance.

• For enumerated data, Extrapolation method must be Clip.
• The block does not support out-of-range input for enumerated data. When specifying enumerated

data, include the entire enumeration set in the breakpoint vector. For example, use the
enumeration function.

This is a limitation for using enumerated data with this block:

• The block does not support out-of-range input for enumerated data. When specifying enumerated
data, include the entire enumeration set in the breakpoint vector. For example, use the
enumeration function.

1 Blocks

1-1216

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Tip Specify a breakpoint data type different from the corresponding input data type for these cases:

• Lower memory requirement for storing breakpoint data that uses a smaller type than the input
signal

• Sharing of prescaled breakpoint data between two n-D Lookup Table blocks with different input
data types

• Sharing of custom storage breakpoint data in the generated code for blocks with different input
data types

Specify the same slope and bias for a breakpoint data type and its corresponding input data type if
either of them has a fixed-point data type.

Dependencies

To enable this parameter, set the corresponding Breakpoints parameter from the Table and
Breakpoints tab to Dialog.
Programmatic Use
Block Parameter: BreakpointsForDimension1DataTypeStr |
BreakpointsForDimension2DataTypeStr| ... |
BreakpointsForDimension30DataTypeStr
Type: character vector
Values: 'Inherit: Same as corresponding input' | 'Inherit: Inherit from
'Breakpoint data'' | 'double' | 'single' | 'half' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)'
| 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as corresponding input'

Breakpoints Minimum — Minimum value breakpoint data can have

[] | scalar

Specify the minimum value that a set of breakpoint data can have. The default value is []
(unspecified).
Programmatic Use
Block Parameter: BreakpointsForDimension1Min | BreakpointsForDimension2Min
| ... | BreakpointsForDimension30Min
Type: character vector
Values: scalar
Default: '[]'

Breakpoints Maximum — Maximum value breakpoint data can have

[] | scalar

Specify the maximum value that a set of breakpoint data can have. The default value is []
(unspecified).

 1-D Lookup Table

1-1217

Programmatic Use
Block Parameter: BreakpointsForDimension1Max | BreakpointsForDimension2Max
| ... | BreakpointsForDimension30Max
Type: character vector
Values: scalar
Default: '[]'

Fraction — Fraction data type

Inherit: Inherit via internal rule (default) | double | single | fixdt(1,16,0) | <data
type expression>

Specify the fraction data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: FractionDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' |
'fixdt(1,16,0)'|'<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Intermediate results — Intermediate results data type

Inherit: Same as output (default) | Inherit: Inherit via internal rule | double |
single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Specify the intermediate results data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Tip Use this parameter to specify higher (or lower) precision for internal computations than for table
data or output data.

1 Blocks

1-1218

Programmatic Use
Block Parameter: IntermediateResultsDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as output' |
'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'int64' | 'uint64' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data
type expression>'
Default: 'Inherit: Same as output'

Output — Output data type

Inherit: Same as input (default) | double | single | half | int8 | uint8 | int16 | uint16 |
int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back propagation
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: Inherit from table
data' | 'Inherit: Same as first input' | 'double' | 'single' | 'half' |
'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data type expression'
Default: 'Inherit: Same as first input'

Output Minimum — Minimum value the block can output

[] | scalar

Specify the minimum value that the block outputs. The default value is [] (unspecified). Simulink
software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”).
• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.

Programmatic Use
Block Parameter: OutMin
Type: character vector

 1-D Lookup Table

1-1219

Values: scalar
Default: '[]'

Output Maximum — Maximum value the block can output

[] | scalar

Specify the maximum value that the block can output. The default value is [] (unspecified). Simulink
software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”).
• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Internal rule priority — Internal rule for intermediate calculations

Speed (default) | Precision

Specify the internal rule for intermediate calculations. Select Speed for faster calculations. If you do,
a loss of accuracy might occur, usually up to 2 bits.
Dependencies

This parameter takes effect only when the Intermediate results parameter is set to Inherit:
Inherit via internal rule.
Programmatic Use
Block Parameter: InternalRulePriority
Type: character vector
Values: 'Speed' | 'Precision'
Default: 'Speed'

Require all inputs to have the same data type — Require all inputs to have the same data type

on (default) | off

Select to require all inputs to have the same data type.
Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

1 Blocks

1-1220

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Simplest (default) | Ceiling | Convergent | Floor | Nearest | Round | Zero

Specify the rounding mode for fixed-point lookup table calculations that occur during simulation or
execution of code generated from the model. For more information, see “Rounding” (Fixed-Point
Designer).

This option does not affect rounding of values of block parameters. Simulink rounds such values to
the nearest representable integer value. To control the rounding of a block parameter, enter an
expression using a MATLAB rounding function into the edit field on the block dialog box.
Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Simplest'

Saturate on integer overflow — Method of overflow action

off (default) | on

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this check
box (on).

Your model has possible
overflow and you want explicit
saturation protection in the
generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

An overflow associated with a
signed 8-bit integer can
saturate to -128 or 127.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The number 130 does not fit
in a signed 8-bit integer and
wraps to -126.

Tip If you save your model as version R2009a or earlier, this check box setting has no effect and no
saturation code appears. This behavior preserves backward compatibility.

 1-D Lookup Table

1-1221

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | enumerated | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Tunable Table Size in the Generated Code

Suppose that you have a lookup table and want to make the size tunable in the generated code. When
you use Simulink.LookupTable and Simulink.Breakpoint objects to configure lookup table
data for calibration in the generated code, use the SupportTunableSize property of the objects to
enable a tunable table size. When you do not use these classes, use the Support tunable table size
in code generation parameter in an n-D Lookup Table block to enable a tunable table size.

Assume that:

• You define a Simulink.Parameter structure in the preload function of your model:

p = Simulink.Parameter;
p.Value.MaxIdx = [2 2];
p.Value.BP1 = [1 2 3];
p.Value.BP2 = [1 4 16];
p.Value.Table = [4 5 6; 16 19 20; 10 18 23];
p.DataType = 'Bus: slLookupTable';
p.CoderInfo.StorageClass = 'ExportedGlobal';

% Create bus object slBus1 from MATLAB structure
Simulink.Bus.createObject(p.Value);
slLookupTable = slBus1;
slLookupTable.Elements(1).DataType = 'uint32';

• These block parameters apply in the n-D Lookup Table block.

Parameter Value
Number of table dimensions 2

1 Blocks

1-1222

Parameter Value
Table data p.Table
Breakpoints 1 p.BP1
Breakpoints 2 p.BP2
Support tunable table size in code
generation

on

Maximum indices for each dimension p.MaxIdx

The generated model_types.h header file contains a type definition that looks something like this.

typedef struct {
 uint32_T MaxIdx[2];
 real_T BP1[3];
 real_T BP2[3];
 real_T Table[9];
} slLookupTable;

The generated model.c file contains code that looks something like this.

/* Exported block parameters */
slLookupTable p = {
 { 2U, 2U },

 { 1.0, 2.0, 3.0 },

 { 1.0, 4.0, 16.0 },

 { 4.0, 16.0, 10.0, 5.0, 19.0, 18.0, 6.0, 20.0, 23.0 }
} ;

/* More code */

/* Model output function */
static void ex_lut_nd_tunable_table_output(int_T tid)
{
 /* Lookup_n-D: '<Root>/n-D Lookup Table' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 */
 Y = look2_binlcpw(U1, U2, p.BP1, p.BP2, p.Table, ...
p.MaxIdx, p.MaxIdx[0] + 1U);

 /* Outport: '<Root>/Out1' */
 ex_lut_nd_tunable_table_Y.Out1 = Y;

 /* tid is required for a uniform function interface.
 * Argument tid is not used in the function. */
 UNUSED_PARAMETER(tid);
}

The highlighted line of code specifies a tunable table size for the lookup table. You can change the
size and values of the lookup table and breakpoint data without regenerating or recompiling the code.

 1-D Lookup Table

1-1223

Enumerated Values in Lookup Tables

Suppose that you have a lookup table with an enumerated class like this defined:

classdef(Enumeration) Gears < Simulink.IntEnumType
 enumeration
 GEAR1(1),
 GEAR2(2),
 GEAR3(4),
 GEAR4(8),
 SPORTS(16),
 REVERSE(-1),
 NEUTRAL(0)
 end
end

n-D Lookup Table block has these settings:

• Number of dimensions to 1.
• Table data value is [5 10 20 40 80 -5 0].
• Breakpoints 1 value is enumeration('Gears').
• Interpolation method is Flat.
• For an unordered search, set Index search method to Linear search and clear the Begin

index search using previous index result check box.

Simulation produces a vector [10 -5 80], which correspond to GEAR2, REVERSE, and SPORTS.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic. For information about HDL code generation support for 1-D Lookup Table blocks, see “HDL
Code Generation” on page 1-1276 .

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1 Blocks

1-1224

See Also
Direct Lookup Table (n-D) | Prelookup | Interpolation Using Prelookup | Lookup Table Dynamic |
Simulink.LookupTable | Simulink.Breakpoint

Topics
“Import Lookup Table Data from MATLAB”
“About Lookup Table Blocks”
“Anatomy of a Lookup Table”
“Enter Breakpoints and Table Data”
“Guidelines for Choosing a Lookup Table”

 1-D Lookup Table

1-1225

2-D Lookup Table
Approximate two-dimensional function

Libraries:
Simulink / Lookup Tables
HDL Coder / Lookup Tables

Description
Supported Block Operations

The 1-D, 2-D, and n-D Lookup Table blocks evaluate a sampled representation of a function in N
variables

y = F(x1, x2, x3, ..., xN)

where the function F can be empirical. The block maps inputs to an output value by looking up or
interpolating a table of values you define with block parameters. The block supports flat (constant),
linear (linear point-slope), Lagrange (linear Lagrange), nearest, cubic-spline, and Akima spline
interpolation methods. You can apply these methods to a table of any dimension from 1 through 30.

In the following block, the first input identifies the first dimension (row) breakpoints, the second input
identifies the second dimension (column) breakpoints, and so on.

See “Identify Port Location on Rotated or Flipped Block” for a description of the port order for
various block orientations.

When the Math and Data Types > Use algorithms optimized for row-major array layout
configuration parameter is set, the 2-D and n-D Lookup Table block behavior changes from column-
major to row-major. For these blocks, the column-major and row-major algorithms may differ in the
order of the output calculations, possibly resulting in slightly different numerical values. This
capability requires a Simulink Coder or Embedded Coder license. For more information on row-major
support, see “Code Generation of Matrices and Arrays” (Simulink Coder).

Specification of Breakpoint and Table Data

These block parameters define the breakpoint and table data.

1 Blocks

1-1226

Block Parameter Purpose
Number of table dimensions Specifies the number of dimensions of your

lookup table.
Breakpoints Specifies a breakpoint vector that corresponds to

each dimension of your lookup table.
Table data Defines the associated set of output values.

Tip Evenly spaced breakpoints can make the generated code division-free. For more information, see
fixpt_evenspace_cleanup and “Identify questionable fixed-point operations” (Embedded Coder).

How the Block Generates Output

The n-D, 1-D and 2-D Lookup Table blocks generate output by looking up or estimating table values
based on the input values.

Block Inputs n-D Lookup Table Block Behavior
Match the values of indices in breakpoint vectors Outputs the table value at the intersection of the

row, column, and higher dimension breakpoints
Do not match the values of indices in breakpoint
vectors, but are within range

Interpolates appropriate table values, using the
Interpolation method you select

Do not match the values of indices in breakpoint
vectors, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

Other Blocks that Perform Equivalent Operations

You can use the Interpolation Using Prelookup block with the Prelookup block to perform the
equivalent operation of one n-D Lookup Table block. This combination of blocks offers greater
flexibility that can result in more efficient simulation performance for linear interpolations.

When the lookup operation is an array access that does not require interpolation, use the Direct
Lookup Table (n-D) block. For example, if you have an integer value k and you want the kth element
of a table, y = table(k), interpolation is unnecessary.

Ports
Input

u1 — First-dimension (row) inputs
scalar | vector | matrix

Real-valued inputs to the u1 port, mapped to an output value by looking up or interpolating the table
of values that you define.
Example: 0:10
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | enumerated | fixed point

u2 — Second-dimension (column) inputs
scalar | vector | matrix

 2-D Lookup Table

1-1227

Real-valued inputs to the u2 port, mapped to an output value by looking up or interpolating the table
of values that you define.
Example: 0:10
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | enumerated | fixed point

T — Define the table of output values
matrix of values with dimensions that match the Number of table dimensions and the breakpoint
lengths for each dimension of the table

Specify the table of output values with a signal that is tunable at runtime.

During simulation, the matrix size must match the dimensions defined by the Number of table
dimensions parameter and the breakpoint lengths for each dimension of the table. However, during
block diagram editing, you can enter an empty matrix (specified as []) or an undefined workspace
variable. This technique lets you postpone specifying a correctly dimensioned matrix for the table
data and continue editing the block diagram.
Dependencies

To enable this port, set:

• Data specification to Table and breakpoints.
• Table data to Input port.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

bp1 — Explicit breakpoint values
1-by-n or n-by-1 vector of monotonically increasing values

Specify the breakpoint data explicitly, based on the value of the Breakpoints specification
parameter, with a signal that is tunable at runtime.

• If you set Breakpoints specification to Explicit values, enter the breakpoint vector that
corresponds to each dimension of table data in each Breakpoints row. For each dimension,
specify breakpoints as a 1-by-n or n-by-1 vector whose values are strictly monotonically
increasing.

Note To specify breakpoints in the even spacing specification format, set Breakpoints
specification to Even spacing and use the Breakpoints First point and Spacing parameters.

Dependencies

To enable this port, set:

• Data specification to Table and breakpoints.
• Breakpoints specification to Explicit values.
• Breakpoints 1 to Input port.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | enumerated | fixed point

1 Blocks

1-1228

bp2 — Explicit breakpoint values
1-by-n or n-by-1 vector of monotonically increasing values

Specify the breakpoint data explicitly, based on the value of the Breakpoints specification
parameter, with a signal that is tunable at runtime.

• If you set Breakpoints specification to Explicit values, enter the breakpoint vector that
corresponds to each dimension of table data in each Breakpoints row. For each dimension,
specify breakpoints as a 1-by-n or n-by-1 vector whose values are strictly monotonically
increasing.

Note To specify evenly spaced breakpoint data, use the Breakpoints parameter. You cannot specify
evenly spaced breakpoint data through the input port.

Dependencies

To enable this port, set:

• Data specification to Table and breakpoints.
• Breakpoints specification to Explicit values.
• Breakpoints 2 to Input port.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | enumerated | fixed point

Output

Port_1 — Output computed by looking up or estimating table values
scalar | vector | matrix

Output generated by looking up or estimating table values based on the input values.

When block inputs... The n-D Lookup Table block...
Match the values of indices in breakpoint vectors Outputs the table value at the intersection of the

row, column, and higher dimension breakpoints
Do not match the values of indices in breakpoint
vectors, but are within range

Interpolates appropriate table values, using the
Interpolation method you select

Do not match the values of indices in breakpoint
vectors, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
Table and Breakpoints

Number of table dimensions — Number of lookup table dimensions
2 (default) | 1 | 3 | 4 | ... | 30

Enter the number of dimensions of the lookup table. This parameter determines:

 2-D Lookup Table

1-1229

• The number of independent variables for the table and the number of block inputs
• The number of breakpoint vectors to specify

To specify... Do this...
1, 2, 3, or 4 Select the value from the drop-down list.
A higher number of table dimensions Enter a positive integer directly in the field.

The maximum number of table dimensions that
this block supports is 30.

For example, a table with a size of M x N x ... means that the size of dimension 1 is M, the size of
dimension 2 is N, and so forth. M must match the first breakpoint length, N must match the second
breakpoint length, and so forth.

Programmatic Use
Block Parameter: NumberOfTableDimensions
Type: character vector
Values: '1' | '2' | '3' | '4' | ... | 30
Default: '2'

Data specification — Method of table and breakpoint specification
Table and breakpoints (default) | Lookup table object

From the list, select:

• Table and breakpoints — Specify the table data and breakpoints. Selecting this option
enables these parameters:

• Table data
• Breakpoints specification
• Breakpoints 1
• Breakpoints 2
• Edit table and breakpoints

To specify the table and breakpoints using input ports, see the Source parameter.
• Lookup table object — Use an existing lookup table (Simulink.LookupTable) object.

Selecting this option enables the Name field and Edit table and breakpoints button.

Programmatic Use
Block Parameter: DataSpecification
Type: character vector
Values: 'Table and breakpoints' | 'Lookup table object'
Default: 'Table and breakpoints'

Name — Name of the lookup table object
[] (default) | Simulink.LookupTable object

Enter the name of the lookup table (Simulink.LookupTable) object. If a Simulink.LookupTable

object does not exist, click the action button and select Create. The corresponding parameters of
the new lookup table object are automatically populated with the block information.

1 Blocks

1-1230

Dependencies

To enable this parameter, set Data specification to Lookup table object.

Programmatic Use
Block Parameter: LookupTableObject
Type: character vector
Values: name of a Simulink.LookupTable object
Default: ''

Breakpoints specification — Method of breakpoint specification
Explicit values (default) | Even spacing

Specify whether to enter data as explicit breakpoints or as parameters that generate evenly spaced
breakpoints.

• To explicitly specify breakpoint data, set this parameter to Explicit values and enter
breakpoint data in the text box next to the Breakpoints parameters.

• To specify parameters that generate evenly spaced breakpoints, set this parameter to Even
spacing and enter values for the First point and Spacing parameters for each dimension of
breakpoint data. The block calculates the number of points to generate from the table data.

Dependencies

To enable this parameter, set Data specification to Table and breakpoints.

Programmatic Use
Block Parameter: BreakpointsSpecification
Type: character vector
Values: 'Explicit values' | 'Even spacing'
Default: 'Explicit values'

Source — Source of table and breakpoint data
Dialog (default) | Input port

Source of table and breakpoint data, specified as:

• Dialog — Specify the table or breakpoint data in Value parameter.
• Input port — Specify the table or breakpoint data through the associated input port. Through

the input port, you can specify only up to three sets of breakpoint data. To specify breakpoint data
above three, use the Value parameter.

Note Using the input port to specify table or breakpoint data might negatively affect block
performance for simulation due to runtime checks.

Dependencies

• To enable this parameter, set Data specification to Table and breakpoints.
• To enable the associated Value, set this parameter to Dialog.
• To enable the associated input port, set this parameter to Input port.
• Setting this parameter to Input port disables the Value field and hides the corresponding

parameter on the Data Types tab.

 2-D Lookup Table

1-1231

• Setting this parameter to Input port for any one of the parameters disables the Edit Table and
Breakpoints button.

Programmatic Use
Block Parameter: TableSource | BreakpointsForDimension1Source |
BreakpointsForDimension2Source | BreakpointsForDimension3Source
Type: character vector
Values: Dialog | Input port
Default: 'Dialog'

Table data — Define the table of output values
[4 5 6; 16 19 20; 10 18 23] (default) | matrix of values

Enter the table of output values in the associated Value field.

During simulation, the matrix size must match the dimensions defined by the Number of table
dimensions parameter. However, during block diagram editing, you can enter an empty matrix
(specified as []) or an undefined workspace variable. This technique lets you postpone specifying a
correctly dimensioned matrix for the table data and continue editing the block diagram.
Dependencies

To enable this parameter, set:

• Data specification to Table and breakpoints.
• Table data: Source to Dialog.

Programmatic Use
Block Parameter: Table
Type: character vector
Values: matrix of table values
Default: '[4 5 6; 16 19 20; 10 18 23]'

Breakpoints — Explicit breakpoint values, or first point and spacing of breakpoints
[1:3] (default) | 1-by-n or n-by-1 vector of monotonically increasing values

Specify the breakpoint data explicitly or as evenly-spaced breakpoints, based on the value of the
Breakpoints specification parameter.

• If you set Breakpoints specification to Explicit values, enter the breakpoint vector that
corresponds to each dimension of table data in each Breakpoints row in the associated Value
field. For each dimension, specify breakpoints as a 1-by-n or n-by-1 vector whose values are
strictly monotonically increasing.

• If you set Breakpoints specification to Even spacing, enter the parameters First point and
Spacing in each Breakpoints row to generate evenly-spaced breakpoints in the respective
dimension. Your table data determines the number of evenly spaced points.

Dependencies

• To enable this parameter, set

• Data specification to Table and breakpoints.
• Breakpoints: Source to Dialog.

• When the Breakpoints specification parameter is set to Even spacing, you can only specify
breakpoints data through the dialog.

1 Blocks

1-1232

Programmatic Use
Block Parameter: BreakpointsForDimension1
Type: character vector
Values: 1-by-n or n-by-1 vector of monotonically increasing values
Default: '[1:3]'

First point — First point in evenly spaced breakpoint data
1 (default) | scalar

Specify the first point in your evenly spaced breakpoint data as a real-valued, finite, scalar. This
parameter is available when Breakpoints specification is set to Even spacing.
Dependencies

To enable this parameter, set Data specification to Table and breakpoints, and Breakpoints
specification to Even spacing.
Programmatic Use
Block Parameter: BreakpointsForDimension1FirstPoint |
BreakpointsForDimension2FirstPoint
Type: character vector
Values: real-valued, finite, scalar
Default: '1'

Spacing — Spacing between evenly spaced breakpoints
1 (default) | scalar

Specify the spacing between points in your evenly-spaced breakpoint data.
Dependencies

To enable this parameter, set Data specification to Table and breakpoints, and Breakpoints
specification to Even spacing.
Programmatic Use
Block Parameter: BreakpointsForDimension1Spacing |
BreakpointsForDimension2Spacing
Type: character vector
Values: positive, real-valued, finite, scalar
Default: '1'

Edit table and breakpoints — Launch Lookup Table Editor dialog box
button

Click this button to open the Lookup Table Editor. For more information, see “Edit Lookup Tables”.

Clicking this button for a lookup table object lets you edit the object and save the new values for the
object.

Algorithm

Lookup method

Interpolation method — Method of interpolation between breakpoint values

Linear point-slope (default) | Flat | Nearest | Linear Lagrange | Cubic spline | Akima
spline

 2-D Lookup Table

1-1233

When an input falls between breakpoint values, the block interpolates the output value using
neighboring breakpoints. For more information on interpolation methods, see “Interpolation
Methods”.

Dependencies

• If you select Cubic spline, the block supports only scalar signals. The other interpolation
methods support nonscalar signals.

• If you select Akima spline, the extrapolation method can only be Akima spline.

When set to the modified Akima interpolation method, this block does not support:

• Row-major array layout and algorithms optimized for row-major array layout
• Scaled double and fixed-point data types
• Simulink.LookupTable objects
• Code generation when the configuration parameter Code Generation > Interface > Support
non-finite numbers check box is selected

When set to the modified Akima interpolation method, this block is known to run more slowly
when these conditions are true:

• Code generation-based simulation targets, such as those for accelerator mode, rapid
accelerator mode, protected models, and so forth.

• Code generated for large breakpoint and data table sizes. For example with a table size of
629x1601.

Programmatic Use
Block Parameter: InterpMethod
Type: character vector
Values: 'Linear point-slope' | 'Flat' | 'Nearest' | 'Linear Lagrange' | 'Cubic
spline' | 'Akima spline'
Default: 'Linear point-slope'

Extrapolation method — Method of handling input values that fall outside the range of a breakpoint
vector

Linear (default) | Clip | Cubic spline | Akima spline

Select Clip, Linear, or Cubic spline. See “Extrapolation Methods” for more information.

If the extrapolation method is Linear, the extrapolation value is calculated based on the selected
linear interpolation method. For example, if the interpolation method is linear Lagrange, the
extrapolation method inherits the linear Lagrange equation to compute the extrapolated value.

Dependencies

• To select Cubic spline for Extrapolation method, you must also select Cubic spline for
Interpolation method.

• To select Akima spline for Extrapolation method, you must also select Akima spline for
Interpolation method.

Programmatic Use
Block Parameter: ExtrapMethod

1 Blocks

1-1234

Type: character vector
Values: 'Linear' | 'Clip' | 'Cubic spline' | 'Akima spline'
Default: 'Linear'

Index search method — Method of calculating table indices

Evenly spaced points (default) | Linear search | Binary search

Select Evenly spaced points, Linear search, or Binary search. Each search method has
speed advantages in different circumstances:

• For evenly spaced breakpoint vectors (for example, 10, 20, 30, and so on), you achieve optimal
speed by selecting Evenly spaced points to calculate table indices.

This algorithm uses only the first two breakpoints of a set to determine the offset and spacing of
the remaining points.

Note Set Index search method to Evenly spaced points when using the
Simulink.LookupTable object to specify table data and the Breakpoints Specification
parameter of the referenced Simulink.LookupTable object is set to Even spacing.

• For unevenly spaced breakpoint vectors, follow these guidelines:

• If input signals do not vary much between time steps, selecting Linear search with Begin
index search using previous index result produces the best performance.

• If input signals jump more than one or two table intervals per time step, selecting Binary
search produces the best performance.

A suboptimal choice of index search method can lead to slow performance of models that rely heavily
on lookup tables.

Note The generated code stores only the first breakpoint, the spacing, and the number of
breakpoints when:

• The breakpoint data is not tunable.
• The index search method is Evenly spaced points.

Programmatic Use
Block Parameter: IndexSearchMethod
Type: character vector
Values: 'Binary search' | 'Evenly spaced points' | 'Linear search'
Default: 'Binary search'

Begin index search using previous index result — Start using the index from the previous time
step

off (default) | on

Select this check box when you want the block to start its search using the index found at the
previous time step. For inputs that change slowly with respect to the interval size, enabling this
option can improve performance. Otherwise, the linear search and binary search methods can take
longer, especially for large breakpoint vectors.

 2-D Lookup Table

1-1235

Dependencies

To enable this parameter, set Index search method to Linear search or Binary search.

Programmatic Use
Block Parameter: BeginIndexSearchUsingPreviousIndexResult
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for out-of-range input — Block action when input is out of range

None (default) | Warning | Error

Specify whether to produce a warning or error when the input is out of range. Options include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Apply full precision fixed-point algorithm when possible — More accurate fixed-point table
lookup

off (default) | on

Use this check box to enable full-precision fixed-point algorithm lookup for linear interpolation lookup
when possible. This algorithm generally achieves better precision for hardware-efficient fixed-point
rounding modes.

Dependencies

To enable this parameter, set:

• Number of table dimensions to 1.
• Interpolation method to Linear point-slope.
• Extrapolation method to Clip.

Programmatic Use
Block Parameter: ApplyFullPrecisionForLinearInterpolation
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Use last table value for inputs at or above last breakpoint — Method for computing output for
inputs at or above last breakpoint

off (default) | on

1 Blocks

1-1236

Using this check box, specify the indexing convention that the block uses to address the last element
of a breakpoint vector and its corresponding table value. This check box is relevant if the input is
equal to or larger than the last element of the breakpoint data. Due to rounding, selecting and
clearing this check box may result in differing results for the last breakpoint between simulation and
code generation.

Check Box Index Used by Block Interval Fraction
Selected Last element of breakpoint data on the

Table and Breakpoints tab
0

Cleared Next-to-last element of breakpoint data
on the Table and Breakpoints tab

1

Given an input u within range of a breakpoint vector bp, the interval fraction f, in the range 0≦f<1, is
computed as shown below.

Suppose the breakpoint vector is [1 4 5] and input u is 5.5. If you select this check box, the index
is that of the last element (5) and the interval fraction is 0. If you clear this check box, the index is
that of the next-to-last element (4) and the interval fraction is 1.
Dependencies

To enable this parameter, set:

• Interpolation method to Linear.
• Extrapolation method to Clip.

Programmatic Use
Block Parameter: UseLastTableValue
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Input settings

Use one input port for all input data — Use only one input port

off (default) | on

 2-D Lookup Table

1-1237

Select this check box to use only one input port that expects a signal that is n elements wide for an n-
dimensional table. This option is useful for removing line clutter on a block diagram with many
lookup tables.

Note When you select this check box, one input port with the label u appears on the block.

Programmatic Use
Block Parameter: UseOneInputPortForAllInputData
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Code generation

Remove protection against out-of-range input in generated code — Remove code that checks
for out-of-range input values

off (default) | on

Specify whether or not to include code that checks for out-of-range input values.

Check Box Result When to Use
on Generated code does not

include conditional statements
to check for out-of-range
breakpoint inputs.

When the input is out-of-range,
it may cause undefined behavior
for generated code.

For code efficiency

off Generated code includes
conditional statements to check
for out-of-range inputs.

For safety-critical applications

If your input is not out of range, you can select the Remove protection against out-of-range index
in generated code check box for code efficiency. By default, this check box is cleared. For safety-
critical applications, do not select this check box. If you want to select the Remove protection
against out-of-range index in generated code check box, first check that your model inputs are in
range. For example:

1 Clear the Remove protection against out-of-range index in generated code check box.
2 Set the Diagnostic for out-of-range input parameter to Error.
3 Simulate the model in normal mode.
4 If there are out-of-range errors, fix them to be in range and run the simulation again.
5 When the simulation no longer generates out-of-range input errors, select the Remove

protection against out-of-range index in generated code check box.

Note When you select the Remove protection against out-of-range index in generated
code check box and the input is out of range, the behavior is undefined for generated code.

1 Blocks

1-1238

Depending on your application, you can run the following Model Advisor checks to verify the usage of
this check box:

• By Product > Embedded Coder > Identify lookup table blocks that generate expensive
out-of-range checking code

• By Product > Simulink Check > Modeling Standards > DO-178C/DO-331 Checks > Check
usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Advisor Checks”.

Additionally, to determine if it is safe to select this check box, if you have a Simulink Design Verifier
license, consider using the “Detect Block Input Range Violations” (Simulink Design Verifier) check.

Programmatic Use
Block Parameter: RemoveProtectionInput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Support tunable table size in code generation — Enable tunable table size in the generated code

off (default) | on

Select this check box to enable tunable table size in the generated code. This option enables you to
change the size and values of the lookup table and breakpoint data in the generated code without
regenerating or recompiling the code. You can only decrease the size of the lookup table and
breakpoint data.

Dependencies

If you set Interpolation method to Cubic spline, this check box is not available.

Programmatic Use
Block Parameter: SupportTunableTableSize
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Maximum indices for each dimension — Maximum index value for each table dimension

 2-D Lookup Table

1-1239

[] (default) | scalar or vector of positive integer values
Example: [4 6] for a 5-by-7 table

Specify the maximum index values for each table dimension using zero-based indexing. You can
specify a scalar or vector of positive integer values using the following data types:

• Built-in floating-point types: double and single
• Built-in integer types: int8, int16, int32, uint8, uint16, and uint32

Examples of valid specifications include:

• [4 6] for a 5-by-7 table
• [int8(2) int16(5) int32(9)] for a 3-by-6-by-10 table
• A Simulink.Parameter whose value on generating code is one less than the dimensions of the

table data. For more information, see “Tunable Table Size in the Generated Code” on page 1-1248.

Dependencies

To enable this parameter, select Support tunable table size in code generation. On tuning this
parameter in the generated code, provide the new table data and breakpoints along with the tuned
parameter value.

Programmatic Use
Block Parameter: MaximumIndicesForEachDimension
Type: character vector
Values: scalar or vector of positive integer values
Default: '[]'

Data Types

Table data — Data type of table data

Inherit: Same as output (default) | double | single | half | int8 | uint8 | int16 | uint16 |
int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Tip Specify a table data type different from the output data type for these cases:

• Lower memory requirement for storing table data that uses a smaller type than the output signal

1 Blocks

1-1240

• Sharing of prescaled table data between two n-D Lookup Table blocks with different output data
types

• Sharing of custom storage table data in the generated code for blocks with different output data
types

Dependencies

To enable this parameter, set Table data from the Table and Breakpoints tab to Dialog.

Programmatic Use
Block Parameter: TableDataTypeStr
Type: character vector
Values: 'Inherit: Inherit from 'Table data'' | 'Inherit: Same as output' |
'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' |
'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as output'

Table data Minimum — Minimum value of the table data

[] | scalar

Specify the minimum value for table data. The default value is [] (unspecified).

Programmatic Use
Block Parameter: TableMin
Type: character vector
Values: scalar
Default: '[]'

Table data Maximum — Maximum value of the table data

[] | scalar

Specify the maximum value for table data. The default value is [] (unspecified).

Programmatic Use
Block Parameter: TableMax
Type: character vector
Values: scalar
Default: '[]'

Breakpoints — Breakpoint data type

Inherit: Same as corresponding input (default) | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the data type for a set of breakpoint data. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as corresponding input
• The name of a built-in data type, for example, single

 2-D Lookup Table

1-1241

• The name of a data type class, for example, an enumerated data type class
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Tip

• Breakpoints support unordered enumerated data. As a result, linear searches are also unordered,
which offers flexibility but can impact performance. The search begins from the first element in
the breakpoint.

• If the Begin index search using previous index result check box is selected, you must use
ordered monotonically increasing data. This ordering improves performance.

• For enumerated data, Extrapolation method must be Clip.
• The block does not support out-of-range input for enumerated data. When specifying enumerated

data, include the entire enumeration set in the breakpoint vector. For example, use the
enumeration function.

This is a limitation for using enumerated data with this block:

• The block does not support out-of-range input for enumerated data. When specifying enumerated
data, include the entire enumeration set in the breakpoint vector. For example, use the
enumeration function.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Tip Specify a breakpoint data type different from the corresponding input data type for these cases:

• Lower memory requirement for storing breakpoint data that uses a smaller type than the input
signal

• Sharing of prescaled breakpoint data between two n-D Lookup Table blocks with different input
data types

• Sharing of custom storage breakpoint data in the generated code for blocks with different input
data types

Specify the same slope and bias for a breakpoint data type and its corresponding input data type if
either of them has a fixed-point data type.

Dependencies

To enable this parameter, set the corresponding Breakpoints parameter from the Table and
Breakpoints tab to Dialog.

Programmatic Use
Block Parameter: BreakpointsForDimension1DataTypeStr |
BreakpointsForDimension2DataTypeStr| ... |
BreakpointsForDimension30DataTypeStr

1 Blocks

1-1242

Type: character vector
Values: 'Inherit: Same as corresponding input' | 'Inherit: Inherit from
'Breakpoint data'' | 'double' | 'single' | 'half' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)'
| 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as corresponding input'

Breakpoints Minimum — Minimum value breakpoint data can have

[] | scalar

Specify the minimum value that a set of breakpoint data can have. The default value is []
(unspecified).

Programmatic Use
Block Parameter: BreakpointsForDimension1Min | BreakpointsForDimension2Min
| ... | BreakpointsForDimension30Min
Type: character vector
Values: scalar
Default: '[]'

Breakpoints Maximum — Maximum value breakpoint data can have

[] | scalar

Specify the maximum value that a set of breakpoint data can have. The default value is []
(unspecified).

Programmatic Use
Block Parameter: BreakpointsForDimension1Max | BreakpointsForDimension2Max
| ... | BreakpointsForDimension30Max
Type: character vector
Values: scalar
Default: '[]'

Fraction — Fraction data type

Inherit: Inherit via internal rule (default) | double | single | fixdt(1,16,0) | <data
type expression>

Specify the fraction data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: FractionDataTypeStr

 2-D Lookup Table

1-1243

Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' |
'fixdt(1,16,0)'|'<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Intermediate results — Intermediate results data type

Inherit: Same as output (default) | Inherit: Inherit via internal rule | double |
single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Specify the intermediate results data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Tip Use this parameter to specify higher (or lower) precision for internal computations than for table
data or output data.

Programmatic Use
Block Parameter: IntermediateResultsDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as output' |
'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'int64' | 'uint64' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data
type expression>'
Default: 'Inherit: Same as output'

Output — Output data type

Inherit: Same as input (default) | double | single | half | int8 | uint8 | int16 | uint16 |
int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back propagation
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

1 Blocks

1-1244

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: Inherit from table
data' | 'Inherit: Same as first input' | 'double' | 'single' | 'half' |
'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data type expression'
Default: 'Inherit: Same as first input'

Output Minimum — Minimum value the block can output

[] | scalar

Specify the minimum value that the block outputs. The default value is [] (unspecified). Simulink
software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”).
• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Output Maximum — Maximum value the block can output

[] | scalar

Specify the maximum value that the block can output. The default value is [] (unspecified). Simulink
software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”).
• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

 2-D Lookup Table

1-1245

Internal rule priority — Internal rule for intermediate calculations

Speed (default) | Precision

Specify the internal rule for intermediate calculations. Select Speed for faster calculations. If you do,
a loss of accuracy might occur, usually up to 2 bits.

Dependencies

This parameter takes effect only when the Intermediate results parameter is set to Inherit:
Inherit via internal rule.

Programmatic Use
Block Parameter: InternalRulePriority
Type: character vector
Values: 'Speed' | 'Precision'
Default: 'Speed'

Require all inputs to have the same data type — Require all inputs to have the same data type

on (default) | off

Select to require all inputs to have the same data type.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Simplest (default) | Ceiling | Convergent | Floor | Nearest | Round | Zero

Specify the rounding mode for fixed-point lookup table calculations that occur during simulation or
execution of code generated from the model. For more information, see “Rounding” (Fixed-Point
Designer).

This option does not affect rounding of values of block parameters. Simulink rounds such values to
the nearest representable integer value. To control the rounding of a block parameter, enter an
expression using a MATLAB rounding function into the edit field on the block dialog box.

1 Blocks

1-1246

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Simplest'

Saturate on integer overflow — Method of overflow action

off (default) | on

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this check
box (on).

Your model has possible
overflow and you want explicit
saturation protection in the
generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

An overflow associated with a
signed 8-bit integer can
saturate to -128 or 127.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The number 130 does not fit
in a signed 8-bit integer and
wraps to -126.

Tip If you save your model as version R2009a or earlier, this check box setting has no effect and no
saturation code appears. This behavior preserves backward compatibility.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | enumerated | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no

 2-D Lookup Table

1-1247

Zero-Crossing
Detection

no

More About
Tunable Table Size in the Generated Code

Suppose that you have a lookup table and want to make the size tunable in the generated code. When
you use Simulink.LookupTable and Simulink.Breakpoint objects to configure lookup table
data for calibration in the generated code, use the SupportTunableSize property of the objects to
enable a tunable table size. When you do not use these classes, use the Support tunable table size
in code generation parameter in an n-D Lookup Table block to enable a tunable table size.

Assume that:

• You define a Simulink.Parameter structure in the preload function of your model:

p = Simulink.Parameter;
p.Value.MaxIdx = [2 2];
p.Value.BP1 = [1 2 3];
p.Value.BP2 = [1 4 16];
p.Value.Table = [4 5 6; 16 19 20; 10 18 23];
p.DataType = 'Bus: slLookupTable';
p.CoderInfo.StorageClass = 'ExportedGlobal';

% Create bus object slBus1 from MATLAB structure
Simulink.Bus.createObject(p.Value);
slLookupTable = slBus1;
slLookupTable.Elements(1).DataType = 'uint32';

• These block parameters apply in the n-D Lookup Table block.

Parameter Value
Number of table dimensions 2
Table data p.Table
Breakpoints 1 p.BP1
Breakpoints 2 p.BP2
Support tunable table size in code
generation

on

Maximum indices for each dimension p.MaxIdx

The generated model_types.h header file contains a type definition that looks something like this.

typedef struct {
 uint32_T MaxIdx[2];
 real_T BP1[3];
 real_T BP2[3];
 real_T Table[9];
} slLookupTable;

The generated model.c file contains code that looks something like this.

/* Exported block parameters */
slLookupTable p = {

1 Blocks

1-1248

 { 2U, 2U },

 { 1.0, 2.0, 3.0 },

 { 1.0, 4.0, 16.0 },

 { 4.0, 16.0, 10.0, 5.0, 19.0, 18.0, 6.0, 20.0, 23.0 }
} ;

/* More code */

/* Model output function */
static void ex_lut_nd_tunable_table_output(int_T tid)
{
 /* Lookup_n-D: '<Root>/n-D Lookup Table' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 */
 Y = look2_binlcpw(U1, U2, p.BP1, p.BP2, p.Table, ...
p.MaxIdx, p.MaxIdx[0] + 1U);

 /* Outport: '<Root>/Out1' */
 ex_lut_nd_tunable_table_Y.Out1 = Y;

 /* tid is required for a uniform function interface.
 * Argument tid is not used in the function. */
 UNUSED_PARAMETER(tid);
}

The highlighted line of code specifies a tunable table size for the lookup table. You can change the
size and values of the lookup table and breakpoint data without regenerating or recompiling the code.

Enumerated Values in Lookup Tables

Suppose that you have a lookup table with an enumerated class like this defined:

classdef(Enumeration) Gears < Simulink.IntEnumType
 enumeration
 GEAR1(1),
 GEAR2(2),
 GEAR3(4),
 GEAR4(8),
 SPORTS(16),
 REVERSE(-1),
 NEUTRAL(0)
 end
end

n-D Lookup Table block has these settings:

• Number of dimensions to 1.
• Table data value is [5 10 20 40 80 -5 0].
• Breakpoints 1 value is enumeration('Gears').
• Interpolation method is Flat.
• For an unordered search, set Index search method to Linear search and clear the Begin

index search using previous index result check box.

 2-D Lookup Table

1-1249

Simulation produces a vector [10 -5 80], which correspond to GEAR2, REVERSE, and SPORTS.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic. For information about HDL code generation support for 2-D Lookup Table blocks, see “HDL
Code Generation” on page 1-1276 .

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Direct Lookup Table (n-D) | Prelookup | Interpolation Using Prelookup | Lookup Table Dynamic |
Simulink.LookupTable | Simulink.Breakpoint

Topics
“Import Lookup Table Data from MATLAB”
“About Lookup Table Blocks”
“Anatomy of a Lookup Table”
“Enter Breakpoints and Table Data”
“Guidelines for Choosing a Lookup Table”

1 Blocks

1-1250

n-D Lookup Table
Approximate n-dimensional function

Libraries:
Simulink / Lookup Tables
HDL Coder / Lookup Tables

Description
Supported Block Operations

The 1-D, 2-D, and n-D Lookup Table blocks evaluate a sampled representation of a function in N
variables

y = F(x1, x2, x3, ..., xN)

where the function F can be empirical. The block maps inputs to an output value by looking up or
interpolating a table of values you define with block parameters. The block supports flat (constant),
linear (linear point-slope), Lagrange (linear Lagrange), nearest, cubic-spline, and Akima spline
interpolation methods. You can apply these methods to a table of any dimension from 1 through 30.

In the following block, the first input identifies the first dimension (row) breakpoints, the second input
identifies the second dimension (column) breakpoints, and so on.

See “Identify Port Location on Rotated or Flipped Block” for a description of the port order for
various block orientations.

When the Math and Data Types > Use algorithms optimized for row-major array layout
configuration parameter is set, the 2-D and n-D Lookup Table block behavior changes from column-
major to row-major. For these blocks, the column-major and row-major algorithms may differ in the
order of the output calculations, possibly resulting in slightly different numerical values. This
capability requires a Simulink Coder or Embedded Coder license. For more information on row-major
support, see “Code Generation of Matrices and Arrays” (Simulink Coder).

Specification of Breakpoint and Table Data

These block parameters define the breakpoint and table data.

 n-D Lookup Table

1-1251

Block Parameter Purpose
Number of table dimensions Specifies the number of dimensions of your

lookup table.
Breakpoints Specifies a breakpoint vector that corresponds to

each dimension of your lookup table.
Table data Defines the associated set of output values.

Tip Evenly spaced breakpoints can make the generated code division-free. For more information, see
fixpt_evenspace_cleanup and “Identify questionable fixed-point operations” (Embedded Coder).

How the Block Generates Output

The n-D, 1-D and 2-D Lookup Table blocks generate output by looking up or estimating table values
based on the input values.

Block Inputs n-D Lookup Table Block Behavior
Match the values of indices in breakpoint vectors Outputs the table value at the intersection of the

row, column, and higher dimension breakpoints
Do not match the values of indices in breakpoint
vectors, but are within range

Interpolates appropriate table values, using the
Interpolation method you select

Do not match the values of indices in breakpoint
vectors, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

Other Blocks that Perform Equivalent Operations

You can use the Interpolation Using Prelookup block with the Prelookup block to perform the
equivalent operation of one n-D Lookup Table block. This combination of blocks offers greater
flexibility that can result in more efficient simulation performance for linear interpolations.

When the lookup operation is an array access that does not require interpolation, use the Direct
Lookup Table (n-D) block. For example, if you have an integer value k and you want the kth element
of a table, y = table(k), interpolation is unnecessary.

Ports
Input

u1 — First-dimension (row) inputs
scalar | vector | matrix

Real-valued inputs to the u1 port, mapped to an output value by looking up or interpolating the table
of values that you define.
Example: 0:10
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | enumerated | fixed point

uN — n-th dimension input values
scalar | vector | matrix

1 Blocks

1-1252

Real-valued inputs to the uN port, mapped to an output value by looking up or interpolating the table
of values that you define.
Example: 0:10
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | enumerated | fixed point

T — Define the table of output values
matrix of values with dimensions that match the Number of table dimensions and the breakpoint
lengths for each dimension of the table

Specify the table of output values with a signal that is tunable at runtime.

During simulation, the matrix size must match the dimensions defined by the Number of table
dimensions parameter. However, during block diagram editing, you can enter an empty matrix
(specified as []) or an undefined workspace variable. This technique lets you postpone specifying a
correctly dimensioned matrix for the table data and continue editing the block diagram.

Dependencies

To enable this port, set:

• Data specification to Table and breakpoints.
• Table data to Input port.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

bp1 — Explicit breakpoint values
1-by-n or n-by-1 vector of monotonically increasing values

Specify the breakpoint data explicitly, based on the value of the Breakpoints specification
parameter, with a signal that is tunable at runtime

• If you set Breakpoints specification to Explicit values, enter the breakpoint vector that
corresponds to each dimension of table data in each Breakpoints row. For each dimension,
specify breakpoints as a 1-by-n or n-by-1 vector whose values are strictly monotonically
increasing.

You can create up to three breakpoint data input ports. For breakpoints 4 to 30, you can specify
breakpoint data only through the corresponding Breakpoints parameter.

Note To specify breakpoints in the even spacing specification format, set Breakpoints
specification to Even spacing and use the Breakpoints First point and Spacing parameters.

Dependencies

To enable this port, set:

• Data specification to Table and breakpoints.
• Breakpoints specification to Explicit values.
• Breakpoints 1 to Input port.

 n-D Lookup Table

1-1253

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | enumerated | fixed point

bp2 — Explicit breakpoint values
1-by-n or n-by-1 vector of monotonically increasing values

Specify the breakpoint data explicitly, based on the value of the Breakpoints specification
parameter, with a signal that is tunable at runtime.

• If you set Breakpoints specification to Explicit values, enter the breakpoint vector that
corresponds to each dimension of table data in each Breakpoints row. For each dimension,
specify breakpoints as a 1-by-n or n-by-1 vector whose values are strictly monotonically
increasing.

You can create up to three breakpoint data input ports. For breakpoints 4 to 30, you can specify
breakpoint data only through the corresponding Breakpoints parameter.

Note To specify evenly spaced breakpoint data, use the Breakpoints parameter. You cannot specify
evenly spaced breakpoint data through the input port.

Dependencies

To enable this port, set:

• Data specification to Table and breakpoints.
• Breakpoints specification to Explicit values.
• Breakpoints 2 to Input port.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | enumerated | fixed point

bp3 — Explicit breakpoint values
1-by-n or n-by-1 vector of monotonically increasing values

Specify the breakpoint data explicitly, based on the value of the Breakpoints specification
parameter, with a signal that is tunable at runtime.

• If you set Breakpoints specification to Explicit values, enter the breakpoint vector that
corresponds to each dimension of table data in each Breakpoints row. For each dimension,
specify breakpoints as a 1-by-n or n-by-1 vector whose values are strictly monotonically
increasing.

You can create up to three breakpoint data input ports. For breakpoints 4 to 30, you can specify
breakpoint data only through the corresponding Breakpoints parameter.

Note To specify evenly spaced breakpoint data, use the Breakpoints parameter. You cannot specify
evenly spaced breakpoint data through the input port.

Dependencies

To enable this port, set:

1 Blocks

1-1254

• Data specification to Table and breakpoints.
• Breakpoints specification to Explicit values.
• Breakpoints 3 to Input port.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | enumerated | fixed point

Output

Port_1 — Output computed by looking up or estimating table values
scalar | vector | matrix

Output generated by looking up or estimating table values based on the input values:

When block inputs... The n-D Lookup Table block...
Match the values of indices in breakpoint vectors Outputs the table value at the intersection of the

row, column, and higher dimension breakpoints
Do not match the values of indices in breakpoint
vectors, but are within range

Interpolates appropriate table values, using the
Interpolation method you select

Do not match the values of indices in breakpoint
vectors, and are out of range

Extrapolates the output value, using the
Extrapolation method you select

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
Table and Breakpoints

Number of table dimensions — Number of lookup table dimensions

3 (default) | 1 | 2 | 4 | ... | 30

Enter the number of dimensions of the lookup table. This parameter determines:

• The number of independent variables for the table and the number of block inputs
• The number of breakpoint vectors to specify

Value Setting
1, 2, 3, or 4 Select the value from the drop-down list.
A higher number of table dimensions Enter a positive integer directly in the field.

The maximum number of table dimensions that
this block supports is 30.

For example, a table with a size of M x N x ... means that the size of dimension 1 is M, the size of
dimension 2 is N, and so forth. M must match the first breakpoint length, N must match the second
breakpoint length, and so forth.

Programmatic Use
Block Parameter: NumberOfTableDimensions

 n-D Lookup Table

1-1255

Type: character vector
Values: '1' | '2' | '3' | '4' | ... | 30
Default: '3'

Data specification — Method of table and breakpoint specification

Table and breakpoints (default) | Lookup table object

From the list, select:

• Table and breakpoints — Specify the table data and breakpoints. Selecting this option
enables the following parameters:

• Table data
• Breakpoints specification
• Breakpoints 1
• Breakpoints 2
• Breakpoints 3
• Edit table and breakpoints

To specify the table and breakpoints using input ports, see the Source parameter.
• Lookup table object — Use an existing lookup table (Simulink.LookupTable) object.

Selecting this option enables the Name field and Edit table and breakpoints button.

Programmatic Use
Block Parameter: DataSpecification
Type: character vector
Values: 'Table and breakpoints' | 'Lookup table object'
Default: 'Table and breakpoints'

Name — Name of the lookup table object

[] (default) | Simulink.LookupTable object

Enter the name of the lookup table (Simulink.LookupTable) object. If a Simulink.LookupTable

object does not exist, click the action button and select Create. The corresponding parameters of
the new lookup table object are automatically populated with the block information.

Dependencies

To enable this parameter, set Data specification to Lookup table object.

Programmatic Use
Block Parameter: LookupTableObject
Type: character vector
Values: name of a Simulink.LookupTable object
Default: ''

Breakpoints specification — Method of breakpoint specification

Explicit values (default) | Even spacing

1 Blocks

1-1256

Specify whether to enter data as explicit breakpoints or as parameters that generate evenly spaced
breakpoints.

• To explicitly specify breakpoint data, set this parameter to Explicit values and enter
breakpoint data in the text box next to the Breakpoints parameters.

• To specify parameters that generate evenly spaced breakpoints, set this parameter to Even
spacing and enter values for the First point and Spacing parameters for each dimension of
breakpoint data. The block calculates the number of points to generate from the table data.

Dependencies

• To enable this parameter, set Data specification to Table and breakpoints.
• When this parameter is set to Even spacing, you can only specify breakpoint data through the

dialog.

Programmatic Use
Block Parameter: BreakpointsSpecification
Type: character vector
Values: 'Explicit values' | 'Even spacing'
Default: 'Explicit values'

Source — Source of table and breakpoint data

Dialog (default) | Input port

Specify the source of the table and breakpoint data as:

• Dialog — Specify the table or breakpoint data in Value parameter.
• Input port — Specify the table or breakpoint data through the associated input port.

You can create up to three breakpoint data input ports. For breakpoints 4 to 30, you can specify
breakpoint data only through the corresponding Breakpoints parameter.

Note Using the input port to specify table or breakpoint data might negatively affect block
performance for simulation due to runtime checks.

Dependencies

• To enable this parameter, set Data specification to Table and breakpoints.
• To enable the associated Value, set this parameter to Dialog.
• To enable the associated input port, set this parameter to Input port.
• Setting this parameter to Input port disables the Value field and hides the corresponding

parameter on the Data Types tab.
• Setting this parameter to Input port for any one of the parameters disables the Edit Table and

Breakpoints button.

Programmatic Use
Block Parameter: TableSource | BreakpointsForDimension1Source |
BreakpointsForDimension2Source | BreakpointsForDimension3Source
Type: character vector
Values: Dialog | Input port

 n-D Lookup Table

1-1257

Default: 'Dialog'

Table data — Define the table of output values

reshape(repmat([4 5 6;16 19 20;10 18 23],1,2),[3,3,2]) (default) | matrix of values
with dimensions that match the Number of table dimensions

Enter the table of output values in the associated Value field.

During simulation, the matrix size must match the dimensions defined by the Number of table
dimensions parameter. However, during block diagram editing, you can enter an empty matrix
(specified as []) or an undefined workspace variable. This technique lets you postpone specifying a
correctly dimensioned matrix for the table data and continue editing the block diagram.

Dependencies

To enable this parameter, set:

• Data specification to Table and breakpoints.
• Table data: Source to Dialog.

Programmatic Use
Block Parameter: Table
Type: character vector
Values: matrix of table values
Default: 'reshape(repmat([4 5 6;16 19 20;10 18 23],1,2),[3,3,2])'

Breakpoints — Explicit breakpoint values or first point and spacing of breakpoints

[10,22,31] (default) | 1-by-n or n-by-1 vector of monotonically increasing values

Specify the breakpoint data explicitly or as evenly-spaced breakpoints, based on the value of the
Breakpoints specification parameter.

• If you set Breakpoints specification to Explicit values, enter the breakpoint vector that
corresponds to each dimension of table data in each Breakpoints row in the associated Value
field. For each dimension, specify breakpoints as a 1-by-n or n-by-1 vector whose values are
strictly monotonically increasing.

• If you set Breakpoints specification to Even spacing, enter the parameters First point and
Spacing in each Breakpoints row to generate evenly-spaced breakpoints in the respective
dimension. Your table data determines the number of evenly spaced points.

Dependencies

• To enable this parameter, set:

• Data specification to Table and breakpoints.
• Table data: Source to Dialog.

• When the Breakpoints specification parameter is set to Even spacing, you can only specify
breakpoint data through the dialog.

Programmatic Use
Block Parameter: BreakpointsForDimension1 | BreakpointsForDimension2 | ... |
BreakpointsForDimension30 |

1 Blocks

1-1258

Type: character vector
Values: 1-by-n or n-by-1 vector of monotonically increasing values
Default: '[10, 22, 31]'

First point — First point in evenly spaced breakpoint data

1 (default) | scalar

Specify the first point in your evenly spaced breakpoint data as a real-valued, finite scalar. This
parameter is available when Breakpoints specification is set to Even spacing.
Dependencies

To enable this parameter, set Data specification to Table and breakpoints, and Breakpoints
specification to Even spacing.
Programmatic Use
Block Parameter: BreakpointsForDimension1FirstPoint |
BreakpointsForDimension2FirstPoint | ... |
BreakpointsForDimension30FirstPoint |
Type: character vector
Values: real-valued, finite, scalar
Default: '1'

Spacing — Spacing between evenly spaced breakpoints

1 (default) | scalar

Specify the spacing between points in your evenly-spaced breakpoint data.
Dependencies

To enable this parameter, set Data specification to Table and breakpoints, and Breakpoints
specification to Even spacing.
Programmatic Use
Block Parameter: BreakpointsForDimension1Spacing |
BreakpointsForDimension2Spacing | ... | BreakpointsForDimension30Spacing |
Type: character vector
Values: positive, real-valued, finite, scalar
Default: '1'

Edit table and breakpoints — Open Lookup Table Editor dialog box

button

Click this button to open the Lookup Table Editor. For more information, see “Edit Lookup Tables”.

Clicking this button for a lookup table object lets you edit the object and save the new values for the
object.

Algorithm

Lookup method

Interpolation method — Method of interpolation between breakpoint values

 n-D Lookup Table

1-1259

Linear point-slope (default) | Flat | Nearest | Linear Lagrange | Cubic spline | Akima
spline

When an input falls between breakpoint values, the block interpolates the output value using
neighboring breakpoints. For more information on interpolation methods, see “Interpolation
Methods”.

Dependencies

• If you select Cubic spline, the block supports only scalar signals. The other interpolation
methods support nonscalar signals.

• If you select Akima spline, the extrapolation method can only be Akima spline.

When set to the modified Akima interpolation method, this block does not support:

• Row-major array layout and algorithms optimized for row-major array layout
• Scaled double and fixed-point data types
• Simulink.LookupTable objects
• Code generation when the configuration parameter Code Generation > Interface > Support
non-finite numbers check box is selected

When set to the modified Akima interpolation method, this block is known to run more slowly
when these conditions are true:

• Code generation-based simulation targets, such as those for accelerator mode, rapid
accelerator mode, protected models, and so forth.

• Code generated for large breakpoint and data table sizes. For example with a table size of
629x1601.

Programmatic Use
Block Parameter: InterpMethod
Type: character vector
Values: 'Linear point-slope' | 'Flat' | 'Nearest' | 'Linear Lagrange' | 'Cubic
spline' | 'Akima spline'
Default: 'Linear point-slope'

Extrapolation method — Method of handling input values that fall outside the range of a breakpoint
vector

Linear (default) | Clip | Cubic spline | Akima spline

Select Clip, Linear, or Cubic spline. See “Extrapolation Methods” for more information.

If the extrapolation method is Linear, the extrapolation value is calculated based on the selected
linear interpolation method. For example, if the interpolation method is linear Lagrange, the
extrapolation method inherits the linear Lagrange equation to compute the extrapolated value.

Dependencies

• To select Cubic spline for Extrapolation method, you must also select Cubic spline for
Interpolation method.

• To select Akima spline for Extrapolation method, you must also select Akima spline for
Interpolation method.

1 Blocks

1-1260

Programmatic Use
Block Parameter: ExtrapMethod
Type: character vector
Values: 'Linear' | 'Clip' | 'Cubic spline' | 'Akima spline'
Default: 'Linear'

Index search method — Method of calculating table indices

Evenly spaced points (default) | Linear search | Binary search

Select Evenly spaced points, Linear search, or Binary search. Each search method has
speed advantages in different circumstances:

• For evenly spaced breakpoint vectors (for example, 10, 20, 30, and so on), you achieve optimal
speed by selecting Evenly spaced points to calculate table indices.

This algorithm uses only the first two breakpoints of a set to determine the offset and spacing of
the remaining points.

Note Set Index search method to Evenly spaced points when using the
Simulink.LookupTable object to specify table data and the Breakpoints Specification
parameter of the referenced Simulink.LookupTable object is set to Even spacing.

• For unevenly spaced breakpoint vectors, follow these guidelines:

• If input signals do not vary much between time steps, selecting Linear search with Begin
index search using previous index result produces the best performance.

• If input signals jump more than one or two table intervals per time step, selecting Binary
search produces the best performance.

A suboptimal choice of index search method can lead to slow performance of models that rely heavily
on lookup tables.

Note The generated code stores only the first breakpoint, the spacing, and the number of
breakpoints when:

• The breakpoint data is not tunable.
• The index search method is Evenly spaced points.

Programmatic Use
Block Parameter: IndexSearchMethod
Type: character vector
Values: 'Binary search' | 'Evenly spaced points' | 'Linear search'
Default: 'Binary search'

Begin index search using previous index result — Start using the index from the previous time
step

off (default) | on

Select this check box when you want the block to start its search using the index found at the
previous time step. For inputs that change slowly with respect to the interval size, enabling this

 n-D Lookup Table

1-1261

option can improve performance. Otherwise, the linear search and binary search methods can take
longer, especially for large breakpoint vectors.
Dependencies

To enable this parameter, set Index search method to Linear search or Binary search.
Programmatic Use
Block Parameter: BeginIndexSearchUsingPreviousIndexResult
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for out-of-range input — Block action when input is out of range

None (default) | Warning | Error

Specify whether to produce a warning or error when the input is out of range. Options include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Apply full precision fixed-point algorithm when possible — More accurate fixed-point table
lookup

off (default) | on

Use this check box to enable full-precision fixed-point algorithm lookup for linear interpolation lookup
when possible. This algorithm generally achieves better precision for hardware-efficient fixed-point
rounding modes.
Dependencies

To enable this parameter, set:

• Number of table dimensions to 1.
• Interpolation method to Linear point-slope.
• Extrapolation method to Clip.

Programmatic Use
Block Parameter: ApplyFullPrecisionForLinearInterpolation
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Use last table value for inputs at or above last breakpoint — Method for computing output for
inputs at or above last breakpoint

1 Blocks

1-1262

off (default) | on

Using this check box, specify the indexing convention that the block uses to address the last element
of a breakpoint vector and its corresponding table value. This check box is relevant if the input is
equal to or larger than the last element of the breakpoint data. Due to rounding, selecting and
clearing this check box may result in differing results for the last breakpoint between simulation and
code generation.

Check Box Index Used by Block Interval Fraction
Selected Last element of breakpoint data on the

Table and Breakpoints tab
0

Cleared Next-to-last element of breakpoint data
on the Table and Breakpoints tab

1

Given an input u within range of a breakpoint vector bp, the interval fraction f, in the range 0≦f<1, is
computed as shown below.

Suppose the breakpoint vector is [1 4 5] and input u is 5.5. If you select this check box, the index
is that of the last element (5) and the interval fraction is 0. If you clear this check box, the index is
that of the next-to-last element (4) and the interval fraction is 1.

Dependencies

To enable this parameter, set:

• Interpolation method to Linear.
• Extrapolation method to Clip.

Programmatic Use
Block Parameter: UseLastTableValue
Type: character vector
Values: 'off' | 'on'
Default: 'off'

 n-D Lookup Table

1-1263

Input settings

Use one input port for all input data — Use only one input port

off (default) | on

Select this check box to use only one input port that expects a signal that is n elements wide for an n-
dimensional table. This option is useful for removing line clutter on a block diagram with many
lookup tables.

Note When you select this check box, one input port with the label u appears on the block.

Programmatic Use
Block Parameter: UseOneInputPortForAllInputData
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Code generation

Remove protection against out-of-range input in generated code — Remove code that checks
for out-of-range input values

off (default) | on

Specify whether or not to include code that checks for out-of-range input values.

Check Box Result When to Use
on Generated code does not

include conditional statements
to check for out-of-range
breakpoint inputs.

When the input is out-of-range,
it may cause undefined behavior
for generated code.

For code efficiency

off Generated code includes
conditional statements to check
for out-of-range inputs.

For safety-critical applications

If your input is not out of range, you can select the Remove protection against out-of-range index
in generated code check box for code efficiency. By default, this check box is cleared. For safety-
critical applications, do not select this check box. If you want to select the Remove protection
against out-of-range index in generated code check box, first check that your model inputs are in
range. For example:

1 Clear the Remove protection against out-of-range index in generated code check box.
2 Set the Diagnostic for out-of-range input parameter to Error.
3 Simulate the model in normal mode.
4 If there are out-of-range errors, fix them to be in range and run the simulation again.

1 Blocks

1-1264

5 When the simulation no longer generates out-of-range input errors, select the Remove
protection against out-of-range index in generated code check box.

Note When you select the Remove protection against out-of-range index in generated
code check box and the input is out of range, the behavior is undefined for generated code.

Depending on your application, you can run the following Model Advisor checks to verify the usage of
this check box:

• By Product > Embedded Coder > Identify lookup table blocks that generate expensive
out-of-range checking code

• By Product > Simulink Check > Modeling Standards > DO-178C/DO-331 Checks > Check
usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Advisor Checks”.

Additionally, to determine if it is safe to select this check box, if you have a Simulink Design Verifier
license, consider using the “Detect Block Input Range Violations” (Simulink Design Verifier) check.

Programmatic Use
Block Parameter: RemoveProtectionInput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Support tunable table size in code generation — Enable tunable table size in the generated code

off (default) | on

Select this check box to enable tunable table size in the generated code. This option enables you to
change the size and values of the lookup table and breakpoint data in the generated code without
regenerating or recompiling the code. You can only decrease the size of the lookup table and
breakpoint data.

Dependencies

If you set Interpolation method to Cubic spline, this check box is not available.

Programmatic Use
Block Parameter: SupportTunableTableSize
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

 n-D Lookup Table

1-1265

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Maximum indices for each dimension — Maximum index value for each table dimension

[] (default) | scalar or vector of positive integer values
Example: [4 6] for a 5-by-7 table

Specify the maximum index values for each table dimension using zero-based indexing. You can
specify a scalar or vector of positive integer values using the following data types:

• Built-in floating-point types: double and single
• Built-in integer types: int8, int16, int32, uint8, uint16, and uint32

Examples of valid specifications include:

• [4 6] for a 5-by-7 table
• [int8(2) int16(5) int32(9)] for a 3-by-6-by-10 table
• A Simulink.Parameter whose value on generating code is one less than the dimensions of the

table data. For more information, see “Tunable Table Size in the Generated Code” on page 1-1274.

Dependencies

To enable this parameter, select Support tunable table size in code generation. On tuning this
parameter in the generated code, provide the new table data and breakpoints along with the tuned
parameter value.

Programmatic Use
Block Parameter: MaximumIndicesForEachDimension
Type: character vector
Values: scalar or vector of positive integer values
Default: '[]'

Data Types

Table data — Data type of table data

Inherit: Same as output (default) | double | single | half | int8 | uint8 | int16 | uint16 |
int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the table data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

1 Blocks

1-1266

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Tip Specify a table data type different from the output data type for these cases:

• Lower memory requirement for storing table data that uses a smaller type than the output signal
• Sharing of prescaled table data between two n-D Lookup Table blocks with different output data

types
• Sharing of custom storage table data in the generated code for blocks with different output data

types

Dependencies

To enable this parameter, set Table data from the Table and Breakpoints tab to Dialog.

Programmatic Use
Block Parameter: TableDataTypeStr
Type: character vector
Values: 'Inherit: Inherit from 'Table data'' | 'Inherit: Same as output' |
'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' |
'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as output'

Table data Minimum — Minimum value of the table data

[] | scalar

Specify the minimum value for table data. The default value is [] (unspecified).

Programmatic Use
Block Parameter: TableMin
Type: character vector
Values: scalar
Default: '[]'

Table data Maximum — Maximum value of the table data

[] | scalar

Specify the maximum value for table data. The default value is [] (unspecified).

Programmatic Use
Block Parameter: TableMax
Type: character vector
Values: scalar
Default: '[]'

Breakpoints — Breakpoint data type

 n-D Lookup Table

1-1267

Inherit: Same as corresponding input (default) | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the data type for a set of breakpoint data. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as corresponding input
• The name of a built-in data type, for example, single
• The name of a data type class, for example, an enumerated data type class
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Tip

• Breakpoints support unordered enumerated data. As a result, linear searches are also unordered,
which offers flexibility but can impact performance. The search begins from the first element in
the breakpoint.

• If the Begin index search using previous index result check box is selected, you must use
ordered monotonically increasing data. This ordering improves performance.

• For enumerated data, Extrapolation method must be Clip.
• The block does not support out-of-range input for enumerated data. When specifying enumerated

data, include the entire enumeration set in the breakpoint vector. For example, use the
enumeration function.

This is a limitation for using enumerated data with this block:

• The block does not support out-of-range input for enumerated data. When specifying enumerated
data, include the entire enumeration set in the breakpoint vector. For example, use the
enumeration function.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Tip Specify a breakpoint data type different from the corresponding input data type for these cases:

• Lower memory requirement for storing breakpoint data that uses a smaller type than the input
signal

• Sharing of prescaled breakpoint data between two n-D Lookup Table blocks with different input
data types

• Sharing of custom storage breakpoint data in the generated code for blocks with different input
data types

Specify the same slope and bias for a breakpoint data type and its corresponding input data type if
either of them has a fixed-point data type.

1 Blocks

1-1268

Dependencies

To enable this parameter, set the corresponding Breakpoints parameter from the Table and
Breakpoints tab to Dialog.

Programmatic Use
Block Parameter: BreakpointsForDimension1DataTypeStr |
BreakpointsForDimension2DataTypeStr| ... |
BreakpointsForDimension30DataTypeStr
Type: character vector
Values: 'Inherit: Same as corresponding input' | 'Inherit: Inherit from
'Breakpoint data'' | 'double' | 'single' | 'half' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)'
| 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as corresponding input'

Breakpoints Minimum — Minimum value breakpoint data can have

[] | scalar

Specify the minimum value that a set of breakpoint data can have. The default value is []
(unspecified).

Programmatic Use
Block Parameter: BreakpointsForDimension1Min | BreakpointsForDimension2Min
| ... | BreakpointsForDimension30Min
Type: character vector
Values: scalar
Default: '[]'

Breakpoints Maximum — Maximum value breakpoint data can have

[] | scalar

Specify the maximum value that a set of breakpoint data can have. The default value is []
(unspecified).

Programmatic Use
Block Parameter: BreakpointsForDimension1Max | BreakpointsForDimension2Max
| ... | BreakpointsForDimension30Max
Type: character vector
Values: scalar
Default: '[]'

Fraction — Fraction data type

Inherit: Inherit via internal rule (default) | double | single | fixdt(1,16,0) | <data
type expression>

Specify the fraction data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object

 n-D Lookup Table

1-1269

• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: FractionDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' |
'fixdt(1,16,0)'|'<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Intermediate results — Intermediate results data type

Inherit: Same as output (default) | Inherit: Inherit via internal rule | double |
single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Specify the intermediate results data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as output
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Tip Use this parameter to specify higher (or lower) precision for internal computations than for table
data or output data.

Programmatic Use
Block Parameter: IntermediateResultsDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as output' |
'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'int64' | 'uint64' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data
type expression>'
Default: 'Inherit: Same as output'

Output — Output data type

Inherit: Same as input (default) | double | single | half | int8 | uint8 | int16 | uint16 |
int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the output data type. You can set it to:

1 Blocks

1-1270

• A rule that inherits a data type, for example, Inherit: Inherit via back propagation
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: Inherit from table
data' | 'Inherit: Same as first input' | 'double' | 'single' | 'half' |
'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)'|'<data type expression'
Default: 'Inherit: Same as first input'

Output Minimum — Minimum value the block can output

[] | scalar

Specify the minimum value that the block outputs. The default value is [] (unspecified). Simulink
software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”).
• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Output Maximum — Maximum value the block can output

[] | scalar

Specify the maximum value that the block can output. The default value is [] (unspecified). Simulink
software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”).
• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.

 n-D Lookup Table

1-1271

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Internal rule priority — Internal rule for intermediate calculations

Speed (default) | Precision

Specify the internal rule for intermediate calculations. Select Speed for faster calculations. If you do,
a loss of accuracy might occur, usually up to 2 bits.

Dependencies

This parameter takes effect only when the Intermediate results parameter is set to Inherit:
Inherit via internal rule.

Programmatic Use
Block Parameter: InternalRulePriority
Type: character vector
Values: 'Speed' | 'Precision'
Default: 'Speed'

Require all inputs to have the same data type — Require all inputs to have the same data type

on (default) | off

Select to require all inputs to have the same data type.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Simplest (default) | Ceiling | Convergent | Floor | Nearest | Round | Zero

1 Blocks

1-1272

Specify the rounding mode for fixed-point lookup table calculations that occur during simulation or
execution of code generated from the model. For more information, see “Rounding” (Fixed-Point
Designer).

This option does not affect rounding of values of block parameters. Simulink rounds such values to
the nearest representable integer value. To control the rounding of a block parameter, enter an
expression using a MATLAB rounding function into the edit field on the block dialog box.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Simplest'

Saturate on integer overflow — Method of overflow action

off (default) | on

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this check
box (on).

Your model has possible
overflow and you want explicit
saturation protection in the
generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

An overflow associated with a
signed 8-bit integer can
saturate to -128 or 127.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The number 130 does not fit
in a signed 8-bit integer and
wraps to -126.

Tip If you save your model as version R2009a or earlier, this check box setting has no effect and no
saturation code appears. This behavior preserves backward compatibility.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

 n-D Lookup Table

1-1273

Block Characteristics
Data Types double | enumerated | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Tunable Table Size in the Generated Code

Suppose that you have a lookup table and want to make the size tunable in the generated code. When
you use Simulink.LookupTable and Simulink.Breakpoint objects to configure lookup table
data for calibration in the generated code, use the SupportTunableSize property of the objects to
enable a tunable table size. When you do not use these classes, use the Support tunable table size
in code generation parameter in an n-D Lookup Table block to enable a tunable table size.

Assume that:

• You define a Simulink.Parameter structure in the preload function of your model:

p = Simulink.Parameter;
p.Value.MaxIdx = [2 2];
p.Value.BP1 = [1 2 3];
p.Value.BP2 = [1 4 16];
p.Value.Table = [4 5 6; 16 19 20; 10 18 23];
p.DataType = 'Bus: slLookupTable';
p.CoderInfo.StorageClass = 'ExportedGlobal';

% Create bus object slBus1 from MATLAB structure
Simulink.Bus.createObject(p.Value);
slLookupTable = slBus1;
slLookupTable.Elements(1).DataType = 'uint32';

• These block parameters apply in the n-D Lookup Table block.

Parameter Value
Number of table dimensions 2
Table data p.Table
Breakpoints 1 p.BP1
Breakpoints 2 p.BP2
Support tunable table size in code
generation

on

Maximum indices for each dimension p.MaxIdx

The generated model_types.h header file contains a type definition that looks something like this.

typedef struct {
 uint32_T MaxIdx[2];

1 Blocks

1-1274

 real_T BP1[3];
 real_T BP2[3];
 real_T Table[9];
} slLookupTable;

The generated model.c file contains code that looks something like this.

/* Exported block parameters */
slLookupTable p = {
 { 2U, 2U },

 { 1.0, 2.0, 3.0 },

 { 1.0, 4.0, 16.0 },

 { 4.0, 16.0, 10.0, 5.0, 19.0, 18.0, 6.0, 20.0, 23.0 }
} ;

/* More code */

/* Model output function */
static void ex_lut_nd_tunable_table_output(int_T tid)
{
 /* Lookup_n-D: '<Root>/n-D Lookup Table' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 */
 Y = look2_binlcpw(U1, U2, p.BP1, p.BP2, p.Table, ...
p.MaxIdx, p.MaxIdx[0] + 1U);

 /* Outport: '<Root>/Out1' */
 ex_lut_nd_tunable_table_Y.Out1 = Y;

 /* tid is required for a uniform function interface.
 * Argument tid is not used in the function. */
 UNUSED_PARAMETER(tid);
}

The highlighted line of code specifies a tunable table size for the lookup table. You can change the
size and values of the lookup table and breakpoint data without regenerating or recompiling the code.

Enumerated Values in Lookup Tables

Suppose that you have a lookup table with an enumerated class like this defined:

classdef(Enumeration) Gears < Simulink.IntEnumType
 enumeration
 GEAR1(1),
 GEAR2(2),
 GEAR3(4),
 GEAR4(8),
 SPORTS(16),
 REVERSE(-1),
 NEUTRAL(0)
 end
end

n-D Lookup Table block has these settings:

 n-D Lookup Table

1-1275

• Number of dimensions to 1.
• Table data value is [5 10 20 40 80 -5 0].
• Breakpoints 1 value is enumeration('Gears').
• Interpolation method is Flat.
• For an unordered search, set Index search method to Linear search and clear the Begin

index search using previous index result check box.

Simulation produces a vector [10 -5 80], which correspond to GEAR2, REVERSE, and SPORTS.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

MapToRAM Map lookup tables (LUTs) to RAM. The default is on. See also “MapToRAM”
(HDL Coder).

1 Blocks

1-1276

General
OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Note The block supports single, double, and half data types for HDL code generation.

Native Floating Point
HandleDenormals Specify whether you want HDL Coder to insert additional logic to handle

denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min, or
Zero for the floating-point operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

MantissaMultiplyStra
tegy

Specify how to implement the mantissa multiplication operation during
code generation. By using different settings, you can control the DSP usage
on the target FPGA device. The default is inherit. See also
“MantissaMultiplyStrategy” (HDL Coder).

PrecomputeCoefficien
ts

To enable this property, set Interpolation method to Linear point-
slope.

When you enable this property, the slope and bias coefficients are statically
precomputed depending on the table data and breakpoints. This setting
reduces the number of division operations that are performed during
runtime to compute the coefficients. It also reduces the overall number of
floating-point addition and multiplication operations that are performed.

Enabling this property reduces the latency and saves area number of
lookup table resources that are required. However, this property reorders
the floating-point operations, which might result in small numeric
differences. You can observe these numerical differences in the generated
validation model.

AreaOptimization For 4-D and 5-D LUT, HDL code generation supports fully parallel and
serial implementations. To enable this property, use linear interpolation
method for 4-D and 5-D LUT. When you set this property to either
Parallel or Serial, HDL Coder manipulates the resources for your
design. To reduce the area of your design, use serial implementation for
minimizing the resources. To observe the results of fully parallel and serial
implementation, compare the resource utilization report of native floating-
point operators for your design. You can also compare the synthesis results
of the design for fully parallel and serial implementation.

 n-D Lookup Table

1-1277

Latency Consideration for Lookup Table

When you use the floating-point data types for LUT in native floating point (NFP) mode, code
generator computes the latency of LUT with respect to the latency values of Add, Divide and
Multiplication operators. The latency of LUT also depends on HDL Block Properties, such as
PrecomputeCoefficients and MapToRAM. It is computed as follows:

• When PrecomputeCoefficients is Off, latency of LUT is calculated as,

LUT Latency = D + N(2A + M)

where,

D is NFP latency of Divide operator

A is NFP latency of Add operator

M is NFP latency of Multiplication operator

N is Number of table dimensions
• When PrecomputeCoefficients is On, latency of LUT is calculated as,

LUT Latency = (2^N - 1)A + N(M)
• When you turned On the MapToRAM property for the LUT and specify the synthesis tool and

target device for your model, one additional latency has been added.

The latency values of the floating-point operators, such as Add, Divide and Multiply, is listed in table.
For more information, see “Latency Values of Floating-Point Operators” (HDL Coder).

Floating-Point
Operators

Data Type Minimum Latency Maximum Latency

Add Double 6 11
Single 6 11
Half 4 8

Divide Double 31 61
Single 17 32
Half 10 19

Multiply Double 6 9
Single 6 8
Half 4 6

For example, consider a 1-D lookup table with single-precision data type and
PrecomputeCoefficients as off. The latency of 1-D LUT is

LUT Latency = 32 + 1(2x11 + 8) = 62.

If you turn on the MapToRAM option, then LUT latency comes out to be 63.

Complex Data Support

This block supports code generation for complex signals.

1 Blocks

1-1278

Required Block Settings

Block Setting HDL Coder Support
Number of table dimensions Select the table dimension between 1 to 30.
Breakpoints specification Select either Explicit values or Even spacing.
Extrapolation method Select Clip or Linear. The code generator does not

support extrapolation beyond even bounds.
Interpolation method Select Flat or Linear point-slope.
Diagnostic for out-of-range input Select Error. If you specify other options, HDL Coder

generates a warning.
Use last table value for inputs at or
above last breakpoint

Select this check box.

Require all inputs to have the same
data type

Select this check box.

Fraction Select Inherit: Inherit via internal rule.
Integer rounding mode Select Zero, Floor, or Simplest.
Use one input port for all input data Clear this check box.

MAX 10 Device Settings

If you use Intel MAX 10 device, to map the lookup table to RAM, add this Tcl command when creating
the project in the Quartus tool:

set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE IMAGE WITH
ERAM"

Avoid Generation of Divide Operator

If HDL Coder encounters conditions under which a division operation is required to match the model
simulation behavior, a warning is displayed. The conditions described cause this block to emit a
divide operator. When you use this block for HDL code generation, avoid these conditions:

• If the block is configured to use interpolation, a division operator is required. To avoid this
requirement, set Interpolation method to Flat.

• Uneven table spacing. HDL code generation requires the block to use the evenly spaced points
algorithm. The block mapping from the input data type to the zero-based table index in general
requires a division. When the breakpoint spacing is an exact power of 2, this divide is
implemented as a shift instead of as a divide. To adjust the breakpoint spacing, adjust the number
of breakpoints in the table, or the difference between the left and right bounds of the breakpoint
range.

Table Data Typing and Sizing

• It is good practice to structure your table such that the spacing between breakpoints is a power of
two. If the breakpoint spacing does not meet this condition, HDL Coder issues a warning. When
the breakpoint spacing is a power of two, you can replace division operations in the prelookup
step with right-shift operations.

• All ports on the block require scalar values.

 n-D Lookup Table

1-1279

Restrictions

• When you set the Interpolation method to Flat, the block supports half data types for data
inputs, breakpoints, and outputs. Linear interpolation is not supported for half data types.

• HDL code generation for n-D Lookup Table blocks with fixed-point data type supports only
Evenly spaced points as the index search method.

• HDL code generation does not support LUTs with more than 131072 table elements.
• HDL Code generation supports fixed-point data types for only 1-D and 2-D look up table blocks.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Simulink PLC Coder has limited support for lookup table blocks. The coder does not support:

• Number of dimensions greater than 2
• Cubic spline interpolation method
• Begin index search using a previous index mode
• Cubic spline extrapolation method

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Direct Lookup Table (n-D) | Prelookup | Interpolation Using Prelookup | Lookup Table Dynamic |
Simulink.LookupTable | Simulink.Breakpoint

Topics
“Import Lookup Table Data from MATLAB”
“About Lookup Table Blocks”
“Anatomy of a Lookup Table”
“Enter Breakpoints and Table Data”
“Guidelines for Choosing a Lookup Table”
“Interpolation Algorithm for Row-Major Array Layout” (Simulink Coder)

1 Blocks

1-1280

Lookup Table Dynamic
Approximate a one-dimensional function using dynamic table

Libraries:
Simulink / Lookup Tables

Description
How This Block Differs from Other Lookup Table Blocks

The Lookup Table Dynamic block computes an approximation of a function y = f(x) using xdat and
ydat vectors. The lookup method can use interpolation, extrapolation, or the original values of the
input.

Using the Lookup Table Dynamic block, you can change the table data without stopping the
simulation. For example, you can incorporate new table data if the physical system you are simulating
changes.

Inputs for Breakpoint and Table Data

The xdat vector is the breakpoint data, which must be strictly monotonically increasing. The value of
the next element in the vector must be greater than the value of the preceding element after
conversion to a fixed-point data type. Due to quantization, xdat can be strictly monotonic for a
floating-point data type, but not after conversion to a fixed-point data type.

The ydat vector is the table data, which is an evaluation of the function at the breakpoint values.

Note The inputs to xdat and ydat cannot be scalar (one-element array) values. If you provide a
scalar value to either of these inputs, you see an error upon simulation. Provide a 1-by-n vector to
both the xdat and ydat inputs.

Lookup Table Definition

You define the lookup table by feeding xdat and ydat as 1-by-n vectors to the block. To reduce ROM
usage in the generated code for this block, you can use different data types for xdat and ydat.

Tip Breakpoints with even spacing can make Simulink Coder generated code division-free. For more
information, see fixpt_evenspace_cleanup in the Simulink documentation and “Identify
questionable fixed-point operations” (Embedded Coder) in the Simulink Coder documentation.

How the Block Generates Output

The block uses the input values to generate output using the method you select for Lookup Method:

 Lookup Table Dynamic

1-1281

Lookup Method Block Action
Interpolation-Extrapolation Performs linear interpolation and extrapolation of the inputs.

• If the input matches a breakpoint, the output is the
corresponding element in the table data.

• If the input does not match a breakpoint, the block performs
linear interpolation between two elements of the table to
determine the output. If the input falls outside the range of
breakpoint values, the block extrapolates using the first two
or last two points.

Note If you select this lookup method, Simulink Coder software
cannot generate code for this block.

Interpolation-Use End Values (default) Performs linear interpolation but does not extrapolate outside
the end points of the breakpoint data. Instead, the block uses
the end values.

Use Input Nearest Finds the element in xdat nearest the current input. The
corresponding element in ydat is the output.

Use Input Below Finds the element in xdat nearest and below the current input.
The corresponding element in ydat is the output. If there is no
element in xdat below the current input, the block finds the
nearest element.

Use Input Above Finds the element in xdat nearest and above the current input.
The corresponding element in ydat is the output. If there is no
element in xdat above the current input, the block finds the
nearest element.

Note The Use Input Nearest, Use Input Below, and Use Input Above methods perform the
same action when the input x matches a breakpoint value.

Some continuous solvers subdivide the simulation time span into major and minor time steps. A minor
time step is a subdivision of the major time step. The solver produces a result at each major time step
and uses results at minor time steps to improve the accuracy of the result at the major time step. For
continuous solvers, the output of the Lookup Table Dynamic block can appear like a stair step
because the signal is fixed in minor time step to avoid incorrect results. For more information about
the effect of solvers on block output, see “Compare Solvers” in the Simulink documentation.

Ports
Input

x — input vector
scalar | vector | 2-D array

The block accepts real-valued or complex-valued inputs.
Example: 2:12

1 Blocks

1-1282

Dependencies

The x input vector and the xdat breakpoint data must have the same sign, bias, and fractional slope.
Also, the precision and range for x must be greater than or equal to the precision and range for xdat.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | bus

xdat — breakpoint data
1-by-n vector of strictly monotonically increasing values

The xdat vector is the breakpoint data, which must be strictly monotonically increasing. The value of
the next element in the vector must be greater than the value of the preceding element after
conversion to a fixed-point data type. Due to quantization, xdat can be strictly monotonic for a
floating-point data type, but not after conversion to a fixed-point data type.

Tip Breakpoints with even spacing can make Simulink Coder generated code division-free. For more
information, see fixpt_evenspace_cleanup in the Simulink documentation and “Identify
questionable fixed-point operations” (Embedded Coder) in the Simulink Coder documentation.

Example: 1:10

Dependencies

The xdat breakpoint data and the x input vector must have the same sign, bias, and fractional slope.
Also, the precision and range for x must be greater than or equal to the precision and range for xdat.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | bus

ydat — table data
1-by-n vector

The ydat input is a 1-by-n vector of real-valued or complex-valued table data, which is an evaluation
of the function at the breakpoint values.
Example: [0 3 12 27 48 75 108 147 192 243 300]

Dependencies

The ydat table data and the y output vector must have the same sign, bias, and fractional slope.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | bus

Output

y — Approximation of y = f(x) using dynamic table data
1-by-n vector

The block computes an approximation of a function y = f(x) using the xdat and ydat input
vectors. The lookup method can use interpolation, extrapolation, or the original values of the input.

Dependencies

The ydat table data and the y output vector must have the same sign, bias, and fractional slope.

 Lookup Table Dynamic

1-1283

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Main Tab

Lookup Method — Specify the lookup method

Interpolation-Use End Values (default) | Interpolation-Extrapolation | Use Input
Nearest | Use Input Below | Use Input Above

The block computes output by applying the Lookup Method you select to the input vectors of
breakpoint data (xdat) and table data (ydat). For details, see “How the Block Generates Output” on
page 1-1281.

Programmatic Use
Block Parameter: LookUpMeth
Type: character vector
Values: 'Interpolation-Extrapolation' | 'Interpolation-Use End Values' | 'Use
Input Nearest' | 'Use Input Below' | 'Use Input Above'
Default: 'Interpolation-Use End Values'

Signal Attributes Tab

Output data type — Output data type

double (default) | 'Inherit: Inherit via back propagation' | single | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Specify the data type of the output signal y.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Dependencies

The ydat table data and the y output vector must have the same sign, bias, and fractional slope.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'double' | 'single' | 'int8'
| 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' |
'boolean' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | <data type expression>
Default: 'double'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

1 Blocks

1-1284

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action

off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no

 Lookup Table Dynamic

1-1285

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

The Simulink PLC Coder software does not support the Simulink Lookup Table Dynamic block. For
your convenience, the plclib/Simulink/Lookup Tables library contains an implementation of a dynamic
table lookup block using the Prelookup and Interpolation Using Prelookup blocks.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
n-D Lookup Table

Topics
“Enter Data Using Inports of Lookup Table Dynamic Block”
“Nonlinearity”
“About Lookup Table Blocks”
“Anatomy of a Lookup Table”
“Guidelines for Choosing a Lookup Table”

1 Blocks

1-1286

Magnitude-Angle to Complex
Convert magnitude and/or a phase angle signal to complex signal

Libraries:
Simulink / Math Operations
HDL Coder / HDL Floating Point Operations

Description
Supported Operations

The Magnitude-Angle to Complex block converts magnitude and phase angle inputs to a complex
output. The angle input must be in rad.

When there are two block inputs, the block supports these combinations of input dimensions:

• Two inputs of equal dimensions
• One scalar input and the other an n-dimensional array

If the block input is an array, the output is an array of complex signals. The elements of a magnitude
input vector map to the magnitudes of the corresponding complex output elements. Similarly, the
elements of an angle input vector map to the angles of the corresponding complex output elements. If
one input is a scalar, it maps to the corresponding component (magnitude or angle) of all the complex
output signals.

Effect of Out-of-Range Input on CORDIC Approximations

If you use the CORDIC approximation method [1], the block input for phase angle has these
restrictions:

• For signed fixed-point types, the input angle must fall within the range [–2π, 2π) rad.
• For unsigned fixed-point types, the input angle must fall within the range [0, 2π) rad.

This table summarizes the effects of an out-of-range input:

Block Usage Effect of Out-of-Range Input
Simulation modes An error appears.
Generated code Undefined behavior occurs.

When you use the CORDIC approximation, ensure that you use an in-range input for the Magnitude-
Angle to Complex block. Avoid relying on undefined behavior for generated code or accelerator
modes.

 Magnitude-Angle to Complex

1-1287

Ports
Input

|u| — Magnitude
scalar | vector | matrix

Magnitude, specified as a real-valued scalar, vector, or matrix.

Dependencies

• To enable this port, set Input to Magnitude and angle.

Limitations

• If one input has a floating-point data type, the other input must use the same data type. For
example, both signals must be double or single.

• Fixed-point data types are supported only when you set the Approximation method to CORDIC.
When one input has a fixed-point data type, the other input must also have a fixed-point data type.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

∠u — Radian phase angle
scalar | vector | matrix

Radian phase angle, specified as a real-valued scalar, vector, or matrix. To compute the CORDIC
approximation, the input angle must be between:

• [–2π, 2π) rad, for signed fixed-point types
• [0, 2π) rad, for unsigned fixed-point types

For more information, see “Effect of Out-of-Range Input on CORDIC Approximations” on page 1-1287.

Dependencies

• To enable this port, set Input to Magnitude and angle.

Limitations

• If one input has a floating-point data type, the other input must use the same data type. For
example, both signals must be double or single.

• Fixed-point data types are supported only when you set the Approximation method to CORDIC.
If one input has a fixed-point data type, the other input must also have a fixed-point data type.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Port_1 — Magnitude or radian phase angle
scalar | vector | matrix

Magnitude, or radian phase angle, specified as a real-valued scalar, vector, or matrix.

• When you set Input to Magnitude, you specify the magnitude at the input port, and the angle on
the dialog box.

1 Blocks

1-1288

• When you set Input to Angle, you specify the angle at the input port, and the magnitude on the
dialog box.

Dependencies

To enable this port, set Input to Magnitude or Angle.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Complex signal
scalar | vector | matrix

Complex signal, formed from the magnitude and phase angle you specify.

If the block input is an array, the output is an array of complex signals. The elements of a magnitude
input vector map to the magnitudes of the corresponding complex output elements. Similarly, the
elements of an angle input vector map to the angles of the corresponding complex output elements. If
one input is a scalar, it maps to the corresponding component (magnitude or angle) of all the complex
output signals.
Data Types: single | double | fixed point

Parameters
Input — Type of input

Magnitude (default) | Angle | Magnitude and angle

Specify the kind of input: a magnitude input, an angle input, or both.

Programmatic Use
Block Parameter: Input
Type: character vector
Values: 'Magnitude' | 'Angle' | 'Magnitude and angle'
Default: 'Magnitude and angle'

Angle — Phase angle of output
0 (default) | real-valued scalar, vector, or matrix

Constant phase angle of the output signal, in rad. To compute the CORDIC approximation, the input
angle must be between:

• [–2π, 2π) rad, for signed fixed-point types
• [0, 2π) rad, for unsigned fixed-point types

For more information, see “Effect of Out-of-Range Input on CORDIC Approximations” on page 1-1287.

Dependencies

To enable this parameter, set Input to Magnitude.

Programmatic Use
Block Parameter: ConstantPart

 Magnitude-Angle to Complex

1-1289

Type: character vector
Values: constant scalar
Default: '0'

Magnitude — Magnitude of output
0 (default) | real-valued scalar, vector, or matrix

Constant magnitude of the output signal, specified as a real-valued scalar, vector, or matrix.

Dependencies

To enable this parameter, set Input to Angle.

Programmatic Use
Block Parameter: ConstantPart
Type: character vector
Values:real-valued scalar, vector, or matrix
Default: '0'

Approximation method — CORDIC or none

None (default) | CORDIC

Specify the type of approximation for computing output.

Approximation Method Data Types Supported When to Use This Method
None (default) Floating point You want to use the default

Taylor series algorithm.
CORDIC Floating point and fixed point You want a fast, approximate

calculation.

When you use the CORDIC approximation, follow these guidelines for the input angle:

• For signed fixed-point types, the input angle must fall within the range [–2π, 2π) rad.
• For unsigned fixed-point types, the input angle must fall within the range [0, 2π) rad.

The block uses the following data type propagation rules:

Data Type of Magnitude
Input

Approximation Method Data Type of Complex Output

Floating point None or CORDIC Same as input
Signed, fixed point CORDIC fixdt(1, WL + 2, FL)

where WL and FL are the word length and
fraction length of the magnitude

Unsigned, fixed point CORDIC fixdt(1, WL + 3, FL)

where WL and FL are the word length and
fraction length of the magnitude

Programmatic Use
Block Parameter: ApproximationMethod

1 Blocks

1-1290

Type: character vector
Values: 'None' | 'CORDIC'
Default: 'None'

Number of iterations — Number of iterations for CORDIC algorithm

11 (default) | positive integer, less than or equal to word length of fixed-point input

Number of iterations to perform the CORDIC algorithm. The range of possible values depends on the
data type of the input:

Data Type of Block Inputs Value You Can Specify
Floating point A positive integer
Fixed point A positive integer that does not exceed the word

length of the magnitude input or the word length
of the phase angle input, whichever value is
smaller

Dependencies

To enable this parameter, set Approximation method to CORDIC.
Programmatic Use
Block Parameter: NumberOfIterations
Type: character vector
Values: positive integer, less than or equal to word length of fixed-point input
Default: '11'

Scale output by reciprocal of gain factor — Scale real and imaginary parts of complex output

on (default) | off

Select this check box to scale the real and imaginary parts of the complex output by a factor of (1/
CORDIC gain). This value depends on the number of iterations you specify. As the number of
iterations goes up, the value approaches 1.647.

This check box is selected by default, which leads to a more numerically accurate result for the
complex output, X + iY. However, scaling the output adds two extra multiplication operations, one
for X and one for Y.
Dependencies

To enable this parameter, set Approximation method to CORDIC.
Programmatic Use
Block Parameter: ScaleReciprocalGainFactor
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

 Magnitude-Angle to Complex

1-1291

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics
Data Types double | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

Version History
Introduced before R2006a

References
[1] Volder, Jack E., “The CORDIC Trigonometric Computing Technique.” IRE Transactions on

Electronic Computers EC-8 (1959); 330–334.

[2] Andraka, Ray “A Survey of CORDIC Algorithm for FPGA Based Computers.” Proceedings of the
1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays. Feb.
22–24 (1998): 191–200.

[3] Walther, J.S., “A Unified Algorithm for Elementary Functions,” Proceedings of the Spring Joint
Computer Conference, May 18-20, 1971: 379–386.

1 Blocks

1-1292

[4] Schelin, Charles W., “Calculator Function Approximation,” The American Mathematical Monthly
90, no. 5 (1983): 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has multi-cycle implementations that introduce additional latency in the generated code.
To see the added latency, view the generated model or validation model. See “Generated Model and
Validation Model” (HDL Coder).

For a block that has additional latency, the Approximation method is CORDIC. The number of
additional cycles iterations is +1.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

The Magnitude-Angle to Complex block supports only the HDL code generation for a floating-point
data type.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The Magnitude-Angle to Complex block supports fixed-point and base integer data types when you set
Approximation method to CORDIC.

See Also
Complex to Magnitude-Angle | Complex to Real-Imag | Real-Imag to Complex

 Magnitude-Angle to Complex

1-1293

Topics
“Complex Signals”

1 Blocks

1-1294

Manual Switch
Switch between two inputs

Libraries:
Simulink / Signal Routing

Description
The Manual Switch block is a toggle switch that selects one of its two inputs to pass through to the
output. To toggle between inputs, double-click the block. You control the signal flow by setting the
switch before you start the simulation or by changing the switch while the simulation is executing.
The Manual Switch block retains its current state when you save the model.

To programmatically toggle the switch, set the set_param sw property to '0' or '1'. For example,
to connect the second input to the output:

set_param(gcb,'sw','0')

To connect the first input to the output:

set_param(gcb,'sw','1')

Note Double-clicking the Manual Switch block does not open the block dialog box. Instead, it toggles
the input choice.

Ports
Input

Port_1 — First input signal
scalar | vector

First of two inputs to the Manual Switch block. The block propagates the selected input to the output.
To select the input signal, toggle the switch by double-clicking the block.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Port_2 — Second input signal
scalar | vector

Second of two inputs to the Manual Switch block. The block propagates the selected input to the
output. To select the input signal, toggle the switch by double-clicking the block.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

 Manual Switch

1-1295

Output

Port_1 — Output signal
scalar | vector

Output signal propagated from either the first or second input signal.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
To view the block parameters, right-click the block and select Block Parameters
(ManualSwitch).

Allow the two inputs to differ in size (Results in variable-size output signal) — Allow inputs of
different sizes

off (default) | on

Select this check box to allow inputs with different sizes and propagate the selected input signal size
to the output signal. If you clear the box, the block expands scalar inputs to have the same
dimensions as nonscalar inputs. See “Scalar Expansion of Inputs and Parameters”.

Programmatic Use
Parameter: varsize
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough yes
Multidimensional
Signals

yes

1 Blocks

1-1296

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Switch | Multiport Switch | Manual Variant Source | Manual Variant Sink

 Manual Switch

1-1297

Manual Variant Sink
Switch between multiple variant choices at output

Libraries:
Simulink / Signal Routing

Description
The Manual Variant Sink block is a toggle switch that activates one of its variant choices at the output
to pass the input.

The block can have two or more output ports and has one input port. Each output port is associated
with a variant control. To change the number of output ports, right-click the block and select Mask
Parameters, then type a value in the Number of choices box.

To toggle between the variant choices at output, double-click the block. The block displays the active
choice with a line connecting the input to the output. The block propagates the active variant choice
at output and discards the blocks connected to inactive output ports during simulation.

Note

• Double-clicking the Manual Variant Sink block does not open the block dialog box instead it
toggles the output choice.

• Changing the active choice during compile, simulation, or paused states is not supported.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal passed to the active output port.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — First variant output
scalar | vector

First variant output signal. The block passes the input signal to this output port when you connect the
toggle switch to this port.

1 Blocks

1-1298

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Port_n — nth variant output
scalar | vector

nth variant output signal. The block passes the input signal to this output port when you connect the
toggle switch to this port.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
To access the block parameter, right-click the block and select Mask > Mask Parameters.

Number of choices — Number of output choices
2 (default) | scalar

Specify the number of variant output ports.

Programmatic Use
Block Parameter: NumChoices
Type: character vector
Value: integer
Default: '2'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 Manual Variant Sink

1-1299

See Also
Variant Sink | Variant Source | Manual Variant Source

Topics
“Introduction to Variant Controls”
“Working with Variant Choices”
“Variant Systems” (Embedded Coder)
“Represent Variant Source and Sink Blocks in Generated Code” (Embedded Coder)
“V-Model for System Development with Simulink Variants”

1 Blocks

1-1300

Manual Variant Source
Switch between multiple variant choices at input

Libraries:
Simulink / Signal Routing

Description
The Manual Variant Source block is a toggle switch that activates one of its variant choices at the
input to pass through to the output.

A Manual Variant Source block can have two or more input ports and has one output port. Each input
port is associated with a variant control. To change the number of input ports, right-click the block
and select Mask Parameters, then type a value in the Number of choices box.

To toggle between the variant choices at input, double-click the block. The block displays the active
choice with a line connecting the input to the output. The block propagates the active variant choice
at input directly to the output and discards the blocks connected to inactive input ports during
simulation.

Note

• Double-clicking the Manual Variant Source block does not open the block dialog box instead it
toggles the output choice.

• Changing the active choice during compile, simulation, or paused states is not supported.

Ports
Input

Port_1 — First variant input signal
scalar | vector

First variant input signal. The block passes this input signal to the output port when you connect the
toggle switch to this port.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Port_n — nth variant input signal
scalar | vector

nth variant input signal. The block passes this input signal to the output port when you connect the
toggle switch to this port.

 Manual Variant Source

1-1301

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — Output signal
scalar | vector

Output signal passed from the active variant input signal.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
To access the block parameter, right-click the block and select Mask > Mask Parameters.

Number of choices — Number of input choices
2 (default) | scalar

Specify the number of variant input ports.

Programmatic Use
Block Parameter: NumChoices
Type: character vector
Value: integer
Default: '2'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1 Blocks

1-1302

See Also
Manual Variant Sink | Variant Source | Variant Sink

Topics
“Introduction to Variant Controls”
“Working with Variant Choices”
“Variant Systems” (Embedded Coder)
“Represent Variant Source and Sink Blocks in Generated Code” (Embedded Coder)
“V-Model for System Development with Simulink Variants”

 Manual Variant Source

1-1303

Math Function
Perform mathematical function

Libraries:
Simulink / Math Operations
HDL Coder / Math Operations

Description
The Math Function block performs many common mathematical functions.

You can select one of these functions from the Function parameter list in Math Function block.

Function Description Mathematical
Expression

MATLAB Equivalent

exp Exponential eu exp
log Natural logarithm ln u log
2^u Power of base 2 2u 2.^u

(see power)
10^u Power of base 10 10u 10.^u

(see power)
log10 Common (base 10)

logarithm
log u log10

magnitude^2 Complex modulus |u|2 real(u).^2 +
imag(u).^2
(see real, imag, and
power)

square Power 2 u2 u.^2
(see power)

pow Power sign(u)*|u|v (default,
applied only for even-order
roots) or uv

power

conj Complex conjugate ū conj
reciprocal with Exact
method

Reciprocal 1/u 1./u
(see rdivide)

reciprocal with
Newton-Raphson method

Reciprocal See “Newton-Raphson
Reciprocal Algorithm
Method” on page 1-1306

None

hypot Square root of sum
squares

(u2+v2)0.5 hypot

rem Remainder after division — rem

1 Blocks

1-1304

Function Description Mathematical
Expression

MATLAB Equivalent

mod Modulus after division — mod
transpose Transpose uT u.'

(see “Array vs. Matrix
Operations”)

hermitian Complex conjugate
transpose

uH u'
(see “Array vs. Matrix
Operations”)

Tip To perform square root calculations, use the Sqrt block.

The block output is the result of the operation of the function on the input or inputs. The functions
support these types of operations.

Function Scalar Operations Element-Wise Vector
and Matrix Operations

Vector and Matrix
Operations

exp Yes Yes Not applicable
log Yes Yes Not applicable
2^u Yes Yes Not applicable
10^u Yes Yes Not applicable
log10 Yes Yes Not applicable
magnitude^2 Yes Yes Not applicable
square Yes Yes Not applicable
pow Yes Yes Not applicable
conj Yes Yes Not applicable
reciprocal with Exact
method

Yes Yes Not applicable

reciprocal with
Newton-Raphson method

Yes Yes Not applicable

hypot Yes, on two inputs Yes, on two inputs (two
vectors or two matrices of
the same size, a scalar and
a vector, or a scalar and a
matrix)

—

rem Yes, on two inputs Yes, on two inputs (two
vectors or two matrices of
the same size, a scalar and
a vector, or a scalar and a
matrix)

Not applicable

 Math Function

1-1305

Function Scalar Operations Element-Wise Vector
and Matrix Operations

Vector and Matrix
Operations

mod Yes, on two inputs Yes, on two inputs (two
vectors or two matrices of
the same size, a scalar and
a vector, or a scalar and a
matrix)

Not applicable

transpose Yes — Yes
hermitian Yes — Yes

The name of the function and the appropriate number of input ports appear on the block.

Tip Use the Math Function block when you want vector or matrix output.

Newton-Raphson Reciprocal Algorithm Method

The reciprocal function that has the Newton-Raphson algorithm method calculates the reciprocal
by using the Newton-Raphson approximation method. The function uses recursive approximation to
find better approximations to the roots of a real-value function.

The reciprocal of a real number a is defined as a zero of the function:

f x = 1
x − a .

Simulink chooses an initial estimate in the range 0 < x0 < 2
a , because this is the domain of

convergence for the function.

To successively calculate the roots of the function, specify the Number of iterations parameter. The
process is repeated as follows:

xi + 1 = xi−
f xi
f ′ xi

= xi + (xi− axi2) = xi . (2− axi)

f ′(x) is the derivative of the function f (x).

Data Type Support

This table lists the input data types that each function of the block can support.

Function Single Double Half* Boolean Built-In
Integer

Fixed Point

exp Yes Yes Yes — — —
log Yes Yes Yes — — —
2^u Yes Yes Yes — — —
10^u Yes Yes Yes — — —
log10 Yes Yes Yes — — —

1 Blocks

1-1306

Function Single Double Half* Boolean Built-In
Integer

Fixed Point

magnitude^2 Yes Yes Yes — Yes Yes
square Yes Yes Yes — Yes Yes
pow Yes Yes Yes — — —
conj Yes Yes Yes — Yes Yes
reciprocal
with Exact
method

Yes Yes Yes — Yes Yes

reciprocal
with Newton-
Raphson
method (for
more
information,
see “Output” on
page 1-1308)

Yes Yes — — Yes Yes

hypot Yes Yes Yes — — —
rem Yes Yes Yes — Yes —
mod Yes Yes Yes — Yes —
transpose Yes Yes Yes Yes Yes Yes
hermitian Yes Yes Yes — Yes Yes

For more information on half-precision arithmetic operations, see “The Half-Precision Data Type in
Simulink” (Fixed-Point Designer).

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal specified as a scalar, vector, or matrix. Supported modes accept real and complex inputs,
except for reciprocal, which does not accept complex fixed-point inputs. See Description on page
1-1304.
Dependencies

Data type support for this block depends on the Function that you select and the size of the inputs.
For more information, see “Data Type Support” on page 1-1306.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Port_2 — Input signal
scalar | vector | matrix

Input signal specified as a scalar, vector, or matrix. Supported modes accept real and complex inputs,
except for reciprocal, which does not accept complex fixed-point inputs.

 Math Function

1-1307

Dependencies

To enable this port, set Function to hypot, rem, or mod.

Data type support for this block depends on the Function that you select, and the size of the inputs.
For more information, see “Data Type Support” on page 1-1306.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Result of the operation of the function on the input or inputs
scalar | vector | matrix

Output signal specified as a scalar, vector, or matrix. The dimensions of the block output depend on
the Function that you select and the size of the inputs. The block output is real or complex,
depending on what you select for Output signal type. See Description on page 1-1304.

reciprocal with Newton-Raphson Method

The reciprocal with Newton-Raphson method output data type depends on the input data type:

Input Data Type Output Data Type
single single
double double
built-in integer built-in integer
built-in fixed-point built-in fixed-point
fi (value, 0, word_length, fraction_length) fi (value, 0, word_length, word_length–

fraction_length–1)
fi (value, 1, word_length, fraction_length) fi (value, 1, word_length, word_length–

fraction_length–2)

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Function — Math function

exp (default) | log | 2^u | 10^u | log10 | magnitude^2 | square | pow | conj | reciprocal |
hypot | rem | mod | transpose | hermitian

Specify the mathematical function. For more information about the options for this parameter, see
Description on page 1-1304.

Dependency

Setting Function to pow enables the Signed power parameter.

1 Blocks

1-1308

Programmatic Use
Block Parameter: Operator
Type: character vector
Values: 'exp' | 'log' | '2^u' | '10^u' | 'log10' | 'magnitude^2' | 'square' |
'pow' | 'conj' | 'reciprocal' | 'hypot' | 'rem' | 'mod' | 'transpose' |
'hermitian'
Default: 'exp'

Algorithm method — Algorithm method for reciprocal function

Exact (default) | Newton-Raphson

Algorithm method for reciprocal function, specified as Exact or Newton-Raphson. To calculate
reciprocal with the Newton-Raphson approximation method, select Newton-Raphson. Otherwise,
select Exact.

Dependency

Setting Function to reciprocal enables this parameter.

Programmatic Use
Block Parameter: AlgorithmType
Type: character vector
Values: 'Exact' | 'Newton-Raphson'
Default: 'Exact'

Signed power — Power signedness

on (default) | off

When calculating power, specified as on or off, take into account sign of the input signal.. This
parameter applies only for even-order roots, such as u1/2, u1/4, and so forth.

• on — Calculate power of the absolute value of the input, multiplied by the sign of the input.
• off — Calculate power of the actual input value. If the first input is negative and the second input

is an even-order root, returns nan.

Dependency

Setting Function to pow enables this parameter.

Programmatic Use
Block Parameter: SignedPower
Type: character vector
Values: 'on' | 'off' |
Default: 'on'

Output signal type — Complexity of output signal

auto (default) | real | complex

Specify the output signal type of the Math Function block as auto, real, or complex.

 Math Function

1-1309

Function Input Signal Type Output Signal Type
Auto Real Complex

exp, log, 2^u, 10^u,
log10, square, pow,
reciprocal,
conjugate,
transpose,
hermitian

real

complex

real

complex

real

error

complex

complex

magnitude squared real

complex

real

real

real

real

complex

complex
hypot, rem, mod real

complex

real

error

real

error

complex

error

Programmatic Use
Block Parameter: OutputSignalType
Type: character vector
Values: 'auto' | 'real' | 'complex'
Default: 'auto'

Number of iterations — Number of Newton-Raphson iterations

3 (default) | scalar

Number of Newton-Raphson iterations, specified as a scalar.

Dependencies

To enable this parameter, set:

• Function to reciprocal.
• Algorithm method to Newton-Raphson.

Programmatic Use
Block Parameter: Iterations
Type: character vector
Values: '3' | scalar
Default: '3'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime

1 Blocks

1-1310

Type: string scalar or character vector
Default: "-1"

Signal Attributes

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

 Math Function

1-1311

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

Inherit: Same as first input (default) | Inherit: Inherit via internal rule |
Inherit: Inherit via back propagation | double | single | half | int8 | uint8 | int16 |
uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back propagation
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Dependencies

• To enable this parameter, set the Function to magnitude^2, square, or reciprocal.
• For the magnitude^2 and square, when input is a floating-point data type smaller than single

precision, the Inherit: Inherit via internal rule output data type depends on the
setting of the “Inherit floating-point output type smaller than single precision” configuration
parameter. Data types are smaller than single-precision when the number of bits needed to encode
the data type is less than the 32 bits needed to encode the single precision data type. For example,
half and int16 are smaller than single precision.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as first input' |
'Inherit: Inherit via back propagation' | 'double' | 'single' | 'half' | 'int8' |
'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Same as first input'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data types

off (default) | on

1 Blocks

1-1312

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Dependencies

To enable this parameter, set the Function to magnitude^2, square, or reciprocal.

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-Point
Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Dependencies

To enable this parameter, set the Function to magnitude^2, square, or reciprocal.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Choose the behavior when integer overflow occurs

on (default) | boolean

Action Rationale Overflows Example
Select Saturate
on integer
overflow check
box.

Your model has possible
overflow and you want explicit
saturation protection in the
generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

 Math Function

1-1313

Action Rationale Overflows Example
Do not select
Saturate on
integer overflow
check box.

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. The code generation process can detect when overflow is not possible. In this
case, the code generator does not produce saturation code.
Dependencies

To enable this parameter, set the Function to magnitude^2, square, conj, reciprocal, or
hermitian.
Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

R2023a: Math Function Block Supports 2^u

The Math Function block now supports the 2^u function. The MATLAB equivalent is 2.^u (see
power).

1 Blocks

1-1314

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

Function Architecture Description
conj ComplexConjugate Calculate complex conjugate.
hermitian Hermitian Calculate hermitian.
transpose Transpose Calculate array transpose. See Math Function

in the Simulink documentation.

Reciprocal Architecture

You can generate HDL code for single-precision floating-point data types in native floating-point mode
by using Math architecture for reciprocal function. The reciprocal function in the Math
Function block also supports the architectures listed in the table.

Architecture Parameters Additional Cycles
of Latency

Description

Reciprocal None 0 Calculate reciprocal as 1/N, using
the HDL divide (/) operator to
implement the division.

ReciprocalRsqrtBasedN
ewton

Iterations Signed input:
Iterations + 5

Unsigned input:
Iterations + 3

Use the iterative Newton method.
Select this option to optimize
area.

The default value for Iterations
is 3.

The recommended value for
Iterations is from 2 through
10. If Iterations is outside the
recommended range, HDL Coder
generates a message.

 Math Function

1-1315

Architecture Parameters Additional Cycles
of Latency

Description

ReciprocalRsqrtBasedN
ewtonSingleRate

Iterations Signed input:
(Iterations * 4)
+ 8

Unsigned input:
(Iterations * 4)
+ 6

Use the single rate pipelined
Newton method. Select this option
to optimize speed, or if you want a
single rate implementation.

The default value for Iterations
is 3.

The recommended value for
Iterations is from 2 through
10. If Iterations is outside the
recommended range, the coder
generates a message.

ShiftAdd UsePipelines Signed input:
(Input word length
+ 4)

Unsigned input:
(Input word length
+ 4)

Perform reciprocal operation on a
fixed-point input by using a non-
restoring division algorithm that
performs multiple shift and add
operations to compute the
reciprocal. This architecture
provides improved accuracy
compared to the Newton-Raphson
approximation method.

When you use this architecture, to
achieve a higher maximum clock
frequency on the target FPGA
device, leave the UsePipelines
HDL block property to on.

When you use fixed-point data
types, following criteria must be
satisfied for generating the HDL
code:

• Input word length (WL) must be
less than or equal to 63.

• [WL input + Abs(FL
Sum)] must be less than or
equal to 63. Where, FL Sum is
given by,

FL sum = FL input + FL
output

When you set the algorithm method to Exact, you can select these options in HDL Block properties of
this block.

This block has multi-cycle implementations that introduce additional latency in the generated code.
To see the added latency, view the generated model or validation model. See “Generated Model and
Validation Model” (HDL Coder).

1 Blocks

1-1316

HDL code generation also supports the Newton-Raphson algorithm method for reciprocal function.
Select the Algorithm method as Newton-Raphson to use these architectures for reciprocal
function in the Math Function block.

Architecture Additional Cycles of Latency Description
ReciprocalNewton (default) Iterations + 1 Use the multirate implementation

of the iterative Newton method.
Select this option to optimize area
for your design.

The default value for Iterations
is 3.

The recommended value for
Iterations is from 2 through 10.
If Iterations value is outside the
recommended range, HDL Coder
displays a message.

ReciprocalNewtonSingleRate (Iterations * 2) + 1 Use the single rate pipelined
Newton method. Select this option
to optimize speed for your design,
or if you want a single rate
implementation.

The default value for Iterations
is 3.

The recommended value for
Iterations is between 2 and 10.
If Iterations value is outside the
recommended range, HDL Coder
displays a message.

HDL Block Properties

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

 Math Function

1-1317

Native Floating Point
CheckResetToZero Use this property for the mod and rem functions of the Math Function

block. If you have numbers a and b such that the quotient a/b is close to
an integer, this setting treats a as an integral multiple of b, and rem(a,b)
= 0. This result is numerically accurate and matches the simulation results.
Calculating this result uses additional resources and increases the area
footprint on the target FPGA device. For more information, see
“CheckResetToZero” (HDL Coder).

HandleDenormals Specify whether you want HDL Coder to insert additional logic to handle
denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min,
Zero, or Custom for the floating-point operator. The default is inherit.
See also “LatencyStrategy” (HDL Coder).

NFPCustomLatency To specify a value, set LatencyStrategy to Custom. HDL Coder adds
latency equal to the value that you specify for the NFPCustomLatency
setting. See also “NFPCustomLatency” (HDL Coder).

MaxIterations Use this property for the mod and rem functions of the Math Function
block. If you have numbers a and b that are significantly large integers,
you can increase MaxIterations to match the simulation results.
Calculating this result uses additional resources and increases the area
footprint on the target FPGA device. For more information, see
“MaxIterations” (HDL Coder).

Supported Datatypes and Functions in Native Floating-Point

In the Math Function block, these functions are the supported functions with Native Floating-Point.

Math Functions Supported Floating-Point Datatypes Complex Data
SupportHalf Single Double

exp No Yes No No
log No Yes Yes No
2^u No Yes No No
10^u No Yes No No
log10 No Yes No No
magnitude^2 No Yes Yes Yes
square No Yes No Yes
pow No Yes No No
conj No Yes No Yes
reciprocal Yes Yes Yes No
hypot No Yes No No
rem No Yes No No
mod No Yes No No

1 Blocks

1-1318

Math Functions Supported Floating-Point Datatypes Complex Data
SupportHalf Single Double

transpose Yes Yes Yes Yes
hermitian No Yes No Yes

Restrictions

When you use a reciprocal implementation:

• Input must be scalar and must have integer or fixed-point (signed or unsigned) data type.
• The output must be scalar and have integer or fixed-point (signed or unsigned) data type.
• Only the Zero rounding mode is supported.
• The Saturate on integer overflow option on the block must be selected.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The Math Function block only supports fixed-point conversion in certain configurations. For more
information, see the Block Support Table.

See Also
Sqrt, Signed Sqrt, Reciprocal Sqrt | Trigonometric Function

Topics
“hisl_0004: Usage of natural logarithm and base 10 logarithm operations”

 Math Function

1-1319

MATLAB Function
Include MATLAB code in models that generate embeddable C code

Libraries:
Simulink / User-Defined Functions
HDL Coder / User-Defined Functions

Description
With a MATLAB Function block, you can write a MATLAB function for use in a Simulink model. The
MATLAB function executes for simulation and generates code for a Simulink Coder target. If you are
new to Simulink and MATLAB products, see “Implement MATLAB Functions in Simulink with
MATLAB Function Blocks” for an overview.

Double-clicking the MATLAB Function block opens the MATLAB Function Block Editor, where you
write the MATLAB function. The example model call_stats_block2 discussed in “Implement
MATLAB Functions in Simulink with MATLAB Function Blocks” uses the following function in the
MATLAB Function Block Editor:

function [mean,stdev] = stats(vals)

% Calculates a statistical mean and a standard
% deviation for the values in vals.

len = length(vals);
mean = avg(vals,len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);
plot(vals,"-+");

function mean = avg(array,size)
mean = sum(array)/size;

The function specifies the input and output data in the function declaration statement as arguments
and return values. The argument and return values of the preceding example function correspond to
the inputs and outputs of the block in the call_stats_block2 model.

You can also define variables, add an input trigger, and create function call outputs by using the
Model Explorer or the Symbols pane. For more information, see “Create and Define MATLAB

1 Blocks

1-1320

Function Block Variables”, “Manage the Input Trigger of a MATLAB Function Block”, and “Manage
Function Call Outputs of a MATLAB Function Block”.

The MATLAB Function block generates efficient embeddable code based on an analysis that
determines the size, class, and complexity of each variable. This analysis imposes the following
restrictions:

• The first assignment to a variable defines its, size, class, and complexity.

See “Best Practices for Defining Variables for C/C++ Code Generation”.
• You cannot reassign variable properties after the initial assignment except when using variable-

size data or reusing variables in the code for different purposes.

See “Reassignment of Variable Properties”.

In addition to language restrictions, the MATLAB Function block supports a subset of the functions
available in MATLAB. These functions include functions in common categories, such as:

• Arithmetic operators like plus, minus, and power. For more information, see “Array vs. Matrix
Operations”.

• Matrix operations like size, and length
• Advanced matrix operations like lu, inv, svd, and chol
• Trigonometric functions like sin, cos, sinh, and cosh

For more information, see “Functions and Objects Supported for C/C++ Code Generation”.

Note Although the code for this block attempts to produce exactly the same results as MATLAB,
differences might occur due to rounding errors. These numerical differences, which might be a few
eps initially, can magnify after repeated operations. Reliance on the behavior of nan is not
recommended. Different C compilers can yield different results for the same computation.

Note New MATLAB Function blocks do not include the %#codegen directive, but check for errors as
if it is included. Adding the %#codegen directive to a MATLAB Function block does not affect error
checking. For more information see “Compilation Directive %#codegen”.

To support visualization of data, the MATLAB Function block supports calls to MATLAB functions for
simulation only. See “Use MATLAB Engine to Execute a Function Call in Generated Code” to
understand some of the limitations of this capability, and how it integrates with code analysis for this
block. If these function calls do not directly affect any of the Simulink inputs or outputs, the calls do
not appear in Simulink Coder generated code.

From MATLAB Function blocks, you can also call functions defined in a Simulink Function block. You
can call Stateflow functions with Export Chart Level Functions (Make Global) and Allow
exported functions to be called by Simulink checked in the chart Properties dialog box.

In the Symbols pane, you can declare a block input to be a Simulink parameter instead of a port. The
MATLAB Function block also supports inheritance of types and size for inputs, outputs, and
parameters. You can also specify these properties explicitly. See “Define and Modify Variable Data
Types”, “Specify Size of MATLAB Function Block Variables”, and “Configure MATLAB Function Block
Parameter Variables” for descriptions of variables that you use in MATLAB Function blocks.

 MATLAB Function

1-1321

Recursive calls are not allowed in MATLAB Function blocks.

By default, MATLAB Function blocks have direct feedthrough enabled. To disable it, clear the Allow
direct feedthrough property. Nondirect feedthrough semantics ensure that outputs rely only on the
current state. Using nondirect feedthrough enables you to use MATLAB Function blocks in a feedback
loop and prevent algebraic loops. For more information, see “Use Nondirect Feedthrough in a
MATLAB Function Block”.

Ports
Input

u — Input port
scalar | vector | matrix

Input port, specified as a scalar, vector, or matrix. Each input variable that you create has a
corresponding input port.

Data types supported by MATLAB but not supported by Simulink may not be passed between the
Simulink model and the function within the MATLAB Function block. These types may be used within
the MATLAB Function block.

For more information on fixed-point support for this block, refer to “Fixed-Point Data Types with
MATLAB Function Block” (Fixed-Point Designer) and “Data Type Override with MATLAB Function
Block” (Fixed-Point Designer).
Dependencies

To create input ports, open the block and create input variables in the Symbols pane. See “Create
and Define MATLAB Function Block Variables”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | string | fixed point | enumerated | bus

Output

y — Output port
scalar | vector | matrix

Output port, specified as a scalar, vector, or matrix. Each output variable that you create has a
corresponding output port.
Dependencies

To create output ports, open the block and create output variables in the Symbols pane. See “Create
and Define MATLAB Function Block Variables”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | string | fixed point | enumerated | bus

Parameters
Main

Show port labels — Display options for port labels
FromPortIcon (default) | none | FromPortBlockName | SignalName

1 Blocks

1-1322

Select how to display port labels on the MATLAB Function block icon.

• none – Do not display port labels.
• FromPortIcon – Display the name of the input and output variables.
• FromPortBlockName – Display the name of the input and output variables.
• SignalName – If the signal connected to the port is named, display the signal name. Otherwise,

display the name of the variables.

Programmatic Use
Parameter: ShowPortLabels
Type: string scalar or character vector
Value: "none" | "FromPortIcon" | "FromPortBlockName" | "SignalName"
Default: "FromPortIcon"

Read/Write permissions — Levels of access to contents of block
ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the MATLAB Function block.

• ReadWrite – Enable opening and modifying of MATLAB Function block contents.
• ReadOnly – Enable opening of the MATLAB Function block.
• NoReadOrWrite – Disable opening or modifying of the MATLAB Function block.

Note When you attempt to view the contents of a MATLAB Function block whose Read/Write
permissions parameter is NoReadOrWrite, the block does not respond. For example, when you
double-click the MATLAB Function block, Simulink does not open the table contents and does not
display messages.

Programmatic Use
Parameter: Permissions
Type: string scalar or character vector
Value: "ReadWrite" | "ReadOnly" | "NoReadOrWrite"
Default: "ReadWrite"

Minimize algebraic loop occurrences — Option to eliminate artificial algebraic loops
off (default) | on

Whether the block attempts to eliminate artificial algebraic loops that include the atomic unit during
simulation.

• off – Do not try to eliminate any artificial algebraic loops that include the atomic unit.
• on – Try to eliminate any artificial algebraic loops that include the atomic unit.

Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: string scalar or character vector
Value: "off" | "on"
Default: "off"

Sample time (-1 for inherited) — Specify time interval
-1 (default) | [Ts 0]

 MATLAB Function

1-1323

Specify whether variables in this block must run at the same rate or can run at different rates.

• If variables in the MATLAB Function block can run at different rates, specify the sample time as
inherited (-1).

• If variables must run at the same rate, specify the sample time, Ts, corresponding to this rate.

Programmatic Use
Parameter: SystemSampleTime
Type: string scalar or character vector
Value: "-1" | "[Ts 0]"
Default: "-1"

Code Generation

Function packaging — Select code format
Auto (default) | Inline | Nonreusable function | Reusable function

Select the code format that the block generates.

Auto
Simulink Coder chooses the optimal format for your system based on the type and number of
instances of the MATLAB Function block that exist in the model.

Inline
Simulink Coder inlines the MATLAB Function block unconditionally.

Nonreusable function
Simulink Coder explicitly generates a separate function in a separate file. MATLAB Function
blocks with this setting generate functions that might have arguments depending on the
“Function interface” on page 1-0 parameter setting. You can name the generated function and
file using parameters “Function name” on page 1-0 and “File name (no extension)” on page 1-
0 . These functions are not reentrant.

Reusable function
Simulink Coder generates a function with arguments that allows reuse of MATLAB Function block
code when a model includes multiple instances of the MATLAB Function block.

This option generates a function with arguments that allows MATLAB Function block code to be
reused in the generated code of a model reference hierarchy that includes multiple instances of a
MATLAB Function block across referenced models. In this case, the MATLAB Function block must
be in a library.

Tips

• When you want to represent multiple instances of a MATLAB Function block as one reusable
function, you can designate each of the instances as Auto or as Reusable function. It is best
to use one or the other, as using both creates two reusable functions, one for each designation.
The outcomes of these choices differ only when reuse is not possible. Selecting Auto does not
allow control of the function or file name for the MATLAB Function block code.

• The Reusable function and Auto options both determine whether multiple instances of a
MATLAB Function block exist and the code can be reused. The options behave differently when it
is impossible to reuse the code. In this case, Auto yields inlined code, or if circumstances prohibit
inlining, separate functions for each block instance.

1 Blocks

1-1324

• If you select Reusable function while your generated code is under source control, set File
name options to Use subsystem name, Use function name, or User specified.
Otherwise, the names of your code files change when you modify your model, which prevents
source control on your files.

Dependency

• This parameter requires Simulink Coder.
• Setting this parameter to Nonreusable function or Reusable function enables the

following parameters:

• Function name options
• File name options
• Memory section for initialize/terminate functions (requires Embedded Coder and an ERT-based

system target file)
• Memory section for execution functions (requires Embedded Coder and an ERT-based system

target file)
• Setting this parameter to Nonreusable function enables Function with separate data

(requires a license for Embedded Coder and an ERT-based system target file).

Programmatic Use
Parameter: RTWSystemCode
Type: string scalar or character vector
Value: "Auto" | "Inline" | "Nonreusable function" | "Reusable function"
Default: "Auto"

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough yesa

Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced in R2011a

R2020a: 64-bit integer type support for MATLAB Function block

MATLAB Function blocks now support 64-bit integer data. The block implements int64 and uint64
data types as fixed-point numbers with a word length of 64 bits and a fraction length of 0.

R2019b: String support for MATLAB Function block

 MATLAB Function

1-1325

Simulink strings are now supported in MATLAB Function blocks.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic. Actual data type or capability support depends on block implementation. For best practices of
using the MATLAB Function block, see:

• “Design Guidelines for the MATLAB Function Block” (HDL Coder)
• “Generate Instantiable Code for Functions” (HDL Coder)
• “Optimize MATLAB Loops” (HDL Coder)
• “Pipeline MATLAB Expressions” (HDL Coder)

HDL Architecture

MATLAB Function
(Default)

This is the default architecture for MATLAB Function blocks with fixed-
point data types. When you use this architecture, you can use speed and
area optimizations for blocks that surround the MATLAB Function block.
The code inside the MATLAB Function block is not optimized.

MATLAB Datapath This is the default architecture for MATLAB Function blocks with floating-
point data types. When you use this architecture, the code generator treats
the MATLAB Function block like a regular Subsystem block. By enabling
this architecture for fixed-point types, you can use speed and area
optimizations for blocks inside the MATLAB Function block and across the
MATLAB Function block with other Simulink blocks.

This capability enables you to specify additional properties for the MATLAB
Function block that you would specify for a Subsystem such as
ClockRatePipelining and FlattenHierarchy.

HDL Block Properties

AdaptivePipelining Automatic pipeline insertion based on the synthesis tool, target frequency,
and multiplier word-lengths. The default is inherit. To specify this
property, set Architecture to MATLAB Datapath. See also
“AdaptivePipelining” (HDL Coder).

BalanceDelays Detects introduction of new delays along one path and inserts matching
delays on the other paths. The default is inherit. To specify this property,
set Architecture to MATLAB Datapath. See also “BalanceDelays” (HDL
Coder).

1 Blocks

1-1326

ClockRatePipelining Insert pipeline registers at a faster clock rate instead of the slower data
rate. The default is inherit. To specify this property, set Architecture to
MATLAB Datapath. See also “ClockRatePipelining” (HDL Coder).

ConstMultiplierOptim
ization

Canonical signed digit (CSD) or factored CSD optimization. The default is
none. See also “ConstMultiplierOptimization” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. To specify
this property, set Architecture to MATLAB Datapath. See also
“DSPStyle” (HDL Coder).

FlattenHierarchy Remove MATLAB Function block hierarchy from generated HDL code. The
default is inherit. To specify this property, set Architecture to MATLAB
Datapath. See also “FlattenHierarchy” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

InstantiateFunctions Generate a VHDL entity or Verilog module for each function. The default
is off. See also “InstantiateFunctions” (HDL Coder).

LoopOptimization Unroll, stream, or do not optimize loops. The default is none. If you set
Architecture to MATLAB Datapath, you can only unroll loops. If you want
to use loop streaming with the MATLAB Datapath architecture, you can
use the streaming optimization by specifying a StreamingFactor. See also
“LoopOptimization” (HDL Coder).

MapPersistentVarsTo
RAM

Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

StreamingFactor Number of parallel data paths, or vectors, that are time multiplexed to
transform into serial, scalar data paths. The default is 0, which implements
fully parallel data paths. To specify this property, set Architecture to
MATLAB Datapath. See also “Streaming” (HDL Coder).

 MATLAB Function

1-1327

VariablesToPipeline Warning VariablesToPipeline is not recommended. Use
coder.hdl.pipeline instead.

Insert a pipeline register at the output of the specified variable or
variables. Specify the list of variables as a character vector, with spaces
separating the variables. To specify this property, set Architecture to
MATLAB Function.

Data Type Support

HDL code generation supports half-precision data types for these functions in MATLAB Function
block:

all and, & any cast conj ctranspose
end = eq == ge, >= gt, >
half inf int8 int16 int32 int64
isa iscolumn isempty isequal isfinite isfloat
isinf isinteger islogical isnan isnumeric isreal
isrow isscalar isvector le, <= length logical
lt, < max min minus, - NaN ndims
ne, ~= not numel or, | plus, + prod
reshape single size sqrt sum times, .*
transpose uint8 uint16 uint32 uint64 uminus
uplus vertconcat - - - -

Complex Data Support

This block supports code generation for complex signals.

See also “Complex Data Type Support” (HDL Coder).

Tunable Parameter Support

HDL Coder supports both tunable and non-tunable parameters with the following data types:

• Scalar
• Vector
• Complex
• Structure
• Enumeration

For details, see “Generate DUT Ports for Tunable Parameters” (HDL Coder) and .“Design Guidelines
for the MATLAB Function Block” (HDL Coder)

Restrictions

• If the block contains a System object™, block inputs cannot have non-discrete (constant or Inf)
sample time.

1 Blocks

1-1328

• HDL Coder does not support a MATLAB Function that contains the same variable as the input and
output of the function. For example, this MATLAB code is not supported.

function y = myFun(y)
%#codegen

y = 3 * y;
• The block supports floating-point data types only in the Native Floating Point mode.

For the MATLAB language subset supported for HDL code generation from a MATLAB Function
block, see “Supported MATLAB Data Types, Operators, and Control Flow Statements” (HDL Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem

Topics
“Create and Define MATLAB Function Block Variables”
“Implement MATLAB Functions in Simulink with MATLAB Function Blocks”
“Specify MATLAB Function Block Properties”
“Use Nondirect Feedthrough in a MATLAB Function Block”
“Configure MATLAB Function Blocks Programmatically”

 MATLAB Function

1-1329

MATLAB System
Include System object in model

Libraries:
Simulink / User-Defined Functions
HDL Coder / User-Defined Functions

Description
The MATLAB System block brings existing System objects (based on matlab.System) into Simulink.
It also enables you to use System object APIs to develop new blocks for Simulink. For more
information on this block, see “MATLAB System Block”.

For interpreted execution, the model simulates the block using the MATLAB execution engine.

For code generation, the model simulates the block using code generation (using the subset of
MATLAB code supported for code generation). The MATLAB System block supports only a subset of
the functions available in MATLAB. See “Functions and Objects Supported for C/C++ Code
Generation” for a complete list of functions. These functions include those in common categories,
such as:

• “Array vs. Matrix Operations”, like plus, minus, and power
• Matrix operations, like size and length
• Advanced matrix operations, like lu, inv, svd, and chol
• Trigonometric functions, like sin, cos, sinh, and cosh

By default, the MATLAB System block recognizes 1-D input signals and propagates 1-D output
signals as 2-D. Use the supports1DVectorsImpl method to enable the block to recognize and
propagate 1-D inputs and outputs as 1-D signals.

System Objects

To use the MATLAB System block, you must first have a new System object or use an existing one.
For more information, see “Integrate System Objects Using MATLAB System Block”.

Ports
Input

In — Signal input to a MATLAB System block
scalar | vector | matrix

The MATLAB System block accepts inputs of the types listed in the Block Characteristics table. For
more information, see “Data Types Supported by Simulink”.

For information on fixed-point support for this block, see “Code Acceleration and Code Generation
from MATLAB” (Fixed-Point Designer).

1 Blocks

1-1330

The MATLAB System block supports Simulink frames. For more information, see “Sample- and
Frame-Based Concepts” (DSP System Toolbox).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Out — Signal output of a MATLAB System block
scalar | vector | matrix

Signal output of a MATLAB System block that the System object returns.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
System Object Name — Name of the System object
cell array (default)

Specify the full name of the user-defined System object class without the file extension. This entry is
case sensitive. The class name must exist on the MATLAB path.

You can specify a System object name in one of these ways:

• Enter the name in the text box.
• Click the list arrow attached to the text box. If valid System objects exist in the current folder, the

names appear in the list. Select a System object from this list.
• Browse to a folder that contains a valid System object. If the folder is not on your MATLAB path,

the software prompts you to add it.

If you need to create a System object, you can create one from a template by clicking New.

After you save the System object, the name appears in the System object name text box.

Use the full name of the user-defined System object class name. The block does not accept a MATLAB
variable that you have assigned to a System object class name.

Programmatic Use
Block Parameter: System
Type: character vector
Value: name of the System object
Default: ' '

New — Create a System object from a template

Basic (default) | Advanced | Simulink Extension

Select one of the options for a System object template.

Basic
Starts MATLAB Editor and displays a template for a simple System object using the fewest
System object methods.

 MATLAB System

1-1331

Advanced
Starts MATLAB Editor and displays a template for a more advanced System object using most of
the System object methods.

Simulink Extension
Starts MATLAB Editor and displays a file that contains utilities for customizing the block for
Simulink. This is the same file available in MATLAB when you select New > System Object >
Simulink Extension.

After you save the System object, you can enter the name in the System object name text box.

Simulate using — Select the simulation mode
Code generation (default) | Interpreted Execution

Select the simulation mode.

Code generation
On the first model run, simulate and generate code for MATLAB System block using only MATLAB
functions supported for code generation. If the structure of the block does not change,
subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, System Objects accept a maximum of 32 inputs.
Interpreted execution

Simulate model using all supported MATLAB functions. Choosing this option can slow simulation
performance.

Dependency — Dependency parameter for MATLAB System block
auto (default)

After you assign a valid System object class name to the block, the next time you open the block
dialog box, the parameter is visible. This parameter appears for every MATLAB System block. You
cannot remove it.

• If the block has no tabs, this parameter appears at the bottom of the dialog box.
• If the block has multiple tabs, this parameter appears at the bottom of the first tab of the dialog

box.

Saturate on integer overflow — Specify whether overflows saturate

Off (default) | On

On
Overflows saturate to either the minimum or maximum value that the data type can represent.
For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

 Off
Overflows wrap to the appropriate value that the data type can represent. For example, the
number 130 does not fit in a signed 8-bit integer and wraps to -126.

Tips

• Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

1 Blocks

1-1332

• Consider clearing this check box when you want to optimize efficiency of your generated code.
Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

• In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Dependency

This check box appears when you use the showFiSettingsImpl method in the System object.

Programmatic Use
Block Parameter:SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Treat these inherited Simulink signal types as fi objects — Specify fi data types
Fixed-point (default) | Fixed-point & Integer

Select which inherited data types to treat fi data types,

Fixed-point
Treat fixed-point data types as fi data types.

Fixed-point & Integer
Treat fixed-point and integer data types as fi data types.

Dependency

This check box appears when you use the showFiSettingsImpl method in the System object.

MATLAB System fimath — Specify fixed-point settings to use
Same as MATLAB (default) | Specify Other

Select which fixed-point math settings to use.

Same as MATLAB
Use the current MATLAB fixed-point math settings.

Specify Other
Enable the edit box for specifying the desired fixed-point math settings. For information on
setting fixed-point math, see fimath.

Dependency

This check box appears when you use the showFiSettingsImpl method in the System object.

Block Characteristics
Data Types Booleana | busba | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

 MATLAB System

1-1333

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesca

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.
b See Nonvirtual Buses and MATLAB System Block for more information.
c See Variable-Size Signals for more information.

Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

You can define a System object and use it in a MATLAB System block for HDL code generation.

Tunable Parameter Support

HDL Coder supports tunable parameters with the following data types:

• Numeric
• Fixed point
• Character
• Logical

When using tunable parameters with the MATLAB System block, the tunable parameter should be a
Simulink.Parameter object with the StorageClass set to ExportedGlobal.

x = Simulink.Parameter
x.Value = 1
x.CoderInfo.StorageClass = 'ExportedGlobal'

For details, see “Generate DUT Ports for Tunable Parameters” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.

1 Blocks

1-1334

HDL Block Properties

If you use a predefined System object, the HDL block properties available are the same as the
properties available for the corresponding block.

By default, the following HDL block properties are available.

ConstMultiplierOptim
ization

Canonical signed digit (CSD) or factored CSD optimization. The default is
none. See also “ConstMultiplierOptimization” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

LoopOptimization Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization” (HDL Coder).

MapPersistentVarsTo
RAM

Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

VariablesToPipeline Warning VariablesToPipeline is not recommended. Use
coder.hdl.pipeline instead.

Insert a pipeline register at the output of the specified MATLAB variable or
variables. Specify the list of variables as a character vector, with spaces
separating the variables.

Restrictions

• The DUT subsystem must be single-rate.
• Inputs cannot have non-discrete (constant or Inf) sample time.
• To find predefined System objects that are supported for HDL code generation when you use them

in the MATLAB System block, see “Predefined System Objects Supported for HDL Code
Generation” (HDL Coder).

• If you use a user-defined System object, it must support HDL code generation. For information
about user-defined System objects and requirements for HDL code generation, see “HDL Code
Generation for System Objects” (HDL Coder).

 MATLAB System

1-1335

See also “Generate Code for User-Defined System Objects” (HDL Coder) and “HDL Code Generation
for System Objects” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
MATLAB Function

Topics
“Using Buses with MATLAB System Blocks” on page 13-573
“Pulse Width Modulation Using MATLAB System Block” on page 13-633
“MATLAB System Block”
“What Are System Objects?”

1 Blocks

1-1336

Matrix Concatenate
Concatenate input matrices of same data type for iterative processing

Libraries:
Simulink / Math Operations
Simulink / Matrix Operations
DSP System Toolbox / Math Functions / Matrices and Linear Algebra / Matrix
Operations
HDL Coder / Math Operations

Alternative Configurations of Matrix Concatenate Block:
Vector Concatenate

Description
The Matrix Concatenate block concatenates input signals to create a nonscalar signal that you can
iteratively process with a subsystem, for example, a for-each, while-iterator, or for-iterator subsystem.

You can use multiple Matrix Concatenate blocks to create the output signal in stages, but the result is
flat along each concatenation dimension, as if you used a single block to concatenate the signals.

The signals in the output signal appear in the same order as the input signals for the block along the
concatenation dimension. For a description of the port order for various block orientations, see
“Identify Port Location on Rotated or Flipped Block”.

You must use a Vector Concatenate or Matrix Concatenate block to define an array of buses. For more
information, see “Group Nonvirtual Buses in Arrays of Buses”.

Examples

Horizontally Concatenate Matrices

When a Matrix Concatenate block receives 2-D matrices with the same number of rows, you can
horizontally concatenate the matrices, placing them side-by-side in the output matrix. To horizontally
concatenate the matrices, set the Concatenate dimension block parameter to 2.

For example, simulate the ex_concatenate_horizontal model.

 Matrix Concatenate

1-1337

The input matrices [1 2;3 4] and [5;6] are horizontally concatenated to create the output matrix [1 2
5;3 4 6].

Vertically Concatenate Matrices

When a Matrix Concatenate block receives 2-D matrices with the same number of columns, you can
vertically concatenate the matrices, placing them on top of each other in the output matrix. To
vertically concatenate the matrices, set the Concatenate dimension block parameter to 1.

For example, simulate the ex_concatenate_vertical model.

The input matrices [1 2;3 4] and [5 6] are vertically concatenated to create the output matrix [1 2;3
4;5 6].

Perform Multidimensional Matrix Concatenation

When a Matrix Concatenate block receives 2-D matrices, you can perform multidimensional matrix
concatenation. To do so, set the Concatenate dimension block parameter to 3.

For example, simulate the ex_concatenate_multidims model.

1 Blocks

1-1338

The dimension of each input matrix is [2x2], and the dimension of the output matrix is [2x2x2].

Ports
Input

Port_1 — First input to concatenate
scalar | vector | matrix | array

First input to concatenate, specified as a scalar, vector, matrix, or array.

• Inputs must be of the same data type.
• Matrix and array inputs are supported only when you set Mode to Multidimensional array.

When the data type is a Simulink.Bus object, the inputs must be nonvirtual buses.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Port_N — Nth input to concatenate
scalar | vector | matrix | array

Nth input to concatenate, specified as a scalar, vector, matrix, or array.

• Inputs must be of the same data type.
• Matrix and array inputs are supported only when you set Mode to Multidimensional array.

Dependencies

To add input ports, set Number of inputs to an integer greater than or equal to 2.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Output

Port_1 — Concatenation of input signals
scalar | vector | matrix | array

Concatenation of input signals along specified dimension. Outputs have the same data type as the
input.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
To edit block parameters interactively, use the Property Inspector. From the Simulink Toolstrip, on
the Simulation tab, in the Prepare gallery, select Property Inspector.

Number of inputs — Number of input ports
2 (default) | positive integer

Specify the number of inputs for the block as a real-valued, positive integer, less than or equal to
65536.

 Matrix Concatenate

1-1339

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: NumInputs

Values: '2' (default) | positive integer
Data Types: char | string

Example: set_param(gcb,'NumInputs','3')

Mode — Type of concatenation
Vector | Multidimensional array

Select whether the block operates in vector or multidimensional array concatenation mode. The
default Mode of the Vector Concatenate block is Vector. The default Mode of the Matrix
Concatenate block is Multidimensional array.

• When you select Vector, the block performs vector concatenation.
• When you select Multidimensional array, the block performs matrix concatenation.

Mode Setting Input Signals Output Signal
Vector • Vectors

• Row vectors (1-by-M matrices)
• Column vectors (M-by-1 matrices)
• Combination of vectors and either

row or column vectors

When all inputs are vectors, the output
is a vector.

If any of the inputs are row or column
vectors, the output is a row or column
vector, respectively.

Multidimension
al array

Signals of any dimensionality (scalars,
vectors, and matrices)

The output is always an array.

Trailing dimensions are assumed to be
1 for lower dimensionality inputs. For
example, if the output is 4-D and the
input is [2x3] (2-D), this block treats
the input as [2x3x1x1].

Concatenation is on the dimension that
you specify with the Concatenate
dimension parameter.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: Mode

Values: 'Vector' | 'Multidimensional array'

Example: set_param(gcb,'Mode','Vector')

Concatenate dimension — Output dimension along which to concatenate input arrays
scalar integer

Specify the output dimension along which to concatenate the input arrays.

1 Blocks

1-1340

• 1 — Concatenate inputs vertically. The vertical matrix concatenation stacks the input matrices on
top of each other in the output matrix. When you insert a Vector Concatenate block and set Mode
to Multidimensional array, the default is 1.

• 2 — Concatenate inputs horizontally. The horizontal matrix concatenation places the input
matrices side-by-side in the output matrix. When you insert a Matrix Concatenate block, the
default is 2.

• 3 or more — Perform multidimensional concatenation on the inputs.

The input matrices must have compatible sizes for concatenation. Vertical concatenation requires the
input matrices to have the same number of columns. Horizontal concatenation requires input
matrices to have the same number of rows.

Dependencies

To enable this parameter, set Mode to Multidimensional array.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: ConcatenateDimension

Values: scalar integer
Data Types: char | string

Example: set_param(gcb,'ConcatenateDimension','2')

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | image |

integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Vector Concatenate — Concatenate input vectors of same data type for iterative processing

The Vector Concatenate block sets Mode to Vector.
Libraries:
Simulink / Commonly Used Blocks
Simulink / Math Operations
Simulink / Signal Routing
HDL Coder / Math Operations
HDL Coder / Signal Routing

 Matrix Concatenate

1-1341

Version History
Introduced in R2009b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

FOR-GENERATE Loop Support

For this block, HDL Coder generates code using FOR-GENERATE loop when you set the target
language to VHDL. For more information, see “Unroll For-Generate Loops in VHDL Code” (HDL
Coder)

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
cat

1 Blocks

1-1342

Blocks
Selector

Topics
“Group Nonvirtual Buses in Arrays of Buses”
“Creating, Concatenating, and Expanding Matrices”

 Matrix Concatenate

1-1343

Matrix Square
Compute square of input matrix

Libraries:
Simulink / Matrix Operations

Description
The Matrix Square block computes the square of an M-by-N input matrix, u, by premultiplying with
the Hermitian transpose. The equivalent MATLAB code is:

y = u' * u

The block treats length-M unoriented vector inputs as an M-by-1 matrix. When the input is an M-by-N
matrix, the output of the block is an N-by-N matrix.

Applications

The Matrix Square block can be used in a variety of applications:

• General matrix squares — The Matrix Square block computes the output matrix, y, without
explicitly forming u'. It is therefore more efficient than other methods for computing the matrix
square.

• Sum of squares — When the input is a column vector (N=1), the operation of the block is
equivalent to a multiply-accumulate (MAC) process, or inner product. The output is the sum of the
squares of the input, and is always a real scalar.

• Correlation matrix — When the input is a row vector (M=1), the output, y, is the symmetric
autocorrelation matrix, or outer product.

Ports
Input

Port_1 — Input matrix
M-by-1 matrix | 1-by-N matrix | M-by-N matrix

Input matrix, specified as an M-by-1, 1-by-N, or M-by-N matrix.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Output

Port_1 — Output matrix
M-by-M matrix | N-by-N matrix

Output matrix, returned as an N-by-N or M-by-M matrix.

1 Blocks

1-1344

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
Output minimum — Minimum output value for range checking

[] (default) | scalar

Minimum output value for range checking that Simulink checks. Simulink software uses this value to
perform:

• Simulation range checking (see “Specify Signal Ranges”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Maximum output value for range checking that Simulink checks. Simulink software uses this value to
perform:

• Simulation range checking (see “Specify Signal Ranges”)
• Automatic scaling of fixed-point data types

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as input | double | single | int8 | uint8 | int16 | uint16 |
int32 | uint32 | fixdt(1,16,0) | <data type expression>

Specify the output data type for this block.

You can select one of these options:

• A rule that specifies how to inherit a data type, such as Inherit: Inherit via internal
rule. For more information on this rule, see “Inherit via Internal Rule” (DSP System Toolbox).

• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

 Matrix Square

1-1345

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Output data type parameter. For more information, see “Specify Data Types Using Data
Type Assistant”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Same as input' | 'Inherit: Inherit via internal rule'|
'Inherit: Inherit via back propagation' | 'double' | 'single' | 'int8' | 'uint8' |
int16 | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | fixdt(1,16,0) | '<data type
expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Output data type
locking

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block mask. For more information, see “Use Lock Output Data Type Setting” (Fixed-
Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode (DSP System Toolbox) for fixed-point operations.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Behavior when integer overflow occurs

off (default) | on

Select this check box to have overflows saturate to the maximum or minimum value that the data type
can represent. If you clear this check box, the block wraps all overflows. See Precision and Range
(DSP System Toolbox) for more information.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. The code generation process can generally detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

1 Blocks

1-1346

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Mode — Category of data to specify

Inherit (default) | Built in | Fixed point | Expression

Select how you would like to specify the data type properties of the Output data type. You can
choose:

• Inherit — Lets you specify a rule for inheriting a data type, for example, Inherit: Inherit
via internal rule

• Built in— Lets you specify a built-in data type.
• Fixed point — Lets you specify the fixed-point attributes of the data type.
• Expression — Lets you specify an expression that evaluates to a valid data type, for example,

fixdt([],16,0)

Dependencies

To enable this parameter, click >> at the Output data type parameter.

Signedness — Specify signed or unsigned

Signed (default) | Unsigned

Specify the Signedness for the Output data type.

Dependencies

To enable this parameter, set Mode to Fixed point.

Scaling — Method for scaling fixed-point data

Binary point (default)

Specify the Scaling for the Output data type.

Dependencies

To enable this parameter, set Mode to Fixed point.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• Inherit — Inherits the data type override setting specified for the model.
• Off — Ignores the data type override setting specified for the model and uses the fixed-point data

type you specify

 Matrix Square

1-1347

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.
Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.
Dependencies

To enable this parameter, click the Show data type assistant button, and set Mode to Built in or
Fixed point.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.
Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type

0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.
Dependencies

To enable this parameter, set:

• Mode to Fixed point
• Scaling to Binary point

Block Characteristics
Data Types double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

1 Blocks

1-1348

R2021b: Matrix Square Block Moved to Simulink Matrix Operations Library
Behavior changed in R2021b

The Matrix Square block has been moved from the DSP System Toolbox > Math Functions >
Matrices and Linear Algebra > Matrix Operations to the Simulink > Matrix Operations. All
existing models continue to work.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Add | Cross Product | Hermitian Transpose | Identity Matrix | IsSymmetric | IsTriangular | Product |
Transpose | Matrix Product

Topics
“Compatible Array Sizes for Basic Operations”
MATLAB Matrix Operations

 Matrix Square

1-1349

Memory
Output input from previous time step

Libraries:
Simulink / Discrete
HDL Coder / Discrete

Description
The Memory block holds and delays its input by one major integration time step. When placed in an
iterator subsystem, it holds and delays its input by one iteration. This block accepts continuous and
discrete signals. The block accepts one input and generates one output. Each signal can be a scalar,
vector, matrix, or N-D array. If the input is non-scalar, the block holds and delays all elements of the
input by the same time step.

You specify the block output for the first time step using the Initial condition parameter. Careful
selection of this parameter can minimize unwanted output behavior. However, you cannot specify the
sample time. This block’s sample time depends on the type of solver used, or you can specify to
inherit it. The Inherit sample time parameter determines whether sample time is inherited or based
on the solver.

Tip Avoid using the Memory block when both these conditions are true:

• Your model uses the variable-step solver ode15s or ode113.
• The input to the block changes during simulation.

When the Memory block inherits a discrete sample time, the block is analogous to the Unit Delay
block. However, the Memory block does not support state logging. If logging the final state is
necessary, use a Unit Delay block instead.

Comparison with Similar Blocks

The Memory, Unit Delay, and Zero-Order Hold blocks provide similar functionality but have different
capabilities. Also, the purpose of each block is different.

This table shows recommended usage for each block.

Block Purpose of the Block Reference Examples
Unit Delay Implement a delay using a discrete

sample time that you specify. The
block accepts and outputs signals with
a discrete sample time.

• “Engine Timing Model with Closed
Loop Control” on page 13-152
(Compression subsystem)

1 Blocks

1-1350

Block Purpose of the Block Reference Examples
Memory on page 1-
1350

Implement a delay by one major
integration time step. Ideally, the
block accepts continuous (or fixed in
minor time step) signals and outputs a
signal that is fixed in minor time step.

• “Building a Clutch Lock-Up Model”
on page 13-156 (Friction Mode
Logic/Lockup FSM subsystem)

• “Capture the Velocity of a
Bouncing Ball with the Memory
Block” on page 12-89

Zero-Order Hold Convert an input signal with a
continuous sample time to an output
signal with a discrete sample time.

• “Developing the Apollo Lunar
Module Digital Autopilot” on page
13-215

• “Radar Tracking Using MATLAB
Function Block” on page 13-244

Each block has the following capabilities.

Capability Memory Unit Delay Zero-Order Hold
Specification of
initial condition

Yes Yes No, because the block
output at time t = 0 must
match the input value.

Specification of
sample time

No, because the block
can only inherit sample
time from the driving
block or the solver used
for the entire model.

Yes Yes

Support for frame-
based signals

No Yes Yes

Support for state
logging

No Yes No

Bus Support

The Memory block is a bus-capable block. The input can be a virtual or nonvirtual bus signal subject
to the following restrictions:

• Initial condition must be zero, a nonzero scalar, or a finite numeric structure.
• If Initial condition is zero or a structure, and you specify a State name, the input cannot be a

virtual bus.
• If Initial condition is a nonzero scalar, you cannot specify a State name.

For information about specifying an initial condition structure, see “Specify Initial Conditions for Bus
Elements”.

All signals in a nonvirtual bus input to a Memory block must have the same sample time, even if the
elements of the associated bus object specify inherited sample times. You can use a Rate Transition
block to change the sample time of an individual signal, or of all signals in a bus. See “Modify Sample
Times for Nonvirtual Buses” and Bus-Capable Blocks for more information.

You can use an array of buses as an input signal to a Memory block. You can specify the Initial
condition parameter with:

 Memory

1-1351

• The value 0. In this case, all the individual signals in the array of buses use the initial value 0.
• An array of structures that specifies an initial condition for each of the individual signals in the

array of buses.
• A scalar structure that specifies an initial condition for each of the elements that the bus type
defines. Use this technique to specify the same initial conditions for each of the buses in the array.

For details about defining and using an array of buses, see “Group Nonvirtual Buses in Arrays of
Buses”.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array. The input can be continuous or
discrete, containing real, or complex values of any data type Simulink supports.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Output

Port_1 — Input delayed by one major integration time step
scalar | vector | matrix | N-D array

Output is the input from the previous time step.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
Main

Initial condition — Initial condition

0 (default) | scalar | vector | matrix | N-D array

Specify the output at the initial integration step. This value must be 0 when you do not use a built-in
input data type.

Programmatic Use
Block Parameter: InitialCondition
Type: character vector
Values: scalar | vector
Default: '0'

Inherit sample time — Inherit sample time

off (default) | on

Select to inherit the sample time from the driving block:

1 Blocks

1-1352

• If the driving block has a discrete sample time, the block inherits the sample time.
• If the driving block has a continuous sample time, selecting this check box has no effect. The

sample time depends on the type of solver used for simulating the model.

When this check box is cleared, the block sample time depends on the type of solver used for
simulating the model:

• If the solver is a variable-step solver, the block sample time is continuous but fixed in minor time
step: [0, 1].

• If the solver is a fixed-step solver, the [0, 1] sample time converts to the solver step size after
sample-time propagation.

Programmatic Use
Block Parameter: InheritSampleTime
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Direct feedthrough of input during linearization — Output the input during linearization and trim

off (default) | on

Select to output the input during linearization and trim. This selection sets the block mode to direct
feedthrough.

Selecting this check box can cause a change in the ordering of states in the model when using the
functions linmod, dlinmod, or trim. To extract this new state ordering, use the following
commands.

First compile the model using the following command, where model is the name of the Simulink
model.

 [sizes, x0, x_str] = model([],[],[],'lincompile');

Next, terminate the compilation with this command.

 model([],[],[],'term');

The output argument, x_str, which is a cell array of the states in the Simulink model, contains the
new state ordering. When passing a vector of states as input to the linmod, dlinmod, or trim
functions, the state vector must use this new state ordering.

Programmatic Use
Block Parameter: LinearizeMemory
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Treat as a unit delay when linearizing with discrete sample time — Linearize to unit delay for
discrete inputs

off (default) | on

Select to linearize the Memory block to a unit delay when the Memory block is driven by a signal with
a discrete sample time.

 Memory

1-1353

Programmatic Use
Block Parameter: LinearizeAsDelay
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

State name — Unique name for block state

'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click
Apply.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if you set the
model configuration parameter Signal resolution to a value other than None.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single

1 Blocks

1-1354

Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

 Memory

1-1355

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Unit Delay | Zero-Order Hold

Topics
“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)
“Organize Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder)
“Data Objects”

1 Blocks

1-1356

Merge
Combine multiple signals into single signal

Libraries:
Simulink / Signal Routing

Description
The Merge block combines inputs into a single output. The output value at any time is equal to the
most recently computed output of its driving blocks. Specify the number of inputs by setting the
Number of inputs parameter.

Use a Merge block to interleave input signals that update at different times into a combined signal in
which the interleaved values retain their separate identities and times. To combine signals that
update at the same time into an array or matrix signal, use a Concatenate block.

Guidelines for Using the Merge Block

When you use the Merge block, follow these guidelines:

• Always use conditionally executed subsystems to drive Merge blocks, without any intervening
blocks.

• Ensure that at most one of the driving conditionally executed subsystems executes at any time
step.

• Ensure that all input signals have the same sample time.
• Do not branch a signal that is input to a Merge block.
• Do not log a signal that is input to a Merge block.
• Do not specify the block execution priority of a Merge block. For more information, see “Specify

Block Execution Priority and Tag”.
• For all conditionally executed subsystem Outport blocks that drive Merge blocks, set Output

when disabled to held.
• If the output of a Model block is coming from a MATLAB Function block or a Stateflow chart, do

not connect that output port to the input port of the Merge block.
• The Merge block supports merging signals in different tasks to a root Outport block.

For each input of a Merge block, the topmost nonvirtual source must be a conditionally executed
subsystem (not including a For Iterator or While Iterator subsystem).

The next diagram shows valid Merge block usage, merging signals from two conditionally executed
subsystems.

 Merge

1-1357

Bus Support

The Merge block is a bus-capable block. The inputs can be virtual or nonvirtual bus signals subject to
these restrictions:

• The number of inputs must be greater than one.
• Initial output must be zero, a nonzero scalar, or a finite numeric structure.
• The Allow unequal port widths check box must be cleared.
• All inputs must be buses and must be equivalent (same hierarchy with identical names and

attributes for all elements).

All signals in a nonvirtual bus input to a Merge block must have the same sample time. You can use a
Rate Transition block to change the sample time of an individual signal, or of all signals in a bus.

Merging S-Function Outputs

The Merge block can merge a signal from an S-Function block only if the memory used to store the
output from the S-Function block is reusable. Simulink displays an error message if you attempt to
update or simulate a model that connects a nonreusable port of an S-Function block to a Merge
block. See ssSetOutputPortOptimOpts.

Multi-tasked Root Outputs

A Merge block connected to a root Outport block allows merging signals in different tasks by allowing
those signals to write to the root Outport block simultaneously. A Union sample time of the sources is
assigned to the Merge block.

All the sources of the Merge block that are in the same task should be inside conditionally executed
subsystems that should not output simultaneously in the same time step.

Limitations
• All signals that connect to a Merge block are functionally the same signal. Therefore, they are

subject to the restriction that a given signal can have at most one associated signal object. See
Simulink.Signal for more information.

1 Blocks

1-1358

• Run-time diagnostics do not run if the inputs to a Merge block are from a single initiator. For
example, a single initiator could be a Stateflow chart executing function-call subsystems that are
connected to a Merge block.

• Do not set the outports of conditionally executed subsystems being merged to reset when
disabled. This action can cause multiple subsystems to update the block at the same time.
Specifically, the disabled subsystem updates the Merge block by resetting its output, while the
enabled subsystem updates the block by computing its output.

To prevent this behavior, set the Outport block parameter Output when disabled to held for
each conditionally executed subsystem being merged.

• A Merge block does not accept input signals whose elements have been reordered or partially
selected, as shown in the next diagram.

• Do not connect input signals to the block that have been combined outside of a conditionally
executed subsystem.

You can use an array of buses as an input signal to a Merge block with these limitations:

• Allow unequal port widths — Clear this parameter.
• Initial condition — You can specify this parameter using:

• The value 0. In this case, each of the individual signals in the array of buses use the initial
value 0.

• An array of structures that specifies an initial condition for each of the individual signals in the
array of buses.

• A scalar structure that specifies an initial condition for each of the elements that the bus type
defines. Use this technique to specify the same initial conditions for each of the buses in the
array.

Ports
Input

Port_1 — First input signal
scalar | vector

 Merge

1-1359

First input signal merged with the other input signals.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Port_n — nth input signal
scalar | vector

nth input signal merged with the other input signals.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Output

Port_1 — Output signal
scalar | vector

Output signal merged from the input signals.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
Number of inputs — Number of input signals to merge

2 (default) | integer

Specify the number of input signals to merge. The block creates a port for each input signal.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: integer
Default: '2'

Initial output — Initial output value

[] (default) | scalar | vector

Specify the initial value of the output signal. If you do not specify an initial output value, then initial
output depends on the initialization mode and the driving blocks.

In “Simplified Initialization Mode”, for an unspecified (empty matrix []) value of Initial output, the
block uses the default initial value of the output data type. For information on the default initial value,
see “Initialize Signal Values”. In “Classic Initialization Mode”, for an unspecified (empty matrix [])
value of Initial output, the initial output of the block equals the most recently evaluated initial
output of the driving blocks. Since the initialization ordering for these sources can vary, initialization
can be inconsistent for the simulation and the code generation of a model.

Programmatic Use
Block Parameter: InitialOutput
Type: character vector
Values: scalar | vector

1 Blocks

1-1360

Default: '[]'

Allow unequal port widths — Allow inputs of unequal dimensions

off (default) | on

Select this parameter to allow the block to accept inputs having different numbers of elements from
each other or from the output. The block allows you to specify an offset for each input signal relative
to the beginning of the output signal. The width of the output signal is

max(w1+o1, w2+o2, ... wn+on)

where w1, ... wn are the widths of the input signals and o1, ... on are the offsets for the input signals.

If you clear this parameter, the Merge block accepts only inputs of equal dimensions and outputs a
signal of the same dimensions as the inputs.

Note Do not select this parameter unless your model is using Classic Initialization Mode.

Programmatic Use
Block Parameter: AllowUnequalInputPortWidths
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Input port offsets — Offset for input signals

[] (default) | vector

Enter a vector to specify the offset of each input signal relative to the beginning of the output signal.

Dependencies

To enable this parameter, select Allow unequal port widths.

Programmatic Use
Block Parameter: InputPortOffsets
Type: character vector
Values: scalar | vector
Default: '[]'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

 Merge

1-1361

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

In the code generation workflow, when the Merge block receives a constant value and non-constant
sample times, one of these conditions must hold. Otherwise Simulink displays an error.

• The source of the constant value is a grounded signal.
• The source of the constant value is a constant block with a non-tunable parameter.

• There is only one constant block that feeds the Merge block.
• All other input signals to the Merge block are from conditionally executed subsystems.
• The Merge block and outport blocks of all conditionally executed subsystems does not specify

any initial outputs.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Switch | Manual Switch

1 Blocks

1-1362

Topics
“Conditionally Executed Subsystems Overview”
“Conditional Subsystem Initial Output Values”
“Conditional Subsystem Output Values When Disabled”

 Merge

1-1363

Entity Transport Delay
Introduce a delay in propagation of a SimEvents message

Libraries:
Simulink / Continuous
SimEvents

Description
The Entity Transport Delay block delays an entity for a period of time, named transport delay. The
first input is the entity that is transported from point A to point B on a constant-length moving surface
whose speed changes over time. The value from the second input is the instantaneous delay. The
speed of the surface is the reciprocal of instantaneous delay. The product of instantaneous delay and
the speed is 1.

The block calculates the implemented transport delay by the distance-speed-time relationship, where
the surface length (distance) is equal to the integral of the variable surface speed over the duration of
the transport delay (time). For more information about this calculation, see Variable Transport Delay.

The Entity Transport Delay block connects SimEvents to Simulink using the input from a Simulink
signal and computing the transport delay as a continuous process, and applying this delay to an entity
in a discrete-event process. For an example that uses the Entity Transport Delay block, see “Modeling
Cyber-Physical Systems” on page 13-634.

Ports
Input

Port_1 — Input entity
SimEvents entity

SimEvents entity or message. For more information on entities in SimEvents, see “Entities in a
SimEvents Model” (SimEvents).

ti — Instantaneous delay
scalar | vector | matrix

Instantaneous delay in the transport of the SimEvents entity. ti is the reciprocal of the speed of the
entity. For more information on the calculation of instantaneous delay, see “Variable Transport Delay”
on page 1-2399.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | bus

Output

Port_1 — Delayed entity
SimEvents entity

SimEvents entity with the instantaneous delay ti applied to it.

1 Blocks

1-1364

n — Number of delayed entities
real scalar

Secondary output signal of the block, which displays the number of entities processed in a time step.

Dependencies

To enable this port, enable the Output number of entities in block, n parameter
Data Types: double

Parameters
Capacity — Specify the capacity of the block

inf (default) | scalar

Specify capacity to accept entities to be delayed.

Programmatic Use
Block Parameter: Capacity
Type: character vector
Values: 'inf' | real scalar
Default: 'inf'

Output number of entities in block, n — Outputs the number of delayed entities present in the
block

off (default) | on

Number of entities present in the block that are being delayed.

Programmatic Use
Block Parameter: ShowNumberEntitiesInBlock
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

yes

Version History
Introduced in R2019b

 Entity Transport Delay

1-1365

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Receive | Send | Transport Delay | Variable Transport Delay

Topics
“Establish Message Send and Receive Interfaces Between Software Components”

1 Blocks

1-1366

Message Merge
Combine message paths

Libraries:
Simulink / Messages & Events

Description
The Message Merge block graphically combines multiple message lines into a single message line.
Merging message lines does not change the messages themselves. You can specify the number of
message lines to merge.

Use this block when you want to merge multiple incoming messages and output to a single
destination such as a queue or a message storage block.

Ports
Input

Port_1 — Input message line to merge
scalar | vector | matrix

Input message port for messages entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_2 — Input message line to merge
scalar | vector | matrix

Input message port for messages entering the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port — Output message line
scalar | vector | matrix

Output message port for messages exiting the block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Parameters
Number of input ports — Specify the number message lines to combine

 Message Merge

1-1367

2 (default) | scalar

Determines the number of message input ports to be combined.

Programmatic Use
Block Parameter: NumberInputPorts
Type: character vector
Values: '2' | scalar
Default: '2'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Send | Queue | Entity Input Switch (SimEvents) | Entity Output Switch (SimEvents)

Topics
“Establish Message Send and Receive Interfaces Between Software Components”

1 Blocks

1-1368

Receive, Message Receive
Receive messages

Libraries:
Simulink / Messages & Events
SimEvents

Description
The Receive block extracts data from received messages and writes them to the output signal port. If
there are no new messages when the block executes, the block uses the Value source when queue
is empty value. Receive and Message Receive blocks are identical blocks.

• Select Hold last value to hold data read from the last message.
• Select Use initial value to write default data.

Ports
Input

Port_1 — Input message
scalar | vector | matrix

The input port for the message.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_S — Show whether a message was received
scalar

Outputs 1 if the block receives a message successfully, and 0 otherwise.

Dependencies

To enable this port, select the check box labeled Show receive status.
Data Types: double

Port_1 — Output signal
scalar | vector | matrix

Output port for the signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

 Receive, Message Receive

1-1369

Parameters
Use internal queue — Select to use an internal queue
on (default for SimEvents) | off (default for Simulink)

Select this check box if you use an internal queue to receive messages.

Programmatic Use
Block Parameter: UseInternalQueue
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Overwrite the oldest element if queue is full — Specify queue overwriting policy
on (default for Simulink) | off (default for SimEvents)

Select this check box to choose between two queue overwriting policies.

• If you select the check box, an incoming message overwrites the oldest if the queue is full.
• If you clear the check box, the block does not accept new messages if the queue is full.

Dependencies

This parameter is visible when you select the box labeled Use internal queue.

Programmatic Use
Block Parameter: QueueOverwriting
Type: character vector
Values: 'on' | 'off'
Default: 'on' (for Simulink) and 'off' (for SimEvents)

Queue length — Specify the length of the message queue
16 (default) | scalar

Specify message queue capacity. The queue length can be specified as a positive integer between 1
and 226-1 (both included).

Dependencies

This parameter is visible when you select the box labeled Use internal queue.

Programmatic Use
Block Parameter: QueueLength
Type: character vector
Values: '16' | scalar
Default: '16'

Queue type — Specify message queue sorting policy
FIFO (default) | LIFO | Priority

The block supports three message sorting policies:

1 Blocks

1-1370

• First-in-first-out (FIFO) — The oldest message in the storage departs first.
• Last-in-first-out (LIFO) — The newest message in the storage departs first.
• Priority — Messages or entities are sorted based on their priority.

The priority queue can be used only when the Overwrite the oldest element if queue is full
check box is cleared.

Note Priority queue accepts only non-bus scalar and it does not support fixed point data type.

Dependencies

This parameter is visible when you select the box labeled Use internal queue.

Programmatic Use
Block Parameter: QueueType
Type: character vector
Values: 'FIFO' | 'LIFO' | 'Priority'
Default: 'FIFO'

Priority order — Specify message queue priority
Ascending (default) | Descending

Choose the direction of sorting messages based on priority.

• Ascending — Messages with smaller priority values appear in front of the queue.
• Descending — Messages with greater priority values appear in front of the queue.

Dependencies

This parameter is visible when you select the box labeled Use internal queue andQueue type >
Priority.

Programmatic Use
Block Parameter: PriorityOrder
Type: character vector
Values: 'Ascending' | 'Descending'
Default: 'Ascending'

Show receive status — Show whether a message was received
off (default) | on

Select this check box to show whether a message was received. If this check box is selected the block
outputs 1 if it receives a message successfully, and 0 otherwise.

Programmatic Use
Block Parameter: ShowQueueStatus
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Initial value — Set initial data value
[](unspecified) (default) | scalar | vector | matrix

 Receive, Message Receive

1-1371

Enter an initial data value for the queue before the arrival of the first message. The default value []
(unspecified) is treated as 0 with data type double.

To use this block to initialize a nonvirtual bus signal, specify the initial value as a MATLAB structure.
For more information about initializing nonvirtual bus signals using structures, see “Specify Initial
Conditions for Bus Elements”.

Programmatic Use
Block Parameter: InitialValue
Type: character vector
Values: '[]' | scalar
Default: '[]'

Value source when queue is empty — Value source for empty queue
Hold last value (default) | Use initial value

Specify the value to receive when received message queue is empty.

• Hold last value (default) — Holds data read from the last message.

Initially, if the block tries to receive a message and fails, it outputs the initial value.
• Use initial value — Writes default data.

Dependencies

This parameter is visible when you select the box labeled Use internal queue.

Programmatic Use
Block Parameter: ValueSourceWhenQueueIsEmpty
Type: character vector
Values: 'Hold last value' | 'Use initial value'
Default: 'Hold last value'

Sample time (-1 for inherited) — Specify the time interval between samples
-1 (default) | scalar

To inherit the sample time, set this parameter to -1. See “Specify Sample Time” for more
information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: '-1' | scalar
Default: '-1'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single | string
Direct Feedthrough no

1 Blocks

1-1372

Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Send

Topics
“Simulink Messages Overview”

 Receive, Message Receive

1-1373

Send, Message Send
Create and send message

Libraries:
Simulink / Messages & Events
SimEvents

Description
The Send block reads the value of an input signal, and sends a message that carries this value. In
message-based communication, a message is a discrete-item of interest that carry data of any type
that Simulink supports. Send and Message Send blocks are identical blocks.

Ports
Input

Port_Enable — External enable signal
scalar

Input port to enable the block to send a message. For any input value that is greater than 0 send is
enabled. For any value less than or equal to 0, the send is disabled.

Dependencies

To enable this port, select the box labeled Show enable port.
Data Types: double

Port_1 — Input signal
scalar | vector | matrix

This block accepts inputs of any type that Simulink supports, including enumerated types and
converts the input signal to a message. For more information, see “Data Types Supported by
Simulink”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_1 — Output message
scalar | vector | matrix

The block outputs a message with constant priority 20.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

1 Blocks

1-1374

Parameters
Show enable port — Display the enable port
off (default) | on

Select this check box to display enable port. For any input value that is greater than 0 send is
enabled. For any value less than or equal to 0, the send is disabled.

Programmatic Use
Block Parameter: ShowEnablePort
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Receive

Topics
“Simulink Messages Overview”

 Send, Message Send

1-1375

Message Triggered Subsystem, Message Polling
Subsystem
Subsystem whose execution is controlled by message input

Libraries:
Simulink / Messages & Events

Description
This block is a Subsystem block preconfigured as a starting point for creating a subsystem that
executes based on message input. The block has different names based on the timing of execution.

• A Message Triggered Subsystem block executes whenever a message is available at the control
port, independent of the block sample time.

• A Message Polling Subsystem block periodically checks for messages and executes if a message is
available at the control port.

Inside the subsystem, a Trigger block displays an output port that outputs a data signal carrying the
message payload.

Message Triggered Subsystem

A Message Triggered Subsystem block enables event-based message triggers. The block executes
whenever a message is available at the control port, independent of sample time. The block contains
a Trigger block with the Trigger type set to message and the Trigger time set to on message
available.

The block operates in two modes, scheduled and immediate.

• In scheduled mode, execution order of a subsystem can be scheduled in the Schedule Editor to
model asynchronous behavior. You can defer subsystem execution to follow a specific Simulink
task while staying at the same time step. A Queue block in front of the trigger port can buffer
messages before they enter the subsystem. When a message arrives at the Queue block, it raises
an event that triggers the subsystem to pull the message from the Queue block based on the
schedule. If there is no Queue block between the message source and the trigger port, Simulink
treats the trigger port as having an internal, overwriting-type queue with a capacity of 1, similar
to the Receive block. The trigger port can be connected to a root-level Inport block for modeling a
software component. Message-trigger subsystem can be placed in an export-function model, for
example, a function-call subsystem.

To use scheduled mode, select the Schedule as aperiodic partition check box in the Trigger
block.

• In immediate mode, the subsystem executes as soon as a message is available at the control port,
which pushes the message to the subsystem without a queue buffering the message.

To use immediate mode, clear the Schedule as aperiodic partition check box in the Trigger
block.

1 Blocks

1-1376

Message Polling Subsystem

A Message Polling Subsystem block executes conditionally at each time step based on whether a
message is available at the control port. The block contains a Trigger block with the Trigger type set
to message and the Trigger time set to on sample time hit.

The block tries at each time step to pull a message from the queue in front of the control port. If
there is no Queue block between the message source and the control port, Simulink treats the control
port as having an internal, overwriting-type queue with a capacity of 1, similar to the Receive block.
If the queue is not empty, a message is pulled and the subsystem executes, with the message payload
as input. Only one message is pulled at each time step. If more than one message is in the queue at
the current time step, the next message is pulled at the next time step. If the queue is empty, the
subsystem does not execute at that time step. You can set the sample time in the block dialog box of
the Message Polling Subsystem block. See “Sample time” on page 1-0 .

Ports
Input

Trigger — Control signal and data input
scalar | vector | matrix

Placing a Trigger block with the Trigger type set to message in a Subsystem block adds an external
message input port to the block.

Use the Trigger port to control execution of the subsystem and to pass data to the subsystem.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Out — Signal output
scalar | vector | matrix

Placing an Outport block in a Subsystem block adds an external output port to the block. The port
label on the Subsystem block matches the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
For the Message Triggered Subsystem and Message Polling Subsystem block parameters, see
Subsystem.

For the Trigger block parameters, see Trigger.

 Message Triggered Subsystem, Message Polling Subsystem

1-1377

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation. Code generation for the scheduled
mode is only supported when connecting the control port to a root Inport block and placing the
message-triggered subsystem in an export-function model.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Triggered Subsystem | Subsystem | Trigger | Queue | Send

1 Blocks

1-1378

MinMax
Output minimum or maximum input value

Libraries:
Simulink / Math Operations
HDL Coder / Math Operations

Description
The MinMax block outputs either the minimum or the maximum element or elements of the inputs.
You choose whether the block outputs the minimum or maximum values by setting the Function
parameter.

The MinMax block ignores any input value that is NaN, except when every input value is NaN. When
all input values are NaN, the output is NaN, either as a scalar or the value of each output vector
element.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Provide an input signal from which the block outputs the maximum or minimum values.

• When the block has one input port, the input must be a scalar or a vector. The block outputs a
scalar equal to the minimum or maximum element of the input vector.

• When the block has multiple input ports, all nonscalar inputs must have the same dimensions. The
block expands any scalar inputs to have the same dimensions as the nonscalar inputs. The block
outputs a signal having the same dimensions as the input. Each output element equals the
minimum or maximum of the corresponding input elements.

Dependencies

To support matrix input, you must set the Number of input ports parameter to an integer greater
than one. All nonscalar inputs must have the same dimensions.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Port_N — N-th input signal
scalar | vector | matrix

Provide an input signal from which the block outputs the maximum or minimum values.

When the block has multiple input ports, all nonscalar inputs must have the same dimensions. The
block expands any scalar inputs to have the same dimensions as the nonscalar inputs. The block

 MinMax

1-1379

outputs a signal having the same dimensions as the input. Each output element equals the minimum
or maximum of the corresponding input elements.

Dependencies

To provide more than one input signal, set the Number of input ports to an integer greater than 1.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Minimum or maximum values of inputs
scalar | vector | matrix

When the block has one input, the output is a scalar value, equal to the minimum or maximum of the
input elements. When the block has multiple inputs, the output is a signal having the same
dimensions as the input. Each output element equals the minimum or maximum of the corresponding
input elements.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Function — Specify minimum or maximum

min (default) | max

Specify whether to apply the function min or max to the input.

Programmatic Use
Block Parameter: Function
Type: character vector
Values: 'min' | 'max'
Default: 'min'

Number of input ports — Specify number of input ports

1 (default) | positive integer

Specify the number of inputs to the block.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: positive integer
Default: '1'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

1 Blocks

1-1380

Programmatic Use
Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'
Default: 'on'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Signal Attributes

Require all inputs to have the same data type — Inputs must have the same data type

off (default) | on

Select this check box to require that all inputs have the same data type.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

 MinMax

1-1381

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first input | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

1 Blocks

1-1382

Dependencies

When input is a floating-point data type smaller than single precision, the Inherit: Inherit via
internal rule output data type depends on the setting of the “Inherit floating-point output type
smaller than single precision” configuration parameter. Data types are smaller than single precision
when the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via back
propagation' | 'Inherit: Same as first input' | 'single' | 'half' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

 MinMax

1-1383

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

yes

1 Blocks

1-1384

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has multi-cycle implementations that introduce additional latency in the generated code.
To see the added latency, view the generated model or validation model. See “Generated Model and
Validation Model” (HDL Coder).

Architecture Additional cycles of latency Description
default
Tree

0 Generates a tree structure of
comparators.

Cascade 1, when block has a single vector
input port.

This implementation is optimized for
latency * area, with medium speed.
See “Cascade Architecture Best
Practices” (HDL Coder).

Cascade architecture will be
removed in future releases.

HDL Block Properties

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

InstantiateStages Generate a VHDL entity or Verilog module for each cascade stage. The
default is off. See also “InstantiateStages” (HDL Coder).

 MinMax

1-1385

General
SerialPartition Specify partitions for Cascade-serial implementations as a vector of the

lengths of each partition. The default setting uses the minimum number of
stages. See also “SerialPartition” (HDL Coder).

Note To enable the LatencyStrategy setting for the MinMax block, you must specify Tree as the
HDL Architecture.

Native Floating Point
LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min, or

Zero for the floating-point operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
MinMax Running Resettable

1 Blocks

1-1386

MinMax Running Resettable
Determine minimum or maximum of signal over time

Libraries:
Simulink / Math Operations

Description
The MinMax Running Resettable block outputs the minimum or maximum of all past inputs u. You
specify whether the block outputs the running minimum or maximum with the Function parameter.

The block can reset its state based on an external reset signal R. When the reset signal R is nonzero
(true), the block resets the output to the value of the Initial condition parameter.

The input can be a scalar, vector, or matrix signal. The block outputs a signal having the same
dimensions as the input. Each output element equals the running minimum or maximum of the
corresponding input elements.

Ports
Input

u — Input signal
scalar | vector | matrix

Input signal as a scalar, vector, or matrix. Based on what you specify for the Function parameter, the
block outputs the minimum or maximum value of all past inputs u.

If you specify a scalar value for the Initial condition parameter, the block expands the parameter to
have the same dimensions as nonscalar input u.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | bus

R — Reset signal
scalar | vector | matrix

The input port accepting the reset signal as a scalar, vector, or matrix. When the reset signal is
nonscalar, it must have the same dimensions as input signal u. As long as the reset signal has a value
of zero, the block outputs the running minimum or maximum value of input u. Whenever the reset
signal has a nonzero value (true), the block resets the output to the value of the Initial condition
parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | bus

 MinMax Running Resettable

1-1387

Output

y — Running minimum or maximum value
scalar | vector | matrix

Output signal, specified as a scalar, vector, or matrix, where each output element equals the running
minimum or maximum value of the corresponding input elements. Output signal y has the same data
type and dimensions as input signal u.

When the block receives a nonzero (true) reset signal, the block resets the output to the value of the
Initial condition parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Function — Specify minimum or maximum

min (default) | max

Specify whether the block outputs the running minimum or maximum value of the corresponding
input elements.

Programmatic Use
Block Parameter: Function
Type: character vector
Values: 'min' | 'max'
Default: 'min'

Initial condition — Value to reset output to

0.0 (default) | scalar or vector

Specify the initial condition value. When the reset input signal R is true, the block resets the output
to the value you specify.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar or vector
Default: '0.0'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

1 Blocks

1-1388

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
MinMax

 MinMax Running Resettable

1-1389

Model
Reference another model to create model hierarchy

Libraries:
Simulink / Ports & Subsystems
HDL Coder / Ports & Subsystems

Description
The Model block references the specified model. It displays input and output ports that correspond to
the top-level input and output ports of the referenced model. These ports allow you to connect the
referenced model to other blocks in the parent model.

To determine whether the Model block is better suited for your goal than another block with similar
functionality, see “Choose Among Types of Model Components” and “Compare Capabilities of Model
Components”.

For instructions on how to reference a model with a Model block, see “Reference Existing Models”.

By default, the Model block displays a representation of the contents of the referenced model. For
more information, see “Preview Content of Model Components”. To see the contents of a referenced
model, double-click the Model block.

If you have a Simulink Coder license, you can conceal the implementation details of a referenced
model by protecting the model. To protect a model, see “Protect Models to Conceal Contents”
(Simulink Coder). To reference a protected model, see “Reference Protected Models from Third
Parties”.

Ports
Input

Port_1 — Input that corresponds to root-level blocks of referenced model
scalar | vector | matrix | array | bus

The Model block has an input port for each input port of the model it references. The input ports of
referenced models are defined by Inport and In Bus Element blocks. The name of the Model block
port matches the name of the corresponding port in the referenced model. The input signal, message,
or function call for each Model block port must be valid for the corresponding port in the referenced
model. For more information, see “Model Reference Interface and Boundary”.

Tips

• Signal attributes in a referenced model are independent from the context of the Model block. For
example, signal dimensions and data types do not propagate across the Model block boundary. To
define signal attributes in a referenced model, define block parameters for root-level Inport and In
Bus Element blocks.

• Function calls connected to an input port pass into the referenced model. To conditionally execute
the referenced model based on a function call, see Function Call on page 1-0 .

1 Blocks

1-1390

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus | image

Output

Port_1 — Output that corresponds to root-level blocks of referenced model
scalar | vector | matrix | array | bus

The Model block has an output port for each output port of the model it references. The output ports
of referenced models are defined by Outport and Out Bus Element blocks. The name of the port on
the Model block matches the name of the corresponding port in the referenced model. The output
signals and messages of a Model block are the signals and messages connected to the Outport and
Out Bus Element blocks in the referenced model. See “Model Reference Interface and Boundary”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus | image

Control

Conditional Execution

Enable — Control signal that enables referenced model
scalar | vector | matrix

The enable port appears at the top of the Model block. The port label is an icon that represents an
enable signal.

The control signal that connects to the port determines when to execute the referenced model. For
more information, see “Conditionally Execute Referenced Models”.
Dependencies

To enable this port, add an Enable block to the top level of the referenced model.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Trigger — Control signal that triggers referenced model
scalar | vector | matrix

The trigger port appears at the top of the Model block. The port label is an icon that represents a
trigger signal.

The control signal that connects to the port determines when to execute the referenced model. For
more information, see “Conditionally Execute Referenced Models”.

 Model

1-1391

Dependencies

To enable this port, add a Trigger block to the top level of the referenced model and set its Trigger
type to rising, falling, or either.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Function Call — Control signal for function-call event
scalar

The function-call port appears at the top of the Model block. The port label displays the name of the
referenced model as a function.

The function-call control signal that connects to the port determines when to execute the referenced
model. For more information, see “Conditionally Execute Referenced Models”.
Dependencies

To enable this port, add a Trigger block to the top level of the referenced model and set its Trigger
type to function-call.

Model Events Simulation

initialize — Control signal for model initialize event
scalar

The initialize event port provides a function-call control signal that triggers a model initialize event,
which initializes the states of the referenced model.

The referenced model can contain an Initialize Function block that corresponds to the model initialize
event. For more information, see “Using Initialize, Reinitialize, Reset, and Terminate Functions”.
Dependencies

To enable this port, select Show model initialize port on page 1-0 .

reset — Control signal for model reset event
scalar

A reset event port provides a function-call control signal that triggers a model reset event, which
resets the states of the referenced model.

The referenced model must contain a Reset Function block that corresponds to each model reset
event. For more information, see “Using Initialize, Reinitialize, Reset, and Terminate Functions”.

To specify the port name, use the Event name parameter of the Event Listener block in the Reset
Function block.
Dependencies

To enable this type of port, select Show model reset ports on page 1-0 .

1 Blocks

1-1392

reinit — Control signal for model reinitialize event
scalar

A reinitialize event port provides a function-call control signal that triggers a model reinitialize event,
which reinitializes the states of the referenced model.

The referenced model must contain a Reinitialize Function block that corresponds to each model
reinitialize event. For more information, see “Using Initialize, Reinitialize, Reset, and Terminate
Functions”.

To specify the port name, use the Event name parameter of the Event Listener block in the
Reinitialize Function block.

Dependencies

To enable this type of port, select “Show model reinitialize ports” on page 1-0 .

terminate — Control signal for model terminate event
scalar

The terminate event port provides a function-call control signal that triggers a model terminate
event, which reads and saves the states of the referenced model.

The referenced model can contain a Terminate Function block that corresponds to the model
terminate event. For more information, see “Using Initialize, Reinitialize, Reset, and Terminate
Functions”.

Dependencies

To enable this port, select Show model terminate port on page 1-0 .

D — Control signal for scheduling periodic events
scalar

Periodic event ports provide function-call control signals that specify when to execute the model. For
an example, see “Test Rate-Based Model Simulation Using Function-Call Generators”.

Each port label displays information about the periodic event, such as the sample time of the
corresponding Inport block. For example, the Model block in this image displays periodic event ports
and references a model with two discrete rates: 0.01 and 0.1.

Dependencies

To enable this type of port, set Schedule rates with on page 1-0 to Ports.

 Model

1-1393

Parameters
To interactively modify Model block parameters, select the Model block. Then, in the Simulink
Toolstrip, on the Model Block tab, click Block Parameters.

Main

Specify fundamental information for the Model block.

Model name — File name of referenced model

'' (default) | character vector

Specify the file name of the referenced model. The file name must be a valid MATLAB identifier for a
model, as defined in “Choose Valid Model File Names”. The file extension is optional.

To select the model that you want to reference, click Browse. To view the specified model, click
Open Model.

Programmatic Use

You can query the name of the referenced model in different formats:

• ModelFile — Model name with file extension. When you do not specify a file extension, the first
match that Simulink finds on the MATLAB path determines the file extension.

• ModelNameDialog — Model name with or without file extension, depending on whether you
specify a file extension.

• ModelName — Model name without file extension. If you specify a model name with a file
extension for ModelName, Simulink retains the file extension by setting ModelNameDialog and
ModelFile.

Parameter: ModelNameDialog
Type: character vector
Value: '' | '<filename>'
Default: ''

Simulation mode — Simulation mode for model reference

Normal (default) | Accelerator | Software-in-the-loop (SIL) | Processor-in-the-loop
(PIL)

Specify the simulation mode for the Model block. The simulation mode for the Model block can be
different than the simulation mode of its referenced model and of other models in the model
hierarchy.

• Normal — Execute the referenced model interpretively, as if the referenced model is an atomic
subsystem implemented directly within the parent model.

• Accelerator — Create a MEX file for the referenced model. Then, execute the referenced model
by running the S-function.

• Software-in-the-loop (SIL) — This option requires an Embedded Coder license. Generate
production code based on the Code interface parameter setting. The code is compiled for and
executed on the host platform.

1 Blocks

1-1394

• Processor-in-the-loop (PIL) — This option requires an Embedded Coder license. Generate
production code based on the Code Interface parameter setting. This code is compiled for and
executed on the target platform. A target connectivity API implementation supports the exchange
of data between the host and target at each time step during the PIL simulation.

The corners of the Model block indicate the simulation mode of the Model block. For normal mode,
the corners have empty triangles. For accelerator mode, the corner triangles are filled in. For SIL and
PIL modes, the corners are filled in and the word (SIL) or (PIL) appears on the block icon.

Although you can specify any simulation mode for a model, when you reference that model, the Model
block specifies the simulation mode of the referenced model instance. The simulation mode of a
parent model can override the simulation mode of a Model block.

For more information, see “Choose Simulation Modes for Model Hierarchies”.
Programmatic Use
Parameter: SimulationMode
Type: character vector
Value: 'Normal' | 'Accelerator' | 'Software-in-the-loop' | 'Processor-in-the-loop'
Default: 'Normal'

Code interface — Option to generate code from top model or referenced model

Model reference (default) | Top model

Specify whether to generate the code from the top model or the referenced model for SIL and PIL
simulation modes. To deploy the generated code as part of a larger application that uses the
referenced model, specify Model reference. To deploy the generated code as a standalone
application, specify Top model.

• Model reference — The code is generated from the referenced model as part of a model
hierarchy. Code generation uses the slbuild('model', 'ModelReferenceCoderTarget')
command.

• Top model — The code is generated from the top model with the standalone code interface. Code
generation uses the slbuild('model') command.

Dependencies

To enable this parameter, set Simulation mode on page 1-0 to either Software-in-the-loop
(SIL) or Processor-in-the-loop (PIL).
Programmatic Use
Parameter: CodeInterface
Type: character vector
Value: 'Model reference' | 'Top model'
Default: 'Model reference'

Model Events Simulation

Control when the referenced model executes and changes states.

Show model initialize port — Option to display initialize event port

off (default) | on

Select this parameter to display the initialize event port. Clear this parameter to remove the port.

 Model

1-1395

Dependencies

To enable this parameter, reference a model that is not configured for conditional execution.

Programmatic Use
Block parameter: ShowModelInitializePort
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Show model reinitialize ports — Option to display reinitialize event ports

off (default) | on

Select this parameter to display the reinitialize event ports. Clear this parameter to remove the ports.

Dependencies

To enable this parameter, reference a model that is not configured for conditional execution and
contains a Reinitialize Function block.

Programmatic Use
Block parameter: ShowModelReinitializePorts
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Show model reset ports — Option to display reset event ports

off (default) | on

Select this parameter to display the reset event ports. Clear this parameter to remove the ports.

Dependencies

To enable this parameter, reference a model that is not configured for conditional execution and
contains a Reset Function block.

Programmatic Use
Block parameter: ShowModelResetPorts
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Show model terminate port — Option to display terminate event port

off (default) | on

Select this parameter to display the terminate event port. Clear this parameter to remove the port.

Dependencies

To enable this parameter, reference a model that is not configured for conditional execution. Then,
select Show model initialize port on page 1-0 .

Programmatic Use
Block parameter: ShowModelTerminatePort

1 Blocks

1-1396

Type: character vector
Value: 'off' | 'on'
Default: 'off'

Schedule rates — Option to schedule periodic events

off (default) | on

Control the execution of the referenced model with periodic events.

Depending on the value of the Schedule rates with parameter, selecting this parameter will either
display the periodic event ports on the Model block or create partitions to use with the Schedule
Editor. When the Schedule rates with parameter is not visible, its default value (Ports) applies.

Clearing this parameter hides the periodic event ports and does not create partitions.

Dependencies

To enable this parameter, reference a model with discrete sample times that is not configured for
conditional execution and is not an export-function model. When the parent model is rate based and
the referenced model is an export-function model, Schedule rates is automatically selected.

Programmatic Use
Block parameter: ScheduleRates
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Schedule rates with — Option to create partitions or periodic event ports

Ports (default) | Schedule Editor

Create ports or partitions.

• Ports — Display periodic event ports for discrete rates in the referenced model.

To manually specify port rates, use the set_param function to set the
AutoFillPortDiscreteRates parameter of the Model block to 'off'. Then, specify the port
rates with the PortDiscreteRates parameter.

• Schedule Editor — Create partitions for the referenced model to use with the Schedule
Editor.

Dependencies

To enable this parameter:

• The parent model must not be an export-function model.
• The parent model must not use a fixed-step solver and single-tasking mode.
• Select Schedule rates. When the parent model is rate based and the referenced model is an

export-function model, Schedule rates is automatically selected.
• Clear Show model initialize port, Show model reset ports, and Show model reinitialize

ports.

 Model

1-1397

Programmatic Use
Block parameter: ScheduleRatesWith
Type: character vector
Value: 'Ports' | 'ScheduleEditor'
Default: 'Ports'

Instance Parameters

Specify instance-specific values for model arguments.

Instance parameters — Display instance parameters and specify values for referenced model

number | workspace variable | mathematical expression | structure or structure field

Display instance parameters and specify instance-specific values. Instance parameters are block
parameters that have been configured in the referenced model to use a different value for each
instance of the model.

To specify instance-specific values, use the Value column in the table. To specify that a parameter
value can be overridden by the parent model, select the Argument check box. For more information
about configuring instance parameters in a referenced model and specifying instance-specific values
at the Model block, see “Parameterize Instances of a Reusable Referenced Model”.

When changing instance-specific values, you can use a partial structure that has fields that
correspond to only the instance parameters whose values you want to change. Instance parameters
not included in the partial structure retain their values. In the structure, include the instance
parameter names and values, specified as character vectors.

Programmatic Use
Block parameter: ParameterArgumentValues
Type: structure
Value: structure
Default: structure with no fields
Block parameter: InstanceParameters
Type: structure array
Value: structure with fields: Name, Value, Path, and Argument.

Solver

Configure local solver parameters using a combination of the configuration parameters for the
referenced model and the block parameters for each Model block that references the model.

Referenced Model Configuration Parameters

Use local solver — Option to use local solver in referenced model
link to referenced model configuration parameter

This parameter provides a hyperlink that opens the Configuration Parameters dialog box for the
model referenced by the block. In the Configuration Parameters dialog box, select or clear the Use
local solver when referencing model configuration parameter for the referenced model. When you
select Use local solver when referencing model, the referenced model uses a local solver.

When you configure a referenced model to use a local solver, the local solver computes the state
values for the referenced model during simulation. Using a local solver can improve simulation
performance by allowing you to:

1 Blocks

1-1398

• Specify a larger step size for a component with slower dynamics compared to the rest of the
system.

• Select a different solver that is more appropriate for the referenced model.

For more information, see “Use Local Solvers in Referenced Models”.

Solver — Option to select local solver
link to referenced model configuration parameter

This parameter provides a hyperlink that opens the Configuration Parameters dialog box for the
model referenced by the block. In the Configuration Parameters dialog box, select a value for the
Solver parameter to specify the solver to use as the local solver for the referenced model.

The local solver must be a fixed-step solver.
Dependencies

To enable this parameter, select Use local solver when referencing model in the model
configuration parameters for the model referenced by this block.

Step size — Option to specify step size for local solver
link to referenced model configuration parameter

This parameter provides a hyperlink that opens the Configuration Parameters dialog box for the
model referenced by the block. In the Configuration Parameters dialog box, specify the value for the
Fixed-step size (fundamental sample time) parameter of the referenced model to specify the step
size for the local solver.

The local solver step size must be an integer multiple of the parent solver step size.
Dependencies

To enable this parameter, select Use local solver when referencing model in the model
configuration parameters for the model referenced by this block.

Model Block Parameters

Input signal handling — Extrapolation method for local solver inputs

Auto (default) | Zero-order hold

Because the local solver execution is decoupled from the execution of the parent solver, the local
solver extrapolates values from outside the model reference and provides interpolated values to the
parent solver. For more information, see “Use Local Solvers in Referenced Models”.

Use this parameter to specify how the local solver extrapolates values from outside the model
reference.

• Auto — Use default input handling, which includes numerical compensation that improves data
exchanges between the top and local solvers.

• Zero-order hold — Use the last value calculated by the parent solver.

Specifying Auto input handling generally increases the accuracy of simulation results. The Auto
input handling is more computationally intensive than the Zero-order hold input handling.

Consider using Zero-order hold input handling in any of these situations:

 Model

1-1399

• When simulation results are acceptable with Zero-order hold input handling and performance
is a concern

• When the referenced model does not have input ports
• When input port values do not affect continuous state computations
• When a significant part of the derivative is based on the state itself, for example, from feedback

loops in the model
• To improve local solver stability for a given step size

Dependencies

To enable this parameter, select Use local solver when referencing model in the model
configuration parameters for the model referenced by this block.

Programmatic Use
Block parameter: InputSignalHandling
Type: string | character vector
Value: 'Auto' | 'Zero-order hold'
Default: 'Auto'

Output signal handling — Interpolation method for outputs from local solver

Use solver interpolant (default) | Zero-order hold

Because the local solver execution is decoupled from the execution of the parent solver, the local
solver extrapolates values from outside the model reference and provides interpolated values to the
parent solver. For more information, see “Use Local Solvers in Referenced Models”.

Use this parameter to specify the interpolation method the local solver uses to provide values to the
parent solver.

• Use solver interpolant — Use the interpolant of the local solver to calculate the interpolated
state and output signal values.

• Zero-order hold — Use the last value calculated by the local solver before the current time for
the top solver.

In general, using the solver interpolant for output handling increases accuracy. Zero-order hold
output handling reduces computational complexity but also reduces accuracy.

Dependencies

To enable this parameter, select Use local solver when referencing model in the model
configuration parameters for the model referenced by this block.

Programmatic Use
Block parameter: OutputSignalHandling
Type: character vector
Value: 'Use solver interpolant' | 'Zero-order Hold'
Default: 'Use solver interpolant'

1 Blocks

1-1400

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Tips
To programmatically determine whether a Model block references a protected model, use the
get_param function to query the read-only ProtectedModel parameter of the Model block. If the
referenced model is protected, the function returns 'on'. If the referenced model is unprotected, the
function returns 'off'.

Version History
Introduced before R2006a

R2019a: Specifying variant models in Model blocks is no longer supported
Warns starting in R2019a

Starting in R2019a, specifying variant models in Model blocks is no longer supported. The Model
Variants block, which was a Model block preconfigured to specify variant models, is also no longer
supported. Loading a model that contains these blocks converts them to Variant Subsystem blocks
that contain Model blocks that represent the variant choices.

Variant Subsystem blocks provide these advantages:

• You can mix Model blocks and Subsystem blocks as variant choices.
• You can specify variants that have different numbers of input and output ports.

The Variant Subsystem block parameter Analyze all choices during update diagram and
generate preprocessor conditionals behaves differently from the Model block parameter
Generate preprocessor conditionals. Instead of causing simulation and update diagram to compile
the active variant only, the Variant Subsystem block parameter compiles all variants.

If you have scripts that use Model block parameters for variants, you must update them to use
Variant Subsystem block parameters.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

 Model

1-1401

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic. For more information about using the Model block for HDL code generation and best practices
and limitations, see “Model Referencing for HDL Code Generation” (HDL Coder).

See also “Generate Black Box Interface for Referenced Model” (HDL Coder) and “Generate
Parameterized Code for Referenced Models” (HDL Coder).

HDL Architecture

Architecture Description
ModelReference (default) When you want to generate code from a referenced model

and any nested models, use the ModelReference
implementation. For more information, see “How To
Generate Code for a Referenced Model” (HDL Coder).

BlackBox Use the BlackBox implementation to instantiate an HDL
wrapper, or black box interface, for legacy or external
HDL code. If you specify a black box interface, HDL Coder
does not attempt to generate HDL code for the referenced
model.

For more information, see “Generate Black Box Interface
for Referenced Model” (HDL Coder).

Black Box Interface Customization

For the BlackBox architecture, you can customize port names and set attributes of the external
component interface. See “Customize Black Box or HDL Cosimulation Interface” (HDL Coder).

HDL Block Properties

BalanceDelays Detects introduction of new delays along one path and inserts matching
delays on the other paths. The default is inherit. See also
“BalanceDelays” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

1 Blocks

1-1402

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ReferenceModelPrefix Prefix of the referenced model to insert in the generated code. The code
generator applies this prefix to submodel file names and HDL identifiers.
The default prefix is modelname_ where modelname is the name of the
referenced model.

Note

• If you specify an empty prefix, the code generator does not add a prefix
to submodel file names. This can cause HDL compilation errors due to
naming collisions between the models.

• If you use the referenced model as the DUT, the code generator ignores
the prefix that you specify.

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

StreamingFactor Number of parallel data paths, or vectors, that are time multiplexed to
transform into serial, scalar data paths. The default is 0, which implements
fully parallel data paths. See also “Streaming” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
find_mdlrefs | Simulink.SubSystem.convertToModelReference | convertToVariant |
depview

Topics
“Compare Capabilities of Model Components”
“Model Reference Basics”
“Reference Existing Models”
“Parameterize Instances of a Reusable Referenced Model”
“Choose Simulation Modes for Model Hierarchies”
“Protect Models to Conceal Contents” (Simulink Coder)
“Use Local Solvers in Referenced Models”

 Model

1-1403

Model Info
Display model properties and text in model

Libraries:
Simulink / Model-Wide Utilities
HDL Coder / Model-Wide Utilities

Description
The Model Info block displays model properties and text about a model on the mask of the block. Use
the Model Info block dialog box to specify the content and format of the text that the block displays.
You can select model properties to display on the block. In the text displayed on the block mask,
Simulink replaces the property name with the current value of the property in the model.

Parameters
Specify Text and Properties to Display — Content and format of the text to display
no default

Use the Enter text and tokens to display on Model Info block edit box to specify the text and
properties to display.

• In the edit box, enter any text you want to display on the block mask. Edit the default text Model
Info.

• To display a model property on the block mask, select a property in the Model properties list and
click the right arrow button.

The block adds a token of the form %<modelpropertyname> to the edit box. In the text the block
mask displays, Simulink replaces the token with the value of the property.

1 For example, if you select Description in the Model properties list and click the right
arrow button, then the token

%<Description>

appears in the right edit box.
2 You could add some explanatory text before the model property, e.g. “Model

description:”.
3 When you click Apply or OK, Simulink displays your new text and the current value of the

model property on the block mask in the Model Editor.

See “Access Model Information Programmatically” for descriptions of the model properties.

If you are interested in source control information, for a flexible interface to source control tools, use
a project. See “Source Control in Projects”.

1 Blocks

1-1404

Block Characteristics
Data Types
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Model Info block is ignored during code generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Best Practices

When using Model Info blocks in models targeted for HDL code generation, consider using only ASCII
characters in the text that you enter to display on the Model Info block. If you have non-ASCII
characters in the generated HDL code, RTL simulation and synthesis tools can fail to compile the
code.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

 Model Info

1-1405

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
DocBlock

Topics
“Access Model Information Programmatically”
“Source Control in Projects”

1 Blocks

1-1406

Multiport Switch
Select output signal based on control signal

Libraries:
Simulink / Signal Routing
HDL Coder / Signal Routing

Description
The Multiport Switch block determines which of several inputs to the block passes to the output. The
block bases this decision on the value of the first input. The first input is the control input and the
remaining inputs are the data inputs. The value of the control input determines which data input
passes to the output.

The table summarizes how the block interprets the control input and determines the data input that
is passed to the output.

Control
Input

Truncation Setting for Data
Port Order

Block Behavior During Simulation
Indexing to Select Data
Input

Out-of-Range Condition

Integer
value

None Zero-based
contiguous

Zero-based indexing The control input is less than
0 or greater than the number
of data inputs minus one.

One-based
contiguous

One-based indexing The control input is less than
1 or greater than the number
of data inputs.

Specify
indices

Indices you specify The control input does not
correspond to any specified
data port index.

Not an
integer
value

The block
truncates the
value to an
integer by
rounding to
zero.

Zero-based
contiguous

Zero-based indexing The truncated control input is
less than 0 or greater than
the number of data inputs
minus one.

One-based
contiguous

One-based indexing The truncated control input is
less than 1 or greater than
the number of data inputs.

Specify
indices

Indices you specify The truncated control input
does not correspond to any
specified data port index.

For information on how the block handles the out-of-range condition, see “How the Block Handles an
Out-of-Range Control Input” on page 1-1408.

 Multiport Switch

1-1407

Multiport Switch Configured as an Index Vector Block

An Index Vector is a special configuration of a Multiport Switch block in which you specify one data
input and the control input is zero-based. The block output is the element of the input vector whose
index matches the control input. For example, if the input vector is [18 15 17 10] and the control
input is 3, the element that matches the index of 3 (zero-based) is 10, and that becomes the output
value.

To configure a Multiport Switch block to work as an Index Vector block, set Number of data ports to
1 and Data port order to Zero-based contiguous.

How the Block Handles an Out-of-Range Control Input

For an input with an integer value less than intmax(‘int32’), the input is out of range when the
value does not match any data port indices. For a control input that is not an integer value, the input
is out of range when the truncated value does not match any data port indices. In both cases, the
block behavior depends on your settings for Data port for default case and Diagnostic for default
case.

Note If the control input is larger than intmax(‘int32’), the block wraps the input value to an
integer.

Behavior for Simulation

The following behavior applies only to simulation for your model.

Data Port for Default
Case

Diagnostic for Default Case
None Warning Error

Last data port Use the last data port
and do not report any
warning or error.

Use the last data port
and report a warning.

Report an error and
stop simulation.

Additional data
port

Use the additional data
port with a * label and
do not report any
warning or error.

Use the additional data
port with a * label and
report a warning.

Report an error and
stop simulation.

1 Blocks

1-1408

Behavior for Code Generation

The following behavior applies to code generation for your model.

Data Port for Default
Case

Diagnostic for Default Case
None Warning Error

Last data port Use the last data port. Use the last data port. Use the last data port.

Additional data
port

Use the additional data
port with a * label.

Use the additional data
port with a * label.

Use the additional data
port with a * label.

Use Data Inputs That Have Different Dimensions

If two signals have a different number of dimensions or different dimension lengths, you can use the
signals as data inputs to a Multiport Switch block. In the block dialog box, select the parameter
Allow different data input sizes. In this case, the output of the block is a variable-size signal. If you
do not select this parameter, the block generates an error.

For more information about the parameter, see “Allow different data input sizes (Results in variable-
size output signal)” on page 1-0 . For more information about variable-size signals, see “Variable-
Size Signal Basics”.

Rules That Determine the Block Behavior

You specify the number of data inputs with Number of data ports.

• If you set Number of data ports to 1, the block behaves as an index selector or index vector and
not as a multiport switch. For more details, see “Multiport Switch Configured as an Index Vector
Block” on page 1-1408.

• If you set Number of data ports to an integer greater than 1, the block behaves as a multiport
switch. The block output is the data input that corresponds to the value of the control input. If at
least one of the data inputs is a vector, the block output is a vector. In this case, the block expands
any scalar inputs to vectors.

• If all the data inputs are scalar, the output is a scalar.

 Multiport Switch

1-1409

Guidelines on Setting Parameters for Enumerated Control Port

When the control port on the Multiport Switch block is of enumerated type, follow these guidelines:

Scenario What to Do Rationale
The enumerated type
contains a value that
represents invalid,
out-of-range, or
uninitialized values.

• Set Data port order to Specify
indices.

• Set Data port indices to use this
value for the last data port.

• Set Data port for default case
to Last data port.

This block configuration handles
invalid values that the enumerated
type explicitly represents.

The enumerated type
contains only valid
enumerated values.
However, a data input
port can get invalid
values of enumerated
type.

• Set Data port for default case
to Additional data port.

This block configuration handles
invalid values that the enumerated
type does not explicitly represent.

The enumerated type
contains only valid
enumerated values.
Data input ports can
never get invalid
values of enumerated
type.

• Set Data port for default case
to Last data port.

• Set Diagnostic for default case
to None.

This block configuration avoids
unnecessary diagnostic action.

The block does not
have a data input port
for every value of the
enumerated type.

• Set Data port for default case
to Additional data port.

This block configuration handles
enumerated values that do not have a
data input port, along with invalid
values.

Limitations
• If the data inputs to the Multiport Switch block are buses, the element names of both buses must

be the same. Using the same element names ensures that the output bus has the same element
names no matter which input bus the block selects. To ensure that your model meets this
requirement, use a bus object to define the buses and set the Element name mismatch
diagnostic to error. See “Model Configuration Parameters: Connectivity Diagnostics” for more
information.

• For arrays of buses, Number of data ports must be set to a value of 2 or greater.

Ports
Input

Port_1 — Control signal
scalar

The control signal can be of any data type that Simulink supports, including fixed-point and
enumerated types. When the control input is not an integer value, the block truncates the value to an
integer by rounding to zero.

1 Blocks

1-1410

For information on control signals of enumerated type, see “Guidelines on Setting Parameters for
Enumerated Control Port” on page 1-1410.

For information on how the block handles the out-of-range condition, see “How the Block Handles an
Out-of-Range Control Input” on page 1-1408.

Limitations

• If the control signal is numeric, the control signal cannot be complex.
• If the control signal is an enumerated signal, the block uses the value of the underlying integer to

select a data port.
• If the underlying integer does not correspond to a data port, an error occurs.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | image

1 — First data input
scalar | vector | matrix | N-D array

First data input, specified as a scalar, vector, matrix, or N-D array. All input data signals can be of any
data type that Simulink supports.

• If all the data inputs are scalar, the output is scalar
• If at least one of the data inputs is a vector, the block output is a vector. In this case, the block

expands any scalar inputs to vectors.
• If any two nonscalar signals have a different number of dimensions or different dimension lengths,

select the Allow different data input sizes check box. For more information, see “Use Data
Inputs That Have Different Dimensions” on page 1-1409

• If any data signal is of an enumerated type, all others must be of the same enumerated type.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | string | image

2 — Second data input
scalar | vector | matrix | N-D array

Second data input, specified as a scalar, vector, matrix, or N-D array. All input data signals can be of
any data type that Simulink supports.

• If all the data inputs are scalar, the output is scalar
• If at least one of the data inputs is a vector, the block output is a vector. In this case, the block

expands any scalar inputs to vectors.
• If any two nonscalar signals have a different number of dimensions or different dimension lengths,

select the Allow different data input sizes check box. For more information, see “Use Data
Inputs That Have Different Dimensions” on page 1-1409

• If any data signal is of an enumerated type, all others must be of the same enumerated type.

Dependencies

To enable this port, set Number of data ports to an integer greater than 1.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | string | image

 Multiport Switch

1-1411

N — Nth data input
scalar | vector | matrix | N-D array

Nth data input, specified as a scalar, vector, matrix, or N-D array. All input data signals can be of any
data type that Simulink supports.

• If all the data inputs are scalar, the output is scalar
• If at least one of the data inputs is a vector, the block output is a vector. In this case, the block

expands any scalar inputs to vectors.
• If any two nonscalar signals have a different number of dimensions or different dimension lengths,

select the Allow different data input sizes check box. For more information, see “Use Data
Inputs That Have Different Dimensions” on page 1-1409

• If any data signal is of an enumerated type, all others must be of the same enumerated type.

Dependencies

To enable the Nth input port, set Number of data ports to an integer value greater than or equal to
N.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | string | image

* — Data port for out-of-range inputs
scalar | vector | matrix | N-D array

Input data port for out-of-range control signal inputs, specified as a scalar, vector, matrix, or N-D
array. All input data signals can be of any data type that Simulink supports. If any data signal is of an
enumerated type, all others must be of the same enumerated type. If any two signals have a different
number of dimensions or different dimension lengths, select the Allow different data input sizes
check box. For more information, see “Use Data Inputs That Have Different Dimensions” on page 1-
1409.

Dependencies

To create an additional data port for out-of-range control signal inputs, set Data port for default
case to Additional data port. When you set Data port for default case to Last data port,
the block uses the last data port for output when the control signal value does not match any data
port indices.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Output

Port_1 — Selected data input, based on control signal value
scalar | vector | matrix | N-D array

The block outputs one of the data inputs, selected according to the control signal value. The output
has the same dimensions as the corresponding data input. The output data type is the data type of the
input port that requires the largest memory space. When you select the Allow different data input
sizes check box, the output of the block is a variable size signal.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point | enumerated | string | image

1 Blocks

1-1412

Parameters
Main

Data port order — Type of ordering for data input ports

One-based contiguous | Zero-based contiguous | Specify indices

Specify the type of ordering for your data input ports.

• Zero-based contiguous — Block uses zero-based indexing for ordering contiguous data ports.
This is the default value of the Index Vector block.

• One-based contiguous — Block uses one-based indexing for ordering contiguous data ports.
This is the default value of the Multiport Switch block

• Specify indices — Block uses noncontiguous indexing for ordering data ports.

Tips

• When the control port is of enumerated type, select Specify indices.
• If you select Zero-based contiguous or One-based contiguous, verify that the control port

is not of enumerated type. This configuration is deprecated and produces an error. You can run the
Upgrade Advisor on your model to replace each Multiport Switch block of this configuration with a
block that explicitly specifies data port indices. See “Model Upgrades”.

• Avoid situations where the block contains unused data ports for simulation or code generation.
When the control port is of fixed-point or built-in data type, verify that all data port indices are
representable with that type. Otherwise, the following block behavior occurs.

If the Block Has Unused Data Ports and
Data Port Order Is:

The Block Produces:

Zero-based contiguous or One-based
contiguous

A warning

Specify indices An error

Dependencies

Selecting Zero-based contiguous or One-based contiguous enables the Number of data
ports parameter.

Selecting Specify indices enables the Data port indices parameter.

Programmatic Use
Block Parameter: DataPortOrder
Type: character vector
Values: 'Zero-based contiguous' | 'One-based contiguous' | 'Specify indices'
Default: 'One-based contiguous' (Multiport Switch) 'Zero-based contiguous' (Index
Vector)

Number of data ports — Number of data input ports

1 | 3 | integer between 1 and 65535

 Multiport Switch

1-1413

Specify the number of data input ports to the block. The total number of input ports is the number
you specify, plus one for the control signal input port, and plus one more if you set Data port for
default case to Additional data port.

Dependencies

To enable this parameter, set Data port order to Zero-based contiguous or One-based
contiguous.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: integer between 1 and 65536
Default: '3' (Multiport Switch) '1' (Index Vector)

Data port indices — Array of indices for data ports

{1,2,3} (default) | array of indices

Specify an array of indices for your data ports. The block icon changes to match the data port indices
you specify.

Tips

• To specify an array of indices that correspond to all values of an enumerated type, enter the name
of the type.

For example, MyColors is a valid entry if MyColors is the name of an enumerated type.
• To enter specific values of an enumerated type, use the type_name.enumerated_name format.

Do not enter the underlying integer value.

For example, {MyColors.Red, MyColors.Green, MyColors.Blue} is a valid entry.
• To indicate that more than one value maps to a data port, use brackets.

For example, the following entries are both valid:

• {MyColors.Red, MyColors.Green, [MyColors.Blue, MyColors.Yellow]}
• {[3,5],0,18}

• If the control port is of fixed-point or built-in data type, the values for Data port indices must be
representable with that type. Otherwise, an error appears at compile time to alert you to unused
data ports.

• If the control port is of enumerated data type, the values for Data port indices must be
enumerated values of that type.

• If Data port indices contains values of enumerated type, the control port must be of that data
type.

Dependencies

To enable this parameter, set Data port order to Specify indices.

Programmatic Use
Block Parameter: DataPortIndices
Type: character vector
Values: array of indices

1 Blocks

1-1414

Default: '{1,2,3}'

Data port for default case — Port to use for out-of-range inputs

Last data port (default) | Additional data port

Specify whether to use the last data port for out-of-range inputs, or to use an additional port. An
asterisk (*) next to the port name indicates the port the block uses when the control port value does
not match any data port indices.

• Last data port — Block uses the last data port for output when the control port value does not
match any data port indices.

• Additional data port — Block uses an additional data port for output when the control port
value does not match any data port indices.

Tip

If you set this parameter to Additional data port and Number of data ports is 3, the number
of input ports on the block is 5. The first input is the control port, the next three inputs are data ports,
and the fifth input is the default port for out-of-range inputs.

Programmatic Use
Block Parameter: DataPortForDefault
Type: character vector
Values: 'Last data port' | 'Additional data port'
Default: 'Last data port'

Diagnostic for default case — Diagnostic action when control port value does not match data port
indices

Error (default) | Warning | None

Specify the diagnostic action to take when the control port value does not match any data port
indices.

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error. In this case, the Data port for default

case is used only for code generation and not simulation.

For more information, see “How the Block Handles an Out-of-Range Control Input” on page 1-1408.

Programmatic Use
Block Parameter: DiagnosticForDefault
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Error'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

 Multiport Switch

1-1415

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Signal Attributes

Require all data port inputs to have the same data type — Require all inputs to have the same
data type

off (default) | on

Select this check box to require that all data input ports have the same data type. When you clear this
check box, the block allows data port inputs to have different data types.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

1 Blocks

1-1416

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first data input | double | single | half | int8 | uint8
| int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | string | Simulink.ImageType(480,640,3) | <data type
expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule—Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. It is not always possible for the software to optimize code
efficiency and numerical accuracy at the same time. If the internal rule doesn’t meet your specific
needs for numerical accuracy or performance, use one of the following options:

• Specify the output data type explicitly.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point

Tool to propose data types for your model. For more information, see fxptdlg.

 Multiport Switch

1-1417

• To specify your own inheritance rule, use Inherit: Inherit via back propagation and
then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

• Inherit: Inherit via back propagation — Uses the data type of the driving block.
• Inherit: Same as first data input — Uses the data type of the first data input port.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Inherit via back
propagation' | 'Inherit: Same as first input' | 'double' | 'single' | 'half' | 'int8'
| 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'string' | Simulink.ImageType(480,640,3) |
'<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data types

off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the MATLAB
ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the MATLAB
floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

1 Blocks

1-1418

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate rounding
code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Default: 'Floor'
See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type can

represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

• Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

• In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow

 Multiport Switch

1-1419

Type: character vector
Values: 'off' | 'on'
Default: 'off'

Allow different data input sizes (Results in variable-size output signal) — Allow input signals
with different sizes

off (default) | on

Select this check box to allow input signals with different sizes.

• On — Allows input signals with different sizes, and propagate the input signal size to the output
signal. In this mode, the block produces a variable-size output signal.

• Off — Requires that all nonscalar data input signals be the same size.

Programmatic Use
Parameter: AllowDiffInputSizes
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Mode — Select data type mode

Inherit (default) | Built in | Fixed Point

Select the category of data to specify.

• Inherit — Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right where you can select the inheritance mode.

• Built in — Built-in data types. Selecting Built in enables a second menu/text box to the right
where you can select a built-in data type.

• Fixed point — Fixed-point data types. Selecting Fixed point enables additional parameters
that you can use to specify a fixed-point data type.

• Expression — Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, click the Show data type assistant button.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

1 Blocks

1-1420

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies

To enable this parameter, set Mode to Built in or Fixed point.

Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Specify signed or unsigned

Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

• Signed, specifies the fixed-point data as signed.
• Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, set the Mode to Fixed point.

Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type

0 (default) | scalar integer

 Multiport Switch

1-1421

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Binary point.

Slope — Specify slope for the fixed-point data type

2^0 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

1 Blocks

1-1422

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

General
CodingStyle Specify whether to generate HDL code with case statements or if-else

statements. By default, HDL Coder generates if-else statements. See also
“CodingStyle” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Native Floating Point
LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min, or

Zero for the floating-point operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

Complex Data Support

This block supports code generation for complex signals.
Setting Data Port Indices Using Specify Indices mode

You can specify the data port indices to the input port using specify indices mode. To configure the
Multiport Switch block with specify indices mode, set the Data port order block parameter to
Specify indices. Then, enter the port indices in the Data port indices block parameter. For a
model targeted for HDL code generation, you can use these input data types for the control input in a
specify indices mode:

• Fixed-point and floating-point types
• Signed and unsigned integer types
• Enumerated types
• Vector, matrix, and bus types

Using an Enumerated Type as Port Index

You can set Data port order to Specify indices, and enter enumeration values for the Data port
indices. For example, you can connect the Enumerated Constant block to the Multiport Switch
control port and use the enumerated types as data port indices.

 Multiport Switch

1-1423

Restrictions

You must avoid using of NaN or out of range values at the control port. It can cause simulation
mismatch in the validation model.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Index Vector | Switch

Topics
“Variable-Size Signal Basics”

1 Blocks

1-1424

MultiStateImage
Display image reflecting input value

Libraries:
Simulink / Dashboard

Description
The MultiStateImage block displays an image to indicate the value of the input signal. You can use
the MultiStateImage block with other Dashboard blocks to build an interactive dashboard of controls
and indicators for your model. You can specify pairs of input values and images to provide the
information you want during simulation.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

 MultiStateImage

1-1425

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

• You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

• Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Connection — Signal to connect and display
signal connection options

Use the connection table to select the signal to connect to the block. To connect the block to a signal:

1 Make a selection in the model that includes one or more signals.
2 In the table, select the signal you want to connect.
3 Click Apply.

Tip You can connect dashboard blocks to signals in the model during simulation.

Programmatic Use
Block Parameter: Binding
Type: Simulink.HMI.SignalSpecification
Default: []

Scale Mode — Specify how to scale image

Fill with fixed aspect ratio (default) | Fixed | Fill

Specify how to scale the image.

1 Blocks

1-1426

Fill with fixed Aspect Ratio scales the image to the size of the block while retaining its original
aspect ratio.

Fixed displays the image with its fixed true size.

Fill adjusts the image to fill the block.

Programmatic Use
Block Parameter: ScaleMode
Type: string or character vector
Values: 'Fill with fixed aspect ratio' | 'Fixed' | 'Fill'
Default: 'Fill with fixed aspect ratio'

States — Match values with images to display
scalar and image

States match an image to display with a value of the connected variable or parameter. Each state
consists of a State and an image, displayed as a Thumbnail in the States table for the
MultiStateImage block.

• State — Connected variable or parameter value that causes the MultiStateImage block to display
the corresponding image.

• Thumbnail — Image to display when the connected variable or parameter value matches the
corresponding State.

Click the + button to add another state.

Programmatic Use

To programmatically configure State and Thumbnail parameter values for the MultiStateImage
block, use the States parameter. Specify the value for the States parameter as an array of
structures with the fields:

• State — State value.
• Size — 1-by-2 vector containing the width and height for the image in that order, in pixels,
specified as a uint64.

• Image — Character array of Base64 encoded image data.
• Thumbnail — Character array of Base64 encoded image data for the thumbnail image to display

in the States table in the block dialog.

Include a structure in the array for each state you want to specify for the block. In the example, the
myBase64Image and myBase64Thumbnail variables contain character vectors of the Base64 image
data for the block image and thumbnail..

state1.State = 1;
state1.Size = [uint64(400) uint64(400)];
state1.Image = myBase64Image;
state1.Thumbnail = myBase64Thumbnail;
state2.State = 2;
state2.Size = uint64(400) uint64(400)];
state1.Image = myBase64Image2;
state1.Thumbnail = myBase64Thumbnail2;
msiStates = [state1 state2];

 MultiStateImage

1-1427

Block Parameter: States
Type: structure array

The block displays the default image when the connected signal value does not correspond to any of
the specified states. Specify the DefaultImage parameter as a structure containing the fields:

• Size — 1-by-2 vector containing the width and height for the image in that order, in pixels,
specified as uint64.

• Image — Character array of Base64 encoded image data.
• Thumbnail — Character array of Base64 encoded image data for the thumbnail image to display

in the States table in the block dialog.

Block Parameter: DefaultImage
Type: structure

Label — Block label position

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

1 Blocks

1-1428

See Also
Lamp

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 MultiStateImage

1-1429

Mux
Combine input signals of same data type and complexity into virtual vector

Libraries:
Simulink / Commonly Used Blocks
Simulink / Signal Routing
HDL Coder / Commonly Used Blocks
HDL Coder / Signal Routing

Description
The Mux block combines inputs with the same data type and complexity into a virtual vector. You can
use multiple Mux blocks to create a mux signal in stages, but the result is flat as if you used a single
Mux block.

Ideally, use Mux blocks to group only function-call signals.

While a Mux block can create a virtual vector from signals that have the same data type and
complexity, other blocks group signals in ways that provide more flexibility and efficiency.

• To group signals or messages, use a Bus Creator block instead of a Mux block. The Bus Creator
block creates virtual buses, which give you the flexibility to group elements of different data types
and complexity. Virtual buses also let you access elements by name instead of by index. If a block
requires a virtual vector instead of a virtual bus, model compilation converts the bus to a vector.

• To concatenate input signals, use a Vector Concatenate block instead of a Mux block. The Vector
Concatenate block creates a nonvirtual vector, which improves the efficiency of generated code.

For a comparison of mux signals, virtual buses, and concatenated signals, see “Choose Among
Composite Interfaces”.

Ports
Input

Port_1 — Input signal to include in mux signal
scalar | vector

Input signal to include in the mux signal, specified as a scalar or vector.

The input signals for a Mux block can be any combination of scalars and vectors, but they must have
the same data type and complexity or be function-call signals.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | image

Output

Port_1 — Output mux signal
vector

Output mux signal composed of the combined input signals, returned as a vector.

1 Blocks

1-1430

The elements of the output mux signal take their order from the port order of the input signals. For a
description of the port order for various block orientations, see “Identify Port Location on Rotated or
Flipped Block”.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | image

Parameters
Number of inputs — Number of input signals

2 (default) | scalar | vector | cell array | comma-separated list of signal names

The number of input signals, specified as a scalar, vector, cell array, or comma-separated list of signal
names. Some of these formats allow you to specify the signal names and sizes, as described in this
table.

Format Block Behavior
Scalar The number of inputs to the Mux block.

When you use this format, the block accepts scalar or vector
signals of any size. The software assigns each input the name
signalN, where N is the input port number.

Vector The length of the vector specifies the number of inputs. Each
element specifies the size of the corresponding input.

A positive value specifies that the corresponding port can accept
only vectors of that size. For example, [2 3] specifies two input
ports of sizes 2 and 3, respectively. If an input signal width does
not match the expected width, an error message appears. A value
of -1 specifies that the corresponding port can accept scalars or
vectors of any size.

Cell array The length of the cell array specifies the number of inputs. The
value of each cell specifies the size of the corresponding input.

A scalar value N specifies a vector of size N. A value of -1 means
that the corresponding port can accept scalar or vector signals of
any size.

Comma-separated list of signal
names

A list of signal names separated by commas. The software assigns
each name to the corresponding port and signal. For example, if
you enter position,velocity, the Mux block has two inputs,
named position and velocity.

Tips

If you specify a scalar for the Number of inputs parameter and all of the input ports are connected,
as you draw a new signal line close to input side of a Mux block, the software adds a port and updates
the parameter.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.

 Mux

1-1431

Parameter: Inputs

Values: '2' (default) | character vector | string scalar
Data Types: char | string

Example: set_param(gcb,'Inputs','5')
Example: set_param(gcb,'Inputs','[2 3]')
Example: set_param(gcb,'Inputs','{3}')
Example: set_param(gcb,'Inputs','position,velocity')

Display option — Block icon appearance

bar (default) | signals | none

Block icon appearance, specified as bar, signals, or none.

• bar — Displays no text
• signals — Displays the input signal names
• none — Displays the type of block (Mux)

Resize the block as necessary to fit the text on the block icon.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: DisplayOption

Values: 'bar' (default) | 'signals' | 'none'

Example: set_param(gcb,'DisplayOption','signals')

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

1 Blocks

1-1432

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

Restrictions

Buses are not supported for HDL code generation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Demux | Vector Concatenate | Bus Creator

Topics
“Virtual and Nonvirtual Signals”

 Mux

1-1433

“Composite Interface Guidelines”
“Simplify Subsystem and Model Interfaces with Bus Element Ports”

1 Blocks

1-1434

Neighborhood
Control block for Neighborhood Processing Subsystem

Description
The Neighborhood block serves as a control block for the Neighborhood Processing Subsystem block.
The Neighborhood Processing Subsystem block iterates over an input matrix. At each iteration, the
inport inside the subsystem receives a small matrix representing a configurable window of elements
around one element of the input matrix. Use the Neighborhood block parameters to configure the
behavior of the Neighborhood Processing Subsystem block, such as the window dimensions, the size
of the output matrix, and the region of interest (ROI) over which to iterate.

Parameters
Neighborhood size — Dimensions of neighborhood window

[3 3] (default) | array of positive scalars

Configure the dimensions of the neighborhood window that the subsystem receives at each iteration.
The dimensions of the neighborhood cannot exceed the dimensions of the region of interest that you
specify with the Processing width and Processing offset parameters.

For example, consider this input matrix:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

.

.

If you set Neighborhood size to [3 3], then on the seventh iteration, the Neighborhood Processing
Subsystem block receives this 3-by-3 window that surrounds the seventh element:

1 2 3
6 7 8
11 12 13

.

.

Programmatic Use
Block Parameter: NeighborhoodSize
Type: array
Values: [3 3] | '<array>'
Default: [3 3]

Stride — Number of input matrix elements to skip between iterations

 Neighborhood

1-1435

[1 1] (default) | array of positive scalars

Configure the Neighborhood Processing Subsystem block to skip a number of elements in the input
matrix between each iteration. For example, the value [1 2] configures the subsystem to iterate
over alternating columns from the input matrix and the value [3 1] configures the subsystem to
iterate over every third row from the input matrix. Larger Stride values produce smaller output
matrices because the Neighborhood Processing Subsystem block processes fewer elements.

See the difference between the Stride parameter values of [1 1] and [2 3].

Programmatic Use
Block Parameter: Stride
Type: array
Values: [1 1] | '<array>'
Default: [1 1]

Processing offset — Offset of each iteration

[0 0] (default) | array of positive scalars

Configure a distance by which to offset each iteration of the algorithm. This distance defines the top
left boundary the ROI within the input matrix.

For example, consider this input matrix:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

.

.

If you use the default Processing offset parameter value of [0 0], then the first iteration uses a
neighborhood around the element 1, the second iteration centers around element 2, and so on. If you
set the Processing offset parameter value to [1 2], then the Neighborhood Processing Subsystem
block offsets the center of each iteration by 1 along the vertical axis and 2 along the horizontal axis.
The first iteration centers on element 8, the second iteration centers on element 9, and so on.
Because the region of interest cannot extend outside the input matrix, the output matrix is smaller
than the input matrix.

1 Blocks

1-1436

Use the Processing offset and Processing width parameters together to process only a subsection
of an input matrix. For an example, see “Specify Region of Interest for Neighborhood Processing”.

Programmatic Use
Block Parameter: ProcessingOffset
Type: array
Values: [0 0] | '<array>'
Default: [0 0]

Processing width — Subsection of input matrix to process

-1 (default) | array of scalars

Configure the dimensions of the ROI of the input matrix to process. The dimensions of the
Processing width parameter cannot exceed the dimensions of the input matrix.

For example, consider this input matrix:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

.

.

If you use the default Processing width parameter value of -1 , then the Neighborhood Processing
Subsystem block iterates over the entire input matrix. In this example, this behavior is equivalent to a
Processing width parameter value of [5 5]. If you use a Processing width parameter value of [3
4], then the Neighborhood Processing Subsystem block iterates over only the top left 3-by-4 region of
the input matrix.

You can use the value -1 within a Processing width parameter vector value to configure the
Neighborhood Processing Subsystem block to iterate over the full length of a particular dimension. In
the preceding example, if you use a Processing width parameter value of [2 -1], then the
Neighborhood Processing Subsystem block iterates over the top 2-by-5 region of the input matrix.

 Neighborhood

1-1437

Use the Processing offset and Processing width parameters together to define the top left and
bottom right boundaries of a region of interest. For an example, see “Specify Region of Interest for
Neighborhood Processing”.

Programmatic Use
Block Parameter: ProcessingWidth
Type: array
Values: -1 | '<array>'
Default: -1

Output size — Dimensions of output matrix

Same (default) | Full | Valid

Configure which ROI elements you want the Neighborhood Processing Subsystem block to iterate
over by selecting the value Same, Full, or Valid. This determines the dimensions of the output
matrix.

Each example graphic shows a 5-by-5 region of interest with three highlighted subsections.

• The blue top left subsection represents the neighborhood that the Neighborhood Processing
Subsystem block processes in the first iteration.

• The orange bottom right subsection represents the neighborhood of the last iteration.
• The green center subsection represents the dimensions of the output matrix, which spans the

centers of the first and last iterations.

For settings that use padded values, the example graphics denote padded values as ?.

Each example graphic assumes a Neighborhood size parameter value of [3 3], which defines a 3-
by-3 neighborhood. Because each example graphic assumes the default value of [0 0] for the
Processing offset parameter and the default value of -1 for the Processing width parameter, the
region of interest is the full input matrix. For information about how the Neighborhood Processing

1 Blocks

1-1438

Subsystem block pads values when you configure a region of interest, see “Use Neighborhood
Processing Subsystem Block Padding Options with Region of Interest”.

• Same –– The output matrix has the same dimensions as the region of interest. For elements near
the edges, the neighborhood extends beyond the input matrix. Use the Padding option
parameter to configure how to pad elements outside the input matrix.

• Full –– The output matrix is larger than the region of interest. The matrix includes an element for
every neighborhood that includes at least one element from the region of interest, even if the
neighborhood center is outside the region of interest. Use the Padding option parameter to
configure how to pad elements outside the input matrix.

 Neighborhood

1-1439

• Valid –– The output matrix is smaller than the region of interest. The output matrix includes only
the elements whose neighborhoods fall entirely within the region of interest.

Programmatic Use
Block Parameter: OutputSize
Type: character vector
Values: 'Same' | 'Full' | 'Valid'
Default: 'Same'

Padding option — Values to use outside of input matrix

Constant (default) | Replicate | Symmetric | Circular

Configure how to pad values outside the input matrix. When you select the value Full or Same for
the Output size parameter, some neighborhoods extend beyond the input matrix and use padded
matrix element values.

To fully illustrate the logic of each padding option, each example graphic shows the 5-by-5 input
matrix padded with 5-by-5 matrices. In practice, not every padded value is necessarily part of a
neighborhood, depending on the Neighborhood size and Output size parameters. For example, if
you set Neighborhood size to [3 3] and Output size to Same, the subsystem uses only the
innermost layer of padded values.

• Constant –– Use a configurable constant value for elements outside the input matrix. For
example, this matrix uses a constant value of 0.

1 Blocks

1-1440

.
• Replicate –– Extend the values of the edge parameters.

.
• Symmetric –– Mirror the input matrix.

 Neighborhood

1-1441

.
• Circular –– Repeat the input matrix in a tiled pattern.

.

1 Blocks

1-1442

For information about how the Padding option parameter interacts with the Processing offset
and Processing width parameters, see “Use Neighborhood Processing Subsystem Block Padding
Options with Region of Interest”.

Programmatic Use
Block Parameter: PaddingOption
Type: character vector
Values: 'Constant' | 'Replicate' | 'Symmetric' | 'Circular'
Default: 'Constant'
Dependencies

To enable this parameter, set Output size to Same or Full.

Padding constant — Value to use outside input matrix

0 (default) | scalar

Configure the value to use for the Constant padding option.

Dependencies

To enable this parameter, set Padding option to Constant.

Programmatic Use
Block Parameter: PaddingConstant
Type: scalar
Values: 0 | '<scalar>'
Default: 0

Version History
Introduced in R2022b

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

See Also
Neighborhood Processing Subsystem | Subsystem

Topics
“Create Model That Performs Neighborhood Processing”
“Specify Region of Interest for Neighborhood Processing”
“Use Neighborhood Processing Subsystem Block Padding Options with Region of Interest”

 Neighborhood

1-1443

Neighborhood Processing Subsystem
Create algorithm that follows the neighborhood pattern

Libraries:
Simulink / Matrix Operations

Description
The Neighborhood Processing Subsystem block is a Subsystem block preconfigured as a starting
point for creating a subsystem that follows the neighborhood pattern. At each simulation time step,
the subsystem iterates over each element of an input array. For each element, the subsystem
processes a neighborhood of values surrounding that element. Use the subsystem for image
processing. Certain image processing algorithms involve processing images in sections rather than
processing the entire image at once.

Configuring Subsystem

The Neighborhood Processing Subsystem contains a Neighborhood block that acts as a control block
for the subsystem. Specify the parameters of the Neighborhood block to configure the behavior of the
subsystem.

The Neighborhood size parameter controls the dimensions of the neighborhood. For elements near
the edges of the input matrix, the neighborhood can extend beyond the input matrix. The Padding
option parameter controls how the subsystem treats values from outside the input matrix. You can
configure the subsystem to pad these values with a constant or by reusing values from inside the
matrix. If you use the Constant padding option, use the Padding constant parameter to set the
constant value.

You can configure the Neighborhood Processing Subsystem block to process only certain elements of
an input matrix. Use the Stride parameter to configure the Neighborhood Processing Subsystem
block to skip a certain number of elements at each iteration. Use the Processing offset and
Processing width parameters to define the top left and bottom right boundaries, respectively, of a
region of interest (ROI) within the image. The Neighborhood Processing Subsystem block iterates
over only that region.

The Output size parameter controls the size of the output matrix. The Same value configures the
output matrix to be the same size as the ROI. The Full value produces a larger output matrix by
calculating values for elements outside the ROI whose neighborhoods include at least one element
from the ROI. The Valid value creates a smaller output matrix by calculating values for only the
elements whose neighborhoods do not extend beyond the ROI. When you use this setting, the
Padding constant parameter is disabled.

Example

Consider this model.

1 Blocks

1-1444

In this example, the Neighborhood Processing Subsystem block takes a 5-by-5 matrix and outputs a
matrix of the same dimensions by using the Same output size option. The subsystem contains these
blocks.

Inside the Neighborhood Processing Subsystem block, the inport does not receive the full 5-by-5
matrix. Instead, because the Neighborhood size parameter value is [3 3], the inport receives a
smaller, 3-by-3 window of elements. The subsystem iterates over the elements of the input matrix,
passing the neighborhood of each element to the inport at each iteration.

The model uses the Constant padding option with a padding value of 0. For neighborhoods that
extend beyond the input matrix, the subsystem treats the external values as 0.

The outport of the Neighborhood Processing Subsystem block receives a scalar which represents the
derived value for the element at the center of the window. In this case, a Sum of Elements block with
the Sum over parameter set to All dimensions produces a scalar for each window, representing
the sum of the values in that window.

Run the model to populate the Display block.

 Neighborhood Processing Subsystem

1-1445

Each value of the output matrix is the sum of the corresponding element and its eight direct
neighbors in the input matrix. The inner elements are surrounded by values of 1, and so have the
value 9. The outer elements have lower values because the selected padding method uses the value 0
for elements outside the input matrix.

Limitations

• The Neighborhood Processing Subsystem block does not support Switch blocks when you use
normal simulation mode. To use a Switch block inside a Neighborhood Processing Subsystem
block, use the accelerator or rapid accelerator simulation mode. For a workaround in normal
simulation mode, see the “Tips” on page 1-1447 section.

• The Neighborhood Processing Subsystem block does not support row-major layout.

Ports
Input

In — Signal input to a subsystem
matrix

Use Inport blocks to get signals from the local environment.

Placing an Inport block in a Neighborhood Processing Subsystem block adds an external input port to
the subsystem. The port label matches the name of the Inport block. Use the Neighborhood control
block to configure which input signals to process using the neighborhood pattern.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Out — Signal output from a subsystem
matrix

Use Outport blocks to send signals to the local environment.

Placing an Outport block in a Neighborhood Processing Subsystem block adds an external output
port from the subsystem. The port label matches the name of the Outport block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no

1 Blocks

1-1446

Zero-Crossing
Detection

no

Tips
• To improve performance, consider setting the Measure function execution times (Embedded

Coder) configuration parameter to Coarse (referenced models and subsystems only)
when you run software-in-the-loop (SIL) or processor-in-the-loop (PIL) profiling on a model that
contains a Neighborhood Processing Subsystem block. Neighborhood Processing Subsystem
blocks process large amounts of data, which can cause poor performance when you use the
Detailed (all function call sites) option. For more information, see “Create Execution-
Time Profile for Generated Code” (Embedded Coder).

• Switch blocks are useful in Neighborhood Processing Subsystem blocks for image processing
tasks such as thresholding. Thresholding can convert an image to black and white by converting
every pixel value to 255 or 0, depending on whether the input pixel value is greater than a given
threshold value. For example, this Neighborhood Processing Subsystem block performs
thresholding by using a Switch block with a threshold value of 110.

To perform thresholding in normal simulation mode, consider using a Relational Operator block
that uses the > operator to recreate the Switch block behavior.

 Neighborhood Processing Subsystem

1-1447

The Relational Operator block returns a value of 1 if the input value is greater than the threshold
and otherwise returns 0. By sending this value to a Gain block with a value of 255, the subsystem
returns 255 or 0.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only the input/

output port definitions for the subsystem. Therefore, you can use a subsystem in
your model to generate an interface to existing, manually written HDL code.

The black-box interface generation for subsystems is similar to the Model block
interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the subsystem in
simulation, however, treat it as a “no-op” in the HDL code.

1 Blocks

1-1448

Black Box Interface Customization

For the BlackBox architecture, you can customize port names and set attributes of the external
component interface. See “Customize Black Box or HDL Cosimulation Interface” (HDL Coder).

HDL Block Properties

General
AdaptivePipelining Automatic pipeline insertion based on the synthesis tool, target frequency,

and multiplier word-lengths. The default is inherit. See also
“AdaptivePipelining” (HDL Coder).

BalanceDelays Detects introduction of new delays along one path and inserts matching
delays on the other paths. The default is inherit. See also
“BalanceDelays” (HDL Coder).

ClockRatePipelining Insert pipeline registers at a faster clock rate instead of the slower data
rate. The default is inherit. See also “ClockRatePipelining” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

FlattenHierarchy Remove subsystem hierarchy from generated HDL code. The default is
inherit. See also “FlattenHierarchy” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

StreamingFactor Number of parallel data paths, or vectors, that are time multiplexed to
transform into serial, scalar data paths. The default is 0, which implements
fully parallel data paths. See also “Streaming” (HDL Coder).

If this block is not the DUT, the block property settings in the Target Specification tab are ignored.
In the HDL Workflow Advisor, if you use the IP Core Generation workflow, these target specification
block property values are saved with the model. If you specify these target specification block
property values using hdlset_param, when you open HDL Workflow Advisor, the fields are
populated with the corresponding values.

 Neighborhood Processing Subsystem

1-1449

Target Specification
AdditionalTargetInter
faces

Additional target interfaces, specified as a character vector.

To save this block property on the model, in the Set Target Interface task
of the IP Core Generation workflow, corresponding to the DUT ports that
you want to add more interfaces, select Add more.... You can then add
more interfaces in the Add New Target Interfaces dialog box. Specify the
type of interface, number of additional interfaces, and a unique name for
each additional interface.

Values: '' (default) | cell array of character vectors

Example: '{{'AXI4-Stream','InterfaceID','AXI4-Stream1'}}'
ProcessorFPGASynch
ronization

Processor/FPGA synchronization mode, specified as a character vector.

To save this block property on the model, specify the Processor/FPGA
Synchronization in the Set Target Interface task of the IP Core
Generation workflow.

Values: Free running (default) | Coprocessing - blocking

Example: 'Free running'
TestPointMapping To save this block property on the model, specify the mapping of test point

ports to target platform interfaces in the Set Target Interface task of the
IP Core Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'TestPoint','AXI4-Lite','x"108"'}}'
TunableParameterMa
pping

To save this block property on the model, specify the mapping of tunable
parameter ports to target platform interfaces in the Set Target Interface
task of the IP Core Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'myParam','AXI4-Lite','x"108"'}}'
AXI4RegisterReadbac
k

To save this block property on the model, specify whether you want to
enable readback on AXI4 subordinate write registers in the Generate RTL
Code and IP Core task of the IP Core Generation workflow. To learn
more, see “Model Design for AXI4 Slave Interface Generation” (HDL
Coder).

Values: 'off' (default) | 'on'
AXI4SlaveIDWidth To save this block property on the model, specify the number of AXI

manager interfaces that you want to connect the DUT IP core to by using
the AXI4 Slave ID Width setting in the Generate RTL Code and IP
Core task of the IP Core Generation workflow. To learn more, see “Define
Multiple AXI Master Interfaces in Reference Designs to Access DUT AXI4
Slave Interface” (HDL Coder).

Values: 'off' (default) | 'on'

1 Blocks

1-1450

Target Specification
AXI4SlavePortToPipel
ineRegisterRatio

To save this block property on the model, specify the number of AXI4
subordinate ports for which you want a pipeline register to be inserted by
using the AXI4 Slave port to pipeline register ratio setting in the
Generate RTL Code and IP Core task of the IP Core Generation
workflow. To learn more, see “Model Design for AXI4 Slave Interface
Generation” (HDL Coder).

Values: 'off' (default) | 'on''10''20''35''50'
GenerateDefaultAXI4
Slave

To save this block property on the model, specify whether you want to
disable generation of default AXI4 subordinate interfaces in the Generate
RTL Code and IP Core task of the IP Core Generation workflow.

Values: 'on' (default) | 'off'
IPCoreAdditionalFiles Verilog or VHDL files for black boxes in your design. Specify the full path

to each file, and separate file names with a semicolon (;).

You can set this property in the HDL Workflow Advisor, in the Additional
source files field.

Values: '' (default) | character vector

Example: 'C:\myprojfiles
\led_blinking_file1.vhd;C:\myprojfiles
\led_blinking_file2.vhd;'

IPCoreName IP core name, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core
name field. If this property is set to the default value, the HDL Workflow
Advisor constructs the IP core name based on the name of the DUT.

Values: '' (default) | character vector

Example: 'my_model_name'
IPCoreVersion IP core version number, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core
version field. If this property is set to the default value, the HDL Workflow
Advisor sets the IP core version.

Values: '' (default) | character vector

Example: '1.3'

 Neighborhood Processing Subsystem

1-1451

Target Specification
IPDataCaptureBuffer
Size

FPGA Data Capture buffer size, specified as a character vector. Use FPGA
Data Capture to observe signals in a design when running on an FPGA.

The buffer size uses values that are 128*2^n, where n is an integer. By
default, the buffer size is 128 (n=0). The maximum value of n is 13, which
means that the maximum value for buffer size is 1048576 (=128*2^13).

Values: '' (default) | character vector

Example: '1.3'

Restrictions

If your DUT is a masked subsystem, you can generate code only if it is at the top level of the model.

For more information, see:

• “External Component Interfaces” (HDL Coder)
• “Generate Black Box Interface for Subsystem” (HDL Coder)

See Also
Neighborhood | Subsystem

Topics
“Create Model That Performs Neighborhood Processing”
“Specify Region of Interest for Neighborhood Processing”
“Use Neighborhood Processing Subsystem Block Padding Options with Region of Interest”

1 Blocks

1-1452

Out Bus Element
Specify output that connects to external port

Libraries:
Simulink / Ports & Subsystems
Simulink / Sinks
HDL Coder / Ports & Subsystems
HDL Coder / Sinks

Alternative Configurations of Out Bus Element Block:
Bus Element Out

Description
The Out Bus Element block, also known as the Bus Element Out block, combines the functionality of
an Outport block and a Bus Creator block. This block is of the Outport block type, and all Out Bus
Element blocks that correspond with the same port share a dialog box.

Use an Out Bus Element block to pass a bus, nonbus signal, or message to an output port of a model
component. To group elements in a bus at an output port, use multiple Out Bus Element blocks for
the same port.

For interfaces that include buses composed of many bus elements, Out Bus Element blocks:

• Reduce signal line complexity and clutter in a block diagram.
• Allow you to more easily make incremental changes to the interface.
• Allow access to a bus element closer to the point of usage, avoiding the use of a Bus Creator and

From block configuration.

To convert an interface to use Out Bus Element blocks, see “Simplify Subsystem and Model Interfaces
with Bus Element Ports”.

The Out Bus Element block does not support mixing message and signal elements as inputs.

When you save output data to the workspace or a file, bus data defined by groups of root-level Out
Bus Element blocks are logged along with root-level Outport block data.

Examples

Create Output Bus Element Port

In a model component, each output bus element port is represented by one or more Out Bus Element
blocks.

Open the example model named CreateOutputBusElementPort.

 Out Bus Element

1-1453

To add an output bus element port for a model, add an Out Bus Element port to the top level of the
model. For example, double-click the canvas and start typing the block name. Then, select the Out
Bus Element block.

To add an output bus element port to a subsystem, add an Out Bus Element block to the subsystem or
click the edge of the Subsystem block and select Create out bus port.

To open the subsystem, double-click the Subsystem block.

The subsystem contains a default Out Bus Element block that corresponds to the output port you
created on the Subsystem block. The block label uses default values for its two interactive text fields:
the port name (OutBus) and the bus element (signal1).

To create another output bus element port from inside a model component, hold Ctrl while you drag
an existing Out Bus Element block to a new location. Upon releasing the pointer, click Create New
Port.

1 Blocks

1-1454

An Out Bus Element block with a unique port name appears.

In this example, the new port is named OutBus1.

To edit the port name, click the port name in the block label. Then, enter a new name.

Alternatively, set the Port name block parameter to the desired name for the port.

When multiple blocks are associated with the same port and you change the name of the port, all
blocks that share the port update to reflect the new port name.

Output Signal Without Bus

When you have only one Out Bus Element block for a port, you can pass the block input to the output
port without nesting it in a bus.

Open the example model named SignalOutputBusPort.

A Sine Wave block connects to an Out Bus Element block. Based on the block label,
OutBus.signal1, the port output is a bus that contains an element named signal1. The dot in the
block label indicates the bus hierarchy.

To pass the signal to the output port without nesting it in a bus, in the label of the Out Bus Element
block, delete the text from the second text field. Then, click elsewhere on the canvas to commit the
change.

To change the name of the port associated with the block, edit the first text field in the block label. In
the block label, click OutBus.

 Out Bus Element

1-1455

Delete OutBus and enter SineWave. Ignore the placeholder text that shows where you can enter an
element name.

Alternatively, set the Port name block parameter to the desired name for the port.

Output Multiple Signals with One Port

To specify multiple elements for an output port, use an Out Bus Element block for each element that
you want in the output. All element names associated with the same output port must be unique. The
software does not support overlapping writes to the same port.

Open the example model named SpecifyOutputElements.

An Out Bus Element block writes to an element named signal1 of a port named OutBus.

To rename an element, edit the second text field in the block label. For example, double-click
signal1 and enter constant*5.

Open the Property Inspector. Then, select the Out Bus Element block. Alternatively, double-click the
block to open a dialog box.

The signal that the block selects is highlighted.

To add another element to the port, click Add a new signal.

1 Blocks

1-1456

An Out Bus Element block labeled OutBus.signal1 appears in the block diagram.

In the Property Inspector or dialog box, double-click the name signal1 and enter sine+chirp.

The corresponding block label updates.

Connect the new Out Bus Element block to the unconnected port of the Sum block.

Create Multilevel Bus Hierarchy at Output Port

The default Out Bus Element block nests the output element in a bus. When the output port has many
elements, organize the elements in nested buses within the output bus.

Open the example model named OutputBusPortHierarchy, which contains three Out Bus Element
blocks.

 Out Bus Element

1-1457

Each dot in an Out Bus Element block label indicates a new level of hierarchy. To nest an element
under another bus in the output bus, edit the second text field of the corresponding block label and
add a dot after each nested bus in the hierarchy.

For example, click constant*5. Then, change it to NestedBus.constant*5.

This label creates an intermediate bus named NestedBus that contains constant*5.

To add elements to the new bus, you can similarly edit other block labels. Alternatively, double-click
an Out Bus Element block or open the Property Inspector and select an Out Bus Element block.

To move elements within the output bus, select the elements to move and drag them to a new
location. For example, drag the signal named sine+chirp into the nested bus.

The block label updates to indicate the new hierarchy.

To add a nested bus and leaf element to the output bus, along with the corresponding Out Bus
Element block, click Add a new sub-bus.

The nested bus and element use default names.

Customize Appearance of In Bus Element and Out Bus Element Blocks

Use compact labels and block colors to customize the appearance of In Bus Element and Out Bus
Element blocks.

Open the example model named BusElementPortBlocks.

1 Blocks

1-1458

The model contains:

• In Bus Element blocks that represent two unique bus element ports named Inbus and pulse
• Out Bus Element blocks that represent a bus element port named OutBus

To reduce the size of the block labels, display only the leaf element names. Select an In Bus Element
or Out Bus Element block, pause on the ellipsis, and in the action bar, click Compact Notation.

All In Bus Element and Out Bus Element blocks in the block diagram display shortened block labels
that use only the leaf element name.

To show the full block label, in the action bar, you can click Expanded Notation. For this example,
keep the compact block labels.

Block colors can help differentiate unique ports when the block labels are compact.

 Out Bus Element

1-1459

Open the Property Inspector. Then, select an In Bus Element block that corresponds with the port
named InBus. For example, select the block labeled constant. Alternatively, double-click the block
to open a dialog box.

In the Property Inspector or dialog box, select InBus. Then, click Set color and select a color from
the menu.

The blocks related to the port use the chosen color.

To identify the blocks that select the nested bus named nonconstant or its elements, select
nonconstant. Then, click Set color and select a different color from the menu.

1 Blocks

1-1460

The blocks related to the nested bus use the chosen color.

Ports
Input

Port_1 — Full or partial output for external port
scalar | vector | matrix | array | bus

Connect a bus, signal, or message to pass to the corresponding external output port of the parent
subsystem or model.

When multiple Out Bus Element blocks are associated with the same external port, the input to this
block is an element of the bus at the output port. The second text field in the block label specifies the
element name.

When one Out Bus Element block is associated with the external port, the input to this block is
passed directly to the output port or nested in a bus at the output port. To pass the input of the block
to the output port without nesting it in a bus, delete the text from the second text field in the block
label.

 Out Bus Element

1-1461

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Parameters
To interactively edit the parameters of the block, the corresponding port, and the elements at the
port, double-click the block or open the Property Inspector and select the block.

Port name — Name of output port
OutBus (default) | port name

Specify a port name that is not already in use by another block or port. The name appears on the
parent Subsystem or Model block. The name also appears next to the block. Multiple blocks can
access the same port.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: PortName

Values: 'OutBus' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/PortBlock','PortName','myBus')

Port number — Position of port on parent block

1 (default) | real integer

Specify the order in which the port that corresponds to the block appears on the parent Subsystem or
Model block.

• If you add a block that creates another port, the port number is the next available number.
• Deleting all blocks associated with a port deletes the port. Other ports are renumbered so that

they are sequential and do not skip any numbers.
• Specifying a port number that exceeds the number of ports creates a port for that number and for

any skipped sequential numbers.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: Port

Values: '1' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/PortBlock','Port','5')

Set color — Block background color
Black (default) | White | Red | Green | Blue | Cyan | Magenta | Yellow | Gray | Light Blue |
Orange | Dark Green | More Colors

Specify the block background color. This specification sets the color of blocks associated with
selected bus elements, or of all blocks associated with the port if you do not select any bus elements.

1 Blocks

1-1462

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: BackgroundColor

Values: 'black' (default) | 'white | 'red' | 'green' | 'blue' | 'cyan' | 'magenta' |
'yellow' | 'gray' | 'lightBlue' | 'orange' | 'darkGreen' | '[r,g,b]' where
r, g, and b, are the red, green, blue values of the color in the range 0.0 to 1.0

Example: set_param('mymodel/Subsystem1/PortBlock','BackgroundColor','magenta')

Filter — Filter for set of displayed signals
no default

Specify a search term to use for filtering a long list of bus elements. Do not enclose the search term
in quotation marks. The filter does a partial string search and supports regular expressions. To use a
regular expression character as a literal, include an escape character (\). For example, to use a
question mark, type sig\?1.

Attributes

To specify attributes, such as data type, pause on the name of a bus, signal, or message. Then, click

the pencil button that appears.

When you specify attributes, they appear next to the name of the bus, signal, or message. Click an
attribute summary to edit the attributes of the bus, signal, or message.

Data type — Data type
Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | ...

The data type of a bus, signal, or message can be inherited, specified directly, or expressed as a data
type object such as a Simulink.NumericType object.

You can specify any of these options:

• Inherited data type
• Built-in Simulink data type — For example, specify single or uint8. See “Data Types Supported

by Simulink”.
• Fixed-point data type — Use the fixdt function. For example, specify fixdt(1,16,0).
• Enumerated data type — Use the name of the type preceded by Enum:. For example, specify

Enum: myEnumType.
• Bus data type — Use the name of the Simulink.Bus object preceded by Bus:. For example,

specify Bus: myBusObject.
• Value type — Use the name of the Simulink.ValueType object preceded by ValueType:. For

example, specify ValueType: windVelocity.

 Out Bus Element

1-1463

• Custom data type — Use a MATLAB expression that specifies the type. For example, you can
specify a Simulink.NumericType object whose DataTypeMode property is set to a value other
than 'Fixed-point: unspecified scaling'.

When you specify a Simulink.ValueType object as the data type, some parameters of the element
are ignored. For example, the Min, Max, and Unit parameters are ignored. The software uses the
corresponding properties of the Simulink.ValueType object. For example, suppose you set Unit to
ft/s for an element. When the Data type of the element specifies a ValueType object that has m/s
as its unit, the element uses m/s instead of ft/s.

When you specify a Simulink.Bus object as the data type, some parameters of the element are reset
to their default values. For example, the Min, Max, and Unit parameters are reset. The software
uses the corresponding properties of the Simulink.BusElement objects in the Simulink.Bus
object instead.

Tips

When you specify a bus using a Simulink.Bus object or a Simulink.ValueType object with a
Simulink.Bus object data type, the Property Inspector and block dialog box display the elements
defined by the corresponding Simulink.BusElement objects.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: OutDataTypeStr

Values: 'Inherit: auto' (default) | 'double' | 'single' | 'half' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' |
'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'string' |
'Enum: <class name>' | 'Bus: <object name>' | 'ValueType: <object
name>' | '<data type expression>'

Example: set_param('mymodel/Subsystem1/myBus.signal1','OutDataTypeStr','int32')

Data mode — Data mode of bus elements
inherit (default) | signal | message

Specify the data mode of the elements of the bus.

• inherit — Bus elements inherit their data modes.
• signal — Bus elements must be signals.
• message — Bus elements must be messages.

Dependencies

To enable this parameter, the block must be at the top level of a model.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: DataMode

Values: 'inherit' (default) | 'signal' | 'message'

1 Blocks

1-1464

Example: set_param('mymodel/OutBus','DataMode','signal')

Bus virtuality — Virtual or nonvirtual bus
inherit (default) | virtual | nonvirtual

Specify whether to inherit the bus virtuality or define the bus as virtual or nonvirtual. For more
information, see “Composite Interface Guidelines”.

This parameter determines whether the blocks inherit or define the bus virtuality. If the blocks define
the bus virtuality and the virtuality of the input bus does not match, compiling the model produces an
error.
Dependencies

To enable this parameter, Data type must resolve to a Simulink.Bus object. For example, set Data
type to a Simulink.Bus object or a Simulink.ValueType object that specifies a Simulink.Bus
object as its data type.
Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: BusVirtuality

Values: 'inherit' (default) | 'virtual' | 'nonvirtual'

Example: set_param('mymodel/Subsystem1/
myBus.nestedBus','BusVirtuality','nonvirtual')

Dimensions — Signal dimensions
-1 (default) | integer | [integer, integer]

Specify the dimensions of a signal.

• -1 — The signal can have any dimensions.
• N — The signal must be a vector of size N.
• [R C] — The signal must be a matrix having R rows and C columns.

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to 1. The
software uses the dimensions specified by the Simulink.BusElement objects in the
Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the dimensions specified by the Simulink.ValueType object
instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: PortDimensions

Values: '-1' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/myBus.signal1','PortDimensions','[1 3]')

 Out Bus Element

1-1465

Dims mode — Option to allow only variable-size or fixed-size signals
Inherit (default) | Fixed | Variable

Specify the type of signals allowed.

• Inherit — Allow variable-size and fixed-size signals.
• Variable — Allow only variable-size signals.
• Fixed — Allow only fixed-size signals. Do not allow variable-size signals.

When the signal is variable-sized, the Dimensions parameter specifies the maximum dimensions of
the signal.

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to Inherit.
The software uses the dimensions modes specified by the Simulink.BusElement objects in the
Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the dimensions mode specified by the Simulink.ValueType object
instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: VarSizeSig

Values: 'Inherit' (default) | 'No' | 'Yes'

Example: set_param('mymodel/Subsystem1/myBus.signal1','VarSizeSig','No')

Unit — Physical unit
inherit (default) | unit supported by Simulink software

Specify the physical unit of the signal. For a list of supported units, in the MATLAB Command
Window, enter showunitslist.

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to inherit.
The software uses the units specified by the Simulink.BusElement objects in the
Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the unit specified by the Simulink.ValueType object instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: Unit

Values: 'inherit' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/myBus.signal1','Unit','m/s')

1 Blocks

1-1466

Complexity — Numeric type
auto (default) | real | complex

Specify the numeric type of the signal. To choose the numeric type of the signal, select auto.
Otherwise, choose a real or complex signal type.

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to auto. The
software uses the complexity specified by the Simulink.BusElement objects in the
Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the complexity specified by the Simulink.ValueType object
instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: SignalType

Values: 'auto' (default) | 'real' | 'complex'

Example: set_param('mymodel/Subsystem1/myBus.signal1','SignalType','real')

Minimum — Minimum value
[] (default) | scalar

Lower value of the range that the software checks.

This number must be a finite real double scalar value.

The software uses this value to perform:

• Simulation range checking. For more information, see “Specify Signal Ranges”.
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to []. The
software uses the minimum values specified by the Simulink.BusElement objects in the
Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the minimum value specified by the Simulink.ValueType object
instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.

 Out Bus Element

1-1467

Parameter: OutMin

Values: '[]' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/myBus.signal1','OutMin','0')

Maximum — Maximum value
[] (default) | scalar

Upper value of the range that the software checks.

This number must be a finite real double scalar value.

The software uses this value to perform:

• Simulation range checking. For more information, see “Specify Signal Ranges”.
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to []. The
software uses the maximum values specified by the Simulink.BusElement objects in the
Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the maximum value specified by the Simulink.ValueType object
instead.

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: OutMax

Values: '[]' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/myBus.signal1','OutMax','2')

Description — Description of bus, bus element, signal, or message
no default

Use the description to document information about the bus, signal, or message, such as where it is
used. This information does not affect processing.

Dependencies

• When Data type specifies a Simulink.Bus object, the software sets this parameter to ''
(empty). The software uses the description specified by the Simulink.Bus object.

• When Data type specifies a Simulink.ValueType object, the software ignores the value of this
parameter. The software uses the description specified by the Simulink.ValueType object
instead.

1 Blocks

1-1468

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: Description

Values: '' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/myBus.signal1','Description','This
signal is used by...')

Output name — Name of output bus, signal, or message in parent subsystem or model
no default

Specify the name of the output bus, signal, or message in the parent subsystem or model. The name
appears as a label on the line.

To display propagated labels for individual lines or all lines in a model, see “Display Propagated
Signal Labels”.

Dependencies

• To enable this parameter:

• The block must be at the top level of a model.
• The element must be the top-level bus, signal, or message.

• When Data type specifies a Simulink.Bus object, the software sets this parameter to ""
(empty).

Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: OutputName

Values: "" (default) | character vector | string scalar
Data Types: char | string

Example: set_param('mymodel/OutBus','OutputName','model-output')

Execution Attributes

To specify execution attributes, such as sample time, pause on the name of a bus, signal, or message.

Then, click Specify execution attributes .

Sample time — Sample time
-1 (default) | scalar

 Out Bus Element

1-1469

Specify the discrete interval between sample time hits or specify another type of sample time, such as
continuous (0) or inherited (-1). For more options, see “Types of Sample Time”.

By default, the signal inherits its sample time.
Programmatic Use

To programmatically set the attribute value for an element, use the set_param function, specifying
the element as the block path of the model component with the element label.
Parameter: SampleTime

Values: '-1' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/myBus.signal1','SampleTime','0.01')

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Bus Element Out — Specify output that connects to external port

The Bus Element Out block differs from the Out Bus Element block by name only.
Libraries:
Simulink / Signal Routing
HDL Coder / Signal Routing

Version History
Introduced in R2017a

R2023a: Specify name of port output

For an Out Bus Element block at the top level of a model, use the Output name block parameter to
specify the name of the top-level bus, signal, or message that appears in a parent subsystem or
model.

R2023a: Property Inspector supports In Bus Element blocks

The Property Inspector supports In Bus Element and Out Bus Element blocks.

R2023a: Messages link to related In Bus Element blocks

1 Blocks

1-1470

Warning and error messages for In Bus Element and Out Bus Element blocks now link to the
corresponding block in the block diagram, helping you quickly find the source of the warning or error.
In previous releases, warning and error messages refer to a hidden block and do not provide a link.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used to simplify subsystem bus interfaces when you use the block in subsystems
that generate HDL code, but it is not included in the hardware implementation.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
In Bus Element | Bus Creator | Outport

Topics
“Simplify Subsystem and Model Interfaces with Bus Element Ports”
“Composite Interface Guidelines”
“Group Signals or Messages into Virtual Buses”

 Out Bus Element

1-1471

Outport
Create output port for subsystem or external output

Libraries:
Simulink / Commonly Used Blocks
Simulink / Ports & Subsystems
Simulink / Sinks
HDL Coder / Commonly Used Blocks
HDL Coder / Ports & Subsystems
HDL Coder / Sinks

Description
Outport blocks link signals from a system to a destination outside of the system. They can connect
signals flowing from a subsystem to other parts of the model. They can also supply external outputs
at the top level of a model hierarchy.

Outport block port numbers are assigned according to these rules:

• Outport blocks within a root-level system or subsystem are numbered sequentially, starting with 1.
• If you add an Outport block, it is assigned the next available number.
• If you delete an Outport block, other port numbers are automatically renumbered to ensure that

the Outport blocks are in sequence and that no numbers are omitted.

Outport Blocks in a Subsystem

Outport blocks in a subsystem represent outputs from the subsystem. A signal arriving at an Outport
block in a subsystem flows out of the associated output port on that Subsystem block. The Outport
block associated with an output port is the block whose Port number parameter matches the relative
position of the output port on the Subsystem block. For example, the Outport block whose Port
number parameter is 1 sends its signal to the block connected to the topmost output port on the
Subsystem block.

If you renumber the Port number of an Outport block, the block becomes connected to a different
output port. The block continues to send the signal to the same block outside the subsystem.

You can directly edit port labels on a Subsystem block. For more information, see “Edit Port Labels on
Subsystems”.

Tip For models that include buses composed of many bus elements, consider using In Bus Element
and Out Bus Element blocks. These blocks:

• Reduce signal line complexity and clutter in a block diagram.
• Make it easier to change the interface incrementally.
• Allow access to a bus element closer to the point of usage, avoiding the use of a Bus Selector and

Goto block configuration.

The In Bus Element block is of block type Inport and the Out Bus Element block is of block type
Outport.

1 Blocks

1-1472

Top-Level Outport Block in a Model Hierarchy

Outport blocks at the top level of a model hierarchy have two uses. They can supply external outputs
to the base MATLAB workspace, and they provide a means for the linmod and trim analysis
functions to obtain output from the system.

To supply external outputs to the workspace, use the Configuration Parameters > Data Import/
Export pane (see Exporting Output Data to the MATLAB Workspace) or the sim command. For
example, if a system has more than one Outport block and the save format is array, this command

[t,x,y] = sim(...);

writes y as a matrix, with each column containing data for a different Outport block. The column
order matches the order of the port numbers for the Outport blocks.

If you specify more than one variable name after the second (state) argument, data from each
Outport block is written to a different variable. For example, if the system has two Outport blocks, to
save data from Outport block 1 to speed and the data from Outport block 2 to dist, specify this
command:

[t,x,speed,dist] = sim(...);

Connecting Buses to Root-Level Outports

A root-level Outport block in a model can accept a virtual bus only if all elements of the bus have the
same data type. The Outport block automatically unifies the bus to a vector having the same number
of elements as the bus, and provides that vector as output.

If you want a root-level Outport block of a model to accept a bus that contains mixed types, set the
Outport block Data type to Bus: <object name>. If the bus is virtual, it is converted to nonvirtual,
as described in “Virtual and Nonvirtual Bus Conversions”.

Associate Root-Level Outport Block with Simulink.Signal Object

To associate a root-level Outport block with a Simulink.Signal object, use the Model Data Editor.
See “For Signals”.

Ports
Input

Port_1 — Outport signal
scalar | vector

Input signal that flows through the outport to an external subsystem or model.

An Outport block can accept fixed-point and enumerated data types when the block is not a root-level
output port. The complexity and data type of the block output are the same as its input.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus | image

 Outport

1-1473

Parameters
Main

Port number — Position of port on parent block

1 (default) | real integer

Specify the order in which the port that corresponds to the block appears on the parent Subsystem or
Model block.

• If you add a block that creates another port, the port number is the next available number.
• Deleting all blocks associated with a port deletes the port. Other ports are renumbered so that

they are sequential and do not skip any numbers.
• Specifying a port number that exceeds the number of ports creates a port for that number and for

any skipped sequential numbers.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: Port

Values: '1' (default) | character vector | string scalar

Example: set_param('mymodel/Subsystem1/PortBlock','Port','5')

Signal name — Signal name

' ' (default) | character vector

Specify the name of the corresponding signal data in the generated code. Use this parameter to
specify a name for the signal data when you apply a storage class to a root-level Outport block.

Programmatic Use
Block Parameter: SignalName
Type: character vector
Values: character vector
Default: ' '

Icon display — Icon display

Port number (default) | Signal name | Port number and signal name

Specify the information displayed on the block icon.

Programmatic Use
Block Parameter: IconDisplay
Type: character vector
Values: 'Signal name' | 'Port number' | 'Port number and signal name'
Default: 'Port number'

Specify output when source is unconnected — Specify unconnected output value

off (default) | on

1 Blocks

1-1474

Specify a constant output value for when source is not connected.

Dependencies

Available for unconnected Outport blocks inside a Variant Subsystem block.

Programmatic Use
Block Parameter: OutputWhenUnconnected
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Constant value — Output value when the block is not connected

0 (default) | scalar | vector

Specify a constant output value for when source is not connected.

Dependencies

Available in a Variant Subsystem block for an unconnected Outport block with Specify output when
source is unconnected selected.

Programmatic Use
Block Parameter: OutputWhenUnconnectedValue
Type: character vector
Values: scalar | vector
Default: '0'

Interpret vector parameters as 1-D — Treat vectors as 1-D
on (default) | off

Select this check box to create a vector of length N at the output if the Constant value parameter
evaluates to an N-element row or column vector.

Dependencies

Available in a Variant Subsystem block on an unconnected Outport block when you select the Specify
output when source is unconnected parameter.

Programmatic Use
Block Parameter: VectorParamsAs1DForOutWhenUnconnected
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Ensure outport is virtual — Ensure that outport is virtual

off (default) | on

Clear this parameter to allow Simulink to use a signal buffer on output port. This buffer, which is the
equivalent of a Signal Copy block but is not displayed on the canvas, ensures consistent initialization
of the Outport block signal.

If you select this parameter, Simulink tries to remove the signal buffer.

• If the signal buffer is not needed, Simulink removes the buffer.

 Outport

1-1475

• If the signal buffer is needed for data consistency and proper execution, Simulink displays an
error indicating the buffer could not be removed.

Allow partial writes through Assignment blocks.

For more information regarding this parameter, including examples with conditional writes and
partial writes, see “Ensure Output Port Is Virtual”.
Dependencies

This parameter applies to these blocks:

• Conditional subsystem
• Assignment
• Merge
• Model with root Outport block

Programmatic Use
Block Parameter: EnsureOutportIsVirtual
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Source of initial output value — Source of initial output value

Dialog (default) | Input signal

Select the source of the initial output value of the block. Select Dialog to specify that the initial
output value is the value of the Initial output parameter. Select Input signal to specify that the
initial output value is inherited from the input signal. See “Conditional Subsystem Initial Output
Values”.
Tips

• If you are using classic initialization mode, selecting Input signal causes an error. To inherit
the initial output value from the input signal, set this parameter to Dialog and specify [] (empty
matrix) for the Initial output value. For more information, see “Conditional Subsystem Initial
Output Values”.

Dependencies

Available for Outport blocks inside a conditional subsystem.
Programmatic Use
Block Parameter: SourceOfInitialOutputValue
Type: character vector
Values: 'Dialog' | 'Input signal'
Default: 'Dialog'

Output when disabled — Output when disabled

held (default) | reset

Specify what happens to the block output when the subsystem is disabled. Select held to indicate
that the output is held when the subsystem is disabled. Select reset to indicate that the output is
reset to the value given by Initial output when the subsystem is disabled.

1 Blocks

1-1476

Dependencies

Available when you select Dialog as the value for the Source of initial output parameter for an
Outport block inside a conditional subsystem with valid enabling and disabling semantics. For
example, the parameter is available for an Outport block inside an Enabled Subsystem block and not
for an Outport block inside a Triggered Subsystem block.

If an Outport block is inside a Function-Call Subsystem block, this parameter is only meaningful if the
Function-Call Subsystem block is connected to a state in a Stateflow chart. For more information, see
“Bind a Function-Call Subsystem to a State” (Stateflow).

When connecting the output of a conditional subsystem to a Merge block, set this parameter to held.
Setting it to reset returns an error.

Programmatic Use
Block Parameter: OutputWhenDisabled
Type: character vector
Values: 'held' | 'reset'
Default: 'held'

Initial output — Initial output for conditionally executed subsystems

[] (default) | scalar | structure

For conditionally executed subsystems, specify the block output before the subsystem executes and
while it is disabled. Specify [] to inherit the initial output value from the input signal. For more
information, see “Conditional Subsystem Initial Output Values”.

For information about specifying an initial condition structure, see “Specify Initial Conditions for Bus
Elements”.

Tips

If the conditional subsystem is driving a Merge block, you do not need to specify an Initial Condition
(IC) for the Outport block. For more information, see “Underspecified initialization detection”.

Dependencies

Available when Source of initial output value is set to Dialog for an Outport block in a conditional
subsystem.

Limitations

• This block does not allow an initial output of inf or NaN.
• When the input is a virtual bus, an Initial output value [] is treated as double(0).
• When the input contains a nonvirtual bus, Initial output does not support nonzero scalar values.

Programmatic Use
Block Parameter: InitialOutput
Type: character vector
Values: '[]' | scalar | structure
Default: '[]'

 Outport

1-1477

Signal Attributes

Minimum — Minimum output value

[] (default) | scalar

Lower value of the output range that the software checks.

This number must be a finite real double scalar value.

The software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the minimum values specified by the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead.
Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Maximum — Maximum output value

[] (default) | scalar

Upper value of the output range that the software checks.

This number must be a finite real double scalar value.

The software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges”).
• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the maximum values specified by the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead.

1 Blocks

1-1478

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Data type — Output data type

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | ...

Specify the output data type of the external input. The type can be inherited, specified directly, or
expressed as a data type object such as a Simulink.NumericType object.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

You can specify any of these options:

• Inherited data type
• Built-in Simulink data type — For example, specify single or uint8. See “Data Types Supported

by Simulink”.
• Fixed-point data type — Use the fixdt function. For example, specify fixdt(1,16,0).
• Enumerated data type — Use the name of the type preceded by Enum:. For example, specify

Enum: myEnumType.
• Bus data type — Use the name of the Simulink.Bus object preceded by Bus:. For example,

specify Bus: myBusObject.
• Simulink image data type — If you have Computer Vision Toolbox, use the constructor for the

Simulink.ImageType object and specify the properties to describe the image. By default, the
data type uses the Simulink.ImageType(480,640,3) expression that represents the rows,
columns, and channels of the image respectively.

• Value type — Use the name of the Simulink.ValueType object preceded by ValueType:. For
example, specify ValueType: windVelocity.

• Custom data type — Use a MATLAB expression that specifies the type. For example, you can
specify a Simulink.NumericType object whose DataTypeMode property is set to a value other
than 'Fixed-point: unspecified scaling'.

When you specify a Simulink.ValueType or Simulink.Bus object as the data type, some
parameters of the Outport block are ignored. For example, the Min, Max, and Unit parameters of
the Outport block are ignored. The software uses the corresponding properties of the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead. For example, suppose a block sets Unit to ft/s. When the Data type of the block specifies a
ValueType object that has m/s as its unit, the block uses m/s instead of ft/s.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'string' | 'Enum: <class name>' | 'Bus:

 Outport

1-1479

<object name>' | 'ValueType: <object name>' | '<data type expression>' |
Simulink.ImageType(480,640,3)
Default: 'Inherit: auto'

Lock output data type setting against changes by the fixed-point tools — Option to prevent
fixed-point tools from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the output data type you specify
on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
object.

Programmatic Use
Block Parameter: LockScale
Values: 'off' | 'on'
Default: 'off'

Output as nonvirtual bus in parent model — Output as nonvirtual bus in parent model

off (default) | on

Specify the outport bus to be nonvirtual in the parent model. Select this parameter if you want the
bus emerging in the parent model to be nonvirtual. The bus that is input to the port can be virtual or
nonvirtual, regardless of the setting of Output as nonvirtual bus in parent model.

Clear this parameter if you want the bus emerging in the parent model to be virtual.

Tips

• In a nonvirtual bus, all signals must have the same sample time, even if the elements of the
associated bus object specify inherited sample times. Any operation that would result in a
nonvirtual bus that violates this requirement generates an error. For details, see “Modify Sample
Times for Nonvirtual Buses”.

To use a multirate signal for a virtual bus, in the root-level Outport block, set the Sample time
parameter to inherited (-1).

• For the top model in a model reference hierarchy, code generation creates a C structure to
represent the bus output of this block.

• For referenced models, select this option to create a C structure. Otherwise, code generation
creates an argument for each leaf element of the bus.

Dependencies

To enable this parameter, Data type must resolve to a Simulink.Bus object. For example, set Data
type to a Simulink.Bus object or a Simulink.ValueType object that specifies a Simulink.Bus
object as its data type.

Programmatic Use
Block Parameter: BusOutputAsStruct
Type: character vector

1 Blocks

1-1480

Values: 'off' | 'on'
Default: 'off'

Unit (e.g., m, m/s^2, N*m) — Physical unit of the input signal to the block

inherit (default) | <Enter unit>

Specify the physical unit of the input signal to the block. To specify a unit, begin typing in the text
box. As you type, the parameter displays potential matching units. For a list of supported units, see
Allowed Unit Systems.

To constrain the unit system, click the link to the right of the parameter:

• If a Unit System Configuration block exists in the component, its dialog box opens. Use that dialog
box to specify allowed and disallowed unit systems for the component.

• If a Unit System Configuration block does not exist in the component, the model Configuration
Parameters dialog box displays. Use that dialog box to specify allowed and disallowed unit systems
for the model.

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the units specified by the Simulink.ValueType object
or the Simulink.BusElement objects in the Simulink.Bus object instead.
Programmatic Use
Block Parameter: Unit
Type: character vector
Values: 'inherit' | '<Enter unit>'
Default: 'inherit'

Port dimensions (-1 for inherited) — Port dimensions

-1 (default) | integer | [integer, integer]

Specify the dimensions that a signal must have to be connected to this Outport block.

-1 A signal of any dimensions can be connected to this port.
N The signal connected to this port must be a vector of size N.
[R C] The signal connected to this port must be a matrix having R rows and C

columns.

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
object. The software uses the dimensions specified by the Simulink.ValueType object instead.
Programmatic Use
Block Parameter: PortDimensions
Type: character vector
Values: '-1' | integer | [integer, integer]
Default: '-1'

Variable-size signal — Allow variable-size signals

 Outport

1-1481

matlab:showunitslist

Inherit (default) | No | Yes

Specify the type of signals allowed at the output of this port. To allow variable-size and fixed-size
signals, select Inherit. To allow only variable-size signals, select Yes. To allow only fixed-size
signals, select No.

When the signal at this port is a variable-size signal, the Port dimensions parameter specifies the
maximum dimensions of the signal.

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
object. The software uses the dimensions mode specified by the Simulink.ValueType object
instead.

Programmatic Use
Parameter: VarSizeSig
Type: character vector
Value: 'Inherit' | 'No' | 'Yes'
Default: 'Inherit'

Signal type — Output signal type

auto (default) | real | complex

Specify the numeric type of the signal output. To choose the numeric type of the signal that is
connected to its input, select auto. Otherwise, choose a real or complex signal type.

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the complexity specified by the Simulink.ValueType
object or the Simulink.BusElement objects in the Simulink.Bus object instead.

Programmatic Use
Block Parameter: SignalType
Type: character vector
Values: 'auto' | 'real' | 'complex'
Default: 'auto'

Execution

Sample time (-1 for inherited) — Option to specify sample time

-1 (default) | scalar

Specify the discrete interval between sample time hits or specify another type of sample time, such as
continuous (0) or inherited (-1). For more options, see “Types of Sample Time”.

By default, the block inherits its sample time based upon the context of the block within the model.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '-1'

1 Blocks

1-1482

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
BalanceDelays BalanceDelays

Setting
Description

on (default) Detects introduction of delays on other paths in
the DUT and inserts matching delays on the
Outport block path.

off Disable delay balancing on output ports in your
DUT subsystem to prevent HDL Coder from
inserting matching delays when they are
unnecessary. For example, disable
BalanceDelays on an Outport block in your DUT
subsystem when treating a manually added
output port as a test point.

Note This property affects only DUT-level Outport blocks.

 Outport

1-1483

General
BidirectionalPort BidirectionalPort

Setting
Description

on Specify the port as bidirectional.

The following requirements apply:

• The port must be in a Subsystem block with
black box implementation.

• There must also be no logic between the
bidirectional port and the corresponding top-
level DUT subsystem port.

For more information, see “Specify Bidirectional
Ports” (HDL Coder).

off (default) Do not specify the port as bidirectional.

Target Specification
IOInterface Target platform interface type for DUT ports, specified as a character

vector. The IOInterface block property is ignored for Inport and Outport
blocks that are not DUT ports.

To specify valid IOInterface settings, use the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, in the Set Target > Set Target
Interface step, in the Target platform interface table, in the
Target Platform Interfaces column, use the drop-down list to set the
target platform interface type.

2 Save the model.

The IOInterface value is saved as an HDL block property of the
port.

For example, to view the IOInterface value, if the full path to your
DUT port is hdlcoder_led_blinking/led_counter/LED, enter:

hdlget_param('hdlcoder_led_blinking/led_counter/LED', 'IOInterface')

1 Blocks

1-1484

Target Specification
IOInterfaceMapping Target platform interface port mapping for DUT ports, specified as a

character vector. The IOInterfaceMapping block property is ignored for
Inport and Outport blocks that are not DUT ports.

To specify valid IOInterfaceMapping settings, use the HDL Workflow
Advisor:

1 In the HDL Workflow Advisor, in the Set Target > Set Target
Interface step, in the Target platform interface table, in the
Target Platform Interfaces column, use the drop-down list to set the
target platform interface type.

2 In the Bit Range / Address / FPGA Pin column, if you want to
change the default value, enter a target platform interface mapping.

3 Save the model.

The IOInterfaceMapping value is saved as an HDL block property
of the port.

For example, to view the IOInterfaceMapping value, if the full path
to your DUT port is hdlcoder_led_blinking/led_counter/LED,
enter:

hdlget_param('hdlcoder_led_blinking/led_counter/LED',...
 'IOInterfaceMapping')

IOInterfaceOptions Target platform interface port mapping options for DUT ports, specified as
a character vector. The IOInterfaceOptions block property is ignored
for Inport and Outport blocks that are not DUT ports.

To specify valid IOInterfaceOptions settings, use the HDL Workflow
Advisor:

1 In the HDL Workflow Advisor, on the Set Target > Set Target
Interface step, in the Target platform interface table, in the
Target Platform Interfaces column, map the input or output ports to
an AXI4 subordinate interface.

2 In the Interface Options column, if you want to change the default
initial value, click the Options button and enter a value for
RegisterInitialValue.

3 Save the model.

The IOInterfaceOptions value is saved as an HDL block property
of the port.

For example, to view the IOInterfaceOptions value, if the full path
to your DUT port is hdlcoder_led_blinking/led_counter/LED,
enter:

hdlget_param('hdlcoder_led_blinking/led_counter/LED',...
 'IOInterfaceOptions')

 Outport

1-1485

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Inport | Out Bus Element

Topics
“Simplify Subsystem and Model Interfaces with Bus Element Ports”
“Ensure Output Port Is Virtual”
“Specify Data Types Using Data Type Assistant”

1 Blocks

1-1486

Parameter Writer
Write to block parameter or model workspace variable

Libraries:
Simulink / Signal Routing

Description
The Parameter Writer block changes block parameter values by writing to one of the following:

• A parameter of a block that is tunable during simulation
• An instance parameter that belongs to a Model block that references a model
• A masked subsystem parameter
• A model workspace variable

A block with a parameter that can be written by a Parameter Writer block is called a parameter
owner block. For the Parameter Writer block to find the supported parameters of a parameter owner
block, the supported parameters must be enabled.

Use the Parameter Writer block with the Initialize Function, Reinitialize Function, and Reset Function
blocks to respond to events. For example, an event could be reading the value from a hardware
sensor and then updating a block parameter based on the sensor value.

For more information about using the Parameter Writer block, see Initialize and Reset Parameter
Values.

Otherwise, a Parameter Writer block must be in the same task as either:

• The block whose parameter is directly written by the Parameter Writer block, which could be a
built-in block such as a Gain block, a Model block, a masked subsystem block, or a User-Defined
Functions block such as an S-Function block

• The block whose parameter is indirectly written through a model workspace variable

To write to a model workspace variable, mask parameter, or Model block instance parameter with a
Parameter Writer block, the model workspace variable, mask parameter, or Model block instance
parameter must be used by a parameter owner block or C MEX S-function with run-time tunable
parameters.

For a Parameter Writer block in a masked subsystem, the Parameter Writer block and corresponding
parameter owner block must have the same immediate parent masked subsystem.

When a Parameter Writer block writes to an instance parameter with storage class set to Model
default, the code generator uses the default configuration for Model parameter arguments when
generating code for the parameter. See “Specify Instance-Specific Parameter Values for Reusable
Referenced Model” (Simulink Coder).

When you create a library block with a Parameter Writer block, you must also include the
corresponding parameter owner block in the library block.

 Parameter Writer

1-1487

Identify Parameter Owner Blocks

You can determine whether a block is a supported parameter owner block by the value of the
IsParamOwnerBlock block parameter. Use the get_param function with the block name or handle,
blk, and the IsParamOwnerBlock block parameter.

get_param(blk,'IsParamOwnerBlock')

The function returns 'on' if the block is a supported parameter owner block and 'off' otherwise.

A Parameter Writer block and the parameter owner block of the value that the block writes constitute
a set of related blocks. You can select a Parameter Writer block to highlight the related parameter
owner block or vice versa. When a related block is highlighted, blocks in the current model that
contain the related block are also highlighted. For example, an Initialize Function block is highlighted
when it contains a Parameter Writer block that is related to the selected block. The blocks that are
highlighted in the model canvas are also highlighted in the miniature map.

To show a related block in an open diagram or new tab, pause on the ellipsis that appears after

selection. Then, select the Related Blocks button from the action bar. Window focus goes to the
open diagram or new tab that shows the related block.

Limitations
A Parameter Writer block cannot be placed in a Simulink function.

Ports
Input

In — Parameter value
scalar | vector

Parameter value written by the block.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
Validate parameter — Option to validate parameter during normal mode simulation

on (default) | off

Locally enable parameter validation for this block.

When parameter validation is disabled for a Paramer Writer block, normal mode simulation of the
block is faster.

Tips

To globally enable or disable parameter validation for Parameter Writer blocks, use the Parameter
Writer block validation configuration parameter.

1 Blocks

1-1488

Dependencies

To disable parameter validation for this block, the block must not directly or indirectly change the
value of a Model block instance parameter. For example, the block must not change the value of a
model workspace variable or mask parameter that specifies the value of a Model block instance
parameter.
Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: IsParameterValidationOn

Values: 'on' (default) | 'off'

Example: set_param(gcb,'IsParameterValidationOn','off')

Access model workspace parameter — Option to write to model workspace variable instead of
block parameter

off (default) | on

Select this parameter to write to a model workspace variable, as specified by the Model workspace
parameter name parameter.

Clear this parameter to write to a tunable block parameter, model instance parameter, or masked
subsystem parameter, as specified by the Parameter owner block parameter.
Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: AccessWorkspaceVariable

Values: 'off' (default) | 'on'

Example: set_param(gcb,'AccessWorkspaceVariable','on')

Model workspace parameter name — Name of model workspace variable

no default

Specify the name of the model workspace variable whose value this block writes.
Dependencies

To enable this parameter, select the Access model workspace parameter parameter.
Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: WorkspaceVariableName

Values: '' (default) | character vector | string scalar

Example: set_param(gcb,'WorkspaceVariableName','var')

Parameter owner block — Block path of parameter owner block and name of block parameter

no default

 Parameter Writer

1-1489

Specify the block path of the parameter owner block and the name of the parameter whose value this
block writes.

The Parameter Owner Selector Tree provides the writable parameters in a hierarchical tree list.
Expand the nodes on the path to the parameter owner block. Then, select the parameter under the
parameter owner block.

Tips

If the name of a parameter owner block contains a slash (/), the slash appears as two slashes (//) in
the Parameter Writer block parameters. This notation distinguishes the slash in the block name itself
from slashes that separate names at different levels of the model hierarchy.

Dependencies

To enable this parameter, clear the Access model workspace parameter parameter.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.

First, specify the block path of a parameter owner block using the ParameterOwnerBlock
parameter.
Parameter: ParameterOwnerBlock

Values: '' (default) | character vector | string scalar
Data Types: char | string

Example: set_param(gcb,'ParameterOwnerBlock','mymodel/Gain1')

Then, specify the programmatic name of a block parameter of the parameter owner block using the
ParameterName parameter.
Parameter: ParameterName

Values: '' (default) | character vector | string scalar

Example: set_param(gcb,'ParameterName','Gain')

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

1 Blocks

1-1490

Version History
R2023a: Disable parameter validation during normal mode simulation

Optionally, disable parameter validation that occurs during normal mode simulation for Parameter
Writer blocks. When parameter validation is disabled for a Parameter Writer block, normal mode
simulation of the block is faster.

To locally enable or disable parameter validation for a Parameter Writer block, use the Validate
parameter block parameter.

To globally enable or disable parameter validation for Parameter Writer blocks, use the Parameter
Writer block validation configuration parameter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Initialize Function | Reinitialize Function | Reset Function | Terminate Function | Event Listener |
State Reader | State Writer | Model | S-Function | Subsystem

Model Settings
Parameter Writer block validation

Topics
Initialize and Reset Parameter Values
“Parameterize Instances of a Reusable Referenced Model”
“Using Initialize, Reinitialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”
“Initialize, Reinitialize, Reset, and Terminate Function Limitations”

 Parameter Writer

1-1491

Permute Dimensions
Rearrange dimensions of multidimensional array dimensions

Libraries:
Simulink / Math Operations

Description
The Permute Dimensions block reorders the elements of the input signal by permuting its dimensions.
You specify the permutation to be applied to the input signal using the Order parameter.

For example, to transpose a 3-by-5 input signal, specify the permutation vector [2 1] for the Order
parameter. When you do, the block reorders the elements of the input signal and outputs a 5-by-3
matrix.

You can use an array of buses as an input signal to a Permute Dimensions block. For details about
defining and using an array of buses, see “Group Nonvirtual Buses in Arrays of Buses”.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

This port accepts scalar, vector, matrix, and N-dimensional signals of any data type that Simulink
supports, including fixed-point, enumerated, and nonvirtual bus data types.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_2 — Permutation of input signal
scalar | vector | matrix | N-D array

The block outputs the permutation of the input signal, according to the value of the Order parameter.
The output has the same data type as the input.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
Order — Permutation vector

1 Blocks

1-1492

[2,1] (default) | N-element vector, where N is the number of dimensions of the input signal

Specify the permutation order to apply to the dimensions of the input signal. The value of this
parameter must be an N-element vector where N is the number of dimensions of the input signal. The
elements of the permutation vector must be a rearrangement of the values from 1 to N.

For example, the permutation vector [2 1] applied to a 5-by-3 input signal results in a 3-by-5 output
signal, in other words, the transpose of the input signal.

Programmatic Use
Block Parameter: Order
Type: character vector
Value: N-element vector
Default: '[2 1]'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2007a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Math Function | permute

Topics
“Multidimensional Arrays”

 Permute Dimensions

1-1493

Permute Matrix
Reorder matrix rows or columns

Libraries:
Simulink / Matrix Operations

Description
The Permute Matrix block reorders the rows or columns of an M-by-N input matrix A as specified by
indexing input P.

Ports
Input

A — Input matrix
scalar | vector | matrix

Input matrix, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

P — Index matrix
scalar | vector

Index matrix, specified as a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated

Output

Port_1 — Output signal
vector | matrix

Output signal, specified as a vector or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Parameters
Permute — Permute method

1 Blocks

1-1494

Columns (default) | Rows

Method of constructing the output matrix by permuting rows or columns of the input.

When the Permute parameter is set to:

• Rows –– The block uses the rows of A to create a matrix that has the same column dimension.
Input P is a length-L vector whose elements determine where each row from A must be placed in
the L-by-N output matrix.
y = [A(P(1),:) ; A(P(2),:) ; A(P(3),:) ; ... ; A(P(end),:)] % Equivalent MATLAB code

For row permutation, the block treats the length-M unoriented vector input at the port A as an M-
by-1 matrix.

• Columns –– The block uses the columns of A to create a matrix that has the same row dimension.
Input P is a length-L vector whose elements determine where each column from A must be placed
in the M-by-L output matrix.
% Equivalent MATLAB code y = [A(:,P(1)) A(:,P(2)) A(:,P(3)) ... A(:,P(end))]

For column permutation, the block treats the length-N unoriented vector input at port A as a 1-by-
N matrix.

Programmatic Use
Block Parameter: mode
Type: character vector, string
Values:' Columns' | 'Rows'
Default: ' Columns'

Index mode — Index mode

One-based (default) | Zero-based

When set to One-based, a value of 1 in the permutation vector P refers to the first row or column of
the input matrix A. When set to Zero-based, a value of 0 in P refers to the first row or column of A.

Programmatic Use
Block Parameter: ZeroOneIdxMode
Type: character vector, string
Values:' Zero-based' | 'One-based'
Default: 'One-based'

Invalid permutation index — Response to an invalid index value

Clip index (default) | Clip and warn | Generate error

Response to an invalid index value. When an index value in input P references a nonexistent row or
column of matrix A, the block reacts as specified in this parameter. These options are available:

• Clip index –– Clip the index to the nearest valid value (1 or M for row permutation and 1 or N
for column permutation) and do not issue an alert. Example: For a 3-by-7 input matrix, a column
index of 9 is clipped to 7 and a row index of -2 is clipped to 1.

• Clip and warn –– Display a warning message in the MATLAB Command Window and clip the
index as described in the preceding bullet.

• Generate error –– Display an error dialog box and terminate the simulation.

 Permute Matrix

1-1495

Tunable: Yes

Programmatic Use
Block Parameter: errmode
Type: character vector, string
Values: 'Clip index' | 'Clip and warn' | 'Generate error'
Default: 'Clip index'

Error when length of P is not equal to Permute dimension size — Error message for P length

off (default) | on

Option to display an error dialog box and terminate the simulation when the length of the
permutation vector P is not equal to the number of rows or columns of the input matrix A.

You can choose to open an error dialog box and terminate the simulation by setting this parameter to
on.

Programmatic Use
Block Parameter: checkDims
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

R2021b: Create Permute Matrix Block Moved to Simulink Matrix Operations Library
Behavior changed in R2021b

The Permute Matrix block has been moved from the DSP System Toolbox > Math Functions >
Matrices and Linear Algebra > Matrix Operations library to the Simulink > Matrix
Operationslibrary. All existing models continue to work.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on the memcpy or memset function (string.h) under certain conditions.

1 Blocks

1-1496

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Submatrix | Variable Selector (DSP System Toolbox)

Functions
permute

Topics
“Reorder Channels in Multichannel Signals” (DSP System Toolbox)

 Permute Matrix

1-1497

PID Controller
Continuous-time or discrete-time PID controller

Libraries:
Simulink / Continuous

Description
The PID Controller block implements a PID controller (PID, PI, PD, P only, or I only). The block is
identical to the Discrete PID Controller block with the Time domain parameter set to Continuous-
time.

The block output is a weighted sum of the input signal, the integral of the input signal, and the
derivative of the input signal. The weights are the proportional, integral, and derivative gain
parameters. A first-order pole filters the derivative action.

The block supports several controller types and structures. Configurable options in the block include:

• Controller type (PID, PI, PD, P only, or I only) — See the Controller parameter.
• Controller form (Parallel or Ideal) — See the Form parameter.
• Time domain (continuous or discrete) — See the Time domain parameter.
• Initial conditions and reset trigger — See the Source and External reset parameters.
• Output saturation limits and built-in anti-windup mechanism — See the Limit output parameter.
• Signal tracking for bumpless control transfer and multiloop control — See the Enable tracking

mode parameter.

As you change these options, the internal structure of the block changes by activating different
variant subsystems. (See “Implement Variations in Separate Hierarchy Using Variant Subsystems”.)
To examine the internal structure of the block and its variant subsystems, right-click the block and
select Mask > Look Under Mask.

Control Configuration

In one common implementation, the PID Controller block operates in the feedforward path of a
feedback loop.

1 Blocks

1-1498

The input of the block is typically an error signal, which is the difference between a reference signal
and the system output. For a two-input block that permits setpoint weighting, see PID Controller
(2DOF).

PID Gain Tuning

The PID controller coefficients are tunable either manually or automatically. Automatic tuning
requires Simulink Control Design software. For more information about automatic tuning, see the
Select tuning method parameter.

Ports
Input

Port_1(u) — Error signal input
scalar | vector

Difference between a reference signal and the output of the system under control, as shown.

When the error signal is a vector, the block acts separately on each signal, vectorizing the PID
coefficients and producing a vector output signal of the same dimensions. You can specify the PID
coefficients and some other parameters as vectors of the same dimensions as the input signal. Doing
so is equivalent to specifying a separate PID controller for each entry in the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

P — Proportional gain
scalar | vector

Proportional gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

Dependencies

To enable this port, set Controller parameters Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

 PID Controller

1-1499

I — Integral gain
scalar | vector

Integral gain, provided from a source external to the block. External gain input is useful, for example,
when you want to map a different PID parameterization to the PID gains of the block. You can also
use external gain input to implement gain-scheduled PID control. In gain-scheduled control, you
determine the PID coefficients by logic or other calculation in your model and feed them to the block.

When you supply gains externally, time variations in the integral gain are also integrated. This result
occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has integral action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

D — Derivative gain
scalar | vector

Derivative gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

When you supply gains externally, time variations in the derivative gain are also differentiated. This
result occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has derivative action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

N — Filter coefficient
scalar | vector

Derivative filter coefficient, provided from a source external to the block. External coefficient input is
useful, for example, when you want to map a different PID parameterization to the PID gains of the
block. You can also use the external input to implement gain-scheduled PID control. In gain-scheduled
control, you determine the PID coefficients by logic or other calculation in your model and feed them
to the block.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has a filtered derivative.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

1 Blocks

1-1500

Reset — External reset trigger
scalar

Trigger to reset the integrator and filter to their initial conditions. The value of the External reset
parameter determines whether reset occurs on a rising signal, a falling signal, or a level signal. The
port icon indicates the selected trigger type. For example, the following illustration shows a
continuous-time PID block with External reset set to rising.

When the trigger occurs, the block resets the integrator and filter to the initial conditions specified by
the Integrator Initial condition and Filter Initial condition parameters or the I0 and D0 ports.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA) software
standard, your model must use Boolean signals to drive the external reset ports of the PID controller
block.

Dependencies

To enable this port, set External reset to any value other than none.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | Boolean

I0 — Integrator initial condition
scalar | vector

Integrator initial condition, provided from a source external to the block.
Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has integral action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

D0 — Filter initial condition
scalar | vector

Initial condition of the derivative filter, provided from a source external to the block.
Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has derivative action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

up — Output saturation upper limit
scalar | vector

 PID Controller

1-1501

Upper limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions exceeds the value provided at this port, the block
output is held at that value.

Dependencies

To enable this port, select Limit output and set the output saturation Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

lo — Output saturation lower limit
scalar | vector

Lower limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions goes below the value provided at this port, the block
output is held at that value.

Dependencies

To enable this port, select Limit output and set the output saturation Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

TR — Tracking signal
scalar | vector

Signal for controller output to track. When signal tracking is active, the difference between the
tracking signal and the block output is fed back to the integrator input. Signal tracking is useful for
implementing bumpless control transfer in systems that switch between two controllers. It can also
be useful to prevent block windup in multiloop control systems. For more information, see the Enable
tracking mode parameter.

Dependencies

To enable this port, select the Enable tracking mode parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

TDTI — Discrete-integrator time
scalar

Discrete-integrator time, provided as a scalar to the block. You can use your own value of discrete-
time integrator sample time that defines the rate at which the block is going to be run either in
Simulink or on external hardware. The value of the discrete-time integrator time should match the
average sampling rate of the external interrupts, when the block is used inside a conditionally-
executed subsystem.

In other words, you can specify Ts for any of the integrator methods below such that the value
matches the average sampling rate of the external interrupts. In discrete time, the derivative term of
the controller transfer function is:

1 Blocks

1-1502

D N
1 + Nα(z) ,

where α(z) depends on the integrator method you specify with this parameter.

Forward Euler

α(z) =
Ts

z − 1 .
Backward Euler

α(z) =
Tsz

z − 1 .

 PID Controller

1-1503

Trapezoidal

α(z) =
Ts
2

z + 1
z − 1 .

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page. For more information on conditionally executed subsystems, see “Conditionally
Executed Subsystems Overview”.
Dependencies

To enable this port, set Time Domain to Discrete-time and select the PID Controller is inside a
conditionally executed subsystem option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output

Port_1(y) — Controller output
scalar | vector

Controller output, generally based on a sum of the input signal, the integral of the input signal, and
the derivative of the input signal, weighted by the proportional, integral, and derivative gain
parameters. A first-order pole filters the derivative action. Which terms are present in the controller
signal depends on what you select for the Controller parameter. The base controller transfer
function for the current settings is displayed in the Compensator formula section of the block
parameters and under the mask. Other parameters modify the block output, such as saturation limits
specified by the Upper Limit and Lower Limit saturation parameters.

The controller output is a vector signal when any of the inputs is a vector signal. In that case, the
block acts as N independent PID controllers, where N is the number of signals in the input vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Controller — Controller type

PID (default) | PI | PD | P | I

Specify which of the proportional, integral, and derivative terms are in the controller.

PID
Proportional, integral, and derivative action.

1 Blocks

1-1504

PI
Proportional and integral action only.

PD
Proportional and derivative action only.

P
Proportional action only.

I
Integral action only.

Tip The controller transfer function for the current setting is displayed in the Compensator
formula section of the block parameters and under the mask.

Programmatic Use
Block Parameter: Controller
Type: string, character vector
Values: "PID", "PI", "PD", "P", "I"
Default: "PID"

Form — Controller structure

Parallel (default) | Ideal

Specify whether the controller structure is parallel or ideal.

Parallel
The controller output is the sum of the proportional, integral, and derivative actions, weighted
independently by P, I, and D, respectively. For example, for a continuous-time parallel-form PID
controller, the transfer function is:

Cpar(s) = P + I 1
s + D Ns

s + N .

For a discrete-time parallel-form controller, the transfer function is:

Cpar(z) = P + Iα(z) + D N
1 + Nβ(z) ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

Ideal
The proportional gain P acts on the sum of all actions. For example, for a continuous-time ideal-
form PID controller, the transfer function is:

Cid(s) = P 1 + I 1
s + D Ns

s + N .

 PID Controller

1-1505

For a discrete-time ideal-form controller, the transfer function is:

Cid(z) = P 1 + Iα(z) + D N
1 + Nβ(z) ,

where the Integrator method and Filter method parameters determine a(z) and b(z),
respectively.

Tip The controller transfer function for the current settings is displayed in the Compensator
formula section of the block parameters and under the mask.

Programmatic Use
Block Parameter: Controller
Type: string, character vector
Values: "Parallel", "Ideal"
Default: "Parallel"

Time domain — Specify continuous-time or discrete-time controller

Continuous-time (default) | Discrete-time

When you select Discrete-time, it is recommended that you specify an explicit sample time for the
block. See the Sample time (-1 for inherited) parameter. Selecting Discrete-time also enables
the Integrator method, and Filter method parameters.

When the PID Controller block is in a model with synchronous state control (see the State Control
block), you cannot select Continuous-time.

Note The PID Controller and Discrete PID Controller blocks are identical except for the default value
of this parameter.

Programmatic Use
Block Parameter: TimeDomain
Type: string, character vector
Values: "Continuous-time", "Discrete-time"
Default: "Continuous-time"

PID Controller is inside a conditionally executed subsystem — Enable the discrete-integrator
time port
off (default) | on

For discrete-time PID controllers, enable the discrete-time integrator port to use your own value of
discrete-time integrator sample time. To ensure proper integration, use the TDTI port to provide a
scalar value of Δt for accurate discrete-time integration.

Dependencies

To enable this parameter, set Time Domain to Discrete-time.

Programmatic Use
Block Parameter: UseExternalTs
Type: string, character vector

1 Blocks

1-1506

Values: "on", "off"
Default: "off"

Sample time (-1 for inherited) — Discrete interval between samples

–1 (default) | positive scalar

Specify a sample time by entering a positive scalar value, such as 0.1. The default discrete sample
time of –1 means that the block inherits its sample time from upstream blocks. However, it is
recommended that you set the controller sample time explicitly, especially if you expect the sample
time of upstream blocks to change. The effect of the controller coefficients P, I, D, and N depend on
the sample time. Thus, for a given set of coefficient values, changing the sample time changes the
performance of the controller.

See “Specify Sample Time” for more information.

To implement a continuous-time controller, set Time domain to Continuous-time.

Tip If you want to run the block with an externally specified or variable sample time, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time.

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use
Block Parameter: SampleTime
Type: scalar
Values: -1, positive scalar
Default: -1

Integrator method — Method for computing integral in discrete-time controller

Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the integral term of the controller transfer function is Iα(z), where α(z) depends on
the integrator method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

 PID Controller

1-1507

α(z) =
Ts

z − 1 .
This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

Backward Euler
Backward rectangular (right-hand) approximation,

α(z) =
Tsz

z − 1 .
An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal
Bilinear approximation,

1 Blocks

1-1508

α(z) =
Ts
2

z + 1
z − 1 .

An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,
the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

Note For the BackwardEuler or Trapezoidal methods, you cannot generate HDL code for the
block if either:

• Limit output is selected and Anti-Windup Method is anything other than none.
• Enable tracking mode is selected.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

Dependencies

To enable this parameter, set Time Domain to Discrete-time and set Controller to a controller
type with integral action.

Programmatic Use
Block Parameter: IntegratorMethod
Type: string, character vector
Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Filter method — Method for computing derivative in discrete-time controller

Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the derivative term of the controller transfer function is:

 PID Controller

1-1509

D N
1 + Nα(z) ,

where α(z) depends on the filter method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

α(z) =
Ts

z − 1 .
This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

Backward Euler
Backward rectangular (right-hand) approximation,

1 Blocks

1-1510

α(z) =
Tsz

z − 1 .
An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal
Bilinear approximation,

α(z) =
Ts
2

z + 1
z − 1 .

An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,
the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

Dependencies

To enable this parameter, set Time Domain to Discrete-time and enable Use filtered derivative.

Programmatic Use
Block Parameter: FilterMethod
Type: string, character vector

 PID Controller

1-1511

Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Main

Source — Source for controller gains and filter coefficient

internal (default) | external

Enabling external inputs for the parameters allows you to compute PID gains and filter coefficients
externally to the block and provide them to the block as signal inputs.

internal
Specify the controller gains and filter coefficient using the block parameters P, I, D, and N.

external
Specify the PID gains and filter coefficient externally using block inputs. An additional input port
appears on the block for each parameter that is required for the current controller type.

External gain input is useful, for example, when you want to map a different PID parameterization
to the PID gains of the block. You can also use external gain input to implement gain-scheduled
PID control. In gain-scheduled control, you determine the PID gains by logic or other calculation
in your model and feed them to the block.

When you supply gains externally, time variations in the integral and derivative gain values are
integrated and differentiated, respectively. This result occurs because in both continuous time
and discrete time, the gains are applied to the signal before integration or differentiation. For
example, for a continuous-time PID controller with external inputs, the integrator term is
implemented as shown in the following illustration.

Within the block, the input signal u is multiplied by the externally supplied integrator gain, I,
before integration. This implementation yields:

yi =∫uI dt .

Thus, the integrator gain is included in the integral. Similarly, in the derivative term of the block,
multiplication by the derivative gain precedes the differentiation, which causes the derivative
gain D to be differentiated.

Programmatic Use
Block Parameter: ControllerParametersSource
Type: string, character vector
Values: "internal", "external"
Default: "internal"

Proportional (P) — Proportional gain

1 (default) | scalar | vector

1 Blocks

1-1512

Specify a finite, real gain value for the proportional gain. When Controller form is:

• Parallel — Proportional action is independent of the integral and derivative actions. For
instance, for a continuous-time parallel PID controller, the transfer function is:

Cpar(s) = P + I 1
s + D Ns

s + N .

For a discrete-time parallel-form controller, the transfer function is:

Cpar(z) = P + Iα(z) + D N
1 + Nβ(z) ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

• Ideal — The proportional gain multiples the integral and derivative terms. For instance, for a
continuous-time ideal PID controller, the transfer function is:

Cid(s) = P 1 + I 1
s + D Ns

s + N .
For a discrete-time ideal-form controller, the transfer function is:

Cid(z) = P 1 + Iα(z) + D N
1 + Nβ(z) ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

Tunable: Yes
Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to PID, PD, PI, or P.
Programmatic Use
Block Parameter: P
Type: scalar, vector
Default: 1

Integral (I) — Integral gain

1 (default) | scalar | vector

Specify a finite, real gain value for the integral gain.

Tunable: Yes
Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to a type that has integral action.

 PID Controller

1-1513

Programmatic Use
Block Parameter: I
Type: scalar, vector
Default: 1

Derivative (D) — Derivative gain

0 (default) | scalar | vector

Specify a finite, real gain value for the derivative gain.

Tunable: Yes
Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to PID or PD.
Programmatic Use
Block Parameter: D
Type: scalar, vector
Default: 0

Use filtered derivative — Apply filter to derivative term

on (default) | off

For discrete-time PID controllers only, clear this option to replace the filtered derivative with an
unfiltered discrete-time differentiator. When you do so, the derivative term of the controller transfer
function becomes:

Dz − 1
zTs

.

1 Blocks

1-1514

For continuous-time PID controllers, the derivative term is always filtered.

Dependencies

To enable this parameter, set Time domain to Discrete-time, and set Controller to a type that
has derivative action.

Programmatic Use
Block Parameter: UseFilter
Type: string, character vector
Values: "on", "off"
Default: "on"

Filter coefficient (N) — Derivative filter coefficient

100 (default) | scalar | vector

Specify a finite, real gain value for the filter coefficient. The filter coefficient determines the pole
location of the filter in the derivative action of the block. The location of the filter pole depends on the
Time domain parameter.

• When Time domain is Continuous-time, the pole location is s = -N.
• When Time domain is Discrete-time, the pole location depends on the Filter method

parameter.

Filter Method Location of Filter Pole
Forward Euler zpole = 1− NTs

Backward Euler zpole = 1
1 + NTs

Trapezoidal
zpole =

1− NTs/2
1 + NTs/2

The block does not support N = Inf (ideal unfiltered derivative). When the Time domain is
Discrete-time, you can clear Use filtered derivative to remove the derivative filter.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to PID or PD.

Programmatic Use
Block Parameter: N
Type: scalar, vector
Default: 100

Select tuning method — Tool for automatic tuning of controller coefficients
Transfer Function Based (PID Tuner App) (default) | Frequency Response Based

If you have Simulink Control Design software, you can automatically tune the PID coefficients. To do
so, use this parameter to select a tuning tool, and click Tune.

 PID Controller

1-1515

Transfer Function Based (PID Tuner App)
Use PID Tuner, which lets you interactively tune PID coefficients while examining relevant
system responses to validate performance. By default, PID Tuner works with a linearization of
your plant model. For models that cannot be linearized, you can tune PID coefficients against a
plant model estimated from simulated or measured response data. For more information, see
“Introduction to Model-Based PID Tuning in Simulink” (Simulink Control Design).

Frequency Response Based
Use Frequency Response Based PID Tuner, which tunes PID controller coefficients based on
frequency-response estimation data obtained by simulation. This tuning approach is especially
useful for plants that are not linearizable or that linearize to zero. For more information, see
“Design PID Controller from Plant Frequency-Response Data” (Simulink Control Design).

Both of these tuning methods assume a single-loop control configuration. Simulink Control Design
software includes other tuning approaches that suit more complex configurations. For information
about other ways to tune a PID Controller block, see “Choose a Control Design Approach” (Simulink
Control Design).

Enable zero-crossing detection — Detect zero crossings on reset and on entering or leaving a
saturation state

on (default) | off

Zero-crossing detection can accurately locate signal discontinuities without resorting to excessively
small time steps that can lead to lengthy simulation times. If you select Limit output or activate
External reset in your PID Controller block, activating zero-crossing detection can reduce
computation time in your simulation. Selecting this parameter activates zero-crossing detection:

• At initial-state reset
• When entering an upper or lower saturation state
• When leaving an upper or lower saturation state

For more information about zero-crossing detection, see “Zero-Crossing Detection”.
Programmatic Use
Block Parameter: ZeroCross
Type: string, character vector
Values: "on", "off"
Default: "on"

Initialization

Source — Source for integrator and derivative initial conditions

internal (default) | external

Simulink uses initial conditions to initialize the integrator and derivative-filter (or the unfiltered
derivative) output at the start of a simulation or at a specified trigger event. (See the External reset
parameter.) These initial conditions determine the initial block output. Use this parameter to select
how to supply the initial condition values to the block.

internal
Specify the initial conditions using the Integrator Initial condition and Filter Initial
condition parameters. If Use filtered derivative is not selected, use the Differentiator

1 Blocks

1-1516

parameter to specify the initial condition for the unfiltered differentiator instead of a filter initial
condition.

external
Specify the initial conditions externally using block inputs. Additional input ports Io and Do
appear on the block. If Use filtered derivative is not selected, supply the initial condition for the
unfiltered differentiator at Do instead of a filter initial condition.

Programmatic Use
Block Parameter: InitialConditionSource
Type: string, character vector
Values: "internal", "external"
Default: "internal"

Integrator — Integrator initial condition

0 (default) | scalar | vector

Simulink uses the integrator initial condition to initialize the integrator at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The integrator initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and set Controller to a
type that has integral action.

Programmatic Use
Block Parameter: InitialConditionForIntegrator
Type: scalar, vector
Default: 0

Filter — Filter initial condition

0 (default) | scalar | vector

Simulink uses the filter initial condition to initialize the derivative filter at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The filter initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and use a controller that
has a derivative filter.

Programmatic Use
Block Parameter: InitialConditionForFilter
Type: scalar, vector
Default: 0

Differentiator — Initial condition for unfiltered derivative
0 (default) | scalar | vector

 PID Controller

1-1517

When you use an unfiltered derivative, Simulink uses this parameter to initialize the differentiator at
the start of a simulation or at a specified trigger event (see External reset). The integrator initial
condition and the derivative initial condition determine the initial output of the PID controller block.

The derivative initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, set Time domain to Discrete-time, clear the Use filtered derivative
check box, and in the Initialization tab, set Source to internal.

Programmatic Use
Block Parameter: DifferentiatorICPrevScaledInput
Type: scalar, vector
Default: 0

Initial condition setting — Location at which initial condition is applied
Auto (default) | Output

Use this parameter to specify whether to apply the Integrator Initial condition and Filter Initial
condition parameter to the corresponding block state or output. You can change this parameter at
the command line only, using set_param to set the InitialConditionSetting parameter of the
block.

Auto
Use this option in all situations except when the block is in a triggered subsystem or a function-
call subsystem and simplified initialization mode is enabled.

Output
Use this option when the block is in a triggered subsystem or a function-call subsystem and
simplified initialization mode is enabled.

For more information about the Initial condition setting parameter, see the Discrete-Time
Integrator block.

This parameter is only accessible through programmatic use.

Programmatic Use
Block Parameter: InitialConditionSetting
Type: string, character vector
Values: "Auto", "Output"
Default: "Auto"

External reset — Trigger for resetting integrator and filter values

none (default) | rising | falling | either | level

Specify the trigger condition that causes the block to reset the integrator and filter to initial
conditions. (If Use filtered derivative is not selected, the trigger resets the integrator and
differentiator to initial conditions.) Selecting any option other than none enables the Reset port on
the block for the external reset signal.

none
The integrator and filter (or differentiator) outputs are set to initial conditions at the beginning of
simulation, and are not reset during simulation.

1 Blocks

1-1518

rising
Reset the outputs when the reset signal has a rising edge.

falling
Reset the outputs when the reset signal has a falling edge.

either
Reset the outputs when the reset signal either rises or falls.

level
Reset the outputs when the reset signal either:

• Is nonzero at the current time step
• Changes from nonzero at the previous time step to zero at the current time step

This option holds the outputs to the initial conditions while the reset signal is nonzero.

Dependencies

To enable this parameter, set Controller to a type that has derivative or integral action.
Programmatic Use
Block Parameter: ExternalReset
Type: string, character vector
Values: "none", "rising", "falling", "either","level"
Default: "none"

Ignore reset when linearizing — Force linearization to ignore reset

off (default) | on

Select to force Simulink and Simulink Control Design linearization commands to ignore any reset
mechanism specified in the External reset parameter. Ignoring reset states allows you to linearize a
model around an operating point even if that operating point causes the block to reset.
Programmatic Use
Block Parameter: IgnoreLimit
Type: string, character vector
Values: "off", "on"
Default: "off"

Enable tracking mode — Activate signal tracking

off (default) | on

Signal tracking lets the block output follow a tracking signal that you provide at the TR port. When
signal tracking is active, the difference between the tracking signal and the block output is fed back
to the integrator input with a gain Kt, specified by the Tracking gain (Kt) parameter. Signal
tracking has several applications, including bumpless control transfer and avoiding windup in
multiloop control structures.
Bumpless control transfer

Use signal tracking to achieve bumpless control transfer in systems that switch between two
controllers. Suppose you want to transfer control between a PID controller and another controller. To
do so, connecting the controller output to the TR input as shown in the following illustration.

 PID Controller

1-1519

For more information, see “Bumpless Control Transfer” on page 12-104.

Multiloop control

Use signal tracking to prevent block windup in multiloop control approaches, as in the following
model.

The Inner Loop subsystem contains the blocks shown in the following diagram.

Because the PID controller tracks the output of the inner loop, its output never exceeds the saturated
inner-loop output. For more details, see “Prevent Block Windup in Multiloop Control” on page 12-
103.

Dependencies

To enable this parameter, set Controller to a type that has integral action.

Programmatic Use
Block Parameter: TrackingMode
Type: string, character vector

1 Blocks

1-1520

Values: "off", "on"
Default: "off"

Tracking coefficient (Kt) — Gain of signal-tracking feedback loop

1 (default) | scalar

When you select Enable tracking mode, the difference between the signal TR and the block output
is fed back to the integrator input with a gain Kt. Use this parameter to specify the gain in that
feedback loop.

Dependencies

To enable this parameter, select Enable tracking mode.

Programmatic Use
Block Parameter: Kt
Type: scalar
Default: 1

Saturation

Output saturation

Limit Output — Limit block output to specified saturation values

off (default) | on

Activating this option limits the block output, so that you do not need a separate Saturation on page
1-1896 block after the controller. It also allows you to activate the anti-windup mechanism built into
the block (see the Anti-windup method parameter). Specify the output saturation limits using the
Lower limit and Upper limit parameters. You can also specify the saturation limits externally as
block input ports.

Programmatic Use
Block Parameter: LimitOutput
Type: string, character vector
Values: "off", "on"
Default: "off"

Source — Source for output saturation limits

internal (default) | external

Use this parameter to specify how to supply the upper and lower saturation limits of the block output.

internal
Specify the output saturation limits using the Upper limit and Lower limit parameters.

external
Specify the output saturation limits externally using block input ports. The additional input ports
up and lo appear on the block. You can use the input ports to implement the upper and lower
output saturation limits determined by logic or other calculations in the Simulink model and
passed to the block.

 PID Controller

1-1521

Programmatic Use
Block Parameter: SatLimitsSource
Type: string, character vector
Values: "internal", "external"
Default: "internal"

Upper limit — Upper saturation limit for block output

Inf (default) | scalar

Specify the upper limit for the block output. The block output is held at the Upper saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions exceeds that value.

Dependencies

To enable this parameter, select Limit output.
Programmatic Use
Block Parameter: UpperSaturationLimit
Type: scalar
Default: Inf

Lower limit — Lower saturation limit for block output

-Inf (default) | scalar

Specify the lower limit for the block output. The block output is held at the Lower saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions goes below that
value.

Dependencies

To enable this parameter, select Limit output.
Programmatic Use
Block Parameter: LowerSaturationLimit
Type: scalar
Default: -Inf

Ignore saturation when linearizing — Force linearization to ignore output limits

off (default) | on

Force Simulink and Simulink Control Design linearization commands to ignore block output limits
specified in the Upper limit and Lower limit parameters. Ignoring output limits allows you to
linearize a model around an operating point even if that operating point causes the block to exceed
the output limits.

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use
Block Parameter: LinearizeAsGain
Type: string, character vector
Values: "off", "on"

1 Blocks

1-1522

Default: "off"

Anti-windup method — Integrator anti-windup method

none (default) | back-calculation | clamping

When you select Limit output and the weighted sum of the controller components exceeds the
specified output limits, the block output holds at the specified limit. However, the integrator output
can continue to grow (integrator windup), increasing the difference between the block output and the
sum of the block components. In other words, the internal signals in the block can be unbounded
even if the output appears bounded by saturation limits. Without a mechanism to prevent integrator
windup, two results are possible:

• If the sign of the input signal never changes, the integrator continues to integrate until it
overflows. The overflow value is the maximum or minimum value for the data type of the
integrator output.

• If the sign of the input signal changes once the weighted sum has grown beyond the output limits,
it can take a long time to unwind the integrator and return the weighted sum within the block
saturation limit.

In either case, controller performance can suffer. To combat the effects of windup without an anti-
windup mechanism, it may be necessary to detune the controller (for example, by reducing the
controller gains), resulting in a sluggish controller. To avoid this problem, activate an anti-windup
mechanism using this parameter.

none
Do not use an anti-windup mechanism.

back-calculation
Unwind the integrator when the block output saturates by feeding back to the integrator the
difference between the saturated and unsaturated control signal. The following diagram
represents the back-calculation feedback circuit for a continuous-time controller. To see the
actual feedback circuit for your controller configuration, right-click on the block and select Mask
> Look Under Mask.

 PID Controller

1-1523

Use the Back-calculation coefficient (Kb) parameter to specify the gain of the anti-windup
feedback circuit. It is usually satisfactory to set Kb = I, or for controllers with derivative action,
Kb = sqrt(I*D). Back-calculation can be effective for plants with relatively large dead time [1].

clamping
Integration stops when the sum of the block components exceeds the output limits and the
integrator output and block input have the same sign. Integration resumes when the sum of the
block components exceeds the output limits and the integrator output and block input have
opposite sign. Clamping is sometimes referred to as conditional integration.

Clamping can be useful for plants with relatively small dead times, but can yield a poor transient
response for large dead times [1].

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use
Block Parameter: AntiWindupMode
Type: string, character vector
Values: "none", "back-calculation","clamping"
Default: "none"

Back-calculation coefficient (Kb) — Gain coefficient of anti-windup feedback loop

1 (default) | scalar

The back-calculation anti-windup method unwinds the integrator when the block output
saturates. It does so by feeding back to the integrator the difference between the saturated and
unsaturated control signal. Use the Back-calculation coefficient (Kb) parameter to specify the
gain of the anti-windup feedback circuit. For more information, see the Anti-windup method
parameter.

Dependencies

To enable this parameter, select the Limit output parameter, and set the Anti-windup method
parameter to back-calculation.

Programmatic Use
Block Parameter: Kb
Type: scalar
Default: 1

Integrator saturation

Limit Output — Limit integrator output to specified saturation limits

off (default) | on

Enable this parameter to limit the integrator output to be within a specified range. When the
integrator output reaches the limits, the integral action turns off to prevent integral windup. Specify
the saturation limits using the Lower limit and Upper limit parameters.

Dependencies

To enable this parameter, set Controller to a controller type that has integral action.

1 Blocks

1-1524

Programmatic Use
Block Parameter: LimitIntegratorOutput
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper limit — Upper saturation limit for integrator

Inf (default) | scalar

Specify the upper limit for the integrator output. The integrator output is held at this value whenever
it would otherwise exceed this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.
Programmatic Use
Block Parameter: UpperIntegratorSaturationLimit
Type: scalar
Default: Inf

Lower limit — Lower saturation limit for integrator

-Inf (default) | scalar

Specify the lower limit for the integrator output. The integrator output is held at this value whenever
it would otherwise go below this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.
Programmatic Use
Block Parameter: LowerIntegratorSaturationLimit
Type: scalar
Default: -Inf

Data Types

The parameters in this tab are primarily of use in fixed-point code generation using Fixed-Point
Designer. They define how numeric quantities associated with the block are stored and processed
when you generate code.

If you need to configure data types for fixed-point code generation, click Open Fixed-Point Tool and
use that tool to configure the rest of the parameters in the tab. For information about using Fixed-
Point Tool, see “Autoscaling Data Objects Using the Fixed-Point Tool” (Fixed-Point Designer).

After you use Fixed-Point Tool, you can use the parameters in this tab to make adjustments to fixed-
point data-type settings if necessary. For each quantity associated with the block, you can specify:

• Floating-point or fixed-point data type, including whether the data type is inherited from upstream
values in the block.

• The minimum and maximum values for the quantity, which determine how the quantity is scaled
for fixed-point representation.

 PID Controller

1-1525

For assistance in selecting appropriate values, click to open the Data Type Assistant for the
corresponding quantity. For more information, see “Specify Data Types Using Data Type Assistant”.

The specific quantities listed in the Data Types tab vary depending on how you configure the PID
controller block. In general, you can configure data types for the following types of quantities:

• Product output — Stores the result of a multiplication carried out under the block mask. For
example, P product output stores the output of the gain block that multiplies the block input
with the proportional gain P.

• Parameter — Stores the value of a numeric block parameter, such as P, I, or D.
• Block output — Stores the output of a block that resides under the PID controller block mask. For

example, use Integrator output to specify the data type of the output of the block called
Integrator. This block resides under the mask in the Integrator subsystem, and computes
integrator term of the controller action.

• Accumulator — Stores values associated with a sum block. For example, SumI2 Accumulator
sets the data type of the accumulator associated with the sum block SumI2. This block resides
under the mask in the Back Calculation subsystem of the Anti-Windup subsystem.

In general, you can find the block associated with any listed parameter by looking under the PID
Controller block mask and examining its subsystems. You can also use the Model Explorer to search
under the mask for the listed parameter name, such as SumI2. (See Model Explorer.)

Matching Input and Internal Data Types

1 Blocks

1-1526

By default, all data types in the block are set to Inherit: Inherit via internal rule. With
this setting, Simulink chooses data types to balance numerical accuracy, performance, and generated
code size, while accounting for the properties of the embedded target hardware.

Under some conditions, incompatibility can occur between data types within the block. For instance,
in continuous time, the Integrator block under the mask can accept only signals of type double. If
the block input signal is a type that cannot be converted to double, such as uint16, the internal
rules for type inheritance generate an error when you generate code.

To avoid such errors, you can use the Data Types settings to force a data type conversion. For
instance, you can explicitly set P product output, I product output, and D product output to
double, ensuring that the signals reaching the continuous-time integrators are of type double.

In general, it is not recommended to use the block in continuous time for code generation
applications. However, similar data type errors can occur in discrete time, if you explicitly set some
values to data types that are incompatible with downstream signal constraints within the block. In
such cases, use the Data Types settings to ensure that all data types are internally compatible.

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.
Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type can

represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

• Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

 PID Controller

1-1527

• Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

• In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

The parameters in this tab are primarily of use in code generation.

State name (e.g., 'position') — Name for continuous-time filter and integrator states
'' (default) | character vector

Assign a unique name to the state associated with the integrator or the filter, for continuous-time PID
controllers. (For information about state names in a discrete-time PID controller, see the State name
parameter.) The state name is used, for example:

• For the corresponding variable in generated code
• As part of the storage name when logging states during simulation
• For the corresponding state in a linear model obtain by linearizing the block

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

Dependencies

To enable this parameter, set Time domain to Continuous-time.

1 Blocks

1-1528

Programmatic Use
Parameter: IntegratorContinuousStateAttributes, FilterContinuousStateAttributes
Type: character vector
Default: ''

State name — Names for discrete-time filter and integrator states
empty string (default) | string | character vector

Assign a unique name to the state associated with the integrator or the filter, for discrete-time PID
controllers. (For information about state names in a continuous-time PID controller, see the State
name (e.g., 'position') parameter.)

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters. The state name is used, for example:

• For the corresponding variable in generated code
• As part of the storage name when logging states during simulation
• For the corresponding state in a linear model obtain by linearizing the block

For more information about the use of state names in code generation, see “C Code Generation
Configuration for Model Interface Elements” (Simulink Coder).

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use
Parameter: IntegratorStateIdentifier, FilterStateIdentifier
Type: string, character vector
Default: ""

State name must resolve to Simulink signal object — Require that state name resolve to a signal
object
off (default) | on

Select this parameter to require that the discrete-time integrator or filter state name resolves to a
Simulink signal object.

Dependencies

To enable this parameter for the discrete-time integrator or filter state:

1 Set Time domain to Discrete-time.
2 Specify a value for the integrator or filter State name.
3 Set the model configuration parameter Signal resolution to a value other than None.

Programmatic Use
Block Parameter: IntegratorStateMustResolveToSignalObject,
FilterStateMustResolveToSignalObject
Type: string, character vector
Values: "off", "on"
Default: "off"

 PID Controller

1-1529

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2009b

R2022b: Issues error when integrator and filter initial conditions lie outside saturation
limits
Behavior changed in R2022b

The block now issues an error when the integrator or filter initial condition value lies outside the
output saturation limits. In previous releases, the block did not issue an error when these initial
conditions had such values.

If this change impacts your model, update the PID integrator or filter initial condition values such
that they are within the output saturation limits.

R2021b: ReferenceBlock parameter returns different path
Behavior changed in R2021b

Starting in R2021b, the get_param function returns a different value for the ReferenceBlock
parameter. The ReferenceBlock parameter is a property common to all Simulink blocks and gives
the path of the library block to which a block links. The PID Controller and Discrete PID Controller
blocks now link to 'slpidlib/PID Controller'. Previously, the blocks linked to 'pid_lib/PID
Controller'.

This change does not affect any other functionality or workflows. You can still use the previous path
with the set_param function.

R2020b: ReferenceBlock parameter returns different path
Behavior changed in R2020b

Starting in R2020b, the get_param function returns a different value for the ReferenceBlock
parameter. The ReferenceBlock parameter is a property common to all Simulink blocks and gives
the path of the library block to which a block links. The PID Controller and Discrete PID Controller
blocks now link to 'pid_lib/PID Controller'. Previously, the blocks linked to 'simulink/
Continuous/PID Controller'.

This change does not affect any other functionality or workflows. You can still use the previous path
with the set_param function.

1 Blocks

1-1530

References
[1] Visioli, A., "Modified Anti-Windup Scheme for PID Controllers," IEE Proceedings - Control Theory

and Applications, Vol. 150, Number 1, January 2003

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For continuous-time PID controllers (Time domain set to Continuous-time):

• Consider using “Model Discretizer” to map continuous-time blocks to discrete equivalents that
support code generation. To access Model Discretizer, from your model, in the Apps tab, under
Control Systems, click Model Discretizer.

• Not recommended for production code.

For discrete-time PID controllers (Time domain set to Discrete-time):

• Depends on absolute time when placed inside a triggered subsystem hierarchy.
• Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• HDL code generation is supported for discrete-time PID controllers only (Time domain set to
Discrete-time).

 PID Controller

1-1531

• If the Integrator method is set to BackwardEuler or Trapezoidal, you cannot generate HDL
code for the block under either of the following conditions:

• Limit output is selected and the Anti-Windup Method is anything other than none.
• Enable tracking mode is selected.

• To generate HDL code:

• Use a discrete-time PID controller. On the Time domain section, specify Discrete-time.
• Leave the Use filtered derivative check box selected.
• Specify the initial conditions of the filter and integrator internally. On the Initialization tab,

specify Source as internal.

You can specify the filter coefficients internally and externally for HDL code generation. On the
Main tab, for Source, you can use internal or external.

• Set External reset to none.
• When you use double inputs, do not set Anti-windup Method to clamping.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Fixed-point code generation is supported for discrete-time PID controllers only (Time domain set to
Discrete-time).

See Also
PID Controller (2DOF) | Gain | Integrator | Derivative | Discrete PID Controller

External Websites
Virtual Hardware and Labs for Controls (MathWorks Teaching Resources)

1 Blocks

1-1532

https://www.mathworks.com/matlabcentral/fileexchange/100064-virtual-hardware-and-labs-for-controls

PID Controller (2DOF)
Continuous-time or discrete-time two-degree-of-freedom PID controller

Libraries:
Simulink / Continuous

Description
The PID Controller (2DOF) block implements a two-degree-of-freedom PID controller (PID, PI, or PD).
The block is identical to the Discrete PID Controller (2DOF) block with the Time domain parameter
set to Continuous-time.

The block generates an output signal based on the difference between a reference signal and a
measured system output. The block computes a weighted difference signal for the proportional and
derivative actions according to the setpoint weights (b and c) that you specify. The block output is the
sum of the proportional, integral, and derivative actions on the respective difference signals, where
each action is weighted according to the gain parameters P, I, and D. A first-order pole filters the
derivative action.

The block supports several controller types and structures. Configurable options in the block include:

• Controller type (PID, PI, or PD) — See the Controller parameter.
• Controller form (Parallel or Ideal) — See the Form parameter.
• Time domain (continuous or discrete) — See the Time domain parameter.
• Initial conditions and reset trigger — See the Source and External reset parameters.
• Output saturation limits and built-in anti-windup mechanism — See the Limit output parameter.
• Signal tracking for bumpless control transfer and multiloop control — See the Enable tracking

mode parameter.

As you change these options, the internal structure of the block changes by activating different
variant subsystems. (See “Implement Variations in Separate Hierarchy Using Variant Subsystems”.)
To examine the internal structure of the block and its variant subsystems, right-click the block and
select Mask > Look Under Mask.

Control Configuration

In one common implementation, the PID Controller block operates in the feedforward path of a
feedback loop.

 PID Controller (2DOF)

1-1533

For a single-input block that accepts an error signal (a difference between a setpoint and a system
output), see PID Controller.

PID Gain Tuning

The PID controller coefficients and the setpoint weights are tunable either manually or automatically.
Automatic tuning requires Simulink Control Design software. For more information about automatic
tuning, see the Select tuning method parameter.

Ports
Input

Ref — Reference signal
scalar | vector

Reference signal for plant to follow, as shown.

When the reference signal is a vector, the block acts separately on each signal, vectorizing the PID
coefficients and producing a vector output signal of the same dimensions. You can specify the PID
coefficients and some other parameters as vectors of the same dimensions as the input signal. Doing
so is equivalent to specifying a separate PID controller for each entry in the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Port_1(y) — Measured system output
scalar | vector

Feedback signal for the controller, from the plant output.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

1 Blocks

1-1534

P — Proportional gain
scalar | vector

Proportional gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

Dependencies

To enable this port, set Controller parameters Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

I — Integral gain
scalar | vector

Integral gain, provided from a source external to the block. External gain input is useful, for example,
when you want to map a different PID parameterization to the PID gains of the block. You can also
use external gain input to implement gain-scheduled PID control. In gain-scheduled control, you
determine the PID coefficients by logic or other calculation in your model and feed them to the block.

When you supply gains externally, time variations in the integral gain are also integrated. This result
occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has integral action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

D — Derivative gain
scalar | vector

Derivative gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

When you supply gains externally, time variations in the derivative gain are also differentiated. This
result occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has derivative action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

 PID Controller (2DOF)

1-1535

N — Filter coefficient
scalar | vector

Derivative filter coefficient, provided from a source external to the block. External coefficient input is
useful, for example, when you want to map a different PID parameterization to the PID gains of the
block. You can also use the external input to implement gain-scheduled PID control. In gain-scheduled
control, you determine the PID coefficients by logic or other calculation in your model and feed them
to the block.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has a filtered derivative.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

b — Proportional setpoint weight
scalar | vector

Proportional setpoint weight, provided from a source external to the block. External input is useful,
for example, when you want to map a different PID parameterization to the PID gains of the block.
You can also use the external input to implement gain-scheduled PID control. In gain-scheduled
control, you determine the PID coefficients by logic or other calculation in your model and feed them
to the block.

Dependencies

To enable this port, set Controller parameters Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

c — Derivative setpoint weight
scalar | vector

Derivative setpoint weight, provided from a source external to the block. External input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use the external input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has derivative action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Reset — External reset trigger
scalar

Trigger to reset the integrator and filter to their initial conditions. Use the External reset parameter
to specify what kind of signal triggers a reset. The port icon indicates the trigger type specified in
that parameter. For example, the following illustration shows a continuous-time PID Controller
(2DOF) block with External reset set to rising.

1 Blocks

1-1536

When the trigger occurs, the block resets the integrator and filter to the initial conditions specified by
the Integrator Initial condition and Filter Initial condition parameters or the I0 and D0 ports.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA) software
standard, your model must use Boolean signals to drive the external reset ports of the PID controller
block.

Dependencies

To enable this port, set External reset to any value other than none.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | Boolean

I0 — Integrator initial condition
scalar | vector

Integrator initial condition, provided from a source external to the block.

Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has integral action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

D0 — Filter initial condition
scalar | vector

Initial condition of the derivative filter, provided from a source external to the block.

Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has derivative action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

up — Output saturation upper limit
scalar | vector

Upper limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions exceeds the value provided at this port, the block
output is held at that value.

 PID Controller (2DOF)

1-1537

Dependencies

To enable this port, select Limit output and set the output saturation Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

lo — Output saturation lower limit
scalar | vector

Lower limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions goes below the value provided at this port, the block
output is held at that value.

Dependencies

To enable this port, select Limit output and set the output saturation Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

TR — Tracking signal
scalar | vector

Signal for controller output to track. When signal tracking is active, the difference between the
tracking signal and the block output is fed back to the integrator input. Signal tracking is useful for
implementing bumpless control transfer in systems that switch between two controllers. It can also
be useful to prevent block windup in multiloop control systems. For more information, see the Enable
tracking mode parameter.

Dependencies

To enable this port, select the Enable tracking mode parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

TDTI — Discrete-integrator time
scalar

Discrete-integrator time, provided as a scalar to the block. You can use your own value of discrete-
time integrator sample time that defines the rate at which the block is going to be run either in
Simulink or on external hardware. The value of the discrete-time integrator time should match the
average sampling rate of the external interrupts, when the block is used inside a conditionally-
executed subsystem.

In other words, you can specify Ts for any of the integrator methods below such that the value
matches the average sampling rate of the external interrupts. In discrete time, the derivative term of
the controller transfer function is:

1 Blocks

1-1538

D N
1 + Nα(z) ,

where α(z) depends on the integrator method you specify with this parameter.

Forward Euler

α(z) =
Ts

z − 1 .
Backward Euler

α(z) =
Tsz

z − 1 .

 PID Controller (2DOF)

1-1539

Trapezoidal

α(z) =
Ts
2

z + 1
z − 1 .

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page. For more information on conditionally executed subsystems, see “Conditionally
Executed Subsystems Overview”.
Dependencies

To enable this port, set Time Domain to Discrete-time and select the PID Controller is inside a
conditionally executed subsystem option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output

Port_1(u) — Controller output
scalar | vector

Controller output, generally based on a sum of the input signal, the integral of the input signal, and
the derivative of the input signal, weighted by the setpoint weights and by the proportional, integral,
and derivative gain parameters. A first-order pole filters the derivative action. Which terms are
present in the controller signal depends on what you select for the Controller parameter. The base
controller transfer function for the current settings is displayed in the Compensator formula
section of the block parameters and under the mask. Other parameters modify the block output, such
as saturation limits specified by the Upper Limit and Lower Limit saturation parameters.

The controller output is a vector signal when any of the inputs is a vector signal. In that case, the
block acts as N independent PID controllers, where N is the number of signals in the input vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Controller — Controller type

PID (default) | PI | PD

Specify which of the proportional, integral, and derivative terms are in the controller.

PID
Proportional, integral, and derivative action.

1 Blocks

1-1540

PI
Proportional and integral action only.

PD
Proportional and derivative action only.

Tip The controller output for the current setting is displayed in the Compensator formula section
of the block parameters and under the mask.

Programmatic Use
Block Parameter: Controller
Type: string, character vector
Values: "PID", "PI", "PD"
Default: "PID"

Form — Controller structure

Parallel (default) | Ideal

Specify whether the controller structure is parallel or ideal.

Parallel
The proportional, integral, and derivative gains P, I, and D, are applied independently. For
example, for a continuous-time 2-DOF PID controller in parallel form, the controller output u is:

u = P br − y + I1
s r − y + D N

1 + N 1
s

cr − y ,

where r is the reference signal, y is the measured plant output signal, and b and c are the
setpoint weights.

For a discrete-time 2-DOF controller in parallel form, the controller output is:

u = P br − y + Iα z r − y + D N
1 + Nβ z cr − y ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

Ideal
The proportional gain P acts on the sum of all actions. For example, for a continuous-time 2-DOF
PID controller in ideal form, the controller output is:

u = P br − y + I1
s r − y + D N

1 + N 1
s

cr − y .

For a discrete-time 2-DOF PID controller in ideal form, the transfer function is:

u = P br − y + Iα z r − y + D N
1 + Nβ z cr − y ,

 PID Controller (2DOF)

1-1541

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

Tip The controller output for the current settings is displayed in the Compensator formula
section of the block parameters and under the mask.

Programmatic Use
Block Parameter: Controller
Type: string, character vector
Values: "Parallel", "Ideal"
Default: "Parallel"

Time domain — Specify continuous-time or discrete-time controller

Continuous-time (default) | Discrete-time

When you select Discrete-time, it is recommended that you specify an explicit sample time for the
block. See the Sample time (-1 for inherited) parameter. Selecting Discrete-time also enables
the Integrator method, and Filter method parameters.

When the PID Controller block is in a model with synchronous state control (see the State Control
block), you cannot select Continuous-time.

Note The PID Controller (2DOF) and Discrete PID Controller (2DOF) blocks are identical except for
the default value of this parameter.

Programmatic Use
Block Parameter: TimeDomain
Type: string, character vector
Values: "Continuous-time", "Discrete-time"
Default: "Continuous-time"

PID Controller is inside a conditionally executed subsystem — Enable the discrete-integrator
time port
off (default) | on

For discrete-time PID controllers, enable the discrete-time integrator port to use your own value of
discrete-time integrator sample time. To ensure proper integration, use the TDTI port to provide a
scalar value of Δt for accurate discrete-time integration.
Dependencies

To enable this parameter, set Time Domain to Discrete-time.
Programmatic Use
Block Parameter: UseExternalTs
Type: string, character vector
Values: "on", "off"
Default: "off"

Sample time (-1 for inherited) — Discrete interval between samples

1 Blocks

1-1542

–1 (default) | positive scalar

Specify a sample time by entering a positive scalar value, such as 0.1. The default discrete sample
time of –1 means that the block inherits its sample time from upstream blocks. However, it is
recommended that you set the controller sample time explicitly, especially if you expect the sample
time of upstream blocks to change. The effect of the controller coefficients P, I, D, and N depend on
the sample time. Thus, for a given set of coefficient values, changing the sample time changes the
performance of the controller.

See “Specify Sample Time” for more information.

To implement a continuous-time controller, set Time domain to Continuous-time.

Tip If you want to run the block with an externally specified or variable sample time, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time.

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use
Block Parameter: SampleTime
Type: scalar
Values: -1, positive scalar
Default: -1

Integrator method — Method for computing integral in discrete-time controller

Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the integral term of the controller transfer function is Ia(z), where a(z) depends on
the integrator method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

α(z) =
Ts

z − 1 .

 PID Controller (2DOF)

1-1543

This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

Backward Euler
Backward rectangular (right-hand) approximation,

α(z) =
Tsz

z − 1 .
An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal
Bilinear approximation,

α(z) =
Ts
2

z + 1
z − 1 .

An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,
the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

1 Blocks

1-1544

Dependencies

To enable this parameter, set Time Domain to Discrete-time and set Controller to a controller
type with integral action.
Programmatic Use
Block Parameter: IntegratorMethod
Type: string, character vector
Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Filter method — Method for computing derivative in discrete-time controller

Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the derivative term of the controller transfer function is:

D N
1 + Nα(z) ,

where α(z) depends on the filter method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

α(z) =
Ts

z − 1 .
This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

 PID Controller (2DOF)

1-1545

Backward Euler
Backward rectangular (right-hand) approximation,

α(z) =
Tsz

z − 1 .
An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal
Bilinear approximation,

α(z) =
Ts
2

z + 1
z − 1 .

An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,
the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

Dependencies

To enable this parameter, set Time Domain to Discrete-time and enable Use filtered derivative.

1 Blocks

1-1546

Programmatic Use
Block Parameter: FilterMethod
Type: string, character vector
Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Main

Source — Source for controller gains and filter coefficient

internal (default) | external

internal
Specify the controller gains, filter coefficient, and setpoint weights using the block parameters P,
I, D, N, b, and c respectively.

external
Specify the PID gains, filter coefficient, and setpoint weights externally using block inputs. An
additional input port appears on the block for each parameter that is required for the current
controller type.

Enabling external inputs for the parameters allows you to compute their values externally to the
block and provide them to the block as signal inputs.

External input is useful, for example, when you want to map a different PID parameterization to the
PID gains of the block. You can also use external gain input to implement gain-scheduled PID control.
In gain-scheduled control, you determine the PID gains by logic or other calculation in your model
and feed them to the block.

When you supply gains externally, time variations in the integral and derivative gain values are
integrated and differentiated, respectively. The derivative setpoint weight c is also differentiated. This
result occurs because in both continuous time and discrete time, the gains are applied to the signal
before integration or differentiation. For example, for a continuous-time PID controller with external
inputs, the integrator term is implemented as shown in the following illustration.

Within the block, the input signal u is multiplied by the externally supplied integrator gain, I, before
integration. This implementation yields:

ui =∫ r − y I dt .

Thus, the integrator gain is included in the integral. Similarly, in the derivative term of the block,
multiplication by the derivative gain precedes the differentiation, which causes the derivative gain D
and the derivative setpoint weight c to be differentiated.

Programmatic Use
Block Parameter: ControllerParametersSource
Type: string, character vector

 PID Controller (2DOF)

1-1547

Values: "internal", "external"
Default: "internal"

Proportional (P) — Proportional gain

1 (default) | scalar | vector

Specify a finite, real gain value for the proportional gain. When Controller form is:

• Parallel — Proportional action is independent of the integral and derivative actions. For
example, for a continuous-time 2-DOF PID controller in parallel form, the controller output u is:

u = P br − y + I1
s r − y + D N

1 + N 1
s

cr − y ,

where r is the reference signal, y is the measured plant output signal, and b and c are the setpoint
weights.

For a discrete-time 2-DOF controller in parallel form, the controller output is:

u = P br − y + Iα z r − y + D N
1 + Nβ z cr − y ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

• Ideal — The proportional gain multiples the integral and derivative terms. For example, for a
continuous-time 2-DOF PID controller in ideal form, the controller output is:

u = P br − y + I1
s r − y + D N

1 + N 1
s

cr − y .

For a discrete-time 2-DOF PID controller in ideal form, the transfer function is:

u = P br − y + Iα z r − y + D N
1 + Nβ z cr − y ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

Tunable: Yes
Dependencies

To enable this parameter, set the Controller parameters Source to internal.
Programmatic Use
Block Parameter: P
Type: scalar, vector
Default: 1

Integral (I) — Integral gain

1 (default) | scalar | vector

Specify a finite, real gain value for the integral gain.

1 Blocks

1-1548

Tunable: Yes
Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to a type that has integral action.
Programmatic Use
Block Parameter: I
Type: scalar, vector
Default: 1

Derivative (D) — Derivative gain

0 (default) | scalar | vector

Specify a finite, real gain value for the derivative gain.

Tunable: Yes
Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to PID or PD.
Programmatic Use
Block Parameter: D
Type: scalar, vector
Default: 0

Use filtered derivative — Apply filter to derivative term

on (default) | off

For discrete-time PID controllers only, clear this option to replace the filtered derivative with an
unfiltered discrete-time differentiator. When you do so, the derivative term of the controller output
becomes:

Dz − 1
zTs

cr − y .
For continuous-time PID controllers, the derivative term is always filtered.
Dependencies

To enable this parameter, set Time domain to Discrete-time, and set Controller to a type that
has a derivative term.

 PID Controller (2DOF)

1-1549

Programmatic Use
Block Parameter: UseFilter
Type: string, character vector
Values: "on", "off"
Default: "on"

Filter coefficient (N) — Derivative filter coefficient

100 (default) | scalar | vector

Specify a finite, real gain value for the filter coefficient. The filter coefficient determines the pole
location of the filter in the derivative action of the block. The location of the filter pole depends on the
Time domain parameter.

• When Time domain is Continuous-time, the pole location is s = -N.
• When Time domain is Discrete-time, the pole location depends on the Filter method

parameter.

Filter Method Location of Filter Pole
Forward Euler zpole = 1− NTs

Backward Euler zpole = 1
1 + NTs

Trapezoidal
zpole =

1− NTs/2
1 + NTs/2

The block does not support N = Inf (ideal unfiltered derivative). When the Time domain is
Discrete-time, you can clear Use filtered derivative to remove the derivative filter.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to PID or PD.

Programmatic Use
Block Parameter: N
Type: scalar, vector
Default: 100

Setpoint weight (b) — Proportional setpoint weight

1 (default) | scalar | vector

Setpoint weight on the proportional term of the controller. The proportional term of a 2-DOF
controller output is P(br–y), where r is the reference signal and y is the measured plant output.
Setting b to 0 eliminates proportional action on the reference signal, which can reduce overshoot in
the system response to step changes in the setpoint. Changing the relative values of b and c changes
the balance between disturbance rejection and setpoint tracking.

Tunable: Yes

1 Blocks

1-1550

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal.
Programmatic Use
Block Parameter: b
Type: scalar, vector
Default: 1

Setpoint weight (c) — Derivative setpoint weight

1 (default) | scalar | vector

Setpoint weight on the derivative term of the controller. The derivative term of a 2-DOF controller
acts on cr–y, where r is the reference signal and y is the measured plant output. Thus, setting c to 0
eliminates derivative action on the reference signal, which can reduce transient response to step
changes in the setpoint. Setting c to 0 can yield a controller that achieves both effective disturbance
rejection and smooth setpoint tracking without excessive transient response. Changing the relative
values of b and c changes the balance between disturbance rejection and setpoint tracking.

Tunable: Yes
Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to a type that has derivative action.
Programmatic Use
Block Parameter: c
Type: scalar, vector
Default: 1

Select tuning method — Tool for automatic tuning of controller coefficients
Transfer Function Based (PID Tuner App) (default) | Frequency Response Based

If you have Simulink Control Design software, you can automatically tune the PID coefficients when
they are internal to the block. To do so, use this parameter to select a tuning tool, and click Tune.

Transfer Function Based (PID Tuner App)
Use PID Tuner, which lets you interactively tune PID coefficients while examining relevant
system responses to validate performance. PID Tuner can tune all the coefficients P, I, D, and N,
and the setpoint coefficients b and c. By default, PID Tuner works with a linearization of your
plant model. For models that cannot be linearized, you can tune PID coefficients against a plant
model estimated from simulated or measured response data. For more information, see “Design
Two-Degree-of-Freedom PID Controllers” (Simulink Control Design).

Frequency Response Based
Use Frequency Response Based PID Tuner, which tunes PID controller coefficients based on
frequency-response estimation data obtained by simulation. This tuning approach is especially
useful for plants that are not linearizable or that linearize to zero. Frequency Response Based
PID Tuner tunes the coefficients P, I, D, and N, but does not tune the setpoint coefficients b and
c. For more information, see “Design PID Controller from Plant Frequency-Response Data”
(Simulink Control Design).

Both of these tuning methods assume a single-loop control configuration. Simulink Control Design
software includes other tuning approaches that suit more complex configurations. For information

 PID Controller (2DOF)

1-1551

about other ways to tune a PID Controller block, see “Choose a Control Design Approach” (Simulink
Control Design).

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal.

Enable zero-crossing detection — Detect zero crossings on reset and on entering or leaving a
saturation state

on (default) | off

Zero-crossing detection can accurately locate signal discontinuities without resorting to excessively
small time steps that can lead to lengthy simulation times. If you select Limit output or activate
External reset in your PID Controller block, activating zero-crossing detection can reduce
computation time in your simulation. Selecting this parameter activates zero-crossing detection:

• At initial-state reset
• When entering an upper or lower saturation state
• When leaving an upper or lower saturation state

For more information about zero-crossing detection, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: string, character vector
Values: "on", "off"
Default: "on"

Initialization

Source — Source for integrator and derivative initial conditions

internal (default) | external

Simulink uses initial conditions to initialize the integrator and derivative-filter (or the unfiltered
derivative) output at the start of a simulation or at a specified trigger event. (See the External reset
parameter.) These initial conditions determine the initial block output. Use this parameter to select
how to supply the initial condition values to the block.

internal
Specify the initial conditions using the Integrator Initial condition and Filter Initial
condition parameters. If Use filtered derivative is not selected, use the Differentiator
parameter to specify the initial condition for the unfiltered differentiator instead of a filter initial
condition.

external
Specify the initial conditions externally using block inputs. Additional input ports Io and Do
appear on the block. If Use filtered derivative is not selected, supply the initial condition for the
unfiltered differentiator at Do instead of a filter initial condition.

Programmatic Use
Block Parameter: InitialConditionSource
Type: string, character vector

1 Blocks

1-1552

Values: "internal", "external"
Default: "internal"

Integrator — Integrator initial condition

0 (default) | scalar | vector

Simulink uses the integrator initial condition to initialize the integrator at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The integrator initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and set Controller to a
type that has integral action.

Programmatic Use
Block Parameter: InitialConditionForIntegrator
Type: scalar, vector
Default: 0

Filter — Filter initial condition

0 (default) | scalar | vector

Simulink uses the filter initial condition to initialize the derivative filter at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The filter initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and use a controller that
has a derivative filter.

Programmatic Use
Block Parameter: InitialConditionForFilter
Type: scalar, vector
Default: 0

Differentiator — Initial condition for unfiltered derivative
0 (default) | scalar | vector

When you use an unfiltered derivative, Simulink uses this parameter to initialize the differentiator at
the start of a simulation or at a specified trigger event (see External reset). The integrator initial
condition and the derivative initial condition determine the initial output of the PID controller block.

The derivative initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, set Time domain to Discrete-time, clear the Use filtered derivative
check box, and in the Initialization tab, set Source to internal.

 PID Controller (2DOF)

1-1553

Programmatic Use
Block Parameter: DifferentiatorICPrevScaledInput
Type: scalar, vector
Default: 0

Initial condition setting — Location at which initial condition is applied
Auto (default) | Output

Use this parameter to specify whether to apply the Integrator Initial condition and Filter Initial
condition parameter to the corresponding block state or output. You can change this parameter at
the command line only, using set_param to set the InitialConditionSetting parameter of the
block.

Auto
Use this option in all situations except when the block is in a triggered subsystem or a function-
call subsystem and simplified initialization mode is enabled.

Output
Use this option when the block is in a triggered subsystem or a function-call subsystem and
simplified initialization mode is enabled.

For more information about the Initial condition setting parameter, see the Discrete-Time
Integrator block.

This parameter is only accessible through programmatic use.
Programmatic Use
Block Parameter: InitialConditionSetting
Type: string, character vector
Values: "Auto", "Output"
Default: "Auto"

External reset — Trigger for resetting integrator and filter values

none (default) | rising | falling | either | level

Specify the trigger condition that causes the block to reset the integrator and filter to initial
conditions. (If Use filtered derivative is not selected, the trigger resets the integrator and
differentiator to initial conditions.) Selecting any option other than none enables the Reset port on
the block for the external reset signal.

none
The integrator and filter (or differentiator) outputs are set to initial conditions at the beginning of
simulation, and are not reset during simulation.

rising
Reset the outputs when the reset signal has a rising edge.

falling
Reset the outputs when the reset signal has a falling edge.

either
Reset the outputs when the reset signal either rises or falls.

level
Reset the outputs when the reset signal either:

1 Blocks

1-1554

• Is nonzero at the current time step
• Changes from nonzero at the previous time step to zero at the current time step

This option holds the outputs to the initial conditions while the reset signal is nonzero.

Dependencies

To enable this parameter, set Controller to a type that has derivative or integral action.

Programmatic Use
Block Parameter: ExternalReset
Type: string, character vector
Values: "none", "rising", "falling", "either","level"
Default: "none"

Ignore reset when linearizing — Force linearization to ignore reset

off (default) | on

Select to force Simulink and Simulink Control Design linearization commands to ignore any reset
mechanism specified in the External reset parameter. Ignoring reset states allows you to linearize a
model around an operating point even if that operating point causes the block to reset.

Programmatic Use
Block Parameter: IgnoreLimit
Type: string, character vector
Values: "off", "on"
Default: "off"

Enable tracking mode — Activate signal tracking

off (default) | on

Signal tracking lets the block output follow a tracking signal that you provide at the TR port. When
signal tracking is active, the difference between the tracking signal and the block output is fed back
to the integrator input with a gain Kt, specified by the Tracking gain (Kt) parameter. Signal
tracking has several applications, including bumpless control transfer and avoiding windup in
multiloop control structures.

Bumpless control transfer

Use signal tracking to achieve bumpless control transfer in systems that switch between two
controllers. Suppose you want to transfer control between a PID controller and another controller. To
do so, connecting the controller output to the TR input as shown in the following illustration.

 PID Controller (2DOF)

1-1555

For more information, see “Bumpless Control Transfer with a Two-Degree-of-Freedom PID Controller”
on page 12-105.

Multiloop control

Use signal tracking to prevent block windup in multiloop control approaches. For an example
illustrating this approach with a 1DOF PID controller, see “Prevent Block Windup in Multiloop
Control” on page 12-103.

Dependencies

To enable this parameter, set Controller to a type that has integral action.

Programmatic Use
Block Parameter: TrackingMode
Type: string, character vector
Values: "off", "on"
Default: "off"

Tracking coefficient (Kt) — Gain of signal-tracking feedback loop

1 (default) | scalar

When you select Enable tracking mode, the difference between the signal TR and the block output
is fed back to the integrator input with a gain Kt. Use this parameter to specify the gain in that
feedback loop.

Dependencies

To enable this parameter, select Enable tracking mode.

Programmatic Use
Block Parameter: Kt
Type: scalar
Default: 1

1 Blocks

1-1556

Saturation

Output saturation

Limit Output — Limit block output to specified saturation values

off (default) | on

Activating this option limits the block output, so that you do not need a separate Saturation on page
1-1896 block after the controller. It also allows you to activate the anti-windup mechanism built into
the block (see the Anti-windup method parameter). Specify the output saturation limits using the
Lower limit and Upper limit parameters. You can also specify the saturation limits externally as
block input ports.

Programmatic Use
Block Parameter: LimitOutput
Type: string, character vector
Values: "off", "on"
Default: "off"

Source — Source for output saturation limits

internal (default) | external

Use this parameter to specify how to supply the upper and lower saturation limits of the block output.

internal
Specify the output saturation limits using the Upper limit and Lower limit parameters.

external
Specify the output saturation limits externally using block input ports. The additional input ports
up and lo appear on the block. You can use the input ports to implement the upper and lower
output saturation limits determined by logic or other calculations in the Simulink model and
passed to the block.

Programmatic Use
Block Parameter: SatLimitsSource
Type: string, character vector
Values: "internal", "external"
Default: "internal"

Upper limit — Upper saturation limit for block output

Inf (default) | scalar

Specify the upper limit for the block output. The block output is held at the Upper saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions exceeds that value.

Dependencies

To enable this parameter, select Limit output.
Programmatic Use
Block Parameter: UpperSaturationLimit
Type: scalar

 PID Controller (2DOF)

1-1557

Default: Inf

Lower limit — Lower saturation limit for block output

-Inf (default) | scalar

Specify the lower limit for the block output. The block output is held at the Lower saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions goes below that
value.

Dependencies

To enable this parameter, select Limit output.
Programmatic Use
Block Parameter: LowerSaturationLimit
Type: scalar
Default: -Inf

Ignore saturation when linearizing — Force linearization to ignore output limits

off (default) | on

Force Simulink and Simulink Control Design linearization commands to ignore block output limits
specified in the Upper limit and Lower limit parameters. Ignoring output limits allows you to
linearize a model around an operating point even if that operating point causes the block to exceed
the output limits.

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use
Block Parameter: LinearizeAsGain
Type: string, character vector
Values: "off", "on"
Default: "off"

Anti-windup method — Integrator anti-windup method

none (default) | back-calculation | clamping

When you select Limit output and the weighted sum of the controller components exceeds the
specified output limits, the block output holds at the specified limit. However, the integrator output
can continue to grow (integrator windup), increasing the difference between the block output and the
sum of the block components. In other words, the internal signals in the block can be unbounded
even if the output appears bounded by saturation limits. Without a mechanism to prevent integrator
windup, two results are possible:

• If the sign of the signal entering the integrator never changes, the integrator continues to
integrate until it overflows. The overflow value is the maximum or minimum value for the data
type of the integrator output.

• If the sign of the signal entering the integrator changes once the weighted sum has grown beyond
the output limits, it can take a long time to unwind the integrator and return the weighted sum
within the block saturation limit.

1 Blocks

1-1558

In either case, controller performance can suffer. To combat the effects of windup without an anti-
windup mechanism, it may be necessary to detune the controller (for example, by reducing the
controller gains), resulting in a sluggish controller. To avoid this problem, activate an anti-windup
mechanism using this parameter.

none
Do not use an anti-windup mechanism.

back-calculation
Unwind the integrator when the block output saturates by feeding back to the integrator the
difference between the saturated and unsaturated control signal. The following diagram
represents the back-calculation feedback circuit for a continuous-time controller. To see the
actual feedback circuit for your controller configuration, right-click on the block and select Mask
> Look Under Mask.

Use the Back-calculation coefficient (Kb) parameter to specify the gain of the anti-windup
feedback circuit. It is usually satisfactory to set Kb = I, or for controllers with derivative action,
Kb = sqrt(I*D). Back-calculation can be effective for plants with relatively large dead time [1].

clamping
Integration stops when the sum of the block components exceeds the output limits and the
integrator output and block input have the same sign. Integration resumes when the sum of the
block components exceeds the output limits and the integrator output and block input have
opposite sign. Clamping is sometimes referred to as conditional integration.

Clamping can be useful for plants with relatively small dead times, but can yield a poor transient
response for large dead times [1].

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use
Block Parameter: AntiWindupMode

 PID Controller (2DOF)

1-1559

Type: string, character vector
Values: "none", "back-calculation","clamping"
Default: "none"

Back-calculation coefficient (Kb) — Gain coefficient of anti-windup feedback loop

1 (default) | scalar

The back-calculation anti-windup method unwinds the integrator when the block output
saturates. It does so by feeding back to the integrator the difference between the saturated and
unsaturated control signal. Use the Back-calculation coefficient (Kb) parameter to specify the
gain of the anti-windup feedback circuit. For more information, see the Anti-windup method
parameter.

Dependencies

To enable this parameter, select the Limit output parameter, and set the Anti-windup method
parameter to back-calculation.

Programmatic Use
Block Parameter: Kb
Type: scalar
Default: 1

Integrator saturation

Limit Output — Limit integrator output to specified saturation limits

off (default) | on

Enable this parameter to limit the integrator output to be within a specified range. When the
integrator output reaches the limits, the integral action turns off to prevent integral windup. Specify
the saturation limits using the Lower limit and Upper limit parameters.

Dependencies

To enable this parameter, set Controller to a controller type that has integral action.

Programmatic Use
Block Parameter: LimitIntegratorOutput
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper limit — Upper saturation limit for integrator

Inf (default) | scalar

Specify the upper limit for the integrator output. The integrator output is held at this value whenever
it would otherwise exceed this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.
Programmatic Use
Block Parameter: UpperIntegratorSaturationLimit

1 Blocks

1-1560

Type: scalar
Default: Inf

Lower limit — Lower saturation limit for integrator

-Inf (default) | scalar

Specify the lower limit for the integrator output. The integrator output is held at this value whenever
it would otherwise go below this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.
Programmatic Use
Block Parameter: LowerIntegratorSaturationLimit
Type: scalar
Default: -Inf

Data Types

The parameters in this tab are primarily of use in fixed-point code generation using Fixed-Point
Designer. They define how numeric quantities associated with the block are stored and processed
when you generate code.

If you need to configure data types for fixed-point code generation, click Open Fixed-Point Tool and
use that tool to configure the rest of the parameters in the tab. For information about using Fixed-
Point Tool, see “Autoscaling Data Objects Using the Fixed-Point Tool” (Fixed-Point Designer).

After you use Fixed-Point Tool, you can use the parameters in this tab to make adjustments to fixed-
point data-type settings if necessary. For each quantity associated with the block, you can specify:

• Floating-point or fixed-point data type, including whether the data type is inherited from upstream
values in the block.

• The minimum and maximum values for the quantity, which determine how the quantity is scaled
for fixed-point representation.

For assistance in selecting appropriate values, click to open the Data Type Assistant for the
corresponding quantity. For more information, see “Specify Data Types Using Data Type Assistant”.

 PID Controller (2DOF)

1-1561

The specific quantities listed in the Data Types tab vary depending on how you configure the PID
controller block. In general, you can configure data types for the following types of quantities:

• Product output — Stores the result of a multiplication carried out under the block mask. For
example, P product output stores the output of the gain block that multiplies the block input
with the proportional gain P.

• Parameter — Stores the value of a numeric block parameter, such as P, I, or D.
• Block output — Stores the output of a block that resides under the PID controller block mask. For

example, use Integrator output to specify the data type of the output of the block called
Integrator. This block resides under the mask in the Integrator subsystem, and computes
integrator term of the controller action.

• Accumulator — Stores values associated with a sum block. For example, SumI2 Accumulator
sets the data type of the accumulator associated with the sum block SumI2. This block resides
under the mask in the Back Calculation subsystem of the Anti-Windup subsystem.

In general, you can find the block associated with any listed parameter by looking under the PID
Controller block mask and examining its subsystems. You can also use the Model Explorer to search
under the mask for the listed parameter name, such as SumI2. (See Model Explorer.)

Matching Input and Internal Data Types

By default, all data types in the block are set to Inherit: Inherit via internal rule. With
this setting, Simulink chooses data types to balance numerical accuracy, performance, and generated
code size, while accounting for the properties of the embedded target hardware.

1 Blocks

1-1562

Under some conditions, incompatibility can occur between data types within the block. For instance,
in continuous time, the Integrator block under the mask can accept only signals of type double. If
the block input signal is a type that cannot be converted to double, such as uint16, the internal
rules for type inheritance generate an error when you generate code.

To avoid such errors, you can use the Data Types settings to force a data type conversion. For
instance, you can explicitly set P product output, I product output, and D product output to
double, ensuring that the signals reaching the continuous-time integrators are of type double.

In general, it is not recommended to use the block in continuous time for code generation
applications. However, similar data type errors can occur in discrete time, if you explicitly set some
values to data types that are incompatible with downstream signal constraints within the block. In
such cases, use the Data Types settings to ensure that all data types are internally compatible.

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type can

represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

• Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your generated code.

 PID Controller (2DOF)

1-1563

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

• In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

The parameters in this tab are primarily of use in code generation.

State name (e.g., 'position') — Name for continuous-time filter and integrator states
'' (default) | character vector

Assign a unique name to the state associated with the integrator or the filter, for continuous-time PID
controllers. (For information about state names in a discrete-time PID controller, see the State name
parameter.) The state name is used, for example:

• For the corresponding variable in generated code
• As part of the storage name when logging states during simulation
• For the corresponding state in a linear model obtain by linearizing the block

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

Dependencies

To enable this parameter, set Time domain to Continuous-time.

Programmatic Use
Parameter: IntegratorContinuousStateAttributes, FilterContinuousStateAttributes
Type: character vector

1 Blocks

1-1564

Default: ''

State name — Names for discrete-time filter and integrator states
empty string (default) | string | character vector

Assign a unique name to the state associated with the integrator or the filter, for discrete-time PID
controllers. (For information about state names in a continuous-time PID controller, see the State
name (e.g., 'position') parameter.)

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters. The state name is used, for example:

• For the corresponding variable in generated code
• As part of the storage name when logging states during simulation
• For the corresponding state in a linear model obtain by linearizing the block

For more information about the use of state names in code generation, see “C Code Generation
Configuration for Model Interface Elements” (Simulink Coder).

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use
Parameter: IntegratorStateIdentifier, FilterStateIdentifier
Type: string, character vector
Default: ""

State name must resolve to Simulink signal object — Require that state name resolve to a signal
object
off (default) | on

Select this parameter to require that the discrete-time integrator or filter state name resolves to a
Simulink signal object.

Dependencies

To enable this parameter for the discrete-time integrator or filter state:

1 Set Time domain to Discrete-time.
2 Specify a value for the integrator or filter State name.
3 Set the model configuration parameter Signal resolution to a value other than None.

Programmatic Use
Block Parameter: IntegratorStateMustResolveToSignalObject,
FilterStateMustResolveToSignalObject
Type: string, character vector
Values: "off", "on"
Default: "off"

Block Characteristics
Data Types double | fixed point | integer | single

 PID Controller (2DOF)

1-1565

Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Decomposition of 2-DOF PID Controllers

A 2-DOF PID controller can be interpreted as a PID controller with a prefilter, or a PID controller with
a feedforward element.

Prefilter Decomposition

In parallel form, a two-degree-of-freedom PID controller can be equivalently modeled by the following
block diagram, where C is a single degree-of-freedom PID controller and F is a prefilter on the
reference signal.

Ref is the reference signal, y is the feedback from the measured system output, and u is the controller
output. For a continuous-time 2-DOF PID controller in parallel form, the transfer functions for F and
C are

Fpar(s) = (bP + cDN)s2 + (bPN + I)s + IN
(P + DN)s2 + (PN + I)s + IN

,

Cpar(s) = (P + DN)s2 + (PN + I)s + IN
s(s + N) ,

where b and c are the setpoint weights.

For a 2-DOF PID controller in ideal form, the transfer functions are

Fid(s) = (b + cDN)s2 + (bN + I)s + IN
(1 + DN)s2 + (N + I)s + IN

,

Cid(s) = P (1 + DN)s2 + (N + I)s + IN
s(s + N) .

A similar decomposition applies for a discrete-time 2-DOF controller.

1 Blocks

1-1566

Feedforward Decomposition

Alternatively, the parallel two-degree-of-freedom PID controller can be modeled by the following
block diagram.

In this realization, Q acts as feed-forward conditioning on the reference signal. For a continuous-time
2-DOF PID controller in parallel form, the transfer function for Q is

Qpar(s) = (b− 1)P + (c− 1)DN s + (b− 1)PN
s + N .

For a 2-DOF PID controller in ideal form, the transfer function is

Qid(s) = P (b− 1) + (c− 1)DN s + (b− 1)N
s + N .

The transfer functions for C are the same as in the filter decomposition.

A similar decomposition applies for a discrete-time 2-DOF controller.

Version History
Introduced in R2009b

R2022b: Issues error when integrator and filter initial conditions lie outside saturation
limits
Behavior changed in R2022b

The block now issues an error when the integrator or filter initial condition value lies outside the
output saturation limits. In previous releases, the block did not issue an error when these initial
conditions had such values.

If this change impacts your model, update the PID integrator or filter initial condition values such
that they are within the output saturation limits.

R2021b: ReferenceBlock parameter returns different path
Behavior changed in R2021b

Starting in R2021b, the get_param function returns a different value for the ReferenceBlock
parameter. The ReferenceBlock parameter is a property common to all Simulink blocks and gives
the path of the library block to which a block links. The PID Controller (2DOF) and Discrete PID

 PID Controller (2DOF)

1-1567

Controller (2DOF) blocks now link to 'slpidlib/PID Controller (2DOF)'. Previously, the
blocks linked to 'pid_lib/PID Controller (2DOF)'.

This change does not affect any other functionality or workflows. You can still use the previous path
with the set_param function.

R2020b: ReferenceBlock parameter returns different path
Behavior changed in R2020b

Starting in R2020b, the get_param function returns a different value for the ReferenceBlock
parameter. The ReferenceBlock parameter is a property common to all Simulink blocks and gives
the path of the library block to which a block links. The PID Controller (2DOF) and Discrete PID
Controller (2DOF) blocks now link to 'pid_lib/PID Controller (2DOF)'. Previously, the blocks
linked to 'simulink/Continuous/PID Controller (2DOF)'.

This change does not affect any other functionality or workflows. You can still use the previous path
with the set_param function.

References
[1] Visioli, A., "Modified Anti-Windup Scheme for PID Controllers," IEE Proceedings - Control Theory

and Applications, Vol. 150, Number 1, January 2003

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For continuous-time PID controllers (Time domain set to Continuous-time):

• Consider using “Model Discretizer” to map continuous-time blocks to discrete equivalents that
support code generation. To access Model Discretizer, in the Apps tab, under Control Systems,
click Model Discretizer.

• Not recommended for production code.

For discrete-time PID controllers (Time domain set to Discrete-time):

• Depends on absolute time when placed inside a triggered subsystem hierarchy.
• Generated code relies on memcpy or memset functions (string.h) under certain conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Fixed-point code generation is supported for discrete-time PID controllers only (Time domain set to
Discrete-time).

See Also
PID Controller | Gain | Integrator | Derivative | Discrete PID Controller (2DOF)

1 Blocks

1-1568

Playback
Load data from workspace, file, or Simulation Data Inspector

Libraries:
Simulink / Sources

Description
Use the Playback block to load input data for simulation. The Playback block supports loading real or
complex signals with fixed or variable dimensions, discrete and continuous signals, and messages.
Using the Playback block, you can load data from:

• Workspace variables of any data format supported by the Simulation Data Inspector
• Files in the same formats supported by the Record block and the Simulation Data Inspector such

as MAT, MLDATX, and Microsoft Excel files
• Data from a custom file reader
• Runs in the Simulation Data Inspector

For more information about workspace variables and file formats supported by the Playback block,
see “Import Data from the Workspace or a File”.

You can also use the Playback block in conjunction with the Record block as part of a record and
playback workflow. Use the Record block to record data from physical devices or simulations. Then,
use the Playback block to load the recorded data into a model. Using real or simulated data, you can
then develop, test, and optimize the model. For more information about the Record block, see Record,
XY Graph.

Add Data to Playback Block

You can add signals, messages, multidimensional signals, buses, and arrays of buses to the Playback
block. To load data to a model using the Playback block, first add data to the block. Then, select the
data to load by assigning signals or messages to ports. When you run a simulation, the Playback block
loads data into the model.

 Playback

1-1569

To add signals to the Playback block for loading, double-click the block. When you double-click a
Playback block that has no signals, the block shows a screen with options to add data.

You can choose from three ways to load data to your model:

• Load a workspace variable from the base workspace, model workspace, or mask workspace.
• Load data from a file. If the file is not on the MATLAB path or in your current directory, you can

click the folder icon to browse for your data.
• Load data from the workspace, a file, or the Simulation Data Inspector using the Add Signals

dialog box.

Use the Add Signals dialog box to access more options for loading data from the workspace or a file
or to load data from the Simulation Data Inspector.

1 Blocks

1-1570

When you load data from the workspace or a file, you can choose to reference the signals in the
source or save a copy of the signals in the model. Loading signal data from the Simulation Data
Inspector always saves a copy of the signals in the model.

Referencing the signal in the source links the signal in the Playback block to the variable or file that
contains the signal data. If the data in the source variable or file changes, that change is reflected in
the data loaded by the Playback block. When linking data, only metadata is stored on the block for
each signal.

When you save a copy of the signals in the model, the Playback block loads from the copied data.
Changes made to the original data source variable or file are not reflected in the Playback block
output.

The Add Signals dialog box also allows you to choose whether to assign ports automatically or
manually. If you choose to manually assign ports, you can create ports using the Port Editor and
assign ports using the port column of the signal table.

 Playback

1-1571

Visualize Data

After you choose the signal data you want to load, you can use the Playback block to visualize the
data using a sparklines plot.

By default, a sparkline is created for each signal loaded with the Playback block. If you load input
data for a bus, a sparkline is created for each bus element. Multidimensional signals must be
converted to channels or frames to visualize the data. Use the check boxes next to each signal name
to control which signals are plotted.

Note You can select or clear the check boxes to change the appearance of the sparklines
visualization without affecting which signals the Playback block loads to a model. To control which
signals are loaded to the model, use the port column in the table of signals.

View and Edit Signals and Ports

You can view and edit signal properties using the Properties pane in the Playback block.

1 Blocks

1-1572

In the Properties pane, you can edit any row with a white background. The number of editable fields
depends on whether you choose to reference the signal in the source or save a copy of the data in the
model.

Port properties for the Playback block can be set separately from the signal properties using the Port
Editor.

Using the Port Editor, you can add ports, delete ports, and edit port properties. You can also change
port assignments using the signal table. By default, port properties are inherited from the signal.
However, you can set a port property independently of the signal property. When compatible with the
signal property, the port property determines the output of the Playback block. For example, you can
convert the units of a signal with assigned measurement by setting the Units property for that port to
a different unit of measurement. When the signal units and port units are compatible, the Playback
block performs a unit conversion.

The Playback block supports multirate sample times, allowing you to set a different sample time for
each port. Port sample times can also be set separately from the signal sample time.

Export Data Added to Playback Block

You can use the Playback block to aggregate data from the workspace, files, and the Simulation Data
Inspector (linked to from the source or saved in the model) and export that data to the workspace or

 Playback

1-1573

a file. The Playback block exports all data added to the block, even signals that are not assigned to
ports. To export all data added to the Playback block:

1 On the Simulation tab, in the Share section, click Export.
2 Select Base workspace or File to export the data to the workspace or to a file. You can choose

to export the data to the workspace or to a MAT, MLDATX, or Microsoft Excel file.
3 Click Export.

If you choose to export data to an MLDATX file, you can specify the name of the run using the
Exported run name text box.

If you choose to export data to an Excel file, click Options to select meta data to export and specify
how time data is exported.

Ports
Output

Port_1 — Data loaded from workspace, file, or Simulation Data Inspector
scalar | vector | matrix | array

The Playback block supports loading real or complex signals with fixed or variable dimensions,
discrete and continuous signals, and messages.

When you load bus data, the Playback block assigns a port to each element of the bus.
Data Types: single | double | half | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean |
fixed point | enumerated

Parameters
Port Parameters

You can access port parameters through the Port Editor. Double-click the Playback block. In the
Simulation tab, in the Port section, click Port Editor. Properties for each port can be set
independently using the Port Editor.

Number of Ports — Number of output ports
0 (default) | integer in the range [0,100]

1 Blocks

1-1574

When you add signals to the Playback block and automatically assign signals to ports, a new port is
created for each signal or bus element you add. You can add or delete ports after adding signal data.
The number of ports does not need to be equal to the number of signals you add to the block.

Programmatic Use
Block Parameter: NumPorts
Type: integer
Values: integer in the range [0,100]
Default: 0

Data Type — Output data type for each port
Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | string | boolean | fixdt(1,16,0) | fixdt(1,16,2^0,0) | ...

By default, the port data type is inherited from the source data type or from a downstream block.

You can set the data type of the port independently of the signal data type. For numerical data, the
Playback block converts to the data type specified by the port. If a conversion is not possible, such as
in the case of converting numerical data to a string, the software throws an error.

Programmatic Use

The size of the string array is equal to the number of ports. The index of each element is determined
by the port number.
Block Parameter: OutDataTypeStr
Type: string array
Values: "Inherit: auto" | "double" | "single" | "half" | "int8" | "uint8" |
"int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "string" |
"boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)"
Default: "Inherit: auto"

Complexity — Complexity of each port
"auto" (default) | "real" | "complex"

You can specify the complexity for each port independently. Port complexity does not need to match
the corresponding signal complexity. By default, the complexity of the port is "auto" and inherited
from the signal data.

• If the signal data is real, the complexity of the port that loads the signal can be real or complex. If
the port is set to "complex", the complex part of the signal is a signal ground.

• If the signal data is complex, the complexity of the port that loads the signal must be complex.

Programmatic Use

The size of the string array is equal to the number of ports. The index of each element is determined
by the port number.
Block Parameter: PortComplexity
Type: string array
Values: "auto" | "real" | "complex"
Default: "auto"

Units — Physical units for each port
inherit (default) | supported physical unit

 Playback

1-1575

Physical units for each port, specified as a supported physical unit. To see a list of supported physical
units, use the function showunitslist.

showunitslist

• If no unit is set on the port, the output units are inherited from the signal units.
• If different units are set on both the signal and the port, then the Playback block performs a unit

conversion if the units are compatible.

The Playback block propagates units for each port.
Programmatic Use

The size of the string array is equal to the number of ports. The index of each element is determined
by the port number.
Block Parameter: PortUnits
Type: string array
Values:" " | supported physical unit
Default: " "

Sample time — Output sample period and optional time offset
-1 | scalar | vector

The Sample time parameter specifies when the block computes a new output value during
simulation. For details, see “Specify Sample Time”.

Specify the Sample time parameter as a scalar when you do not want the output to have a time
offset. To add a time offset to the output, specify the Sample time parameter as a 1-by-2 vector
where the first element is the sampling period and the second element is the offset.

By default, the Sample time parameter value is -1, which indicates that the port sample time is
inherited from the signal. If the sample time of a port differs from the sample time of the associated
signal, the Playback block interpolates data as needed using the interpolation setting of the signal.
Programmatic Use

The size of the string array is equal to the number of ports. The index of each element is determined
by the port number.
Block Parameter: PortSampleTimes
Type: string array
Values: scalar | vector
Default: "-1"

Dimensions — Dimensions of each port
" " (default) | integer | integer array

To inherit the dimensions of a port from the data, leave the parameter empty. If the port does not
have assigned data, setting the dimensions generates the ground.

The Playback block stores a multidimensional signal as a single signal with nonscalar sample values,
a set of channels, or frames. For more information, see “Analyze Multidimensional Signal Data”.
Programmatic Use

The size of the cell array is equal to the number of ports. The index of each element is determined by
the port number.

1 Blocks

1-1576

Block Parameter: PortDimensions
Type: cell array
Values:cell array of positive integers | cell array of vectors
Default: empty 1×1 cell array

Dimension Mode — Dimension mode of each port
"auto" (default) | "Fixed" | "Variable"

Dimension mode of each port, returned as a string array where each element may be "auto",
"Fixed", or "Variable".

• If the dimension mode is "auto", then the port inherits the dimension mode from the data.
• If the dimension mode is "Fixed", then the port allows only fixed-sized signals.
• If the dimension mode is "Variable", then the port allows only variable-sized signals.

Programmatic Use

The size of the string array is equal to the number of ports. The index of each element is determined
by the port number.
Block Parameter: PortDimsModes
Type: string array
Values:"auto" | "Fixed" | "Variable"
Default: "auto"

Block Parameters

You can access block parameters through the Parameter Settings. Double-click the Playback block.
In the Simulation tab, click Parameter Settings to configure block parameters.

Block parameter settings apply to all ports.

Before first point — Extrapolation method to determine block output before first data point in loaded
data
Linear (default) | Hold First Value | Ground Value

Extrapolation method used to determine output values for simulation times before the first sample in
the file, workspace, or Simulation Data Inspector data.

 Playback

1-1577

Method Description Example
Linear Extrapolated output depends on the type of

data.

• For double data, the Playback block
linearly extrapolates the output value
using the first two samples.

• For Boolean data, the Playback block
uses the first data point value for the
output value.

• For all other built-in data types, the
Playback block:

1 Upcasts the data to double
2 Linearly extrapolates the output value

using the first two data samples
3 Downcasts the extrapolated data

value to the original data type

If the data contains only one sample, the
Playback block provides that value at the
output.

Do not use the Linear option when the
Playback block loads enumerated or fixed-
point data.

The extrapolation setting is applied to all
signals in a bus. If any signal in the bus
contains enumerated or fixed-point data, do
not use the Linear option.

Hold First
Value

The Playback block uses the first data value
as the output value.

1 Blocks

1-1578

Method Description Example
Ground Value Extrapolated output depends on the type of

data.

• Built-in numeric types — 0
• Boolean — false
• Fixed-point data types — Representation

for value of 0, which may not be exactly 0
due to scaling and limited precision.

• Enumerated data types — Default value

Programmatic Use
Block Parameter: ExtrapolationBeforeFirstDataPoint
Type: character vector
Values: 'Linear extrapolation' | 'Hold first value' | 'Ground value'
Default: 'Linear extrapolation'

After last point — Extrapolation method to determine block output after final data point in loaded
data
Linear (default) | Hold Last Value | Ground Value

Extrapolation method used to determine output values for simulation times after the last sample in
the file, workspace, or Simulation Data Inspector data.

 Playback

1-1579

Method Description Example
Linear Extrapolated output depends on the type of

data.

• For double data, the Playback block
linearly extrapolates the output value
using the last two samples.

• For Boolean data, the Playback block
uses the last sample value for the output
value.

• For all other built-in data types, the
Playback block:

1 Upcasts the data to double
2 Linearly extrapolates the output value

using the last two data samples
3 Downcasts the extrapolated data

value to the original data type

If the data contains only one sample, the
Playback block uses that value as the output.

Do not use the Linear option when the
Playback block loads enumerated or fixed-
point data.

Hold Last Value The Playback block uses the last data value
as the output value.

1 Blocks

1-1580

Method Description Example
Ground Value The Playback block output value depends on

the type of data.

• Built-in numeric types — 0
• Boolean — false
• Fixed-point data types — Representation

for value of 0, which may not be exactly 0
due to scaling and limited precision.

• Enumerated data types — Default value

Programmatic Use
Block Parameter: ExtrapolationAfterLastDataPoint
Type: character vector
Values: 'Linear extrapolation' | 'Hold last value' | 'Ground value'
Default: 'Linear extrapolation'

Enable zero-crossing detection — Zero-crossing detection
'off' (default) | 'on'

Zero-crossing detection locates discontinuities, or zero crossings, in the block output and prevents
excessively small time steps near the discontinuities, which can slow down simulation. The Playback
block detects zero crossings for a signal only when the sample time of the signal is continuous.

The loaded data creates a discontinuity in the block output when the data includes multiple samples
with the same time. For example, for this input data, a discontinuity occurs at time 2.

time: 0 1 2 2 3
signal: 2 3 4 5 6

The Playback block can also create discontinuities in the output based on how you configure
interpolation and extrapolation.

• Setting Before first point to Ground Value can create a discontinuity at the first sample in the
loaded data.

• Setting After last point to Ground Value can create a discontinuity at the last sample in the
loaded data.

This block supports zero-crossing detection only in simulations that use a variable-step solver. When
you use a fixed-step solver for simulation, the software does not detect or locate zero crossings for
this block.

For more information, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'

 Playback

1-1581

Default: 'off'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

yes

Algorithms
Interpolation

Interpolation is the process the Playback block uses to provide output values for simulation times that
are between sample times in the loaded data. For the Playback block, you configure the interpolation
as a signal property. To change the interpolation method for a signal or message:

1 Select the signal or message in the signal table.
2 In the Properties pane, select an option for the Interp Method.

You can choose linear interpolation, zero-order hold interpolation, or no interpolation.

1 Blocks

1-1582

Interpolation Method Description
linear • For double data, the Playbackblock linearly interpolates the output

value using data values before and after the simulation time that needs
an output value.

• For all other built-in numeric data types, the Playback block:

1 Upcasts the data to double
2 Linearly interpolates the output value using data values before and

after the simulation time that needs an output value
3 Downcasts the extrapolated data value to the original data type

• For Boolean data, if the simulation time is between two workspace
data points with different values, the Playback block positions the value
transition halfway between the data points. For example, if the data
transitions from true to false, the Playback block provides an output
value of true for simulation times in the first half of the interval
between the data points and an output value of false for simulation
times in the latter half of the interval.

If the data only contains one sample, the Playback block provides that
value at the output.

Do not use the Linear interpolation option when the Playback block
loads enumerated or fixed-point data.

zoh The Playback block holds each data value from one sample to the next. The
output value for a simulation time between two samples in the data is the
value of the sample that precedes the simulation time.

none (event-based) The Playback block produces a message. For more information on
messages, see “Simulink Messages Overview”.

The interpolation method affects the block output as well as the visualization. For example, this
Playback block visualization shows three ways the Playback block can load the same data for a sine
wave.

• The first sine wave uses linear interpolation.
• The second sine wave uses zero-order hold interpolation.
• The third sine wave is event-based and not interpolated.

 Playback

1-1583

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

See Also
Blocks
Record, XY Graph | Inport | From Workspace | From File

Tools
Simulation Data Inspector

1 Blocks

1-1584

Polynomial
Perform evaluation of polynomial coefficients on input values

Libraries:
Simulink / Math Operations

Description
The Polynomial block evaluates P(u) at each time step for the input u. You define a set of polynomial
coefficients in the form that the MATLAB polyval command accepts.

Ports
Input

Port_1 — Input signal
real scalar or vector

Value at which to evaluate the polynomial P(u).
Data Types: single | double

Output

Port_1 — Evaluated polynomial value
real scalar or vector

Value of the polynomial P(u) evaluated at the input signal.
Data Types: single | double

Parameters
Polynomial coefficients — Coefficients of polynomial to be evaluated

[+2.081618890e-019, -1.441693666e-014, +4.719686976e-010, -8.536869453e-006,
+1.621573104e-001, -8.087801117e+001] (default) | real array

Specify polynomial coefficients in MATLAB polyval form. The first coefficient corresponds to xN and
the remaining coefficients correspond to decreasing orders of x. The last coefficient represents the
constant for the polynomial.

Programmatic Use
Block Parameter: coefs
Type: real array
Default: [+2.081618890e-019, -1.441693666e-014, +4.719686976e-010,
-8.536869453e-006, +1.621573104e-001, -8.087801117e+001]

 Polynomial

1-1585

Block Characteristics
Data Types double | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Topics
polyval

1 Blocks

1-1586

Prelookup
Compute index and fraction for Interpolation Using Prelookup block

Libraries:
Simulink / Lookup Tables
HDL Coder / Lookup Tables

Description
The Prelookup block calculates the index and interval fraction that specify how its input value u
relates to the breakpoint dataset. The Prelookup block works best with the Interpolation Using
Prelookup block. Feed the resulting index and fraction values into an Interpolation Using Prelookup
block to interpolate an n-dimensional table. These two blocks have distributed algorithms. When
combined together, they perform the same operation as the integrated algorithm in the n-D Lookup
Table block. However, the Prelookup and Interpolation Using Prelookup blocks offer greater flexibility
and more efficient simulation and code generation than the n-D Lookup Table block. For more
information, see “Efficiency of Performance”.

Supported Block Operations

To use the Prelookup block, you must specify a set of breakpoint values. You choose whether to
specify the breakpoint values directly on the dialog box or by feeding the values to a bp input port by
setting the Source parameter to Dialog or Input port. Typically, this breakpoint data set
corresponds to one dimension of the table data in an Interpolation Using Prelookup block. The
Prelookup block generates a pair of outputs for each input value u by calculating:

• The index of the breakpoint set element that is less than or equal to u and forms an interval
containing u

• The interval fraction in the range 0 ≤ f < 1, representing the normalized position of u on the
breakpoint interval between the index and the next index value for in-range input

For example, if the breakpoint data set is [0 5 10 20 50 100] and the input value u is 55, the
index is 4 and the fractional value is 0.1. Labels for the index and interval fraction appear as k and f
on the Prelookup block icon. The index value is zero based.

The interval fraction can be negative or greater than 1 for out-of-range input. See the Extrapolation
method block parameter for more information.

Ports
Input

Port_1 — Input signal, u
scalar | vector | matrix

The Prelookup block accepts real-valued signals of any numeric data type that Simulink supports,
except Boolean. The Prelookup block supports fixed-point data types for signals and breakpoint data.

 Prelookup

1-1587

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point | enumerated | bus

bp — Breakpoint data
1-D vector of real-valued signals

The Prelookup block accepts real-valued signals as breakpoint data of any numeric data type that
Simulink supports, except Boolean.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point | enumerated

Output

k — Index of the interval containing the input, u
scalar | vector | matrix

The zero-based index, k, is a real-valued integer that specifies the interval containing the input, u.

Dependencies

To enable this port, set the Output selection to Index and fraction or Index only.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | fixed point

f — Fraction representing the normalized position of the input, u, within the interval, k
scalar | vector | matrix

Fraction, f, represents the normalized position of the input, u, within the interval k.

Dependencies

To enable this port, set the Output selection to Index and fraction.
Data Types: single | double | fixed point

Port_2 — Bus containing index, k, and fraction, f
bus

Outputting the index, k, and fraction f, as a bus object can help simplify the model.

Dependencies

To enable this port, set the Output selection to Index and fraction as bus.
Data Types: bus

Parameters
Main

Breakpoints data

Specification — Choose how to enter breakpoint data

Explicit values (default) | Even spacing | Breakpoint object

If you set this parameter to:

1 Blocks

1-1588

• Explicit values, the Source and Value parameters are visible on the dialog box.
• Even spacing, the First point, Spacing, and Number of points parameters are visible on the

dialog box.
• Breakpoint object, the Name parameter is visible on the dialog box.

Programmatic Use
Block Parameter: BreakpointsSpecification
Type: character vector
Values: 'Explicit values' | 'Even spacing' | 'Breakpoint object'
Default: 'Explicit values'

Source — Specify source of breakpoint data

Dialog (default) | Input port

If you set Source to:

• Dialog, specify breakpoint data under Value.
• Input port, verify that an upstream signal supplies breakpoint data to the bp input port. Each

breakpoint data set must be a strictly monotonically increasing vector that contains two or more
elements. For this option, your block inherits breakpoint attributes from the bp input port.

Dependencies

To enable this parameter, set Specification to Explicit values.

Programmatic Use
Block Parameter: BreakpointsDataSource
Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Value — Breakpoint data values

[10:10:110] (default) | vector of strictly monotonically increasing values containing two or more
elements

Explicitly specify the breakpoint data. Each breakpoint data set must be a strictly monotonically
increasing vector that contains two or more elements. For this option, you specify additional
breakpoint attributes on the Data Types pane.

To open the Lookup Table Editor, click Edit (see “Edit Lookup Tables”).

Note When you set Specification to Explicit values and Source to Input port, verify that an
upstream signal supplies breakpoint data to the bp input port. Each breakpoint data set must be a
strictly monotonically increasing vector that contains two or more elements. For this option, your
block inherits breakpoint attributes (including data type) from the bp input port.

Dependencies

To enable this parameter, set Specification to Explicit values and Source to Dialog.

 Prelookup

1-1589

Programmatic Use
Block Parameter: BreakpointsData
Type: character vector
Values: vector of strictly monotonically increasing values containing two or more elements
Default: '[10:10:110]'

First point — First point in evenly spaced breakpoint data

10 (default) | real-valued scalar
Dependencies

To enable this parameter, set Specification to Even spacing.
Programmatic Use
Block Parameter: BreakpointsFirstPoint
Type: character vector
Values: real-valued scalar
Default: '10'

Spacing — Spacing between evenly spaced breakpoints

10 (default) | real-valued, positive scalar
Dependencies

To enable this parameter, set Specification to Even spacing.
Programmatic Use
Block Parameter: BreakpointsSpacing
Type: character vector
Values: real-valued, positive scalar
Default: '10'

Number of points — Number of evenly spaced points

11 (default) | real-valued, positive scalar
Dependencies

To enable this parameter, set Specification to Even spacing.
Programmatic Use
Block Parameter: BreakpointsNumPoints
Type: character vector
Values: real-valued, positive scalar
Default: '11'

Name — Name of a Simulink.Breakpoint object

no default | Simulink.Breakpoint

Specify the name of a Simulink.Breakpoint object. A breakpoint object references Simulink

breakpoint objects. If a Simulink.Breakpoint object does not exist, click the action button and
select Create. The corresponding parameters of the new breakpoint object are automatically
populated with the block information.

1 Blocks

1-1590

Dependencies

To enable this parameter, set Specification to Breakpoint object.

Programmatic Use
Block Parameter: BreakpointObject
Type: character vector
Values: Simulink.Breakpoint object
Default: ''

Algorithm

Output selection — Specify the signals the block outputs

Index and fraction (default) | Index and fraction as bus | Index only

If you want the block to output the index and interval fraction, you can specify whether the block
outputs individual signals or a bus signal that includes both the index and fraction signals.

• Index only outputs just the index, without the fraction. Typical applications for this option
include:

• Feeding a Direct Lookup Table (n-D) block, with no interpolation on the interval
• Feeding selection ports of a subtable selection for an Interpolation Using Prelookup block
• Performing nonlinear quantizations

• Index and fraction outputs the index and fraction as individual signals.
• Index and fraction as bus outputs a bus signal that includes the index and fraction signals.

Using a bus for these signals:

• Simplifies the model by tying these two related signals together
• Creates a testpoint DpResult structure for the AUTOSAR 4.0 library
• For the AUTOSAR 4.0 library, avoids the creation of extra copies during code generation when

the Prelookup and Interpolation Using Prelookup blocks are in separate models

Note Selecting Index and fraction as bus displays the Output parameter in the Data
Types pane and sets the Output parameter to Inherit: auto. Change this default value to
specify a user-defined bus object. For details about defining the bus object, see the Output
parameter description.

Programmatic Use
Block Parameter: OutputSelection
Type: character vector
Values: 'Index and fraction' | 'Index and fraction as bus' | 'Index only'
Default: 'Index and fraction'

Index search method — Method for searching breakpoint data

Binary search (default) | Linear search | Evenly spaced points

Each search method has speed advantages in different situations:

 Prelookup

1-1591

• For evenly spaced breakpoint sets (for example, 10, 20, 30, and so on), you achieve optimal speed
by selecting Evenly spaced points to calculate table indices. This algorithm uses only the first
two breakpoints of a set to determine the offset and spacing of the remaining points.

• For unevenly spaced breakpoint sets, follow these guidelines:

• If input values for u do not vary significantly between time steps, selecting Linear search
with Begin index search using previous index result produces the best performance.

• If input values for u jump more than one or two table intervals per time step, selecting Binary
search produces the best performance.

A suboptimal choice of index search method can lead to slow performance of models that rely heavily
on lookup tables.

Note The generated code stores only the first breakpoint, the spacing, and the number of
breakpoints when:

• The breakpoint data is not tunable.
• The index search method is Evenly spaced points.

Programmatic Use
Block Parameter: IndexSearchMethod
Type: character vector
Values: 'Evenly spaced points' | 'Linear search' | 'Binary search'
Default: 'Binary search'

Begin index search using previous index result — Start search using the index found at the
previous time step

off (default) | on

For input values of u that change slowly with respect to the interval size, enabling this option can
improve performance. Otherwise, the linear search and binary search methods can take longer,
especially for large breakpoint sets.

Programmatic Use
Block Parameter: BeginIndexSearchUsingPreviousIndexResult
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Extrapolation method — Method for handling out-of-range input values

Clip (default) | Linear

Options include:

• Clip

1 Blocks

1-1592

Block Input Block Outputs
Less than the first breakpoint • Index of the first breakpoint (for example,

0)
• Interval fraction of 0

Greater than the last breakpoint • Index of the next-to-last breakpoint
• Interval fraction of 1

Suppose the range is [1 2 3] and you select this option. If u is 0.5, the index is 0 and the
interval fraction is 0. If u is 3.5, the index is 1 and the interval fraction is 1.

• Linear

Block Input Block Outputs
Less than the first breakpoint • Index of the first breakpoint (for example,

0)
• Interval fraction that represents the linear

distance from u to the first breakpoint
Greater than the last breakpoint • Index of the next-to-last breakpoint

• Interval fraction that represents the linear
distance from the next-to-last breakpoint to
u

Suppose the range is [1 2 3] and you select this option. If u is 0.5, the index is 0 and the
interval fraction is -0.5. If u is 3.5, the index is 1 and the interval fraction is 1.5.

Note The Prelookup block supports linear extrapolation only when all of the following conditions are
true:

• The input u, breakpoint data, and fraction output use floating-point data types.
• The index uses a built-in integer data type.

Programmatic Use
Block Parameter: ExtrapMethod
Type: character vector
Values: 'Clip' | 'Linear'
Default: 'Clip'

Use last breakpoint for input at or above upper limit — Method of handling inputs at or above
upper limit

off (default) | on

Specify how to index input values of u that are greater than or equal to the last breakpoint. The index
value is zero based. When input equals the last breakpoint, block outputs differ as follows.

 Prelookup

1-1593

Check Box Block Outputs
Selected (on) • Index of the last element in the breakpoint data set

• Interval fraction of 0
Cleared (off) • Index of the next-to-last breakpoint

• Interval fraction of 1

Tip When you select Use last breakpoint for input at or above upper limit for a Prelookup block,
you must also select Valid index input may reach last index for the Interpolation Using Prelookup
block to which it connects. This action allows the blocks to use the same indexing convention when
accessing the last elements of their breakpoint and table data sets.

Dependencies

This check box is visible only when:

• Output only the index is cleared
• Extrapolation method is Clip

However, when Output only the index is selected and Extrapolation method is Clip, the block
behaves as if this check box is selected, even though it is invisible.

Programmatic Use
Block Parameter: UseLastBreakpoint
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for out-of-range input — Block action when input is out of range

None (default) | Warning | Error

Options include:

• None — Produce no response.
• Warning — Display a warning and continue the simulation.
• Error — Terminate the simulation and display an error.

Programmatic Use
Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Code generation

Remove protection against out-of-range input in generated code — Remove code that checks
for out-of-range breakpoint inputs

Off (default) | On

1 Blocks

1-1594

Check Box Result When to Use
On Generated code does not

include conditional statements
to check for out-of-range
breakpoint inputs.

When the input is out-of-range,
it may cause undefined behavior
for generated code.

For code efficiency

Off Generated code includes
conditional statements to check
for out-of-range breakpoint
inputs.

For safety-critical applications

If your input is not out-of-range, you can select the Remove protection against out-of-range index
in generated code check box for code efficiency. By default, this check box is cleared. For safety-
critical applications, do not select this check box. If you want to select the Remove protection
against out-of-range index in generated code check box, first check that your model inputs are in
range. For example:

1 Clear the Remove protection against out-of-range index in generated code check box.
2 Set the Diagnostic for out-of-range input parameter to Error.
3 Simulate the model in normal mode.
4 If there are out-of-range errors, fix them to be in range and run the simulation again.
5 When the simulation no longer generates out-of-range input errors, select the Remove

protection against out-of-range index in generated code check box.

Note When you select the Remove protection against out-of-range index in generated
code check box and the input is out-of-range, the behavior is undefined for generated code

Depending on your application, you can run the following Model Advisor checks to verify the usage of
this check box:

Additionally, to determine if it is safe to select this check box, if you have a Simulink Design Verifier
license, consider using the “Detect Block Input Range Violations” (Simulink Design Verifier) check.

• By Product > Embedded Coder > Identify lookup table blocks that generate expensive
out-of-range checking code

• By Product > Simulink Check > Modeling Standards > DO-178C/DO-331 Checks > Check
usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Advisor Checks”.
Programmatic Use
Block Parameter: RemoveProtectionInput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Sample time value other than -1

 Prelookup

1-1595

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Data Types

Breakpoint — Breakpoint data type

Inherit: Same as input (default) | Inherit: Inherit from 'Breakpoint data' | double
| single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) |
fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the breakpoint data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• The name of a built-in data type, for example, single
• The name of a data type class, for example, an enumerated data type class
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Tip

• Specify a breakpoint data type different from the data type of input u for these cases:

• Lower memory requirement for storing breakpoint data that uses a smaller type than the input
signal u

• Sharing of prescaled breakpoint data between two Prelookup blocks with different data types
for input u

• Sharing of custom storage breakpoint data in the generated code for blocks with different data
types for input u

• Specify the same slope and bias for a breakpoint data type and its corresponding input data type if
either of them has a fixed-point data type.

• Enumerated data:

• Breakpoints support unordered enumerated data. As a result, linear searches are also
unordered, which offers flexibility but can impact performance. The search begins from the
first element in the breakpoint.

1 Blocks

1-1596

• If the Begin index search using previous index result check box is selected, you must use
ordered monotonically increasing data. This ordering improves performance.

• For enumerated data, Extrapolation method must be Clip.
• Because the fraction is 1 or 0, select Output selection > Index only.

If you are using the index only output selection setting with the Interpolation Using Prelookup
block, consider using the Number of sub-table selection dimensions parameter.

These are limitations for using enumerated data with this block:

• The block does not support out-of-range input for enumerated data. When specifying enumerated
data, include the entire enumeration set in the breakpoint data set. For example, use the
enumeration function.

• When breakpoints data source is set to Inport port, the enumeration data type must have 0 as
the default value. For example, for this enumeration class, the default value of GEAR1 must be 0.

classdef(Enumeration) Gears < Simulink.IntEnumType
 enumeration
 GEAR1(1),
 GEAR2(2),
 GEAR3(4),
 GEAR4(8),
 SPORTS(16),
 REVERSE(32),
 NEUTRAL(0)
 end
end

Dependencies

To enable this parameter, set the breakpoints data Source to Dialog.

Note When you set Source to Input port, the block inherits all breakpoint attributes (data type,
minimum, and maximum) from the bp input port.

Programmatic Use
Block Parameter: BreakpointDataTypeStr
Type: character vector
Values: 'Inherit: Same as input' | 'Inherit: Inherit from 'Breakpoint data'' |
'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'int64' | 'uint64'| 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'|'<data type expression>'
Default: 'Inherit: Same as input'

Index — Index data type

uint32 (default) | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
fixdt(1,16) | <data type expression>

Specify a data type that can index all elements in the breakpoint data set. You can:

 Prelookup

1-1597

• Select a built-in integer data type from the list.
• Specify an integer data type using a fixed-point representation.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.
Programmatic Use
Block Parameter: IndexDataTypeStr
Type: character vector
Values:
'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'fixdt(1,16)' | '<data type expression>'
Default: 'uint32'

Fraction — Fraction data type

Inherit: Inherit via internal rule (default) | double | single | fixdt(1,16,0) | <data
type expression>

Specify the data type of the interval fraction. You can:

• Select a built-in data type from the list.
• Specify data type inheritance through an internal rule.
• Specify a fixed-point data type using the [Slope Bias] or binary-point-only scaling representation.

• If you use the [Slope Bias] representation, the scaling must be trivial — that is, the slope is 1
and the bias is 0.

• If you use the binary-point-only representation, the fixed power-of-two exponent must be less
than or equal to zero.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.
Dependencies

This parameter displays only when you set Output selection on the Main tab to Index and
fraction.
Programmatic Use
Block Parameter: FractionDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' |
'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Output — Output data type

Inherit: auto (default) | bus: <object name>

To output a virtual bus, use the Inherit: auto setting. The resulting virtual bus contains two
elements, the index and the fraction signals.

1 Blocks

1-1598

To output and specify a nonvirtual bus, use the Bus: <object name> template. Replace <object
name> with the name of a bus object that contains the index and fraction signals.

• The bus object must contain two elements. The first element corresponds to the index signal and
the second to the fraction signal.

• The index and fraction bus element signals cannot be bus signals.
• The data type and the complexity of the bus elements must meet the same constraints that apply

to the index and fraction signals if you set Output selection to Index and fraction.

To create the bus object with the index and fraction bus elements, use MATLAB code similar to this,
customizing the bus object name and the names and data types of the bus elements.

% Bus object: kfBus
elems(1) = Simulink.BusElement;
elems(1).Name = 'Index';
elems(1).DataType = 'int8';

elems(2) = Simulink.BusElement;
elems(2).Name = 'Fraction';
elems(2).DataType = 'double';

kfBus = Simulink.Bus;
kfBus.Elements = elems;
clear elems;

Alternatively, you can use the Type Editor to create or modify the bus object to use with the
Prelookup block.

If you feed the bus output signal from this block to an Interpolation Using Prelookup block, select the
Require index and fraction as bus check box in that block.

Note Use the Fixed-Point Tool data type override option to override bus objects with new bus objects
that replace fixed-point data types with floating-point data types.

Overridden bus objects used with the Prelookup block can cause an error because the block does not
accept floating-point data types for the first element in the bus.

If you encounter this issue, use the Fix button to redefine the original bus object and protect it from
being overridden. For example, suppose you define the first element of the bus object to be an int32.

myBus.Elements(1).DataType

int32

Clicking the Fix button redefines the first bus element:
myBus.Elements(1).DataType = 'fixdt(''int32'',''DataTypeOverride'',''Off'')'

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

 Prelookup

1-1599

Dependencies

This parameter displays only when you set Output selection on the Main tab to Index and
fraction as bus.

Programmatic Use
Block Parameter: OutputBusDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'Bus: <object name>' | '<data type expression>'
Default: 'Inherit: auto'

Breakpoint Minimum — Minimum value breakpoint data can have

[] (default) | scalar

Specify the minimum value that the breakpoint data can have. The default value is [] (unspecified).

Dependencies

To enable this parameter, set the breakpoints data Source to Dialog on the Main tab.

Programmatic Use
Block Parameter: BreakpointMin
Type: character vector
Value: scalar
Default: '[]'

Breakpoint Maximum — Maximum value breakpoint data can have

[] (default) | scalar

Specify the maximum value that the breakpoint data can have. The default value is [] (unspecified).

Dependencies

To enable this parameter, set the breakpoints data Source to Dialog on the Main tab.

Programmatic Use
Block Parameter: BreakpointMax
Type: character vector
Value: scalar
Default: '[]'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'

1 Blocks

1-1600

Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Block Characteristics
Data Types double | enumerated | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Enumerated Values in Prelookup

Simulate a Prelookup block with enumerated values.

Suppose that you have a Prelookup block with an enumerated class like this defined:

classdef(Enumeration) Gears < Simulink.IntEnumType
 enumeration
 GEAR1(1),
 GEAR2(2),
 GEAR3(4),
 GEAR4(8),
 SPORTS(16),
 REVERSE(-1),
 NEUTRAL(0)
 end
end

Prelookup block has these settings:

• Breakpoints data value is enumeration('Gears').

 Prelookup

1-1601

• Output selection is Index only.
• For an unordered search, set Index search method to Linear search and clear the Begin

index search using previous index result check box.
• Extrapolation method is Clip.

Interpolation using Prelookup block has these settings:

• Number of dimensions to 1.
• Table data value is [5 10 20 40 80 -5 0].
• Interpolation method is Flat.
• Number of sub-table selection dimensions is 1.

Simulation produces a vector [10 -5 80], which correspond to GEAR2, REVERSE, and SPORTS.

Version History
Introduced in R2006b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

1 Blocks

1-1602

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

Required Block Settings

• Breakpoint data: For Source, select Dialog.
• Specification: You can select either Explicit values or Even spacing.
• Index search method: Select Evenly spaced points.
• Extrapolation method: Select Clip.
• Diagnostic for out-of-range input: Select Error.
• Use last breakpoint for input at or above upper limit: Select this check box.
• Breakpoint: For Data Type, select Inherit: Same as input.
• Integer rounding mode: Select Zero, Floor, or Simplest.

Table Data Typing and Sizing

• It is good practice to structure your table such that the spacing between breakpoints is a power of
two. If the breakpoint spacing does not meet this condition, HDL Coder issues a warning. When
the breakpoint spacing is a power of two, you can replace division operations in the prelookup
step with right-shift operations.

• All ports on the block require scalar values.
• The coder permits floating-point data for breakpoints.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Simulink PLC Coder has limited support for lookup table blocks. The coder does not support:

• Number of dimensions greater than 2
• Cubic spline interpolation method
• Begin index search using a previous index mode
• Cubic spline extrapolation method

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Interpolation Using Prelookup | n-D Lookup Table | Simulink.Breakpoint

Topics
“About Lookup Table Blocks”

 Prelookup

1-1603

“Anatomy of a Lookup Table”
“Enter Breakpoints and Table Data”
“Guidelines for Choosing a Lookup Table”

1 Blocks

1-1604

Probe
Output signal attributes, including width, dimensionality, sample time, and complex signal flag

Libraries:
Simulink / Signal Attributes
HDL Coder / Signal Attributes

Description
The Probe block outputs selected information about the signal on its input. The block can output the
following attributes of the input signal: width, dimensionality, sample time, and a flag indicating
whether the input is a complex-valued signal. The block has one input port. The number of output
ports depends on the information that you select for probing, that is, signal dimensionality, sample
time, and/or complex signal flag. Each probed value is output as a separate signal on a separate
output port, with an independent data type control. During simulation, the block icon displays the
probed data.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal to probe, specified as a scalar, vector, matrix, or N-D array. The block accepts real or
complex-valued signals of any built-in data type.

You can use an array of buses as an input signal to a Probe block. For details about defining and using
an array of buses, see “Group Nonvirtual Buses in Arrays of Buses”.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Output

Port_1 (W) — Signal width
scalar

Width, or number of elements, in the input signal, specified as a scalar. The width is also displayed on
the block icon with the notation W:.

Dependencies

To enable this port, select Probe width.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Port_2 (Ts) — Sample time
vector

 Probe

1-1605

Sample time of the input signal, as a two-element vector that specifies the period and offset of the
sample time, respectively. The sample time is also displayed on the block icon with the notation Ts:.
See “Specify Sample Time” for more information.

Dependencies

To enable this port, select Probe sample time.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Port_3 (C) — Signal complexity
scalar

Indication of input signal complexity:

• When the input signal is complex, the block outputs 1.
• When the input signal is real-valued, the block outputs 0.

The indication of signal complexity is also displayed on the block icon with the notation C:.

Dependencies

To enable this port, select Detect complex signal.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Port_4 (D) — Signal dimensions
scalar | vector

Dimensions of the input signal, output as a scalar or vector. The signal dimensions are also displayed
on the block icon with the notation D:.

Dependencies

To enable this port, select Probe signal dimensions.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
Main

Probe width — Output width of the input signal

on (default) | off

Select to output the width, or number of elements, of the probed signal.

Programmatic Use
Block Parameter: ProbeWidth
Type: character vector
Values: 'off' | 'on'
Default: 'on'

1 Blocks

1-1606

Probe sample time — Output sample time of input signal

on (default) | off

Select to output the sample time of the probed signal. The output is a two-element vector that
specifies the period and offset of the sample time, respectively. See “Specify Sample Time” for more
information.
Programmatic Use
Block Parameter: ProbeSampleTime
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Detect complex signal — Indicate the complexity of input signal

on (default) | off

Select to output 1 if the probed signal is complex; otherwise, 0.
Programmatic Use
Block Parameter: ProbeComplexSignal
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Probe signal dimensions — Output dimensions of input signal

on (default) | off

Select to output the dimensions of the probed signal.
Programmatic Use
Block Parameter: ProbeSignalDimensions
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Signal Attributes

Data type for width — Data type of signal width output

double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | Same as input

Select the output data type for the signal width.
Programmatic Use
Block Parameter: ProbeWidthDataType
Type: character vector
Values: 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'Same as input'
Default: 'double'

Data type for sample time — Data type of sample time output

double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | Same as input

 Probe

1-1607

Select the output data type for the sample time information.

Programmatic Use
Block Parameter: ProbeSampleTimeDataType
Type: character vector
Values: 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'Same as input'
Default: 'double'

Data type for signal complexity — Data type of complexity output

double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean | Same as
input

Select the output data type for the complexity information.

Programmatic Use
Block Parameter: ProbeComplexityDataType
Type: character vector
Values: 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'Same as input'
Default: 'double'

Data type for signal dimensions — Data type for signal dimension output

double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | Same as input

Select the output data type for the signal dimension output.

Programmatic Use
Block Parameter: ProbeDimensionsDataType
Type: character vector
Values: 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'Same as input'
Default: 'double'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

1 Blocks

1-1608

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Clock | Digital Clock | Weighted Sample Time Math

Topics
“Specify Sample Time”

 Probe

1-1609

Product, Matrix Multiply
Multiply and divide scalars and nonscalars or multiply and invert matrices

Libraries:
Simulink / Commonly Used Blocks
Simulink / Math Operations
Simulink / Matrix Operations
HDL Coder / Commonly Used Blocks
HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description
The Product block outputs the result of multiplying two inputs: two scalars, a scalar and a nonscalar,
or two nonscalars that have the same dimensions. The default parameter values that specify this
behavior are:

• Multiplication: Element-wise(.*)
• Number of inputs: 2

This table shows the output of the Product block for “Multiply Inputs of Different Dimensions with the
Product Block” on page 12-67 using default block parameter values.

Inputs and Behavior Example
Scalar X Scalar

Output the product of the two
inputs.

Scalar X Nonscalar

Output a nonscalar having the
same dimensions as the input
nonscalar. Each element of the
output nonscalar is the product of
the input scalar and the
corresponding element of the
input nonscalar.
Nonscalar X Nonscalar

Output a nonscalar having the
same dimensions as the inputs.
Each element of the output is the
product of corresponding elements
of the inputs.

The Divide and Product of Elements blocks are variants of the Product block.

1 Blocks

1-1610

• For information on the Divide block, see Divide.
• For information on the Product of Elements block, see Product of Elements.

The Product block (or the Divide block or Product of Elements block, if appropriately configured) can:

• Numerically multiply and divide any number of scalar, vector, or matrix inputs
• Perform matrix multiplication and division on any number of matrix inputs

The Product block performs scalar or matrix multiplication, depending on the value of the
Multiplication parameter. The block accepts one or more inputs, depending on the Number of
inputs parameter. The Number of inputs parameter also specifies the operation to perform on each
input.

The Product block can input any combination of scalars, vectors, and matrices for which the
operation to perform has a mathematically defined result. The block performs the specified
operations on the inputs, then outputs the result.

The Product block has two modes: Element-wise mode, which processes nonscalar inputs element by
element, and Matrix mode, which processes nonscalar inputs as matrices.

Element-Wise Mode

When you set Multiplication to Element-wise(.*), the Product block is in Element-wise mode, in
which it operates on the individual numeric elements of any nonscalar inputs. The MATLAB
equivalent is the .* operator. In element-wise mode, the Product block can perform a variety of
multiplication, division, and arithmetic inversion operations.

The value of the Number of inputs parameter controls both how many inputs exist and whether
each is multiplied or divided to form the output. When the Product block is in element-wise mode and
has only one input, it is functionally equivalent to a Product of Elements block. When the block has
multiple inputs, any nonscalar inputs must have identical dimensions, and the block outputs a
nonscalar with those dimensions. To calculate the output, the block first expands any scalar input to a
nonscalar that has the same dimensions as the nonscalar inputs.

This table shows the output of the Product block for “Multiply Inputs of Different Dimensions with the
Product Block” on page 12-67, using the indicated values for the Number of inputs parameter.

Parameter Values Examples
Number of inputs: 2

Number of inputs: */

 Product, Matrix Multiply

1-1611

Parameter Values Examples
Number of inputs: /**/

Number of inputs:**

Number of inputs: */*

Matrix Mode

When the value of the Multiplication parameter is Matrix(*), the Product block is in Matrix mode,
in which it processes nonscalar inputs as matrices. The MATLAB equivalent is the * operator. In
Matrix mode, the Product block can invert a single square matrix, or multiply and divide any number
of matrices that have dimensions for which the result is mathematically defined.

The value of the Number of inputs parameter controls both how many inputs exist and whether
each input matrix is multiplied or divided to form the output. The syntax of Number of inputs is the
same as in element-wise mode. The difference between the modes is in the type of multiplication and
division that occur.

Interactions Between Block Inputs and Modes

The interactions between the Product block inputs and its Multiplication modes are:

• 1 or * or /

The block has one input port. In element-wise mode, the block processes the input as described
for the Product of Elements block. In matrix mode, if the parameter value is 1 or *, the block
outputs the input value. If the value is /, the input must be a square matrix (including a scalar as a
degenerate case) and the block outputs the matrix inverse. See “Element-Wise Mode” on page 1-
1611 and “Matrix Mode” on page 1-1612 for more information.

• Integer value > 1

The block has the number of inputs given by the integer value. The inputs are multiplied together
in element-wise mode or matrix mode, as specified by the Multiplication parameter. See
“Element-Wise Mode” on page 1-1611 and “Matrix Mode” on page 1-1612 for more information.

• Unquoted string of two or more * and / characters

The block has the number of inputs given by the length of the character vector. Each input that
corresponds to a * character is multiplied into the output. Each input that corresponds to a /

1 Blocks

1-1612

character is divided into the output. The operations occur in element-wise mode or matrix mode,
as specified by the Multiplication parameter. See “Element-Wise Mode” on page 1-1611 and
“Matrix Mode” on page 1-1612 for more information.

Expected Differences Between Simulation and Code Generation

For element-wise operations on complex floating-point inputs, simulation and code generation results
might differ in near-overflow cases. Although complex numbers is selected and non-finite
numbers is not selected on the Code Generation > Interface pane of the Configuration Parameters
dialog box, the code generator does not emit special case code for intermediate overflows. This
method improves the efficiency of embedded operations for the general case that does not include
extreme values. If the inputs could include extreme values, you must manage these cases explicitly.

The generated code might not produce the same pattern of NaN and inf values as simulation when
these values are mathematically meaningless. For example, if the simulation output contains a NaN,
output from the generated code also contains a NaN, but not necessarily in the same place.

Ports
Input

Port_1 — First input to multiply or divide
scalar | vector | matrix | N-D array

First input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Port_N — Nth input to multiply or divide
scalar | vector | matrix | N-D array

Nth input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

X — Input signal to multiply
scalar | vector | matrix | N-D array

Input signal to be multiplied with other inputs.

Dependencies

To enable one or more X ports, specify one or more * characters for the Number of inputs
parameter and set the Multiplication parameter to Element-wise(.*).
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

÷ — Input signal to divide or invert
scalar | vector | matrix | N-D array

Input signal for division or inversion operations.

 Product, Matrix Multiply

1-1613

Dependencies

To enable one or more ÷ ports, specify one or more / characters for the Number of inputs
parameter and set the Multiplication parameter to Element-wise(.*).
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

* — Input signal to multiply
scalar | vector | matrix | N-D array

Input signal to be multiplied with other inputs.

Dependencies

To enable one or more * ports, specify one or more * characters for the Number of inputs
parameter and set the Multiplication parameter to Matrix(*).
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Inv — Input signal to divide or invert
scalar | vector | matrix | N-D array

Input signal for division or inversion operations.

Dependencies

To enable one or more Inv ports, specify one or more / characters for the Number of inputs
parameter and set the Multiplication parameter to Matrix(*).
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Output computed by multiplying, dividing, or inverting inputs
scalar | vector | matrix | N-D array

Output computed by multiplying, dividing, or inverting inputs.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Number of inputs — Control number of inputs and type of operation

2 (default) | scalar | * or / for each input port

Control two properties of the block:

• The number of input ports on the block
• Whether each input is multiplied or divided into the output

1 Blocks

1-1614

When you specify:

• 1 or * or /

The block has one input port. In element-wise mode, the block processes the input as described
for the Product of Elements block. In matrix mode, if the parameter value is 1 or *, the block
outputs the input value. If the value is /, the input must be a square matrix (including a scalar as a
degenerate case) and the block outputs the matrix inverse. See “Element-Wise Mode” on page 1-
1611 and “Matrix Mode” on page 1-1612 for more information.

• Integer value > 1

The block has the number of inputs given by the integer value. The inputs are multiplied together
in element-wise mode or matrix mode, as specified by the Multiplication parameter. See
“Element-Wise Mode” on page 1-1611 and “Matrix Mode” on page 1-1612 for more information.

• Unquoted string of two or more * and / characters

The block has the number of inputs given by the length of the character vector. Each input that
corresponds to a * character is multiplied into the output. Each input that corresponds to a /
character is divided into the output. The operations occur in element-wise mode or matrix mode,
as specified by the Multiplication parameter. See “Element-Wise Mode” on page 1-1611 and
“Matrix Mode” on page 1-1612 for more information.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: '2' | '**' | '*/' | '*/*' | ...
Default: '2'

Multiplication — Element-wise (.*) or Matrix (*) multiplication

Element-wise(.*) (default) | Matrix(*)

Specify whether the block performs Element-wise(.*) or Matrix(*) multiplication.

Programmatic Use
Block Parameter: Multiplication
Type: character vector
Values: 'Element-wise(.*)' | 'Matrix(*)'
Default: 'Element-wise(.*)'

Multiply over — All dimensions or specified dimension

All dimensions (default) | Specified dimension

Specify the dimension to multiply over as All dimensions, or Specified dimension. When you
select Specified dimension, you can specify the Dimension as 1 or 2.

Dependencies

To enable this parameter, set Number of inputs to * and Multiplication to Element-wise (.*).

Programmatic Use
Block Parameter: CollapseMode
Type: character vector

 Product, Matrix Multiply

1-1615

Values: 'All dimensions' | 'Specified dimension'
Default: 'All dimensions'

Dimension — Dimension to multiply over

1 (default) | 2 | ... | N

Specify the dimension to multiply over as an integer less than or equal to the number of dimensions
of the input signal.

Dependencies

To enable this parameter, set:

• Number of inputs to *
• Multiplication to Element-wise (.*)
• Multiply over to Specified dimension

Programmatic Use
Block Parameter: CollapseDim
Type: character vector
Values: '1' | '2' | ...
Default: '1'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Signal Attributes

Require all inputs to have the same data type — Require that all inputs have the same data type

off (default) | on

Specify if input signals must all have the same data type. If you enable this parameter, then an error
occurs during simulation if the input signal types are different.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on'
Default: 'off'

1 Blocks

1-1616

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

 Product, Matrix Multiply

1-1617

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

Inherit: Inherit via internal rule (default) | Inherit: Keep MSB | Inherit: Match
scaling | Inherit: Inherit via back propagation | Inherit: Same as first input |
double | single | half | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType. For more information, see “Control Data Types of
Signals”.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule — Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. For example, if the block multiplies an input of type int8 by a
gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is
sfix24. If Unspecified (assume 32-bit Generic), in other words, a generic 32-bit
microprocessor, is specified as the target hardware, the output data type is int32. If none of the
word lengths provided by the target microprocessor can accommodate the output range, Simulink
software displays an error in the Diagnostic Viewer.

• Inherit: Keep MSB– Simulink chooses a data type that maintains the full range of the
operation, then reduces the precision of the output to a size appropriate for the embedded target
hardware.

Tip For more efficient generated code, deselect the Saturate on integer overflow parameter.

This rule never produces overflows.
• Inherit: Match scaling– Simulink chooses a data type whose scaling matches the scaling of

the input types. If the full range of the type does not fit on the embedded target hardware, the
range is reduced yielding a type appropriate for the embedded target hardware. This rule can
produce overflows. This rule does not support multiplication between complex signals

The Inherit: Keep MSB and Inherit: Match scaling rules do not support multiplication
between complex signals or signals with non-zero bias. The rules support only multiplication and
division ('**', '*/', '/*') between two inputs, matrix multiplication of two inputs, and
collapsing product of two elements of a vector.

It is not always possible for the software to optimize code efficiency and numerical accuracy at the
same time. If the internal rule doesn’t meet your specific needs for numerical accuracy or
performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.

1 Blocks

1-1618

• Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point
Tool to propose data types for your model. For more information, see fxptdlg.

• To specify your own inheritance rule, use Inherit: Inherit via back propagation and
then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

• Inherit: Inherit via back propagation — Use data type of the driving block.
• Inherit: Same as first input — Use data type of first input signal.

Dependencies

When input is a floating-point data type smaller than single precision, the Inherit: Inherit via
internal rule output data type depends on the setting of the “Inherit floating-point output type
smaller than single precision” configuration parameter. Data types are smaller than single precision
when the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Keep MSB'| 'Inherit:
Match scaling'| 'Inherit: Same as first input' | 'Inherit: Inherit via back
propagation' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' |
'int32' | 'uint32' | 'uint64'|'int64'|'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode for fixed-point operations. You can select:

Ceiling
Rounds positive and negative numbers toward positive infinity. Equivalent to the MATLAB ceil
function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

 Product, Matrix Multiply

1-1619

Floor
Rounds positive and negative numbers toward negative infinity. Equivalent to the MATLAB floor
function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest
Chooses between rounding toward floor and rounding toward zero to generate rounding code
that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

1 Blocks

1-1620

Action Rationale Impact on Overflows Example
Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Mode — Select data type mode

Inherit (default) | Built in | Fixed Point

Select the category of data to specify.

• Inherit — Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right where you can select the inheritance mode.

• Built in — Built-in data types. Selecting Built in enables a second menu/text box to the right
where you can select a built-in data type.

• Fixed point — Fixed-point data types. Selecting Fixed point enables additional parameters
that you can use to specify a fixed-point data type.

• Expression — Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, click the Show data type assistant button.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

 Product, Matrix Multiply

1-1621

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.
Dependencies

To enable this parameter, set Mode to Built in or Fixed point.
Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Specify signed or unsigned

Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

• Signed, specifies the fixed-point data as signed.
• Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.
Dependencies

To enable this parameter, set the Mode to Fixed point.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.
Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type

0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.
Dependencies

To enable this parameter, set Scaling to Binary point.

1 Blocks

1-1622

Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Slope — Specify slope for the fixed-point data type

2^0 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Product, Matrix Multiply

1-1623

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

The default Linear implementation generates a chain of N operations (multipliers) for N inputs.

Architecture Parameters Description
Lineardefault None Generate a product operator *

in the generated code.
ShiftAdd LatencyStrategy Perform product operations on

fixed-point types by using
multiple shift and add
operations. The block has
pipelined implementation that
introduces additional latency in
the generated code. ShiftAdd
architecture maps to efficient
circuits in ASIC applications.
This architecture is useful in
applications on FPGA target
boards that do not have DSP
units.

The MAX latency for different
word lengths is calculated by
using this
formula:ceil(log2(min(in1W
L,in2WL))). in1WL is the first
input word length and in2WL is
the second input word length.
For example, if both inputs are
of word length four the MAX
latency is two.

When you use fixed-point data
types, the word length of the
inputs must be less than 63.

HDL Block Properties

If you use the block in matrix multiplication mode, you can specify the DotProductStrategy. This
setting determines whether you want to implement the matrix multiplication by using a tree of adders
and multipliers, or use the Multiply-Accumulate block implementation. The default is Fully
Parallel.

Note The DotProductStrategy must be set to Fully Parallel when you use the Native
Floating Point mode.

1 Blocks

1-1624

For more information, see “DotProductStrategy” (HDL Coder).

See also “Design Considerations for Matrices and Vectors” (HDL Coder).

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

LatencyStrategy To enable this property, set HDL architecture to ShiftAdd. Specify
whether to map the blocks in your design to MAX, CUSTOM, or ZERO latency
for fixed-point and floating-point types. The default is MAX. See also
“LatencyStrategy” (HDL Coder).

CustomLatency To enable this property, set HDL architecture to ShiftAdd. When
LatencyStrategy is set to CUSTOM, use this property to specify a custom
latency value between ZERO and MAX for fixed-point types. See also
“LatencyStrategy” (HDL Coder).

Native Floating Point
HandleDenormals Specify whether you want HDL Coder to insert additional logic to handle

denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min,
Zero, or Custom for the floating-point operator. The default is inherit.
See also “LatencyStrategy” (HDL Coder).

NFPCustomLatency To specify a value, set LatencyStrategy to Custom. HDL Coder adds
latency equal to the value that you specify for the NFPCustomLatency
setting. See also “NFPCustomLatency” (HDL Coder).

MantissaMultiplyStra
tegy

Specify how to implement the mantissa multiplication operation during
code generation. By using different settings, you can control the DSP usage
on the target FPGA device. The default is inherit. See also
“MantissaMultiplyStrategy” (HDL Coder).

Complex Data Support

The default (linear) implementation supports complex data.

 Product, Matrix Multiply

1-1625

Complex division is not supported. For block implementations of the Product block in divide mode or
reciprocal mode, see “HDL Code Generation” on page 1-604 on the Divide block reference page.

Restrictions

• HDL code generation does not support more than two inputs at the ports of the block when you
use the block in matrix multiplication mode.

• Product block with /* for Number of inputs block parameter performs a division where the
second input is divided by the first input. This mode has the same restrictions that apply to the
Divide block. See “HDL Code Generation” on page 1-604.

• The Product block does not support the sharing optimization in ShiftAdd architecture. To apply
the sharing optimization on the Product block, consider using Linear architecture. To view
sharing optimization results for your subsystem, generate the Streaming and Sharing Report.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Divide | Dot Product | Product of Elements

1 Blocks

1-1626

Product of Elements
Copy or invert one scalar input, or collapse one nonscalar input

Libraries:
Simulink / Math Operations
HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description
The Product of Elements block inputs one scalar, vector, or matrix. You can use the block to:

• Copy a scalar input unchanged
• Invert a scalar input (divide 1 by it)
• Collapse a vector or matrix to a scalar by multiplying together all elements or taking successive

inverses of the elements
• Collapse a matrix to a vector using one of these options:

• Multiply together the elements of each row or column
• Take successive inverses of the elements of each row or column

The Product of Elements block is functionally a Product block that has two preset parameter values:

• Multiplication: Element-wise(.*)
• Number of inputs: *

Setting nondefault values for either of those parameters can change a Product of Elements block to
be functionally equivalent to a Product block or a Divide block.

Ports
Input

Port_1 — First input to multiply or divide
scalar | vector | matrix | N-D array

First input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Port_N — Nth input to multiply or divide
scalar | vector | matrix | N-D array

Nth input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

 Product of Elements

1-1627

X — Input signal to multiply
scalar | vector | matrix | N-D array

Input signal to be multiplied with other inputs.

Dependencies

To enable one or more X ports, specify one or more * characters for the Number of inputs
parameter.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

÷ — Input signal to divide or invert
scalar | vector | matrix | N-D array

Input signal for division or inversion operations.

Dependencies

To enable one or more ÷ ports, specify one or more / characters for the Number of inputs
parameter.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Output computed by multiplying, dividing, or inverting inputs
scalar | vector | matrix | N-D array

Output computed by multiplying, dividing, or inverting inputs.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Number of inputs — Control number of inputs and type of operation

* (default) | positive integer scalar | * or / for each input port

Control two properties of the block:

• The number of input ports on the block
• Whether each input is multiplied or divided into the output

When you specify:

• 1 or * or /

The block has one input port. In element-wise mode, the block processes the input as described
for the Product of Elements block. In matrix mode, if the parameter value is 1 or *, the block
outputs the input value. If the value is /, the input must be a square matrix (including a scalar as a

1 Blocks

1-1628

degenerate case) and the block outputs the matrix inverse. See “Element-Wise Mode” on page 1-
1611 and “Matrix Mode” on page 1-1612 for more information.

• Integer value > 1

The block has the number of inputs given by the integer value. The inputs are multiplied together
in element-wise mode or matrix mode, as specified by the Multiplication parameter. See
“Element-Wise Mode” on page 1-1611 and “Matrix Mode” on page 1-1612 for more information.

• Unquoted string of two or more * and / characters

The block has the number of inputs given by the length of the character vector. Each input that
corresponds to a * character is multiplied into the output. Each input that corresponds to a /
character is divided into the output. The operations occur in element-wise mode or matrix mode,
as specified by the Multiplication parameter. See “Element-Wise Mode” on page 1-1611 and
“Matrix Mode” on page 1-1612 for more information.

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: '2' | '*' | '**' | '*/' | '*/*' | ...
Default: '*'

Multiplication — Element-wise (.*) or Matrix (*) multiplication

Element-wise(.*) (default) | Matrix(*)

Specify whether the block performs Element-wise(.*) or Matrix(*) multiplication.

Programmatic Use
Block Parameter: Multiplication
Type: character vector
Values: 'Element-wise(.*)' | 'Matrix(*)'
Default: 'Element-wise(.*)'

Multiply over — All dimensions or specified dimension

All dimensions (default) | Specified dimension

Specify the dimension to multiply over as All dimensions, or Specified dimension.

When you select All dimensions and select configuration parameter Use algorithms optimized
for row-major array layout, Simulink enables row-major algorithms for simulation. To generate
row-major code, set configuration parameter Array layout (Simulink Coder) to Row-major in
addition to selecting Use algorithms optimized for row-major array layout. The column-major
and row-major algorithms differ only in the multiplication order. In some cases, due to different
operation order on the same data set, you might experience minor numeric differences in the outputs
of column-major and row-major algorithms.

When you select Specified dimension, you can specify the Dimension as 1 or 2.

Dependencies

To enable this parameter, set Number of inputs to * and Multiplication to Element-wise (.*).

 Product of Elements

1-1629

Programmatic Use
Block Parameter: CollapseMode
Type: character vector
Values: 'All dimensions' | 'Specified dimension'
Default: 'All dimensions'

Dimension — Dimension to multiply over

1 (default) | 2 | ... | N

Specify the dimension to multiply over as an integer less than or equal to the number of dimensions
of the input signal.

Dependencies

To enable this parameter, set:

• Number of inputs to *
• Multiplication to Element-wise (.*)
• Multiply over to Specified dimension

Programmatic Use
Block Parameter: CollapseDim
Type: character vector
Values: '1' | '2' | ...
Default: '1'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Signal Attributes

Require all inputs to have the same data type — Require that all inputs have the same data type

off (default) | on

Specify if input signals must all have the same data type. If you enable this parameter, then an error
occurs during simulation if the input signal types are different.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector

1 Blocks

1-1630

Values: 'off' | 'on'
Default: 'off'

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

 Product of Elements

1-1631

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first input | double | single | int8 | uint8 | int16 |
uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType. For more information, see “Control Data Types of
Signals”.

When you select an inherited option, the block behaves as follows:

• Inherit: Inherit via internal rule — Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. For example, if the block multiplies an input of type int8 by a
gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is
sfix24. If Unspecified (assume 32-bit Generic), in other words, a generic 32-bit
microprocessor, is specified as the target hardware, the output data type is int32. If none of the
word lengths provided by the target microprocessor can accommodate the output range, Simulink
software displays an error in the Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical accuracy at the
same time. If the internal rule doesn’t meet your specific needs for numerical accuracy or
performance, use one of the following options:

• Specify the output data type explicitly.
• Use the simple choice of Inherit: Same as input.
• Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point

Tool to propose data types for your model. For more information, see fxptdlg.
• To specify your own inheritance rule, use Inherit: Inherit via back propagation and

then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

• Inherit: Inherit via back propagation — Use data type of the driving block.
• Inherit: Same as first input — Use data type of first input signal.

Dependencies

When input is a floating-point data type smaller than single precision, the Inherit: Inherit via
internal rule output data type depends on the setting of the “Inherit floating-point output type
smaller than single precision” configuration parameter. Data types are smaller than single precision
when the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.

1 Blocks

1-1632

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Same as first input' |
'Inherit: Inherit via back propagation' | 'double' | 'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode for fixed-point operations. You can select:

Ceiling
Rounds positive and negative numbers toward positive infinity. Equivalent to the MATLAB ceil
function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds positive and negative numbers toward negative infinity. Equivalent to the MATLAB floor
function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest
Chooses between rounding toward floor and rounding toward zero to generate rounding code
that is as efficient as possible.

 Product of Elements

1-1633

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

1 Blocks

1-1634

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Mode — Select data type mode

Inherit (default) | Built in | Fixed Point

Select the category of data to specify.

• Inherit — Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right where you can select the inheritance mode.

• Built in — Built-in data types. Selecting Built in enables a second menu/text box to the right
where you can select a built-in data type.

• Fixed point — Fixed-point data types. Selecting Fixed point enables additional parameters
that you can use to specify a fixed-point data type.

• Expression — Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, click the Show data type assistant button.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies

To enable this parameter, set Mode to Built in or Fixed point.

Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to

 Product of Elements

1-1635

ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Specify signed or unsigned

Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

• Signed, specifies the fixed-point data as signed.
• Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, set the Mode to Fixed point.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type

0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Binary point.

Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Slope — Specify slope for the fixed-point data type

2^0 (default) | positive, real-valued scalar

1 Blocks

1-1636

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The Product of Elements block uses these algorithms to perform element-wise operations on inputs of
floating-point, built-in integer, and fixed-point types.

Input Element-Wise Operation Algorithm
Real scalar, u Multiplication y = u

Division y = 1/u
Real vector or matrix with
elements u1, u2,
u3, ..., uN

Multiplication y = u1*u2*u3*...*uN
Division y = ((((1/u1)/u2)/u3).../uN)

Complex scalar, u Multiplication y = u
Division y = 1/u

Complex vector or matrix
with elements u1, u2,
u3, ..., uN

Multiplication y = u1*u2*u3*...*uN
Division y = ((((1/u1)/u2)/u3).../uN)

If the specified dimension for element-wise multiplication or division is a row or column of a matrix,
the algorithm applies to that row or column. Consider the “Complex Division Using the Product of
Elements Block” on page 12-70 example.

 Product of Elements

1-1637

The top Product of Elements block collapses the matrix input to a scalar by taking successive inverses
of the four elements:

• y = ((((1/2+i)/3)/4-i)/5)

The bottom Product of Elements block collapses the matrix input to a vector by taking successive
inverses along the second dimension:

• y(1) = ((1/2+i)/3)
• y(2) = ((1/4-i)/5)

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

HDL Coder supports Tree architectures for Product or Product of Elements blocks that have a single
vector input with multiple elements.

This block has multi-cycle implementations that introduce additional latency in the generated code.
To see the added latency, view the generated model or validation model. See “Generated Model and
Validation Model” (HDL Coder).

Architecture Additional cycles of latency Description
Linear (default) 0 Generates a linear chain of adders to

compute the sum of products.
Tree 0 Generates a tree structure of adders

to compute the sum of products.

1 Blocks

1-1638

Note The Product of Element block does not support HDL code generation with double data types
in the Native Floating Point mode.

HDL Block Properties

If you use the block in matrix multiplication mode, you can specify the DotProductStrategy. This
setting determines whether you want to implement the matrix multiplication by using a tree of adders
and multipliers, or use the Multiply-Accumulate block implementation. The default is Fully
Parallel.

Note The DotProductStrategy must be set to Fully Parallel when you use the Native
Floating Point mode.

For more information, see “DotProductStrategy” (HDL Coder).

See also “Design Considerations for Matrices and Vectors” (HDL Coder).

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Native Floating Point
HandleDenormals Specify whether you want HDL Coder to insert additional logic to handle

denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min,
Zero, or Custom for the floating-point operator. The default is inherit.
See also “LatencyStrategy” (HDL Coder).

NFPCustomLatency To specify a value, set LatencyStrategy to Custom. HDL Coder adds
latency equal to the value that you specify for the NFPCustomLatency
setting. See also “NFPCustomLatency” (HDL Coder).

 Product of Elements

1-1639

Native Floating Point
MantissaMultiplyStra
tegy

Specify how to implement the mantissa multiplication operation during
code generation. By using different settings, you can control the DSP usage
on the target FPGA device. The default is inherit. See also
“MantissaMultiplyStrategy” (HDL Coder).

Complex Data Support

The default (linear) implementation supports complex data.

Complex division is not supported. For block implementations of the Product block in divide mode or
reciprocal mode, see “HDL Code Generation” on page 1-604 on the Divide block reference page.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Product | Divide | Dot Product

1 Blocks

1-1640

Propagation Delay
Model loop delay, latency, pulse delay

Libraries:
Simulink / Discrete

Description
The Propagation Delay block delays the current value for a signal into the future by an amount
specified by a delay signal. The Propagation Delay block is well suited for implementing time delay in
a discrete system.

On each simulation step k, the block samples the signal input Uk and the delay input Dk. The block
output value becomes the signal value after the delay time Dk has elapsed from the current simulation
time Tk.

y(t) = Uk when t = Tk + Dk

At the start of the simulation, the block output value is the Initial output block parameter value Y0.
The first sample of the delay signal D0 determines when the block output changes from the Initial
output value to the delayed input signal values.

y(t) = Y0 when t < T0 + D0

When the simulation reaches the time T0 + D0, the block output is determined by the signal and delay
samples.

y(t) = Uk when Tk + Dk ≤ t ≤ Tk+1 + Dk+1,

where:

• Uk is the sample of the input signal taken at t = Tk.
• Dk is the sample of the delay signal taken at t = Tk.
• Tk+1 is the simulation time at which the next signal and delay samples were taken.
• Dk+1 is the delay sample taken at time Tk+1.

Ports
Input

u — Signal to delay
scalar

The Propagation Delay block supports real, scalar input signals with continuous or discrete sample
time. The input signal data type can be any built-in type besides int64 and uint64.

 Propagation Delay

1-1641

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

dt — Delay signal
scalar

The delay signal specifies the amount of delay to apply at each time step in the simulation. You can
use the Propagation Delay block to implement a constant or variable delay.

The delay signal values must satisfy these constraints:

• The delay signal must contain scalar, real, finite, positive values larger than 128*eps, which is the
smallest time resolution the software supports.

• The output times for delayed input signal samples must increase monotonically.

For example, suppose the delay signal value is 0.6 at simulation time 0 and the next simulation
step occurs at time 0.5. The delay signal at time 0.5 must be greater than 0.1 so that the
delayed output time for the input signal sample U0.5 is greater than the output time for input
signal sample U0 (0.6).

• When you select Run at fixed time intervals, the delay signal values must be greater than the
value you specify for the Sample time parameter.

Data Types: double

Output

y — Delayed signal
scalar

The output signal has the same data type as the input signal. By default, the output signal has fixed-
in-minor-step sample time. When you select Run at fixed time intervals, the output signal has the
discrete sample time you specify for the Sample time parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Parameters
Initial output — Initial value for output signal

0 (default) | scalar

Specify the initial output signal value Y0. The first sample of the delay signal D0 determines when the
block output changes from the Initial output value to the delayed input signal values.

y(t) = Y0 when t < T0 + D0

Programmatic Use
Block Parameter: InitialOutput
Type: string | character vector
Values: numeric scalar
Default: 0

Run at fixed time intervals — Option to execute block at fixed rate

off (default) | on

1 Blocks

1-1642

This parameter specifies how the block executes and the sample time for the output signal.

• off — Block executes each time the delay for an input sample elapses. Output signal has fixed-in-
minor sample time.

• on — Block executes at a fixed rate that you specify using the Sample time parameter. Output
signal has the sample time you specify using the Sample time parameter.

When you select Run at fixed time intervals:

• The delay signal values must be greater than the value you specify for the Sample time
parameter.

• Delay signal values that are not integer multiples of the specified sample time are rounded down
to the nearest integer multiple of the sample time. For example, if the sample time is 0.1 and the
delay signal value is 0.68, the software rounds the delay to 0.6.

Programmatic Use
Block Parameter: RunAtFixedTimeIntervals
Type: string | character vector
Values: 'on' | 'off'
Default: 'off'

Sample time — Output sample time

0.1 (default) | scalar

Specify the sample time for the block output signal. The delay signal values must be greater than the
specified sample time.

When the delay signal value is not an integer multiple of the specified sample time, the software
rounds the delay value down to the closest value that is an integer multiple of the sample time. For
example, if the sample time is 0.1 and the delay value is 0.68, the software rounds the delay to 0.6.

Dependencies

To enable this parameter, select Run at fixed time intervals.

Programmatic Use
Block Parameter: SampleTime
Type: string | character vector
Values: numeric scalar
Default: 0.1

Block Characteristics
Data Types Boolean | double | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

 Propagation Delay

1-1643

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To generate code from a model that uses the Propagation Delay block, you must configure the
Propagation Delay block to produce an output with discrete sample time. Select Run at fixed
sample intervals and specify a discrete rate for the Sample time parameter.

The Propagation Delay block dynamically allocates memory to store input signal and delay signal
samples. The target for code generation must support dynamic memory allocation.

See Also
Unit Delay

Topics
“Types of Sample Time”

1 Blocks

1-1644

Pulse Generator
Generate square wave pulses at regular intervals

Libraries:
Simulink / Sources

Description
The Pulse Generator block generates square wave pulses at regular intervals. The block waveform
parameters, Amplitude, Pulse Width, Period, and Phase delay, determine the shape of the output
waveform. The following diagram shows how each parameter affects the waveform.

The Pulse Generator block can emit scalar, vector, or matrix signals of any real data type. To emit a
scalar signal, use scalars to specify the waveform parameters. To emit a vector or matrix signal, use
vectors or matrices, respectively, to specify the waveform parameters. Each element of the waveform
parameters affects the corresponding element of the output signal. For example, the first element of a
vector amplitude parameter determines the amplitude of the first element of a vector output pulse.
All the waveform parameters must have the same dimensions after scalar expansion. The data type of
the output is the same as the data type of the Amplitude parameter.

The block output can be generated in time-based or sample-based modes, determined by the Pulse
type parameter.

Time-Based Mode

In time-based mode, Simulink computes the block output only at times when the output actually
changes. This approach results in fewer computations for the block output over the simulation time
period. Activate this mode by setting the Pulse type parameter to Time based.

The block does not support a time-based configuration that results in a constant output signal.
Simulink returns an error if the parameters Pulse Width and Period satisfy either of these
conditions:

 Pulse Generator

1-1645

Period * PulseWidth
100 = 0

Period * PulseWidth
100 = Period

Depending on the pulse waveform characteristics, the intervals between changes in the block output
can vary. For this reason, a time-based Pulse Generator block has a variable sample time. The sample
time color of such blocks is brown (see “View Sample Time Information” for more information).

Simulink cannot use a fixed-step solver to compute the output of a time-based pulse generator. If you
specify a fixed-step solver for models that contain time-based pulse generators, Simulink computes a
fixed sample time for the time-based pulse generators. Then the time-based pulse generators
simulate as sample based.

If you use a fixed-step solver and the Pulse type is Time based, choose the step size such that the
period, phase delay, and pulse width (in seconds) are integer multiples of the solver step size. For
example, suppose that the period is 4 seconds, the pulse width is 75% (that is, 3 s), and the phase
delay is 1 s. In this case, the computed sample time is 1 s. Therefore, choose a fixed-step size of 1 or
a number that divides 1 exactly (for example, 0.25). To ensure this setting, select auto on the
Solver pane of the Configuration Parameters dialog box.

Sample-Based Mode

In sample-based mode, the block computes its outputs at fixed intervals that you specify. Activate this
mode by setting the Pulse type parameter to Sample based.

An important difference between the time-based and sample-based modes is that in time-based mode,
the block output is based on simulation time, and in sample-based mode, the block output depends
only on the simulation start, regardless of elapsed simulation time.

This block supports reset semantics in sample-based mode. For example, if a Pulse Generator block is
in a resettable subsystem that hits a reset trigger, the block output resets to its initial condition.

Ports
Output

Port_1 — Output signal
scalar | vector | matrix

Generated square wave pulse signal specified by the parameters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Pulse type — Computational technique

Time based (default) | Sample based

Computational technique to generate the type of square wave that this block generates, either time-
or sample-based. Some parameters in the dialog box appear depending on whether you select time-
based or sample-based.

1 Blocks

1-1646

Programmatic Use
Block Parameter: PulseType
Type: character vector
Values: 'Time based' | 'Sample based'
Default: 'Time based'

Time (t) — Source of time variable

Use simulation time (default) | Use external signal

Specifies whether to use simulation time or an external signal as the source of values for the output
pulse's time variable. If you specify an external source, the block displays an input port for
connecting the source. The output pulse differs as follows:

• Use simulation time: The block generates an output pulse where the time variable equals the
simulation time.

• Use external signal: The block generates an output pulse where the time variable equals the
value from the input port, which can differ from the simulation time.

Programmatic Use
Block Parameter: TimeSource
Type: character vector
Values: 'Use simulation time' | 'Use external signal'
Default: 'Use simulation time'

Amplitude — Signal amplitude

1 (default) | scalar

Specify the amplitude of the signal.

Programmatic Use
Block Parameter: Amplitude
Type: character vector
Value: scalar
Default: '1'

Period (secs) — Pulse period

10 (default) | scalar

Pulse period specified in seconds if the pulse type is time-based. If the pulse type is sample-based,
then the period is specified as the number of sample times.

Programmatic Use
Block Parameter: Period
Type: character vector
Value: scalar
Default: '10'

Pulse width — Duty cycle

5 (default) | scalar in the range [0,100]

 Pulse Generator

1-1647

Duty cycle specified as the percentage of the pulse period that the signal is on if time-based or as
number of sample times if sample-based.

Programmatic Use
Block Parameter: PulseWidth
Type: character vector
Value: scalar
Default: '5'

Phase delay (secs) — Delay before pulse

0 (default) | scalar

Delay before the pulse is generated, specified in seconds, if the pulse type is time-based or as number
of sample times if the pulse type is sample-based.

Programmatic Use
Block Parameter: PhaseDelay
Type: character vector
Value: scalar
Default: '0'

Sample time — Length of sample time

0 (default) | scalar | vector

Length of the sample time for this block in seconds. This parameter appears only if the block's pulse
type is sample-based. See “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: scalar
Default: '0'

Interpret vector parameters as 1-D — Treat vectors as 1-D

on (default) | off

Select this check box to output a vector of length N if the Amplitude, Period, Pulse width, or Phase
delay parameter evaluates to an N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if any of the value
parameters evaluate to an N-element row or column vector. For example, the block outputs a
matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if any of the value
parameters evaluate to an N-element row or column vector.

For more information on how this parameter is used, see “Determine the Output Dimensions of
Source Blocks”.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'

1 Blocks

1-1648

Default: 'on'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Cannot be used inside a triggered subsystem hierarchy.

These blocks do not reference absolute time when configured for sample-based operation. In time-
based operation, they depend on absolute time.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Signal Generator | Waveform Generator

 Pulse Generator

1-1649

Push Button
Change parameter or variable value using button with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
Use the Push Button block to change the value of the connected variable or parameter before or
during simulation. You can configure the button to change the value only while you press the button
or to latch the value change until you click the button again. When you use the Push Button block in
the Customizable Blocks library, you can modify the appearance of the block so it looks like a button
in your real system. Use the Push Button block with other Dashboard blocks to create an interactive
dashboard to control your model.

To push the virtual button, click the Push Button block. While you press down your pointer, the button
is pushed. When you release your pointer, you release the button.

You can use callback functions to specify what you want the button to do:

• PressFcns functions run while the button is pushed. You can configure the button to run the
PressFcn function only once while the button is pushed, or you can specify a repeat interval.

• ClickFcns functions run when you release the button.

You can configure the button to stay pushed when you release your pointer by setting the Button
Type to Latched. When you choose the latched button type:

• To latch the button, click the button.
• To unlatch the button, click the button again.

The PressFcn function runs while the button is latched. The ClickFcn function runs once when you
latch the button, and once when you unlatch the button.

You can use states to specify how the appearance of the Push Button block changes when you interact
with the button:

• While you push the button, the block is in the Pressed state.
• When the button is latched and you are not pushing it, the block is in the Latched state.
• When the button is latched and you are pushing it, the block is in the Latched and Pressed

state.
• When the block is not in any of these three states, it is in the Default state.

A state pairs pointer actions with:

• A State Label
• A state icon
• A state image

1 Blocks

1-1650

The Pressed, Latched, and Latched and Pressed states also pair pointer actions with the On
Value of the Push Button block. When you enter one of these states from the default state, the On
Value is assigned to the Simulink component to which the Push Button block connects.

Note Double-clicking the Push Button block does not open its dialog box during simulation or when
the block is selected. To edit the block parameters, you can use the Property Inspector or open the
block dialog box by:

• Double-clicking the block when the block is not selected and the model is not simulating
• Right-clicking the block and selecting Block Parameters from the context menu

Customize Push Button Blocks

When you add a Push Button block to your model, the block is preconfigured with a default design.
You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

When you design a Push Button block, you configure the block appearance for each possible state.
When you configure the Block Type as Momentary, the block has two states. When you configure the
Block Type as Latch, the block has four.

You can use the toolbar above the block to switch states. For each state, you can:

 Push Button

1-1651

• Upload a state image.
• Upload a state icon and specify the position of the icon relative to the state label.
• Specify the State Label text, color, opacity, and position.

For the Pressed, Latched, and Latched and Pressed states, you can specify the On Value.

You can also upload a foreground or a background image, or set a solid background color. The
foreground and background apply to all states.

Use the toolbar above the block to configure the image, the icon, and the State Label color and
opacity.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

Use the Design tab to:

• Specify the On Value.
• Specify the State Label text and position.
• Specify the icon position.
• Upload a foreground image.
• Upload a background image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.

1 Blocks

1-1652

To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.

 Push Button

1-1653

• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Connection

Connection — Select variable or block parameter to connect
variable and parameter connection options

Use the Connection table in the Block Parameters dialog box to select or change the variable or
block parameter to control. To connect the block to a variable or block parameter:

1 If the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

2 Select a block in the model.
3 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy. Omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

4 Click Apply.

To help understand and debug your model, you can connect Dashboard blocks to variables and
parameters in your model during simulation.

1 Blocks

1-1654

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Tip You can also use bind mode to select or change the variable or block parameter to control. To
enter bind mode:

• If you are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

•
Click the dashboard block in the canvas. If the dashboard block is not connected, Connect
and an ellipsis appear over the dashboard block. If the dashboard block is already connected, only
the ellipsis appears.

• If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
parameters and variables available for connection appears.

To connect the dashboard block in bind mode:

• From the list, select the variable or parameter you want to connect.
•

To exit bind mode, click Done Connecting over the dashboard block.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some properties apply to connecting dashboard blocks to parameters. Some
properties apply to connecting dashboard blocks to variables. Not all fields have a value for a
connection because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

Main

Button Type — Button response to click

Momentary (default) | Latch

Specify how the block responds to a click.

• Momentary — The button changes state only while pressed. When you release the click, the
button returns to its default state.

 Push Button

1-1655

• Latch — The button latches the state change when clicked. The button remains in the pressed
state until you click it again.

When you configure Button Type as Momentary, the block has these states:

• Default — Default state for the block when it is not pressed
• Pressed — Block state when the block is pressed

When you configure Button Type as Latch, the block has these states:

• Default — Default state for the block when it is not pressed.
• Pressed — Transitional state when you press the button while it is in the Default state. The

block transitions to the Latched state when you release the click.
• Latched — Latched state for the block when it is not pressed.
• Latched and Pressed — Transitional state when you press the button while it is in the

Latched state. The block transitions to the Default state when you release the click.

Programmatic Use
Block Parameter: ButtonType
Type: string or character array
Value: 'Momentary' | 'Latch'

Button Text — Button label text

'Button' (default) | string | character array

Specify the text for the button label. The label is applied to the button for the state that is selected in
the Select State section of the States component on the Design tab.

Programmatic Use

Specify the ButtonText parameter for the block as a string or a character vector.
Block Parameter: ButtonText
Type: character vector | string

On value — Value assigned to connected parameter when button is pressed or latched

1 (default) | scalar

The value assigned to the connected block parameter when the button is pressed or latched.

Tip Use the Block Type parameter to configure how the block responds to a click:

• Momentary — The button applies the On Value only while you press it.
• Latch — The button latches the state change when you click it and applies the On value until you

click it again.

Programmatic Use

Specify the OnValue parameter for the block as a scalar value that is formatted as a string or a
character vector.

1 Blocks

1-1656

Block Parameter: OnValue
Type: string or character array
Values: scalar
Default: '1'

Label — Position of label displaying name of connected element

Hide (default) | Bottom | Top

You can display the name of the element to which the dashboard block connects in a label positioned
at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Callbacks

ClickFcn — MATLAB code that executes in response to click
MATLAB code

MATLAB code that executes in response to a click of the button.

Every time you click the button, the ClickFcn code executes once, at the point in time when you
release the click.

To specify code for the ClickFcn, select ClickFcn from the drop-down menu. Enter the code in the
text box below the menu.

 Push Button

1-1657

Programmatic Use

Specify the ClickFcn parameter for the block as MATLAB code that is formatted as a string or a
character vector.
Block Parameter: ClickFcn
Type: character vector | string
Values: MATLAB code

PressFcn — MATLAB code that executes in response to press
MATLAB code

MATLAB code that executes in response to a press of the button.

While the button is in the pressed state, the PressFcn code executes once when the Press Delay
time has elapsed and periodically at every Repeat Interval.

To specify code for the PressFcn, select PressFcn from the drop-down menu. Enter the code in the
text box below the menu.

How you press the button to execute the PressFcn code depends on the Button Type.

• If the Button Type is Momentary, hold down your click for the duration that you want to press
the button.

• If the Button Type is Latch, click to press the button, but do not hold down your click. The
button remains pressed until you click it again.

Note Every time that you click on the button, even when you do so as part of the process for
pressing the button, the ClickFcn code executes once, at the point in time when you release the
click.

Programmatic Use

Specify the PressFcn parameter for the block as MATLAB code that is formatted as a string or a
character vector.
Block Parameter: PressFcn
Type: character vector | string
Values: MATLAB code

Press Delay (ms) — Time to hold button for press

500 (default) | scalar

Amount of time required to cause the PressFcn code to execute.

Dependencies

Press Delay (ms) is visible only when PressFcn is selected as the callback.

Programmatic Use

Specify the PressDelay parameter for the block as a positive scalar value.
Block Parameter: PressDelay
Type: scalar

1 Blocks

1-1658

Repeat Interval (ms) — Time interval to repeat PressFcn code

0 (default) | scalar

Time interval after which the PressFcn code executes again if the Callback Button block is still
pressed.

Dependencies

Repeat Interval (ms) is visible only when PressFcn is selected as the callback.

Programmatic Use

Specify the RepeatInterval parameter for the block as a positive scalar value.
Block Parameter: RepeatInterval
Type: scalar

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Button

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States

Select State — Selection of state to configure
Default (default) | Pressed | Latched | Latched and Pressed

Select a state that you want to configure from the drop-down menu in the Select State section of the
States component. When the Button Type is Momentary, you can select these states:

• Default — Default state for the block when it is not pressed
• Pressed — Block state when the block is pressed

When the Button Type is Latch, you can select these states:

• Default — Default state for the block when it is not pressed.
• Pressed — Transitional state when you press the button while it is in the Default state. The

block transitions to the Latched state when you release the click.

 Push Button

1-1659

• Latched — Latched state for the block when it is not pressed.
• Latched and Pressed — Transitional state when you press the button while it is in the

Latched state. The block transitions to the Default state when you release the click.

Note You can configure all of the parameters in the States component of the Design tab for a state.
For example, you can select an icon that will appear on the button when it is in the state. When you
configure any of the parameters in the States component, the changes are applied to the state that is
selected in the Select State section of the States component.

Example: Pressed

Button Text — Button label text

'Button' (default) | string | character array

Specify the text for the button label. The label is applied to the button for the state that is selected in
the Select State section of the States component on the Design tab.
Programmatic Use

Specify the ButtonText parameter for the block as a string or a character vector.
Block Parameter: ButtonText
Type: character vector | string

Label Color — Button label font color
[r g b] vector

Choose a font color for the button label from the palette of standard colors, or specify a custom color.
The color is applied to the button label for the state that is selected in the Select State section of the
States component on the Design tab.

Horizontal Alignment — Horizontal button text alignment
Center (default) | Left | Right

Set the alignment of the button text.

• Center: Midway between left and right edges of block
• Left: Left edge of block
• Right: Right edge of block

Vertical Alignment — Vertical button text alignment
Center (default) | Bottom | Top

Set the alignment of the button text.

• Center: Midway between top and bottom edges of block
• Bottom: Bottom edge of block
• Top: Top edge of block

Label X Offset — Horizontal offset of button text center from default position for selected horizontal
alignment setting
0 (default) | scalar

1 Blocks

1-1660

Specify the horizontal offset of the center of the Button Text from the default position for the
selected Horizontal Alignment setting as a ratio of the block width. Relative to the position of the
text when the offset is 0, an offset with a negative value moves the text left, and an offset with a
positive value moves the text right.

Label Y Offset — Vertical offset of button text center from default position for selected horizontal
alignment setting
0 (default) | scalar

Specify the vertical offset of the center of the Button Text from the default position for the selected
Vertical Alignment setting as a ratio of the block height. Relative to the position of the text when
the offset is 0, an offset with a negative value moves the text up, and an offset with a positive value
moves the text down.

Icon Placement — Placement of icon relative to button text
Left (default) | Top | Right | Bottom

Specify the placement of the icon relative to the button text.

Note Changing the placement of the icon moves the button text, but does not change the specified X
Offset, Y Offset, Horizontal Alignment, or Vertical Alignment of the text.

Width — Width of state image or icon
scalar

Specify the width of the state image or the state icon as a ratio of the block width.
Example: 0.5

Height — Height of state image or icon
scalar

Specify the height of the state image or the state icon as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

 Push Button

1-1661

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can provide a background image or select a solid color. To select a
solid background color, select this parameter. To provide a background image, clear this parameter.

Note Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and enables the Use Background Color parameter.

Example: on

Color — Block background color
[r g b] vector

To select a solid background color, enable the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Corner Radius — Corner radius of area with block background color
scalar

Specify the corner radius of the area covered by the block background color as a ratio of half of the
smaller of the two block dimensions, width or height.
Example: 0.25

1 Blocks

1-1662

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2021b

 Push Button

1-1663

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (⌘) instead of Ctrl.

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2022b: Extended support for customizable Dashboard blocks on Raspberry Pi boards

1 Blocks

1-1664

Starting in R2022b, the Simulink Support Package for Raspberry Pi Hardware supports deploying
these blocks from the Customizable Blocks library on your Raspberry Pi boards:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on a web browser you launch from a Raspberry Pi terminal.

R2022b: Extended support for customizable Dashboard blocks on Android devices

Starting in R2022b, the Simulink Support Package for Android Devices supports deploying these
blocks from the Customizable Blocks library on your Android devices:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Push Button

1-1665

Dashboard blocks are ignored for code generation.

See Also
Customizable Callback Button | Callback Button | Push Button

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”
“Getting Started with Panels”

1 Blocks

1-1666

Push Button
Change parameter or variable value using button

Libraries:
Simulink / Dashboard

Description
Use the Push Button block to change the value of the connected variable or parameter before or
during simulation. You can configure the button to change the value only while you press the button
or to latch the value change until you click the button again. Use the Push Button block with other
Dashboard blocks to create an interactive dashboard to control your model.

Double-clicking the Push Button block does not open its dialog box during simulation or when the
block is selected. To edit the block parameters, you can use the Property Inspector or open the
block dialog box by:

• Double-clicking the block when the block is not selected and the model is not simulating.
• Right-clicking the block and selecting Block Parameters from the context menu.

Push Button Icons

You can add an icon to the Push Button block that is displayed alongside the button text. You can
choose an icon from a predefined set that includes basic shapes, automotive indicators, and wireless
icons, or you can upload your own custom icon. For more information, including a complete list of the
built-in icons, see “Icon” on page 1-0 .

When you add an icon to the Push Button block, you can configure an on color and an off color for the
icon so its color changes with the state of the block and specify the alignment of the icon relative to
the button text. For example, this Push Button block is configured to use a circle icon with the on
color specified as bright green, aligned to the left of the button text.

The icon settings for the Push Button block allow you to configure the appearance of the block in your
model. When you want to customize the appearance of the block further, consider using the Push
Button block in the Customizable Blocks library. The Push Button block in the Customizable Blocks
library supports adding a custom icon but does not include any built-in icons.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of

 Push Button

1-1667

connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

1 Blocks

1-1668

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection

Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

1 Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the

 Push Button

1-1669

context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

Main

Button Text — Text label for button

Button (default) | string | character vector

The text displayed on the Push Button block in your model.

Tips

To design a button that displays different text depending on the state of the block, use the Push
Button block in the Customizable Blocks library.

Programmatic Use
Block Parameter: ButtonText
Type: string or character array
Default: 'Button'

On Value — Value assigned to connected parameter when button is pressed or latched

1 (default) | scalar

The value assigned to the connected block parameter when the button is pressed or latched.

Tips

Use the Block Type parameter to configure how the block responds to a click:

• Momentary — The button applies the On Value only while you press it.
• Latch — The button latches the state change when you click it and applies the On value until you

click it again.

1 Blocks

1-1670

Programmatic Use
Block Parameter: OnValue
Type: string or character array
Default: '1'

Button Type — Button response to click

Momentary (default) | Latch

Specify how the button responds to a click.

• Momentary — The button applies the On Value only while you press it.
• Latch — The button latches the state change when you click it and applies the On value until you

click it again.

Programmatic Use
Block Parameter: ButtonType
Type: string or character array
Value: 'Momentary' | 'Latch'

Label — Block label position

Hide (default) | Bottom | Top

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Format

Opacity — Block background opacity

1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.
Example: 0.5

Programmatic Use
Block Parameter: Opacity
Type: scalar
Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, including the text. You can select a color from a palette of standard colors or
specify a custom color.

 Push Button

1-1671

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Background Color — Block background color
[r g b] vector

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Icon

Icon — Icon to display on button
SVG file | PNG file | JPEG file

You can add an icon to the Push Button block to display alongside or instead of the button text. You
can choose from built-in shape, automotive, and wireless icons, or you can upload your own custom
SVG, PNG, or JPEG file to use as the icon.

To view icon options, on the Icon tab of the block dialog box, select an Icon Type. To use your own
custom icon, select Custom as the Icon Type and upload the image file.

When you add an icon, you can configure the icon appearance using these parameters:

• Icon Alignment — Alignment of icon relative to button text
• On Color — Icon color when block is pressed or latched and applying the On value to the

connected parameter
• Off Color — Icon color when the block is not pressed or latched and is not applying the On value

to the connected parameter

To specify an On Color and Off Color for the icon, you must select Customize Icon Color.

1 Blocks

1-1672

Shape Icons

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Check1 Check1

 Push Button

1-1673

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Check2 Check2

1 Blocks

1-1674

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Check3 Check3

 Push Button

1-1675

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Check4 Check4

1 Blocks

1-1676

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Circle Circle

 Push Button

1-1677

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Ex1 Ex1

1 Blocks

1-1678

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Ex2 Ex2

 Push Button

1-1679

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Ex3 Ex3

1 Blocks

1-1680

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Ex4 Ex4

 Push Button

1-1681

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Face Face

1 Blocks

1-1682

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Frown1 Frown1

 Push Button

1-1683

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Frown2 Frown2

1 Blocks

1-1684

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Hexagon Hexagon

 Push Button

1-1685

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Pentagon Pentagon

1 Blocks

1-1686

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Rectangle Rectangle

 Push Button

1-1687

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Smile1 Smile1

1 Blocks

1-1688

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Smile2 Smile2

 Push Button

1-1689

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Solid Face SolidFace

1 Blocks

1-1690

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Solid Frown1 SolidFrown1

 Push Button

1-1691

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Solid Frown2 SolidFrown2

1 Blocks

1-1692

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Solid Smile1 SolidSmile1

 Push Button

1-1693

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Solid Smile2 SolidSmile2

1 Blocks

1-1694

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Square Square

 Push Button

1-1695

Icon Basic Shapes Library Block
Name

Programmatic Use Value

Triangle Triangle

1 Blocks

1-1696

Automotive Icons

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Adaptive Cruise Control AdaptiveCruiseControl

 Push Button

1-1697

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Adaptive Cruise Control Failure AdaptiveCruiseControlFai
lure

1 Blocks

1-1698

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Antilock Brake System AntilockBrakeSystem

 Push Button

1-1699

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Battery Battery

1 Blocks

1-1700

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Check Engine CheckEngine

 Push Button

1-1701

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Check Engine2 CheckEngine2

1 Blocks

1-1702

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Cruise Control CruiseControl

 Push Button

1-1703

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Eco Mode EcoMode

1 Blocks

1-1704

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Electronic Stability ElectronicStability

 Push Button

1-1705

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Engine Engine

1 Blocks

1-1706

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Engine Coolant Temp EngineCoolantTemp

 Push Button

1-1707

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Engine Failure EngineFailure

1 Blocks

1-1708

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Engine Heating EngineHeating

 Push Button

1-1709

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Engine Oil EngineOil

1 Blocks

1-1710

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Exterior Bulb Failure ExteriorBulbFailure

 Push Button

1-1711

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Front Fog Light FrontFogLight

1 Blocks

1-1712

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Fuel Fuel

 Push Button

1-1713

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Hazards Hazards

1 Blocks

1-1714

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Headlamp Leveling HeadlampLeveling

 Push Button

1-1715

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

High Beams HighBeams

1 Blocks

1-1716

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Hill Descent Control HillDescentControl

 Push Button

1-1717

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Lighting Switch LightingSwitch

1 Blocks

1-1718

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Low Beams LowBeams

 Push Button

1-1719

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Parking Assistance ParkingAssistance

1 Blocks

1-1720

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Rear Fog Light RearFogLight

 Push Button

1-1721

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Side Lights SideLights

1 Blocks

1-1722

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Stability Control StabilityControl

 Push Button

1-1723

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Stability Control Off StabilityControlOff

1 Blocks

1-1724

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Tire Monitor TireMonitor

 Push Button

1-1725

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Traction Control TractionControl

1 Blocks

1-1726

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Traction Control Off TractionControlOff

 Push Button

1-1727

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Traction Control Failure TractionControlFailure

1 Blocks

1-1728

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Turn Signal Left TurnSignalLeft

 Push Button

1-1729

Icon Automotive Indicator Lamps
Library Block Name

Programmatic Use Value

Turn Signal Right TurnSignalRight

1 Blocks

1-1730

Wireless Icons

Icon Icon Name Programmatic Use Value
Network Network

 Push Button

1-1731

Icon Icon Name Programmatic Use Value
Network No Signal NetworkNoSignal

1 Blocks

1-1732

Icon Icon Name Programmatic Use Value
Network Transmission NetworkTransmission

 Push Button

1-1733

Icon Icon Name Programmatic Use Value
Network3G Network3G

1 Blocks

1-1734

Icon Icon Name Programmatic Use Value
Network4G Network4G

 Push Button

1-1735

Icon Icon Name Programmatic Use Value
Network5G Network5G

Tips

• You can change the icon for a Push Button block using the Button tab in the toolstrip.
• If you want to customize the appearance of the Push Button block further, consider designing your

own button using the Push Button block in the Customizable Blocks library.

The Push Button block in the Customizable Blocks library supports adding a custom icon but does
not include any built-in icons.

• The on and off colors for the icon can apply to these SVG elements:

• altGlyph
• circle
• ellipse
• path
• polygon
• rect
• text
• textPath
• tref
• tspan

1 Blocks

1-1736

Programmatic Use
Block Parameter: Icon
Type: string | character vector
Default: 'Default'

Icon Alignment — Icon alignment relative to button text

Left (default) | Right | Top | Bottom | Center

Alignment of the icon relative to the button text. When you do not specify button text, the icon is
always in the center of the block.

Programmatic Use
Block Parameter: IconAlignment
Type: string | character vector
Value: 'Left' | 'Right' | 'Top' | 'Bottom' | 'Center'
Default: 'Left'

Customize Icon Color — Whether to use icon on and off colors

Off (default) | On

When you add an icon to the Push Button block, you can specify on and off colors so the icon color
changes to reflect the state of the block. To use and specify the On Color and Off Color for an icon,
select Customize Icon Color.

Programmatic Use
Block Parameter: IconColor
Type: string | character vector
Value: 'On' | 'Off'
Default: 'Off'

On Color — Icon color when block is pressed or latched
[r g b] vector

When you add an icon to the Push Button block, you can specify on and off colors so the icon color
changes to reflect the state of the block. The On Color specifies the color of the icon when the block
is pressed or latched and is applying the On value to the connected parameter. You can select a color
from a palette of standard colors or specify a custom color.

Dependencies

To enable the On Color parameter, select Customize Icon Color.

Programmatic Use

Specify the IconOnColor parameter for the block as a 1-by-3 [r g b] vector with values between 0
and 1.
Block Parameter: IconOnColor
Type: [r g b] vector

Off Color — Icon color when block is not pressed or latched
[r g b] vector

When you add an icon to the Push Button block, you can specify on and off colors so the icon color
changes to reflect the state of the block. The Off Color specifies the color of the icon when the block

 Push Button

1-1737

is not pressed or latched and is not applying the On value to the connected parameter. You can select
a color from a palette of standard colors or specify a custom color.

Dependencies

To enable the On Color parameter, select Customize Icon Color.

Programmatic Use

Specify the IconOffColor parameter for the block as a 1-by-3 [r g b] vector with values between
0 and 1.
Block Parameter: IconOffColor
Type: [r g b] vector

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015a

R2021b: Push Button Block Can Apply Value After You Release Click

Starting in R2021b, you can configure the behavior of the Push Button block to latch or momentarily
apply the On Value when you click the block.

R2021b: Push Button Block Can Display Icons

Starting in R2021b, you can add an icon to display on the Push Button block alongside or instead of
the button text. Choose an icon for the block from a predefined set or upload your own custom icon
using the block dialog box or the Button tab of the toolstrip.

You can also specify an on color and an off color so the icon color changes with the state of the block
and specify the alignment of the icon relative to the button text.

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a
dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

1 Blocks

1-1738

R2020b: Background Color, Foreground Color, and Opacity properties added for several
dashboard blocks

Starting in R2020b, you can specify a background color, a foreground color, and opacity for these
blocks from the Dashboard library:

• Check Box
• Combo Box
• Edit
• Push Button
• Radio Button

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add_block and set_param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Rocker Switch | Slider Switch | Toggle Switch | Push Button

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 Push Button

1-1739

PWM
Generate ideal pulse width modulated signal corresponding to input duty cycle

Libraries:
Simulink / Discontinuities

Description
Use the PWM block to generate an ideal pulse width modulated signal.

Pulse-width modulation (PWM) is a technique for encoding an analog signal using square pulses. This
encoding is achieved by controlling the fraction of one period of the square wave that is set to high.
This fraction is the duty cycle of the signal. The relationship between the modulated signal and the
input duty cycle can be simply described as:

y = Dymax + 1− D ymin

where ymax and ymin are the upper and lower bounds of the output signal, respectively. For the PWM
block, the duty cycle is constrained to [0,1]. The ideal PWM signal is proportional to the duty cycle
D.

Ports
Input

D — Duty Cycle
scalar

Desired duty cycle of the pulse P, specified as scalar within the range [0,1].
Data Types: double

Output

Port 1 — Output pulse
scalar

PWM signal corresponding to the input duty cycle.
Data Types: double

Parameters
Period (s) — Pulse width

1 (default) | real scalar

Time between rising edges of consecutive pulses of the output signal. A small value represents a
high-frequency pulse.

1 Blocks

1-1740

Programmatic Use
Block Parameter: Period
Type: string | character vector
Values: real scalar
Default: '1'

Initial Delay — Initial delay
0 (default) | real scalar

Specify an initial delay or phase delay for the generated PWM signal, in seconds.

Programmatic Use
Block Parameter: InitialDelay
Type: string | character vector
Values: numeric scalar
Default: 0

Disallow zero duty cycle — Avoid algebraic loops

off | on

Enable this parameter to break algebraic loops containing the PWM block.

Note Enabling this parameter causes a signal value of 0 or below, which causes the duty cycle input
to throw an error.

Programmatic Use
Block Parameter: DisallowZeroDutyCycle
Type: string | character vector
Values: 'on' | 'off'
Default: 'off'

Run at fixed time intervals — Select for discrete time behavior

on (default) | off

Specify when the block executes and the sample time for the output signal.

• off — Block executes each time the delay for an input sample elapses. Output signal has fixed-in-
minor sample time.

• on — Block executes at a fixed rate you specify using the Sample time parameter. Output signal
has the sample time you specify using the Sample time parameter.

When you select Run at fixed time intervals:

• The delay signal values must be greater than the value you specify for the Sample time
parameter.

• Delay signal values that are not integer multiples of the specified sample time are rounded down
to the nearest integer multiple of the sample time. For example, if the sample time is 0.1 and the
delay signal value is 0.68, the software rounds the delay to 0.6.

 PWM

1-1741

Programmatic Use
Block Parameter: RunAtFixedTimeIntervals
Type: string | character vector
Values: 'on' | 'off'
Default: 'off'

Sample Time — Set pulse resolution

0.1 (default) | scalar

Block execution rate and output signal sample time. The delay signal values must be greater than the
specified sample time.

When the delay signal value is not an integer multiple of the specified sample time, the software
rounds the delay value down to the closest value that is an integer multiple of the sample time. For
example, if the sample time is 0.1 and the delay value is 0.68, the software rounds the delay to 0.6.

Dependencies

To enable this parameter, select Run at fixed time intervals.

Programmatic Use
Block Parameter: SampleTime
Type: string | character vector
Values: numeric scalar
Default: 0.1

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

1 Blocks

1-1742

Algorithms
Continuous Sampling Mode

For a pulse starting at time tk

y(t) =
1 tk < t < tk + pw
0 tk + 1 < t < tk + pw

where pw is the pulse width. For a given period P, pw is proportional to the duty cycle D

pw = D(tk) * P(tk)

Discrete Sampling Mode

In Discrete sampling mode, the input duty cycle signal is sampled at the rate specified by the Run at
fixed time intervals parameter.

For a specified sampling rate tS , the number of samples needed for a pulse of width pw can be
expressed as follows

npw =
Dk . Pk

TS
0 < npw < nP

nP = P
TS

where nP is the number of samples needed to simulate a pulse of period P.

 PWM

1-1743

Consider a nominal pulse of period P with the sampling rate of the block set to be tS= 0.25 P. The
number of samples needed for one period of the pulse, nP= 4. Thus, for the input duty cycle D= 0.47 ,
the number of samples n pw is floored to 0.47P

0.25 = 1. Therefore, the pulse is high for 1 of the 4
samples in the period.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production-quality code. Relates to resource limits and restrictions on speed
and memory often found in embedded systems. The code generated can contain dynamic allocation
and freeing of memory, recursion, additional memory overhead, and widely-varying execution times.
While the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code.

In general, consider using the Simulink Model Discretizer to map continuous blocks into discrete
equivalents that support production code generation. To start the Model Discretizer, in the Simulink
Editor, on the Apps tab, under Apps, under Control Systems, click Model Discretizer. One
exception is the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

See Also
Variable Pulse Generator

1 Blocks

1-1744

Quantizer
Discretize input at given interval

Libraries:
Simulink / Discontinuities

Description
The Quantizer block discretizes the input signal using a quantization algorithm. The block uses a
round-to-nearest method to map signal values to quantized values at the output that are defined by
the Quantization interval. A smooth input signal can take on a stair-step shape after quantization.

This equation mathematically describes the round-to-nearest method:

y = q * round(u/q)

where y is the quantized output, u is the input, and q is the Quantization interval.

Ports
Input

Port_1 — Input signal to quantize
scalar | vector

Input signal to the quantization algorithm.
Data Types: single | double

Output

Port_1 — Quantized output signal
scalar | vector

Output signal composed of discrete values, quantized with a round-to-nearest approach:

y = q * round(u/q)

where y is the output, u is the input, and q is the Quantization interval.
Data Types: single | double

Parameters
Quantization interval — Interval that defines quantization levels for the output signal

0.5 (default) | scalar | vector

Specify the quantization interval used in the algorithm. Quantization levels for the Quantizer block
output are integer multiples of the Quantization interval.

 Quantizer

1-1745

Programmatic Use
Block Parameter: QuantizationInterval
Type: character vector
Value: Any real or complex value
Default: '0.5'

Treat as gain when linearizing — Specify the gain value

On (default) | boolean

The linearization commands in Simulink software treat this block as a gain in state space. Select this
check box to cause the commands to treat the gain as 1. Clear the box to have the commands treat
the gain as 0.

Programmatic Use
Block Parameter: LinearizeAsGain
Type: character vector
Value: 'off' | 'on'
Default: 'on'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics
Data Types double | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

1 Blocks

1-1746

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Relay | Rate Limiter

 Quantizer

1-1747

Quarter Gauge
Display input value on quadrant scale

Libraries:
Simulink / Dashboard

Description
The Quarter Gauge block displays the connected signal on a quadrant scale during simulation. You
can use the Quarter Gauge block with other Dashboard blocks to build an interactive dashboard of
controls and indicators for your model. The Quarter Gauge block provides an indication of the
instantaneous value of the connected signal throughout simulation. You can modify the range of the
Quarter Gauge block to fit your data. You can also customize the appearance of the Quarter Gauge
block to provide more information about your signal. For example, you can color-code in-specification
and out-of-specification ranges.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

1 Blocks

1-1748

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations

• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect
to real scalar signals.

• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

• You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

• Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Signal

Connection — Signal to connect and display
signal connection options

Use the connection table to select the signal to connect to the block. To connect the block to a signal:

1 Make a selection in the model that includes one or more signals.
2 In the table, select the signal you want to connect.
3 Click Apply.

Tip You can connect dashboard blocks to signals in the model during simulation.

Programmatic Use
Block Parameter: Binding
Type: Simulink.HMI.SignalSpecification

 Quarter Gauge

1-1749

Default: []

Main

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The minimum
must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The maximum
must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Scale Colors — Color indications on gauge scale
colors for scale ranges

1 Blocks

1-1750

Color specifications for value ranges on the scale. Press the + button to add a scale color. For each
color added, specify the minimum and maximum values of the range in which you want to display that
color.
Programmatic Use

To programmatically specify the Scale Colors parameter, use an array of structures with the fields:

• Min — Minimum value for the color range on the scale
• Max — Maximum value for the color range on the scale
• Color — 1-by-3 vector of double values between 0 and 1 that specify the color for the range in

the form [r g b]

Include a structure in the array for each scale range for which you want to specify a color.

range1.Min = 0;
range1.Max = 10;
range1.Color = [0 0 1];
range2.Min = 10;
range2.Max = 15;
range2.Color = [0 1 0];
scaleRanges = [range1 range2];

Block Parameter: ScaleColors
Type: structure array
Default: 0x1 struct array

Label — Block label position

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.
Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Scale Direction — Gauge scale direction

Clockwise (default) | Counterclockwise

Gauge scale direction.
Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Format

Opacity — Block background opacity

 Quarter Gauge

1-1751

1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.
Example: 0.5

Programmatic Use
Block Parameter: Opacity
Type: scalar
Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, excluding the text. The Foreground Color applies to the scale and the block
name. You can select a color from a palette of standard colors or specify a custom color. To specify the
color for the block text, use the Font Color.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Background Color — Block background color
[r g b] vector

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Font Color — Block font color
[r g b] vector

Block font color. The Font Color applies to the tick labels on the scale. You can select a color from a
palette of standard colors or specify a custom color.

Programmatic Use

Specify the FontColor parameter for the block as a 1-by-3 [r g b] vector with values between 0
and 1.
Block Parameter: FontColor
Type: [r g b] vector

1 Blocks

1-1752

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Gauge | Half Gauge | Linear Gauge | Circular Gauge

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 Quarter Gauge

1-1753

Queue, Entity Queue
Enqueue messages and entities

Libraries:
Simulink / Messages & Events
SimEvents

Description
This block stores entities or messages in a queue, based on the order of arrival or priority. Each
element at the head of the queue departs when the downstream block is ready to accept it. The
Queue block and the Entity Queue block are the same blocks with different default values for the
Overwrite the oldest element if queue is full check box.

You can specify the capacity of the queue, and the policy when the queue is full. The block supports
three different message or queue sorting policies, first-in-first out (FIFO), last-in-first out (LIFO), and
priority. The priority queue can be used only when the Overwrite the oldest element if queue is
full check box is cleared.

Ports
Input

Port_1 — Input entity or message
scalar | vector | matrix

Input entity or message that carries scalar, bus, or vector data to enter the queue.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Output

Port_1 — Output entity or message
scalar | vector | matrix

Output port that allows entities or messages at the head of the queue to depart when a downstream
block is ready to accept them.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated | bus | fixed point

Port_d — Number of entities that have departed the block
scalar

Number of entities that have departed the block.

Dependencies

To enable this port, select Overwrite the oldest element if queue is full check box, and click the
Statistics tab and select the box labeled Number of entities departed, d.

1 Blocks

1-1754

Data Types: double

Port_n — Number of entities that have not yet departed the block
scalar

Number of entities that have not yet departed the block.

Dependencies

To enable this port, select Overwrite the oldest element if queue is full check box, and click the
Statistics tab and select the box labeled Number of entities in block, n.
Data Types: double

Port_w — Average wait time for entities in the block
scalar

Average wait time for entities in the block.

Dependencies

To enable this port, select Overwrite the oldest element if queue is full check box, and click the
Statistics tab and select the box labeled Average wait, w.
Data Types: double

Port_l — Average length of the entity queue
scalar

Port_l outputs the average length of the entity queue.

Dependencies

To enable this port, select Overwrite the oldest element if queue is full check box, and click the
Statistics tab and select the box labeled Average queue length, l.
Data Types: double

Port_ex — Number of entities extracted
scalar

Number of entities that are pulled out of this block.

Dependencies

To enable this port, select Overwrite the oldest element if queue is full check box, and click the
Statistics tab and select the box labeled Number of entities extracted, ex.
Data Types: double

Parameters
Overwrite the oldest element if queue is full — Specify queue overwriting policy
on (default for Simulink) | off (default for SimEvents)

Select this check box to choose between two queue overwriting policies.

 Queue, Entity Queue

1-1755

• If you select the check box, an incoming message overwrites the oldest if the queue is full.

This mode represents a simple message buffer that you can use to generate asynchronous
communication between Simulink components and production code.

• If you clear the check box, the block does not accept new messages if the queue is full.

In this mode, you can manipulate entity data using event actions and visualize statistics.

To customize actions when entities or messages enter, exit, or are blocked, enter MATLAB code in
the Entry action, Exit action, or Blocked action field of the Event actions tab. For more
information, see “Events and Event Actions” (SimEvents).

For an example, see “Manage Entities Using Event Actions” (SimEvents).

Programmatic Use
Block Parameter: QueueOverwriting
Type: character vector
Values: 'on' | 'off'
Default: 'on' (for Simulink) and 'off' (for SimEvents)

Capacity — Specify the capacity of the queue
25 (default) | scalar

Specify the capacity of the queue.
Programmatic Use
Block Parameter: Capacity
Type: character vector
Values: '25' | scalar
Default: '25'

Queue type — Choose the queue type
FIFO (default) | LIFO | Priority

Choose the queue type.

• FIFO — first-in-first-out
• LIFO — last-in-first-out
• Priority — store elements in order of priority, see “Serve High-Priority Customers by Sorting

Entities Based on Priority” (SimEvents). Priority can be selected when you clear the Overwrite
the oldest element if queue is full check box.

Note Priority queue does not support fixed point data type.

Programmatic Use
Block Parameter: QueueType
Type: character vector
Values: 'FIFO' | 'LIFO' | 'Priority'
Default: 'FIFO'

Multicast tag — Specify the tag when accepting entities broadcast via multicast sources
A (default) | character vector

1 Blocks

1-1756

Specify the tag when accepting entities broadcast via multicast sources. The Entity Multicast block
requires SimEvents license.

Dependencies

This parameter is visible when you clear the Overwrite the oldest element if queue is full check
box, and set Entity arrival source to Multicast.

Programmatic Use
Block Parameter: MulticastTag
Type: character vector
Values: 'A' | character vector
Default: 'A'

Priority source — Specify which attribute of the entity determines its priority
PriorityAttribute (default) | character vector

Specify which attribute of the entity determines its priority.

Dependencies

This parameter is visible when you clear the Overwrite the oldest element if queue is full check
box, and set Queue type to Priority.

Programmatic Use
Block Parameter: PrioritySource
Type: character vector
Values: 'PriorityAttribute' | character vector
Default: 'PriorityAttribute'

Sorting direction — Choose the direction of sorting based on priority
Ascending (default) | Descending

Choose the direction of sorting based on priority.

• Ascending — Elements with smaller priority values appear in front of the queue.
• Descending — Elements with greater priority values appear in front of the queue.

Dependencies

This parameter is visible when you clear the Overwrite the oldest element if queue is full check
box, and set Queue type to Priority.

Programmatic Use
Block Parameter: SortingDirection
Type: character vector
Values: 'Ascending' | 'Descending'
Default: 'Ascending'

Entity arrival source — Choose the source of arrival for the entities
Input port (default) | Multicast

 Queue, Entity Queue

1-1757

Choose the source of arrival for the entities.

• Input port — Input port is source of messages or entities.
• Multicast — Entity Multicast block is source of entities. The Entity Multicast block requires

SimEvents license.

Dependencies

This parameter is visible when you clear the Overwrite the oldest element if queue is full check
box, and set Queue type to Priority.

Programmatic Use
Block Parameter: EntityArrivalSource
Type: character vector
Values: 'Input port' | 'Multicast'
Default: 'Input port'

Event action — Specify the behavior of the entity in certain events
Entry (default) | Exit | Blocked

Specify the behavior of the entity in certain events. Define the behavior in the Event action
parameter. The Entry and the Exit actions are called just after the entity entry and just before entity
exit. The Blocked action is called after an entity is blocked. For more information, see “Events and
Event Actions” (SimEvents).

Note If an event action changes an entity, related block behavior such as resorting a priority queue,
and rescheduling of any events, will occur after the event action has fully finished and returned.

Note Event actions do not support fixed point data type.

Dependencies

Event actions are visible when you clear the Overwrite the oldest element if queue is full check
box.

Programmatic Use
Block Parameter: EntryAction, ExitAction, BlockedAction
Type: character vector
Values: MATLAB code
Default: ''

Number of entities departed, d — Outputs the number of entities that have departed the block
off (default) | on

Number of entities that have departed the block.

Dependencies

Number of entities departed, d is visible when you clear the Overwrite the oldest element if
queue is full check box.

1 Blocks

1-1758

Programmatic Use
Block Parameter: NumberEntitiesDeparted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities in block, n — Outputs the number of entities present in the block, that are yet
to depart
off (default) | on

Number of entities present in the block, but which are yet to depart.

Dependencies

Number of entities in block, n is visible when you clear the Overwrite the oldest element if
queue is full check box.

Programmatic Use
Block Parameter: NumberEntitiesInBlock
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Average wait, w — Outputs the average wait time
off (default) | on

Sum of the wait times for entities departing the block divided by their total number. Wait time is the
duration between the Entity Queue block entry and exit of an entity. For more information, see
“Interpret SimEvents Models Using Statistical Analysis” (SimEvents).

Dependencies

Average wait, w is visible when you clear the Overwrite the oldest element if queue is full check
box.

Programmatic Use
Block Parameter: AverageWait
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Average queue length, l — Outputs the average length of the entity queue
off (default) | on

Accumulated time-weighted average queue size. The block computes this value by:

1 Multiplying the size of the queue by its duration to calculate time-weighted queue size
2 Summing up all time-weighted queue sizes and averaging them over total time

For more information, see “Interpret SimEvents Models Using Statistical Analysis” (SimEvents).

 Queue, Entity Queue

1-1759

Dependencies

Average queue length, l is visible when you clear the Overwrite the oldest element if queue is
full check box.

Programmatic Use
Block Parameter: AverageQueueLength
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Number of entities extracted, ex — Number of entities extracted from this block
off (default) | on

Outputs the number of extracted entities which are pulled out from this block by the Entity Find
block. The Entity Find block requires a SimEvents license. If the extracted entity is the first entity in
the queue, the next entity is set as the pending entity to leave the block. If an entity attribute defines
the priority in a priority queue and it is modified by the Entity Find block, the queue is sorted again.
When an entity is extracted, Number of entities departed, d, Number of entities in block, n,
Average wait, w, and Average queue length, l statistics are updated accordingly. For more
information about finding and extracting entities, see “Find and Extract Entities in SimEvents
Models” (SimEvents).

Dependencies

Number of entities extracted, ex is visible when you clear the Overwrite the oldest element if
queue is full check box.

Programmatic Use
Block Parameter: NumEntitiesExtracted
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2016a

1 Blocks

1-1760

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Code generation is not supported for event actions and statistics.

See Also
Send | Receive

Topics
“Overview of Queues and Servers in Discrete-Event Simulation” (SimEvents)

 Queue, Entity Queue

1-1761

Radio Button
Select parameter value

Libraries:
Simulink / Dashboard

Description
The Radio Button block lets you change the value of the connected parameter during simulation. You
can specify a list of values and labels and then select the value for the parameter from that list. Use
the Radio Button block with other Dashboard blocks to build an interactive dashboard of controls and
indicators for your model.

Double-clicking the Radio Button block does not open its dialog box during simulation and when the
block is selected. To edit the block's parameters, you can use the Property Inspector, or you can
right-click the block and select Block Parameters from the context menu.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus

1 Blocks

1-1762

or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

 Radio Button

1-1763

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection

Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

1 Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

1 Blocks

1-1764

Main

Enumerated Data Type — Specify state values and labels using an enumerated data type

off (default) | on

You can use an enumerated data type that pairs a numeric value with each enumeration to configure
the state values and labels for the block. To specify the states for the block using an enumerated data
type, first select the Enumerated Data Type option. Then, specify the name of the enumerated data
type in the text box. The definition for the specified enumerated data type must be saved on the
MATLAB path or in the base workspace.
Example: myEnumType

Programmatic Use

To programmatically specify the state labels and values for the block using an enumerated data type,
specify 'on' for the UseEnumeratedDataType parameter and the name of the enumerated data
type for the EnumeratedDataType parameter.
Block Parameter: UseEnumeratedDataType
Type: string or character array
Values: 'on' | 'off'
Default: 'off'
Block Parameter: EnumeratedDataType
Type: string or character array
Default: ''

Group Name — Radio Button group name

RadioButtonGroup (default) | character vector

Name for the group of values displayed on the Radio Button block. Unlike the Block Name and
Label, the Group Name always shows on the Radio Button block.
Example: Input Amplitude

Programmatic Use
Block Parameter: ButtonGroupName
Type: string or character array
Default: 'Group'

Label — Block label position

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

States — Set of states to select for connected parameter
scalar and character vector

 Radio Button

1-1765

Set of states from which to select a value for the connected parameter. Each State consists of a State
Value and a State Label.

• State Value — Value assigned to the connected variable or parameter when you select the state
with the corresponding Label.

• State Label — Label for each state. You can use the Label to display the value the connected
parameter takes when the switch is positioned at the bottom, or you can enter a descriptive text
label.

Click the + button to add additional States.

The default configuration for the block includes these States.

States
State Value State Label
0 Label1
1 Label2
2 Label3

Programmatic Use

To programmatically configure the States for a block, use an array of structures containing the
fields Value and Label. Include a structure in the array for each state you want to configure on the
block.

state1.Value = 1;
state1.Label = 'State 1';
state2.Value = 2;
state2.Label = 'State 2';
radioStates = [state1 state2];

Block Parameter: States
Type: structure
Default: 3x1 structure array

Format

Opacity — Block background opacity

1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.
Example: 0.5
Programmatic Use
Block Parameter: Opacity
Type: scalar
Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, including the text. You can select a color from a palette of standard colors or
specify a custom color.

1 Blocks

1-1766

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Background Color — Block background color
[r g b] vector

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2017b

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a
dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Background Color, Foreground Color, and Opacity properties added for several
dashboard blocks

Starting in R2020b, you can specify a background color, a foreground color, and opacity for these
blocks from the Dashboard library:

 Radio Button

1-1767

• Check Box
• Combo Box
• Edit
• Push Button
• Radio Button

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add_block and set_param to create and
configure blocks from the Dashboard library in your model.

R2019a: Enhanced enumerated data type support for the Radio Button block

Starting in R2019a, you can use an enumeration class to configure the values and labels for the states
of a Radio Button block. To configure the states of a Radio Button block with an enumerated data
type, select the Enumerated Data Type parameter. In the text box, enter the name of the
enumeration class you want to use.

When you use an enumeration class to configure the states of the block, you cannot manually edit,
add, or remove states from the States table.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Combo Box | Rotary Switch | Check Box

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1 Blocks

1-1768

Ramp
Generate constantly increasing or decreasing signal

Libraries:
Simulink / Sources

Description
The Ramp block generates a signal that starts at a specified time and value and changes by a
specified rate. The block's Slope, Start time, and Initial output parameters determine the
characteristics of the output signal. All must have the same dimensions after scalar expansion.

Ports
Output

Port_1 — Output signal
scalar | vector | matrix

Generated output ramp signal characterized by the Slope, Start time, and Initial output
parameters.
Data Types: double

Parameters
Slope — Slope of signal

1 (default) | scalar | vector | matrix

Specify the rate of change of the generated signal.

Programmatic Use
Block Parameter: slope
Type: character vector
Values: scalar
Default: '1'

Start time — Time output begins

0 (default) | scalar

Specify the time at which the block begins generating the signal.

Programmatic Use
Block Parameter: start

 Ramp

1-1769

Type: character vector
Values: scalar
Default: '0'

Initial output — Initial value of output signal

0 (default) | scalar | vector | matrix

Specify the initial value of the output signal.

Programmatic Use
Block Parameter: InitialOutput
Type: character vector
Values: scalar
Default: '0'

Interpret vector parameters as 1-D — Treat vectors as 1-D

on (default) | off

Select this check box to output a vector of length N if the Constant value parameter evaluates to an
N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if the Constant value
parameter evaluates to an N-element row or column vector. For example, the block outputs a
matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if the Constant
value parameter evaluates to an N-element row or column vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

1 Blocks

1-1770

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

See Also
Repeating Sequence | Pulse Generator

 Ramp

1-1771

Random Number
Generate normally distributed random numbers

Libraries:
Simulink / Sources

Description
The Random Number block generates normally distributed random numbers. To generate uniformly
distributed random numbers, use the Uniform Random Number block. Both blocks use the Normal
(Gaussian) random number generator ('v4': legacy MATLAB 4.0 generator of the rng function).

You can generate a repeatable sequence using any Random Number block with the same nonnegative
seed and parameters. The seed resets to the specified value each time a simulation starts. By default,
the block produces a sequence that has a mean of 0 and a variance of 1. To generate a vector of
random numbers with the same mean and variance, specify the Seed parameter as a vector.

Avoid integrating a random signal, because solvers must integrate relatively smooth signals. Instead,
use the Band-Limited White Noise block.

The numeric parameters of this block must have the same dimensions after scalar expansion. If you
select the Interpret vector parameters as 1-D check box, and the numeric parameters are row or
column vectors after scalar expansion, the block outputs a 1-D signal. If you clear the Interpret
vector parameters as 1-D check box, the block outputs a signal of the same dimensionality as the
parameters.

Ports
Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that is the generated random numbers falling within a normal Gaussian distribution.
The output is repeatable for a given seed.
Data Types: double

Parameters
Mean — Mean of random numbers

0 (default) | scalar | array

Specify the mean of the random numbers generated.

1 Blocks

1-1772

Programmatic Use
Block Parameter: Mean
Type: character vector
Values: scalar | array
Default: '0'

Variance — Variance of random numbers

1 (default) | scalar | array

Specify the variance of the random numbers.

Programmatic Use
Block Parameter: Variance
Type: character vector
Values: scalar | array
Default: '1'

Seed — Starting seed

0 (default) | positive integer | scalar | array

Specify the starting seed for the random number generator.

The output of number generated is repeatable for a given seed.

Programmatic Use
Block Parameter: Seed
Type: character vector
Values: scalar | array
Default: '0'

Sample time — Time between intervals

0.1 (default) | integer

Specify the time interval between samples. The default is 0.1, which matches the default sample
time of the Band-Limited White Noise block. See “Specify Sample Time” for more information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '0.1'

Interpret vector parameters as 1-D — Treat vectors as 1-D

on (default) | off

Select this check box to output a vector of length N if the Mean, Variance, and Seed parameters
evaluate to an N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if the Mean, Variance, and
Seed parameters evaluate to an N-element row or column vector. For example, the block outputs a
matrix of dimension 1-by-N or N-by-1.

 Random Number

1-1773

• When you clear this check box, the block does not output a vector of length N if the Mean,
Variance, and Seed parameters evaluate to an N-element row or column vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Uniform Random Number | Band-Limited White Noise | rng

1 Blocks

1-1774

Rate Limiter
Limit rate of change of signal

Libraries:
Simulink / Discontinuities

Description
The Rate Limiter block limits the first derivative of the signal passing through it. The output changes
no faster than the specified limit. The derivative is calculated using this equation:

rate = u(i)− y(i− 1)
t(i)− t(i− 1)

where u(i) and t(i) are the current block input and time, and y(i-1) and t(i-1)) are the output and time
at the previous step. The output is determined by comparing rate to the Rising slew rate and
Falling slew rate parameters:

• If rate is greater than the Rising slew rate parameter (R), the output is calculated as

y(i) = Δt ⋅ R + y(i− 1) .
• If rate is less than the Falling slew rate parameter (F), the output is calculated as

y(i) = Δt ⋅ F + y(i− 1) .
• If rate is between the bounds of R and F, the change in output is equal to the change in input:

y(i) = u(i)

When the block is running in continuous mode (for example, Sample time mode is inherited and
Sample time of the driving block is zero), the Initial condition is ignored. The block output at t =
0 is equal to the initial input:

y(0) = u(0)

When the block is running in discrete mode (for example, Sample time mode is inherited and
Sample time of the driving block is nonzero), the Initial condition is preserved:

y(− 1) = Ic

where Ic is the initial condition. The block output at t = 0 is calculated as if rate is outside the
bounds of R and F. For t = 0, rate is calculated as follows:

rate = u(0)− y(− 1)
sample time

Limitations
• You cannot use a Rate Limiter block inside a Triggered Subsystem. Use the Rate Limiter Dynamic

block instead.

 Rate Limiter

1-1775

Ports
Input

Port_1 — Input signal
scalar

The input signal to the rate limiter algorithm.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar

Output signal from the rate limiter algorithm.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Rising slew rate — Limit of derivative for increasing input

1 (default) | real number

Specify the limit of the rising rate of the input signal. This parameter is tunable for fixed-point inputs.

Programmatic Use
Block Parameter: RisingSlewLimit
Type: character vector
Values: real number
Default: '1'

Falling slew rate — Limit of derivative for decreasing input

-1 (default) | real number

Specify the lower limit on the falling rate of the input signal. This parameter is tunable for fixed-point
inputs.

Programmatic Use
Block Parameter: FallingSlewLimit
Type: character vector
Values: real number
Default: '-1'

Sample time mode — Sample time mode

inherited (default) | continuous

Specify the sample time mode, continuous or inherited from the driving block.

1 Blocks

1-1776

Programmatic Use
Block Parameter: SampleTimeMode
Type: character vector
Values: 'inherited' | 'continuous' |
Default: 'inherited'

Initial condition — Initial output

0 (default) | scalar

Set the initial output of the simulation. Simulink does not allow you to set the initial condition of this
block to inf or NaN.
Programmatic Use
Block Parameter: InitialCondition
Type: character vector
Values: scalar
Default: '0'

Treat as gain when linearizing — Specify the gain value

On (default) | Boolean

Select this check box to cause the commands to treat the gain as 1. The linearization commands in
Simulink software treat this block as a gain in state space. Clear the box to have the commands treat
the gain as 0.
Programmatic Use
Block Parameter: LinearizeAsGain
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Rate Limiter

1-1777

Cannot be used inside a triggered subsystem hierarchy.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Rate Limiter Dynamic | Saturation

1 Blocks

1-1778

Rate Limiter Dynamic
Limit rate of change of signal

Libraries:
Simulink / Discontinuities

Description
The Rate Limiter Dynamic block limits the rising and falling rates of the signal.

• The external signal up sets the upper limit on the rising rate of the signal.
• The external signal lo sets the lower limit on the falling rate of the signal.

Follow these guidelines when using the Rate Limiter Dynamic block:

• Ensure that the data types of up and lo are the same as the data type of the input signal u.

When the lower limit uses a signed type and the input signal uses an unsigned type, the output
signal keeps increasing regardless of the input and the limits.

• Use a fixed-step solver to simulate models that contain this block.

Because the Rate Limiter Dynamic block supports only discrete sample time.

Ports
Input

u — Input signal
scalar

Input signal to the rate limiter algorithm.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

lo — Limit of derivative for decreasing input
scalar

Dynamic value providing the limit of the falling rate of the input signal. Make the signal data type of
lothe same data type of the input signal u.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

up — Limit of derivative for increasing input
scalar

Dynamic value providing the limit of the rising rate of the input signal. Make the signal data type of
upthe same data type of the input signal u.

 Rate Limiter Dynamic

1-1779

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Y — Output signal
scalar

Output signal from the rate limiter algorithm.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | enumerated | bus

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked subsystem block to execute as an
atomic unit by selecting the Treat as atomic unit option.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Rate Limiter

1 Blocks

1-1780

Rate Transition
Handle transfer of data between blocks operating at different rates

Libraries:
Simulink / Signal Attributes
HDL Coder / Signal Attributes

Description
The Rate Transition block transfers data from the output of a block operating at one rate to the input
of a block operating at a different rate. Use the block parameters to trade data integrity and
deterministic transfer for faster response or lower memory requirements. To learn about data
integrity and deterministic data transfer, see “Data Transfer Problems” (Simulink Coder).

Transition Handling Options

Transition Handling Options Block Parameter Settings
• Data integrity
• Deterministic data transfer
• Maximum latency

Select:

• Ensure data integrity during data
transfer

• Ensure deterministic data transfer
• Data integrity
• Nondeterministic data transfer
• Minimum latency
• Higher memory requirements

Select:

• Ensure data integrity during data
transfer

Clear:

• Ensure deterministic data transfer
• Potential loss of data integrity
• Nondeterministic data transfer
• Minimum latency
• Lower memory requirements

Clear:

• Ensure data integrity during data
transfer

• Ensure deterministic data transfer

Dependencies

The behavior of the Rate Transition block depends on:

• Sample times of the ports to which the block connects (see “Effects of Synchronous Sample
Times” on page 1-1783 and “Effects of Asynchronous Sample Times” on page 1-1784)

• Priorities of the tasks for the source and destination sample times (see Sample time properties in
the Simulink documentation)

• Whether the model specifies a fixed- or variable-step solver (see “Compare Solvers” in the
Simulink documentation)

• Setting of model configuration parameters Device vendor and Device type (see “Effects of
Device Configuration” on page 1-1784)

 Rate Transition

1-1781

Block Labels

When you update your diagram, a label appears on the Rate Transition block to indicate simulation
behavior.

Label Block Behavior
ZOH Acts as a zero-order hold
1/z Acts as a unit delay
Buf Copies input to output under semaphore control
Db_buf Copies input to output using double buffers
3buf Copies input to output using triple buffers
Copy Unprotected copy of input to output
NoOp Does nothing
Mixed Expands to multiple blocks with different behaviors
RT Indicates data transfer between partitions when using the Schedule Editor.

For more information on using the Schedule Editor, see “Using the
Schedule Editor”.

Memory Indicates memory mode. The block is in memory mode when Ensure
deterministic data transfer (maximum delay) is off.

The block behavior label shows the method that ensures safe transfer of data between tasks
operating at different rates. You can use the sample-time colors feature (see “View Sample Time
Information”) to display the relative rates that the block bridges. Consider, for example, the following
model:

Sample-time colors and the block behavior label show:

• The Rate Transition block at the top of the diagram acts as a zero-order hold in a fast-to-slow
transition.

• The Rate Transition block at the bottom of the diagram acts as a unit delay in a slow-to-fast
transition.

For more information, see “Handle Rate Transitions” (Simulink Coder).

1 Blocks

1-1782

Effects of Synchronous Sample Times

The following table summarizes how each label appears when the sample times of the input and
output ports (inTs and outTs) are periodic, or synchronous.

Block Settings Block Label
Rate
Transition

Conditions for Rate Transition
Block

With Data Integrity
and Determinism

With Only
Data
Integrity

Without Data
Integrity or
Determinism

inTs = outTs

(Equal)

inTsOffset < outTsOffset None (error) Buf Copy or NoOp (see
note that follows
the table)

inTsOffset = outTsOffset Copy or NoOp (see
note that follows the
table)

Copy or NoOp
(see note that
follows the
table)

inTsOffset > outTsOffset None (error) Db_buf
inTs < outTs

(Fast to slow)

inTs = outTs / N

inTsOffset, outTsOffset = 0

ZOH Buf

inTs = outTs / N

inTsOffset ≤ outTsOffset

None (error)

inTs = outTs / N

inTsOffset > outTsOffset

None (error) Db_buf

inTs ≠ outTs / N None (error)
inTs > outTs

(Slow to fast)

inTs = outTs * N

inTsOffset, outTsOffset = 0

1/z Db_buf

inTs = outTs * N

inTsOffset ≤ outTsOffset

None (error)

inTs = outTs * N

inTsOffset > outTsOffset

None (error)

inTs ≠ outTs * N None (error)
KEY

• inTs, outTs: Sample times of input and output ports, respectively
• inTsOffset, outTsOffset: Sample time offsets of input and output ports, respectively
• N: Integer value > 1

When you select the Block reduction parameter on the Configuration Parameters dialog box, Copy
reduces to NoOp. No code generation occurs for a Rate Transition block with a NoOp label. To prevent
a block from being reduced when block reduction is on, add a test point to the block output (see
“Configure Signals as Test Points” in the Simulink documentation).

 Rate Transition

1-1783

Effects of Asynchronous Sample Times

The following table summarizes how each label appears when the sample time of the input or output
port (inTs or outTs) is not periodic, or asynchronous.

Block Settings Block Label
With Data Integrity
and Determinism

With Only Data
Integrity

Without Data Integrity
or Determinism

inTs = outTs Copy Copy Copy
inTs ≠ outTs None (error) Db_buf
KEY

• inTs, outTs: Sample times of input and output ports, respectively

Effects of Device Configuration

If the settings of model configuration parameters Device vendor and Device type specify hardware
that supports atomic data load and store operations, the code generator optimizes the generated rate
transition code when the target hardware supports atomic load and store operations for the data type
of the signal being transferred. The code generator takes advantage of the hardware data load and
store capability by replacing double-buffering code between asynchronous tasks with code that
performs a single memory copy.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal to transition to a new sample rate, specified as a scalar, vector, matrix, or N-D array. To
learn about the block parameters that enable you to trade data integrity and deterministic transfer
for faster response or lower memory requirements, see “Transition Handling Options” on page 1-
1781.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — Output signal
scalar | vector | matrix | N-D array

Output signal is the input signal converted to the sample rate you specify. The default configuration
ensures safe and deterministic data transfer. To learn about the block parameters that enable you to
trade data integrity and deterministic transfer for faster response or lower memory requirements, see
“Transition Handling Options” on page 1-1781.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

1 Blocks

1-1784

Parameters
Ensure data integrity during data transfer — Ensure data integrity

on (default) | off

Selecting this check box results in generated code that ensures data integrity when the block
transfers data. If you select this check box and the transfer is nondeterministic (see Ensure
deterministic data transfer), depending on the priority of input rate and output rate, the generated
code uses a proper algorithm using single or multiple buffers to protect data integrity during data
transfer.

Otherwise, the Rate Transition block is either reduced or generates code using a copy operation to
affect the data transfer. This unprotected mode consumes less memory. But the copy operation is also
interruptible, which can lead to loss of data integrity during data transfers. Select this check box if
you want the generated code to operate with maximum responsiveness (that is, nondeterministically)
and data integrity. For more information, see “Rate Transition Block Options” (Simulink Coder).

Programmatic Use
Block Parameter: Integrity
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Ensure deterministic data transfer (maximum delay) — Ensure deterministic data transfer

on (default) | off

Selecting this check box results in generated code that transfers data at the sample rate of the slower
block, that is, deterministically. If you do not select this check box, data transfers occur when new
data is available from the source block and the receiving block is ready to receive the data. You avoid
transfer delays, thus ensuring that the system operates with maximum responsiveness. However,
transfers can occur unpredictably, which is undesirable in some applications. For more information,
see “Rate Transition Block Options” (Simulink Coder).

Programmatic Use
Block Parameter: Deterministic
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Initial conditions — Initial conditions

0 (default) | scalar | vector | matrix | N-D array

This parameter applies only to slow-to-fast transitions. It specifies the initial output of the Rate
Transition block at the beginning of a transition, when there is no output signal due to the absence of
input signal coming from the slow block connected to the input of the Rate Transition block. Simulink
does not allow the initial output of this block to be Inf or NaN. The value you specify must be a
scalar, or have the same dimensions as the input signal.

Programmatic Use
Block Parameter: InitialCondition
Type: character vector

 Rate Transition

1-1785

Values: finite scalar
Default: '0'

Output port sample time options — Mode for specifying output port sample time

Specify (default) | Inherit | Multiple of input port sample time

Specifies a mode for setting the output port sample time. The options are:

• Specify — Allows you to use the Output port sample time parameter to specify the output rate
to which the Rate Transition block converts its input rate.

• Inherit — Specifies that the Rate Transition block inherits an output rate from the block to
which the output port is connected.

• Multiple of input port sample time — Allows you to use the Sample time multiple
(>0) parameter to specify the Rate Transition block output rate as a multiple of its input rate.

If you select Inherit and all blocks connected to the output port also inherit sample time, the fastest
sample time in the model applies.

Programmatic Use
Block Parameter: OutPortSampleTimeOpt
Type: character vector
Values: 'Specify' | 'Inherit' | 'Multiple of input port sample time'
Default: 'Specify'

Output port sample time — Output rate

-1 (default) | scalar | vector

Enter a value that specifies the output rate to which the block converts its input rate. The default
value (-1) specifies that the Rate Transition block inherits the output rate from the block to which the
output port is connected. See “Specify Sample Time” for information on how to specify the output
rate.

Dependencies

To enable this parameter, set Output port sample time options to Specify.

Programmatic Use
Block Parameter: OutPortSampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

Sample time multiple(>0) — Sample time multiple

1 (default) | positive scalar

Enter a positive value that specifies the output rate as a multiple of the input port sample time. The
default value (1) specifies that the output rate is the same as the input rate. A value of 0.5 specifies
that the output rate is half of the input rate. A value of 2 specifies that the output rate is twice the
input rate.

1 Blocks

1-1786

Dependencies

To enable this parameter, set Output port sample time options to Multiple of input port
sample time.

Programmatic Use
Block Parameter: OutPortSampleTimeMultiple
Type: character vector
Values: scalar
Default: '1'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• Generated code relies on memcpy or memset functions (string.h) under certain conditions.
• Cannot use inside a triggered subsystem hierarchy.
• Generated code for concurrent programs is platform specific and assumes deployment platform

and host platform are the same.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides configuration options that affect HDL implementation and synthesized logic.

Best Practices

• When the Rate Transition block is operating at a fast input rate and slow output rate, it is good
practice to follow the Rate Transition block with a unit delay. Doing so prevents the code
generator from inserting an extra bypass register in the HDL code. See also “Multirate Model
Requirements for HDL Code Generation” (HDL Coder).

• To upsample the input signal without incurring a unit delay, in the Block Parameters dialog box of
the Rate Transition block:

 Rate Transition

1-1787

• Clear the Ensure data integrity during data transfer check box.

Clearing this check box hides the Ensure deterministic data transfer (maximum delay)
check box.

• Configure the output port sample time of the block to be an integer multiple of the input port
sample time. Specify a fractional value of 1/n for Sample time multiple, where n is an
integer. If Sample time multiple uses a value 1/n, you can choose any value for the block
parameter Output port sample time options.

Note When downsampling the input signal, leave the Ensure data integrity during data
transfer and Ensure deterministic data transfer (maximum delay) check boxes selected.
This mode generates an additional bypass register in the HDL code.

See also “Usage of Rate Change and Constant Blocks” (HDL Coder).

Restrictions

• The sample rate cannot be 0 or Inf for block input or output ports.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

1 Blocks

1-1788

AsyncRTAsWire Map Asynchronous Rate Transition as Wire.

When Output port sample time has noninteger
values, it is considered as an asynchronous rate.
Enable the AsyncRTAsWire option to generate a
wire when such asynchronous rates are present
for the Rate Transition block.

Dependencies: This option is available only
when the Ensure data integrity during data
transfer and Ensure deterministic data
transfer parameters are turned off.

When using asynchronous rate transition as wire,
set Clock inputs option to Multiple.

Note While mapping the asynchronous rate transition as wire, you may see the numerical
mismatches between Simulink and Code Generation results.

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Probe | Weighted Sample Time

Topics
“Specify Sample Time”
“View Sample Time Information”
“Handle Rate Transitions” (Simulink Coder)

 Rate Transition

1-1789

Real-Imag to Complex
Convert real and/or imaginary inputs to complex signal

Libraries:
Simulink / Math Operations
HDL Coder / Math Operations

Description
The Real-Imag to Complex block converts real and/or imaginary inputs to a complex-valued output
signal.

The inputs can both be arrays (vectors or matrices) of equal dimensions, or one input can be an array
and the other a scalar. If the block has an array input, the output is a complex array of the same
dimensions. The elements of the real input map to the real parts of the corresponding complex output
elements. The imaginary input similarly maps to the imaginary parts of the complex output signals. If
one input is a scalar, it maps to the corresponding component (real or imaginary) of all the complex
output signals.

Ports
Input

Re — Real part of complex output
scalar | vector | matrix

Real value to be converted to complex-valued output signal, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | bus

Im — Imaginary part of complex output
scalar | vector | matrix

Imaginary value to be converted to complex-valued output signal, specified as a scalar, vector, or
matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | bus

Port_1 — Real or imaginary part of complex output
scalar | vector | matrix

Real or imaginary value to convert to complex output signal, specified as a finite scalar, vector, or
matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | bus

1 Blocks

1-1790

Output

Port_1 — Complex signal
scalar | vector | matrix

Complex signal, formed from real and imaginary values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Input — Real, imaginary, or both

Real (default) | Imag | Real and imag

Specify the type of input: a real input, an imaginary input, or both.

Programmatic Use
Block Parameter: Input
Type: character vector
Values: 'Real and imag' | 'Real' | 'Imag'
Default: 'Real and imag'

Imag part — Imaginary part of complex output
0 (default) | finite scalar, vector, or matrix

Specify the imaginary value to use when converting the input to a complex-valued output signal.

Dependencies

To enable this parameter, set Input to Real.

Programmatic Use
Block Parameter: ConstantPart
Type: character vector
Values: imaginary value
Default: '0'

Real part — Real part of complex output
0 (default) | finite scalar, vector, or matrix

Specify the constant real value to use when converting the input to a complex-valued output signal.

Dependencies

To enable this parameter, set Input to Imag.

Programmatic Use
Block Parameter: ConstantPart
Type: character vector
Values: finite, real-valued scalar, vector, or matrix
Default: '0'

Sample time — Sample time value other than -1

 Real-Imag to Complex

1-1791

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

1 Blocks

1-1792

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Complex to Real-Imag | Magnitude-Angle to Complex | Complex to Magnitude-Angle

Topics
“Complex Signals”

 Real-Imag to Complex

1-1793

Record, XY Graph
Log data to the workspace, to a file, or both

Libraries:
Simulink / Sinks

Description
You can use the Record block or the XY Graph block to record data to the workspace, to a file, or to
both the workspace and a file. When you log data to a file, you can choose to log to a MAT file, an
MLDATX file, or an Excel file. Signals connected to a Record block always log to the Simulation Data
Inspector. If you decide that you need to save data after simulation, you can export data from the
Record block to the workspace or to any supported file type.

You can also use the Record block to visualize connected signals. To view data for signals connected
to the Record block, double-click the block. You have access to simulation controls, such as the Run
button, while viewing data in the Record block.

By default, the Record block displays all connected signals on a sparklines plot. A sparkline is added
for each connected signal. After sparklines fill the visible space, a scrollbar allows you to continue
plotting signals.

1 Blocks

1-1794

Build Visualizations

The Record block supports most visualizations available in the Simulation Data Inspector. When a
different visualization makes sense for your data, you can modify the plot layout and plot types using
the Layouts option and the plot types selector, labeled Sparklines by default. Use the Layouts list to
select a layout of subplots. To change the plot type of a subplot, select the subplot then select the
desired plot type from the plot types selector.

For more information, see “Log Data to the Workspace and a File Using the Record Block”. For
examples that show how to use each visualization type, see:

• Sparklines — “View Many Signals Together Using Sparklines”
• XY — “Visualize Simulation Data on an XY Plot” and “Analyze Data Using the XY Plot”
• Map — “View and Replay Map Data”
• Time plot and text editor — “Create Plots Using the Simulation Data Inspector”

The Record block does not support the array visualization available in the Simulation Data Inspector.
The Record block supports logging multidimensional signal data, including variable-size signals, but
does not support visualizing multidimensional data. To visualize the data for a multidimensional
signal using the Record block, convert the signal with multidimensional sample values to a set of
signals, called channels, that each have scalar sample values. For more information, see “Analyze
Multidimensional Signal Data”.

 Record, XY Graph

1-1795

XY Graph Block

The XY Graph block in the Simulink Sinks library is an alternative configuration of the Record block
that visualizes two input signals on an XY plot. The first input port provides the x data for the XY plot,
and the second input port provides the y data.

The XY Graph block supports logging and visualizing data for nonscalar inputs. However, the XY
visualization does not support multidimensional data. When you connect nonscalar signals to the XY
Graph block, you must manually configure which channels or elements of the nonscalar signal
provide the x and y data for the XY plot.

Ports
Input

Port_1 — Signal to record
scalar | vector | matrix | array | bus

Signal to record. You can add ports to the Record block by dragging lines to the edge of the block or
by using the Ports parameter.

The Record block supports logging variable-size signals but does not support visualizing variable-size
signals.

The XY Graph block is an alternative configuration of the Record block that visualizes data connected
to two input ports on an XY plot. The first input port provides the x data for the XY plot, and the
second input port provides the y data.

Tips

• To log frame-based data, specify the Input Processing parameter for each port that receives a
frame-based signal.

• When you connect a nonscalar signal to an input port of the XY Graph block, you must manually
configure which channels or elements of the nonscalar signal provide the x and y data for the XY
plot.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
To modify Record block parameters, use the Property Inspector.

Main

Number of input ports — Number of input ports
1 (default) | integer in the range [1,100]

Number of input ports, specified as an integer between 1 and 100, inclusive.

The XY Graph block is an alternative configuration of the Record block that visualizes data connected
to two input ports on an XY plot. The first input port provides the x data for the XY plot, and the
second input port provides the y data.

1 Blocks

1-1796

Programmatic Use
Block Parameter: 'NumPorts'
Type: integer | character vector
Values: integer in the range [1,100]
Default: 1

Port — Port for which to specify input processing mode
1 (default) | integer

Use the Port and Input Processing parameters together to specify the input processing mode for a
port. The input processing mode determines how the Record block interprets matrix data:

• Sample-based — Each element in the matrix is a separate channel.
• Frame-based — Each column in the matrix is a separate channel.

To use frame-based input processing, the signal must have a discrete sample rate, and the sample
values must be nonscalar with fixed dimensions.

By default, each port processes the input signal as sample-based.

To change the input processing mode for a port:

1 Select the port number using the Port parameter.
2 Select the input processing mode using the Input Processing parameter.

Programmatic Use

Programmatically specify the input processing mode for each port by specifying the FrameSettings
parameter as a row vector with as many elements as block ports. The element index corresponds to
the port number on the block. Specify 1 to use frame-based input processing for the port and 0 to use
sample-based processing.
Block Parameter: 'FrameSettings'
Type: logical array
Values: 1-by-n row vector, where n is equal to the number of ports
Default: 0

Input Processing — Input processing mode for selected port
Elements as channels (sample-based) (default) | Columns as channels (frame-based)

Use the Port and Input Processing parameters together to specify the input processing mode for a
port. The input processing mode determines how the Record block interprets matrix data:

• Sample-based — Each element in the matrix is a separate channel.
• Frame-based — Each column in the matrix is a separate channel.

To use frame-based input processing, the signal must have a discrete sample rate, and the sample
values must be nonscalar with fixed dimensions.

By default, each port processes the input signal as sample-based.

To change the input processing mode for a port:

1 Select the port number using the Port parameter.
2 Select the input processing mode using the Input Processing parameter.

 Record, XY Graph

1-1797

Programmatic Use

Programmatically specify the input processing mode for each port by specifying the FrameSettings
parameter as a row vector with as many elements as block ports. The element index corresponds to
the port number on the block. Specify 1 to use frame-based input processing for the port and 0 to use
sample-based processing.
Block Parameter: 'FrameSettings'
Type: logical array
Values: 1-by-n row vector, where n is equal to the number of ports
Default: 0

Record

Record to Workspace — Workspace logging option
off (default) | on

Workspace logging option. By default, the Record block logs data to the Simulation Data Inspector
only. Select Record to Workspace to log data for signals connected to the Record block to the
MATLAB workspace in a Simulink.SimulationData.Dataset object.

Use the Workspace Variable Name parameter to specify the name of the Dataset object that
contains the logged Record block data.

Tips

• When you log data to the workspace, the way you access the data depends on your model
configuration. By default, models provide all logged data in a single output variable as a
Simulink.SimulationOutput object. You can access the Record block data using the get
function or a dot with the Record block workspace variable name. When the Single simulation
output option is disabled, logging data appears in separate variables in the workspace, and you
access the Record block data directly.

• Logging intervals specified using the Logging intervals configuration parameter apply to data
logged to the workspace using the Record block.

• You can use a single Record block to log data to the Simulation Data Inspector, to the workspace,
and to a file.

Programmatic Use
Block Parameter: 'RecordToWorkspace'
Type: character vector | boolean | numeric
Values: 'on' | 'off' | true or 1 | false or 0
Default: 'off'

Workspace Variable Name — Name for workspace variable that contains logged block data
recordout (default) | character vector | string

Name for the workspace variable that contains the logged block data.

Dependencies

To enable this parameter, select the Record to Workspace parameter.

Programmatic Use
Block Parameter: 'VariableName'
Type: character vector | string
Default: 'recordout'

1 Blocks

1-1798

Record to File — Log to file option
off (default) | on

Log to file option. By default, the Record block logs data to the Simulation Data Inspector only. Select
Record to File to log data for signals connected to the Record block to a file.

Tips

• Use the File Name parameter to specify a name for the file.
• Use the File Type parameter to specify whether to log data to an MLDATX file, a MAT file, or an

Excel file.
• Use the File Location parameter to specify the path to the file.
• Logging intervals specified using the Logging intervals configuration parameter do not apply to

data logged to a file using the Record block.

Programmatic Use
Block Parameter: 'RecordToFile'
Type: character vector | boolean | numeric
Values: 'on' | 'off' | true or 1 | false or 0
Default: 'off'

File Name — Name of file with logged data
recording.mldatx (default) | character vector | string

Name of the file that contains the logged data. The name does not need to include the file extension.
If you do include the file extension in the name, ensure the name uses a valid extension for the
specified File Type.

Tips

• If you do not change the name or location of the file you log to from one run to the next, the
Record block overwrites prior data in the file.

• When you want to save the file in a location other than your working directory, use the File
Location parameter to specify the path to the directory where you want to save the file.

Dependencies

To enable this parameter, select the Record to File parameter.

Programmatic Use

Use the FileName parameter to specify the File Name, File Type, and File Location parameters.
Include the extension for the desired file type in the name you pass to set_param. When you want to
save the file somewhere other than the current working directory, specify the path with the file name
and extension.
Block Parameter: 'FileName'
Type: character vector | string
Default: 'recording.mldatx'

File Type — Type of file for logged data
*.mldatx (default) | *.mat | *.xslx

Use the File Type parameter to specify whether you want to log data to an MLDATX file, a MAT file,
or an Excel file.

 Record, XY Graph

1-1799

Tips

• When you log data to an Excel file, the data is formatted as described in “Microsoft Excel Import,
Export, and Logging Format”.

• When you log data to an Excel file, you can specify whether to share time columns using the Time
parameter and which signal attributes to log using the Attributes parameter.

Dependencies

To enable this parameter, select Record to File.

Programmatic Use

Use the FileName parameter to specify the File Name, File Type, and File Location parameters.
Include the extension for the desired file type in the name you pass to set_param. When you want to
save the file somewhere other than the current working directory, specify the path with the file name
and extension.
Block Parameter: 'FileName'
Type: character vector | string
Default: 'recording.mldatx'

File Location — Path to file with logged data
working directory (default) | character vector | string

Use the File Location parameter to specify the location where you want to save the file with the
logged data when you want to save the file somewhere other than the working directory. Ensure you
have write permissions in the directory you specify.

Dependencies

To enable this parameter, select Record to File.

Programmatic Use

Use the FileName parameter to specify the File Name, File Type, and File Location parameters.
Include the extension for the desired file type in the name you pass to set_param. When you want to
save the file somewhere other than the current working directory, specify the path with the file name
and extension.
Block Parameter: 'FileName'
Type: character vector | string
Default: 'recording.mldatx'

Time — Options for exporting time data to Excel file
Shared Time Columns (default) | Individual Time Columns

Use the Time parameter to specify how to log signal time data when you log the Record block data to
an Excel file.

• Shared Time Columns — When time data is identical for multiple signals, the signals share a
single time column in the logging file. The logging file may still include multiple time columns if
the Record block logs data for signals with unique time data.

• Individual Time Columns — Each logged signal always has its own time column in the
logging file.

1 Blocks

1-1800

Dependencies

To enable this parameter, select Record to File and specify File Type as *.xlsx.

Attributes — Signal attributes to export to Excel file
Data Type | Units | Port Index | Block Path | Interpolation

Select one or more signal attribute options to include in the logging file when you log data to an Excel
file. Selected signal attributes appear in the signal column above the first data point according to the
format described in “Microsoft Excel Import, Export, and Logging Format”.

Dependencies

To enable this parameter, select Record to File and specify File Type as *.xlsx.

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Tips
• To open the Record block in a new window, right-click the block, then select Open In New

Window.
• To open the Record block in a new tab, right-click the block, then select Open In New Tab.

Version History
Introduced in R2021a

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

You can use this block to record data from a simulation when you use the block with subsystems that
generate HDL code. The block cannot be included in the hardware implementation.

See Also
Tools
Simulation Data Inspector

 Record, XY Graph

1-1801

Blocks
Outport | To Workspace | To File | Playback

Model Settings
Single simulation output

1 Blocks

1-1802

Reinitialize Function
Execute subsystem on model or subsystem reinitialize event

Libraries:
Simulink / User-Defined Functions

Description
The Reinitialize Function block is a preconfigured Subsystem block that executes on a model or
subsystem reinitialize event. By default, the Reinitialize Function block includes:

• An Event Listener block with the Event type set to Reinitialize and the Event name set to
reinit

• A Constant block with the Constant value set to 0
• A State Writer block with no State owner block set

Customize the Reinitalize Function block by, for example, replacing the Constant block with source
blocks that generate the state value for the State Writer block and specifying a State owner block
for the State Writer block.

To generate a model reinitialize event, send a function-call signal to a reinitialize port of a Model
block that references a model that contains a Reinitialize Function block. To generate a subsystem
reinitialize event, send a function-call signal to a reinitialize port of a Subsystem block that contains a
Reinitialize Function block. The reinitialize event has these effects:

1 The state of each block in the model or subsystem reverts back to its initial condition, including
blocks within subsystems or referenced models inside the model or subsystem receiving the
reinitialize event.

2 The contents of the Reinitialize Function block corresponding to the reinitialize port are
executed.

3 If any subsystems or referenced models inside the model or subsystem receiving the reinitialize
event contain a Reinitialize Function block, and the Event name of that block matches the Event
name of the Reinitialize Function block corresponding to the reinitialize port, then the contents
of those Reinitialize Function blocks are executed.

If a Simulink based state in a Stateflow chart contains a Reinitialize Function block, to generate a
subsystem reinitialize event for the state, use a transition event with this syntax:

{StateName.ReinitializeEventName()}

 Reinitialize Function

1-1803

Conditionally executed subsystems with output ports are fully supported within Reinitialize Function
blocks.

A model or subsystem can have multiple Reinitialize Function blocks with each block having a
different Event name. Each of these reinitialize events appears in the generated code as a different
function. Set the Event name in the block dialog of the Event Listener block. The Event Name
appears on the Reinitialize Function block icon, and as the port label for the reinitialize port
corresponding to the reinitialize event.

You can select an Initialize Function, Reinitialize Function, Reset Function, or Terminate Function
block or a corresponding state owner block to highlight blocks related to it. To show a related block
in an open diagram or new tab, pause on the ellipsis that appears after selection. Then, select

Related Blocks from the action bar. When multiple blocks correspond to the selected block, a
list of related blocks opens. You can filter the list of related blocks by entering a search term in the
text box. After you select a related block from the list, window focus goes to the open diagram or new
tab that shows the related block.

Limitations
• If a referenced model or subsystem contains more than one Reinitialize Function block, the

function-call signals driving all reinitialize ports of the Model or Subsystem block must have a
common source.

• Only these blocks can have reinitialize ports:

• Model
• Atomic Subsystem
• Enabled Subsystem
• Triggered Subsystem
• Enabled and Triggered Subsystem
• Message Triggered Subsystem
• Message Polling Subsystem
• Function-Call Subsystem
• If Action Subsystem
• Switch Case Action Subsystem
• For Iterator Subsystem
• While Iterator Subsystem

• For a list of unsupported blocks and features, see “Initialize, Reinitialize, Reset, and Terminate
Function Limitations”.

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no

1 Blocks

1-1804

Multidimensional
Signals

yesa

Variable-Size Signals no
Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Initialize Function | Reset Function | Terminate Function | Event Listener | State Reader | State
Writer | Model | Subsystem

Topics
“Reinitialize States of Blocks in Subsystem”
“Using Initialize, Reinitialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”

 Reinitialize Function

1-1805

Relational Operator
Perform specified relational operation on inputs

Libraries:
Simulink / Commonly Used Blocks
Simulink / Logic and Bit Operations
HDL Coder / Commonly Used Blocks
HDL Coder / HDL Floating Point Operations
HDL Coder / Logic and Bit Operations

Description
The Relational Operator block performs the specified relational operation on the input. The value you
choose for the Relational operator parameter determines whether the block accepts one or two
input signals.

Two-Input Mode

By default, the Relational Operator block compares two inputs using the Relational operator
parameter that you specify. The first input corresponds to the top input port and the second input to
the bottom input port. (See “Identify Port Location on Rotated or Flipped Block” for a description of
the port order for various block orientations.)

You can specify one of the following operations in two-input mode:

Operation Description
== True if the first input is equal to the second input
~= True if the first input is not equal to the second input
< True if the first input is less than the second input
<= True if the first input is less than or equal to the second input
>= True if the first input is greater than or equal to the second input
> True if the first input is greater than the second input

You can specify inputs as scalars, arrays, or a combination of a scalar and an array.

For... The output is...
Scalar inputs A scalar
Array inputs An array of the same dimensions, where each element is the result of

an element-by-element comparison of the input arrays
Mixed scalar and array inputs An array, where each element is the result of a comparison between

the scalar and the corresponding array element

If the relational operation can be efficiently and accurately represented on the hardware board, this
efficient representation is used. Otherwise, both operands are cast to a common type using overflow
saturation and the specified rounding mode.

1 Blocks

1-1806

You can specify the output data type using the Output data type parameter. The output equals 1 for
true and 0 for false.

Tip Select an output data type that represents zero exactly. Data types that satisfy this condition
include signed and unsigned integers and any floating-point data type.

One-Input Mode

When you select one of the following operations for Relational operator, the block switches to one-
input mode.

Operation Description
isInf True if the input is Inf
isNaN True if the input is NaN
isFinite True if the input is finite

For an input that is not floating point, the block produces the following output.

Data Type Operation Block Output
• Fixed point
• Boolean
• Built-in integer

isInf False
isNaN False
isFinite True

Rules for Data Type Propagation

The following rules apply for data type propagation when your block has one or more input ports with
unspecified data types.

When the block is in... And... The block uses...
Two-input mode Both input ports have

unspecified data types
double as the default data type
for both inputs

One input port has an
unspecified data type

The data type from the specified
input port as the default data
type of the other port

One-input mode The input port has an
unspecified data type

double as the default data type
for the input

Ports
Input

Port_1 — First input signal
scalar | vector | matrix

First input signal, specified as a scalar, vector, or matrix.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

 Relational Operator

1-1807

Port_2 — Second input signal
scalar | vector | matrix

Second input signal, specified as a scalar, vector, or matrix.

Dependencies

To enable this port, set the Relational operator to ==, ~=, <, <=, >=, or >.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal, consisting of zeros and ones, with the same dimensions as the input. You control the
output data type with the Output data type parameter.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

Parameters
Main

Relational operator — Relational operator

<= (default) | ~= | == | < | >= | > | isInf | isNaN | isFinite

Specify the operation for comparing two inputs or determining the signal type of one input.

• == — True if the first input is equal to the second input
• ~= — True if the first input is not equal to the second input
• < — True if the first input is less than the second input
• <= — True if the first input is less than or equal to the second input
• >= — True if the first input is greater than or equal to the second input
• > — True if the first input is greater than the second input
• isInf — True if the input is Inf
• isNaN — True if the input is NaN
• isFinite — True if the input is finite

Programmatic Use
Block Parameter: Operator
Type: character vector
Values: '==' | '~=' | '<' | '<=' | '>=' | '>' | 'isInf' | 'isNaN' | 'isFinite'
Default: '<='

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

1 Blocks

1-1808

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

Programmatic Use
Parameter: ZeroCross
Type: character vector, string
Values: 'on' | 'off'
Default: 'on'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Data Type

Require all inputs to have the same data type — Require all inputs to have same data type

off (default) | on

To require that all block inputs have the same data type, select this check box. When you clear this
check box, the inputs can have different data types.

Dependencies

This check box is not available when you set Relational operator to isInf, isNaN, or isFinite
because, in those modes, the block only has one input port.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Values: 'off' | 'on
Default: 'off'

Output data type — Output data type

boolean (default) | Inherit: Logical (see Configuration Parameters: Optimization) |
fixdt(1,16) | <data type expression>

Specify the output data type. When you select:

• boolean — The block output has data type boolean.
• Inherit: Logical (see Configuration Parameters: Optimization) — The block uses

the Implement logic signals as Boolean data configuration parameter to specify the output
data type (see “Implement logic signals as Boolean data (vs. double)”) .

 Relational Operator

1-1809

Note This option supports models created before the boolean option was available. Use one of
the other options, preferably boolean, for new models.

• fixdt(1,16) — The block output has the specified fixed-point data type fixdt(1,16).

Tip The Data Type Assistant helps you set data attributes. To use the Data Type Assistant,

click Show data type assistant . For more information, see “Specify Data Types Using
Data Type Assistant”.

• <data type expression> — The block output has the data type you specify as a data type
expression, for example, Simulink.NumericType.

Tip To enter a built-in data type (double, single, int8, uint8, int16, uint16, int32, or
uint32), enclose the expression in single quotes. For example, enter 'double' instead of
double.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Logical (see Configuration Parameters: Optimization)' |
'boolean' | 'fixdt(1,16)' | '<data type expression>'
Default: 'boolean'

Integer rounding mode — Rounding mode for fixed-point operations

Simplest (default) | Convergent | Floor | Nearest | Round | Ceiling | Zero

Specify the rounding mode for fixed-point operations. You can select:

Ceiling
Rounds positive and negative numbers toward positive infinity. Equivalent to the MATLABceil
function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds positive and negative numbers toward negative infinity. Equivalent to the MATLAB floor
function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest
Chooses between rounding toward floor and rounding toward zero to generate rounding code
that is as efficient as possible.

1 Blocks

1-1810

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

For more information, see “Rounding” (Fixed-Point Designer).

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Simplest'

Mode — Category of data to specify

Built in (default) | Inherit | Fixed point | Expression

Select the category of data to specify.

• Built in — Specifies built-in data types. Selecting Built in enables boolean.
• Inherit — Specifies inheritance rules for data types. Selecting Inherit enables Logical (see

Configuration Parameters: Optimization).
• Fixed point — Specifies fixed-point data types.
• Expression — Specifies expressions that evaluate to data types.

Dependencies

To enable this parameter, click the Show data type assistant button.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies

To enable this parameter, set Mode to Built in or Fixed point.

Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

 Relational Operator

1-1811

Signedness — Signedness of fixed-point data

Signed (default) | Unsigned

Specify whether you want the fixed-point data as signed or unsigned. Signed data can represent
positive and negative values, but unsigned data represents positive values only. For more information,
see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Scaling — Method of scaling

Integer (default)

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. Specifying Integer has the same result as specifying a binary point location and
setting the fraction length to 0.

Dependencies

To enable this parameter, click the Show data type assistant button and set Mode to Fixed
point.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

1 Blocks

1-1812

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Native Floating Point
LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min,

Zero, or Custom for the floating-point operator. The default is inherit.
See also “LatencyStrategy” (HDL Coder).

NFPCustomLatency To specify a value, set LatencyStrategy to Custom. HDL Coder adds
latency equal to the value that you specify for the NFPCustomLatency
setting. See also “NFPCustomLatency” (HDL Coder).

Complex Data Support

The ~= and == operators are supported for code generation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 Relational Operator

1-1813

See Also
Logical Operator

1 Blocks

1-1814

Relay
Switch output between two constants

Libraries:
Simulink / Discontinuities
HDL Coder / Discontinuities

Description
The output for the Relay block switches between two specified values. When the relay is on, it
remains on until the input drops below the value of the Switch off point parameter. When the relay
is off, it remains off until the input exceeds the value of the Switch on point parameter. The block
accepts one input and generates one output.

Note When the initial input falls between the Switch off point and Switch on point values, the
initial output is the value when the relay is off.

Ports
Input

Port_1 — Input signal
scalar

The input signal that switches the relay on or off.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output signal
scalar

The output signal switches between two values determined by the parameters Output when on and
Output when off.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Switch on point — Input value which switches the relay on

'eps' (default) | scalar

When the input crosses this threshold, the relay switches on. The Switch on point value must be
greater than or equal to the Switch off point. Specifying a Switch on point value greater than the

 Relay

1-1815

Switch off point models hysteresis, whereas specifying equal values models a switch with a
threshold at that value.

The Switch on point parameter is converted to the input data type offline using round-to-nearest
and saturation methods.

Programmatic Use
Block Parameter: OnSwitchValue
Type: character vector
Values: scalar
Default: 'eps'

Switch off point — Input value which switches the relay off

'eps' (default) | scalar

When the input crosses this threshold the relay switches off. The value of Switch off point must be
less than or equal to Switch on point. The Switch off point parameter is converted to the input
data type offline using round-to-nearest and saturation.

Programmatic Use
Block Parameter: OffSwitchValue
Type: character vector
Values: scalar
Default: 'eps'

Output when on — Output value when the relay is on

1 (default) | scalar

The output value when the relay is on.

Programmatic Use
Block Parameter: OnOutputValue
Type: character vector
Values: scalar
Default: '1'

Output when off — Output value when the relay is off

0 (default) | scalar

The output value when the relay is off.

Programmatic Use
Block Parameter: OffOutputValue
Type: character vector
Values: scalar
Default: '0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

1 Blocks

1-1816

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).
Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.
Programmatic Use
Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'
Default: 'on'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.
Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.
Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

 Relay

1-1817

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Data type of output signal

1 Blocks

1-1818

Inherit: All ports same datatype (default) | Inherit: Inherit via back propagation
| double | single | int8 | int32 | uint32 | int64 | uint64 | fixdt(1,16,2^0,0) | <data type
expression> | ...

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via back propagation
• The name of a built-in data type, for example, single
• The name of a data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Output data type parameter.

See “Control Data Types of Signals” in Simulink User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Same as input', 'Inherit: Inherit via back propagation',
'single', 'int8', 'uint8', int16, 'uint16', 'int32', 'uint32', 'int64', 'uint64',
fixdt(1,16,0), fixdt(1,16,2^0,0), fixdt(1,16,2^0,0). '<data type expression>'
Default: 'Inherit: Same as input'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

yes

 Relay

1-1819

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Saturation | Backlash

1 Blocks

1-1820

Repeating Sequence
Generate arbitrarily shaped periodic signal

Libraries:
Simulink / Sources

Description
The Repeating Sequence block outputs a periodic scalar signal having a waveform that you specify
using the Time values and Output values parameters. The Time values parameter specifies a
vector of output times. The Output values parameter specifies a vector of signal amplitudes at the
corresponding output times. Together, the two parameters specify a sampling of the output waveform
at points measured from the beginning of the interval over which the waveform repeats (the period of
the signal).

By default, both parameters are [0 2]. These default settings specify a sawtooth waveform that
repeats every 2 seconds from the start of the simulation and has a maximum amplitude of 2.

Ports
Output

Port_1 — Periodic output signal
scalar

Output signal specified by the Time values and Output values parameters to create a periodic
scalar signal.
Data Types: double

Parameters
Time values — Vector of output times

[0 2] (default) | vector

Vector of strictly monotonically increasing time values. The period of the generated waveform is the
difference of the last and first values of this parameter.
Programmatic Use
Block Parameter: rep_seq_t
Type: character vector
Values: vector
Default: [0 2]

Output values — Vector of output values

 Repeating Sequence

1-1821

[0 2] (default) | vector

Vector of output values that specify the output waveform. Each element corresponds to the time value
in the Time valuesparameter.

Programmatic Use
Block Parameter: rep_seq_y
Type: character vector
Values: vector
Default: [0 2]

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
The block sets the input period as the difference between the first and last value of the Time values
parameter. The output at any time t is the output at time t = t-n*period, where n is an integer.
The sequence repeats at t = n*period. The block uses linear interpolation to compute the value of
the waveform between the output times that you specify.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

Consider using Repeating Sequence Stair or Repeating Sequence Interpolated blocks for code
generation.

See Also
Repeating Sequence Stair | Repeating Sequence Interpolated

1 Blocks

1-1822

Repeating Sequence Interpolated
Output discrete-time sequence and repeat, interpolating between data points

Libraries:
Simulink / Sources

Description
The Repeating Sequence Interpolated block outputs a periodic discrete-time sequence based on the
values in Vector of time values and Vector of output values parameters. Between data points, the
block uses the method you specify for the Lookup Method parameter to determine the output.

Ports
Output

Port_1 — Periodic output signal
scalar

Output signal generated based on the values in the Vector of time values and Vector of output
values parameters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Main

Vector of output values — Vector of output values

[3 1 4 2 1].' (default) | vector

Vector of output values that specify the output waveform. Each element corresponds to the time value
in the Vector of time values parameter.

Programmatic Use
Block Parameter: OutValues
Type: character vector
Values: vector
Default: [3 1 4 2 1].'

Vector of time values — Vector of time values

[0 0.1 0.5 0.6 1].' (default) | vector

 Repeating Sequence Interpolated

1-1823

Specify the column vector containing time values. The time values must be strictly increasing, and
the vector must have the same size as the vector of output values.
Programmatic Use
Block Parameter: TimeValues
Type: character vector
Values: vector
Default: [0 0.1 0.5 0.6 1].'

Lookup Method — Lookup method for output

Interpolation-Use End Values (default) | Use Input Nearest | Use Input Below | Use
Input Above

Specify the lookup method to determine the output between data points.
Programmatic Use
Block Parameter: LookUpMeth
Type: character vector
Values: 'Interpolation-Use End Values' | 'Use Input Nearest' | Use Input Below |
Use Input Above
Default: 'Interpolation-Use End Values'

Sample time — Time interval between samples

0.01 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See
“Specify Sample Time” for more information.
Programmatic Use
Block Parameter: tsamp
Type: character vector
Values: scalar
Default: '0.01'

Signal Attributes

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

1 Blocks

1-1824

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

double (default) | Inherit: Inherit via back propagation | single | int8 | int32 |
uint32 | int64 | uint64 | fixdt(1,16,2^0,0) | <data type expression> | ...

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation', 'single', 'int8', 'uint8', int16,
'uint16', 'int32', 'uint32', 'int64', 'uint64', fixdt(1,16,0), fixdt(1,16,2^0,0),
fixdt(1,16,2^0,0). '<data type expression>'

 Repeating Sequence Interpolated

1-1825

Default: 'Double'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data types

off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Cannot be used inside a triggered subsystem hierarchy.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Repeating Sequence | Repeating Sequence Stair

1 Blocks

1-1826

Repeating Sequence Stair
Output and repeat discrete time sequence

Libraries:
Simulink / Sources

Description
The Repeating Sequence Stair block outputs and repeats a stair sequence that you specify with the
Vector of output values parameter. For example, you can specify the vector as [3 1 2 4 1]'. A
value in Vector of output values is output at each time interval, and then the sequence repeats.

Ports
Output

Port_1 — Repeating discrete output signal
scalar

Output signal generated based on the values in the Vector of time values and Sample time
parameters.

 Repeating Sequence Stair

1-1827

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Parameters
Main

Vector of output values — Vector of output values

[3 1 4 2 1].' (default) | vector

Specify the vector containing values of the repeating stair sequence.

Programmatic Use
Block Parameter: OutValues
Type: character vector
Values: vector
Default: [3 1 4 2 1].'

Sample time — Time interval between samples

-1 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See
“Specify Sample Time” for more information.

Programmatic Use
Block Parameter: tsamp
Type: character vector
Values: scalar
Default: '-1'

Signal Attributes

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

1 Blocks

1-1828

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

double (default) | Inherit: Inherit via back propagation | single | int8 | int32 |
uint32 | int64 | uint64 | fixdt(1,16,2^0,0) | <data type expression> | ...

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: OutDataTypeStr

 Repeating Sequence Stair

1-1829

Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'single' | 'int8' | 'uint8' | int16
| 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | fixdt(1,16,0) | fixdt(1,16,2^0,0)
| fixdt(1,16,2^0,0) | '<data type expression>'
Default: 'Double'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data types

off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Repeating Sequence | Repeating Sequence Interpolated

1 Blocks

1-1830

Reset
Control block for resettable subsystem

Description
A Reset block placed at the root level of a Subsystem block adds a control port to the block. When a
reset trigger signal occurs on the signal connected to the port, the block states of the subsystem are
reset to their initial condition. See Resettable Subsystem.

Parameters
Reset trigger type — Select the type of trigger event

level (default) | rising | falling | either | level hold

Select the type of trigger signal that resets the subsystem block states.

level
Reset the block states when the trigger signal is nonzero at the current time step or changes from
nonzero at the previous time step to zero at the current time step.

rising
Reset the block states when the trigger signal rises from a zero to a positive value or from a
negative to a positive value.

falling
Reset the block states when the trigger signal falls from a positive value to zero or from a positive
to a negative value.

either
Reset the block states when the trigger signal changes from a zero to a nonzero value or changes
sign.

level hold
Reset the block states when the trigger signal is nonzero at the current time step.

Programmatic Use
Block Parameter: ResetTriggerType
Type: character vector
Value: 'level' | 'rising' | 'falling' | 'either' | 'level hold'
Default: 'level'

Propagate sizes of variable-size signals — Select when to propagate a variable-size signal

During execution (default) | Only when enabling

Select when to propagate a variable-size signal.

During execution
Propagate variable-size signals at each time step.

 Reset

1-1831

Only when resetting
Propagate variable-size signals when resetting a Subsystem block containing a Reset port block.
When you select this option, sample time must be periodic.

Programmatic Use
Block Parameter: PropagateVarSize
Type: character vector
Value: 'During execution' | 'Only when resetting'
Default: 'During execution'

Enable zero-crossing detection — Control zero-crossing detection

on (default) | off

Control zero-crossing detection.

 on
Detect zero crossings.

 off
Do not detect zero crossings.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Version History
Introduced in R2015a

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

See Also
Blocks
Resettable Subsystem | Subsystem

Topics
“Using Resettable Subsystems”

1 Blocks

1-1832

“Simulink Block Support for Variable-Size Signals”

 Reset

1-1833

Reset Function
Execute subsystem on model reset event

Libraries:
Simulink / User-Defined Functions

Description
The Reset Function block is a preconfigured Subsystem block that executes on a model reset event.
By default, the Reset Function block includes:

• An Event Listener block with the Event type set to Reset and the Event name set to reset
• A Constant block with the Constant value set to 0
• A State Writer block with no State owner block set

Customize the contents of the Reset Function block by, for example, replacing the Constant block
with source blocks that generate the state value for the State Writer block and specifying a State
owner block for the State Writer block.

Conditionally executed subsystems with output ports are fully supported within Reset Function
blocks.

For a list of unsupported blocks and features, see “Initialize, Reinitialize, Reset, and Terminate
Function Limitations”.

A model can potentially have multiple Reset Function blocks with each block having a different Event
name. Each of these reset events appear in the generated code as a different function.

You can select an Initialize Function, Reinitialize Function, Reset Function, or Terminate Function
block or a corresponding state owner block to highlight blocks related to it. To show a related block
in an open diagram or new tab, pause on the ellipsis that appears after selection. Then, select

Related Blocks from the action bar. When multiple blocks correspond to the selected block, a
list of related blocks opens. You can filter the list of related blocks by entering a search term in the
text box. After you select a related block from the list, window focus goes to the open diagram or new
tab that shows the related block.

1 Blocks

1-1834

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals no
Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Initialize Function | Reinitialize Function | Terminate Function | Event Listener | State Reader | State
Writer

Topics
“Using Initialize, Reinitialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”
“Startup, Reset, and Shutdown Function Interfaces” (Simulink Coder)

 Reset Function

1-1835

Resettable Delay
Delay input signal by variable sample period and reset with external signal

Libraries:
Simulink / Discrete
HDL Coder / Discrete

Description
The Resettable Delay block is a variant of the Delay block that has the source of the initial condition
set to Input port and the external reset algorithm set to Rising, by default.

Ports
Input

u — Data input signal
scalar | vector

Input data signal delayed according to parameters settings.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

d — Delay length
scalar

Delay length specified as inherited from an input port. Enabled when you select the Delay length:
Source parameter as Input port.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Enable — External enable signal
scalar

Enable signal that enables or disables execution of the block. To create this port, select the Show
enable port parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

External reset — External reset signal
scalar

External signal that resets execution of the block to the initial condition. To create this port, select
the External reset parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

1 Blocks

1-1836

x0 — Initial condition
scalar | vector

Initial condition specified as inherited from an input port. Enabled when you select the Initial
Condition: Source parameter as Input port.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Output

Port_1 — Output signal
scalar | vector

Output signal that is the input signal delayed by the length of time specified by the parameter Delay
length. The initial value of the output signal depends on several conditions. See “Initial Block
Output” on page 1-338.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
Main

Delay length — Delay length
Dialog (default) | Input port

Specify whether to enter the delay length directly on the dialog box (fixed delay) or to inherit the
delay from an input port (variable delay).

• If you set Source to Dialog, enter the delay length in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies a delay length for the d

input port. You can also specify its maximum value by specifying the parameter Upper limit.

Specify the scalar delay length as a real, non-negative integer. An out-of-range or non-integer value in
the dialog box (fixed delay) returns an error. An out-of-range value from an input port (variable delay)
casts it into the range. A non-integer value from an input port (variable delay) truncates it to the
integer.

Programmatic Use
Block Parameter: DelayLengthSource
Type: character vector
Values: 'Dialog' | 'Input port' |
Default: 'Dialog'
Block Parameter: DelayLength
Type: character vector
Values: scalar
Default: '2'
Block Parameter: DelayLengthUpperLimit
Type: character vector
Values: scalar
Default: '100'

 Resettable Delay

1-1837

Initial condition — Initial condition
Input port (default) | Dialog

Specify whether to enter the initial condition directly on the dialog box or to inherit the initial
condition from an input port.

• If you set Source to Dialog, enter the initial condition in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies an initial condition for

the x0 input port.

Simulink converts offline the data type of Initial condition to the data type of the input signal u
using a round-to-nearest operation and saturation.

Note When State name must resolve to Simulink signal object is selected on the State
Attributes pane, the block copies the initial value of the signal object to the Initial condition
parameter. However, when the source for Initial condition is Input port, the block ignores the
initial value of the signal object.

Programmatic Use
Block Parameter: InitialConditionSource
Type: character vector
Values: 'Dialog' | 'Input port' |
Default: 'Input Port'
Block Parameter: InitialCondition
Type: character vector
Values: scalar
Default: ''

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector

1 Blocks

1-1838

Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Use circular buffer for state — Circular buffer for storing state
off (default) | on

Select to use a circular buffer for storing the state in simulation and code generation. Otherwise, an
array buffer stores the state.

Using a circular buffer can improve execution speed when the delay length is large. For an array
buffer, the number of copy operations increases as the delay length goes up. For a circular buffer, the
number of copy operations is constant for increasing delay length.

If one of the following conditions is true, an array buffer always stores the state because a circular
buffer does not improve execution speed:

• For sample-based signals, the delay length is 1.
• For frame-based signals, the delay length is no larger than the frame size.

Programmatic Use
Block Parameter: UseCircularBuffer
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Prevent direct feedthrough — Prevent direct feedthrough
off (default) | on

Select to increase the delay length from zero to the lower limit for the Input processing mode:

• For sample-based signals, increase the minimum delay length to 1.
• For frame-based signals, increase the minimum delay length to the frame length.

Selecting this check box prevents direct feedthrough from the input port, u, to the output port.
However, this check box cannot prevent direct feedthrough from the initial condition port, x0, to the
output port.

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: PreventDirectFeedthrough
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Remove delay length check in generated code — Remove delay length out-of-range check
off (default) | on

Select to remove code that checks for out-of-range delay length.

 Resettable Delay

1-1839

Check Box Result When to Use
Selected Generated code does not

include conditional statements
to check for out-of-range delay
length.

For code efficiency

Cleared Generated code includes
conditional statements to check
for out-of-range delay length.

For safety-critical applications

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: RemoveDelayLengthCheckInGeneratedCode
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for delay length — Diagnostic checks for delay length
None (default) | Warning | Error

Specify whether to produce a warning or error when the input d is less than the lower limit or greater
than the Delay length: Upper limit. The lower limit depends on the setting for Prevent direct
feedthrough.

• If the check box is cleared, the lower limit is zero.
• If the check box is selected, the lower limit is 1 for sample-based signals and frame length for

frame-based signals.

Options for the diagnostic include:

• None — Simulink software takes no action.
• Warning — Simulink software displays a warning and continues the simulation.
• Error — Simulink software terminates the simulation and displays an error.

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: DiagnosticForDelayLength
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Show enable port — Create enable port

off (default) | on

Select to control execution of this block with an enable port. The block is considered enabled when
the input to this port is nonzero, and is disabled when the input is 0. The value of the input is checked
at the same time step as the block execution.

1 Blocks

1-1840

Programmatic Use
Block Parameter: ShowEnablePort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

External reset — External state reset
Rising (default) | None | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior
None No reset.
Rising Reset on a rising edge.
Falling Reset on a falling edge.
Either Reset on either a rising or falling edge.
Level Reset in either of these cases:

• when the reset signal is nonzero at the
current time step

• when the reset signal value changes from
nonzero at the previous time step to zero at
the current time step

Level hold Reset when the reset signal is nonzero at the
current time step

The reset signal must be a scalar of type single, double, boolean, or integer. Fixed point data
types, except for ufix1, are not supported.

Programmatic Use
Block Parameter: ExternalReset
Type: character vector
Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'Rising'

Sample time (-1 for inherited) — Discrete interval between sample time hits

-1 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. This
block supports discrete sample time, but not continuous sample time.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: real scalar
Default: '-1'

State Attributes

State name — Unique name for block state

 Resettable Delay

1-1841

'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click
Apply.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if you set the
model configuration parameter Signal resolution to a value other than None.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

1 Blocks

1-1842

Version History
Introduced in R2012b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• Consider using the Model Discretizer to map these continuous blocks into discrete equivalents
that support code generation. From a model, in the Apps tab, under Control Systems, click
Model Discretizer.

• Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information about HDL code generation, see the “HDL Code Generation” on page 1-347 section
on the Delay page.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Delay | Unit Delay | Variable Integer Delay

Topics
“Using Enabled Subsystems”

 Resettable Delay

1-1843

Resettable Subsystem
Subsystem whose block states reset with external trigger

Libraries:
Simulink / Ports & Subsystems

Description
The Resettable Subsystem block is a Subsystem block preconfigured as a starting point for creating a
subsystem that resets the block states each time the control port receives a trigger signal. The
behavior of the subsystem is controlled by a Reset block placed inside the subsystem.

Ports
Input

In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem adds an external input port to the Subsystem block. The port
label matches the name of the Inport block.

Use Inport blocks to receive signals from the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Reset — Control signal input to a subsystem block
scalar | vector | matrix

Placing a Reset block in a subsystem adds an external input port to the Subsystem block and changes
the block to a Resettable Subsystem block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

1 Blocks

1-1844

Output

Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem adds an output port from the Subsystem block. The port
label on the Subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Reset | Subsystem

Topics
“Using Resettable Subsystems”

 Resettable Subsystem

1-1845

Reshape
Change dimensionality of signal

Libraries:
Simulink / Math Operations
HDL Coder / Math Operations

Description
The Reshape block changes the dimensionality of the input signal to a dimensionality that you specify,
using the Output dimensionality parameter. For example, you can use the block to change an N-
element vector to a 1-by-N or N-by-1 matrix signal.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal whose dimensions are changed based on the Output dimensionality parameter.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal created with the dimensions specified in the Output dimensionality parameter.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
Output dimensionality — Dimensions of output signal

1-D array (default) | Column vector (2-D) | Row vector (2-D) | Customize | Derive from
reference input port

Specify the dimensionality of the output signal.

1 Blocks

1-1846

Output Dimensionality Description
1-D array Converts a multidimensional array to a vector (1-D array) array

signal. The output vector consists of the first column of the input
matrix followed by the second column, and so on. (This option
leaves a vector input unchanged.)

Column vector Converts a vector, matrix, or multidimensional input signal to a
column matrix, a M-by-1 matrix, where M is the number of
elements in the input signal. For matrices, the conversion is done
in column-major order. For multidimensional arrays, the conversion
is done along the first dimension.

Row vector Converts a vector, matrix, or multidimensional input signal to a
row matrix, a 1-by-N matrix where N is the number of elements in
the input signal. For matrices, the conversion is done in column-
major order. For multidimensional arrays, the conversion is done
along the first dimension.

Customize Converts the input signal to an output signal whose dimensions
you specify, using the Output dimensions parameter.

Derive from reference input
port

Creates a second input port, Ref, on the block. Derives the
dimensions of the output signal from the dimensions of the signal
input to the Ref input port. Selecting this option disables the
Output dimensions parameter. When you select this parameter,
the input signals for both inport ports, U and Ref, must have the
same sampling mode (sample-based or frame-based).

Programmatic Use
Block Parameter: OutputDimensionality
Type: character vector
Value: '1-D array' | 'Column vector (2-D)' | 'Row vector (2-D)' | 'Customize' |
'Derive from reference input port'
Default: '1-D array'

Output dimensions — Custom dimensions of output signal

[1,1] (default) | [integer] | [integer,integer]

Specify the dimensions for the output signal. The value can be a one- or multi-element vector. A value
of [N] outputs a vector of size N. A value of [M N] outputs an M-by-N matrix. The number of elements
of the input signal must match the number of elements specified by the Output dimensions
parameter. For multidimensional arrays, the conversion is done along the first dimension.

Dependency

To enable this parameter, set Output dimensionality to Customize.

Programmatic Use
Block Parameter: OutputDimensions
Type: character vector
Value: '[integer,intger]' |
Default: '[1,1]'

 Reshape

1-1847

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

1 Blocks

1-1848

FOR-GENERATE Loop Support

For this block, HDL Coder generates code using FOR-GENERATE loop when you set the target
language to VHDL.

The loop unrolled code is generated when target language is Verilog. For more information, see
“Unroll For-Generate Loops in VHDL Code” (HDL Coder)

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Squeeze

Topics
“Group Nonvirtual Buses in Arrays of Buses”

 Reshape

1-1849

Rocker Switch
Change parameter or variable value using switch with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
Use the Rocker Switch block to change the value of the connected variable or parameter before or
during simulation. When you use the Rocker Switch block in the Customizable Blocks library, you can
customize the appearance of the block to look like a real switch in your system. You can configure the
switch with any number of states to customize the behavior. For example, you could design a three-
way toggle switch or a gearbox. Use the Rocker Switch block with other dashboard blocks to create
an interactive dashboard for your model.

A real rocker switch has multiple settings. The Rocker Switch block treats these settings as different
states. A state pairs a State Value with an image, a click area, and a State Label that is displayed on
the click area.

You can activate a state by clicking its click area. When you activate the state, the State Value is
assigned to the Simulink block diagram element to which the Rocker Switch block connects.

Note Double-clicking the Rocker Switch block does not open its dialog box during simulation or
when the block is selected. To edit the block parameters, you can use the Property Inspector or open
the block dialog box by:

• Double-clicking the block when the block is not selected and the model is not simulating
• Right-clicking the block and selecting Block Parameters from the context menu

Customize Rocker Switch Blocks

When you add a Rocker Switch block to your model, the block is preconfigured with a default design.
You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

1 Blocks

1-1850

In design mode, you can add any number of states to the block. To add or delete states, use the
toolbar above the block.

For each state, you can:

• Upload an image that defines the appearance of the block in the state.
• Configure the size and position of the click area for the state.
• Specify the State Value.
• Specify the State Label text, color, and position.

To upload an image for a state, use the toolbar above the block.

To resize the click area of a state, in the toolbar above the block, select the state from the drop-down
menu. Then, click and drag the grab points of the yellow click area in the canvas. To reposition the
click area, click and drag it in the canvas.

You can use the Design tab in the Property Inspector for fine control over the block design, and to
enter exact values for design settings.

Use the Design tab to:

• Specify the State Value.
• Specify the State Label.
• Upload a foreground image.
• Upload a background image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at

 Rocker Switch

1-1851

once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

1 Blocks

1-1852

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Connection

Connection — Select variable or block parameter to connect
variable and parameter connection options

 Rocker Switch

1-1853

Use the Connection table in the Block Parameters dialog box to select or change the variable or
block parameter to control. To connect the block to a variable or block parameter:

1 If the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

2 Select a block in the model.
3 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy. Omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

4 Click Apply.

To help understand and debug your model, you can connect Dashboard blocks to variables and
parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Tip You can also use bind mode to select or change the variable or block parameter to control. To
enter bind mode:

• If you are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

•
Click the dashboard block in the canvas. If the dashboard block is not connected, Connect
and an ellipsis appear over the dashboard block. If the dashboard block is already connected, only
the ellipsis appears.

• If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
parameters and variables available for connection appears.

To connect the dashboard block in bind mode:

• From the list, select the variable or parameter you want to connect.

1 Blocks

1-1854

•
To exit bind mode, click Done Connecting over the dashboard block.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some properties apply to connecting dashboard blocks to parameters. Some
properties apply to connecting dashboard blocks to variables. Not all fields have a value for a
connection because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

Main

Label — Position of label displaying name of connected element

Hide (default) | Bottom | Top

You can display the name of the element to which the dashboard block connects in a label positioned
at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States — Pairings of value with label
scalar and character vector

 Rocker Switch

1-1855

Each state pairs a State Value with a State Label. When the block is in a given state, it assigns the
State Value for that state to the connected variable or parameter. You can use the State Label to
display the value assigned to the connected variable or parameter on the block or to provide a
descriptive text label.

By default, the switch has two states, one corresponding to each switch position:

• In the Off state, the block assigns the connected variable or parameter a value of 0.
• In the On state, the block assigns the connected variable or parameter a value of 1.

You can use a customizable switch block to design a switch with any number of states greater than or
equal to 1. To add a new state, click the + button. To delete the current state, click the - button.

Tip You can configure a variety of other parameters for a state besides the value and label in design
mode. For example, you can select an image that will appear on the switch when it is in the state. To
configure parameters in design mode:

1 Enter design mode. In the Property Inspector, on the Design tab, click the Edit button.
2 On the Design tab, open the States component, expand the Select State section, and select the

state that you want to configure from the drop-down menu.
3 Configure the parameter values for the selected state, either using the toolbar above the block,

or in the States component on the Design tab in the Property Inspector.

Programmatic Use

To configure the States for the block programmatically, specify the value of the States parameter as
a structure array containing two elements with fields:

• Value — Scalar double value for the state.
• Label — String or character array to use as the label for the switch position.

leftState.Value = 0;
leftState.Label = 'Off';
rightState.Value = 1;
rightState.Label = 'On';
switchStates = [leftState rightState];

Block Parameter: States
Type: two element array of structures

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Switch

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

1 Blocks

1-1856

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States

Select State — Management and configuration of states
scalar and character vector

Each state pairs a State Value with a State Label. When the block is in a given state, it assigns the
State Value for that state to the connected variable or parameter. You can use the State Label to
display the value assigned to the connected variable or parameter on the block or to provide a
descriptive text label.

By default, the switch has two states, one corresponding to each switch position:

• In the Off state, the block assigns the connected variable or parameter a value of 0.
• In the On state, the block assigns the connected variable or parameter a value of 1.

You can use a customizable switch block to design a switch with any number of states greater than or
equal to 1. To add a new state, click the + button. To delete the current state, click the X button.

To configure a state, in the States component, expand the Select State section and select the state.

You can configure the value, label text, and a variety of other parameters for the selected state in the
States component on the Design tab in the Property Inspector. For example, you can select an image
that will appear on the switch when it is in the state.

All changes that you make to parameter values in the States component are applied only to the
selected state. To configure a different state, in the Select State section, select the state in the drop-
down menu. Then, configure the parameter values of that state in the States component.

Tip Alternatively, you can:

• Configure the parameters for the selected state using the toolbar that appears above the switch
block in design mode

• Configure the values and label text of the states for the block using the Parameters tab in the
Property Inspector

Programmatic Use

To configure the States for the block programmatically, specify the value of the States parameter as
a structure array containing two elements with fields:

• Value — Scalar double value for the state.

 Rocker Switch

1-1857

• Label — String or character array to use as the label for the switch position.

leftState.Value = 0;
leftState.Label = 'Off';
rightState.Value = 1;
rightState.Label = 'On';
switchStates = [leftState rightState];

Block Parameter: States
Type: two element array of structures

Value — State value
scalar

Each state pairs a State Value with a State Label. Specify the State Value that activates the state
selected in the Design tab.

Text — State label text
string | character array

Each state pairs a State Value with a State Label. Specify the text for the State Label of the state
selected in the Design tab.

Label Color — Button label font color
[r g b] vector

Choose a font color for the button label from the palette of standard colors, or specify a custom color.
The color is applied to the button label for the state that is selected in the Select State section of the
States component on the Design tab.

Label X Offset — Horizontal offset of text center from left edge of block
scalar

Specify the horizontal offset of the center of the State Label from the left edge of the block as a ratio
of the block width. Relative to the position of the text when the offset is 0, an offset with a negative
value moves the text left, and an offset with a positive value moves the text right.

Label Y Offset — Vertical offset of text center from top edge of block
scalar

Specify the vertical offset of the center of the State Label from the top edge of the block as a ratio of
the block height. Relative to the position of the text when the offset is 0, an offset with a negative
value moves the text up, and an offset with a positive value moves the text down.

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

1 Blocks

1-1858

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Click Area X Offset — Horizontal offset of left edge of click area from left edge of block
scalar

Specify the horizontal offset of the left edge of the click area from the left edge of the block as a ratio
of the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Click Area Y Offset — Vertical offset of top edge of click area from top edge of block
scalar

Specify the vertical offset of the top edge of the click area from the top edge of the block as a ratio of
the block height. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image up, and a positive value moves the image down.
Example: 1

Width — Click area width
scalar

Specify the click area width as a ratio of the block width.
Example: 0.5

Height — Click area height
scalar

Specify the click area height as a ratio of the block height.
Example: 0.5

 Rocker Switch

1-1859

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can provide a background image or select a solid color. To select a
solid background color, select this parameter. To provide a background image, clear this parameter.

Note Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and enables the Use Background Color parameter.

Example: on

Color — Block background color
[r g b] vector

To select a solid background color, enable the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Corner Radius — Corner radius of area with block background color
scalar

Specify the corner radius of the area covered by the block background color as a ratio of half of the
smaller of the two block dimensions, width or height.
Example: 0.25

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

1 Blocks

1-1860

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Tips
• When you want to design a circular switch that distributes the state labels and the click areas that

cause state transitions on an arc, consider using the Rotary Switch block.
• To design a control that applies values to a connected variable or parameter from a continuous

range, use the Knob, Horizontal Slider, or Vertical Slider blocks.

 Rocker Switch

1-1861

Version History
Introduced in R2021b

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (⌘) instead of Ctrl.

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

1 Blocks

1-1862

R2022b: Extended support for customizable Dashboard blocks on Raspberry Pi boards

Starting in R2022b, the Simulink Support Package for Raspberry Pi Hardware supports deploying
these blocks from the Customizable Blocks library on your Raspberry Pi boards:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on a web browser you launch from a Raspberry Pi terminal.

R2022b: Extended support for customizable Dashboard blocks on Android devices

Starting in R2022b, the Simulink Support Package for Android Devices supports deploying these
blocks from the Customizable Blocks library on your Android devices:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

 Rocker Switch

1-1863

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Customizable Rotary Switch | Customizable Slider Switch | Customizable Toggle Switch | Rocker
Switch | Rotary Switch | Slider Switch | Toggle Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”
“Getting Started with Panels”

1 Blocks

1-1864

Rocker Switch
Toggle parameter between two values

Libraries:
Simulink / Dashboard

Description
The Rocker Switch block toggles the value of the connected block parameter between two values
during simulation. For example, you can connect the Rocker Switch block to a Switch block in your
model and change its state during simulation. Use the Rocker Switch block with other Dashboard
blocks to create an interactive dashboard for your model.

Double-clicking the Rocker Switch block does not open its dialog box during simulation and when the
block is selected. To edit the block's parameters, you can use the Property Inspector, or you can
right-click the block and select Block Parameters from the context menu.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus

 Rocker Switch

1-1865

or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations

• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect
to real scalar signals.

• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.

1 Blocks

1-1866

• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters

Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

1 Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

States — Pair values and labels
scalar and character vector

 Rocker Switch

1-1867

Pairs of values to assign to the connected variable or parameter and text to display on the block.
Switches have two states — Top and Bottom — one corresponding to each switch position. Each
state contains a Value and a Label.

• Value — Value to assign to the connected variable or parameter when the switch is in the
corresponding position.

• Label — Text to display on the block for the corresponding position.

This table describes the default configuration for the block.

States

Position State Value State Label
Top 0 on
Bottom 1 off

Programmatic Use

To configure the States for the block programmatically, specify the value of the States parameter as
a structure array containing two elements with fields:

• Value — Scalar double value for the state.
• Label — String or character array to use as the label for the switch position.

topState.Value = 0;
topState.Label = 'Off';
bottomState.Value = 1;
bottomState.Label = 'On';
switchStates = [topState bottomState];

Block Parameter: States
Type: two element array of structures

Label — Block label position

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

1 Blocks

1-1868

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015a

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a
dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add_block and set_param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Rotary Switch | Slider Switch | Toggle Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 Rocker Switch

1-1869

Rotary Switch
Change parameter or variable value using rotary switch with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
Use the Rotary Switch block to change the value of the connected variable or parameter before or
during simulation. When you use the Rotary Switch block in the Customizable Blocks library, you can
customize the appearance of the block to look like a real rotary switch in your system. Use the Rotary
Switch block with other dashboard blocks to create an interactive dashboard for your model.

A real rotary switch has multiple settings. The Rotary Switch block treats these settings as different
states. A state pairs a State Value with a handle orientation, a click area, and a State Label that is
displayed on the click area.

You can activate a state by clicking its click area or by dragging the handle and releasing it over the
click area. When you activate the state, the State Value is assigned to the Simulink block diagram
element to which the Rotary Switch block connects.

Collectively, the state click areas cover the area of the block within the angular range that the handle
traverses when it moves from the first state to the last state. The state labels are evenly spaced over
the range, with the first label at the start of the range, and the last label at the end of the range. The
range is subdivided into click areas such that the borders of adjacent click areas bisect the angular
distance between labels.

1 Blocks

1-1870

Note Double-clicking the Rotary Switch block does not open its dialog box during simulation or when
the block is selected. To edit the block parameters, you can use the Property Inspector or open the
block dialog box by:

• Double-clicking the block when the block is not selected and the model is not simulating
• Right-clicking the block and selecting Block Parameters from the context menu

Customize Rotary Switch Blocks

When you add a Rotary Switch block to your model, the block is preconfigured with a default design.
You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

 Rotary Switch

1-1871

In design mode, you can specify the arc the handle traverses when it moves from the first state to the
last state.

• To change the arc length, on the Design tab, in the Rotary Switch component, specify the Arc.
• To change the orientation of the arc, in the Rotary Switch component, specify the Start Angle.

You can replace the handle image and background image using the toolbar above the block.

To resize the handle, select the handle in the canvas. Then, click and drag the grab points that define
its dimensions. To reposition the handle, click and drag it in the canvas.

You can add any number of states to the block. To add or delete states, use the toolbar above the
block.

For each state, you can:

• Specify the State Label text and color.
• Specify the State Value.

To change the color of the State Labels, on the Format tab, under Style, click the arrow on the
Foreground button and select a color. You can select from a palette of standard colors or click

Custom Colors to specify a custom color.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

Use the Design tab to:

1 Blocks

1-1872

• Specify the State Value.
• Configure the State Label.
• Upload a foreground image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

 Rotary Switch

1-1873

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to

1 Blocks

1-1874

the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Connection

Connection — Select variable or block parameter to connect
variable and parameter connection options

Use the Connection table in the Block Parameters dialog box to select or change the variable or
block parameter to control. To connect the block to a variable or block parameter:

1 If the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

2 Select a block in the model.
3 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy. Omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

4 Click Apply.

To help understand and debug your model, you can connect Dashboard blocks to variables and
parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Tip You can also use bind mode to select or change the variable or block parameter to control. To
enter bind mode:

• If you are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

 Rotary Switch

1-1875

•
Click the dashboard block in the canvas. If the dashboard block is not connected, Connect
and an ellipsis appear over the dashboard block. If the dashboard block is already connected, only
the ellipsis appears.

• If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
parameters and variables available for connection appears.

To connect the dashboard block in bind mode:

• From the list, select the variable or parameter you want to connect.
•

To exit bind mode, click Done Connecting over the dashboard block.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some properties apply to connecting dashboard blocks to parameters. Some
properties apply to connecting dashboard blocks to variables. Not all fields have a value for a
connection because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

Main

Label — Position of label displaying name of connected element

Hide (default) | Bottom | Top

You can display the name of the element to which the dashboard block connects in a label positioned
at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector

1 Blocks

1-1876

Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Enumerated Data Type — Specify state values and labels using enumerated data type
off (default) | on

You can use an enumerated data type that pairs a numeric value with each enumeration to configure
the state values and labels for the block. First, select Enumerated Data Type. Then, specify the
name of the enumerated data type in the text box. The definition for the specified enumerated data
type must be saved on the MATLAB path or in the base workspace.

Note You can define an enumerated data type using the Simulink.findIntEnumType function. For
example, to define a set of Roman numerals from one to five, in the MATLAB command line, enter this
command:

Simulink.defineIntEnumType('myEnumType', {'I', 'II', 'III', 'IV', 'V'}, [1 2 3 4 5]);

Then, in the Property Inspector, on the Parameters tab, in the Enumerated Data Type text box,
enter myEnumType.

States — Pairings of value with label
scalar and character vector

Each state pairs a State Value with a State Label. When the block is in a given state, it assigns the
State Value for that state to the connected variable or parameter. You can use the State Label to
display the value assigned to the connected variable or parameter on the block or to provide a
descriptive text label.

By default, the switch has five states, one corresponding to each switch position.

 Rotary Switch

1-1877

States
State Value State Label
0 Off
1 Low
2 Medium
3 High
4 On

You can use a customizable switch block to design a switch with any number of states greater than or
equal to 1. To add a new state, click the + button. To delete the current state, click the - button.

Note When Enumerated Data Type is enabled, you cannot add or delete states.

Tip You can also configure the parameters for a state in design mode:

1 Enter design mode. In the Property Inspector, on the Design tab, click Edit.
2 On the Design tab, open the States component, expand the Select State section, and select the

state that you want to configure from the drop-down menu.
3 Configure the parameter values for the selected state either using the toolbar above the block or

in the Property Inspector.

Programmatic Use

To configure the States for the block programmatically, specify the value of the States parameter as
a structure array containing two elements with these fields:

• Value — Scalar double value for the state
• Label — String or character array to use as the label for the switch position

firstState.Value = 0;
firstState.Label = 'Off';
secondState.Value = 1;
secondState.Label = 'On';
switchStates = [firstState secondState];

Block Parameter: States
Type: two element array of structures

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Rotary Switch

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

1 Blocks

1-1878

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Arc — Arc length spanned by state labels
300 (default) | scalar

Specify the arc length spanned by the center points of the state labels as a scalar value, measured in
degrees.
Example: 90

Start Angle — Angular location of State 1
120 (default) | scalar

Specify the angular location of the first state as a scalar value, measured in degrees clockwise from
the horizontal axis pointing right.
Example: 0

Label Radius — Distance of labels from block center
scalar

Specify the distance of the labels from the center of the block as a ratio of the smaller of the two
block dimensions, width or height.
Example: 0.5

States

Select State — Management and configuration of states
scalar and character vector

Each state pairs a State Value with a State Label. When the block is in a given state, it assigns the
State Value for that state to the connected variable or parameter. You can use the State Label to
display the value assigned to the connected variable or parameter on the block or to provide a
descriptive text label.

By default, the switch has five states, one corresponding to each switch position.

State

State Value State Label
0 Off
1 Low
2 Medium
3 High
4 On

 Rotary Switch

1-1879

You can use a customizable Lamp block to design a lamp with any number of states greater than or
equal to 1. To add a new state, click the + button. To delete the current state, click the X button.

Note When Enumerated Data Type is enabled, you cannot add or delete states. You can disable
this option in the Parameters tab of the Property Inspector.

To configure a state, in the States component, expand the Select State section and select the state.

Configure the value and the label text for the selected state in the States component on the Design
tab of the Property Inspector.

All changes that you make to parameter values in the States component are applied only to the
selected state. To configure a different state, expand the Select State section and select the state.
Then, configure the parameter values of that state in the States component.

Tip You can also configure the states for the block using the Parameters tab in the Property
Inspector.

Programmatic Use

To configure the States for the block programmatically, specify the value of the States parameter as
a structure array containing two elements with two fields:

• Value — Scalar double value for the state
• Label — String or character array to use as the label for the switch position

firstState.Value = 0;
firstState.Label = 'Off';
secondState.Value = 1;
secondState.Label = 'On';
switchStates = [firstState secondState];

Block Parameter: States
Type: two element array of structures

Value — State value
scalar

Each state pairs a State Value with a State Label. Specify the State Value that activates the state
selected in the Design tab.

Note When Enumerated Data Type is enabled, you cannot change the value.

Text — State label text
string | character array

Each state pairs a State Value with a State Label. Specify the text for the State Label of the state
selected in the Design tab.

Note When Enumerated Data Type is enabled, you cannot change the text.

1 Blocks

1-1880

Handle

Width — Handle image width
scalar

Specify the width of the handle image as a ratio of the smaller of the two block dimensions, width or
height.
Example: 1

Height — Handle image height
scalar

Specify the height of the handle image as a ratio of the smaller of the two block dimensions, width or
height.
Example: 1

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Rotate Image — Rotation of handle image
0 (default) | scalar

Rotate the handle image about its center in 90 degree increments.
Example: 90

Offset from Center — Offset of handle image center from block center
0 (default) | scalar

Specify the distance from the center of the handle image to the center of the block as a ratio of the
smaller of the two block dimensions, width or height.
Example: 1

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can provide a background image or select a solid color. To select a
solid background color, select this parameter. To provide a background image, clear this parameter.

Note Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and enables the Use Background Color parameter.

Example: on

Color — Block background color
[r g b] vector

To select a solid background color, select the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

 Rotary Switch

1-1881

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, in the Format tab of the Simulink Toolstrip, specify the
Foreground Color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Offset from Scale — Offset of outer edge of area with block background color from label radius
scalar

Set the offset of the outer edge of the area covered by the block background color from the label
radius, specified as a scalar value from 0 to 1.
Example: 0.1

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

1 Blocks

1-1882

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Tips
• The Rotary Switch block allows you to design a circular control, with the state labels and the click

areas that cause state transitions distributed along an arc. For more flexibility in the design of a
control block with several states, use one of the customizable switch blocks. Each block is
preconfigured with two states, but you can add and configure any number of states as required by
your design.

• Rocker Switch
• Slider Switch
• Toggle Switch

• To design a control that applies values to a connected variable or parameter from a continuous
range, use the Knob, Horizontal Slider, or Vertical Slider blocks.

Version History
Introduced in R2021b

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.

 Rotary Switch

1-1883

• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (⌘) instead of Ctrl.

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2022b: Extended support for customizable Dashboard blocks on Raspberry Pi boards

Starting in R2022b, the Simulink Support Package for Raspberry Pi Hardware supports deploying
these blocks from the Customizable Blocks library on your Raspberry Pi boards:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch

1 Blocks

1-1884

• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on a web browser you launch from a Raspberry Pi terminal.

R2022b: Extended support for customizable Dashboard blocks on Android devices

Starting in R2022b, the Simulink Support Package for Android Devices supports deploying these
blocks from the Customizable Blocks library on your Android devices:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Customizable Rocker Switch | Customizable Slider Switch | Customizable Toggle Switch | Rocker
Switch | Rotary Switch | Slider Switch | Toggle Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”

 Rotary Switch

1-1885

“Getting Started with Panels”

1 Blocks

1-1886

Rotary Switch
Switch parameter to set values on dial

Libraries:
Simulink / Dashboard

Description
The Rotary Switch changes the value of the connected block parameter to several specified values
during simulation. For example, you can connect the Rotary Switch block to the amplitude or
frequency of an input signal in your model and change its characteristics during simulation. Use the
Rotary Switch block with other Dashboard blocks to create an interactive dashboard to control your
model.

Double-clicking the Rotary Switch block does not open its dialog box during simulation and when the
block is selected. To edit the block's parameters, you can use the Property Inspector, or you can
right-click the block and select Block Parameters from the context menu.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or

 Rotary Switch

1-1887

(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.

1 Blocks

1-1888

• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

1 Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

States — Position labels and values
scalar and character vector

 Rotary Switch

1-1889

Pairs of numeric values to assign to the connected variable or parameter with labels for the block. A
State consists of a State Value and a State Label.

• State Value — Value assigned to the connected variable or parameter when the Rotary Switch
block is positioned at the corresponding State Label.

• State Label — Label for the switch position. You can use the State Label to display the value the
connected variable or parameter takes when the Rotary Switch block points to the State Label,
or you can use a descriptive text label.

Click the + button to add States.

The default configuration for the block includes these States:

States

State Value State Label
0 Off
1 Low
2 Medium
3 High

Programmatic Use

To configure the States for the block programmatically, specify the value of the States parameter as
a structure array with fields:

• Value — Scalar double value for the state.
• Label — String or character array to use as the label for the switch position.

Include a structure element in the array for each state you want to specify for the block.

state1.Value = 1;
state1.Label = 'State 1';
state2.Value = 2;
state2.Label = 'State 2';
states = [state1 state2];

Block Parameter: States
Type: structure array

Enumerated Data Type — Specify state values and labels using an enumerated data type

off (default) | on

You can use an enumerated data type that pairs a numeric value with each enumeration to configure
the state values and labels for the block. To specify the states for the block using an enumerated data
type, first select the Enumerated Data Type option. Then, specify the name of the enumerated data
type in the text box. The definition for the specified enumerated data type must be saved on the
MATLAB path or in the base workspace.
Example: myEnumType

1 Blocks

1-1890

Programmatic Use

To programmatically specify the state labels and values for the block using an enumerated data type,
specify 'on' for the UseEnumeratedDataType parameter and the name of the enumerated data
type for the EnumeratedDataType parameter.
Block Parameter: UseEnumeratedDataType
Type: string or character array
Values: 'on' | 'off'
Default: 'off'
Block Parameter: EnumeratedDataType
Type: string or character array
Default: ''

Label — Block label position

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015a

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a
dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Simulink Toolstrip support for dashboard blocks

 Rotary Switch

1-1891

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019b: Enhanced enumerated data type support for the Rotary Switch block and Combo
Box block

Starting in R2019b, you can use an enumeration class to configure the values and labels for the states
of a Rotary Switch block and a Combo Box block.

To configure the States for a Rotary Switch or Combo Box block with an enumerated data type,
select Enumerated Data Type. In the text box, enter the name of the enumeration class you want to
use.

When you use an enumeration class to configure the states of the block, you cannot manually edit,
add, or remove states from the States table.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add_block and set_param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Rocker Switch | Slider Switch | Toggle Switch | Knob | Slider

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1 Blocks

1-1892

Rounding Function
Apply rounding function to signal

Libraries:
Simulink / Math Operations

Description
The Rounding Function block rounds each element of the input signal to produce the output signal.

You select the type of rounding from the Function parameter list. The name of the selected function
appears on the block.

Tip Use the Rounding Function block when you want vector or matrix output.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal to which the rounding function is applied.
Data Types: single | double

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal after the rounding function is applied to the input signal. The output signal has the
same dimensions and data type as the input. Each element of the output signal is the result of
applying the selected rounding function to the corresponding element of the input signal.
Data Types: single | double

Parameters
Function — Rounding function

floor (default) | ceil | round | fix

Choose the rounding function applied to the input signal.

 Rounding Function

1-1893

Rounding function Rounds each element of the input signal
floor To the nearest integer value towards minus

infinity
ceil To the nearest integer towards positive infinity
round To the nearest integer
fix To the nearest integer towards zero

Programmatic Use
Block Parameter: Operator
Type: character vector
Values: 'floor' | 'ceil' | 'round' | 'fix'
Default: 'floor'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.
Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.
Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics
Data Types double | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

1 Blocks

1-1894

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Code Generation Requirements

HDL code generation for the block requires that you use single data types as inputs to the block, and
enable the native floating point mode. In the Configuration Parameters dialog box, on the HDL Code
Generation > Floating Point pane, for Library, select Native Floating Point. To learn more
about using the native floating-point mode, see “Getting Started with HDL Coder Native Floating-
Point Support” (HDL Coder) and “Generate Target-Independent HDL Code with Native Floating-
Point” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Native Floating Point
LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min,

Zero, or Custom for the floating-point operator. The default is inherit.
See also “LatencyStrategy” (HDL Coder).

NFPCustomLatency To specify a value, set LatencyStrategy to Custom. HDL Coder adds
latency equal to the value that you specify for the NFPCustomLatency
setting. See also “NFPCustomLatency” (HDL Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

 Rounding Function

1-1895

Saturation
Limit input signal to the upper and lower saturation values

Libraries:
Simulink / Commonly Used Blocks
Simulink / Discontinuities
HDL Coder / Discontinuities

Description
The Saturation block produces an output signal that is the value of the input signal bounded to the
upper and lower saturation values. The upper and lower limits are specified by the parameters Upper
limit and Lower limit.

Input Output
Lower limit ≤ Input value ≤ Upper limit Input value
Input value < Lower limit Lower limit
Input value > Upper limit Upper limit

Ports
Input

Port_1 — Input signal
scalar | vector

The input signal to the saturation algorithm.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector

Output signal that is the value of the input signal, upper saturation limit, or lower saturation limit.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main

Upper limit — Upper saturation boundary for the input signal

0.5 (default) | scalar | vector

1 Blocks

1-1896

Specify the upper bound on the input signal. If the input signal is greater than this boundary, then the
output signal is set to this saturation value. The Upper limit parameter is converted to the output
data type using round-to-nearest and saturation. Upper limit must be greater than the Output
minimum parameter and less than the Output maximum parameter.

Programmatic Use
Block Parameter: UpperLimit
Type: character vector
Value: real scalar or vector
Default: '0.5'

Lower limit — Lower saturation boundary for the input signal

-0.5 (default) | scalar | vector

Specify the lower bound on the input signal. If the input signal is less than this boundary, then the
output signal is set to this saturation value. The Lower limit parameter is converted to the output
data type using round-to-nearest and saturation. Lower limit must be greater than the Output
minimum parameter and less than the Output maximum parameter.

Programmatic Use
Block Parameter: LowerLimit
Type: character vector
Value: real scalar or vector
Default: '-0.5'

Treat as gain when linearizing — Specify the gain value

On (default) | Boolean

Select this check box to cause the commands to treat the gain as 1. The linearization commands in
Simulink software treat this block as a gain in state space. Clear the box to have the commands treat
the gain as 0.

Programmatic Use
Block Parameter: LinearizeAsGain
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'
Default: 'on'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

 Saturation

1-1897

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.
Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.
Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Signal Attributes

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

1 Blocks

1-1898

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

Inherit: Same as input (default) | Inherit: Inherit via back propagation | double |
single | int8 | int32 | uint32 | int64 | uint64 | fixdt(1,16,2^0,0) | <data type
expression> | ...

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType. For more information, see “Control Data Types of
Signals”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Same as input', 'Inherit: Inherit via back propagation',
'single', 'int8', 'uint8', int16, 'uint16', 'int32', 'uint32', 'int64', 'uint64',
fixdt(1,16,0), fixdt(1,16,2^0,0), fixdt(1,16,2^0,0). '<data type expression>'
Default: 'Inherit: Same as input'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

 Saturation

1-1899

Integer rounding mode — Specify the rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the MATLAB
ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the MATLAB
floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate rounding
code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Default: 'Floor'
See Also

For more information, see “Rounding” (Fixed-Point Designer).

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

yes

1 Blocks

1-1900

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Saturation Dynamic | Backlash

 Saturation

1-1901

Saturation Dynamic
Limit input signal to dynamic upper and lower saturation values

Libraries:
Simulink / Discontinuities
HDL Coder / Discontinuities

Description
The Saturation Dynamic block produces an output signal that is the value of the input signal bounded
to the saturation values from the input ports up and lo.

Input Output
lo ≤ Input value ≤ up Input value
Input value < lo Lower limit
Input value > up Upper limit

Ports
Input

u — Input signal
scalar | vector

The input signal to the saturation algorithm.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

up — Signal that provides the upper saturation limit
scalar | vector

Dynamic value providing the upper saturation limit. When the input is greater than up then the
output value is bound to up.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

lo — Signal that provides the lower saturation limit
scalar | vector

Dynamic value providing the lower saturation limit. When the input is less than lo then the output
value is bound to lo.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

1 Blocks

1-1902

Output

y — Output signal
scalar | vector

Output signal that is the value of the input signal, upper saturation limit, or lower saturation limit.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
To edit the parameters for the Saturation Dynamic block, double-click the block icon.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

 Saturation Dynamic

1-1903

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

Inherit: Same as input (default) | Inherit: Inherit via back propagation | double |
single | int8 | int32 | uint32 | int64 | uint64 | fixdt(1,16,2^0,0) | <data type
expression> | ...

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType. For more information, see “Control Data Types of
Signals”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Same as input', 'Inherit: Inherit via back propagation',
'single', 'int8', 'uint8', int16, 'uint16', 'int32', 'uint32', 'int64', 'uint64',
fixdt(1,16,0), fixdt(1,16,2^0,0), fixdt(1,16,2^0,0). '<data type expression>'
Default: 'Inherit: Same as input'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector

1 Blocks

1-1904

Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the MATLAB
ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the MATLAB
floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate rounding
code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Default: 'Floor'
See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Choose the behavior when integer overflow occurs

off (default) | on

 Saturation Dynamic

1-1905

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this check
box.

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box.

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. Usually, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Booleana | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no

1 Blocks

1-1906

Zero-Crossing
Detection

no

a This block is not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Saturation

 Saturation Dynamic

1-1907

Scan String
Scan input string and convert to signals per specified format

Libraries:
Simulink / String

Description
The Scan String block scans an input string and converts it to signals per the format specified by the
Format parameter. The block converts values to their decimal (base 10) representation and outputs
the results as numeric or string signals. Use this block when you want to deconstruct a string, for
example a sentence, into its individual components. For example, if the Format parameter is set to
"%s is %f.", the block outputs two parts, a string signal and a single signal. If the input is the
string "Pi is 3.14", the two outputs are "Pi" and "3.14".

Note If you specify a numeric display format that is not large enough to display all the digits of a
value, the displayed values may lose precision. The result depends on your computer hardware and
operating system.

The Scan String, String to Double, and String to Single blocks are identical blocks. When configured
for String to Double, the block converts the input string signal to a double numerical output. When
configured for String to Single, the block converts the input string signal to a single numerical
output.

For code generation, configure models that contain this block for non-finite number support by
selecting the Configuration Parameters > Code Generation > Interface > Support non-finite
numbers check box.

Ports
Input

Port_1 — Input string
scalar

Input string, specified as a scalar.
Data Types: string

Output

d — Output data whose format matches %d format
scalar

Output data whose format matches the specified format, defined as a scalar. Total maximum number
of outputs is 128.

1 Blocks

1-1908

If the block cannot match an input string to a format operator specified in Format, it returns a
warning and outputs an appropriate value (0 or "") for each unmatched format operator.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

f — Output data whose format matches %f format
scalar

Output data whose format matches the %f format, specified as a scalar. Total maximum number of
outputs is 128.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Port_N — Output data whose format matches N format
scalar

Output data whose format matches N format, specified as a scalar. Total maximum number of outputs
is 128.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Parameters
Format — Format operator for input
"%d %f" (default) | format string | character vector

Format operator for input, specified as a scalar. If the block cannot match the input string with the
specified format, it returns 0. The return of 0 differs from the sscanf function return, which is an
empty matrix if the function cannot match the input with the specified format.

• For the String to Double block, this parameter has a default value of %lf.
• For the String to Single block, this parameter has a default value of %f.

For more information about acceptable format operators, see the Algorithms section.

Programmatic Use
Block Parameter: Format
Type: character vector
Values: '<filename>'
Default: '"%d %f"'

Block Characteristics
Data Types double | integer | single | string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no

 Scan String

1-1909

Zero-Crossing
Detection

no

Algorithms
The Scan String block uses this format specifier prototype:

%[width][length]specifier

Numeric Fields

This table lists available conversion specifiers to convert text to numeric outputs. The block converts
values to their decimal (base 10) representation.

Output Port Data Type Conversion Specifier Description
Integer, signed %d Base 10
Integer, unsigned %u Base 10
Floating-point number %f, %e, or %g Floating-point values. Input

fields can contain NaN (case
sensitive). Input fields that
represents floating-point
numbers can include leading +
or - symbols and exponential
notation using e or E. The
conversion specifiers %f, %e,
and %g all treat input fields the
same way.

Character Fields

This table lists available conversion specifiers to convert text so that the output is a string.

Character Field Type Conversion
Specifier

Description

String scalar %s Read the text until the block encounters white
space.

%c Read any single character, including white space. To
read multiple characters at a time, specify field
width. For example, %10c reads 10 characters at a
time.

Pattern-matching %[...] Read only the characters in the brackets up to the
first nonmatching character or white space.

Example: %[mus] reads 'summer' as 'summ'.
%[^...] Read any characters not in the brackets up to the

first matching character or white space.

Example: %[^m] reads 'summer' as 'su'.

1 Blocks

1-1910

Optional Operators

• Field Width — To specify the maximum number of digits or text characters to read at a time, insert
a number after the percent character. For example, %10s reads up to 10 characters at a time,
including white space. %4f reads up to four digits at a time, including the decimal point.

• Literal Text to Ignore — This block must match the specified text immediately before or after the
conversion specifier.

Example: Hell%s reads "Hello!" as "o!".

Length Specifiers

The Scan String block supports the h and l length subspecifiers. These specifiers can change
according to the Configuration Parameters > Hardware Implementation > Number of bits
settings.

Length i u f e g s c […] [^...]
No length specifier int unsigned int single string
h short unsigned short — —
l long unsigned long double —

Notes for Specifiers that Specify Integer Data Types (d, u)

• Target int, long, and short type sizes are controlled by settings in the Configuration
Parameters > Hardware Implementation pane. For example, if the target int is 32 bits and
the specifier is %u, then the expected input type will be uint32. For this example, the Scan String
block requires that the output type be exactly int32. It cannot be any other data type.

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
sscanf | ASCII to String | Compose String | String Compare | String Concatenate | String Constant |
String Find | String Length | String to Double | String to Enum | String to ASCII | String to Single |
Substring | To String

Topics
“Display and Extract Coordinate Data”
“Simulink Strings”

 Scan String

1-1911

Scope
Display signals generated during simulation

Libraries:
Simulink / Commonly Used Blocks
Simulink / Sinks
HDL Coder / Commonly Used Blocks
HDL Coder / Sinks

Description
The Simulink Scope block and DSP System Toolbox Time Scope block display time domain signals.

1 Blocks

1-1912

 Scope

1-1913

The two blocks have identical functionality, but different default settings. The Time Scope is
optimized for discrete time processing. The Scope is optimized for general time-domain simulation.
For a side-by-side comparison, see “Simulink Scope Versus DSP System Toolbox Time Scope”.

Oscilloscope features:

• Triggers — Set triggers to sync repeating signals and pause the display when events occur.
• Cursor Measurements — Measure signal values using vertical and horizontal cursors.
• Signal Statistics — Display the maximum, minimum, peak-to-peak difference, mean, median, and

RMS values of a selected signal.
• Peak Finder — Find maxima, showing the x-axis values at which they occur.
• Bilevel Measurements — Measure transitions, overshoots, undershoots, and cycles.

You must have a Simscape or DSP System Toolbox license to use the Peak Finder, Bilevel
Measurements, and Signal Statistics.

Scope display features:

• Simulation control — Debug models from a Scope window using Run, Step Forward, and Step
Backward toolbar buttons.

• Multiple signals — Plot multiple signals on the same y-axis (display) using multiple input ports.
• Multiple y-axes (displays) — Display multiple y-axes. All the y-axes have a common time range on

the x-axis.
• Modify parameters — Modify scope parameter values before and during a simulation.
• Axis autoscaling — Autoscale axes during or at the end of a simulation. Margins are drawn at the

top and bottom of the axes.
• Display data after simulation — Scope data is saved during a simulation. If a scope is closed at the

start of a simulation, when you open the scope after a simulation, the scope displays simulation
results for attached input signals.

Note If you have a high sample rate or long simulation time, you may run into issues with
memory or system performance because the scope saves data internally. To limit the amount of
data saved for scope visualization, use the Limit data points to last property.

For information on controlling a scope programmatically, see “Control Scope Blocks
Programmatically”.

Limitations
• Do not use scope blocks in a Library. If you place a scope block inside a library block with a locked

link or in a locked library, Simulink displays an error when trying to open the scope window. To
display internal data from a library block, add an output port to the library block, and then
connect the port to a Scope block in your model.

• If you step through a model, the scope only updates when the scope block runs. This means that
the time shown in the status bar may not match the model time.

• When connected to a constant signal, a scope block may plot a single point.
• The scope shows gaps in the display when the signal value is NaN.

1 Blocks

1-1914

• When you visualize multiple frame-based signals in the scope, some samples of signals with a
frame size of 1 might not be displayed. To visualize these signals, move the signals with frame size
of 1 to a separate scope.

• Scope displays have limitations in Rapid Accelerator mode. See “Behavior of Scopes and Viewers
with Rapid Accelerator Mode”

• When the Scope is in a ForEach subsystem, the scope only displays the last index.

Ports
Input

Port_1 — Signal or signals to visualize
scalar | vector | matrix | array | bus | nonvirtual bus

Connect the signals you want to visualize. You can have up to 96 input ports. Input signals can have
these characteristics:

• Type — Continuous (sample-based) or discrete (sample-based and frame-based).
• Data type — Any data type that Simulink supports. See “Data Types Supported by Simulink”.
• Dimension — Scalar, one dimensional (vector), two dimensional (matrix), or multidimensional

(array). Display multiple channels within one signal depending on the dimension. See “Signal
Dimensions” and “Determine Signal Dimensions”.

Input Limitations

• When the input is a constant signal, the scope plots a single point.
• The scope shows gaps in the display when the signal value is NaN.
• When you visualize multiple frame-based signals in the scope, some samples of signals with a

frame size of 1 might not be displayed. To visualize these signals, move the signals with frame size
of 1 to a separate scope.

Bus Support

You can connect nonvirtual bus and arrays of bus signals to a scope. To display the bus signals, use
normal or accelerator simulation mode. The scope displays each bus element signal in the order the
elements appear in the bus, from the top to the bottom. Nested bus elements are flattened.

To log nonvirtual bus signals with a scope, set the Save format parameter to Dataset. You can use
any Save format to log virtual bus signals.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Properties
Configuration Properties

The Configuration Properties dialog box controls various properties about the scope displays. From
the scope menu, select View > Configuration Properties.

 Scope

1-1915

Main

Open at simulation start — Specify when scope window opens

off (default for Scope) | on (default for Time Scope)

Select this check box to open the scope window when simulation starts.
Programmatic Use

See OpenAtSimulationStart.

Display the full path — Display block path on scope title bar

off (default) | on

Select this check box to display the block path in addition to the block name.

Number of input ports — Number of input ports on scope block

1 (default) | integer

Specify number of input ports on a Scope block, specified as an integer. The maximum number of
input ports is 96.
Programmatic Use

See NumInputPorts.

Layout — Number and arrangement of displays
1-by-1 display (default) | an arrangement of m-by-n axes

Specify number and arrangement of displays. The maximum layout is 16 rows by 16 columns.

To expand the layout grid beyond 4 by 4, click within the dialog box and drag. Maximum of 16 rows
by 16 columns.

If the number of displays is equal to the number of ports, signals from each port appear on separate
displays. If the number of displays is less than the number of ports, signals from additional ports
appear on the last display. For layouts with multiple columns and rows, ports are mapped down then
across.

1 Blocks

1-1916

Programmatic Use

See LayoutDimensions.

Sample time — Simulation interval between scope updates

-1 (for inherited) (default) | positive real number

Specify the time interval between updates of the scope display. This property does not apply to
floating scopes and scope viewers. For a more detailed explanation of sample time with the scope, see
“Sample Time with Scope Blocks”

Programmatic Use

See SampleTime.

Input processing — Channel or element signal processing

Elements as channels (sample based) (default for Scope) | Columns as channels (frame
based) (default for Time Scope)

• Elements as channels (sample based) - Process each element as a unique sample.
• Columns as channels (frame based) - Process signal values in a channel as a group of

values from multiple time intervals. Frame-based processing is available only with discrete input
signals.

Programmatic Use

See FrameBasedProcessing.

Maximize axes — Maximize size of plots

Off (default for Scope) | Auto (default for Time Scope) | On

• Auto - If “Title” on page 1-0 and “Y-label” on page 1-0 properties are not specified,
maximize all plots.

• On - Maximize all plots. Values in Title and Y-label are hidden.
• Off - Do not maximize plots.

Programmatic Use

See MaximizeAxes.

Time

Time span — Length of x-axis to display

Auto (default) | User defined | One frame period

• Auto — Difference between the simulation start and stop times.

The block calculates the beginning and end times of the time range using the “Time display offset”
on page 1-0 and “Time span” on page 1-0 properties. For example, if you set the Time
display offset to 10 and the Time span to 20, the scope sets the time range from 10 to 30.

 Scope

1-1917

• User defined — Enter any value less than the total simulation time.
• One frame period — Use the frame period of the input signal to the Time Scope block. This

option is only available when the Input processing parameter is set to Columns as channels
(frame based).

Programmatic Use

See TimeSpan.

Time span overrun action — Display data beyond visible x-axis

Wrap (default) | Scroll

Specify how to display data beyond the visible x-axis range.

You can see the effects of this option only when plotting is slow with large models or small step sizes.

• Wrap — Draw a full screen of data from left to right, clear the screen, and then restart drawing
the data from the left.

• Scroll — Move data to the left as new data is drawn on the right. This mode is graphically
intensive and can affect run-time performance.

Programmatic Use

See TimeSpanOverrunAction.

Time units — x-axis units

None (default for Scope) | Metric (default for Time Scope) | Seconds

• Metric — Display time units based on the length of “Time span” on page 1-0 .
• Seconds — Display time in seconds.
• None — Do not display time units.

Programmatic Use

See TimeUnits.

Time display offset — x-axis offset

0 (default) | scalar | vector

Offset the x-axis by a specified time value, specified as a real number or vector of real numbers.

For input signals with multiple channels, you can enter a scalar or vector:

• Scalar — Offset all channels of an input signal by the same time value.
• Vector — Independently offset the channels.

Programmatic Use

See TimeDisplayOffset.

Time-axis labels — Display of x-axis labels

1 Blocks

1-1918

Bottom Displays Only (default for Scope) | All (default for Time Scope) | None

Specify how x-axis (time) labels display:

• All — Display x-axis labels on all y-axes.
• None — Do not display labels. Selecting None also clears the Show time-axis label check box.
• Bottom displays only — Display x-axis label on the bottom y-axis.

Dependencies

To enable this property, set:

• “Show time-axis label” on page 1-0 to on.
• “Maximize axes” on page 1-0 to off.

The “Active display” on page 1-0 property determines which display is affected.
Programmatic Use

See TimeAxisLabels.

Show time-axis label — Display or hide x-axis labels

off (default for Scope) | on (default for Time Scope)

Select this check box to show the x-axis label for the active display
Dependencies

To enable this property, set “Time-axis labels” on page 1-0 to All or Bottom Displays Only.

The “Active display” on page 1-0 property determines which display is affected.
Programmatic Use

See ShowTimeAxisLabel.

Display

Active display — Selected display

1 (default) | positive integer

Selected display. Use this property to control which display is changed when changing style
properties and axes-specific properties.

Specify the desired display using a positive integer that corresponds to the column-wise placement
index. For layouts with multiple columns and rows, display numbers are mapped down and then
across.
Programmatic Use

See ActiveDisplay.

Title — Display name

%<SignalLabel> (default) | string

 Scope

1-1919

Title for a display. The default value %<SignalLabel> uses the input signal name for the title.
Dependency

The “Active display” on page 1-0 property determines which display is affected.
Programmatic Use

See Title.

Show legend — Display signal legend

off (default) | on

Toggle signal legend. The names listed in the legend are the signal names from the model. For signals
with multiple channels, a channel index is appended after the signal name. Continuous signals have
straight lines before their names, and discrete signals have step-shaped lines.

From the legend, you can control which signals are visible. This control is equivalent to changing the
visibility in the Style properties. In the scope legend, click a signal name to hide the signal in the
scope. To show the signal, click the signal name again. To show only one signal, right-click the signal
name, which hides all other signals. To show all signals, press Esc.

Note The legend only shows the first 20 signals. Any additional signals cannot be controlled from the
legend.

Dependency

The “Active display” on page 1-0 property determines which display is affected.
Programmatic Use

See ShowLegend.

Show grid — Show internal grid lines

on (default) | off

Select this check box to show grid lines.
Dependency

The “Active display” on page 1-0 property determines which display is affected.
Programmatic Use

See ShowGrid.

Plot signals as magnitude and phase — Split display into magnitude and phase plots

off (default) | on

• On — Display magnitude and phase plots. If the signal is real, plots the absolute value of the
signal for the magnitude. The phase is 0 degrees for positive values and 180 degrees for negative
values. This feature is useful for complex-valued input signals. If the input is a real-valued signal,
selecting this check box returns the absolute value of the signal for the magnitude.

1 Blocks

1-1920

• Off — Display signal plot. If the signal is complex, plots the real and imaginary parts on the same
y-axis.

Dependency

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See PlotAsMagnitudePhase.

Y-limits (Minimum) — Minimum y-axis value

-10 (default) | real scalar

Specify the minimum value of the y-axis as a real number.

Tunable: Yes

Dependency

If you select Plot signals as magnitude and phase, this property only applies to the magnitude
plot. The y-axis limits of the phase plot are always [-180 180].

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See YLimits.

Y-limits (Maximum) — Maximum y-axis value

10 (default) | real scalar

Specify the maximum value of the y-axis as a real number.

Tunable: Yes

Dependency

If you select Plot signals as magnitude and phase, this property only applies to the magnitude
plot. The y-axis limits of the phase plot are always [-180 180].

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See YLimits.

Y-label — Y-axis label

none (default for Scope) | Amplitude (default for Time Scope) | string

Specify the text to display on the y-axis. To display signal units, add (%<SignalUnits>) to the label.
At the beginning of a simulation, Simulink replaces (%SignalUnits) with the units associated with
the signals.
Example: For a velocity signal with units of m/s, enter Velocity (%<SignalUnits>).

 Scope

1-1921

Dependency

If you select Plot signals as magnitude and phase, this property does not apply. The y-axes are
labeled Magnitude and Phase.

The “Active display” on page 1-0 property determines which display is affected.

Programmatic Use

See YLabel.

Logging

Limit data points to last — Limit buffered data values

off and 5000 (default) | on | positive integer

Limit data saved by the scope internally. By default all data points are saved so that you can view the
scope visualization after the simulation finishes. For simulations with Stop time set to inf, consider
selecting Limit data points to last.

Note If you do not select Limit data points to last and you have a high sample rate or long
simulation time, you may run into issues with memory or system performance.

When you select this property, the scope saves the latest n data points, where n the specified number
of data points.

• Off — Save and plot all data values.
• On — Save specified number of data values for each signal. If the signal is frame-based, the

number of buffered data values is the specified number of data values multiplied by the frame
size.

In some cases, selecting this property can have the effect of plotting signals for less than the
entire time range of a simulation (for example if your sample time is small). If the scope plots a
portion of your signals, consider increasing the number of data points to save.

This property limits the data values plotted in the scope and the data values saved to a MATLAB
variable specified in “Variable name” on page 1-0 .

Programmatic Use

See DataLoggingLimitDataPoints and DataLoggingMaxPoints.

Decimation — Reduce amount of scope data to display and save

off, 2 (default) | on | positive integer

• On — Plot and log (save) scope data every Nth data point, where N is the decimation factor entered
in the text box. A value of 1 buffers all data values.

• Off — Save all scope data values.

Dependency

To enable this property, select “Log data to workspace” on page 1-0 .

1 Blocks

1-1922

This property limits the data values plotted in the scope and the data values saved to a MATLAB
variable specified in “Variable name” on page 1-0 .

Programmatic Use

See DataLoggingDecimateData and DataLoggingDecimation.

Log data to workspace — Save data to MATLAB workspace

off (default) | on

Select this check box to enable logging and enable the Variable name, Save format, and
Decimation properties. This property does not apply to floating scopes and scope viewers.

For an example of saving signals to the MATLAB Workspace using a Scope block, see “Save
Simulation Data Using Scope Block”.

Programmatic Use

See DataLogging.

Variable name — Name of saved data variable

ScopeData (default) | string

Specify a variable name for saving scope data in the MATLAB workspace. This property does not
apply to floating scopes and scope viewers.

Dependency

To enable this property, select “Log data to workspace” on page 1-0 .

Programmatic Use

See DataLoggingVariableName.

Save format — MATLAB variable format

Dataset (default) | Structure With Time | Structure | Array

Select variable format for saving data to the MATLAB workspace. This property does not apply to
floating scopes and scope viewers.

• Dataset — Save data as a Dataset object, by default a timeseries object.
• Structure With Time — Save data as a structure with associated time information.
• Structure — Save data as a structure.
• Array — Save data as an array with associated time information. This format does not support

variable-size data.

Dependency

To enable this property, select “Log data to workspace” on page 1-0 .

Programmatic Use

See DataLoggingSaveFormat.

 Scope

1-1923

Axes Scaling Properties

The Axes Scaling dialog controls the axes limits of the scope. To open the Axes Scaling properties, in
the scope menu, select Tools > Axes Scaling > Axes Scaling Properties.

Axes scaling — Y-axis scaling mode

Manual (default) | Auto | After N Updates

• Manual — Manually scale the y-axis range with the Scale Y-axis Limits toolbar button.
• Auto — Scale the y-axis range during and after simulation. Selecting this option displays the Do

not allow Y-axis limits to shrink check box. If you want the y-axis range to increase and
decrease with the maximum value of a signal, set Axes scaling to Auto and clear the Do not
allow Y-axis limits to shrink check box.

• After N Updates — Scale y-axis after the number of time steps specified in the Number of
updates text box (10 by default). Scaling occurs only once during each run.

Programmatic Use

See AxesScaling.

Do not allow Y-axis limits to shrink — When y-axis limits can change

on (default) | off

Allow y-axis range limits to increase but not decrease during a simulation.

Dependency

To use this property, set Axes scaling to Auto.

Number of updates — Number of updates before scaling

10 (default) | integer

Set this property to delay auto scaling the y-axis.

Dependency

To use this property, set Axes scaling to After N Updates.

Programmatic Use

See AxesScalingNumUpdates.

Scale axes limits at stop — When y-axis limits can change

on (default) | off

• On — Scale axes when simulation stops.
• Off — Scale axes continually.

Dependency

To use this property, set Axes scaling to Auto.

1 Blocks

1-1924

Y-axis Data range (%) — Percent of y-axis to use for plotting

80 (default) | integer between [1, 100]

Specify the percentage of the y-axis range used for plotting data. If you set this property to 100, the
plotted data uses the entire y-axis range.

Y-axis Align — Alignment along y-axis

Center (default) | Top | Bottom

Specify where to align plotted data along the y-axis data range when Y-axis Data range is set to less
than 100 percent.

• Top — Align signals with the maximum values of the y-axis range.
• Center — Center signals between the minimum and maximum values.
• Bottom — Align signals with the minimum values of the y-axis range.

Autoscale X-axis limits — Scale x-axis range limits

off (default) | on

Scale x-axis range to fit all signal values. If Axes scaling is set to Auto, the data currently within the
axes is scaled, not the entire signal in the data buffer.

X-axis Data range (%) — Percent of x-axis to use for plotting

100 (default) | integer in the range [1, 100]

Specify the percentage of the x-axis range to plot data on. For example, if you set this property to
100, plotted data uses the entire x-axis range.

X-axis Align — Alignment along x-axis

Center (default) | Left | Right

Specify where to align plotted data along the x-axis data range when X-axis Data range is set to less
than 100 percent.

• Right — Align signals with the maximum values of the x-axis range.
• Center — Center signals between the minimum and maximum values.
• Left — Align signals with the minimum values of the x-axis range.

Style Properties

To open the Style dialog box, from the scope menu, select View > Style.

Figure color — Background color for window
black (default) | color

Background color for the scope.

Plot type — How to plot signal

 Scope

1-1925

Auto (default for Scope) | Line (default for Time Scope) | Stairs | Stem

When you select Auto, the plot type is a line graph for continuous signals, a stair-step graph for
discrete signals, and a stem graph for Simulink message signals.

Axes colors — Background and axes color for individual displays
black (default) | color

Select the background color for axes (displays) with the first color palette. Select the grid and label
color with the second color palette.

Preserve colors for copy to clipboard — Copy scope without changing colors
off (default) | on

Specify whether to use the displayed color of the scope when copying.

When you select File > Copy to Clipboard, the software changes the color of the scope to be printer
friendly (white background, visible lines). If you want to copy and paste the scope with the colors
displayed, select this check box.

Properties for line — Line to change
Channel 1 (default)

Select active line for setting line style properties.

Visible — Line visibility
on (default) | off

Show or hide a signal on the plot.

Dependency

The values of “Active display” on page 1-0 and “Properties for line” on page 1-0 determine
which line is affected.

Line — Line style
solid line (default style) | 0.75 (default width) | yellow (default color)

Select line style, width, and color.

Dependency

The values of “Active display” on page 1-0 and “Properties for line” on page 1-0 determine
which line is affected.

Marker — Data point marker style
None (default) | marker shape

Select marker shape.

Dependency

The values of “Active display” on page 1-0 and “Properties for line” on page 1-0 determine
which line is affected.

1 Blocks

1-1926

Block Characteristics
Data Types Boolean | busa | double | enumerated | fixed point | half | integer

| single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

a Virtual bus not supported. Nonvirtual bus supported only in normal and accelerator mode simulation. Data logging for
nonvirtual bus supported only in the dataset format.

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block can be used for simulation visibility in systems that generate code, but is not included in
the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

This block can be used for simulation visibility in systems that generate code, but is not included in
the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block accepts fixed-point input, but converts it to double for display.

See Also
Floating Scope | Scope Viewer

Topics
“Scope Blocks and Scope Viewer Overview”
“Common Scope Block Tasks”
“Control Scope Blocks Programmatically”
“Scope Block with Android Devices” (Simulink Support Package for Android Devices)

 Scope

1-1927

Scope Block with Apple iOS Devices (Simulink Support Package for Apple iOS Devices)
“Simulink Scope Block and Mobile Apps” (Simulink Support Package for Android Devices)

1 Blocks

1-1928

Second-Order Integrator
Second-order integration of input signal

Libraries:
Simulink / Continuous

Description
The Second-Order Integrator block and the Second-Order Integrator Limited block solve the second-
order initial value problem:

d2x
dt2

= u,

dx
dt t = 0

= dxo,

x t = 0 = xo,

where u is the input to the system. The block is therefore a dynamic system with two continuous
states: x and dx/dt.

Note These two states have a mathematical relationship, namely, that dx/dt is the derivative of x. To
satisfy this relationship throughout the simulation, Simulink places various constraints on the block
parameters and behavior.

The Second-Order Integrator Limited block is identical to the Second-Order Integrator block with the
exception that it defaults to limiting the states based on the specified upper and lower limits. For
more information, see “Limiting the States” on page 1-1930.

Simulink software can use several different numerical integration methods to compute the outputs of
the block. Each has advantages for specific applications. Use the Solver pane of the Configuration
Parameters dialog box to select the technique best suited to your application. (For more information,
see “Solver Selection Criteria”.) The selected solver computes the states of the Second-Order
Integrator block at the current time step using the current input value.

Use the block parameter dialog box to:

• Specify whether the source of each state initial condition is internal or external
• Specify a value for the state initial conditions
• Define upper and lower limits on either or both states
• Specify absolute tolerances for each state
• Specify names for both states

 Second-Order Integrator

1-1929

• Choose an external reset condition
• Enable zero-crossing detection
• Reinitialize dx/dt when x reaches saturation
• Specify that Simulink disregard the state limits and external reset for linearization operations

Defining Initial Conditions

You can define the initial conditions of each state individually as a parameter on the block dialog box
or input one or both of them from an external signal.

• To define the initial conditions of state x as a block parameter, use the Initial condition source x
drop-down menu to select internal and enter the value in the Initial condition x field.

• To provide the initial conditions from an external source for state x, specify the Initial condition
source x parameter as external. An additional input port appears on the block.

• To define the initial conditions of state dx/dt as a block parameter, use the Initial condition
source dx/dt drop-down menu to select internal and enter the value in the Initial condition
dx/dt field.

• To provide the initial conditions from an external source for state dx/dt, specify Initial condition
source dx/dt as external. An additional input port appears on the block.

If you choose to use an external source for both state initial conditions, your block appears as follows.

Note

• Simulink does not allow initial condition values of inf or NaN.
• If you limit state x or state dx/dt by specifying saturation limits (see “Limiting the States” on page

1-1930) and one or more initial conditions are outside the corresponding limits, then the
respective states are initialized to the closest valid value and a set of consistent initial conditions
is calculated.

Limiting the States

When modeling a second-order system, you may need to limit the block states. For example, the
motion of a piston within a cylinder is governed by Newton's Second Law and has constraints on the
piston position (x). With the Second-Order Integrator block, you can limit the states x and dx/dt
independent of each other. You can even change the limits during simulation; however, you cannot

1 Blocks

1-1930

change whether or not the states are limited. An important rule to follow is that an upper limit must
be strictly greater than its corresponding lower limit.

The block appearance changes when you limit one or both states. With both states limited, the block
appears as follows.

For each state, you can use the block parameter dialog box to set appropriate saturation limits.

Limiting x Only

If you use the Second-Order Integrator Limited block, both states are limited by default. But you can
also manually limit state x on the Second-Order Integrator block by selecting Limit x and entering
the limits in the appropriate parameter fields.

 Second-Order Integrator

1-1931

The block then determines the values of the states as follows:

• When x is less than or equal to its lower limit, the value of x is held at its lower limit and dx/dt is
set to zero.

• When x is in between its lower and upper limits, both states follow the trajectory given by the
second-order ODE.

• When x is greater than or equal to its upper limit, the value of x is held at its upper limit and dx/dt
is set to zero.

You can choose to reinitialize dx/dt to a new value at the time when x reaches saturation. See
“Reinitializing dx/dt When x Reaches Saturation” on page 1-1935.

Limiting dx/dt Only

As with state x, state dx/dt is set as limited by default on the dx/dt pane of the Second-Order
Integrator Limited block dialog box. You can manually set this parameter, Limit dx/dt, on the
Second-Order Integrator block. In either case, you must enter the appropriate limits for dx/dt.

1 Blocks

1-1932

If you limit only the state dx/dt, then the block determines the values of dx/dt as follows:

• When dx/dt is less than or equal to its lower limit, the value of dx/dt is held at its lower limit.
• When dx/dt is in between its lower and upper limits, both states follow the trajectory given by the

second-order ODE.
• When dx/dt is greater than or equal to its upper limit, the value of dx/dt is held at its upper limit.

When state dx/dt is held at it upper or lower limit, the value of x is governed by the first-order initial
value problem:

dx
dt = L,

x(tL) = xL,

where L is the dx/dt limit (upper or lower), tL is the time when dx/dt reaches this limit, and xL is the
value of state x at that time.

 Second-Order Integrator

1-1933

Limiting Both States

When you limit both states, Simulink maintains mathematical consistency of the states by limiting the
allowable values of the upper and lower limits for dx/dt. Such limitations are necessary to satisfy the
following constraints:

• When x is at its saturation limits, the value of dx/dt must be zero.
• In order for x to leave the upper limit, the value of dx/dt must be strictly negative.
• In order for x to leave its lower limit, the value of dx/dt must be strictly positive.

For such cases, the upper limit of dx/dt must be strictly positive and the lower limit of dx/dt must be
strictly negative.

When both states are limited, the block determines the states as follows:

• Whenever x reaches its limits, the resulting behavior is the same as that described in “Limiting x
only”.

• Whenever dx/dt reaches one of its limits, the resulting behavior is the same as that described in
“Limiting dx/dt only” — including the computation of x using a first-order ODE when dx/dt is held
at one of its limits. In such cases, when x reaches one of its limits, it is held at that limit and dx/dt
is set to zero.

• Whenever both reach their respective limits simultaneously, the state x behavior overrides dx/dt
behavior to maintain consistency of the states.

When you limit both states, you can choose to reinitialize dx/dt at the time when state x reaches
saturation. If the reinitialized value is outside specified limits on dx/dt, then dx/dt is reinitialized to
the closest valid value and a consistent set of initial conditions is calculated. See “Reinitializing dx/dt
When x Reaches Saturation” on page 1-1935

Resetting the State

The block can reset its states to the specified initial conditions based on an external signal. To cause
the block to reset its states, select one of the External reset choices on the Attributes pane. A
trigger port appears on the block below its input port and indicates the trigger type.

• Select rising to reset the states when the reset signal rises from zero to a positive value, from a
negative to a positive value, or a negative value to zero.

• Select falling to reset the states when the reset signal falls from a positive value to zero, from a
positive to a negative value, or from zero to negative.

• Select either to reset the states when the reset signal changes from zero to a nonzero value or
changes sign.

1 Blocks

1-1934

The reset port has direct feedthrough. If the block output feeds back into this port, either directly or
through a series of blocks with direct feedthrough, an algebraic loop results (see “Algebraic Loop
Concepts”).

Enabling Zero-Crossing Detection

This parameter controls whether zero-crossing detection is enabled for this block. By default, the
Enable zero-crossing detection parameter is selected on the Attributes pane. However, this
parameter is only in affect if the Zero-crossing control, on the Solver pane of the Configuration
Parameters dialog box, is set to Use local settings. For more information, see “Zero-Crossing
Detection”.

Reinitializing dx/dt When x Reaches Saturation

For certain modeling applications, dx/dt must be reinitialized when state x reaches its limits in order
to pull x out of saturation immediately. You can achieve this by selecting Reinitialize dx/dt when x
reaches saturation on the Attributes pane.

If this option is on, then at the instant when x reaches saturation, Simulink checks whether the
current value of the dx/dt initial condition (parameter or signal) allows the state x to leave saturation
immediately. If so, Simulink reinitializes state dx/dt with the value of the initial condition (parameter
or signal) at that instant. If not, Simulink ignores this parameter at the current instant and sets dx/dt
to zero to make the block states consistent.

This parameter only applies at the time when x actually reaches saturation limit. It does not apply at
any future time when x is being held at saturation.

Refer to the sections on limiting the states for more information. For an example, see “Simulation of
Bouncing Ball” on page 13-6.

Disregarding State Limits and External Reset for Linearization

For cases where you simplify your model by linearizing it, you can have Simulink disregard the limits
of the states and the external reset by selecting Ignore state limits and the reset for
linearization.

Specifying the Absolute Tolerance for the Block Outputs

By default Simulink software uses the absolute tolerance value specified in the Configuration
Parameters dialog box (see “Error Tolerances for Variable-Step Solvers”) to compute the output of the
integrator blocks. If this value does not provide sufficient error control, specify a more appropriate
value for state x in the Absolute tolerance x field and for state dx/dt in the Absolute tolerance
dx/dt field of the parameter dialog box. Simulink uses the values that you specify to compute the
state values of the block.

Specifying the Display of the Output Ports

You can control whether to display the x or the dx/dt output port using the ShowOutput parameter.
You can display one output port or both; however, you must select at least one.

Specifying the State Names

You can specify the name of x states and dx/dt states using the StateNameX and StateNameDXDT
parameters. However, you must specify names for both or neither; you cannot specify names for just x

 Second-Order Integrator

1-1935

or just dx/dt. Both state names must have identical type and length. Furthermore, the number of
names must evenly divide the number of states.

Selecting All Options

When you select all options, the block icon looks like this.

Ports
Input

u — Input signal u
scalar | vector | matrix

Input signal u to the integrator system, specified as a scalar, vector, or matrix.
Data Types: double

x0 — Initial condition x0
scalar | vector | matrix

External signal specifying the initial condition x0 to the integrator system. You can specify the initial
condition as a scalar, vector, or matrix.

Dependencies

To enable this input port, set the Initial condition source x parameter to external.
Data Types: double

dx0 — Initial condition dx0
scalar | vector | matrix

External signal specifying the initial condition dx0 to the integrator system. You can specify the initial
condition dx0 as a scalar, vector, or matrix.

Dependencies

To enable this input port, set the Initial condition source dx/dt parameter to external.
Data Types: double

1 Blocks

1-1936

Output

x — Output signal x
scalar | vector | matrix

x state output signal, provided as a scalar, vector, or matrix.
Data Types: double

dx — Output signal dx
scalar | vector | matrix

dx state output signal, specified as a scalar, vector, or matrix.
Data Types: double

Parameters
x

Initial condition source x — Source of initial condition for state x

internal (default) | external

Specify the source of the initial conditions for state x.

• internal — Get the initial conditions of state x from the Initial condition x parameter.
• external — Get the initial conditions of state x from an external block connected to the X0 input

port.

Limitations

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Selecting internal enables the Initial condition x parameter and removes the X0 input port.

Selecting external disables the Initial condition x parameter and enables the X0 input port.

Programmatic Use
Block Parameter: ICSourceX
Type: character vector, string
Values: 'internal' | 'external'
Default: 'internal'

Initial condition x — Initial condition of state x

0.0 (default) | scalar | vector | matrix

Specify the initial condition of state x.

Limitations

Simulink software does not allow the initial condition of this block to be inf or NaN.

 Second-Order Integrator

1-1937

Dependencies

To enable this parameter, set Initial condition source x to internal.

Setting Initial condition source x to external disables this parameter and enables the X0 input
port.

Programmatic Use
Block Parameter: ICX
Type: character vector, string
Values: scalar | vector | matrix
Default: '0.0'

Limit x — Limit values of state x

off | on

Limit state x of the block to a value between the Lower limit x and Upper limit x parameters. The
default value of the Second-Order Integrator block is off. The default value of the Second-Order
Integrator Limited is on.

• To limit state x to a value between the Lower limit x and Upper limit x parameters, select this
check box.

• To remove range limitations on state x, clear this check box.

Dependencies

Selecting this check box enables the Upper limit x and Lower limit x parameters.

Programmatic Use
Block Parameter: LimitX
Type: character vector, string
Values: 'off' | 'on'
Default: 'off' (Second-Order Integrator) | 'on' (Second-Order Integrator Limited)

Upper limit x — Upper limit of state x

1 | inf | scalar | vector | matrix

Specify the upper limit of state x. The default value for the Second-Order Integrator block is inf. The
default value for the Second-Order Integrator Limited block is 1.

Tips

The upper saturation limit for state x must be strictly greater than the lower saturation limit.

Dependencies

To enable this parameter, select the Limit x check box.

Programmatic Use
Block Parameter: UpperLimitX
Type: character vector, string
Values: '1' | 'inf' | scalar | vector | matrix
Default: '1' (Second-Order Integrator Limited) | 'inf' (Second-Order Integrator)

1 Blocks

1-1938

Lower limit x — Lower limit of state x

0 (default) | -inf | scalar | vector | matrix

Specify the lower limit of state x. The default value for the Second-Order Integrator block is -inf.
The default value for the Second-Order Integrator Limited block is 0.

Tip

The lower saturation limit for state x must be strictly less than the upper saturation limit.

Dependencies

To enable this parameter, select the Limit x check box.

Programmatic Use
Block Parameter: LowerLimitX
Type: character vector, string
Values: '0' | '-inf' | scalar | vector | matrix
Default: '0' (Second-Order Integrator Limited) | '-inf' (Second-Order Integrator)

Wrap x — Enable wrapping of x

off (default) | on

Enable wrapping of x between the Wrapped upper value x and Wrapped lower value x
parameters. Enabling wrapping of x eliminates the need for zero-crossing detection, reduces solver
resets, improves solver performance and accuracy, and increases simulation time span when
modeling rotary and cyclic state trajectories.

If you specify Wrapped upper value x as inf and Wrapped lower value x as -inf, wrapping will
never occur.

Dependencies

Selecting this check box enables Wrapped upper value x and Wrapped lower value x.

Programmatic Use
Block Parameter: WrapX
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Wrapped upper value x — Upper value for wrapping x

pi (default) | scalar | vector | matrix

Specify the upper value for wrapping x.

Dependencies

To enable this parameter, select the Wrap x check box.

Programmatic Use
Block Parameter: WrappedUpperValueX
Type: character vector, string
Values: scalar | vector | matrix

 Second-Order Integrator

1-1939

Default: 'pi'

Wrapped lower value x — Lower value for wrapping x

-pi (default) | scalar | vector | matrix

Specify the lower value for wrapping x.
Dependencies

To enable this parameter, select the Wrap x check box.
Programmatic Use
Block Parameter: WrappedLowerValueX
Type: character vector, string
Values: scalar | vector | matrix
Default: '-pi'

Absolute tolerance x — Absolute tolerance for computing state x

auto (default) | -1 | scalar | vector

Specify the absolute tolerance for computing state x.

• You can enter auto, –1, a positive real scalar or vector.
• If you enter auto or –1, Simulink uses the absolute tolerance value in the Configuration

Parameters dialog box (see “Solver Pane”) to compute state x.
• If you enter a real scalar value, that value overrides the absolute tolerance in the Configuration

Parameters dialog box and is used for computing all x states.
• If you enter a real vector, the dimension of that vector must match the dimension of state x. These

values override the absolute tolerance in the Configuration Parameters dialog box.

Programmatic Use
Block Parameter: AbsoluteToleranceX
Type: character vector, string
Values: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

State name x — Name for state x

'' (default) | character vector | string

Assign a unique name to state x.
Tips

• To assign a name to a single state, enter the name between quotes, for example, position'.
• To assign names to multiple x states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.
• The state names apply only to the selected block.
• If you specify a state name for x, you must also specify a state name for dx/dt.
• State names for x and dx/dt must have identical types and lengths.
• The number of states must be evenly divided by the number of state names. You can specify fewer

names than x states, but you cannot specify more names than x states. For example, you can

1 Blocks

1-1940

specify two names in a system with four states. The first name applies to the first two states and
the second name to the last two states. However, you must be consistent and apply the same
scheme to the state names for dx/dt.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, string or a cell array.

Programmatic Use
Block Parameter: StateNameX
Type: character vector, string
Values: ' ' | user-defined
Default: ' '

dx/dt

Initial condition source dx/dt — Source of initial condition for state dx/dt

internal (default) | external

Specify the source of initial conditions for state dx/dt as internal or external.

Limitations

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

• Selecting internal enables the Initial condition dx/dt parameter and removes the dx0 input
port.

• Selecting external disables the Initial condition dx/dt parameter and enables the dx0 input
port.

Programmatic Use
Block Parameter: ICSourceDXDT
Type: character vector
Values: 'internal' | 'external'
Default: 'internal'

Initial condition dx/dt — Initial condition of state dx/dt

0.0 (default) | scalar | vector | matrix

Specify the initial condition of state dx/dt.

Limitations

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

• Setting Initial condition source dx/dt to internal enables this parameter.
• Setting Initial condition source dx/dt to external disables this parameter.

Programmatic Use
Block Parameter: ICDXDT
Type: character vector

 Second-Order Integrator

1-1941

Values: scalar | vector | matrix
Default: '0.0'

Limit dx/dt — Limit values of state dx/dt

off | on

Limit the dx/dt state of the block to a value between the Lower limit dx/dt and Upper limit dx/dt
parameters. The default value of the Second-Order Integrator block is off. The default value of the
Second-Order Integrator Limited is on.

Tip

If you set saturation limits for x, then the interval defined by the Upper limit dx/dt and Lower limit
dx/dt must contain zero.

Dependencies

Selecting this check box enables the Upper limit dx/dt and Lower limit dx/dt parameters.

Programmatic Use
Parameter: LimitDXDT
Type: character vector
Values: 'off' | 'on'
Default: 'off' (Second-Order Integrator) | 'on' (Second-Order Integrator Limited)

Upper limit dx/dt — Upper limit of state dx/dt

inf (default) | scalar | vector | matrix

Specify the upper limit for state dx/dt.

Dependencies

If you limit x, then this parameter must have a strictly positive value.

To enable this parameter, select the Limit dx/dt check box.

Programmatic Use
Block Parameter: UpperLimitDXDT
Type: character vector
Values: scalar | vector | matrix
Default: 'inf'

Lower limit dx/dt — Lower limit of state dx/dt

-inf (default) | scalar | vector | matrix

Specify the lower limit for state dx/dt.

Dependencies

If you limit x, then this parameter must have a strictly negative value.

To enable this parameter, select the Limit dx/dt check box.

1 Blocks

1-1942

Programmatic Use
Block Parameter: LowerLimitDXDT
Type: character vector
Values: scalar | vector | matrix
Default: '-inf'

Absolute tolerance dx/dt — Absolute tolerance for computing state dx/dt

auto (default) | -1 | scalar | vector

Specify the absolute tolerance for computing state dx/dt.

• You can enter auto, –1, a positive real scalar or vector.
• If you enter auto or –1, then Simulink uses the absolute tolerance value in the Configuration

Parameters dialog box (see “Solver Pane”) to compute the dx/dt output of the block.
• If you enter a numeric value, that value overrides the absolute tolerance in the Configuration

Parameters dialog box.

Programmatic Use
Block Parameter: AbsoluteToleranceDXDT
Type: character vector, string, scalar, or vector
Values: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

State name dx/dt — Name for state dx/dt

' ' (default) | character vector | string

Assign a unique name to state dx/dt.

Tips

• To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
• To assign names to multiple dx/dt states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.
• The state names apply only to the selected block.
• If you specify a state name for dx/dt, you must also specify a state name for x.
• State names for x and dx/dt must have identical types and lengths.
• The number of states must be evenly divided by the number of state names. You can specify fewer

names than dx/dt states, but you cannot specify more names than dx/dt states. For example, you
can specify two names in a system with four states. The first name applies to the first two states
and the second name to the last two states. However, you must be consistent and apply the same
scheme to the state names for x.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, string, or a cell array.

Programmatic Use
Block Parameter: StateNameDXDT
Type: character vector, string
Values: ' ' | user-defined
Default: ' '

 Second-Order Integrator

1-1943

Attributes

External reset — Reset states to their initial conditions

none (default) | rising | falling | either

Reset the states to their initial conditions when a trigger event occurs in the reset signal.

• none — Do not reset the state to initial conditions.
• rising — Reset the state when the reset signal rises from a zero to a positive value or from a

negative to a positive value.
• falling — Reset the state when the reset signal falls from a positive value to zero or from a

positive to a negative value.
• either — Reset the state when the reset signal changes from zero to a nonzero value or changes

sign.

Programmatic Use
Block Parameter: ExternalReset
Type: character vector, string
Values: 'none' | 'rising' | 'falling' | 'either'
Default: 'none'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.
Programmatic Use
Parameter: ZeroCross
Type: character vector, string
Values: 'on' | 'off'
Default: 'on'

Reinitialize dx/dt when x reaches saturation — Reset dx/dt when x reaches saturation

off (default) | on

At the instant when state x reaches saturation, reset dx/dt to its current initial conditions.
Tip

The dx/dt initial condition must have a value that enables x to leave saturation immediately.
Otherwise, Simulink ignores the initial conditions for dx/dt to preserve mathematical consistency of
block states.
Programmatic Use
Block Parameter: ReinitDXDTwhenXreachesSaturation
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Ignore state limits and the reset for linearization — Ignore state limits and external reset for
linearization

1 Blocks

1-1944

off (default) | on

For linearization purposes, have Simulink ignore the specified state limits and the external reset.

Programmatic Use
Block Parameter: IgnoreStateLimitsAndResetForLinearization
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Show output — Output ports to display

both (default) | x | dxdt

Specify the output ports on the block.

• both — Show both x and dx/dt output ports.
• x — Show only the x output port.
• dx/dt — Show only the dx/dt output port.

Programmatic Use
Block Parameter: ShowOutput
Type: character vector, string
Values: 'both' | 'x' | 'dxdt'
Default: 'both'

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

yes

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production-quality code. Relates to resource limits and restrictions on speed
and memory often found in embedded systems. The code generated can contain dynamic allocation
and freeing of memory, recursion, additional memory overhead, and widely-varying execution times.
While the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code.

 Second-Order Integrator

1-1945

In general, consider using the Simulink Model Discretizer to map continuous blocks into discrete
equivalents that support production code generation. To start the Model Discretizer, in the Simulink
Editor, on the Apps tab, under Apps, under Control Systems, click Model Discretizer. One
exception is the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

See Also
Second-Order Integrator Limited | Integrator | Integrator Limited

Topics
“Zero-Crossing Detection”
“Error Tolerances for Variable-Step Solvers”
“Algebraic Loop Concepts”

1 Blocks

1-1946

Second-Order Integrator Limited
Second-order integration of input signal

Libraries:
Simulink / Continuous

Description
The Second-Order Integrator block and the Second-Order Integrator Limited block solve the second-
order initial value problem:

d2x
dt2

= u,

dx
dt t = 0

= dxo,

x t = 0 = xo,

where u is the input to the system. The block is therefore a dynamic system with two continuous
states: x and dx/dt.

Note These two states have a mathematical relationship, namely, that dx/dt is the derivative of x. To
satisfy this relationship throughout the simulation, Simulink places various constraints on the block
parameters and behavior.

The Second-Order Integrator Limited block is identical to the Second-Order Integrator block with the
exception that it defaults to limiting the states based on the specified upper and lower limits. For
more information, see “Limiting the States” on page 1-1948.

Simulink software can use several different numerical integration methods to compute the outputs of
the block. Each has advantages for specific applications. Use the Solver pane of the Configuration
Parameters dialog box to select the technique best suited to your application. (For more information,
see “Solver Selection Criteria”.) The selected solver computes the states of the Second-Order
Integrator block at the current time step using the current input value.

Use the block parameter dialog box to:

• Specify whether the source of each state initial condition is internal or external
• Specify a value for the state initial conditions
• Define upper and lower limits on either or both states
• Specify absolute tolerances for each state
• Specify names for both states

 Second-Order Integrator Limited

1-1947

• Choose an external reset condition
• Enable zero-crossing detection
• Reinitialize dx/dt when x reaches saturation
• Specify that Simulink disregard the state limits and external reset for linearization operations

Defining Initial Conditions

You can define the initial conditions of each state individually as a parameter on the block dialog box
or input one or both of them from an external signal.

• To define the initial conditions of state x as a block parameter, use the Initial condition source x
drop-down menu to select internal and enter the value in the Initial condition x field.

• To provide the initial conditions from an external source for state x, specify the Initial condition
source x parameter as external. An additional input port appears on the block.

• To define the initial conditions of state dx/dt as a block parameter, use the Initial condition
source dx/dt drop-down menu to select internal and enter the value in the Initial condition
dx/dt field.

• To provide the initial conditions from an external source for state dx/dt, specify Initial condition
source dx/dt as external. An additional input port appears on the block.

If you choose to use an external source for both state initial conditions, your block appears as follows.

Note

• Simulink does not allow initial condition values of inf or NaN.
• If you limit state x or state dx/dt by specifying saturation limits (see “Limiting the States” on page

1-1948) and one or more initial conditions are outside the corresponding limits, then the
respective states are initialized to the closest valid value and a set of consistent initial conditions
is calculated.

Limiting the States

When modeling a second-order system, you may need to limit the block states. For example, the
motion of a piston within a cylinder is governed by Newton's Second Law and has constraints on the
piston position (x). With the Second-Order Integrator block, you can limit the states x and dx/dt
independent of each other. You can even change the limits during simulation; however, you cannot

1 Blocks

1-1948

change whether or not the states are limited. An important rule to follow is that an upper limit must
be strictly greater than its corresponding lower limit.

The block appearance changes when you limit one or both states. With both states limited, the block
appears as follows.

For each state, you can use the block parameter dialog box to set appropriate saturation limits.

Limiting x Only

If you use the Second-Order Integrator Limited block, both states are limited by default. But you can
also manually limit state x on the Second-Order Integrator block by selecting Limit x and entering
the limits in the appropriate parameter fields.

 Second-Order Integrator Limited

1-1949

The block then determines the values of the states as follows:

• When x is less than or equal to its lower limit, the value of x is held at its lower limit and dx/dt is
set to zero.

• When x is in between its lower and upper limits, both states follow the trajectory given by the
second-order ODE.

• When x is greater than or equal to its upper limit, the value of x is held at its upper limit and dx/dt
is set to zero.

You can choose to reinitialize dx/dt to a new value at the time when x reaches saturation. See
“Reinitializing dx/dt When x Reaches Saturation” on page 1-1953.

Limiting dx/dt Only

As with state x, state dx/dt is set as limited by default on the dx/dt pane of the Second-Order
Integrator Limited block dialog box. You can manually set this parameter, Limit dx/dt, on the
Second-Order Integrator block. In either case, you must enter the appropriate limits for dx/dt.

1 Blocks

1-1950

If you limit only the state dx/dt, then the block determines the values of dx/dt as follows:

• When dx/dt is less than or equal to its lower limit, the value of dx/dt is held at its lower limit.
• When dx/dt is in between its lower and upper limits, both states follow the trajectory given by the

second-order ODE.
• When dx/dt is greater than or equal to its upper limit, the value of dx/dt is held at its upper limit.

When state dx/dt is held at it upper or lower limit, the value of x is governed by the first-order initial
value problem:

dx
dt = L,

x(tL) = xL,

where L is the dx/dt limit (upper or lower), tL is the time when dx/dt reaches this limit, and xL is the
value of state x at that time.

 Second-Order Integrator Limited

1-1951

Limiting Both States

When you limit both states, Simulink maintains mathematical consistency of the states by limiting the
allowable values of the upper and lower limits for dx/dt. Such limitations are necessary to satisfy the
following constraints:

• When x is at its saturation limits, the value of dx/dt must be zero.
• In order for x to leave the upper limit, the value of dx/dt must be strictly negative.
• In order for x to leave its lower limit, the value of dx/dt must be strictly positive.

For such cases, the upper limit of dx/dt must be strictly positive and the lower limit of dx/dt must be
strictly negative.

When both states are limited, the block determines the states as follows:

• Whenever x reaches its limits, the resulting behavior is the same as that described in “Limiting x
only”.

• Whenever dx/dt reaches one of its limits, the resulting behavior is the same as that described in
“Limiting dx/dt only” — including the computation of x using a first-order ODE when dx/dt is held
at one of its limits. In such cases, when x reaches one of its limits, it is held at that limit and dx/dt
is set to zero.

• Whenever both reach their respective limits simultaneously, the state x behavior overrides dx/dt
behavior to maintain consistency of the states.

When you limit both states, you can choose to reinitialize dx/dt at the time when state x reaches
saturation. If the reinitialized value is outside specified limits on dx/dt, then dx/dt is reinitialized to
the closest valid value and a consistent set of initial conditions is calculated. See “Reinitializing dx/dt
When x Reaches Saturation” on page 1-1953

Resetting the State

The block can reset its states to the specified initial conditions based on an external signal. To cause
the block to reset its states, select one of the External reset choices on the Attributes pane. A
trigger port appears on the block below its input port and indicates the trigger type.

• Select rising to reset the states when the reset signal rises from zero to a positive value, from a
negative to a positive value, or a negative value to zero.

• Select falling to reset the states when the reset signal falls from a positive value to zero, from a
positive to a negative value, or from zero to negative.

• Select either to reset the states when the reset signal changes from zero to a nonzero value or
changes sign.

1 Blocks

1-1952

The reset port has direct feedthrough. If the block output feeds back into this port, either directly or
through a series of blocks with direct feedthrough, an algebraic loop results (see “Algebraic Loop
Concepts”).

Enabling Zero-Crossing Detection

This parameter controls whether zero-crossing detection is enabled for this block. By default, the
Enable zero-crossing detection parameter is selected on the Attributes pane. However, this
parameter is only in affect if the Zero-crossing control, on the Solver pane of the Configuration
Parameters dialog box, is set to Use local settings. For more information, see “Zero-Crossing
Detection”.

Reinitializing dx/dt When x Reaches Saturation

For certain modeling applications, dx/dt must be reinitialized when state x reaches its limits in order
to pull x out of saturation immediately. You can achieve this by selecting Reinitialize dx/dt when x
reaches saturation on the Attributes pane.

If this option is on, then at the instant when x reaches saturation, Simulink checks whether the
current value of the dx/dt initial condition (parameter or signal) allows the state x to leave saturation
immediately. If so, Simulink reinitializes state dx/dt with the value of the initial condition (parameter
or signal) at that instant. If not, Simulink ignores this parameter at the current instant and sets dx/dt
to zero to make the block states consistent.

This parameter only applies at the time when x actually reaches saturation limit. It does not apply at
any future time when x is being held at saturation.

Refer to the sections on limiting the states for more information. For an example, see “Simulation of
Bouncing Ball” on page 13-6.

Disregarding State Limits and External Reset for Linearization

For cases where you simplify your model by linearizing it, you can have Simulink disregard the limits
of the states and the external reset by selecting Ignore state limits and the reset for
linearization.

Specifying the Absolute Tolerance for the Block Outputs

By default Simulink software uses the absolute tolerance value specified in the Configuration
Parameters dialog box (see “Error Tolerances for Variable-Step Solvers”) to compute the output of the
integrator blocks. If this value does not provide sufficient error control, specify a more appropriate
value for state x in the Absolute tolerance x field and for state dx/dt in the Absolute tolerance
dx/dt field of the parameter dialog box. Simulink uses the values that you specify to compute the
state values of the block.

Specifying the Display of the Output Ports

You can control whether to display the x or the dx/dt output port using the ShowOutput parameter.
You can display one output port or both; however, you must select at least one.

Specifying the State Names

You can specify the name of x states and dx/dt states using the StateNameX and StateNameDXDT
parameters. However, you must specify names for both or neither; you cannot specify names for just x

 Second-Order Integrator Limited

1-1953

or just dx/dt. Both state names must have identical type and length. Furthermore, the number of
names must evenly divide the number of states.

Selecting All Options

When you select all options, the block icon looks like this.

Ports
Input

u — Input signal u
scalar | vector | matrix

Input signal u to the integrator system, specified as a scalar, vector, or matrix.
Data Types: double

x0 — Initial condition x0
scalar | vector | matrix

External signal specifying the initial condition x0 to the integrator system. You can specify the initial
condition as a scalar, vector, or matrix.

Dependencies

To enable this input port, set the Initial condition source x parameter to external.
Data Types: double

dx0 — Initial condition dx0
scalar | vector | matrix

External signal specifying the initial condition dx0 to the integrator system. You can specify the initial
condition dx0 as a scalar, vector, or matrix.

Dependencies

To enable this input port, set the Initial condition source dx/dt parameter to external.
Data Types: double

1 Blocks

1-1954

Output

x — Output signal x
scalar | vector | matrix

x state output signal, provided as a scalar, vector, or matrix.
Data Types: double

dx — Output signal dx
scalar | vector | matrix

dx state output signal, specified as a scalar, vector, or matrix.
Data Types: double

Parameters
x

Initial condition source x — Source of initial condition for state x

internal (default) | external

Specify the source of the initial conditions for state x.

• internal — Get the initial conditions of state x from the Initial condition x parameter.
• external — Get the initial conditions of state x from an external block connected to the X0 input

port.

Limitations

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Selecting internal enables the Initial condition x parameter and removes the X0 input port.

Selecting external disables the Initial condition x parameter and enables the X0 input port.

Programmatic Use
Block Parameter: ICSourceX
Type: character vector, string
Values: 'internal' | 'external'
Default: 'internal'

Initial condition x — Initial condition of state x

0.0 (default) | scalar | vector | matrix

Specify the initial condition of state x.

Limitations

Simulink software does not allow the initial condition of this block to be inf or NaN.

 Second-Order Integrator Limited

1-1955

Dependencies

To enable this parameter, set Initial condition source x to internal.

Setting Initial condition source x to external disables this parameter and enables the X0 input
port.

Programmatic Use
Block Parameter: ICX
Type: character vector, string
Values: scalar | vector | matrix
Default: '0.0'

Limit x — Limit values of state x

off | on

Limit state x of the block to a value between the Lower limit x and Upper limit x parameters. The
default value of the Second-Order Integrator block is off. The default value of the Second-Order
Integrator Limited is on.

• To limit state x to a value between the Lower limit x and Upper limit x parameters, select this
check box.

• To remove range limitations on state x, clear this check box.

Dependencies

Selecting this check box enables the Upper limit x and Lower limit x parameters.

Programmatic Use
Block Parameter: LimitX
Type: character vector, string
Values: 'off' | 'on'
Default: 'off' (Second-Order Integrator) | 'on' (Second-Order Integrator Limited)

Upper limit x — Upper limit of state x

1 | inf | scalar | vector | matrix

Specify the upper limit of state x. The default value for the Second-Order Integrator block is inf. The
default value for the Second-Order Integrator Limited block is 1.

Tips

The upper saturation limit for state x must be strictly greater than the lower saturation limit.

Dependencies

To enable this parameter, select the Limit x check box.

Programmatic Use
Block Parameter: UpperLimitX
Type: character vector, string
Values: '1' | 'inf' | scalar | vector | matrix
Default: '1' (Second-Order Integrator Limited) | 'inf' (Second-Order Integrator)

1 Blocks

1-1956

Lower limit x — Lower limit of state x

0 (default) | -inf | scalar | vector | matrix

Specify the lower limit of state x. The default value for the Second-Order Integrator block is -inf.
The default value for the Second-Order Integrator Limited block is 0.

Tip

The lower saturation limit for state x must be strictly less than the upper saturation limit.

Dependencies

To enable this parameter, select the Limit x check box.

Programmatic Use
Block Parameter: LowerLimitX
Type: character vector, string
Values: '0' | '-inf' | scalar | vector | matrix
Default: '0' (Second-Order Integrator Limited) | '-inf' (Second-Order Integrator)

Wrap x — Enable wrapping of x

off (default) | on

Enable wrapping of x between the Wrapped upper value x and Wrapped lower value x
parameters. Enabling wrapping of x eliminates the need for zero-crossing detection, reduces solver
resets, improves solver performance and accuracy, and increases simulation time span when
modeling rotary and cyclic state trajectories.

If you specify Wrapped upper value x as inf and Wrapped lower value x as -inf, wrapping will
never occur.

Dependencies

Selecting this check box enables Wrapped upper value x and Wrapped lower value x.

Programmatic Use
Block Parameter: WrapX
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Wrapped upper value x — Upper value for wrapping x

pi (default) | scalar | vector | matrix

Specify the upper value for wrapping x.

Dependencies

To enable this parameter, select the Wrap x check box.

Programmatic Use
Block Parameter: WrappedUpperValueX
Type: character vector, string
Values: scalar | vector | matrix

 Second-Order Integrator Limited

1-1957

Default: 'pi'

Wrapped lower value x — Lower value for wrapping x

-pi (default) | scalar | vector | matrix

Specify the lower value for wrapping x.
Dependencies

To enable this parameter, select the Wrap x check box.
Programmatic Use
Block Parameter: WrappedLowerValueX
Type: character vector, string
Values: scalar | vector | matrix
Default: '-pi'

Absolute tolerance x — Absolute tolerance for computing state x

auto (default) | -1 | scalar | vector

Specify the absolute tolerance for computing state x.

• You can enter auto, –1, a positive real scalar or vector.
• If you enter auto or –1, Simulink uses the absolute tolerance value in the Configuration

Parameters dialog box (see “Solver Pane”) to compute state x.
• If you enter a real scalar value, that value overrides the absolute tolerance in the Configuration

Parameters dialog box and is used for computing all x states.
• If you enter a real vector, the dimension of that vector must match the dimension of state x. These

values override the absolute tolerance in the Configuration Parameters dialog box.

Programmatic Use
Block Parameter: AbsoluteToleranceX
Type: character vector, string
Values: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

State name x — Name for state x

'' (default) | character vector | string

Assign a unique name to state x.
Tips

• To assign a name to a single state, enter the name between quotes, for example, position'.
• To assign names to multiple x states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.
• The state names apply only to the selected block.
• If you specify a state name for x, you must also specify a state name for dx/dt.
• State names for x and dx/dt must have identical types and lengths.
• The number of states must be evenly divided by the number of state names. You can specify fewer

names than x states, but you cannot specify more names than x states. For example, you can

1 Blocks

1-1958

specify two names in a system with four states. The first name applies to the first two states and
the second name to the last two states. However, you must be consistent and apply the same
scheme to the state names for dx/dt.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, string or a cell array.

Programmatic Use
Block Parameter: StateNameX
Type: character vector, string
Values: ' ' | user-defined
Default: ' '

dx/dt

Initial condition source dx/dt — Source of initial condition for state dx/dt

internal (default) | external

Specify the source of initial conditions for state dx/dt as internal or external.

Limitations

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

• Selecting internal enables the Initial condition dx/dt parameter and removes the dx0 input
port.

• Selecting external disables the Initial condition dx/dt parameter and enables the dx0 input
port.

Programmatic Use
Block Parameter: ICSourceDXDT
Type: character vector
Values: 'internal' | 'external'
Default: 'internal'

Initial condition dx/dt — Initial condition of state dx/dt

0.0 (default) | scalar | vector | matrix

Specify the initial condition of state dx/dt.

Limitations

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

• Setting Initial condition source dx/dt to internal enables this parameter.
• Setting Initial condition source dx/dt to external disables this parameter.

Programmatic Use
Block Parameter: ICDXDT
Type: character vector

 Second-Order Integrator Limited

1-1959

Values: scalar | vector | matrix
Default: '0.0'

Limit dx/dt — Limit values of state dx/dt

off | on

Limit the dx/dt state of the block to a value between the Lower limit dx/dt and Upper limit dx/dt
parameters. The default value of the Second-Order Integrator block is off. The default value of the
Second-Order Integrator Limited is on.

Tip

If you set saturation limits for x, then the interval defined by the Upper limit dx/dt and Lower limit
dx/dt must contain zero.

Dependencies

Selecting this check box enables the Upper limit dx/dt and Lower limit dx/dt parameters.

Programmatic Use
Parameter: LimitDXDT
Type: character vector
Values: 'off' | 'on'
Default: 'off' (Second-Order Integrator) | 'on' (Second-Order Integrator Limited)

Upper limit dx/dt — Upper limit of state dx/dt

inf (default) | scalar | vector | matrix

Specify the upper limit for state dx/dt.

Dependencies

If you limit x, then this parameter must have a strictly positive value.

To enable this parameter, select the Limit dx/dt check box.

Programmatic Use
Block Parameter: UpperLimitDXDT
Type: character vector
Values: scalar | vector | matrix
Default: 'inf'

Lower limit dx/dt — Lower limit of state dx/dt

-inf (default) | scalar | vector | matrix

Specify the lower limit for state dx/dt.

Dependencies

If you limit x, then this parameter must have a strictly negative value.

To enable this parameter, select the Limit dx/dt check box.

1 Blocks

1-1960

Programmatic Use
Block Parameter: LowerLimitDXDT
Type: character vector
Values: scalar | vector | matrix
Default: '-inf'

Absolute tolerance dx/dt — Absolute tolerance for computing state dx/dt

auto (default) | -1 | scalar | vector

Specify the absolute tolerance for computing state dx/dt.

• You can enter auto, –1, a positive real scalar or vector.
• If you enter auto or –1, then Simulink uses the absolute tolerance value in the Configuration

Parameters dialog box (see “Solver Pane”) to compute the dx/dt output of the block.
• If you enter a numeric value, that value overrides the absolute tolerance in the Configuration

Parameters dialog box.

Programmatic Use
Block Parameter: AbsoluteToleranceDXDT
Type: character vector, string, scalar, or vector
Values: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

State name dx/dt — Name for state dx/dt

' ' (default) | character vector | string

Assign a unique name to state dx/dt.

Tips

• To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
• To assign names to multiple dx/dt states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.
• The state names apply only to the selected block.
• If you specify a state name for dx/dt, you must also specify a state name for x.
• State names for x and dx/dt must have identical types and lengths.
• The number of states must be evenly divided by the number of state names. You can specify fewer

names than dx/dt states, but you cannot specify more names than dx/dt states. For example, you
can specify two names in a system with four states. The first name applies to the first two states
and the second name to the last two states. However, you must be consistent and apply the same
scheme to the state names for x.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, string, or a cell array.

Programmatic Use
Block Parameter: StateNameDXDT
Type: character vector, string
Values: ' ' | user-defined
Default: ' '

 Second-Order Integrator Limited

1-1961

Attributes

External reset — Reset states to their initial conditions

none (default) | rising | falling | either

Reset the states to their initial conditions when a trigger event occurs in the reset signal.

• none — Do not reset the state to initial conditions.
• rising — Reset the state when the reset signal rises from a zero to a positive value or from a

negative to a positive value.
• falling — Reset the state when the reset signal falls from a positive value to zero or from a

positive to a negative value.
• either — Reset the state when the reset signal changes from zero to a nonzero value or changes

sign.

Programmatic Use
Block Parameter: ExternalReset
Type: character vector, string
Values: 'none' | 'rising' | 'falling' | 'either'
Default: 'none'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.
Programmatic Use
Parameter: ZeroCross
Type: character vector, string
Values: 'on' | 'off'
Default: 'on'

Reinitialize dx/dt when x reaches saturation — Reset dx/dt when x reaches saturation

off (default) | on

At the instant when state x reaches saturation, reset dx/dt to its current initial conditions.
Tip

The dx/dt initial condition must have a value that enables x to leave saturation immediately.
Otherwise, Simulink ignores the initial conditions for dx/dt to preserve mathematical consistency of
block states.
Programmatic Use
Block Parameter: ReinitDXDTwhenXreachesSaturation
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Ignore state limits and the reset for linearization — Ignore state limits and external reset for
linearization

1 Blocks

1-1962

off (default) | on

For linearization purposes, have Simulink ignore the specified state limits and the external reset.

Programmatic Use
Block Parameter: IgnoreStateLimitsAndResetForLinearization
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Show output — Output ports to display

both (default) | x | dxdt

Specify the output ports on the block.

• both — Show both x and dx/dt output ports.
• x — Show only the x output port.
• dx/dt — Show only the dx/dt output port.

Programmatic Use
Block Parameter: ShowOutput
Type: character vector, string
Values: 'both' | 'x' | 'dxdt'
Default: 'both'

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size Signals No

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production-quality code. Relates to resource limits and restrictions on speed
and memory often found in embedded systems. The code generated can contain dynamic allocation
and freeing of memory, recursion, additional memory overhead, and widely-varying execution times.
While the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code.

In general, consider using the Simulink Model Discretizer to map continuous blocks into discrete
equivalents that support production code generation. To start the Model Discretizer, in the Simulink
Editor, on the Apps tab, under Apps, under Control Systems, click Model Discretizer. One

 Second-Order Integrator Limited

1-1963

exception is the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

See Also
Second-Order Integrator | Integrator | Integrator Limited

Topics
“Zero-Crossing Detection”
“Error Tolerances for Variable-Step Solvers”
“Algebraic Loop Concepts”

1 Blocks

1-1964

Selector
Select input elements from vector, matrix, or multidimensional signal

Libraries:
Simulink / Signal Routing
HDL Coder / Signal Routing

Description
The Selector block extracts selected elements of an input vector, matrix, or multidimensional signal
based on specified indices. The extracted signals can be grouped differently than the input signals.

Based on the value you enter for the Number of input dimensions parameter, a table of indexing
settings is displayed. Each row of the table corresponds to one of the input dimensions in Number of
input dimensions. For each dimension, you define the elements of the signal to work with. Specify a
vector signal as a 1-D signal and a matrix signal as a 2-D signal. When you configure the Selector
block for multidimensional signal operations, the block icon changes.

For example, assume a 6-D signal with a one-based index mode. The table of the Selector block dialog
changes to include one row for each dimension. If you define dimensions as shown in the next table,
the output is Y = U(1:end,2:6,[1 3 5],Idx4:Idx4+7,Idx5,Idx6(1):Idx6(2)), where Idx4,
Idx5, and Idx6 are the index ports for dimensions 4, 5, and 6.

Row Index Option Index Output Size
1 Select all
2 Starting index

(dialog)
2 5

3 Index vector
(dialog)

[1 3 5]

4 Starting index
(port)

 8

5 Index vector
(port)

6 Starting and
ending indices
(port)

You can use an array of buses as an input signal to a Selector block. For details about defining and
using an array of buses, see “Group Nonvirtual Buses in Arrays of Buses”.

Limitations
• The Index parameter is not tunable during simulation. If the Index Option for a dimension is set

to Index vector (dialog) or Starting index (dialog) and you specify a symbolic value,

 Selector

1-1965

including a Simulink.Parameter object, for the corresponding Index in the block dialog, then
the instantaneous value at the start of simulation will be used throughout the simulation, and the
parameter will appear as an inlined value in the generated code. See “Tune and Experiment with
Block Parameter Values”. You can adjust the selection index dynamically by using index ports.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | multidimensional

Input signal and source of elements to output signal.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

IndxN — Nth index signal
scalar | vector | matrix

External port specifying an index for the selection of the corresponding output element.

You can specify integer of custom width (for example, a 15-bit integer or 23-bit integer) as an index
signal value. When you configure the width of the integer, you must specify the Mode as Fixed
point, with Word length less than or equal to 128, Slope equal to 1, and Bias equal to 0. For more
information on specifying a fixed-point data type, see “Specify Data Types Using Data Type
Assistant”.

Dependencies

To enable an external index port, in the corresponding row of the Index Option table, set Index
Option to Index vector (port), Starting index (port), or Starting and ending
indices (port).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

Port_1 — Output signal
scalar | vector | matrix | multidimensional

Output signal generated from selected or reordered elements of input signal.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
Number of input dimensions — Number of dimensions of input signal

1 (default) | integer

Specifies the number of dimensions of the input signal.

1 Blocks

1-1966

Programmatic Use
Block Parameter: NumberOfDimensions
Type: character vector
Values: integer
Default: '1'

Index mode — Index mode

One-based (default) | Zero-based

Specifies the indexing mode. If One-based is selected, an index of 1 specifies the first element of the
input vector. If Zero-based is selected, an index of 0 specifies the first element of the input vector.

Programmatic Use
Block Parameter: IndexMode
Type: character vector
Values: 'One-based' | 'Zero-based'
Default: 'One-based'

Index Option — Index method for elements
Index vector (dialog) (default) | Select all | Index vector (port) | Starting index
(dialog) | Starting index (port) | Starting and ending indices (port)

Defines, by dimension, how the elements of the signal are to be indexed. From the list, select:

• Select all

No further configuration is required. All elements are selected.
• Index vector (dialog)

Enables the Index column. Enter the vector of indices of the elements.
• Index vector (port)

No further configuration is required.
• Starting index (dialog)

Enables the Index and Output Size columns. Enter the starting index of the range of elements to
select in the Index column and the number of elements to select in the Output Size column.

• Starting index (port)

Enables the Output Size column. Enter the number of elements to be selected in the Output
Size column.

• Starting and ending indices (port)

No further configuration is required.

Using this option results in a variable-size output signal. When you update, the output dimension
is set to be the same as the input signal dimension. During execution, the output dimension is
updated based on the signal feeding the index.

When logging output signal data, signals not selected are padded with NaN values.

The Index and Output Size columns appear as needed.

 Selector

1-1967

Programmatic Use
Block Parameter: IndexOptionArray
Type: character vector
Values: 'Select all' | 'Index vector (dialog)' | 'Index option (port)' | 'Starting
index (dialog)' | 'Starting index (port)' | Starting and ending indices (port)
Default: 'Index vector (dialog)'

Index — Index of elements
1 (default) | integer

If the Index Option is Index vector (dialog), enter the index of each element you are
interested in.

If the Index Option is Starting index (dialog), enter the starting index of the range of
elements to be selected.

Programmatic Use
Block Parameter: IndexParamArray
Type: character vector
Values: cell array
Default: '{ }'

Output Size — Width of block output signal
1 (default) | integer

Specifies the width of the block output signal.

Programmatic Use
Block Parameter: OutputSizeArray
Type: character vector
Values: cell array
Default: '{ }'

Input port size — Width of input signal

3 (default) | integer

Specify the width of the block input signal for 1-D signals. Enter -1 to inherit from the driving block.

Programmatic Use
Block Parameter: InputPortWidth
Type: character vector
Values: integer
Default: '3'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

1 Blocks

1-1968

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Check for out-of-range index in accelerated simulation — Option to check for out-of-range index
values in accelerator and rapid accelerator simulation modes

off (default) | on

Select this check box to have Simulink check during simulation in accelerator or rapid accelerator
mode whether any index values are outside the range of valid indices for the relevant dimension of
the input signal. If an index is out of range, Simulink stops the simulation and displays an error
message.

Note If you do not select this check box, out-of-range index values could lead to undefined behavior
during accelerator or rapid accelerator mode simulation.

Simulink performs this check during normal mode simulation regardless of whether you select this
check box.

Programmatic Use
Parameter: RuntimeRangeChecks
Type: character vector
Values: 'Off' | 'On'
Default: 'Off'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

R2023a: Index signal supports integer of custom width

Starting in R2023a, you can customize the width of the integer that you use to specify the index
signal value for the Selector block.

 Selector

1-1969

R2023a: Variable size signal support for Index vector (dialog) and Starting index
(dialog) as Index Option

Starting in R2023a, a Selector block that is configured to accept a 1-D variable-size input signal,
supports Index vector (dialog) and Starting index (dialog) as the Index Option.

This enhancement allows you to choose from all the available Index Option settings when you
configure the Selector block to accept a1-D variable-size input signal.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Native Floating Point
LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min, or

Zero for the floating-point operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1 Blocks

1-1970

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Assignment | Switch | Bus Selector

 Selector

1-1971

Sequence Viewer
Display messages, events, states, transitions, and functions between blocks during simulation

Libraries:
Simulink / Messages & Events
Simulink Test
SimEvents
Stateflow

Description
The Sequence Viewer block displays messages, events, states, transitions, and functions between
certain blocks during simulation. The blocks that you can display are called lifeline blocks and
include:

• Subsystems
• Referenced models
• Blocks that contain messages, such as Stateflow charts
• Blocks that call functions or generate events, such as Function Caller, Function-Call Generator,

and MATLAB Function blocks
• Blocks that contain functions, such as Function-Call Subsystem and Simulink Function blocks

To see states, transitions, and events for lifeline blocks in a referenced model, you must have a
Sequence Viewer block in the referenced model. Without a Sequence Viewer block in the referenced
model, you can see only messages and functions for lifeline blocks in the referenced model.

Note The Sequence Viewer block does not display function calls generated by MATLAB Function
blocks and S-functions.

Parameters
Time Precision for Variable Step — Digits for time increment precision
3 (default) | scalar

Number of digits for time increment precision. When using a variable step solver, change this
parameter to adjust the time precision for the sequence viewer. By default the block supports 3 digits
of precision.

Suppose the block displays two events that occur at times 0.1215 and 0.1219. Displaying these two
events precisely requires 4 digits of precision. If the precision is 3, then the block displays two events
at time 0.121.

Programmatic Use
Block Parameter: VariableStepTimePrecision
Type: string scalar or character vector
Values: "3" | scalar

1 Blocks

1-1972

Default: "3"

History — Maximum number of previous events to display
5000 (default) | scalar

Total number of events before the last event to display.

For example, if History is 5 and there are 10 events in your simulation, then the block displays 6
events, including the last event and the five events prior the last event. Earlier events are not
displayed. The time ruler is greyed to indicate the time between the beginning of the simulation and
the time of the first displayed event.

Each send, receive, drop, or function call event is counted as one event, even if they occur at the
same simulation time.
Programmatic Use
Block Parameter: History
Type: string scalar or character vector
Values: "1000" | scalar
Default: "1000"

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block can be used for visualizing message transitions during simulation, but is not included in
the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block displays messages during simulation when used in subsystems that generate HDL code,
but it is not included in the hardware implementation.

 Sequence Viewer

1-1973

See Also
Tools
Sequence Viewer

Topics
“Use the Sequence Viewer to Visualize Messages, Events, and Entities”

1 Blocks

1-1974

S-Function
Include S-function in model

Libraries:
Simulink / User-Defined Functions

Description
The S-Function block provides access to S-functions from a block diagram. The S-function named as
the S-function name parameter can be a Level-1 or Level-2 C MEX S-function (see “MATLAB S-
Function Basics” for information on how to create S-functions).

Note Use the Level-2 MATLAB S-Function block to include a Level-2 MATLAB S-function in a block
diagram.

The S-Function block displays the name of the specified S-function and the number of input and
output ports specified by the S-function. Signals connected to the inputs must have the dimensions
specified by the S-function for the inputs.

Parameters
S-function name — Name of the S-function

character array (default)

Use this parameter to specify the name of your S-function.
Programmatic Use
Block Parameter: FunctionName
Type: character vector
Value: name of the S-function
Default: 'system'

S-function parameters — Additional S-function parameters

cell array (default)

Specify the additional S-function parameters.

The function parameters can be specified as MATLAB expressions or as variables separated by
commas. For example,

A, B, C, D, [eye(2,2);zeros(2,2)]

Note that although individual parameters can be enclosed in brackets, the list of parameters must not
be enclosed in brackets.

 S-Function

1-1975

Programmatic Use
Block Parameter: Parameters
Type: character vector
Value: S-function parameters
Default: ' '

S-function modules — List additional files for code generation

cell array (default)

This parameter applies only if this block represents a C MEX S-function and you intend to use the
Simulink Coder software to generate code from the model containing the block. If you use it, when
you are ready to generate code, you must force the coder to rebuild the top model as explained in
“Control Regeneration of Top Model Code” (Simulink Coder).

For more information on using this parameter, see “Specify Additional Source Files for an S-
Function” (Simulink Coder).
Programmatic Use
Block Parameter: SFunctionModules
Type: character vector
Value: character vector of file names
Default: ' '

Block Characteristics
Data Types Booleana | busa | doublea | fixed pointba | halfa | integera |

singlea | stringa

Direct Feedthrough yesa

Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

yesa

a Actual data type or capability support depends on block implementation.
b See Writing Fixed-Point S-Functions for details on using fixed-point data types in S-functions.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• Actual code generation support depends on block implementation.
• S-functions that call into MATLAB are not supported for code generation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1 Blocks

1-1976

• Actual data type support depends on block implementation.
• See “Integrate External Code” (Fixed-Point Designer) for details on using fixed-point data types in

S-functions.

See Also
Level-2 MATLAB S-Function | S-Function Builder

Topics
“Implementing S-Functions”
“Create a Basic C MEX S-Function”
“Write Level-2 MATLAB S-Functions”

 S-Function

1-1977

S-Function Builder
Integrate C or C++ code to create S-functions

Libraries:
Simulink / User-Defined Functions

Description
The S-function Builder block integrates new or existing C or C++ code and creates a C MEX S-
function from specifications you provide. See “Use a Bus with S-Function Builder to Create an S-
Function” for detailed instructions on using the S-Function Builder block to generate an S-function.

Instances of the S-Function Builder block also serve as wrappers for generated S-functions in
Simulink models. When simulating a model that contains instances of an S-Function Builder block,
Simulink software invokes the generated S-function in order to call your C or C++ code in the
instance mdlStart, mdlOutputs, mdlDerivatives, mdlUpdate and mdlTerminate methods. To
learn how Simulink engine interacts with S-functions, see “Simulink Engine Interaction with C S-
Functions”.

Note The S-Function Builder block does not support masking. However, you can mask a Subsystem
block that contains an S-Function Builder block. For more information, see “Dynamic Masked
Subsystem”.

Ports
Input

Port_1 — S-function input
scalar | vector | matrix

The S-Function Builder block can accept real and complex, 1-D, or 2-D signals and nonvirtual buses.
For each of these cases, the signals must have a data type that Simulink supports.

For more information, see “Data Types Supported by Simulink” in the Simulink documentation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | bus

Output

Out — S-function output
scalar | vector | matrix

The S-Function Builder can produce real and complex, 1-D, or 2-D signals and nonvirtual buses. For
each of these cases, the signals must have a data type that Simulink supports.

1 Blocks

1-1978

For more information, see “Data Types Supported by Simulink” in the Simulink documentation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | bus

Parameters
See “Build S-Functions Automatically Using S-Function Builder” for information about configuring
the S-Function Builder block using the S-Function Builder editor.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

S-functions that call into MATLAB are not supported for code generation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
S-Function | Level-2 MATLAB S-Function | C Function

Topics
“Use a Bus with S-Function Builder to Create an S-Function”
“Build S-Functions Automatically Using S-Function Builder”
“Create a Blockset Project”

 S-Function Builder

1-1979

Shift Arithmetic
Shift bits or binary point of signal

Libraries:
Simulink / Logic and Bit Operations
HDL Coder / Logic and Bit Operations

Description
The Shift Arithmetic block can shift the bits or the binary point of an input signal, or both.

For example, shifting the binary point on an input of data type sfix(8) by two places to the right
and left gives these decimal values.

Shift Operation Binary Value Decimal Value
No shift (original number) 11001.011 –6.625
Binary point shift right by two places 1100101.1 –26.5
Binary point shift left by two places 110.01011 –1.65625

This block performs arithmetic bit shifts on signed numbers. Therefore, the block recycles the most
significant bit for each bit shift. Shifting the bits on an input of data type sfix(8) by two places to
the right and left gives these decimal values.

Shift Operation Binary Value Decimal Value
No shift (original number) 11001.011 –6.625
Bit shift right by two places 11110.010 –1.75
Bit shift left by two places 00101.100 5.5

Ports
Input

u — Number to be operated on
scalar | vector | array

Number to be operated on, specified as a scalar, vector, or array.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

s — Number of bits to shift
scalar

Number of bits to shift, specified as a scalar.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

1 Blocks

1-1980

Output

Port_1 — Result of operation
scalar | vector | array

Result of operation, returned as a scalar, vector, or array.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
Bits to shift: Source — Source of bits to shift

Dialog (default) | Input port

Specify whether to enter the bits to shift on the dialog box or to inherit the values from an input port.

Tunable: No

Programmatic Use
Block Parameter: BitShiftNumberSource
Type: character vector, string
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Bits to shift: Number — Bits to shift

8 (default) | scalar

Specify a scalar, vector, or array of bit shift values. This parameter is available when Bits to shift:
Source is Dialog.

If the direction is... Then...
Left or Right Use positive integers to specify bit shifts.
Bidirectional Use positive integers for right shifts and negative

integers for left shifts.

Tunable: No

Programmatic Use
Block Parameter: BitShiftNumber
Type: character vector, string
Values: scalar
Default: '9'

Bits to shift: Direction — Direction in which to shift bits

Left (default) | Right | Bidirectional

Specify the direction in which to shift bits: left, right, or bidirectional.

Tunable: No

 Shift Arithmetic

1-1981

Programmatic Use
Block Parameter: BitShiftDirection
Type: character vector, string
Values: 'Left' | 'Right' | 'Bidrectional'
Default: 'Bidrectional'

Binary points to shift: Number — Number of places to shift binary point

0 (default) | scalar

Specify an integer number of places to shift the binary point of the input signal. A positive value
indicates a right shift, while a negative value indicates a left shift.

Tunable: No

Programmatic Use
Block Parameter: BinPtShiftNumber
Type: character vector, string
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Diagnostic for out of range shift value — Diagnostic action

None (default) | Warning | Error

Specify whether to produce a warning or error during simulation when the block contains an out-of-
range shift value. Options include:

• None — Simulink takes no action.
• Warning — Simulink displays a warning and continues the simulation.
• Error — Simulink terminates the simulation and displays an error.

For more information, see “Simulation and Accelerator Mode Results for Out-of-Range Bit Shift
Values” on page 1-1986.

Programmatic Use
Block Parameter: DiagnosticForOORShift
Type: character vector, string
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Check for out-of-range 'Bits to shift' in generated code — Check for out-of-range bits to shift in
generated code

off (default) | on

Select this check box to include conditional statements in the generated code that protect against
out-of-range bit shift values. This check box is available when Bits to shift: Source is Input port.

For more information, see “Code Generation for Out-of-Range Bit Shift Values” on page 1-1987.

Programmatic Use
Block Parameter: CheckOORBitShift
Type: character vector, string

1 Blocks

1-1982

Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Block Icon Variables

The Shift Arithmetic block icon shows the block behavior using these variables:

• Q — Stored integer value
• V — Real world value
• E — Exponent
• Qy — Stored integer value of output
• Qu — Stored integer value of input
• Vy — Value of output
• Vu — Value of input
• Ey — Exponent of output
• Eu — Exponent of input

Block Output for Right Bit Shifts

The “Effect of Binary Point Shifts” on page 12-244 example compares the behavior of right bit shifts
using the dialog box versus the block input port.

 Shift Arithmetic

1-1983

The key block parameter settings of the Constant blocks are:

Block Parameter Setting
Constant and Constant1 Constant value 124

Output data type int8
Dynamic bit shift Constant value 2

Output data type Inherit: Inherit from
'Constant value'

The key block parameter settings of the Shift Arithmetic blocks are:

Block Parameter Setting
Bit shift from dialog Bits to shift: Source Dialog

Bits to shift: Direction Right
Bits to shift: Number 2

Bit shift from input Bits to shift: Source Input port
Bits to shift: Direction Right

The top Shift Arithmetic block takes an input of 124, which corresponds to 01111100 in binary
format. Shifting the number of bits two places to the right produces 00011111 in binary format.
Therefore, the block outputs 31.

The bottom Shift Arithmetic block performs the same operation as the top block. However, the bottom
block receives the bit shift value through an input port instead of the dialog box. By supplying this
value as an input signal, you can change the number of bits to shift during simulation.

Block Output for Binary Point Shifts

The “Effect of Binary Point Shifts” on page 12-244 example shows the effect of binary point shifts.

The key block parameter settings of the Constant blocks are:

Block Parameter Setting
Constant and Constant1 Constant value 124

Output data type int8

The key block parameter settings of the Shift Arithmetic blocks are:

1 Blocks

1-1984

Block Parameter Setting
Shift binary point 3
places to the right

Bits to shift: Source Dialog
Bits to shift: Direction Bidirectional
Bits to shift: Number 0
Binary points to shift:
Number

3

Shift binary point 3
places to the left

Bits to shift: Source Dialog
Bits to shift: Direction Bidirectional
Bits to shift: Number 0
Binary points to shift:
Number

– 3

The top Shift Arithmetic block takes an input of 124, which corresponds to 01111100 in binary
format. Shifting the binary point three places to the right produces 01111100000 in binary format.
Therefore, the top block outputs 995.

The bottom Shift Arithmetic block also takes an input of 124. Shifting the binary point three places to
the left produces 01111.100 in binary format. Therefore, the bottom block outputs 15.5.

Algorithms
Out-of-Range Bit Shift

Suppose that WL is the input word length. The shaded regions in the following diagram show out-of-
range bit shift values for left and right shifts.

Similarly, the shaded regions in the following diagram show out-of-range bit shift values for
bidirectional shifts.

 Shift Arithmetic

1-1985

The diagnostic for out-of-range bit shifts responds as follows, depending on the mode of operation:

Mode Diagnostic for out-of-range shift value
None Warning Error

Simulation modes Do not report any warning
or error.

Report a warning but
continue simulation.

Report an error and stop
simulation.

Code generation Has no effect.

Simulation and Accelerator Mode Results for Out-of-Range Bit Shift Values

Suppose that U is the input, WL is the input word length, and Y is the output. The output for an out-of-
range bit shift value for left shifts is as follows:

Similarly, the output for an out-of-range bit shift value for right shifts is as follows:

1 Blocks

1-1986

For bidirectional shifts, the output for an out-of-range bit shift value is as follows:

Code Generation for Out-of-Range Bit Shift Values

For generated code, the method for handling out-of-range bit shifts depends on the setting of Check
for out-of-range 'Bits to shift' in generated code.

Check Box Setting Generated Code Simulation Results Compared to
Generated Code

Selected Includes conditional statements to
protect against out-of-range bit shift
values.

Simulation and Accelerator mode
results match those of code
generation.

 Shift Arithmetic

1-1987

Check Box Setting Generated Code Simulation Results Compared to
Generated Code

Cleared Does not protect against out-of-range
bit shift values.

• For in-range values, simulation and
Accelerator mode results match
those of code generation.

• For out-of-range values, the code
generation results are compiler
specific.

For right shifts on signed negative inputs, most C compilers use an arithmetic shift instead of a
logical shift. Generated code for the Shift Arithmetic block depends on this compiler behavior.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

You can generate HDL code when Bits to shift: Source is Dialog or Input port.

HDL Architecture

The generated VHDL code uses the shift_right function and sll operator.

The generated Verilog code uses the >>> and <<< shift operators.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

1 Blocks

1-1988

Complex Data Support

This block supports code generation for complex signals.

Restrictions

When Bits to shift: Source is Input port, binary point shifting is not supported.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Bitwise Operator | Compare To Constant | Compare To Zero | Logical Operator | Relational Operator

 Shift Arithmetic

1-1989

Sign
Indicate sign of input

Libraries:
Simulink / Math Operations
HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description
Block Behavior for Real Inputs

For real inputs, the Sign block outputs the sign of the input:

Input Output
Greater than zero 1
Equal to zero 0
Less than zero –1

The “Sign Block Behavior for Real Inputs” on page 12-245 example shows that, for vector and
matrix inputs, the block outputs a vector or matrix where each element is the sign of the
corresponding input element.

Block Behavior for Complex Inputs

When the input u is a complex scalar, the block output matches the MATLAB result for:

sign(u) = u./ abs(u)

The “Sign Block Behavior for Complex Issues” on page 12-246 example shows that when an element
of a vector or matrix input is complex, the block uses the same formula that applies to scalar input.

1 Blocks

1-1990

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal whose sign will determine the output.

The block supports complex input signals only for floating-point data types, double and single.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that is the sign of the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

Parameters
Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'
Default: 'on'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

 Sign

1-1991

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1 Blocks

1-1992

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Abs

 Sign

1-1993

Signal Conversion
Convert signal to new type without altering signal values

Libraries:
Simulink / Signal Attributes
HDL Coder / Signal Attributes

Alternative Configurations of Signal Conversion Block:
Signal Copy | To Virtual Bus | To Nonvirtual Bus

Description
The Signal Conversion block converts a signal from one type to another. To select the type of
conversion to perform, use the Output parameter or one of the preconfigured Signal Conversion
blocks:

• Signal Copy block
• To Virtual Bus block
• To Nonvirtual Bus block

Examples

Create Contiguous Copy of Bus

Use the Signal Conversion block to create a contiguous copy of a bus.

The Bus Creator block creates a nonvirtual bus that is input to the Signal Conversion block. With the
Output parameter set to Signal copy, the Signal Conversion block creates another contiguous
copy of that input bus.

1 Blocks

1-1994

Convert Virtual Bus to Nonvirtual Bus

Use the Signal Conversion block to convert a virtual bus to a nonvirtual bus.

The Bus Creator block creates a virtual bus that is input to the Signal Conversion block. To convert
the virtual bus to a nonvirtual bus, the Signal Conversion block has its Output parameter set to
Nonvirtual bus and its Data type parameter set to a Simulink.Bus object. The specified Bus
object matches the bus hierarchy of the bus from the Bus Creator block. The nonvirtual bus output
from the Signal Conversion block is input to the Bus Selector block.

Convert Nonvirtual Bus to Virtual Bus

Use the Signal Conversion block to convert a nonvirtual bus to a virtual bus.

The Bus Creator block creates a nonvirtual bus that is input to the Signal Conversion block. To
convert the nonvirtual bus to a virtual bus, the Output parameter of the Signal Conversion block is
set to Virtual bus. The virtual bus output from the Signal Conversion block is input to the Bus
Selector block.

Convert Mux Signal to Vector

Use the Signal Conversion block to convert a mux signal to a vector.

 Signal Conversion

1-1995

The Mux block creates a mux signal that is input to the Signal Conversion block. To convert the mux
signal to a vector, the Output parameter of the Signal Conversion block is set to Signal copy. The
vector output from the Signal Conversion block is input to the Display block.

Ports
Input

Port_1 — Input signal to convert
scalar | vector | matrix | array | bus

The input signal is a scalar, vector, matrix, array, or bus that this block converts to another type.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus | image

Output

Port_1 — Converted signal
scalar | vector | matrix | array | bus

The output signal is the input signal converted to the specified type.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
To edit block parameters interactively, use the Property Inspector. From the Simulink Toolstrip, on
the Simulation tab, in the Prepare gallery, select Property Inspector.

Output — Type of conversion

Signal copy | Virtual bus | Nonvirtual bus

Specify the type of conversion to perform.

• Signal copy — Create a contiguous copy of the input signal. This value is the default value for
the Signal Conversion and Signal Copy blocks.

1 Blocks

1-1996

• Virtual bus — Convert a nonvirtual bus to a virtual bus. This value is the default value for the
To Virtual Bus block.

• Nonvirtual bus — Convert a virtual bus to a nonvirtual bus. This value is the default value for
the To Nonvirtual Bus block.

For the Signal copy option, the type of input determines how the block makes the copy.

For example, suppose the block receives a mux signal, which has elements that occupy discontiguous
areas of memory. The conversion allocates a contiguous area of memory for the elements of the mux
signal and copies the values from the discontiguous areas represented by the block input to the
contiguous areas represented by the block output at each time step. The output is a vector with
elements that occupy contiguous areas of memory.

The type of conversion that you use depends on your modeling goal.

Modeling Goal Option
Reduce generated code for a muxed signal.

For an example involving Simulink Coder software, see “Generate
Reentrant Code from Subsystems” (Simulink Coder).

Signal copy

Connect a block with a constant sample time to an output port of an
enabled subsystem.

Signal copy

Save memory by converting a nonvirtual bus to a virtual bus. Virtual bus
Pass a virtual bus to a modeling construct that requires a nonvirtual
bus.

Nonvirtual bus

Create a copy of an array of buses.

The block cannot convert an array of buses to a nonvirtual or virtual
bus. To extract a bus from an array of buses, use a Selector block.

Signal copy

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: ConversionOutput

Values: 'Signal copy' (default) | 'Virtual bus' | 'Nonvirtual bus'

Example: set_param(gcb,'ConversionOutput','Virtual bus')

Data type — Nonvirtual bus data type

Inherit: auto (default) | Bus: <object name> | <data type expression>

Specify the output data type of the nonvirtual bus that this block produces.

• Inherit: auto — Inherit the data type from an upstream block. For example, inherit the
Simulink.Bus object data type from an upstream Bus Creator block.

• Bus: <object name> or <data type expression> — Specify a Simulink.Bus object that
matches the hierarchy of the input bus. If an upstream Bus Creator block specifies a bus object,
specify the same bus object.

 Signal Conversion

1-1997

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Dependencies

To enable this parameter, set Output to Nonvirtual bus.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: OutDataTypeStr

Values: 'Inherit: auto' (default) | 'Bus: <object name>' | '<data type
expression>'

Example: set_param(gcb,'OutDataTypeStr','Bus: myBusObj')

Exclude this block from 'Block reduction' optimization — Option to exclude block from block
reduction optimization

off (default) | on

When the elements of the input signal occupy contiguous areas of memory, by default, the software
eliminates this block from the compiled model as an optimization. For more information, see “Block
reduction”.

To prevent this block from being eliminated from the compiled model, select this parameter.

Changes to this parameter take effect the next time you compile the model.

Dependencies

To enable this parameter, set Output to Signal copy.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: OverrideOpt

Values: 'off' (default) | 'on'

Example: set_param(gcb,'OverrideOpt','on')

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | image |

integer | single | string
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes

1 Blocks

1-1998

Zero-Crossing
Detection

no

Signal Copy — Duplicate input signal

The Signal Copy block differs from the Signal Conversion block in name only.
Libraries:
Simulink / Quick Insert / Signal Attributes

To Virtual Bus — Convert nonvirtual bus to virtual bus

The To Virtual Bus block sets Output to Virtual bus.
Libraries:
Simulink / Quick Insert / Signal Attributes

To Nonvirtual Bus — Convert virtual bus to nonvirtual bus

The To Nonvirtual Bus block sets Output to Nonvirtual bus.
Libraries:
Simulink / Quick Insert / Signal Attributes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a pass-through implementation.

 Signal Conversion

1-1999

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Type Conversion | Bus Creator | Bus Selector

Topics
“Composite Interface Guidelines”
“Signal Types”

1 Blocks

1-2000

Signal Editor
Display, create, edit, and switch interchangeable scenarios

Libraries:
Simulink / Sources

Description
The Signal Editor block displays, creates, and edits interchangeable scenarios, which contain signals.
Signals can be:

• A MATLAB timeseries object
• A structure of MATLAB timeseries objects
• A two-dimensional matrix

The block creates one port for each signal.

To create and edit scenarios and the signals contained in the scenarios, click Launch Signal Editor

(). You can also use the Signal Editor block to switch scenarios in and out of models.

The Signal Editor block supports MAT files that contain signals as one or more scalar
Simulink.SimulationData.Dataset objects.

Create and Edit Scenarios and Signals

To create and edit scenarios and the signals contained in them, start the Signal Editor tool by clicking

. The Signal Editor tool enables you to easily manipulate signals in these ways:

• Create and edit multiple signals in multiple data sets. By default, Signal Editor creates timeseries
format data.

• Use signal notations to create more complicated signals using MATLAB® expressions. You can use
the Author and Insert dialog box or manually enter simple MATLAB expressions in the tabular
area.

• Use existing scenarios to get existing data sets for which you can edit and create signals.
• Create and edit multidimensional signals.

For more information on the Signal Editor tool, see “Create and Edit Signal Data”.

Programmatic Interactions

To programmatically get the total number of scenarios and signals in the Signal Editor block, use the
get_param NumberOfScenarios and NumberOfSignals properties. These properties contain the
values as character vectors. To convert these values to doubles, use the str2double function.

To programmatically enable the Signal Editor block to label output signal lines, set the set_param
PreserveSignalName to 'on' (default). For example:

 Signal Editor

1-2001

set_param(gcb,'PreserveSignalName','on')

For more information on programmatic interactions, see “Replace Programmatic Use of
signalbuilder”.

Import and Export

The Signal Editor supports custom file types, such as Microsoft Excel, by letting you:

• Edit signals imported from registered custom file types. For more information, see “Import
Custom File Type”.

• Export signals from Signal Editor to your registered custom file types. For more information, see
“Export Signals to Custom Registered File Types”.

Migrating from Signal Builder Blocks

You can port Signal Builder block configurations to the Signal Editor block using the
signalBuilderToSignalEditor function. For more information, see “Replace Signal Builder Block
with Signal Editor Block” and “Migrate from Signal Builder Block to Signal Editor Block”.

Fast Restart

The Signal Editor block supports fast restart. With fast restart enabled, you can still:

• Change the active scenario.
• Change the active signal.

While you can change the active signal, you cannot edit the signal properties in the block.
• Start the Signal Editor user interface and edit data.

Limitations
The Signal Editor block does not support:

• Function-calls
• Ground signals

The Signal Editor block supports dynamic strings. It does not support strings with maximum length.
In addition, strings in the Signal Editor block cannot output:

• Non-scalar MATLAB strings.
• String data that contains missing values.
• String data that contains non-ASCII characters.

Ports
Output Arguments

Signal1 — Signals in scenario
scalar | vector | matrix | array

One or more signals, returned as a scalar, vector, matrix, or array. The block creates one port per
signal.

1 Blocks

1-2002

The port label depends on the associated variable in the data set MAT file.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Parameters
To create and edit scenarios, launch Signal Editor user interface — Start Signal Editor
button click

To start Signal Editor user interface, click .

File name — Data set file
untitled.mat (default) | character vector

Data set file, specified as character vector, containing one or more scalar
Simulink.SimulationData.Dataset objects. Do not use a file name from one locale in a different
locale. When using the block on multiple platforms, consider specifying just the MAT file name and
having the MAT file be on the MATLAB path.

Dependencies

• If untitled.mat does not exist in the current folder, these parameters are disabled:

• Active scenario
• Signals
• Output a bus signal
• Unit
• Sample time
• Interpolate data
• Enable zero-crossing detection
• Form output after final data value by

•
To create a MAT file, click . This button starts the Signal Editor user interface, which lets you
create and edit scenario MAT files.

Programmatic Use
Block Parameter: Filename
Type: character vector
Values: character vector
Default: 'untitled.mat'

Active scenario — Active scenario
Scenario (default) | character vector

Active scenario, specified as a character vector. The specified MAT file must exist. You can switch the
active scenario as necessary.

 Signal Editor

1-2003

Dependencies

To enable this parameter, ensure that the specified MAT file exists.
Programmatic Use
Block Parameter: ActiveScenario
Type: character vector | numeric
Values: character vector | index value
Default: 'Scenario'

Active signal — Signal to configure
Signal 1 (default) | character vector

Signal to configure, specified as a signal name. This signal is considered the active signal. The MAT
file must exist before you can configure signals.

To enable this parameter, ensure that the specified MAT file exists.

Tip Do not use the set_param function to set the active signal property name-value argument
('ActiveSignal') in combination with another Name-Value pair argument for the Signal Editor
block.

Programmatic Use
Block Parameter: ActiveSignal
Type: character vector | numeric
Values: character vector | index vector
Default: 'Signal 1'

Apply properties to active signal in all scenarios — Apply specified signal properties to active
signal
on (default) | off

Apply the specified signal properties:

 On
Apply the specified signal properties to the active signal with the same name in all scenarios.

 Off
Apply signal property only to the active signal in the current active scenario.

To enable this parameter, ensure that the specified MAT file exists.
Programmatic Use
Block Parameter: ApplySigPropsToAllScenarios
Type: character vector | numeric
Values: 'off' | 'on'
Default: 'on'

Output a bus signal — Configure signal as bus
off (default) | on

1 Blocks

1-2004

Configure signal as a bus:

 On
Configure signal as a bus.

 Off
Do not configure signal as a bus.

The specified MAT file must exist.

Tip Select this check box only if the active signal is a MATLAB structure whose fields are the same as
an existing bus object, or create a new matching bus object. If you select this check box for an active
signal that is not a MATLAB structure, simulation returns an error.

Dependencies

• Selecting Output a bus signal enables the Select bus object parameter.
• To enable this parameter, ensure that the specified MAT file exists.

Programmatic Use
Block Parameter: IsBus
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Select bus object — Bus object
Bus: BusObject (default) | bus object name

Select or enter the bus object name. To edit the bus object or create a bus object using the Data Type
Assistant, click >>. The active signal must be a MATLAB structure whose fields are the same as this
bus object. The specified MAT file must exist.
Dependencies

To enable this parameter, ensure that the specified MAT file exists.
Programmatic Use
Block Parameter: OutputBusObjectStr
Type: character vector
Values: bus object name
Default: 'Bus: BusObject'

Mode — Bus object mode
Bus Object (default) | bus object data type

Select the bus object name. If you do not have a bus object, create one by clicking Edit, which starts
the Type Editor. For more information, see “Create and Specify Simulink.Bus Objects”.

Unit — Physical unit
inherit (default) | supported physical unit

 Signal Editor

1-2005

Physical unit of the signal, specified as an allowed unit. To specify a unit, begin typing in the text box.
As you type, the parameter displays potential matching units. For more information, see “Unit
Specification in Simulink Models”. For a list of supported units, see Allowed Unit Systems.

To constrain the unit system, click the link to the right of the parameter:

• If a Unit System Configuration block exists in the component, its dialog box opens. Use that dialog
box to specify allowed and disallowed unit systems for the component.

• If a Unit System Configuration block does not exist in the component, the model Configuration
Parameters dialog box displays. Use that dialog box to specify allowed and disallowed unit systems
for the model.

The specified MAT file must exist.

Dependencies

To enable this parameter, ensure that the specified MAT file exists.

Programmatic Use
Block Parameter: Unit
Type: character vector
Values: 'inherit' | supported physical unit
Default: 'inherit'

Sample time — Time interval between samples
0 (default) | -1 | sample time in seconds

Time interval between samples, specified in seconds. The specified MAT file must exist.

Dependencies

To enable this parameter, ensure that the specified MAT file exists.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: -1 | sample time in seconds
Default: '0'

Interpolate data — Linearly interpolate data
off (default) | on

Linearly interpolate data at time hits for which no corresponding workspace data exist. The specified
MAT file must exist.

The Signal Editor block linearly interpolates:

 On
Linearly interpolate at time hits for which no corresponding workspace data exist, select this
option.

 Off
The current output equals the output at the most recent time for which data exists.

1 Blocks

1-2006

matlab:showunitslist

The Signal Editor block interpolates by using the two corresponding workspace samples:

• For double data, linearly interpolates the value by using the two corresponding samples
• For Boolean data, uses false for the first half of the time between two time values and true for

the second half
• For a built-in data type other than double or Boolean:

• Upcasts the data to double
• Performs linear interpolation (as described for double data)
• Downcasts the interpolated value to the original data type

You cannot use linear interpolation with enumerated (enum) data.

The block uses the value of the last known data point as the value of time hits that occur after the last
known data point.

To determine the block output after the last time hit for which data is available, combine the settings
of these parameters:

• Interpolate data
• Form output after final data value by

For details, see the Form output after final data value by parameter.

Dependencies

To enable this parameter, ensure that the specified MAT file exists.

Programmatic Use
Block Parameter: Interpolate
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Enable zero-crossing detection — Detect zero-crossings
off (default) | on

If you select Enable zero-crossing detection, the Signal Editor block detects a zero crossing when
the input array contains multiple entries for the same time value. For example, suppose that the block
loads this input data:

time: 0 1 2 2 3
signal: 2 3 4 5 6

At time 2, a zero crossing occurs because of the discontinuity in the input data. For more information,
see “Zero-Crossing Detection”.

When you load input data for a bus, the Signal Editor block detects zero crossings for all leaf bus
elements.

This block supports zero-crossing detection only in simulations that use a variable-step solver. When
you use a fixed-step solver for simulation, the software does not detect or locate zero crossings for
this block.

 Signal Editor

1-2007

The specified MAT file must exist.

Dependencies

To enable this parameter, ensure that the specified MAT file exists.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Form output after final data value by — Block output after the last time hit for which data is
available
Setting to zero (default) | Extrapolation | Holding final value

To determine the block output after the last time hit for which workspace data is available, combine
the settings of these parameters:

• Interpolate data
• Form output after final data value by

This table lists the block output, based on the values of the two options.

Setting for Form Output
After Final Data Value By

Setting for
Interpolate Data

Block Output After Final Data

Extrapolation On Extrapolated from final data value
Off Error

Setting to zero On Zero
Off Zero

Holding final value On Final value from workspace
Off Final value from workspace

For example, the block uses the last two known data points to extrapolate data points that occur after
the last known point if you:

• Select Interpolate data.
• Set Form output after final data value by to Extrapolation.

The specified MAT file must exist.

Dependencies

To enable this parameter, ensure that the specified MAT file exists.

Programmatic Use
Block Parameter: OutputAfterFinalValue
Type: character vector
Values: 'Setting to zero' | 'Extrapolation' | 'Holding final value'
Default: 'Setting to zero'

1 Blocks

1-2008

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

yes

Version History
Introduced in R2017b

R2023a: Signal Editor Block Updates

The Signal Editor block dialog has these updates:

• The Launch Signal Editor button has moved to the top of the block parameters dialog box.
• The Signal properties section is reorganized.
• In the Signal properties section, the new Apply properties to active signal in all scenarios

check box lets you apply the specified signal properties to the active signal with the same name in
all scenarios.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
signalEditor | signalBuilderToSignalEditor | str2double

Tools
Signal Editor

Topics
“Signal Basics”
“Create and Edit Signal Data”

 Signal Editor

1-2009

“Create and Specify Simulink.Bus Objects”
“Load Data with Interchangeable Scenarios”
“Migrate from Signal Builder Block to Signal Editor Block”
Signal Editor Block
How to Create Freehand Input Signals in the Signal Editor in Simulink
How to Import and Export Excel Files in Signal Editor

1 Blocks

1-2010

https://www.mathworks.com/videos/signal-editor-block-1534932434446.html?s_tid=srchtitle_%2522signal%20editor%2522_1
https://www.mathworks.com/videos/how-to-create-freehand-input-signals-in-the-signal-editor-in-simulink-1551870971583.html?s_tid=srchtitle_%2522signal%20editor%2522_4
https://www.mathworks.com/videos/how-to-import-and-export-excel-files-in-signal-editor-1653023523686.html?s_tid=srchtitle_%2522signal%20editor%2522_3

Signal Generator
Generate various waveforms

Libraries:
Simulink / Sources

Description
Supported Operations

The Signal Generator block can produce one of four different waveforms:

• sine
• square
• sawtooth
• random

You can express signal parameters in hertz or radians per second. Using default parameter values,
you get one of the following waveforms:

Waveform Scope Output
Sine wave

 Signal Generator

1-2011

Waveform Scope Output
Square wave

Sawtooth wave

1 Blocks

1-2012

Waveform Scope Output
Random wave

A negative Amplitude parameter value causes a 180-degree phase shift. You can generate a phase-
shifted wave at other than 180 degrees in many ways. For example, you can connect a Clock block
signal to a MATLAB Function block and write the equation for the specific wave.

You can vary the output settings of the Signal Generator block while a simulation is in progress to
determine quickly the response of a system to different types of inputs.

The Amplitude and Frequency parameters determine the amplitude and frequency of the output
signal. The parameters must be of the same dimensions after scalar expansion. If you clear the
Interpret vector parameters as 1-D check box, the block outputs a signal of the same dimensions
as the Amplitude and Frequency parameters (after scalar expansion). If you select the Interpret
vector parameters as 1-D check box, the block outputs a vector (1-D) signal if the Amplitude and
Frequency parameters are row or column vectors, that is, single-row or column 2-D arrays.
Otherwise, the block outputs a signal of the same dimensions as the parameters.

Solver Considerations

If your model uses a fixed-step solver, Simulink uses the same step size for the entire simulation. In
this case, the Signal Generator block output provides a uniformly sampled representation of the ideal
waveform.

If your model uses a variable-step solver, Simulink might use different step sizes during the
simulation. In this case, the Signal Generator block output does not always provide a uniformly
sampled representation of the ideal waveform. To ensure that the block output is a uniformly sampled
representation, add a Hit Crossing block directly downstream of the Signal Generator block. These
models show the difference in Signal Generator block output with and without the Hit Crossing block.

 Signal Generator

1-2013

Model That Uses a Variable-Step Solver Signal Generator Block Output

1 Blocks

1-2014

Ports
Output

Port_1 — Generated output signal
scalar | vector | matrix

Output signal specified as one of these waveforms.

• sine
• square
• sawtooth
• random

Data Types: double

Parameters
Wave form — Wave form to generate

sine (default) | square | sawtooth | random

Specify the wave form.

Programmatic Use
Block Parameter: WaveForm
Type: character vector
Values: 'sine' | 'square' | 'sawtooth' | 'random'
Default: 'sine'

Time (t) — Source of time variable

Use simulation time (default) | Use external signal

Specify whether to use simulation time or an external signal as the source of values for the waveform
time variable. If you specify an external source, the block displays an input port for connecting the
source.

Programmatic Use
Block Parameter: TimeSource
Type: character vector
Values: 'Use simulation time' | 'Use external signal'
Default: 'Use simulation time'

Amplitude — Signal amplitude

1 (default) | scalar | vector | matrix

Specify the amplitude of the generated waveform.

Programmatic Use
Block Parameter: Amplitude
Type: character vector

 Signal Generator

1-2015

Values: real scalar
Default: '1'

Frequency — Signal frequency

1 (default) | scalar | vector | matrix

Specify the frequency of the generated waveform.

Programmatic Use
Block Parameter: Frequency
Type: character vector
Values: real scalar
Default: '1'

Units — Signal units

rad/sec (default) | Hertz

Specify the signal units as Hertz or rad/sec.

Programmatic Use
Block Parameter: Units
Type: character vector
Values: 'rad/sec' | 'Hertz'
Default: 'rad/sec'

Interpret vector parameters as 1-D — Treat vectors as 1-D

on (default) | off

Select this check box to output a vector of length N if the Constant value parameter evaluates to an
N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if the Constant value
parameter evaluates to an N-element row or column vector. For example, the block outputs a
matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if the Constant
value parameter evaluates to an N-element row or column vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

yes

1 Blocks

1-2016

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Cannot be used inside a triggered subsystem hierarchy.

These blocks do not reference absolute time when configured for sample-based operation. In time-
based operation, they depend on absolute time.

See Also
Pulse Generator | Waveform Generator | Signal Editor

 Signal Generator

1-2017

Signal Specification
Specify desired dimensions, sample time, data type, numeric type, and other attributes of signal

Libraries:
Simulink / Signal Attributes
HDL Coder / Signal Attributes

Description
The Signal Specification block allows you to specify the attributes of the signal connected to its input
and output ports. If the specified attributes conflict with the attributes specified by the blocks
connected to its ports, the software displays an error when it compiles the model. For example, at the
beginning of a simulation, if no conflict exists, the software eliminates the Signal Specification block
from the compiled model. In other words, the Signal Specification block is a virtual block. It exists
only to specify the attributes of a signal and plays no role in the simulation of the model.

You can use the Signal Specification block to ensure that the actual attributes of a signal meet
desired attributes. For example, suppose that you and a colleague are working on different parts of
the same model. You use Signal Specification blocks to connect your part of the model with your
colleague's. If your colleague changes the attributes of a signal without informing you, the attributes
entering the corresponding Signal Specification block do not match. When you try to simulate the
model, you get an error.

You can also use the Signal Specification block to ensure correct propagation of signal attributes
throughout a model. However, if some blocks have unspecified attributes for the signals they accept
or output, the model does not have enough information to propagate attributes correctly. In these
cases, the Signal Specification block can provide the information the software needs. Using the
Signal Specification block also helps speed up model compilation when blocks are missing signal
attributes.

The Signal Specification block supports signal label propagation. For more information, see “Signal
Label Propagation”.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal whose attributes to check, specified as a scalar, vector, matrix, or N-D array. The block
checks the attributes of the input signal against the desired attributes you specify in the block dialog
box. If the attributes do not match, the block generates an error.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

1 Blocks

1-2018

Output

Port_1 — Output signal
scalar | vector | matrix | N-D array

Output signal is the input signal when all attributes of the signal match those specified in the dialog
box. If the attributes do not match, the block generates an error.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
Minimum — Minimum value for range checking

[] (default) | scalar

Specify the minimum value for the block output as a finite real double scalar value.

The software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges”)
• Automatic scaling of fixed-point data types

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the minimum values specified by the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Maximum — Maximum value for range checking

[] (default) | scalar

Specify the maximum value for the block output as a finite real double scalar value.

The software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges”)
• Automatic scaling of fixed-point data types

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the maximum values specified by the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead.

 Signal Specification

1-2019

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Data type — Output data type

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | ...

Specify the desired output data type. If the data type of the input signal does not match the value you
specify, the block generates an error or warning.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

You can specify any of these options:

• Inherited data type
• Built-in Simulink data type — For example, specify single or uint8. See “Data Types Supported

by Simulink”.
• Fixed-point data type — Use the fixdt function. For example, specify fixdt(1,16,0).
• Enumerated data type — Use the name of the type preceded by Enum:. For example, specify

Enum: myEnumType.
• Bus data type — Use the name of the Simulink.Bus object preceded by Bus:. For example,

specify Bus: myBusObject.
• Simulink image data type — If you have Computer Vision Toolbox, use the constructor for the

Simulink.ImageType object and specify the properties to describe the image. By default, the
data type uses the Simulink.ImageType(480,640,3) expression that represents the rows,
columns, and channels of the image respectively.

• Value type — Use the name of the Simulink.ValueType object preceded by ValueType:. For
example, specify ValueType: windVelocity.

• Custom data type — Use a MATLAB expression that specifies the type. For example, you can
specify a Simulink.NumericType object whose DataTypeMode property is set to a value other
than 'Fixed-point: unspecified scaling'.

When you specify a Simulink.ValueType or Simulink.Bus object as the data type, some
parameters of the Signal Specification block are ignored. For example, the Min, Max, and Unit
parameters of the Signal Specification block are ignored. The software uses the corresponding
properties of the Simulink.ValueType object or the Simulink.BusElement objects in the
Simulink.Bus object instead. For example, suppose a block sets Unit to ft/s. When the Data type
of the block specifies a ValueType object that has m/s as its unit, the block uses m/s instead of
ft/s.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Value: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' |

1 Blocks

1-2020

'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'string' | 'Enum: <class name>' |
'Bus: <object name>' | 'ValueType: <object name>' | <data type expression> |
Simulink.ImageType(480,640,3)
Default: 'Inherit: auto'

Lock output data type setting against changes by the fixed-point tools — Option to prevent
fixed-point tools from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the output data type you specify
on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
object.

Programmatic Use
Block Parameter: LockScale
Values: 'off' | 'on'
Default: 'off'

Require nonvirtual bus — Accept only nonvirtual bus signals

off (default) | on

If you specify a bus object as the data type, use this parameter to specify whether to accept only
nonvirtual bus signals.

• off — Specifies that a signal must come from a virtual bus.
• on — Specifies that a signal must come from a nonvirtual bus.

Dependencies

To enable this parameter, the Data type block parameter must resolve to a Simulink.Bus object.

Programmatic Use
Block Parameter: BusOutputAsStruct
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Unit (e.g., m, m/s^2, N*m) — Physical unit of the input signal to the block

inherit (default) | <Enter unit>

Specify the physical unit of the input signal to the block. To specify a unit, begin typing in the text
box. As you type, the parameter displays potential matching units. For a list of supported units, see
Allowed Unit Systems.

To constrain the unit system, click the link to the right of the parameter:

• If a Unit System Configuration block exists in the component, its dialog box opens. Use that dialog
box to specify allowed and disallowed unit systems for the component.

 Signal Specification

1-2021

matlab:showunitslist

• If a Unit System Configuration block does not exist in the component, the model Configuration
Parameters dialog box displays. Use that dialog box to specify allowed and disallowed unit systems
for the model.

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the units specified by the Simulink.ValueType object
or the Simulink.BusElement objects in the Simulink.Bus object instead.

Programmatic Use
Block Parameter: Unit
Type: character vector
Values: 'inherit' | '<Enter unit>'
Default: 'inherit'

Dimensions (-1 for inherited) — Dimensions of input and output signals

-1 (default) | n | [m n]

Specify the dimensions of the input and output signals.

• -1 — Specifies that signals inherit dimensions.
• n — Specifies a vector of width n.
• [m n] — Specifies a matrix with m rows and n columns.

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
object. The software uses the dimensions specified by the Simulink.ValueType object instead.

Programmatic Use
Block Parameter: Dimensions
Type: character vector
Values: '-1' | n | [m n]
Default: '-1'

Variable-size signal — Allow signal to be variable-size, fixed-size, or both

Inherit (default) | No | Yes

Specify the signal to be of variable-size, fixed size, or both.

• Inherit — Allows variable-size and fixed-size signals.
• No — Does not allow variable-size signals.
• Yes — Allows only variable-size signals.

When the signal is a variable-size signal, the Dimensions parameter specifies the maximum
dimensions of the signal.

Dependencies

• When Data type specifies a Simulink.Bus object, the simulation allows variable-size signals
only with a disabled bus object.

1 Blocks

1-2022

• The software ignores the value of this parameter when Data type specifies a
Simulink.ValueType object. The software uses the dimensions mode specified by the
Simulink.ValueType object instead.

Programmatic Use
Block Parameter: VarSizeSig
Type: character vector
Values: 'Inherit' | 'No' | 'Yes'
Default: 'Inherit'

Sample time (-1 for inherited) — Time interval between samples

-1 (default) | scalar | vector

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See
“Specify Sample Time” for more information.

Programmatic Use
Parameter: SampleTime
Type: character vector
Values: Any valid sample time
Default: '-1'

Signal type — Complexity of signal

auto (default) | real | complex

Specify the complexity of the input and output signals.

• auto — Accepts either real or complex as the numeric type.
• real — Specifies the numeric type as a real number.
• complex — Specifies the numeric type as a complex number.

Dependencies

The software ignores the value of this parameter when Data type specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the complexity specified by the Simulink.ValueType
object or the Simulink.BusElement objects in the Simulink.Bus object instead.

Programmatic Use
Parameter: SignalType
Type: character vector
Values: 'auto' | 'real' | 'complex'
Default: 'auto'

Mode — Data type mode

Inherit (default) | Built in | Fixed Point | Enumerated | Bus object | Expression

Select the category of data to specify. For more information, see “Specify Data Types Using Data Type
Assistant”.

Inherit
Specifies inheritance rules for data types. Selecting Inherit enables auto.

 Signal Specification

1-2023

Built in
Specifies built-in data types. Selecting Built in enables a list of possible values:

• double (default)
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32
• int64
• uint64
• boolean

Fixed point
Specifies fixed-point data types.

Enumerated
Specifies enumerated data types. Selecting Enumerated enables you to enter a class name.

Bus
Bus object. Selecting Bus enables a Bus object parameter to the right, where you enter the
name of a bus object that you want to use to define the structure of the bus. If you need to create
or change a bus object, click Edit to the right of the Bus object field to open the Simulink Type
Editor. For details, see “Create and Specify Simulink.Bus Objects”.

Expression
Expressions that evaluate to data types. Selecting Expression enables a second menu/text box
to the right, where you can enter the expression.

Do not specify a bus object as the expression.

Dependencies

To enable this parameter, click the Show data type assistant button .

Signedness — Signed or unsigned

Signed

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

• Signed, specifies the fixed-point data as signed.
• Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.

1 Blocks

1-2024

Dependencies

To enable this parameter, set Mode to Fixed point.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

• When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies

To enable this parameter, set Mode to Built in or Fixed point.

Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type

0 (default) | scalar integer

 Signal Specification

1-2025

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Binary point.

Slope — Specify slope for the fixed-point data type

2^0 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

1 Blocks

1-2026

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a pass-through implementation.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Unit System Configuration

Objects
Simulink.Signal | Simulink.ValueType

Topics
“Unit Specification in Simulink Models”
“Specify Application-Specific Signal Properties”
“Variable-Size Signal Basics”
“Specify Sample Time”

 Signal Specification

1-2027

Simulink Function
Graphically define a function with Simulink blocks

Libraries:
Simulink / User-Defined Functions
SimEvents

Description
The Simulink Function block is a subsystem block preconfigured as a starting point for graphically
defining a function with Simulink blocks. The block provides a text interface to function callers. You
can call a Simulink Function block from a Function Caller block, a MATLAB Function block, or a
Stateflow chart. See “Call a Simulink Function from a Model”.

For a description of the block parameters, see Subsystem.

You can visualize Simulink Function calls in the Sequence Viewer. The viewer shows when calls
were made with the argument and the return values.

You can select a Simulink Function or Function Caller block to highlight related blocks. If one or more
of the related blocks are in a subsystem or referenced model, the related blocks and the Subsystem
block or Model block that contains the related blocks are also highlighted.

To show a related block in an open diagram or new tab, pause on the ellipsis that appears after you

select a Simulink Function or Function Caller block. Then, select Related Blocks from the
action bar. When multiple blocks correspond to the selected block, a list of related blocks opens. You
can filter the list by entering a search term in the text box. After you select a related block from the
list, window focus goes to the open diagram or new tab that shows the related block.

Function Interface

The function interface appears on the face of a Simulink Function block. Editing the block text adds
and deletes Argument Inport blocks and Argument Outport blocks from the function definition.
Editing also sets the Function name parameter in the Trigger block within the Simulink Function
block.

For example, entering y = myfunction(u) on the face of a Simulink Function block adds one
Argument Inport block (u) and one Argument Outport block (y) within the subsystem.

When calling a function using a Function Caller block, the parameter Function prototype in the
Function Caller block must match exactly the function interface you specify on the Simulink Function
block. This match includes the name of the function and the names of input and output arguments.
For example, this Simulink Function block and Function Caller block both use the argument names u
and y.

1 Blocks

1-2028

When calling a function from a Stateflow transition or state label, you can use different argument
names. For example, this Simulink Function block uses x and y arguments while the Stateflow
transition uses x2 and y2 arguments to call the function.

Function-Call Subsystems Versus Simulink Function Blocks

In general, a Function-Call Subsystem block provides better signal traceability with direct signal
connections than a Simulink Function block, whereas a Simulink Function block eliminates the need
for routing input and output signal lines through the model hierarchy.

Attribute Function-Call Subsystem
block

Simulink Function block

Method of executing/invoking function Triggered using a signal line Called by reference using
the function name

Formal input arguments (Argument
Inport blocks) and output arguments
(Argument Outport blocks)

No Yes

Local inputs (Inport block) and outputs
(Outport block)

Yes Yes

 Simulink Function

1-2029

Ports
Input

In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the block. The port label
matches the name of the Inport block.

Use Inport blocks to receive signals from the local environment.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image | struct

ArgIn — Argument input to a subsystem block
scalar | vector | matrix

An Argument Inport block in a subsystem block provides an input port corresponding to an input
argument. A port is not displayed on the subsystem block.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image | struct

Output

Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The port label on
the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image | struct

ArgOut — Argument output from a subsystem block
scalar | vector | matrix

An Argument Outport block in a subsystem block provides an output port corresponding to an output
argument. A port is not displayed on the subsystem block.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image | struct

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals no

1 Blocks

1-2030

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced in R2014b

R2022b: Highlight related Function Caller blocks in referenced model

Starting in R2022b, when you select a Simulink Function block whose related Function Caller block is
in a referenced model, both the Function Caller block and the Model block of the referenced model
are highlighted.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Blocks
Argument Inport | Argument Outport | Trigger | Function Caller | MATLAB Function | Chart |
Subsystem | Function-Call Subsystem | Inport | Outport

Topics
“Simulink Functions Overview”
“Scoped Simulink Function Blocks in Models”
“Add a Simulink Function to a Model”

 Simulink Function

1-2031

Sine, Cosine
Implement fixed-point sine or cosine wave using lookup table approach that exploits quarter wave
symmetry

Libraries:
Simulink / Lookup Tables

Description
The Sine and Cosine block implements a sine and/or cosine wave in fixed point using a lookup table
method that exploits quarter wave symmetry. The block can output the following functions of the
input signal, depending upon what you select for the Output formula parameter:

• sin(2πu)
• cos(2πu)
• exp(j2πu)
• sin(2πu) and cos(2πu)

You define the number of lookup table points in the Number of data points for lookup table
parameter. The block implementation is most efficient when you specify the lookup table data points
to be (2^n)+1, where n is an integer.

Use the Output word length parameter to specify the word length of the fixed-point output data
type. The fraction length of the output is the output word length minus 2.

Ports
Input

u — Input signal to implement as fixed-point sine or cosine wave
real-valued signal

Input signal, u, specified as a real-valued scalar, vector, or matrix.

Tip To obtain meaningful block output, the block input values should fall within the range [0, 1). For
input values that fall outside this range, the values are cast to an unsigned data type, where
overflows wrap. For these out-of-range inputs, the block output might not be meaningful.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

1 Blocks

1-2032

Output

sin(2*pi*u) — Fixed-point sine wave
real-valued fixed-point signal

Fixed-point sine wave, implemented using a lookup table approach.

Dependencies

This port is enabled when the Output formula is set to sin(2*pi*u) or sin(2*pi*u) and
cos(2*pi*u).
Data Types: fixed point

cos(2*pi*u) — Fixed-point cosine wave
real-valued fixed-point signal

Fixed-point cosine wave, implemented using a lookup table approach.

Dependencies

This port is enabled when the Output formula is set to cos(2*pi*u) or sin(2*pi*u) and
cos(2*pi*u).
Data Types: fixed point

exp(j*2*pi*u) — exp(j*2*pi*u)
complex-valued fixed-point signal

exp(j*2*pi*u), implemented using a lookup table approach.

Dependencies

This port is enabled when the Output formula is set to exp(j*2*pi*u).
Data Types: fixed point

Parameters
Output formula — Select the signal(s) to output

cos(2*pi*u) | sin(2*pi*u) | exp(j*2*pi*u) | sin(2*pi*u) and cos(2*pi*u)

Programmatic Use
Block Parameter: Formula
Values: 'sin(2*pi*u)' | 'cos(2*pi*u)' | 'exp(j*2*pi*u)' | 'sin(2*pi*u) and
cos(2*pi*u)'

Number of data points for lookup table — Specify the number of data points to retrieve from the
lookup table

(2^5)+1 (default) | integer, greater than or equal to 2

The implementation is most efficient when you specify the lookup table data points to be (2^n)+1,
where n is an integer. To be compatible with the Output word length parameter, the Number of
data points for lookup table must be less than or equal to (2^(Output word length-2)+1).

 Sine, Cosine

1-2033

Programmatic Use
Block Parameter: NumDataPoints
Type: scalar
Value: integer >= 2
Default: '(2^5)+1'

Output word length — Specify the word length for the fixed-point data type of the output signal

16 (default) | integer from 2 to 53

The fraction length of the output is the output word length minus 2. To be compatible with the
Number of data points for lookup table parameter, (2^(Output word length - 2) +1) must be
greater than or equal to Number of data points for lookup table.

Note The block uses double-precision floating-point values to construct lookup tables. Therefore, the
maximum amount of precision you can achieve in your output is 53 bits. Setting the word length to
values greater than 53 bits does not improve the precision of your output.

Programmatic Use
Block Parameter: OutputWordLength
Type: scalar
Value: integer from 2 to 53
Default: '16'

Internal rule priority for lookup table — Specify the internal rule for intermediate calculations

Speed (default) | Precision

Select Speed for faster calculations. If you do, a loss of accuracy might occur, usually up to 2 bits.

Programmatic Use
Block Parameter: InternalRulePriority
Values: 'Speed' | 'Precision'
Default: 'Speed'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

1 Blocks

1-2034

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

The HDL code implements Cosine and Sine blocks by using the quarter-wave lookup table that you
specify in the Simulink block parameters.

To avoid generating a division operator (/) in the HDL code, for Number of data points for lookup
table, enter (2^n)+1. n is an integer.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Limitations

If you use Intel MAX 10 device, to map the lookup table to RAM, add this Tcl command when creating
the project in the Quartus tool:

set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE IMAGE WITH
ERAM"

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Sine Wave | Trigonometric Function | Sine HDL Optimized, Cosine HDL Optimized

Topics
“About Lookup Table Blocks”

 Sine, Cosine

1-2035

Sine Wave
Generate sine wave, using simulation time as time source

Libraries:
Simulink / Sources

Description
The Sine Wave block outputs a sinusoidal waveform. The block can operate in time-based or sample-
based mode.

Note This block is the same as the Sine Wave Function block that appears in the Math Operations
library. If you select Use external signal for the Time parameter in the block dialog box, you get
the Sine Wave Function block.

Time-Based Mode

The block calculates the output waveform.

y = amplitude × sin(f requency × time + phase) + bias .

In time-based mode, the value of the Sample time parameter determines whether the block operates
in continuous mode or discrete mode.

• 0 (the default) causes the block to operate in continuous mode.
• >0 causes the block to operate in discrete mode.

For more information, see “Specify Sample Time”.

Block Behavior in Continuous Mode

When operating in continuous mode, the Sine Wave block can become inaccurate due to loss of
precision as time becomes very large.

Block Behavior in Discrete Mode

A Sample time parameter value greater than zero causes the block to behave as if it were driving a
Zero-Order Hold block whose sample time is set to that value.

This way, you can build models with sine wave sources that are purely discrete, rather than models
that are hybrid continuous/discrete systems. Hybrid systems are inherently more complex and as a
result take more time to simulate.

In discrete mode, this block uses a differential incremental algorithm instead of one based on
absolute time. As a result, the block can be useful in models intended to run for an indefinite length
of time, such as in vibration or fatigue testing.

The differential incremental algorithm computes the sine based on the value computed at the
previous sample time. This method uses the following trigonometric identities:

1 Blocks

1-2036

sin(t + Δt) = sin(t)cos(Δt) + sin(Δt)cos(t)
cos(t + Δt) = cos(t)cos(Δt)− sin(t)sin(Δt)

In matrix form, these identities are:

sin(t + Δt)
cos(t + Δt)

=
cos(Δt) sin(Δt)
−sin(Δt) cos(Δt)

sin(t)
cos(t)

Because Δt is constant, the following expression is a constant:

cos(Δt) sin(Δt)
−sin(Δt) cos(Δt)

Therefore, the problem becomes one of a matrix multiplication of the value of sin(t) by a constant
matrix to obtain sin(t + Δt).

Discrete mode reduces but does not eliminate the accumulation of round-off errors. This
accumulation can happen because computation of the block output at each time step depends on the
value of the output at the previous time step.

Methods to Handle Round-Off Errors in Discrete Mode

To handle round-off errors when the Sine Wave block operates in time-based discrete mode, use one
of these methods.

Method Rationale
Insert a Saturation block directly downstream of
the Sine Wave block.

By setting saturation limits on the Sine Wave
block output, you can remove overshoot due to
accumulation of round-off errors.

Set up the Sine Wave block to use the sin()
math library function to calculate block output.

1 On the Sine Wave block dialog box, set Time
to Use external signal so that an input
port appears on the block icon.

2 Connect a clock signal to this input port
using a Digital Clock block.

3 Set the sample time of the clock signal to the
sample time of the Sine Wave block.

The sin() math library function computes block
output at each time step independently of output
values from other time steps, preventing the
accumulation of round-off errors.

Sample-Based Mode

Sample-based mode uses this formula to compute the output of the Sine Wave block.

y = Asin(2π(k + o)/p) + b

• A is the amplitude of the sine wave.
• p is the number of time samples per sine wave period.
• k is a repeating integer value that ranges from 0 to p–1.
• o is the offset (phase shift) of the signal.
• b is the signal bias.

 Sine Wave

1-2037

In this mode, Simulink sets k equal to 0 at the first time step and computes the block output, using
the formula. At the next time step, Simulink increments k and recomputes the output of the block.
When k reaches p, Simulink resets k to 0 before computing the block output. This process continues
until the end of the simulation.

The sample-based method of computing block output at a given time step does not depend on the
output of the previous time steps. Therefore, this mode avoids the accumulation of round-off errors.
Sample-based mode supports reset semantics in subsystems that offer it. For example, if a Sine Wave
block is in a resettable subsystem that receives a reset trigger, the repeating integer k resets and the
block output resets to its initial condition.

Ports
Output

Port_1 — Sine wave output signal
scalar | vector

Output sine wave signal created based on the block parameter values.
Data Types: double

Parameters
Sine type — Type of sine wave

Time based (default) | Sample based

Specify the type of sine wave that this block generates. Some parameters in the dialog box appear
depending on whether you select time-based or sample-based.

Programmatic Use
Block Parameter: SineType
Type: character vector
Values: 'Time based' | 'Sample based'
Default: 'Time based'

Time (t) — Source of time variable

Use simulation time (default) | Use external signal

Specify whether to use simulation time as the source of values for the time variable, or an external
source. If you specify an external time source, the block creates an input port for the time source.
When you select an external time source, the block is the same as the Sine Wave Function block.

Programmatic Use
Block Parameter: TimeSource
Type: character vector
Values: 'Use simulation time' | 'Use external signal'
Default: 'Use simulation time'

Amplitude — Amplitude of the sine wave

1 (default) | scalar | vector

1 Blocks

1-2038

Specify the amplitude of the output sine wave signal.

Programmatic Use
Block Parameter: Amplitude
Type: character vector
Value: scalar
Default: '1'

Bias — Constant added to sine wave

0 (default) | scalar | vector

Specify the constant value added to the sine to produce the output.

Programmatic Use
Block Parameter: Bias
Type: character vector
Value: scalar
Default: '0'

Frequency (rad/sec) — Frequency of sine wave

1 (default) | scalar | vector

Specify the frequency, in rad/sec.

Dependencies

To enable this parameter, set Sine type to Time based.

Programmatic Use
Block Parameter: Frequency
Type: character vector
Value: scalar
Default: '1'

Phase (rad) — Phase shift of sine wave

0 (default) | scalar | vector

Specify the phase shift of the sine wave.

You cannot configure this parameter to appear in the generated code as a tunable global variable if
you set Time (t) to Use simulation time. For example, if you set Default parameter behavior
to Tunable or apply a storage class to a Simulink.Parameter object, the Phase parameter does
not appear in the generated code as a tunable global variable.

To generate code so that you can tune the phase during execution, set Time (t) to Use external
signal. You can provide your own time input signal or use a Digital Clock block to generate the time
signal. For an example, see “Tune Phase Parameter of Sine Wave Block During Code Execution”
(Simulink Coder).

Dependencies

To enable this parameter, set Sine type to Time based.

 Sine Wave

1-2039

Programmatic Use
Block Parameter: Phase
Type: character vector
Value: scalar
Default: '0'

Samples per period — Samples per period

0 (default) | integer scalar | integer vector

Specify the number of samples per period.
Dependencies

To enable this parameter, set Sine type to Sample based.
Programmatic Use
Block Parameter: Samples
Type: character vector
Value: scalar
Default: '10'

Number of offset samples — Offset in number of sample times

0 (default) | integer scalar | integer vector

Specify the offset (discrete phase shift) in number of sample times.
Dependencies

To enable this parameter, set Sine type to Sample based.
Programmatic Use
Block Parameter: Offset
Type: character vector
Value: scalar
Default: '0'

Sample time — Sample period

0 (default) | scalar | vector

Specify the sample period in seconds. The default is 0. If the sine type is sample-based, the sample
time must be greater than 0. See “Specify Sample Time”.
Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: scalar
Default: '0'

Interpret vector parameters as 1-D — Output dimensions for one-row or one-column matrices

off (default) | on

Specify the output dimensions to be a 1-D vector signal when other parameters are one-row and one-
column matrices. If you do not select this box, the block outputs a signal of the same dimensionality

1 Blocks

1-2040

as the numeric parameters. See “Determine the Output Dimensions of Source Blocks”. This
parameter is not available when an external signal specifies time. In this case, if numeric parameters
are column or row matrix values, the output is a 1-D vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Depends on absolute time when placed inside a triggered subsystem hierarchy. These blocks do not
reference absolute time when configured for sample-based operation. In time-based operation, they
depend on absolute time.

See Also
Sine, Cosine | Sine Wave Function

 Sine Wave

1-2041

Sine Wave Function
Generate sine wave, using external signal as time source

Libraries:
Simulink / Math Operations

Description
The Sine Wave Function block outputs a sinusoidal waveform. The block can operate in time-based or
sample-based mode.

Note This block is the same as the Sine Wave block that appears in the Math Operations library. If
you select Use simulation time for the Time parameter in the block dialog box, you get the Sine
Wave Function block.

Time-Based Mode

The block calculates the output waveform.

y = amplitude × sin(f requency × time + phase) + bias .

In time-based mode, the value of the Sample time parameter determines whether the block operates
in continuous mode or discrete mode.

• 0 (the default) causes the block to operate in continuous mode.
• >0 causes the block to operate in discrete mode.

For more information, see “Specify Sample Time”.

Block Behavior in Continuous Mode

When operating in continuous mode, the Sine Wave block can become inaccurate due to loss of
precision as time becomes very large.

Block Behavior in Discrete Mode

A Sample time parameter value greater than zero causes the block to behave as if it were driving a
Zero-Order Hold block whose sample time is set to that value.

This way, you can build models with sine wave sources that are purely discrete, rather than models
that are hybrid continuous/discrete systems. Hybrid systems are inherently more complex and as a
result take more time to simulate.

1 Blocks

1-2042

In discrete mode, this block uses a differential incremental algorithm instead of one based on
absolute time. As a result, the block can be useful in models intended to run for an indefinite length
of time, such as in vibration or fatigue testing.

The differential incremental algorithm computes the sine based on the value computed at the
previous sample time. This method uses the following trigonometric identities:

sin(t + Δt) = sin(t)cos(Δt) + sin(Δt)cos(t)
cos(t + Δt) = cos(t)cos(Δt)− sin(t)sin(Δt)

In matrix form, these identities are:

sin(t + Δt)
cos(t + Δt)

=
cos(Δt) sin(Δt)
−sin(Δt) cos(Δt)

sin(t)
cos(t)

Because Δt is constant, the following expression is a constant:

cos(Δt) sin(Δt)
−sin(Δt) cos(Δt)

Therefore, the problem becomes one of a matrix multiplication of the value of sin(t) by a constant
matrix to obtain sin(t + Δt).

Discrete mode reduces but does not eliminate the accumulation of round-off errors, for example,
(4*eps). This accumulation can happen because computation of the block output at each time step
depends on the value of the output at the previous time step.

Methods to Handle Round-Off Errors in Discrete Mode

To handle round-off errors when the Sine Wave block operates in time-based discrete mode, use one
of these methods.

Method Rationale
Insert a Saturation block directly downstream of
the Sine Wave block.

By setting saturation limits on the Sine Wave
block output, you can remove overshoot due to
accumulation of round-off errors.

Set up the Sine Wave block to use the sin()
math library function to calculate block output.

1 On the Sine Wave block dialog box, set Time
to Use external signal so that an input
port appears on the block icon.

2 Connect a clock signal to this input port
using a Digital Clock block.

3 Set the sample time of the clock signal to the
sample time of the Sine Wave block.

The sin() math library function computes block
output at each time step independently of output
values from other time steps, preventing the
accumulation of round-off errors.

Sample-Based Mode

Sample-based mode uses this formula to compute the output of the Sine Wave block.

y = Asin(2π(k + o)/p) + b

 Sine Wave Function

1-2043

• A is the amplitude of the sine wave.
• p is the number of time samples per sine wave period.
• k is a repeating integer value that ranges from 0 to p–1.
• o is the offset (phase shift) of the signal.
• b is the signal bias.

In this mode, Simulink sets k equal to 0 at the first time step and computes the block output, using
the formula. At the next time step, Simulink increments k and recomputes the output of the block.
When k reaches p, Simulink resets k to 0 before computing the block output. This process continues
until the end of the simulation.

The sample-based method of computing block output at a given time step does not depend on the
output of the previous time steps. Therefore, this mode avoids the accumulation of round-off errors.
Sample-based mode supports reset semantics in subsystems that offer it. For example, if a Sine Wave
block is in a resettable subsystem that receives a reset trigger, the repeating integer k resets and the
block output resets to its initial condition.

Ports
Input

Port_1 — Time source signal
scalar

Input signal representing the time source in the sine wave calculation.
Data Types: double

Output

Output 1 — Output sine wave signal
scalar

Output signal that is the created sine wave.
Data Types: double

Parameters
Sine type — Type of sine wave
Time based (default) | Sample based

Specify the type of sine wave that this block generates. Some parameters in the dialog box appear
depending on whether you select time-based or sample-based.

Programmatic Use
Block Parameter: SineType
Type: character vector
Values: 'Time based' | 'Sample based'
Default: 'Time based'

Time (t) — Source of time variable
Use external signal (default) | Use simulation time

1 Blocks

1-2044

Specify whether to use simulation time as the source of values for the time variable, or an external
source. If you specify an external time source, the block creates an input port for the time source.

Programmatic Use
Block Parameter: TimeSource
Type: character vector
Values: 'Use simulation time' | 'Use external signal'
Default: 'Use external signal'

Amplitude — Amplitude of the sine wave
1 (default) | scalar

Specify the amplitude of the output sine wave signal.

Programmatic Use
Block Parameter: Amplitude
Type: character vector
Value: scalar
Default: '1'

Bias — Constant added to sine wave
0 (default) | scalar

Specify the constant value added to the sine to produce the output.

Programmatic Use
Block Parameter: Bias
Type: character vector
Value: scalar
Default: '0'

Frequency (rad/sec) — Frequency of sine wave
1 (default) | scalar

Specify the frequency, in radians per second.

Dependency

To enable this parameter, set Sine type to Time based.

Programmatic Use
Block Parameter: Frequence
Type: character vector
Value: scalar
Default: '1'

Phase (rad) — Phase shift of sine wave
0 (default) | scalar

Specify the phase shift of the sine wave.

You cannot configure this parameter to appear in the generated code as a tunable global variable if
you set Time (t) to Use simulation time. For example, if you set Default parameter behavior
to Tunable or apply a storage class to a Simulink.Parameter object, the Phase parameter does
not appear in the generated code as a tunable global variable.

 Sine Wave Function

1-2045

To generate code so that you can tune the phase during execution, set Time (t) to Use external
signal. You can provide your own time input signal or use a Digital Clock block to generate the time
signal. For an example, see “Tune Phase Parameter of Sine Wave Block During Code Execution”
(Simulink Coder).

Dependencies

To enable this parameter, set Sine type to Time based.

Programmatic Use
Block Parameter: Phase
Type: character vector
Value: scalar
Default: '0'

Samples per period — Samples per period
0 (default) | integer

Specify the number of samples per period.

Dependencies

To enable this parameter, set Sine type to Sample based.

Programmatic Use
Block Parameter: Samples
Type: character vector
Value: scalar
Default: '10'

Number of offset samples — Offset in number of time samples
0 (default) | integer

Specify the offset (discrete phase shift) in number of sample times.

Dependencies

To enable this parameter, set Sine type to Sample based.

Programmatic Use
Block Parameter: Offset
Type: character vector
Value: scalar
Default: '0'

Sample time — Sample period
0 (default) | scalar

Specify the sample period in seconds. The default is 0. If the sine type is sample-based, the sample
time must be greater than 0. See “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: scalar
Default: '0'

1 Blocks

1-2046

Interpret vector parameters as 1-D — Output dimensions for one-row or one-column matrices
off (default) | on

Specify the output dimensions to be a 1-D vector signal when other parameters are one-row and one-
column matrices. If you do not select this box, the block outputs a signal of the same dimensionality
as the numeric parameters. See “Determine the Output Dimensions of Source Blocks”. This
parameter is not available when an external signal specifies time. In this case, if numeric parameters
are column or row matrix values, the output is a 1-D vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Depends on absolute time when placed inside a triggered subsystem hierarchy. These blocks do not
reference absolute time when configured for sample-based operation. In time-based operation, they
depend on absolute time.

See Also
Sine Wave | Sine, Cosine

 Sine Wave Function

1-2047

Slider
Tune parameter value with sliding scale

Libraries:
Simulink / Dashboard

Description
The Slider block tunes the value of the connected block parameter during simulation. For example,
you can connect the Slider block to a Gain block in your model and adjust its value during simulation.
You can modify the range of the Slider block's scale to fit your data. Use the Slider block with other
Dashboard blocks to create an interactive dashboard to control your model.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

1 Blocks

1-2048

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

 Slider

1-2049

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

1 Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

Scale Type — Type of scale

Linear (default) | Log

Type of scale displayed on the block. Linear specifies a linear scale, and Log specifies a logarithmic
scale.

Programmatic Use
Block Parameter: ScaleType

1 Blocks

1-2050

Type: string or character vector
Values: 'Linear' | 'Log'
Default: 'Linear'

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The minimum
must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The maximum
must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Label — Block label position

 Slider

1-2051

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015b

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a
dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add_block and set_param to create and
configure blocks from the Dashboard library in your model.

1 Blocks

1-2052

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Knob | Rotary Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 Slider

1-2053

Slider Gain
Vary scalar gain using slider

Libraries:
Simulink / Math Operations

Description
The Slider Gain block performs a scalar gain that you can modify during simulation. Modify the gain
using the slider parameter.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

The Slider Gain block accepts real or complex-valued scalar, vector, or matrix input. The block
supports fixed-point data types.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Input multiplied by gain
scalar | vector | matrix

The Slider Gain block outputs the input multiplied by a constant gain value. When the input to the
block is real and gain is complex, the output is complex.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Slider gain — Gain value
0 (default) | real value

Chose the gain value applied to the input.

Programmatic Use
Block Parameter: gain
Type: character vector
Values: real scalar

1 Blocks

1-2054

Default: '1'

Low — Lower limit of slider range
0 (default) | real value

Specify the lower limit of the slider range.

Programmatic Use
Block Parameter: low
Type: character vector
Values: real scalar
Default: '0'

High — Upper limit of slider range
2 (default) | real value

Specify the upper limit of the slider range.

Programmatic Use
Block Parameter: high
Type: character vector
Values: real scalar
Default: '2'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 Slider Gain

1-2055

See Also
Gain

1 Blocks

1-2056

Spectrum Analyzer
Display frequency spectrum

Libraries:
DSP System Toolbox / Sinks
DSP System Toolbox HDL Support / Sinks

Description
The Spectrum Analyzer block, referred to here as the scope, displays frequency-domain signals and
the frequency spectrum of time-domain signals. The scope shows the spectrum view and the
spectrogram view. The block algorithm performs spectral estimation using the filter bank method and
Welch's method of averaged modified periodograms. You can customize the spectrum analyzer display
to show the data and the measurement information that you need. For more details, see “Algorithms”
on page 1-2094.

 Spectrum Analyzer

1-2057

You can use the Spectrum Analyzer block in models running in Normal or Accelerator simulation
modes. You can also use the Spectrum Analyzer block in models running in Rapid Accelerator or
External simulation modes with some limitations.

You can use the Spectrum Analyzer block inside all subsystems and conditional subsystems.
Conditional subsystems include enabled subsystems, triggered subsystems, enabled and triggered
subsystems, and function-call subsystems. See “Conditionally Executed Subsystems Overview” for
more information.

Measurements

• “Cursor Measurements” on page 1-2089 — Measure signal values using vertical and horizontal
cursors.

• “Peak Finder Measurements” on page 1-2090 — Find maxima and show the x-axis values at which
they occur.

• “Channel Measurements” on page 1-2092 — Measure the occupied bandwidth or adjacent channel
power ratio (ACPR).

• “Distortion Measurements” on page 1-2090 — Measure harmonic distortion and intermodulation
distortion.

• “Spectral Mask” on page 1-2093 — Visualize spectrum limits and compare spectrum values to
specification values.

Programmatic Control

You can configure and display the Spectrum Analyzer settings from the command line with the
SpectrumAnalyzerConfiguration object.

Ports
Input

Signal — Signals to visualize
scalar | vector | matrix | array

Connect the signals you want to visualize. You can have up to 96 input ports. Input signals must have
these characteristics:

• Signal Domain — Frequency or time signals.
• Type — Discrete signals.
• Data type — Any data type that Simulink supports. See “Data Types Supported by Simulink”.
• Dimension — One dimensional (vector), two dimensional (matrix), or multidimensional (array)

signals. Input signal must have a fixed number of channels. See “Signal Dimensions” and
“Determine Signal Dimensions”.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Frequency — Frequencies in Hz
column vector

Specify the frequencies in Hz. The frequency vector must be a finite, monotonically increasing,
column vector with two or more elements. The number of frequency vector points must be equal to

1 Blocks

1-2058

the input frame size. You can also specify the frequencies using the Frequency (Hz) parameter on
the Estimation tab.

Dependency

To enable this port, set the:

• Input Domain parameter on the Estimation tab to Frequency.
• Frequency (Hz) parameter on the Estimation tab to Input port.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

RBW — RBW Value
positive scalar

Specify the resolution bandwidth in Hz through this port. RBW defines the smallest positive
frequency that can be resolved by the scope. You can also specify the RBW value using the RBW (Hz)
parameter on the Analyzer tab.

Dependency

To enable this port, set the RBW (Hz) parameter on the Analyzer tab to Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

VBW — VBW Value
positive scalar

Specify the video bandwidth in Hz through this port. Video bandwidth is the bandwidth of the
lowpass filter that the scope uses to average or smooth the noise in the signal before displaying it.
You can also specify the VBW value using the VBW (Hz) parameter on the Estimation tab.

Dependency

To enable this port, set the:

• Input Domain parameter on the Estimation tab to Time.
• Averaging Method parameter on the Estimation tab to VBW.
• VBW (Hz) parameter on the Estimation tab to Input port.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Analyzer Tab

Views

Spectrum — Type of spectrum to display
Power (default) | Power Density | RMS

Set the type of spectrum to display as one of these values:

 Spectrum Analyzer

1-2059

• Power — Spectrum Analyzer shows the power spectrum.
• Power Density — Spectrum Analyzer shows the power spectral density. The power spectral

density is the squared magnitude of the spectrum normalized to a bandwidth of 1 Hz.
• RMS — Spectrum Analyzer shows the root mean squared spectrum. Use this option to view the

frequency of voltage or current signals.

Tunable: Yes
Dependency

To enable this parameter, set the Input Domain parameter on the Estimation tab to Time.
Programmatic Use

Block Parameter: SpectrumType
Type: character vector or string scalar

Bandwidth

Sample Rate (Hz) — Sample rate the scope uses in Hz
Inherited (default) | positive scalar

Specify the sample rate the scope uses in Hz as one of the following:

• Inherited –– Use this option to specify the same sample rate as the input signal.
• Positive scalar –– The sample rate you specify must be at least twice the sample rate of the input

signal. Otherwise, you might see unexpected behavior when visualizing your signal in the scope
due to aliasing.

To display this property on the status bar, right-click the status bar at the bottom of the Spectrum
Analyzer window and select Sample Rate.

Tunable: Yes
Programmatic Use

Block Parameter: SampleRate, SampleRateSource
Type: double

RBW (Hz) — Resolution bandwidth in Hz
Auto (default) | Input port | positive scalar

Specify the resolution bandwidth in Hz. This parameter defines the smallest positive frequency that
can be resolved by the scope. By default, this parameter is set to Auto. In this case, the Spectrum
Analyzer determines the appropriate value to ensure that there are 1024 RBW intervals over the
specified frequency span.

If you set this parameter to Input port, you can specify the RBW value through an input port on the
block.

If you set this parameter to a numeric value, the value must allow at least two RBW intervals over the
specified frequency span. In other words, the ratio of the overall frequency span to RBW must be
greater than two:

span
RBW > 2

1 Blocks

1-2060

To display this property on the status bar, right-click the status bar at the bottom of the Spectrum
Analyzer window and select RBW.

Tunable: Yes

Programmatic Use

Block Parameter: RBWSource, RBW
Type: character vector, string scalar, double

Offset (Hz) — Offset to apply to frequency axis
0 (default) | scalar | vector

Specify the offset to apply to the frequency axis (x-axis) in units of Hz as one of the following:

• Scalar — Apply the same frequency offset to all channels.
• Vector — Apply a specific frequency offset for each channel. The vector length must be equal to

the number of input channels.

The overall span must fall within the “Nyquist Frequency Interval” on page 1-2100. You can
control the overall span in different ways based on how you set the Span (Hz) parameter.

Tunable: Yes

Programmatic Use

Block Parameter: FrequencyOffset
Type: double

Configuration > Spectrum Analyzer Settings ()

Num Inputs — Number of input ports
1 (default) | integer between 1 and 96

The number of input ports to the block, specified as an integer between 1 and 96. To change the
number of input ports, drag a new input signal line to the block and the block automatically creates
new ports.

Programmatic Use

Block Parameter: NumInputPorts
Type: character vector or string scalar
Values: scalar between 1 and 96

Open at Simulation Start — Automatically open scope when simulation starts
on (default) | off

Select this parameter to automatically open the Spectrum Analyzer window when you run the
simulation.

Programmatic Use

Block Parameter: OpenAtSimulationStart
Type: logical

Font Size — Font size of labels
Small (default) | Medium | Large | Extra Large

 Spectrum Analyzer

1-2061

Specify the font size of labels in the display as Small, Medium, Large, and Extra Large.

Tunable: Yes

Programmatic Use

Block Parameter: -
Type: character vector or string scalar

Plot Type — Plot type
Line (default) | Stem

Specify whether to display a Line or Stem plot in the Spectrum display.

Tunable: Yes

Dependency

To enable this parameter:

• Select Spectrum in the Analyzer tab.
• Select the Normal Trace check box in the Spectrum tab.

Programmatic Use

Block Parameter: PlotType
Type: character vector or string scalar

Y-Label — y-axis label
character vector | string scalar

Specify the y-axis label in the Spectrum display as a character vector or a string scalar. To display
signal units, add (%<SignalUnits>) to the label. When simulation starts, Simulink replaces
(%SignalUnits) with the units associated with the signals.

For example, for a velocity signal with units of m/s enter

Velocity (%<SignalUnits>)

Tunable: Yes

Dependency

To enable this parameter, select Spectrum in the Analyzer tab.

Programmatic Use

Block Parameter: YLabel
Type: character vector or string scalar

Y-Axis Limits — y-axis limits
[−80 20] | [ymin ymax]

Specify the y-axis limits in the Spectrum Analyzer display as a two-element numeric vector of the
form [ymin ymax]. The units of the y-axis limits depend on the Spectrum Unit in the Spectrum tab.

Tunable: Yes

1 Blocks

1-2062

Dependency

To enable this parameter, select Spectrum in the Analyzer tab.

Programmatic Use

Block Parameter: YLimits
Type: double

Title — Display title
character vector | string

Specify the display title. Enter %<SignalLabel> to use the signal labels in the Simulink model as the
axes titles.

Tunable: Yes

Programmatic Use

Block Parameter: Title
Type: character vector or string

Show Grid — Show internal grid lines
on (default) | off

Select this check box to show the grid in the Spectrum Analyzer display.

Tunable: Yes

Programmatic Use

Block Parameter: ShowGrid
Type: logical

Color Map — Spectrogram colormap
jet (default) | hot | bone | cool | copper | gray | parula | three-column matrix

Select a valid colormap name for the spectrogram, or enter a three-column matrix with values in the
range [0,1] defining RGB triplets. For more information about colormaps, see colormap.

Tunable: Yes

Dependency

To enable this parameter, select Spectrogram in the Analyzer tab.

Programmatic Use

Block Parameter: Colormap
Type: character vector or string scalar

Color Limits — Color limits of spectrogram
[-80, 20] (default) | [colorMin colorMax]

Specify the color limits of the spectrogram as a two-element numeric vector of the form [colorMin
colorMax]. The units of the color limits directly depend upon the Spectrum Unit in the
Spectrogram tab.

 Spectrum Analyzer

1-2063

Tunable: Yes

Dependencies

To enable this parameter, select Spectrogram in the Analyzer tab.

Programmatic Use

Block Parameter: ColorLimits
Type: double

Preserve colors for copy to clipboard — Preserve colors when copying to clipboard
off (default) | on

When you select this parameter, the scope preserves the colors when you copy the display to the
clipboard using the Copy Display and the Print options in the Analyzer tab > Share section.

Tunable: Yes

Background — Window background
black (default) | color picker

Specify the background color in the scope figure.

Tunable: Yes

Axes — Axes background color
black (default) | color picker

Specify the background color of the axes.

Tunable: Yes

Labels — Color of labels
gray (default) | color picker

Specify the color of the labels, grid, and the channel names in the legend.

Tunable: Yes

Line — Channel for line property settings
channel names

Specify the channel for which you want to modify the visibility, line color, style, width, and marker
properties.

Tunable: Yes

Visible — Channel visibility
on (default) | off

Select this check box to display the channel you have selected. If you clear this check box, the
selected channel is no longer visible. You can also click the signal name in the legend to control its
visibility. For more details, see .

Tunable: Yes

1 Blocks

1-2064

Style — Line style
- (default) | : | -. | -- | None

Specify the line style for the selected channel.

Tunable: Yes

Width — Line width
1.5 (default) | 0.5 | 1 | 2 | ...

Specify the line width for the selected channel.

Tunable: Yes

Marker — Data point markers
None (default) | + | x | ...

Specify a data point marker for the selected channel. This parameter is similar to the 'Marker'
property for plots. You can choose any of the marker symbols from the drop-down list.

Tunable: Yes

Color — Line color
yellow (default) | color picker

Specify the line color for the selected channel.

Tunable: Yes

Configuration

Legend — Show or hide signal legend
button

Click the Legend button to enable the Spectrum Analyzer to display the signal legend. The legend
displays the signal names from the model. For signals with multiple channels, the scope appends a
channel index after the signal name. Continuous signals have straight lines before their names and
discrete signals have step-shaped lines.

You can control which signals are visible using the legend. To hide a signal, in the scope legend, click
the signal name. To display the signal, click the signal name again. Alternatively, you can control

which signal is visible using the Visible parameter in the Spectrum Analyzer Settings ().

To display only one signal and hide all other signals, right-click the name of the signal you want the
scope to display. To show all signals, press Esc.

Note The legend displays only the first 20 signals. You cannot view or control any additional signals
from the legend.

Tunable: Yes
Dependency

To enable the Legend, select Spectrum in the Analyzer tab.

 Spectrum Analyzer

1-2065

Programmatic Use

Block Parameter: ShowLegend
Type: logical

Colorbar — Show or hide color bar
button

When you select the Colorbar button, the Spectrum Analyzer shows the color bar.

Tunable: Yes

Dependencies

To enable the Colorbar button, select Spectrogram in the Analyzer tab.

Programmatic Use

Block Parameter: ShowColorbar
Type: logical

Layout — Stack axes vertically or horizontally
vertical layout (default) | horizontal layout

Stack axes vertically or horizontally by selecting the appropriate configuration in the layout grid.

Tunable: Yes

Dependencies

To enable the Layout, select Spectrum and Spectrogram in the Analyzer tab.

Programmatic Use

Block Parameter: AxesLayout
Type: character vector or string scalar

Share

Copy Display — Send display to clipboard
button

Click this button to copy the scope display to the clipboard. You can preserve the color in the display
by selecting the “Preserve colors for copy to clipboard” on page 1-0 parameter.

Print — Print display
button

Click this button to save the scope display as an image or a PDF or to print the display.

Estimation Tab

Domain

Input Domain — Domain of the input signal
Time (default) | Frequency

1 Blocks

1-2066

The domain of the input signal you want to visualize. If you visualize time-domain signals, the scope
transforms the signal to the frequency spectrum based on the algorithm you specify in the Method
parameter.

Programmatic Use

Block Parameter: InputDomain
Type: character vector or string scalar

Frequency (Hz) — Frequency vector
Auto (default) | Input port | monotonically increasing vector

Set the frequency vector which determines the x-axis of the display to one of these values:

• Auto — The scope calculates the frequency vector from the length of the input. For more details,
see “Frequency Vector” on page 1-2100.

• Input port — You specify the frequency vector at the Frequency input port on the block.
• Custom vector — You specify a custom vector as the frequency vector. The length of the custom

vector must be equal to the frame size of the input signal.

Tunable: Yes

Dependency

To enable this parameter, set Input Domain to Frequency.

Programmatic Use

Block Parameter: FrequencyVectorSource, FrequencyVector
Type: character vector, string scalar, double

Input Unit — Units of frequency input
dBm (default) | dBV | dBW | Vrms | Watts | None

Select the units of the frequency-domain input. This parameter enables the Spectrum Analyzer to
scale frequency data when you select a different display unit in the Spectrum Unit parameter in the
Estimation tab.

Tunable: Yes

Dependency

To enable this parameter, set Input Domain to Frequency.

Programmatic Use

Block Parameter: InputUnits
Type: character vector or string scalar

Frequency Resolution

Method — Spectrum estimation method
Filter Bank (default) | Welch

Select the spectrum estimation method as one of the following:

 Spectrum Analyzer

1-2067

• Filter Bank –– Use an analysis filter bank to estimate the power spectrum. Compared to
Welch's method, this method has a lower noise floor, better frequency resolution, lower spectral
leakage, and requires fewer samples per update.

• Welch –– Use Welch's method of averaged modified periodograms.

For more details on these methods, see “Algorithms” on page 1-2094.

Tunable: Yes

Dependency

To use this parameter, set Input Domain to Time.

Programmatic Use

Block Parameter: Method
Type: character vector or string scalar

Sharpness — Sharpness of lowpass filter
0.5 (default) | nonnegative scalar in the range [0,1]

Specify the sharpness of the prototype lowpass filter as a real nonnegative scalar in the range [0,1].

Increasing the filter sharpness decreases the spectral leakage and gives a more accurate power
reading.

Tunable: Yes

Dependencies

To enable this property, set Method to Filter bank.

Programmatic Use

Block Parameter: FilterSharpness
Type: double

Averaging

Averaging Method — Smoothing method
VBW (default) | Exponential

Specify the smoothing method as one of the following:

• VBW — Video bandwidth method. The block uses a lowpass filter to smooth the trace and decrease
the noise. Use the VBW (Hz) parameter to specify the video bandwidth (VBW) value.

• Exponential — Weighted average of samples. The block computes the average over samples
weighted by an exponentially decaying forgetting factor. Use the Forgetting Factor parameter to
specify the weighted forgetting factor.

For more information on the averaging methods, see “Averaging Method” on page 1-2102.

Tunable: Yes

Dependency

To enable this parameter, set Input Domain to Time.

1 Blocks

1-2068

Programmatic Use

Block Parameter: AveragingMethod
Type: character vector or string scalar

VBW (Hz) — Video bandwidth
Auto (default) | Input port | positive scalar

Specify the video bandwidth as one of the following:

• Auto –– The Spectrum Analyzer adjusts the VBW such that the equivalent forgetting factor is 0.9.
• Input port –– You specify the frequency vector at the VBW input port on the block.
• Positive scalar –– You specify a positive scalar. The Spectrum Analyzer adjusts the VBW using this

value. The value you specify must be less than or equal to Sample Rate (Hz)/2.

For more details on the video bandwidth method, see “Averaging Method” on page 1-2102.

The Spectrum Analyzer shows the VBW value in the status bar at the bottom of the display. To display
the VBW value, right-click the status bar and select VBW.

Tunable: Yes

Dependency

To enable this parameter, set:

• Input Domain to Time.
• Averaging Method to VBW.

Programmatic Use

Block Parameter: VBWSource, VBW
Type: double

Forgetting Factor — Forgetting factor of weighted average method
0.9 (default) | scalar in the range [0,1]

Specify the forgetting factor of the exponential weighted averaging method as a scalar in the range
[0,1].

Tunable: Yes

Dependency

To enable this parameter, set:

• Input Domain to Time.
• Averaging Method to Exponential.

Programmatic Use

Block Parameter: ForgettingFactor
Type: double

 Spectrum Analyzer

1-2069

Frequency Options

Frequency Span — Frequency span mode
Full (default) | Span and Center Frequency | Start and Stop Frequencies

Specify the frequency span mode as one of the following:

• Full –– The Spectrum Analyzer computes and plots the spectrum over the entire “Nyquist
Frequency Interval” on page 1-2100.

• Span and Center Frequency –– The Spectrum Analyzer computes and plots the spectrum over
the interval specified by the Span (Hz) and Center Frequency (Hz) parameters.

• Start and Stop Frequencies –– The Spectrum Analyzer computes and plots the spectrum
over the interval specified by the Start Frequency (Hz) and Stop Frequency (Hz) parameters.

Tunable: Yes

Dependency

To enable this parameter, set Input Domain to Time.

Programmatic Use

Block Parameter: FrequencySpan
Type: character vector or string scalar

Span (Hz) — Frequency span to compute spectrum in Hz
10e3 (default) | real positive scalar

Specify the frequency span in Hz over which the Spectrum Analyzer computes and plots the
spectrum. The overall span, defined by this parameter and the Center Frequency (Hz) parameter,
must fall within the “Nyquist Frequency Interval” on page 1-2100. This parameter defines the range
of the values shown on the Frequency axis in the Spectrum Analyzer window.

Tunable: Yes

Dependency

To enable this parameter, set:

• Input Domain to Time.
• Frequency Span to Span and Center Frequency.

Programmatic Use

Block Parameter: Span
Type: double

Center Frequency (Hz) — Center of frequency span in Hz
0 (default) | real scalar

Specify the center of the frequency span in Hz over which the Spectrum Analyzer computes and plots
the spectrum. Use this parameter with the Span (Hz) parameter to define the frequency span around
a center frequency. This parameter defines the midpoint of the Frequency axis in the Spectrum
Analyzer window.

Tunable: Yes

1 Blocks

1-2070

Dependency

To enable this parameter, set:

• Input Domain to Time.
• Frequency Span to Span and Center Frequency.

Programmatic Use

Block Parameter: CenterFrequency
Type: double

Start Frequency (Hz) — Start frequency in Hz
-5e3 (default) | scalar

Specify the starting frequency in Hz of the frequency interval over which the Spectrum Analyzer
computes and plots the spectrum. The overall span, which is defined by this parameter and the Stop
Frequency (Hz) parameter, must fall within the “Nyquist Frequency Interval” on page 1-2100. This
parameter defines the leftmost value on the Frequency axis in the Spectrum Analyzer window.

Tunable: Yes

Dependency

To enable this parameter, set:

• Input Domain to Time.
• Frequency Span to Start and Stop Frequencies.

Programmatic Use

Block Parameter: StartFrequency
Type: double

Stop Frequency (Hz) — Stop frequency in Hz
5e3 (default) | scalar

Specify the stop frequency in Hz of the frequency interval over which the Spectrum Analyzer
computes and plots the spectrum. The overall span, which is defined by this parameter and the Start
Frequency (Hz) parameter, must fall within the “Nyquist Frequency Interval” on page 1-2100. This
parameter defines the rightmost value on the Frequency axis in the Spectrum Analyzer window.

Tunable: Yes

Dependency

To enable this parameter, set:

• Input Domain to Time.
• Frequency Span to Start and Stop Frequencies.

Programmatic Use

Block Parameter: StopFrequency
Type: double

 Spectrum Analyzer

1-2071

Window Options

Window — Windowing method
Hann (default) | Blackman-Harris | Chebyshev | Flat Top | Hamming | Kaiser | Rectangular |
custom window function name

Specify the windowing method to apply to the spectrum. Windowing is used to control the effect of
sidelobes in spectral estimation. The window you specify affects the window length required to
achieve a resolution bandwidth and the required number of samples per update. For more
information about windowing, see “Windows” (Signal Processing Toolbox).

You can use your own spectral estimation window by directly specifying a custom window function
name in the Window parameter.

Tunable: Yes

Dependency

To enable this parameter, set:

• Input Domain to Time.
• Method to Welch.

Programmatic Use

Block Parameter: Window, CustomWindow
Type: character vector or string scalar

Attenuation (dB) — Sidelobe attenuation in dB
60 (default) | scalar greater than or equal to 45

Specify the sidelobe attenuation in dB as a scalar greater than or equal to 45.

Tunable: Yes

Dependency

To enable this parameter, set Window to Chebyshev or Kaiser.

Programmatic Use

Block Parameter: SidelobeAttenuation
Type: double

Overlap (%) — Percentage of overlap
0 (default) | scalar in the range [0 100)

Specify the percentage of overlap between the previous and the current buffered data segments as a
scalar in the range [0 100). The overlap creates a window segment that the scope uses to compute a
spectral estimate. The value must be greater than or equal to zero and less than 100.

Tunable: Yes

Dependency

To enable this parameter, set:

1 Blocks

1-2072

• Input Domain to Time.
• Method to Welch.

Programmatic Use

Block Parameter: OverlapPercent
Type: double

Measurements Tab

Channel

Channel — Channel for which to obtain measurements
1 (default) | positive integer

The channel for which you need to obtain measurements, specified as a positive integer in the range
[1 N], where N is the number of input channels.

Tunable: Yes

Dependency

To enable this parameter, pass some data through the scope.

Programmatic Use

See MeasurementChannel.

Cursors

Data Cursors — Enable cursor measurements
button

Click the Data Cursors button to enable data cursor measurements. Each cursor tracks a vertical
line along the signal. The scope displays the difference between x- and y-values of the signal at the
two cursors in the box between the cursors.

Tunable: Yes

Programmatic Use

See Enabled.

Snap to data — Snap cursors to data
off (default) | on

Select this parameter to position the cursors on the signal data points.

Tunable: Yes

Programmatic Use

See SnapToData.

Lock cursor spacing — Lock cursor spacing
off (default) | on

Select this parameter to lock the frequency difference between the two cursors.

 Spectrum Analyzer

1-2073

Tunable: Yes

Programmatic Use

See LockSpacing.

Peaks

Peak Finder — Enable peak finder measurements
button

Click the Peak Finder button to enable peak finder measurements. An arrow appears on the plot at
each maxima and a Peaks panel appears at the bottom of the scope window.

Tunable: Yes

Programmatic Use

See Enabled.

Num Peaks — Maximum number of peaks to show
3 (default) | positive integer less than 100

Specify the maximum number of peaks to show as a positive integer less than 100.

Tunable: Yes

Programmatic Use

See NumPeaks.

Min Height — Level above which scope detects peaks
-Inf (default) | real scalar value

Specify the level above which the scope detects peaks as a real scalar.

Tunable: Yes

Programmatic Use

See MinHeight.

Min Distance — Minimum number of samples between adjacent peaks
1 (default) | positive integer

Specify the minimum number of samples between adjacent peaks as a positive integer.

Tunable: Yes

Programmatic Use

See MinDistance.

Threshold — Minimum difference between height of peak and its neighboring samples
0 (default) | nonnegative scalar

Specify the minimum difference between the height of the peak and its neighboring samples as a
nonnegative scalar.

1 Blocks

1-2074

Tunable: Yes

Programmatic Use

See Threshold.

Label Peaks — Label peaks
button

Click the Label Peaks button to label the peaks. The scope displays the labels (P1, P2, …) above the
arrows in the plot.

Tunable: Yes

Programmatic Use

See LabelPeaks.

Distortion

Distortion — Enable distortion measurements
button

Click the Distortion button to enable distortion measurements. A Distortion panel appears at the
bottom of the scope window when you click this button.

Tunable: Yes

Programmatic Use

See Enabled.

Distortion Type — Type of measurement to display
Harmonic (default) | Intermodulation

Specify the type of measurement data to display as Harmonic or Intermodulation. For more
details, see “Distortion Measurements” on page 1-2090.

Tunable: Yes

Programmatic Use

See Type.

Num Harmonics — Number of harmonics to measure
6 (default) | positive integer

Specify the number of harmonics to measure as a positive integer less than or equal to 99.

Tunable: Yes

Dependency

To enable this parameter, set Distortion Type to Harmonic.

Programmatic Use

See NumHarmonics.

 Spectrum Analyzer

1-2075

Label Harmonics — Label harmonics
off (default) | on

When you select this parameter, the Spectrum Analyzer adds numerical labels to harmonics in the
spectrum display.

Tunable: Yes

Programmatic Use

See LabelValues.

Label Frequencies — Label frequencies
off (default) | on

When you select this parameter, the Spectrum Analyzer adds numerical labels to the first-order
intermodulation product and third-order frequencies in the Spectrum Analyzer display.

Tunable: Yes

Programmatic Use

See LabelValues.

Spectrum Tab

Note This tab appears when you select Spectrum in the Analyzer tab.

Trace Options

Two-Sided Spectrum — Enable two-sided spectrum view
on (default) | off

Select this check box to enable a two-sided spectrum view. In this view, the Spectrum Analyzer shows
both negative and positive frequencies. When the input signal is complex-valued, you must select this
parameter. If you clear this check box, the Spectrum Analyzer shows a one-sided spectrum with
positive frequencies only. In this case, the input signal data must be real valued.

When you clear this check box, the Spectrum Analyzer uses power folding. The y-axis values are
twice the amplitude that they would be if you were to select this parameter, except at 0 and the
Nyquist frequency. A one-sided power spectral density (PSD) contains the total power of the signal in
the frequency interval from DC to half the Nyquist rate. For more information, see pwelch.

Tunable: Yes

Programmatic Use

Block Parameter: PlotAsTwoSidedSpectrum
Type: logical

Normal Trace — Normal trace view
on (default) | off

1 Blocks

1-2076

When you select this check box, the Spectrum Analyzer calculates and plots the power spectral
estimates. The Spectrum Analyzer performs a smoothing operation by averaging several spectral
estimates and continues its spectral computations even when you clear this parameter.

Tunable: Yes
Dependencies

To clear this check box, first select either the Max-Hold Trace or the Min-Hold Trace parameters.

To enable this parameter, select Spectrum in the Analyzer tab.
Programmatic Use

Block Parameter: PlotNormalTrace
Type: logical

Max-Hold Trace — Maximum hold trace view
off (default) | on

Select this check box to enable the Spectrum Analyzer to plot the maximum spectral values of all the
estimates. The Spectrum Analyzer computes the maximum-hold spectrum at each frequency bin by
keeping the maximum value of all the power spectrum estimates. When you clear this check box, the
Spectrum Analyzer resets its maximum-hold computations.

Tunable: Yes
Dependency

To enable this parameter, select Spectrum in the Analyzer tab.
Programmatic Use

Block Parameter: PlotMaxHoldTrace
Type: logical

Min-Hold Trace — Minimum hold trace view
off (default) | on

Select this check box to enable the Spectrum Analyzer to plot the minimum spectral values of all the
estimates. The Spectrum Analyzer computes the minimum-hold spectrum at each frequency bin by
keeping the minimum value of all the power spectrum estimates. When you clear this check box, the
Spectrum Analyzer resets its minimum-hold computations.

Tunable: Yes
Dependency

To enable this parameter, select Spectrum in the Analyzer tab.
Programmatic Use

Block Parameter: PlotMinHoldTrace
Type: logical

Scale

Frequency Scale — Scale of frequency axis
Linear (default) | Log

 Spectrum Analyzer

1-2077

Specify the scale to display frequencies as Linear or Log. When the frequency span contains
negative frequency values, you cannot choose the logarithmic option.

Tunable: Yes

Dependency

To set the Frequency Scale to Log, clear the Two-Sided Spectrum check box in the Trace Options
section in the Spectrum or the Spectrogram tab (if enabled). If you select the Two-Sided
Spectrum check box, then the Frequency Scale parameter is set to Linear.

Programmatic Use

Block Parameter: FrequencyScale
Type: character vector or string scalar

Reference load (Ω) — Reference load in Ω
1 (default) | positive real scalar

Specify the reference load in ohms that the Spectrum Analyzer uses as a reference to compute the
power values.

Tunable: Yes

Dependency

To enable this parameter, set:

• Spectrum type to Power or Power Density.

Programmatic Use

Block Parameter: ReferenceLoad
Type: double

Spectrum Unit — Units of the spectrum
dBm (default) | dBFS | dBV | dBW | Vrms | Watts | dBm/Hz | dBW/Hz | dBFS/Hz | Watts/Hz | Auto

Specify the units in which the Spectrum Analyzer displays the power values as one of the following:

• dBm
• dBFS
• dBV
• dBW
• Vrms
• Watts
• dBm/Hz
• dBW/Hz
• dBFS/Hz
• Watts/Hz
• Auto

Tunable: Yes

1 Blocks

1-2078

Dependency

The units available depend on the value you choose for the Spectrum parameter in the Analyzer tab.

Estimation tab > Input
Domain parameter

Analyzer tab > Spectrum
option

Available Units

Time Power dBm, dBW, dBFS, Watts
Power Density dBm/Hz, dBW/Hz,dBFS/Hz,

Watts/Hz
RMS dBV, Vrms

Frequency ― Auto, dBm, dBV, dBW, Vrms, Watts

If you set the Input Domain parameter to Frequency and the Spectrum Unit parameter to Auto,
the Spectrum Analyzer assumes the spectrum units to be equal to input units specified in the
Estimation tab > Input Unit parameter. If you set the Input Domain parameter to Time and the
Spectrum Unit parameter to any option other than Auto, the Spectrum Analyzer converts the units
specified in the Input Unit parameter to the units specified in the Spectrum Unit parameter.

Programmatic Use

Block Parameter: SpectrumUnits
Type: character vector or string scalar

Full Scale — Full scale for dBFS units
Auto (default) | positive real scalar

The full scale used for the decibel full scale (dBFS) units. By default, the Spectrum Analyzer uses the
entire spectrum scale. Specify a positive real scalar for the dBFS full scale.

Tunable: Yes

Dependencies

To enable this parameter:

• In the Analyzer tab, set the spectrum type to Power or Power Density.
• In the Estimation tab, set Input Domain to Time.
• In the Spectrum tab, set Spectrum Unit to dBFS or dBFS/Hz (when spectrum type is set to

Power Density).

Programmatic Use

Block Parameter: FullScale
Type: double

Spectrogram Tab

Note This tab appears when you select Spectrogram in the Analyzer tab.

 Spectrum Analyzer

1-2079

Channel

Channel — Channel for which spectrogram is plotted
1 (default) | character vector of a positive integer | string scalar of a positive integer

Select the signal channel for which the spectrogram settings apply.

Tunable: Yes
Dependency

To enable this parameter, select Spectrogram in the Analyzer tab.
Programmatic Use

Block Parameter: SpectrogramChannel
Type: character vector, string scalar, double

Time Options

Time Resolution (s) — Time resolution in seconds
Auto (default) | positive scalar

Time resolution is the amount of data, in seconds, used to compute a spectrogram line. The minimum
attainable resolution is the amount of time it takes to compute a single spectral estimate. The tooltip
displays the minimum attainable resolution given the current Spectrum Analyzer settings.

When you set RBW (Hz) and Time Resolution (s) to Auto, then the Spectrum Analyzer adjusts the
RBW value such that there are 1024 RBW intervals in one frequency span and sets the time
resolution is set to 1/RBW.

When you set RBW (Hz) to Auto and Time Resolution (s) to a positive scalar, then time resolution
becomes the main control and RBW is set to 1/Time Resolution (s) Hz.

When you set RBW (Hz) to a positive scalar and Time Resolution (s) to Auto, then RBW becomes
the main control and the time resolution is set 1/RBW (Hz) s.

When you set RBW (Hz) and Time Resolution (s) to a positive value, then time resolution must be
equal to or larger than the minimum attainable time resolution defined by 1/RBW (Hz). Several
spectral estimates are combined into one spectrogram line to obtain the desired time resolution.
Interpolation is used to obtain time resolution values that are not integer multiples of 1/RBW (Hz).

Tunable: Yes
Dependency

To enable this parameter, select Spectrogram in the Analyzer tab.
Programmatic Use

Block Parameter: TimeResolutionSource, TimeResolution
Type: character vector, string scalar, double

Time Span (s) — Time span in seconds
Auto (default) | positive scalar

The time span over which the Spectrum Analyzer displays the spectrogram specified as a positive
scalar in seconds. The time span is the product of the desired number of spectral lines and the time

1 Blocks

1-2080

resolution. When you set this parameter to Auto, the spectrogram displays 100 spectrogram lines at
any given time. Otherwise, the spectrogram uses the time duration you specify in this parameter. The
time span that you specify must be at least two times larger than the duration of the number of
samples required for a spectral update.

Tunable: Yes
Dependency

To enable this parameter, select Spectrogram in the Analyzer tab.
Programmatic Use

Block Parameter: TimeSpanSource, TimeSpan
Type: character vector, string scalar, double

Trace Options

Two-Sided Spectrum — Enable two-sided spectrum view
on (default) | off

Select this check box to enable a two-sided spectrum view. In this view, the Spectrum Analyzer shows
both negative and positive frequencies. When the input signal is complex-valued, you must select this
parameter. If you clear this check box, the Spectrum Analyzer shows a one-sided spectrum with
positive frequencies only. In this case, the input signal data must be real valued.

When you clear this check box, the Spectrum Analyzer uses power folding. The y-axis values are
twice the amplitude that they would be if you were to select this parameter, except at 0 and the
Nyquist frequency. A one-sided power spectral density (PSD) contains the total power of the signal in
the frequency interval from DC to half the Nyquist rate. For more information, see pwelch.

Tunable: Yes
Programmatic Use

Block Parameter: PlotAsTwoSidedSpectrum
Type: logical

Spectral Mask Tab

Note This tab appears when you select Spectrum in the Analyzer tab and set the Spectrum type to
be Power or Power Density.

Views

Upper Mask — Enable upper spectral mask
button

Select Upper Mask to display the upper mask in the spectrum plot. The Spectral Mask panel
appears at the bottom of the Spectrum Analyzer window and displays mask details, such as number
of times a mask succeeded, number of times a mask failed, channels causing the mask failure, and so
on.

Use the Upper Limits parameter to specify the upper mask. If the entire spectrum plot is below the
upper mask, the upper mask looks green. In all other cases, the upper mask looks red.

 Spectrum Analyzer

1-2081

Tunable: Yes

Programmatic Use

See EnabledMasks.

Lower Mask — Enable lower spectral mask
button

Select Lower Mask to display the lower mask in the spectrum plot. The Spectral Mask panel
appears at the bottom of the Spectrum Analyzer window and displays mask details, such as number
of times a mask succeeded, number of times a mask failed, channels causing the mask failure, and so
on.

Use the Lower Limits parameter to specify the lower mask. If the entire spectrum plot is above the
lower mask, the lower mask looks green. In all other cases, the lower mask looks red.

Tunable: Yes

Programmatic Use

See EnabledMasks.

Configuration

Upper Limits — Limit for upper spectral mask
Inf (default) | scalar | two-column matrix

Specify the limit for the upper spectral mask as a scalar or a two-column matrix.

If UpperMask is a scalar, the upper limit mask uses the same power value for all frequencies
specified in the Spectrum Analyzer.

If you specify a matrix, the first column contains the frequency values (Hz), which correspond to the
x-axis values. The second column contains the power values, which correspond to the associated y-
axis values.

To apply offsets to the power and frequency values, use the Reference Level (dBr) and the
Frequency Offset (Hz) parameters.

Tunable: Yes

Programmatic Use

See UpperMask.

Lower Limits — Limit for lower spectral mask
-Inf (default) | scalar | two-column matrix

Specify the limit for the lower spectral mask as a scalar or a two-column matrix.

If LowerMask is a scalar, the lower limit mask uses the same power value for all frequencies specified
in the Spectrum Analyzer.

If you specify a matrix, the first column contains the frequency values (Hz), which correspond to the
x-axis values. The second column contains the power values, which correspond to the associated y-
axis values.

1 Blocks

1-2082

To apply offsets to the power and frequency values, use the Reference Level (dBr) and the
Frequency Offset (Hz) parameters.

Tunable: Yes
Programmatic Use

See LowerMask.

Reference Level (dBr) — Reference level for mask power values
0 (default) | real scalar | Spectrum peak

Specify the reference level for mask power values as a numeric scalar or set it to Spectrum peak.

When you set Reference Level (dBr) to a scalar value, the Spectrum Analyzer uses this value as the
reference to the power values (in dBr) for the upper mask and the lower mask of the Spectrum
Analyzer. The reference level should have the same units as the Spectrum Unit parameter in the
Spectrum tab.

When you set Reference Level (dBr) to Spectrum peak, the Spectrum Analyzer uses the peak
value of the current spectrum of the Channel in the Spectral Mask tab as the reference power
value.

Tunable: Yes
Programmatic Use

See ReferenceLevel and CustomReferenceLevel.

Channel — Input channel with peak spectrum
1 (default) | integer

Select the input channel which the Spectrum Analyzer uses to determine the mask reference level.
The peak value of the spectrum in this channel becomes the mask reference level when you set the
Reference Level (dBr) parameter to Spectrum peak.

Tunable: Yes
Dependency

To enable this parameter, set Reference Level (dBr) to Spectrum peak and display some data on
the scope.
Programmatic Use

See SelectedChannel.

Frequency Offset (Hz) — Frequency offset in Hz
0 (default) | finite numeric scalar

Specify the frequency offset in Hz as a finite numeric scalar. Using this value, the Spectrum Analyzer
offsets the frequency values in the Upper Mask and the Lower Mask parameters.

Tunable: Yes
Programmatic Use

See MaskFrequencyOffset.

 Spectrum Analyzer

1-2083

Channel Measurements Tab

Note This tab appears when you select Spectrum in the Analyzer tab.

Channel

Channel — Channel for computing occupied bandwidth and adjacent channel power ratio
1 (default) | positive integer

Specify the channel over which the Spectrum Analyzer computes and displays the occupied
bandwidth and adjacent channel power ratio as a positive integer in the range [1 N], where N is the
number of input channels.

Tunable: Yes

Dependency

To enable this parameter, pass data through the scope.

Programmatic Use

See MeasurementChannel.

Channel Measurements

Channel Measurements — Enable channel measurements
button

Click Channel Measurements to enable channel measurements.

Tunable: Yes

Programmatic Use

See Enabled.

Type — Type of measurement data to display
Occupied BW (default) | ACPR

Specify the type of measurement data to display as Occupied BW or ACPR.

Tunable: Yes

Programmatic Use

See Type.

Occupied BW (%) — Percentage of power to compute occupied bandwidth
99 (default) | positive scalar

Specify the percentage of power over which the Spectrum Analyzer computes the occupied
bandwidth as a positive scalar.

Tunable: Yes

1 Blocks

1-2084

Dependency

To enable this parameter, set Type to Occupied BW.

Programmatic Use

See PercentOccupiedBW.

Frequency Options

Frequency Span — Frequency span mode
Span and Center Frequency (default) | Start and Stop Frequencies

Specify the frequency span mode as one of the following:

• Span and Center Frequency –– Measure over a frequency range specified in Span (Hz) and
around the frequency value specified in Center Frequency (Hz).

• Start and Stop Frequencies –– Measure over the frequency range [Start Frequency (Hz),
Stop Frequency (Hz)].

Tunable: Yes

Programmatic Use

See FrequencySpan.

Span (Hz) — Frequency span in Hz
2000 (default) | positive scalar

Specify the frequency span over which the Spectrum Analyzer computes the channel measurements
as a positive scalar in Hz.

Tunable: Yes

Dependency

To enable this parameter, set Frequency Span to Span and Center Frequency.

Programmatic Use

See Span.

Center Frequency (Hz) — Center frequency of span in Hz
0 (default) | real scalar

Center frequency of the span over which the object computes the channel measurements, specified as
a real scalar in Hz.

Tunable: Yes

Dependency

To enable this parameter, set Frequency Span to Span and Center Frequency.

Programmatic Use

See CenterFrequency.

 Spectrum Analyzer

1-2085

Start Frequency (Hz) — Start frequency in Hz
-1000 (default) | real scalar

Specify the start frequency in Hz over which the Spectrum Analyzer computes the channel
measurements.

Tunable: Yes
Dependency

To enable this parameter, set Frequency Span to Start and Stop Frequencies.
Programmatic Use

See StartFrequency.

Stop Frequency (Hz) — Stop frequency in Hz
1000 (default) | real scalar

Specify the stop frequency in Hz over which the Spectrum Analyzer computes the channel
measurements.

Tunable: Yes
Dependency

To enable this parameter, set Frequency Span to Start and Stop Frequencies.
Programmatic Use

See StopFrequency.

Adjacent Channels

Num Pairs — Number of adjacent channel pairs
2 (default) | positive integer in range [1, 12]

Specify the number of adjacent channel pairs as a positive integer in the range [1, 12].

Tunable: Yes
Dependency

To enable this parameter, set Type to ACPR.
Programmatic Use

See NumOffsets.

Offsets (Hz) — ACPR offsets in Hz
[2000 3500] (default) | vector

Specify the frequency of the adjacent channel relative to the center frequency of the main channel as
a real vector of length equal to the number of offset pairs specified in Num Pairs.

Tunable: Yes
Dependency

To enable this parameter, set Type to ACPR.

1 Blocks

1-2086

Programmatic Use

See ACPROffsets.

Adjacent BW (Hz) — Adjacent channel bandwidth in Hz
1000 (default) | positive scalar

Specify the adjacent channel bandwidth in Hz as a positive scalar.

Tunable: Yes

Dependency

To enable this parameter, set Type to ACPR.

Programmatic Use

See AdjacentBW.

Filter Shape — Filter shape
None (default) | RRC | Gaussian

Specify the filter shape for the main and adjacent channels as None, RRC, or Gaussian.

Tunable: Yes

Dependency

To enable this parameter, set Type to ACPR.

Programmatic Use

See FilterShape.

Roll-off Factor — Roll-off factor
0.5 (default) | real scalar in range [0, 1]

Specify the roll-off factor as a real scalar in the range [0, 1].

Tunable: Yes

Dependency

To enable this parameter, set Type to ACPR and Filter Shape to RRC.

Programmatic Use

See FilterCoeff.

BT Product — BT product
0.5 (default) | real scalar in range [0, 1]

Specify the BT product as a real scalar in the range [0, 1].

Tunable: Yes

Dependency

To enable this parameter, set Type to ACPR and Filter Shape to Gaussian.

 Spectrum Analyzer

1-2087

Programmatic Use

See FilterCoeff.

Property Inspector Only

Channel Names — Input channel names
[] (default) | character vector | string | array of strings or character vectors.

Input channel names, specified as a character vector, string, or array. The names appear in the
legend, Settings, and Measurements panels. If you do not specify the names, the scope labels the
channels as Channel 1, Channel 2, etc.
Example: ["A","B"]

Dependency

To see channel names, select Legend in the Analyzer tab.

Programmatic Use

Block Parameter: ChannelNames
Type: cell array of character vectors or string array

Maximize Axes — Maximize size of plots
Auto (default) | Off | On

• Auto — If you have not specified Title and Y-Label, the scope maximizes all plots.
• On — The scope maximizes all plots and hides all values in Title and Y-label.
• Off — The scope does not maximize plots.

Hover over the Spectrum Analyzer to see the maximize axes button .

Tunable: Yes

Programmatic Use

Block Parameter: MaximizeAxes
Type: character vector or string scalar

Axes Scaling — Y-axis scaling mode
OnceAtStop (default) | Manual | Auto | Updates

• OnceAtStop — Scale y-axis after simulation completes.
• Manual — Manually scale y-axis range with the Scale Y-axis Limits toolbar button.
• Auto — Scale y-axis range during and after simulation.
• Updates — Scale y-axis after the number of time steps specified in the “Number of Updates” on

page 1-0 text box (100 by default). Scaling occurs only once during each run.

Tunable: Yes

Programmatic Use

Block Parameter: AxesScaling

1 Blocks

1-2088

Type: character vector or string scalar

Number of Updates — Number of updates before scaling
100 (default) | integer

Set this property to delay auto scaling the y-axis.

Tunable: Yes

Dependency

To enable this property, set “Axes Scaling” on page 1-0 to Updates.

Programmatic Use

Block Parameter: AxesScalingNumUpdates
Type: character vector or string scalar
Values: scalar

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
Cursor Measurements

Measure signal values using vertical waveform cursors that track along the signal.

When you click the Data Cursors button in the Measurements tab of the Spectrum Analyzer, the
spectrum display shows vertical cursors on each signal. Each cursor tracks a vertical line along the
signal. The scope displays the difference between x- and y-values of the signal at the two cursors in
the box between the cursors.

To enable cursor measurements, click the Data Cursors button in the Measurements tab. The
cursors appear only when the Spectrum Analyzer has at least one signal in its display.

You can use the mouse to move the vertical cursors left and right.

In the Measurements tab, click the Data Cursors drop-down arrow to select one of these options:

• Snap to Data — To position the cursors on the signal data points.
• Lock Cursor Spacing — To lock the frequency difference between the two cursors.

For modifying the cursor measurements programmatically, see the
CursorMeasurementsConfiguration object.

 Spectrum Analyzer

1-2089

Peak Finder Measurements

Compute and display peak values in the scope display.

When you click on the Peak Finder button in the Measurements tab of the Spectrum Analyzer, an
arrow appears on the plot at each maxima and a Peaks panel appears at the bottom of the scope
window. The Spectrum Analyzer computes peaks from the portion of the input signal that is currently
on display in the scope, and the Peaks panel shows the peak values and the frequencies at which
they occur.

The Peaks section in the Measurements tab allows you to specify the number of peaks you want the
scope to display, the minimum height above which you want the scope to detect peaks, the minimum
distance between peaks, and label the peaks.

The Spectrum Analyzer algorithm defines a peak as a local maximum with lower values present on
either side of the peak. It does not consider end points as peaks. For more information on the
algorithm, see the findpeaks function.

The peaks are valid for any units of the input signal. The letter after the value associated with each
measurement indicates the abbreviation for the appropriate International System of Units (SI) prefix,
such as m for milli-. For example, if the input signal is measured in volts, an m next to a measurement
value indicates that this value is in units of millivolts.

For modifying the peak finder measurements programmatically, see the
PeakFinderConfiguration object. For more information on these settings in the UI, see “Peaks”
(DSP System Toolbox).

Distortion Measurements

Measure harmonic distortion and intermodulation distortion.

When you click the Distortion button in the Distortion section of the Measurements tab, a
distortion panel opens at the bottom of the Spectrum Analyzer window. This panel shows the
harmonic and distortion measurement values for the input signal currently on display in the scope.
The Distortion section in the Measurements tab allows you to specify the distortion type, number
of harmonics, and even label the harmonics.

Note For an accurate measurement, ensure that the fundamental signal (for harmonics) or primary
tones (for intermodulation) is larger than any spurious or harmonic content. To do so, you may need
to adjust the resolution bandwidth (RBW) of the Spectrum Analyzer. Make sure that the bandwidth is
low enough to isolate the signal and harmonics from spurious noise content. In general, you should
set the RBW value such that there is at least a 10 dB separation between the peaks of the sinusoids
and the noise floor. You also might need to select a different spectral window to obtain a valid
measurement.

You can set the Distortion Type parameter to one of these values:

• Harmonic –– Select Harmonic if your input is a single sinusoid.
• Intermodulation –– Select Intermodulation if your input is two equal-amplitude sinusoids.

Intermodulation can help you determine distortion when the scope uses only a small portion of the
available bandwidth.

1 Blocks

1-2090

See “Distortion Measurements” (DSP System Toolbox) for information on how distortion
measurements are calculated.

Harmonic Distortion

When you set the Distortion Type to Harmonic, these fields appear in the Harmonic Distortion
panel at the bottom of the Spectrum Analyzer window.

• H1 — Fundamental frequency in Hz and its power in decibels of the measured power referenced
to 1 milliwatt (dBm).

• H2, H3, ... — Harmonics frequencies in Hz and their power in decibels relative to the carrier
(dBc). If the harmonics are at the same level or exceed the fundamental frequency, reduce the
input power.

• THD — Total harmonic distortion. This value represents the ratio of the power in the harmonics D
to the power in the fundamental frequency S. If the noise power is too high in relation to the
harmonics, the THD value is not accurate. In this case, lower the resolution bandwidth or select a
different spectral window.

THD = 10 ⋅ log10(D/S)

• SNR — Signal-to-noise ratio (SNR). This value represents the ratio of the power in the
fundamental frequency S to the power of all nonharmonic content N, including spurious signals, in
decibels relative to the carrier (dBc).

SNR = 10 ⋅ log10(S/N)

If you see –– as the reported SNR, the total nonharmonic content of your signal is less than 30%
of the total signal.

• SINAD — Signal-to-noise-and-distortion ratio. This value represents the ratio of the power in the
fundamental frequency S to all other content (including noise N and harmonic distortion D) in
decibels relative to the carrier (dBc).

SINAD = 10 ⋅ log10
S

N + D
• SFDR — Spurious-free dynamic range (SFDR). This value represents the ratio of the power in the

fundamental frequency S to power of the largest spurious signal R regardless of where it falls in
the frequency spectrum. The worst spurious signal might or might not be a harmonic of the
original signal. SFDR represents the smallest value of a signal that can be distinguished from a
large interfering signal. SFDR includes harmonics.

SNR = 10 ⋅ log10(S/R)

The harmonic distortion measurement automatically locates the largest sinusoidal component
(fundamental signal frequency). It then computes the harmonic frequencies and power in each
harmonic in your signal and ignores any DC component. The measurement does not include any
harmonics that are outside the Spectrum Analyzer frequency span. Adjust your frequency span so
that it includes all the desired harmonics.

Note To view the best harmonics, make sure that your fundamental frequency is set high enough to
resolve the harmonics. However, this frequency should not be so high that aliasing occurs. For the
best display of harmonic distortion, your plot should not show skirts, which indicate frequency
leakage. The noise floor should be visible.

 Spectrum Analyzer

1-2091

For a better display, try a Kaiser window with a large sidelobe attenuation (e.g. between 100–300 db).

Intermodulation Distortion

When you set the Distortion Type to Intermodulation, the following fields appear in the
Intermodulation Distortion panel at the bottom of the Spectrum Analyzer window.

• F1 — Lower fundamental first-order frequency.
• F2 — Upper fundamental first-order frequency.
• 2F1 - F2 — Lower intermodulation product from third-order harmonics.
• 2F2 - F1 — Upper intermodulation product from third-order harmonics.
• TOI — Third-order intercept point. If the noise power is too high in relation to the harmonics, the

TOI value will not be accurate. In this case, you should lower the resolution bandwidth or select a
different spectral window. If the TOI has the same amplitude as the input two-tone signal, reduce
the power of that input signal.

The intermodulation distortion measurement automatically locates the fundamental and the first-
order frequencies (F1 and F2). It then computes the frequencies of the third-order intermodulation
products (2F1−F2 and 2F2−F1).

For modifying the distortion measurements programmatically, see the
DistortionMeasurementsConfiguration object. For more information on these settings in the
UI, see “Distortion” (DSP System Toolbox).

Channel Measurements

Measure the occupied bandwidth or adjacent channel power ratio (ACPR).

When you click the Channel Measurements button in the Channel Measurements tab, a channel
measurements panel opens at the bottom of the Spectrum Analyzer window. This panel displays the
occupied bandwidth or the adjacent channel power ratio measurements. In the Channel
Measurements tab, you can specify the occupied bandwidth or the ACPR settings, frequency span,
center frequency, and start and stop frequencies.

You can select the channel measurements Type to:

• Occupied BW –– Occupied bandwidth
• ACPR –– Ratio of the power of the main channel to the power of the adjacent channel

For more details on how the Spectrum Analyzer calculates the occupied bandwidth, see “Occupied
BW” on page 1-2100.

1 Blocks

1-2092

Occupied Bandwidth

When you set the Type of channel measurement to compute and display to Occupied BW, these
fields appear in the measurements panel at the bottom of the scope window.

• Channel Power — Total power in the channel
• Occupied BW — Bandwidth containing the specified Occupied BW (%) of the total power of the

spectrum.
• Frequency Error — Difference between the center of the occupied band and the center

frequency (Center Frequency (Hz)) of the channel

ACPR

When you set the Type of channel measurement to compute and display to ACPR, these fields appear
in the measurements panel at the bottom of the scope window.

• Lower (Rel Power (dBc)) — Ratio of the power of the lower sideband to the power of the main
channel

• Upper (Rel Power (dBc)) — Ratio of the power of the upper sideband to the power of the main
channel

To modify the channel measurements programmatically, see the
ChannelMeasurementsConfiguration object. For more information on these settings in the UI,
see “Channel Measurements” on page 1-0 .

Spectral Mask

Visualize spectrum limits and compare spectrum values to specification values.

Add upper and lower masks to the Spectrum Analyzer to visualize spectrum limits and compare
spectrum values to specification values. To enable the Spectral Mask tab, select Spectrum in the
Analyzer tab. When you click the Upper Mask and Lower Mask buttons in the Spectral Mask tab,
a Spectral Mask panel opens at the bottom of the Spectrum Analyzer window. This panel provides
information on pass-fail statistics of masks, names of masks currently failing or passing, and names of
channels causing the failure.

You can modify the mask settings in the Spectral Mask tab. For more information on these settings
in the UI, see Spectral Mask on page 1-2081. For modifying the channel measurements
programmatically, see the SpectralMaskConfiguration object.

Check Spectral Masks

You can check the status of the spectral mask using the getSpectralMaskStatus function. This
function gives details on the number of times a mask succeeded or failed, names of channels causing
mask failure, and so on.

You can even use the MaskTestFailed event to perform an action every time the mask fails. To
trigger a function when the mask fails, create a listener to the MaskTestFailed event and define a
callback function to trigger it. For more details about using events, see “Events”.

Customize Visualization

Set configuration and style settings in the Spectrum Analyzer.

 Spectrum Analyzer

1-2093

To control the settings of the display and labels, color and styling, click on Settings () in the
Analyzer tab of the Spectrum Analyzer toolstrip.

In the dialog box that opens, you can customize the font size, plot type, y-axis properties of the
spectrum plot, and color map properties of the spectrogram plot. You can change the color of the
spectrum plot, background, axes, and labels and also change the line properties.

When you view the spectrum or the spectrogram, you see only the relevant options. For more details
about these options, see Configuration > Spectrum Settings (DSP System Toolbox).

Display Controls

Zoom and pan axes using display controls.

To scale the plot axes, use the mouse to pan around the axes and the scroll button on your mouse to
zoom in and out of the plot. Additionally, you can use the buttons that appear when you hover over
the plot window.

•
 — Maximize the axes, hide all labels and inset the axes values.

•
 — Zoom in on the plot.

•
 — Pan the plot.

•
 — Autoscale the axes to fit the shown data.

Algorithms
Spectrum Estimation — Filter Bank

When you choose the Filter Bank method, the Spectrum Analyzer uses an analysis filter bank to
estimate the power spectrum.

The filter bank splits the broadband input signal x(n), of sample rate fs, into multiple narrow band
signals y0(m), y1(m), … , yM-1(m), of sample rate fs/M.

The variable M represents the number of frequency bands in the filter bank. In the Spectrum
Analyzer, M is equal to the number of data points needed to achieve the specified RBW value or 1024,
whichever is larger. For more information on the analysis filter bank and its implementation, see the
“More About” (DSP System Toolbox) and the “Algorithm” (DSP System Toolbox) sections in the
dsp.Channelizer object.

After the Spectrum Analyzer splits the broadband input signal into multiple narrow bands, it
computes the power in each narrow frequency band using the following equation. Each Zi value is the
power estimate over that narrow frequency band.

Zi = 1
L ∑m = 0

L− 1
yi[m] 2

L is length of the narrowband signal yi(m) and i = 1, 2, …, M−1.

1 Blocks

1-2094

The power values in all the narrow frequency bands (denoted by Zi) form the Z vector.

Z = [Z0, Z1, Z2,⋯, ZM − 1]

The Spectrum Analyzer averages the current Z vector with the previous Z vectors using one of the
two moving average methods: video bandwidth or exponential weighting. The output of the averaging
operation forms the spectral estimate vector. For details on the two averaging methods, see
“Averaging Method” on page 1-2102.

The Spectrum Analyzer uses the value you specify in the RBW (Hz) parameter to determine the
input frame length. To view the RBW (Hz) parameter in the scope, click the Analyzer tab on the
Spectrum Analyzer toolstrip and navigate to the Bandwidth section.

Spectrum Analyzer requires a minimum number of samples to compute a spectral estimate. This
value is directly related to the resolution bandwidth property RBW (Hz).

When you set RBW (Hz) to:

• Auto –– The Spectrum Analyzer requires 1024 samples to update the display. The Spectrum
Analyzer determines the appropriate resolution bandwidth to ensure that there are 1024 RBW
intervals over the specified frequency span. When you set RBW (Hz) to Auto, the Spectrum
Analyzer calculates RBW using this equation.

RBWauto = span
1024

• scalar value –– The Spectrum Analyzer calculates the number of samples Nsamples using this
equation.

Nsamples =
Fs

RBW

Fs is the sample rate of the input signal as specified in the Sample Rate (Hz) property. To view
the Sample Rate (Hz) in the scope, click the Analyzer tab on the Spectrum Analyzer toolstrip
and navigate to the Bandwidth section.

 Spectrum Analyzer

1-2095

When you specify a resolution bandwidth using the RBW (Hz) parameter, you must specify a
value such that there are at least two RBW intervals over the specified frequency span. The ratio
of the overall span to RBW must be greater than two.

span
RBW > 2

span is the frequency span over which the Spectrum Analyzer computes and plots the spectrum. To
view the Span (Hz) in the scope, click the Estimation tab on the Spectrum Analyzer toolstrip and
navigate to the Frequency Options section. To enable this property, set Frequency Span to Span
and Center Frequency.

When the number of input samples is not sufficient to achieve the specified resolution bandwidth, the
Spectrum Analyzer displays a message similar to this one.

The Spectrum Analyzer removes this message and displays a spectral estimate once you provide
enough input samples.

Spectrum Estimation — Welch's Method

When you select the Welch method, the power spectrum estimate is the averaged modified
periodograms.

The algorithm in the Spectrum Analyzer consists of these steps:

1 The block buffers the input into N-point data segments. Each data segment is split into P
overlapping data segments, each of length M, overlapping by D points. The data segments can be
represented as:

xi(n) = x(n + iD), n = 0, 1, ..., M − 1
i = 0, 1, ..., P − 1

• If D = M/2, the overlap is 50%.
• If D = 0, the overlap is 0%.

2 Apply a window to each of the P overlapping data segments in the time domain.

The Spectrum Analyzer uses RBW (Hz) in the Analyzer tab to determine the data window
length Nwindow internally. Then, it partitions the input signal into a number of windowed data
segments.

Most window functions afford more influence to the data at the center of the set than to the data
at the edges, which represents a loss of information. To mitigate that loss, the individual data

1 Blocks

1-2096

sets are commonly overlapped in time. For each windowed segment, compute the periodogram
by computing the discrete Fourier transform. Then compute the squared magnitude of the result
and divide the result by M.

Pxx
i (f) = 1

MU ∑
n = 0

M − 1
xi(n)w(n)e− j2πfn

2
, i = 0, 1, ..., P − 1

where U is the normalization factor for the power in the window function and is given by

U = 1
M ∑

n = 0

M − 1
w2(n)

You can specify the window using the Window parameter in the Estimation tab of the Spectrum
Analyzer toolstrip.

3 The Spectrum Analyzer calculates and plots the power spectrum, power spectrum density, and
RMS using the modified Periodogram estimator. For more information about the Periodogram
method, see periodogram.

To determine the power spectrum estimate for Welch's method, the Spectrum Analyzer averages
the result of the periodograms for the last P data segments. The averaging reduces the variance,
compared to the original N-point data segment. For more details on the averaging, see
“Averaging Method” on page 1-2102.

PSD f = 1
P ∑i = 0

P − 1
Pxx

i (f)

4 The Spectrum Analyzer computes the power spectral density using:

PSD f = 1
P * Fs

∑
i = 0

P − 1
Pxx

i (f)

5 The power spectrum is the product of the power spectral density and the resolution bandwidth,
as given by this equation.

Pspectrum f = PSD f × RBW = PSD f ×
Fs × NENBW

Nwindow

6

The Spectrum Analyzer requires a minimum number of samples to compute a spectral estimate. This
value is directly related to the resolution bandwidth (RBW).

Nsamples =
1−

Op
100 × NENBW × Fs

RBW

where Op on page 1-2098 is the overlap percentage, NENBW on page 1-2098 is the normalized
effective noise bandwidth, Fs on page 1-2098 is the input sample rate, and RBW on page 1-2099 is the
resolution bandwidth.

The Spectrum Analyzer shows the number of samples per update in the Spectrum Analyzer status
bar.

 Spectrum Analyzer

1-2097

You can enable Samples/Update in the status bar only when you set Input Domain to Time and
Method to Welch in the Estimation tab on the Spectrum Analyzer toolstrip.

Overlap Percentage (Op)

The overlap percentage Op is the value you specify in the Overlap % property. To view the Overlap %
in the scope, click the Estimation tab on the Spectrum Analyzer toolstrip and navigate to the
Window Options section.

When you increase the overlap percentage, the Spectrum Analyzer needs fewer new input samples to
compute a new spectral update.

Op Nsamples
0% 100
50% 50
80% 20

Normalized Effective Noise Bandwidth (NENBW)

The normalized effective noise bandwidth NENBW is a window parameter that measures the noise
performance of the window. NENBW is determined using the window length and the window
coefficients, and is given by the following equation:

NENBW = Nwindow ×
∑

n = 1

Nwindow
w2(n)

∑
n = 1

Nwindow
w(n)

2

w(n) denotes the vector of window coefficients (calculated internally). Nwindow is the window length
the Spectrum Analyzer needs to compute one spectral update, and is directly related to the resolution
bandwidth and normalized effective noise bandwidth.

Nwindow =
NENBW × Fs

RBW

The rectangular window has the smallest NENBW, with a value of 1. All other windows have a larger
NENBW value. For example, the Hann window has an NENBW value of approximately 1.5.

The Spectrum Analyzer shows the value of NENBW in the Spectrum Analyzer status bar.

You can enable NENBW only when you set Input Domain to Time and Method to Welch in the
Estimation tab on the Spectrum Analyzer toolstrip.

Input Sample Rate (Fs)

Fs is the sample rate of the input signal. To view the Sample Rate (Hz) in the scope, click the
Analyzer tab on the Spectrum Analyzer toolstrip and navigate to the Bandwidth section. You can
enable this property in the status bar at the bottom of the Spectrum Analyzer window. Right-click the
status bar and select Sample Rate.

1 Blocks

1-2098

Resolution Bandwidth (RBW)

Resolution bandwidth controls the spectral resolution of the displayed signal. The RBW value
determines the spacing between frequencies that the scope can resolve. A smaller value gives a
higher spectral resolution and lowers the noise floor, that is, the Spectrum Analyzer can resolve
frequencies that are closer to each other. However, this comes at the cost of a longer sweep time.

You can set the resolution bandwidth through the RBW (Hz) property. To view RBW (Hz) in the
scope, click the Analyzer tab on the Spectrum Analyzer toolstrip and navigate to the Bandwidth
section.

When you set RBW (Hz) to:

• Auto –– The Spectrum Analyzer requires 1024 samples to update the display. The Spectrum
Analyzer determines the appropriate resolution bandwidth to ensure that there are 1024 RBW
intervals over the specified frequency span. When you set RBW (Hz) to Auto, the Spectrum
Analyzer calculates using this equation.

RBWauto = span
1024

• scalar value –– Specify a value such that there are at least two RBW intervals over the specified
frequency span. The ratio of the overall span to RBW must be greater than two:

span
RBW > 2

span is the frequency span over which the Spectrum Analyzer computes and plots the spectrum.
Spectrum Analyzer shows the span through the Span (Hz) property. To view the Span (Hz) in the
scope, click the Estimation tab on the Spectrum Analyzer toolstrip, navigate to the Frequency
Options section, and set Frequency Span to Span and Center Frequency.

When the number of input samples is not sufficient to achieve the specified resolution bandwidth, the
Spectrum Analyzer displays a message similar to this one.

The Spectrum Analyzer removes this message and displays a spectral estimate once you provide
enough input samples.

You can enable this property in the status bar at the bottom of the Spectrum Analyzer window. Right-
click the status bar and select RBW.

 Spectrum Analyzer

1-2099

Nyquist Frequency Interval

When you plot the two-sided spectrum by selecting Two-Sided Spectrum in the Spectrum tab, the
Nyquist frequency interval is −SampleRate

2 , SampleRate
2 + FrequencyOf f set Hz.

When you clear the Two-Sided Spectrum, the Nyquist frequency interval is
0, SampleRate

2 + FrequencyOf f set Hz.

Frequency Vector

When you set Frequency (Hz) to Auto, the software calculates the frequency vector for the
frequency-domain input.

When you plot the two-sided spectrum by selecting Two-Sided Spectrum in the Spectrum or
Spectrogram tab, the frequency vector is:

−SampleRate
2 , SampleRate

2

When you clear the Two-Sided Spectrum, the frequency vector is:

0, SampleRate
2

Occupied BW

The Spectrum Analyzer calculates Occupied BW using these steps.

1 Calculate the total power in the measured frequency range.
2 Determine the lower frequency value. Starting at the lowest frequency in the range and moving

upward, sum the power distributed in each frequency until the result is

100− OccupiedBW%
2

of the total power.
3 Determine the upper frequency value. Starting at the highest frequency in the range and moving

downward, sum the power distributed in each frequency until the result reaches

100− OccupiedBW%
2

of the total power.
4 The bandwidth between the lower and upper power frequency values is the occupied bandwidth.
5 The frequency halfway between the lower and upper frequency values is the center frequency.

Distortion Measurements

The Spectrum Analyzer calculates Distortion Measurements using these steps.

1 Estimate spectral content by finding peaks in the spectrum. When the algorithm detects a peak,
it records the width of the peak and clears all monotonically decreasing values by treating all
these values as if they belong to the peak. Using this method, the algorithm removes all spectral

1 Blocks

1-2100

content centered at DC (0 Hz) from the spectrum and records the amount of bandwidth cleared
(W0).

2 Determine the fundamental power (P1) from the remaining maximum value of the displayed
spectrum. Create a local estimate (Fe1) of the fundamental frequency by computing the central
moment of the power near the peak. Record the bandwidth of the fundamental power content
(W1). Then remove the power from the fundamental as in step 1.

3 Determine the power and width of the higher-order harmonics (P2, W2, P3, W3, etc.) in succession
by examining the frequencies closest to the appropriate multiple of the local estimate (Fe1).
Remove any spectral content that decreases monotonically about the harmonic frequency from
the spectrum before proceeding to the next harmonic.

4 After removing the DC, fundamental, and harmonic content from the spectrum, examine the
power of the remaining spectrum for its sum (Premaining), peak value (Pmaxspur), and median value
(Pestnoise).

5 Compute the sum of all the removed bandwidth as Wsum = W0 + W1 + W2 +...+ Wn.

Compute the sum of powers of the second and higher-order harmonics as Pharmonic = P2 + P3 + P4
+...+ Pn.

6 Estimate the sum of the noise power as:

Pnoise = (Premaining ⋅ dF + Pest . noise ⋅Wsum)/RBW

Where dF is the absolute difference between frequency bins, and RBW is the resolution
bandwidth of the window.

7 Then compute the metrics for SNR, THD, SINAD, and SFDR from the estimates.

THD = 10 ⋅ log10
Pharmonic

P1

SINAD = 10 ⋅ log10
P1

Pharmonic + Pnoise

SNR = 10 ⋅ log10
P1

Pnoise

SFDR = 10 ⋅ log10
P1

max Pmaxspur, max P2, P3, ..., Pn

Harmonic Measurements

1 The harmonic distortion measurements use the spectrum trace shown in the display as the input
to the measurements. The default Hann window setting of the Spectrum Analyzer might exhibit
leakage that can completely mask the noise floor of the measured signal.

The harmonic measurements attempt to correct for leakage by ignoring all frequency content
that decreases monotonically away from the maximum of harmonic peaks. If the window leakage
covers more than 70% of the frequency bandwidth in your spectrum, you may see a blank
reading (–) reported for SNR and SINAD. If your application can tolerate the increased
equivalent noise bandwidth (ENBW), consider using a Kaiser window with a high attenuation (up
to 330 dB) to minimize spectral leakage.

2 Ignore the DC component.
3 After windowing, the width of each harmonic component masks the noise power in the

neighborhood of the fundamental frequency and harmonics. To estimate the noise power in each

 Spectrum Analyzer

1-2101

region, the Spectrum Analyzer computes the median noise level in the nonharmonic areas of the
spectrum. It then extrapolates that value into each region.

4 Nth order intermodulation products occur at A*F1 + B*F2,

where F1 and F2 are the sinusoid input frequencies and |A| + |B| = N. A and B are integer
values.

5 For intermodulation measurements, compute the third-order intercept (TOI) point as follows.

• TOIlower = PF1 + (PF2 - P(2F1-F2))/2
• TOIupper = PF2 + (PF1 - P(2F2-F1))/2
• TOI = + (TOIlower + TOIupper)/2

Where P is power in decibels of the measured power referenced to 1 milliwatt (dBm).

Averaging Method

The Spectrum Analyzer can calculate the moving average using two methods:

• Video bandwidth — The Spectrum Analyzer uses a time-domain lowpass filter to smooth the noise
in the signal. The video bandwidth (VBW) filter smoothes the trace and decreases noise, and the
Spectrum Analyzer applies the filter to the data before displaying it.

Video bandwidth is the bandwidth of the lowpass filter that Spectrum Analyzer uses to average or
smooth the noise in the signal before displaying it in the scope. The Spectrum Analyzer computes
the video bandwidth using this equation:

VBW = (1− λ)RBW
2πλNENBW

where,

• λ is the forgetting factor.
• RBW on page 1-2099 is the resolution bandwidth.
• NENBW on page 1-2098 is the normalized effective noise bandwidth.

Video bandwidth does not affect the level of the noise (noise floor), but only increases the signal-
to-noise ratio and smoothes the trace of the noise. When you decrease the value of VBW, the
signal-to-noise ratio improves.

The cutoff frequency of the video bandwidth filter is given by:

ωc = 2πVBW
Fs/NFFT

where Fs is the input sample rate and NFFT is the number of FFT points.

The Spectrum Analyzer shows the values of sample rate, VBW, and NFFT in the status bar at the
bottom of the display. To enable, right-click the status bar and select Sample Rate, VBW, and
NFFT.

• Exponential — The moving average algorithm uses the exponential weighting method to update
the weights and compute the moving average recursively for each Z vector that comes in by using
the following recursive equations:

1 Blocks

1-2102

wN = λwN − 1 + 1

zN = 1− 1
wN

zN − 1 + 1
wN

zN

• λ — Forgetting factor
• wN — Weighting factor applied to the current Z vector
• zN — Current Z vector
• zN − 1 — Moving average until the previous Z vector
• 1− 1

wN
zN − 1 — Effect of the previous Z vectors on the average

• zN — Moving average including the current Z vector

Version History
Introduced in R2014b

R2023a: Spectrum Analyzer with improved responsiveness and toolstrip interface in
Simulink

In R2023a, the Spectrum Analyzer block is more responsive and its toolstrip interface is improved to
provide you easy access to spectral analysis, estimation, and measurements. You can configure and
display Spectrum Analyzer settings from the command line with the
SpectrumAnalyzerConfiguration object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block can be used for simulation visibility in systems that generate code, but is not included in
the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

This block can be used for simulation visibility in systems that generate PLC code, but is not included
in the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block accepts fixed-point input, but converts it to double for display.

 Spectrum Analyzer

1-2103

See Also
Objects
SpectrumAnalyzerConfiguration | spectrumAnalyzer

Functions
getSpectralMaskStatus | getSpectrumData | getMeasurementsData

Blocks
Time Scope | Array Plot | Filter Visualizer

Topics
“Configure Spectrum Analyzer” (DSP System Toolbox)
“Spectral Analysis” (DSP System Toolbox)
“Estimate the Power Spectrum in Simulink” (DSP System Toolbox)
“View the Spectrogram Using Spectrum Analyzer” (DSP System Toolbox)
“Display Frequency-Domain Data in Spectrum Analyzer” (DSP System Toolbox)

1 Blocks

1-2104

Slider Switch
Change parameter or variable value using switch with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
Use the Slider Switch block to change the value of the connected variable or parameter before or
during simulation. When you use the Slider Switch block in the Customizable Blocks library, you can
customize the appearance of the block to look like a real switch in your system. You can configure the
switch with any number of states to customize the behavior. For example, you could design a three-
way toggle switch or a gearbox. Use the Slider Switch block with other dashboard blocks to create an
interactive dashboard for your model.

Note Double-clicking the Slider Switch block does not open its dialog box during simulation or when
the block is selected. To edit the block parameters, you can use the Property Inspector or open the
block dialog box by:

• Double-clicking the block when the block is not selected and the model is not simulating
• Right-clicking the block and selecting Block Parameters from the context menu

Customize Slider Switch Blocks

When you add a Slider Switch block to your model, the block is preconfigured with a default design.
You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

 Slider Switch

1-2105

In design mode, you can add any number of states to the block. To add or delete states, use the
toolbar above the block.

For each state, you can:

• Upload an image that defines the appearance of the block in the state.
• Configure the size and position of the click area for the state.
• Specify the State Value.
• Specify the State Label text, color, and position.

To upload an image for a state, use the toolbar above the block.

To resize the click area of a state, in the toolbar above the block, select the state from the drop-down
menu. Then, click and drag the grab points of the yellow click area in the canvas. To reposition the
click area, click and drag it in the canvas.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

Use the Design tab to:

• Specify the State Value.
• Specify the State Label.
• Upload a foreground image.
• Upload a background image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at

1 Blocks

1-2106

once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

 Slider Switch

1-2107

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Connection

Connection — Select variable or block parameter to connect
variable and parameter connection options

1 Blocks

1-2108

Use the Connection table in the Block Parameters dialog box to select or change the variable or
block parameter to control. To connect the block to a variable or block parameter:

1 If the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

2 Select a block in the model.
3 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy. Omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

4 Click Apply.

To help understand and debug your model, you can connect Dashboard blocks to variables and
parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Tip You can also use bind mode to select or change the variable or block parameter to control. To
enter bind mode:

• If you are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

•
Click the dashboard block in the canvas. If the dashboard block is not connected, Connect
and an ellipsis appear over the dashboard block. If the dashboard block is already connected, only
the ellipsis appears.

• If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
parameters and variables available for connection appears.

To connect the dashboard block in bind mode:

• From the list, select the variable or parameter you want to connect.

 Slider Switch

1-2109

•
To exit bind mode, click Done Connecting over the dashboard block.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some properties apply to connecting dashboard blocks to parameters. Some
properties apply to connecting dashboard blocks to variables. Not all fields have a value for a
connection because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

Main

Label — Position of label displaying name of connected element

Hide (default) | Bottom | Top

You can display the name of the element to which the dashboard block connects in a label positioned
at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States — Pairings of value with label
scalar and character vector

1 Blocks

1-2110

Each state pairs a State Value with a State Label. When the block is in a given state, it assigns the
State Value for that state to the connected variable or parameter. You can use the State Label to
display the value assigned to the connected variable or parameter on the block or to provide a
descriptive text label.

By default, the switch has two states, one corresponding to each switch position:

• In the Off state, the block assigns the connected variable or parameter a value of 0.
• In the On state, the block assigns the connected variable or parameter a value of 1.

You can use a customizable switch block to design a switch with any number of states greater than or
equal to 1. To add a new state, click the + button. To delete the current state, click the - button.

Tip You can configure a variety of other parameters for a state besides the value and label in design
mode. For example, you can select an image that will appear on the switch when it is in the state. To
configure parameters in design mode:

1 Enter design mode. In the Property Inspector, on the Design tab, click the Edit button.
2 On the Design tab, open the States component, expand the Select State section, and select the

state that you want to configure from the drop-down menu.
3 Configure the parameter values for the selected state, either using the toolbar above the block,

or in the States component on the Design tab in the Property Inspector.

Programmatic Use

To configure the States for the block programmatically, specify the value of the States parameter as
a structure array containing two elements with fields:

• Value — Scalar double value for the state.
• Label — String or character array to use as the label for the switch position.

leftState.Value = 0;
leftState.Label = 'Off';
rightState.Value = 1;
rightState.Label = 'On';
switchStates = [leftState rightState];

Block Parameter: States
Type: two element array of structures

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Switch

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

 Slider Switch

1-2111

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States

Select State — Management and configuration of states
scalar and character vector

Each state pairs a State Value with a State Label. When the block is in a given state, it assigns the
State Value for that state to the connected variable or parameter. You can use the State Label to
display the value assigned to the connected variable or parameter on the block or to provide a
descriptive text label.

By default, the switch has two states, one corresponding to each switch position:

• In the Off state, the block assigns the connected variable or parameter a value of 0.
• In the On state, the block assigns the connected variable or parameter a value of 1.

You can use a customizable switch block to design a switch with any number of states greater than or
equal to 1. To add a new state, click the + button. To delete the current state, click the X button.

To configure a state, in the States component, expand the Select State section and select the state.

You can configure the value, label text, and a variety of other parameters for the selected state in the
States component on the Design tab in the Property Inspector. For example, you can select an image
that will appear on the switch when it is in the state.

All changes that you make to parameter values in the States component are applied only to the
selected state. To configure a different state, in the Select State section, select the state in the drop-
down menu. Then, configure the parameter values of that state in the States component.

Tip Alternatively, you can:

• Configure the parameters for the selected state using the toolbar that appears above the switch
block in design mode

• Configure the values and label text of the states for the block using the Parameters tab in the
Property Inspector

Programmatic Use

To configure the States for the block programmatically, specify the value of the States parameter as
a structure array containing two elements with fields:

• Value — Scalar double value for the state.

1 Blocks

1-2112

• Label — String or character array to use as the label for the switch position.

leftState.Value = 0;
leftState.Label = 'Off';
rightState.Value = 1;
rightState.Label = 'On';
switchStates = [leftState rightState];

Block Parameter: States
Type: two element array of structures

Value — State value
scalar

Each state pairs a State Value with a State Label. Specify the State Value that activates the state
selected in the Design tab.

Text — State label text
string | character array

Each state pairs a State Value with a State Label. Specify the text for the State Label of the state
selected in the Design tab.

Label Color — Button label font color
[r g b] vector

Choose a font color for the button label from the palette of standard colors, or specify a custom color.
The color is applied to the button label for the state that is selected in the Select State section of the
States component on the Design tab.

Label X Offset — Horizontal offset of text center from left edge of block
scalar

Specify the horizontal offset of the center of the State Label from the left edge of the block as a ratio
of the block width. Relative to the position of the text when the offset is 0, an offset with a negative
value moves the text left, and an offset with a positive value moves the text right.

Label Y Offset — Vertical offset of text center from top edge of block
scalar

Specify the vertical offset of the center of the State Label from the top edge of the block as a ratio of
the block height. Relative to the position of the text when the offset is 0, an offset with a negative
value moves the text up, and an offset with a positive value moves the text down.

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

 Slider Switch

1-2113

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Click Area X Offset — Horizontal offset of left edge of click area from left edge of block
scalar

Specify the horizontal offset of the left edge of the click area from the left edge of the block as a ratio
of the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Click Area Y Offset — Vertical offset of top edge of click area from top edge of block
scalar

Specify the vertical offset of the top edge of the click area from the top edge of the block as a ratio of
the block height. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image up, and a positive value moves the image down.
Example: 1

Width — Click area width
scalar

Specify the click area width as a ratio of the block width.
Example: 0.5

Height — Click area height
scalar

Specify the click area height as a ratio of the block height.
Example: 0.5

1 Blocks

1-2114

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can provide a background image or select a solid color. To select a
solid background color, select this parameter. To provide a background image, clear this parameter.

Note Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and enables the Use Background Color parameter.

Example: on

Color — Block background color
[r g b] vector

To select a solid background color, enable the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Corner Radius — Corner radius of area with block background color
scalar

Specify the corner radius of the area covered by the block background color as a ratio of half of the
smaller of the two block dimensions, width or height.
Example: 0.25

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

 Slider Switch

1-2115

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Tips
• When you want to design a circular switch that distributes the state labels and the click areas that

cause state transitions on an arc, consider using the Rotary Switch block.
• To design a control that applies values to a connected variable or parameter from a continuous

range, use the Knob, Horizontal Slider, or Vertical Slider blocks.

1 Blocks

1-2116

Version History
Introduced in R2021b

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (⌘) instead of Ctrl.

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

 Slider Switch

1-2117

R2022b: Extended support for customizable Dashboard blocks on Raspberry Pi boards

Starting in R2022b, the Simulink Support Package for Raspberry Pi Hardware supports deploying
these blocks from the Customizable Blocks library on your Raspberry Pi boards:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on a web browser you launch from a Raspberry Pi terminal.

R2022b: Extended support for customizable Dashboard blocks on Android devices

Starting in R2022b, the Simulink Support Package for Android Devices supports deploying these
blocks from the Customizable Blocks library on your Android devices:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

1 Blocks

1-2118

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Customizable Rocker Switch | Customizable Rotary Switch | Customizable Toggle Switch | Rocker
Switch | Rotary Switch | Slider Switch | Toggle Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”
“Getting Started with Panels”

 Slider Switch

1-2119

Slider Switch
Toggle parameter between two values

Libraries:
Simulink / Dashboard

Description
The Slider Switch block toggles the value of the connected block parameter between two values
during simulation. For example, you can connect the Slider Switch block to a Switch block in your
model and change its state during simulation. Use the Slider Switch block with other Dashboard
blocks to create an interactive dashboard for your model.

Double-clicking the Slider Switch block does not open its dialog box during simulation and when the
block is selected. To edit the block's parameters, you can use the Property Inspector, or you can
right-click the block and select Block Parameters from the context menu.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus

1 Blocks

1-2120

or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

 Slider Switch

1-2121

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

1 Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

States — Pair values and labels
scalar and character vector

1 Blocks

1-2122

Pairs of values to assign to the connected variable or parameter and text to display on the block.
Switches have two states — Left and Right — one corresponding to each switch position. Each state
contains a Value and a Label.

• Value — Value to assign to the connected variable or parameter when the switch is in the
corresponding position.

• Label — Text to display on the block for the corresponding position.

This table describes the default configuration for the block.

States

Position State Value State Label
Left 0 on
Right 1 off

Programmatic Use

To configure the States for the block programmatically, specify the value of the States parameter as
a structure array containing two elements with fields:

• Value — Scalar double value for the state.
• Label — String or character array to use as the label for the switch position.

leftState.Value = 0;
leftState.Label = 'Off';
rightState.Value = 1;
rightState.Label = 'On';
switchStates = [leftState rightState];

Block Parameter: States
Type: two element array of structures

Label — Block label position

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

 Slider Switch

1-2123

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015a

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a
dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add_block and set_param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Rocker Switch | Toggle Switch | Rotary Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1 Blocks

1-2124

Sqrt
Calculate square root, signed square root, or reciprocal of square root

Libraries:
Simulink / Math Operations
HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description
The Sqrt block calculates the square root, signed square root, or reciprocal of square root on the
input signal. Select one of the following functions from the Function parameter list.

Function Description Mathematical
Expression

MATLAB Equivalent

sqrt Square root of the input u0.5 sqrt
signedSqrt Square root of the

absolute value of the
input, multiplied by the
sign of the input

sign(u)*|u|0.5 —

rSqrt Reciprocal of the square
root of the input

u-0.5 —

The block icon changes to match the function.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal to the block to calculate the square root, signed square root, or reciprocal of square root.
The sqrt function accepts real or complex inputs, except for complex fixed-point signals.
signedSqrt and rSqrt do not accept complex inputs. The input signal must be a floating point
number.

This table summarizes the support for complex types and negative values for floating point, integer,
and fixed-point data types for sqrt, rSqrt, and signedSqrt functions.

Function Data Type Complex Negative Values
Input Output

sqrt Floating point Yes Yes Yes
 Integer and fixed-

point
No No No

rSqrt Floating point No No Yes

 Sqrt

1-2125

Function Data Type Complex Negative Values
Input Output

 Integer and fixed-
point

No No No

signedSqrt Floating point No Yes Yes
 Integer and fixed-

point
No No No

If the input is negative, set the Output signal to complex for all functions except signedSqrt.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that is the square root, signed square root, or reciprocal of square root of the input
signal. When the input is an integer or fixed-point type, the output must be floating point.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
Main

Function — Function the block performs

sqrt (default) | signedSqrt | rSqrt

Specify the mathematical function that the block calculates. The block icon changes to match the
function you select.

Function Block Icon
sqrt

signedSqrt

rSqrt

Dependency

When this parameter is set to signedSqrt, the Intermediate results data type parameter is
disabled.

1 Blocks

1-2126

Programmatic Use
Block Parameter: Operator
Type: character vector
Values: 'sqrt' | 'signedSqrt' | 'rSqrt'
Default: 'sqrt'

Output signal type — Output signal type

auto (default) | real | complex

Specify the output signal type of the block.

Function Input Signal Type Output Signal Type
Auto Real Complex

sqrt real real for
nonnegative inputs

NaN for negative
inputs

real for
nonnegative inputs

NaN for negative
inputs

complex

complex complex error complex
signedSqrt real real real complex

complex error error error
rSqrt real real real error

complex error error error

Programmatic Use
Block Parameter: OutputSignalType
Type: character vector
Values: 'auto' | 'real' | 'complex'
Default: 'auto'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Algorithm

Method — Method to compute reciprocal of square root

Exact (default) | Newton-Raphson

 Sqrt

1-2127

Specify the method for computing the reciprocal of a square root. This parameter is only valid for the
rSqrt function.

Method Data Types Supported When to Use This Method
Exact Floating point You do not want an

approximation.

Note The input or output must
be floating point.

Newton-Raphson Floating-point, fixed-point, and
built-in integer types

You want a fast, approximate
calculation.

The Exact method provides results that are consistent with MATLAB computations.

Note The algorithms for sqrt and signedSqrt are always of Exact type, no matter what selection
appears on the block dialog box.

Programmatic Use
Block Parameter: AlgorithmType
Type: character vector
Values: 'Exact' | 'Newton-Raphson'
Default: 'Exact'

Number of iterations — Number of iterations used for Newton Raphson algorithm

3 (default) | integer

Specify the number of iterations to perform the Newton-Raphson algorithm. This parameter is valid
with the rSqrt function and the Newton-Raphson value for Method.

Note If you enter 0, the block output is the initial guess of the Newton-Raphson algorithm.

Programmatic Use
Block Parameter: Iterations
Type: character vector
Values: integer
Default: '3'

Data Types

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Intermediate results data type — Data type of intermediate results

Inherit:Inherit via internal rule (default) | Inherit: Inherit from input |
Inherit: Inherit from output | double | single | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | fixdt(1,16,,0) | fixdt(1,16,2^0,0) | <data type expression>

1 Blocks

1-2128

Specify the data type for intermediate results when you set Function to sqrt or rSqrt on the Main
pane.

The type can be inherited, specified directly, or expressed as a data type object such as
Simulink.NumericType.

Note To avoid overflow, the intermediate data type must be larger than or equal to a data type that
can contain the square of the output data type.

Follow these guidelines on setting an intermediate data type explicitly for the square root function,
sqrt:

Input and Output Data Types Intermediate Data Type
Input or output is double. Use double.
Input or output is single, and any non-single data
type is not double.

Use single or double.

Input and output are fixed point. Use fixed point.

Follow these guidelines on setting an intermediate data type explicitly for the reciprocal square root
function, rSqrt:

Input and Output Data Types Intermediate Data Type
Input is double and output is not single. Use double.
Input is not single and output is double. Use double.
Input and output are fixed point. Use fixed point.

Caution Do not set Intermediate results data type to Inherit:Inherit from output when:

• You select Newton-Raphson to compute the reciprocal of a square root.
• The input data type is floating point.
• The output data type is fixed point.

Under these conditions, selecting Inherit:Inherit from output yields suboptimal performance
and produces an error.

To avoid this error, convert the input signal from a floating-point to fixed-point data type. For
example, insert a Data Type Conversion block in front of the Sqrt block to perform the conversion.

Dependencies

This parameter is disabled when the Function parameter is set to signedSqrt.

Programmatic Use
Block Parameter: IntermediateResultsDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit from input' |
'Inherit: Inherit from output' | 'double' | 'single', 'int8', 'uint8', int16,

 Sqrt

1-2129

'uint16', 'int32', 'uint32', 'int64', 'uint64', fixdt(1,16,0), fixdt(1,16,2^0,0).
'<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Output — Output data type

Inherit: Same as first input (default) | Inherit: Inherit via internal rule |
Inherit: Inherit via back propagation | double | single | half | int8 | int32 | uint32 |
int64 | uint64 | fixdt(1,16,2^0,0) | <data type expression> | ...

Specify the output data type. The type can be inherited, specified directly, or expressed as a data type
object such as Simulink.NumericType.

Dependencies

When input is a floating-point data type smaller than single precision, the Inherit: Inherit via
internal rule output data type depends on the setting of the “Inherit floating-point output type
smaller than single precision” configuration parameter. Data types are smaller than single precision
when the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via back
propagation' | 'Inherit: Same as first input' | 'double' | 'single' | 'half' | 'int8'
| 'uint8' | int16 | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | fixdt(1,16,2^0,0) | '<data type expression>'
Default: 'Inherit: Same as first input'

Minimum — Minimum output value for range checking

[] (default) | scalar

Specify the lower value of the output range that Simulink checks as a finite, real, double, scalar
value.

Note If you specify a bus object as the data type for this block, do not set the minimum value for bus
data on the block. Simulink ignores this setting. Instead, set the minimum values for bus elements of
the bus object specified as the data type. For information on the Minimum parameter for a bus
element, see Simulink.BusElement.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.

1 Blocks

1-2130

For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Maximum — Maximum output value for range checking

[] (default) | scalar

Specify the upper value of the output range that Simulink checks as a finite, real, double, scalar
value.

Note If you specify a bus object as the data type for this block, do not set the maximum value for
bus data on the block. Simulink ignores this setting. Instead, set the maximum values for bus
elements of the bus object specified as the data type. For information on the Maximum parameter for
a bus element, see Simulink.BusElement.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

 Sqrt

1-2131

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data types

off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Saturate on integer overflow — Choose the behavior when integer overflow occurs

off (default) | on

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this check
box.

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

1 Blocks

1-2132

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Do not select this
check box.

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. Usually, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 Sqrt

1-2133

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Sqrt Function Modes

For the Sqrt block with Function set to sqrt, the code generator supports various architectures and
data types.

The sqrtfunction architecture supports code generation for fixed-point types and floating-point
types. When you use floating-point types, set “Floating Point IP Library Parameters” (HDL Coder) to
Native Floating Point. You can specify the LatencyStrategy and CustomLatency HDL
properties to choose from a range of frequency values when targeting your design on the hardware
platform.

Use the UseMultiplier HDL block property in combination with the LatencyStrategy and
CustomLatency properties to specify whether to compute the square root by using a pipelined shift
and add or multiplication algorithm

Native Floating Point Settings for Different Modes

For this architecture, you can specify the HandleDenormals and LatencyStrategy settings from the
Native Floating Point tab in the HDL Block Properties dialog box.

Architecture Fixed-Point Native Floating-
Point

HandleDenormals LatencyStrateg
y

sqrtfunction ✓ ✓ ✓ ✓

sqrtnewton ✓ — — —
sqrtnewtonsinglera
te

✓ — — —

recipsqrtnewton ✓ — — —
recipsqrtnewtonsin
glerate

✓ — — —

HDL Architecture

This block has multi-cycle implementations that introduce additional latency in the generated code.
To see the added latency, view the generated model or validation model. See “Generated Model and
Validation Model” (HDL Coder).

1 Blocks

1-2134

Architecture Parameter Additional cycles of
latency

Description

SqrtFunction
(default)

• UseMultiplier
• LatencyStrateg

y
• CustomLatency

Depends on parameter
choices, output word
length, and input and
output fraction
lengths.

To specify this architecture, set
Function to sqrt or rSqrt.

Compute the square root by using a
pipelined shift/addition algorithm or
multiplication-based algorithm.

The SqrtFunction architecture has a
maximum latency that is determined by
the output word length, and input and
output fraction lengths, for fixed-point
data. For example, the maximum
latency is 11 for output word length of
17.

To see the latency calculation, see
HDLMathLib Sqrt.

Improve design frequency and reduce
resource utilization by setting the
UseMultiplier to off and
LatencyStrategy to inherit .

SqrtNewton Iterations Iterations + 3 To specify this architecture, set
Function to sqrt.

Use the iterative Newton method.
Select this option to optimize area.

The default value for Iterations is 3.

The recommended value for
Iterations is from 2 through 10. If
Iterations is outside the
recommended range, HDL Coder
generates a message.

SqrtNewtonSingleR
ate

Iterations (Iterations * 4) + 6 To specify this architecture, set
Function to sqrt.

Use the single rate pipelined Newton
method. Select this option to optimize
speed, or if you want a single rate
implementation.

The default value for Iterations is 3.

The recommended value for
Iterations is from 2 through 10. If
Iterations is outside the
recommended range, the coder
generates a message.

 Sqrt

1-2135

Architecture Parameter Additional cycles of
latency

Description

RecipSqrtNewton Iterations Iterations + 2 To specify this architecture, set
Function to rSqrt.

Use the iterative Newton method.
Select this option to optimize area.

RecipSqrtNewtonSi
ngleRate

Iterations (Iterations * 4) + 5 To specify this architecture, set
Function to rSqrt.

Use the single rate pipelined Newton
method. Select this option to optimize
speed, or if you want a single rate
implementation.

The Newton-Raphson iterative method:

xi + 1 = xi−
f (xi)
f ′(xi)

= xi(1.5− 0.5axi2)

ReciprocalRsqrtBasedNewton and ReciprocalRsqrtBasedNewtonSingleRate implement the
Newton-Raphson method with:

f (x) = 1
x2 − 1

HDL Block Properties

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

Iterations Number of iterations for SqrtNewton or SqrtNewtonSingleRate
implementation.

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

UseMultiplier Select algorithm for SqrtFunction implementation. By default, this
property is set to off, and the block computes square root by using the
shift-add algorithm. When the property is set to on, the square root is
computed by using multipliers.

Increase design frequency and reduce resource utilization by setting the
UseMultiplier to off and LatencyStrategy to inherit .

1 Blocks

1-2136

General
LatencyStrategy Specify whether to map the blocks in your design to MAX, MIN, CUSTOM, or

ZERO latency for fixed-point and floating-point types. The default is MAX.
The block settings for floating-point types overrides the model-level
settings. For fixed-point types, the block-level setting determines the
latency strategy. See also “LatencyStrategy” (HDL Coder) .

Increase design frequency and reduce resource utilization by setting the
UseMultiplier to off and LatencyStrategy to inherit .

CustomLatency When LatencyStrategy is set to CUSTOM and if you use fixed-point types,
use this property to specify a custom latency value between ZERO and MAX
for fixed-point types. For floating-point types, this value becomes the
custom latency of the operator. See also “NFPCustomLatency” (HDL
Coder).

Native Floating Point
HandleDenormals Specify whether you want HDL Coder to insert additional logic to handle

denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

Restrictions

• Input must be an unsigned scalar value.
• Output is a fixed-point scalar value.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Math Function | Trigonometric Function

 Sqrt

1-2137

Squeeze
Remove singleton dimensions from multidimensional signal

Libraries:
Simulink / Math Operations

Description
The Squeeze block removes singleton dimensions from its multidimensional input signal. A singleton
dimension is any dimension whose size is one. The Squeeze block operates only on signals whose
number of dimensions is greater than two. Scalar, vector, and matrix signals pass through the
Squeeze block unchanged.

Ports
Input

Port_1 — Multidimensional input signal
multidimensional signal

Input signal that has any singleton dimensions removed in the output.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — Output signal with no singleton dimensions
multidimensional signal

Output signal with no singleton dimensions. For example, a multidimensional array of size 3-by-1-by-2
changes into a 3-by-2 signal. If there are no singleton dimensions in the input, then the input signal is
passed through unchanged to the output.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

1 Blocks

1-2138

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Reshape

 Squeeze

1-2139

State Reader
Read a block state

Libraries:
Simulink / Signal Routing

Description
The State Reader block reads the current state of a supported state owner block.

State Reader blocks can read state from these state owner blocks:

• Discrete State-Space
• Discrete-Time Integrator
• Delay
• Unit Delay
• Discrete Transfer Fcn
• Discrete Filter
• Discrete FIR Filter
• Integrator
• Second-Order Integrator
• Outport of conditional subsystem blocks such as Enabled Subsystem, Triggered Subsystem, and

Function-Call Subsystem
• S-Function with multiple discrete states

To configure an S-Function block as a state owner block, each data type work vector must be
declared as a discrete state vector using ssSetDWorkUsedAsDState and named using
ssSetDWorkName or ssSetDWorkRTWIdentifier in mdlInitializeSizes.

Tip You can determine whether a block is a supported state owner block by the value of the block's
IsStateOwnerBlock parameter. The expression

get_param(blk,'IsStateOwnerBlock')

where blk is a block name or handle, returns 'on' if the block is a supported state owner block and
'off' otherwise.

To add a State Reader or State Writer block to your model, click on a state owner block to highlight it.
Then, from the current block tab of the Simulink toolstrip, click Reader-Writer. From the menu,
select State Reader Block or State Writer Block.

Note The current block tab of the toolstrip might be labeled with the name of the highlighted block,
for example, Outport, or it might be labeled Block, depending on the type of block you highlight.

1 Blocks

1-2140

If the state owner block has multiple states, then the State Reader or State Writer block dialog opens.
Select a state from the State Owner Selector Tree.

Note Before adding a State Reader or State Writer block for a Second-Order Integrator block, you
must explicitly name the states. See “Specifying the State Names” on page 1-1935.

After you create a State Reader or State Writer block, a badge appears above the state owner
block, and the name of the state owner block appears next to the State Reader or State Writer block.

 State Reader

1-2141

A State Reader or State Writer block cannot remain in the same system as its state owner block. After
you create a State Reader or State Writer block, cut and paste it to move it to the desired location
within the model hierarchy.

Alternatively, you can add a State Reader or State Writer block to your model from the Simulink
Library Browser, then set the State owner block parameter from the block parameters dialog.

Note When you create a library block with a State Reader or State Writer block, you must also
include the corresponding state owner block in the library block.

You can select a State Reader or State Writer block or a corresponding state owner block to highlight
blocks related to it. To show a related block in an open diagram or new tab, pause on the ellipsis that

appears after selection. Then, select Related Blocks from the action bar. When multiple blocks
correspond to the selected block, a list of related blocks opens. You can filter the list of related blocks
by entering a search term in the text box. After you select a related block from the list, window focus
goes to the open diagram or new tab that shows the related block.

Ports
Output

Out — State value
scalar | vector

State value read from a state owner block.

The dimension of the output is the dimension of the full state vector. Refer to the Initial conditions
parameter for specific blocks. For example, for a Delay block with a Delay length of N, the State
Reader block returns a state vector of length [1xN].
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
State owner block — Name of state owner block
none (default)

Name of state owner block whose state this block is reading. To change the state owner block, select
a block from the State Owner Selector Tree.

Note If the name of a state owner block contains a slash (/), the slash appears as two slashes (//) in
the State Reader block parameters dialog. This notation distinguishes the slash in the block name
itself from slashes that separate names at different levels of the model hierarchy.

Programmatic Use
Block Parameter: StateOwnerBlock
Type: character vector
Value: '' | '<model path/block name>'

1 Blocks

1-2142

Default: ''

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Initialize Function | Reset Function | Terminate Function | Event Listener | State Writer

Topics
“Using Initialize, Reinitialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”

 State Reader

1-2143

State Writer
Write to a block state

Libraries:
Simulink / Signal Routing

Description
The State Writer block sets the state of a supported state owner block.

State Writer blocks can write state to these state owner blocks:

• Discrete State-Space
• Discrete-Time Integrator
• Delay
• Unit Delay
• Discrete Transfer Fcn
• Discrete Filter
• Discrete FIR Filter
• Integrator
• Second-Order Integrator
• Outport of conditional subsystem blocks such as Enabled Subsystem, Triggered Subsystem, and

Function-Call Subsystem
• S-Function with multiple discrete states

To configure an S-Function block as a state owner block, each data type work vector must be
declared as a discrete state vector using ssSetDWorkUsedAsDState and named using
ssSetDWorkName or ssSetDWorkRTWIdentifier in mdlInitializeSizes.

Tip You can determine whether a block is a supported state owner block by the value of the block's
IsStateOwnerBlock parameter. The expression

get_param(blk,'IsStateOwnerBlock')

where blk is a block name or handle, returns 'on' if the block is a supported state owner block and
'off' otherwise.

To add a State Reader or State Writer block to your model, click on a state owner block to highlight it.
Then, from the current block tab of the Simulink toolstrip, click Reader-Writer. From the menu,
select State Reader Block or State Writer Block.

Note The current block tab of the toolstrip might be labeled with the name of the highlighted block,
for example, Outport, or it might be labeled Block, depending on the type of block you highlight.

1 Blocks

1-2144

If the state owner block has multiple states, then the State Reader or State Writer block dialog opens.
Select a state from the State Owner Selector Tree.

Note Before adding a State Reader or State Writer block for a Second-Order Integrator block, you
must explicitly name the states. See “Specifying the State Names” on page 1-1935.

After you create a State Reader or State Writer block, a badge appears above the state owner
block, and the name of the state owner block appears next to the State Reader or State Writer block.

 State Writer

1-2145

A State Reader or State Writer block cannot remain in the same system as its state owner block. After
you create a State Reader or State Writer block, cut and paste it to move it to the desired location
within the model hierarchy.

Alternatively, you can add a State Reader or State Writer block to your model from the Simulink
Library Browser, then set the State owner block parameter from the block parameters dialog.

Note When you create a library block with a State Reader or State Writer block, you must also
include the corresponding state owner block in the library block.

You can select a State Reader or State Writer block or a corresponding state owner block to highlight
blocks related to it. To show a related block in an open diagram or new tab, pause on the ellipsis that

appears after selection. Then, select Related Blocks from the action bar. When multiple blocks
correspond to the selected block, a list of related blocks opens. You can filter the list of related blocks
by entering a search term in the text box. After you select a related block from the list, window focus
goes to the open diagram or new tab that shows the related block.

Limitations
The State Writer block does not support resettable states inside an Enabled Subsystem block. You
must use a Reinitialize Function block to implement resettable states inside an Enabled Subsystem
block. An external signal received at the enable port of the Enabled Subsystem triggers the execution
of the Reinitialize Function block inside the subsystem. For more information on configuring
Reinitialize Function block settings, see “Reinitialize States of Blocks in Subsystem”.

1 Blocks

1-2146

Ports
Input

In — State value
scalar | vector

State value written to a state owner block.

When writing to a state owner block with an input scalar, the scalar value is expanded to match the
dimension of the state. All elements of the state are set to the same value.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
State owner block — Name of state owner block
none (default)

Name of state owner block whose state this block is writing. To change the state owner block, select a
block from the State Owner Selector Tree.

 State Writer

1-2147

Note If the name of a state owner block contains a slash (/), the slash appears as two slashes (//) in
the State Writer block parameters dialog. This notation distinguishes the slash in the block name
itself from slashes that separate names at different levels of the model hierarchy.

Programmatic Use
Block Parameter: StateOwnerBlock
Type: character vector
Value: '' | '<model path/block name>'
Default: ''

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Initialize Function | Reset Function | Terminate Function | Event Listener | State Reader

Topics
“Using Initialize, Reinitialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”

1 Blocks

1-2148

State-Space
Implement linear state-space system

Libraries:
Simulink / Continuous

Description
The State-Space block implements a system whose behavior you define as

ẋ = Ax + Bu
y = Cx + Du
x t = t0 = x0,

where x is the state vector, u is the input vector, y is the output vector, and x0 is the initial condition
of the state vector. The A, B, C, and D matrices can be specified as either sparse matrices or dense
matrices. The matrix coefficients must have these characteristics:

• A must be an n-by-n matrix, where n is the number of states.
• B must be an n-by-m matrix, where m is the number of inputs.
• C must be an r-by-n matrix, where r is the number of outputs.
• D must be an r-by-m matrix.

In general, the block has one input port and one output port. The number of rows in C or D matrix is
the same as the width of the output port. The number of columns in the B or D matrix are the same as
the width of the input port. If you want to model an autonomous linear system with no inputs, set the
B and D matrices to empty. In this case, the block acts as a source block with no input port and one
output port, and implements the following system:

ẋ = Ax
y = Cx
x t = t0 = x0 .

Simulink software converts a matrix containing zeros to a sparse matrix for efficient multiplication.

Ports
Input

Port_1 — Input signal
scalar | vector

 State-Space

1-2149

Real-valued input vector of type double, where the width equals the number of columns in the B and
D matrices. For more information, see “Description” on page 1-2149.
Data Types: double

Output

Port_1 — Output vector
scalar | vector

Real-valued output vector of data type double, with width equal to the number of rows in the C and
D matrices. For more information, see “Description” on page 1-2149.
Data Types: double

Parameters
A — Matrix coefficient, A

1 (default) | scalar | vector | matrix | sparse matrix

Specify the matrix coefficient A, as a real-valued n-by-n matrix, where n is the number of states. For
more information on the matrix coefficients, see “Description” on page 1-2149.

Programmatic Use
Block Parameter: A
Type: character vector, string
Values: scalar | vector | matrix | sparse matrix
Default: '1'

B — Matrix coefficient, B

1 (default) | scalar | vector | matrix | sparse matrix

Specify the matrix coefficient B, as a real-valued n-by-m matrix, where n is the number of states and
m is the number of inputs. For more information on the matrix coefficients, see “Description” on page
1-2149.

Programmatic Use
Block Parameter: B
Type: character vector, string
Values: scalar | vector | matrix | sparse matrix
Default: '1'

C — Matrix coefficient, C

1 (default) | scalar | vector | matrix | sparse matrix

Specify the matrix coefficient C as a real-valued r-by-n matrix, where r is the number of outputs and n
is the number of states. For more information on the matrix coefficients, see “Description” on page 1-
2149.

Programmatic Use
Block Parameter: C
Type: character vector, string

1 Blocks

1-2150

Values: scalar | vector | matrix | sparse matrix
Default: '1'

D — Matrix coefficient, D

1 (default) | scalar | vector | matrix | sparse matrix

Specify the matrix coefficient D as a real-valued r-by-m matrix, where r is the number of outputs and
m is the number of inputs. For more information on the matrix coefficients, see “Description” on page
1-2149.

Programmatic Use
Block Parameter: D
Type: character vector, string
Values: scalar | vector | matrix | sparse matrix
Default: '1'

Initial conditions — Initial state vector

0 (default) | scalar | vector

Specify the initial state vector.

Limitations

The initial conditions of this block cannot be inf or NaN.

Programmatic Use
Block Parameter: X0
Type: character vector, string
Values: scalar | vector
Default: '0'

Parameter tunability — Choose tunable representation of block parameters

Auto (default) | Optimized | Unconstrained

Tunability level of the state-space matrices (A,B,C, and D) for accelerated simulation modes and
deployed simulations using the Simulink Compiler™. When set to Auto, Simulink chooses the
appropriate parameter tunability level.

For sparse matrix coefficients, set the parameter to Optimized to allow tunability of non-zero
elements while keeping the pattern and number of non-zero elements constant. Set this parameter to
Unconstrained to allow all elements to be tunable, so long as the number of non-zero elements is
kept constant, that is, you can change the pattern of the sparse matrix.

For dense matrix coefficients, select Optimized to allow tunability of all matrix elements, provided
the number of non-zero elements initially specified in the matrix is kept constant. Set this parameter
to Unconstrained to allow full tunability of all matrix elements.

Note To tune the D matrix of the block when D = 0, you must enable the Allow non-zero values
for D matrix initially specified as zero parameter.

 State-Space

1-2151

Programmatic Use
Block Parameter: ParameterTunability
Type: character vector | string
Values: 'Auto' | 'Optimized' | 'Unconstrained'
Default: 'Auto'

Allow non-zero values for D matrix initially specified as zero — Allow tunability of D matrix
when D = 0

off (default) | on

Enable this parameter to support tunability of D even when D = 0.

Note Enabling this parameter enables direct feedthrough for the State-Space block.

Programmatic Use
Block Parameter: AllowTunableDMatrix
Type: character vector | string
Values: 'off' | 'on'
Default: 'off'

Absolute tolerance — Absolute tolerance for computing block states

auto (default) | scalar | vector

Absolute tolerance for computing block states, specified as a positive, real-valued, scalar or vector. To
inherit the absolute tolerance from the Configuration Parameters, specify auto or -1.

• If you enter a real scalar, then that value overrides the absolute tolerance in the Configuration
Parameters dialog box for computing all block states.

• If you enter a real vector, then the dimension of that vector must match the dimension of the
continuous states in the block. These values override the absolute tolerance in the Configuration
Parameters dialog box.

• If you enter auto or –1, then Simulink uses the absolute tolerance value in the Configuration
Parameters dialog box (see “Solver Pane”) to compute block states.

Programmatic Use
Block Parameter: AbsoluteTolerance
Type: character vector, string
Values: 'auto' | '-1' | any positive real-valued scalar or vector
Default: 'auto'

State Name (e.g., 'position') — Assign unique name to each state

' ' (default) | 'position' | {'a', 'b', 'c'} | a | ...

Assign a unique name to each state. If this field is blank (' '), no name assignment occurs.

• To assign a name to a single state, enter the name between quotes, for example, 'position'.
• To assign names to multiple states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.

1 Blocks

1-2152

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, string, cell array, or structure.

Limitations

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector, string
Values: ' ' | user-defined
Default: ' '

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production-quality code. Relates to resource limits and restrictions on speed
and memory often found in embedded systems. The code generated can contain dynamic allocation
and freeing of memory, recursion, additional memory overhead, and widely-varying execution times.
While the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code.

In general, consider using the Simulink Model Discretizer to map continuous blocks into discrete
equivalents that support production code generation. To start the Model Discretizer, in the Simulink
Editor, on the Apps tab, under Apps, under Control Systems, click Model Discretizer. One
exception is the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

 State-Space

1-2153

See Also
Discrete State-Space | Transfer Fcn

Topics
“State”

1 Blocks

1-2154

Step
Generate step function

Libraries:
Simulink / Sources

Description
The Step block provides a step between two definable levels at a specified time. If the simulation time
is less than the Step time parameter value, the block's output is the Initial value parameter value.
For simulation time greater than or equal to the Step time, the output is the Final value parameter
value.

The numeric block parameters must be of the same dimensions after scalar expansion. If the
Interpret vector parameters as 1-D option is off, the block outputs a signal of the same dimensions
and dimensionality as the parameters. If the Interpret vector parameters as 1-D option is on and
the numeric parameters are row or column vectors (that is, single-row or column 2-D arrays), the
block outputs a vector (1-D array) signal. Otherwise, the block outputs a signal of the same
dimensionality and dimensions as the parameters.

Ports
Output

Port_1 — Output step signal
scalar | vector

Output step function signal defined by the parameters Step time, Initial value, and Final value.
Data Types: double | single

Parameters
Step time — Time when step occurs

1 (default) | scalar

Specify the time, in seconds, when the output jumps from the Initial value parameter to the Final
value parameter.

Programmatic Use
Block Parameter: Time
Type: character vector
Values: '1' | real- or complex-valued scalar, vector, or matrix
Default: '1'

 Step

1-2155

Initial value — Output value before step

0 (default) | scalar

Specify the block output until the simulation time reaches the Step time parameter.

Programmatic Use
Block Parameter: Before
Type: character vector
Values: '1' | real- or complex-valued scalar, vector, or matrix
Default: '0'

Final value — Output value after step

1 (default) | scalar

Specify the block output when the simulation time reaches and exceeds the Step time parameter.

Programmatic Use
Block Parameter: After
Type: character vector
Values: '1' | real- or complex-valued scalar, vector, or matrix
Default: '1'

Sample time — Sample rate

0 (default) | scalar

Specify the sample rate of step. See “Specify Sample Time” for more information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '0'

Interpret vector parameters as 1-D — Treat vectors as 1-D

on (default) | off

Select this check box to output a vector of length N if the Constant value parameter evaluates to an
N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if the Constant value
parameter evaluates to an N-element row or column vector. For example, the block outputs a
matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if the Constant
value parameter evaluates to an N-element row or column vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

1 Blocks

1-2156

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'
Default: 'on'

Output data type — Output data type
double (default) | Inherit: Inherit via back propagation | single | <data type
expression>

Output data type. The type can be inherited, specified directly, or expressed as a data type object
such as Simulink.NumericType.

When you select Inherit: Inherit via back propagation, the block uses the data type of the
driving block.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the data type attributes. See “Specify Data Types Using Data Type Assistant” in the Simulink
User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' | <data type
expression>
Default: 'double'

Mode — Category of data type
Inherit (default) | Built in | Expression

Category of data type, specified as Inherit, Built in, or Expression. For more information on
using this parameter, see “Specify Data Types Using Data Type Assistant”.

Dependency

Clicking the Show data type assistant button enables this parameter.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

 Step

1-2157

• When you select Off, Simulink ignores the data type override setting of its context.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies

To enable this parameter, click the Show data type assistant button, and set the Mode to Built
in.

Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

See Also
Ramp | Repeating Sequence Stair | Signal Editor

Topics
“Signal Basics”

1 Blocks

1-2158

Stop Simulation
Stop simulation when input is nonzero

Libraries:
Simulink / Sinks
HDL Coder / Sinks

Description
The Stop Simulation block stops the simulation when the input is nonzero. The simulation completes
the current time step before terminating. If the block input is a vector, any nonzero vector element
causes the simulation to stop.

When you use the Stop Simulation block in a For Iterator subsystem, the stop action occurs after
execution of all iterations in the subsystem during a time step. The stop action does not interrupt
execution until the start of the next time step.

You cannot use the Stop Simulation block to pause the simulation. To create a block that pauses the
simulation, see “Pause Simulation Using Assertion Blocks”.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Stop simulation when input signal is nonzero. This port accepts real signals of double or Boolean
data types.
Data Types: double | Boolean

Block Characteristics
Data Types Boolean | double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

 Stop Simulation

1-2159

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely varying execution times. While
the code is functionally valid and acceptable in resource-rich environments, smaller embedded
targets often cannot support such code. Usually, blocks evolve toward being suitable for production
code. Thus, blocks suitable for production code remain suitable.

Generated code stops executing when the stop condition is true.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used to stop simulation when used with subsystems that generates code, but is not
included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Topics
“Simulate a Model Interactively”

1 Blocks

1-2160

String Compare
Compare two input strings

Libraries:
Simulink / String

Description
String Compare compares two strings. To see if two strings are identical, use this block. You can
specify if the match is case sensitive and how much of the string to compare.

Ports
Input

Port_1 — First string to compare
scalar

First string to compare, specified as a scalar.
Data Types: string

Port_2 — Second string to compare
scalar

Second string to compare, specified as a scalar.
Data Types: string

Output

Port_1 — True or false result
scalar

True or false result, specified as a scalar:

• 1 — Match.
• 0 — No match.

Data Types: Boolean

Parameters
Case sensitive — Case sensitivity for string comparison
on (default) | off

Case sensitivity for string comparison:

 String Compare

1-2161

 on
Consider string case when comparing strings.

 off
Do not consider string case when comparing strings.

Programmatic Use
Block Parameter: CaseSensitive
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Compare Option — Amount of characters to compare
Entire string (default) | First N characters

Amount of string to compare:

• Entire string — Compare both entire strings.
• First N characters — Compare the first N characters of both strings.

Dependencies

Setting this parameter to First N characters enables the Number of characters parameter.

Programmatic Use
Block Parameter: CompareOption
Type: character vector
Values: 'Entire string' | 'First N characters'
Default: 'Entire string'

Number of characters — Number of characters to compare
1 (default) | scalar

Number of characters to compare

Dependencies

This parameter is enabled when the Compare Option parameter is set to First N characters.

Programmatic Use
Block Parameter: CompareOption
Type: character vector
Values: scalar
Default: '1'

Block Characteristics
Data Types Boolean | string
Direct Feedthrough yes

1 Blocks

1-2162

Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ASCII to String | Compose String | Scan String | String Concatenate | String Constant | String Find |
String Length | String to Double | String to Single | String to Enum | String to ASCII | Substring | To
String

Topics
“Parse NMEA GPS Text Message”
“Simulink Strings”

 String Compare

1-2163

String Concatenate
Concatenate input strings to form one output string

Libraries:
Simulink / String

Description
The String Concatenate block concatenates multiple input strings, in order of their input, to form one
output string. Use this block if you want to combine multiple strings into a single string.

Ports
Input

Port_1 — First input string
scalar

First input string, specified as a scalar.
Data Types: string

Port_2 — Second input string
scalar

Second input string, specified as a scalar.
Data Types: string

Output

Port_1 — Concatenated string
scalar

Concatenated string, specified as a scalar.
Data Types: string

Parameters
Number of Inputs — Number of input strings
scalar

Number of input strings to concatenate, specified as a scalar. You can specify from 2 to 512 input
ports.

1 Blocks

1-2164

Programmatic Use
Block Parameter: Inputs
Type: character vector
Values: scalar from 2 to 512
Default: '2'

Output data type — Output data type
string (default) | <data type expression> | scalar

Output data type, specified using the string data type to specify a string with no maximum length.

To specify a string data type with a maximum length, specify stringtype(N). For example,
stringtype(128) creates a string data type with a maximum length of 128 characters.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the data type attributes. See “Specify Data Types Using Data Type Assistant” in the Simulink
User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'string' | <data type expression>
Default: 'string'

Mode — Category of data
stringtype(128) (default) | scalar

Use the stringtype function, for example, stringtype(128).

Dependency

Clicking the Show data type assistant button enables this parameter.

Block Characteristics
Data Types string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2018a

 String Concatenate

1-2165

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ASCII to String | Compose String | Scan String | String Compare | String Constant | String Find |
String Length | String to Single | String to Double | String to Enum | String to ASCII | Substring | To
String

Topics
“Simulink Strings”

1 Blocks

1-2166

String Constant
Output specified string

Libraries:
Simulink / String

Description
The String Constant block outputs a string specified by the String parameter. Use this block when
you want a constant whose type is string.

Ports
Output

Port_1 — Output string
scalar

Output string, specified as a scalar.
Data Types: string

Parameters
String — Input string
"Hello!" (default) | scalar

Input string, specified as a scalar.

Programmatic Use
Block Parameter: String
Type: character vector
Values: '"Hello!"' | scalar
Default: '"Hello!"'

Output data type — Output data type
string (default) | <data type expression>

Output data type, specified using the string data type to specify a string with no maximum length.

To specify a string data type with a maximum length, specify stringtype(N). For example,
stringtype(31) creates a string data type with a maximum length of 31 characters.

 String Constant

1-2167

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the data type attributes. See “Specify Data Types Using Data Type Assistant” in the Simulink
User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'string' | <data type expression>
Default: 'string'

Mode — Category of data
string (default) | scalar

Use the stringtype function, for example, stringtype(31).

Dependency

Clicking the Show data type assistant button enables this parameter.

Block Characteristics
Data Types string
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

1 Blocks

1-2168

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate | String Find |
String Length | String to Double | String to Enum | String to Single | String to ASCII | Substring | To
String

Topics
“Convert String to ASCII and Back to String”
“Simulink Strings”

 String Constant

1-2169

String Contains, String Starts With, String Ends
With
Determine if string contains, starts with, or ends with pattern

Libraries:
Simulink / String

Description
The String Contains, String Starts With, and String Ends With blocks determine if a string (str)
contains, starts with, or ends with a pattern (sub).

The String Contains, String Starts With, and String Ends With blocks are identical. When Function is
set to Contains, the block determines if the string contains a specified pattern. When Function is
set to Starts with, the block determines if the string starts with a specified pattern. When
Function is set to Ends with, the block determines if the string ends with a specified pattern.

Ports
Input

str — String to search
scalar

String to search for the pattern in, specified as a scalar.
Data Types: string

sub — String pattern to search for
scalar

String pattern to search for in string, specified as a scalar.
Data Types: string

Output

T/F — String pattern detected
1 | 0

Whether the string pattern was detected, returned as detected (1) or not detected (0).
Data Types: Boolean

Parameters
Case sensitive — Case sensitivity
on (default) | off

1 Blocks

1-2170

Case sensitivity for the pattern detection:

 on
Consider string case when searching for the pattern.

 off
Do not consider string case when searching for the pattern.

Programmatic Use
Block Parameter: CaseSensitive
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Function — Pattern search function
Contains | Starts with | Ends with

Pattern search function, specified as:

• Contains

Search for the pattern anywhere in the string. This is the default for the String Contains block.
• Starts with

Search for the pattern only at the beginning of the string. This is the default for the String Starts
With block.

• Ends with

Search for the pattern only at the end of the string. This is the default for the String Ends With
block.

Programmatic Use
Block Parameter: Function
Type: character vector
Values: 'Contains' | 'Starts with' | 'Ends with'
Default: 'Contains' for String Contains block, 'Starts with' for String Starts With block,
'Ends with' for String Ends With block

Block Characteristics
Data Types Boolean | string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

 String Contains, String Starts With, String Ends With

1-2171

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ASCII to String | Compose String | Scan String | String Concatenate | String Count | String Find |
String Length | String to Double | String to Single | String to Enum | String to ASCII | Substring | To
String

Topics
“Simulink Strings”

1 Blocks

1-2172

String Count
Count occurrences of pattern in string

Libraries:
Simulink / String

Description
The String Count block counts the occurrences of the pattern (sub) in a string (str). If the input at
sub matches part or all of the input at str, the block counts the occurrence as 1.

Ports
Input

str — String to search
scalar

String to search for the pattern in, specified as a scalar.
Data Types: string

sub — String pattern to search for
scalar

String pattern to search for in string, specified as a scalar.
Data Types: string

Output

n — Number of times pattern was found in string
scalar

Number of times the string pattern was found in the string, str, returned as a scalar.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

Parameters
Case sensitive — Case sensitivity
on (default) | off

Case sensitivity for the string count:

 on
Consider string case when counting found strings.

 String Count

1-2173

 off
Do not consider string case when counting found strings.

Programmatic Use
Block Parameter: CaseSensitive
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Output data type — Output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | int8 | uint8 | int16 | uint16 | int32 | uint32 | <data type expression>

Output data type. The type can be inherited, specified directly, or expressed as a data type object
such as Simulink.NumericType.

When you select an inherited option, the block exhibits these behaviors:

• Inherit: Inherit via internal rule — Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware.

• Inherit: Inherit via back propagation — Use data type of the driving block.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the data type attributes. See “Specify Data Types Using Data Type Assistant” in the Simulink
User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via back
propagation' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | <data type
expression>
Default: 'Inherit: Inherit via internal rule'

Mode — Category of data type
Inherit (default) | Built in | Expression

Category of data type, specified as Inherit, Built in, or Expression. For more information on
using this parameter, see “Specify Data Types Using Data Type Assistant”.

Dependency

Clicking the Show data type assistant button enables this parameter.

Block Characteristics
Data Types integer | string
Direct Feedthrough yes

1 Blocks

1-2174

Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ASCII to String | Compose String | Scan String | String Concatenate | String Constant | String
Contains | String Find | String Length | String to Double | String to Single | String to Enum | String to
ASCII | Substring | To String

Topics
“Simulink Strings”

 String Count

1-2175

String Find
Return index of first occurrence of pattern string

Libraries:
Simulink / String

Description
The String Find block returns the index of the first occurrence of the pattern string sub in the text
string str.

Ports
Input

str — String in which to find pattern
scalar

String in which to find pattern (sub), specified as a scalar.
Data Types: string

sub — Pattern
scalar

Pattern to be found in string (str), specified as a scalar.
Data Types: string

Output

idx — Position index of found pattern
scalar

Position index of the found pattern, specified as a positive integer scalar.

• If the block does not find the pattern, it returns -1.
• If the sub parameter is empty (""), the block returns 1, indicating that it matched the beginning

of the searched string.

Data Types: int8 | int16 | int32

Parameters
Output data type — Output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | int8 | int16 | int32 | <data type expression>

1 Blocks

1-2176

Output data type. The type can be inherited, specified directly, or expressed as a data type object
such as Simulink.NumericType.

When you select an inherited option, the block exhibits these behaviors:

• Inherit: Inherit via internal rule — Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware.

• Inherit: Inherit via back propagation — Use data type of the driving block.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the data type attributes. See “Specify Data Types Using Data Type Assistant” in the Simulink
User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via back
propagation' | 'int8' | 'int16' | 'int32' | <data type expression>
Default: 'Inherit: Inherit via internal rule'

Mode — Category of data type
Inherit (default) | Built in | Expression

Category of data type, specified as Inherit, Built in, or Expression. For more information on
using this parameter, see “Specify Data Types Using Data Type Assistant”.

Dependency

Clicking the Show data type assistant button enables this parameter.

Block Characteristics
Data Types integer | string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 String Find

1-2177

See Also
Compose String | Scan String | String Compare | String Concatenate | String Constant | String
Length | String to Double | String to Single | String to Enum | String to ASCII | Substring | To String

Topics
“Find Patterns in Strings”
“Simulink Strings”

1 Blocks

1-2178

String Length
Output number of characters in input string

Libraries:
Simulink / String

Description
The String Length block outputs the number of characters in the input string. For example, you can
use the String Length block to move focus of attention to a particular location in a string.

Ports
Input

Port_1 — Input string
scalar

Input string, specified as a scalar.
Data Types: string

Output

Port_1 — Number of characters
scalar

Number of characters in the input string, specified as a scalar.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

Parameters
Output data type — Output data type
Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | int8 | uint8 | int16 | uint16 | int32 | uint32 | <data type expression>

Output data type. The type can be inherited, specified directly, or expressed as a data type object
such as Simulink.NumericType.

When you select an inherited option, the block exhibits these behaviors:

• Inherit: Inherit via internal rule — Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware.

• Inherit: Inherit via back propagation — Use data type of the driving block.

 String Length

1-2179

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the data type attributes. See “Specify Data Types Using Data Type Assistant” in the Simulink
User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via back
propagation' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | <data type
expression>
Default: 'Inherit: Inherit via internal rule'

Mode — Category of data type
Inherit (default) | Built in | Expression

Category of data type, specified as Inherit, Built in, or Expression. For more information on
using this parameter, see “Specify Data Types Using Data Type Assistant”.

Dependency

Clicking the Show data type assistant button enables this parameter.

Block Characteristics
Data Types integer | string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

1 Blocks

1-2180

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Compose String | Scan String | String Compare | String Concatenate | String Constant | String Find |
String to Double | String to Enum | String to Single | String to ASCII | Substring | To String

Topics
“Get Text Following a Keyword”
“Simulink Strings”

 String Length

1-2181

String to ASCII
Convert string signal to uint8 vector

Libraries:
Simulink / String

Description
The String To ASCII block converts a string signal to a uint8 vector. The block converts each
character in the string to its corresponding ASCII value. For example, the block converts the input
string "Hello" to [72 101 108 108 111].

Ports
Input

Port_1 — Input string signal
scalar

Input string signal, specified as a scalar.
Data Types: string

Output

Port_1 — Converted uint8 vector signal
vector

Converted uint8 vector signal of ASCII characters from input string signal, specified as a vector. The
block converts each element in the string into its ASCII character equivalent and outputs the ASCII
equivalents as a vector. If there are fewer characters than the maximum length, the block fills the
remaining space with zeros at simulation. At code generation, the block fills the remaining space with
null characters.
Data Types: uint8

Parameters
Output vector size — Size of output vector
31 (default) | scalar

Size of output string vector, specified as a scalar.

Programmatic Use
Block Parameter: OutputVectorSize
Type: character vector
Values: scalar
Default: '31'

1 Blocks

1-2182

Block Characteristics
Data Types integer | string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate | String
Constant | String Find | String Length | String to Double | String to Single | String to Enum |
Substring | To String

Topics
“Convert String to ASCII and Back to String”
“Simulink Strings”

 String to ASCII

1-2183

String to Double
Convert string signal to double signal

Libraries:
Simulink / String

Description
Scan String scans an input string and converts it to signals per the format specified by the Format
parameter. The block converts values to their decimal (base 10) representation and outputs the
results as numeric or string signals. For example, if the Format parameter is set to "%s is %f.",
the block outputs two parts, a string signal and a single signal. If the input is the string "Pi is
3.14", the two outputs are "Pi" and "3.14".

The Scan String, String to Double, and String to Single blocks are identical blocks. When configured
for String to Double, the block converts the input string signal to a double numerical output. When
configured for String to Single, the block converts the input string signal to a single numerical
output.

For code generation, configure models that contain this block for non-finite number support by
selecting the Configuration Parameters > Code Generation > Interface > Support non-finite
numbers check box.

Ports
Input

Port_1 — Input string
scalar

Input string, specified as a scalar.
Data Types: string

Output

d — Output data whose format matches %d format
scalar

Output data whose format matches specified format, defined as a scalar. Total maximum number of
outputs is 128.

If the block cannot match an input string to a format operator specified in Format, it returns a
warning and outputs an appropriate value (0 or "") for each unmatched format operator.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

f — Output data whose format matches %f format
scalar

1 Blocks

1-2184

Output data whose format matches the %f format, specified as a scalar. Total maximum number of
outputs is 128.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Port_N — Output data whose format matches N format
scalar

Output data whose format matches N format, specified as a scalar. Total maximum number of outputs
is 128.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Parameters
Format — Format operator for input
"%lf" (default) | format string | character vector

Format operator for input, specified as a scalar. If the block cannot match the input string with the
specified format, it returns 0. The return of 0 differs from the sscanf function return, which is an
empty matrix if the function cannot match the input with the specified format.

• For the String to Double block, this parameter has a default value of %lf.
• For the String to Single block, this parameter has a default value of %f.

For more information about acceptable format operators, see the Algorithms section.

Programmatic Use
Block Parameter: Format
Type: character vector
Values: '<filename>'
Default: '"%lf"' if the block is String to Double, '"%f"' if the block is String to Single

Block Characteristics
Data Types double | integer | single | string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
The Scan String block uses this format specifier prototype:

%[width][length]specifier

 String to Double

1-2185

Numeric Fields

This table lists available conversion specifiers to convert text to numeric outputs. The block converts
values to their decimal (base 10) representation.

Output Port Data Type Conversion Specifier Description
Integer, signed %d Base 10
Integer, unsigned %u Base 10
Floating-point number %f, %e, or %g Floating-point values. Input

fields can contain NaN (case
sensitive). Input fields that
represents floating-point
numbers can include leading +
or - symbols and exponential
notation using e or E. The
conversion specifiers %f, %e,
and %g all treat input fields the
same way.

Character Fields

This table lists available conversion specifiers to convert text so that the output is a character array.

Character Field Type Conversion
Specifier

Description

String scalar %s Read the text until the block encounters white
space.

%c Read any single character, including white space. To
read multiple characters at a time, specify field
width. For example, %10c reads 10 characters at a
time.

Pattern-matching %[...] Read only characters in the brackets up to the first
nonmatching character or white space.

Example: %[mus] reads 'summer' as 'summ'.
%[^...] Read any characters not in the brackets up to the

first matching character or white space.

Example: %[^m] reads 'summer' as 'su'.

Optional Operators

• Field Width — To specify the maximum number of digits or text characters to read at a time, insert
a number after the percent character. For example, %10s reads up to 10 characters at a time,
including white space. %4f reads up to four digits at a time, including the decimal point.

• Literal Text to Ignore — This block must match the specified text immediately before or after the
conversion specifier.

Example: Hell%s reads "Hello!" as "o!".

1 Blocks

1-2186

Length Specifiers

The Scan String block supports the h and l length subspecifiers. These specifiers can change
according to the Configuration Parameters > Hardware Implementation > Number of bits
settings.

Length i u f e g s c
No length specifier int unsigned int single string
h short unsigned short — —
l long unsigned long double —

Notes for Specifiers that Specify Integer Data Types (d, u)

• Target int, long, short type sizes are controlled by settings in the Configuration Parameters
> Hardware Implementation pane. For example, if the target int is 32 bits and the specifier is
%u, then the expected input type will be uint32. For this example, the Scan String block requires
that the output type be exactly int32. It cannot be any other data type.

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
sscanf | ASCII to String | Compose String | Scan String | String Compare | String Concatenate |
String Constant | String Find | String Length | String to Enum | String to ASCII | String to Single |
Substring | To String

Topics
“Display and Extract Coordinate Data”
“Simulink Strings”

 String to Double

1-2187

String to Enum
Input string signal to enumerated signal

Libraries:
Simulink / String

Description
The String To Enum block converts the input string signal to an enumerated signal. To use this block,
create an enumeration class in the current folder and use that class name in the Output data type
parameter.

Ports
Input

Port_1 — Input string signal
scalar

Input string signal, specified as a scalar.
Data Types: string

Output

Output 1 — Enumerated number
scalar

Enumerated number associated with the input string, specified as a scalar.
Data Types: enumerated

Parameters
Output data type — Output data type
SlDemoSign (default) | <data type expression>

Use a data type object, for example, Simulink.IntEnumType.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the data type attributes. See “Specify Data Types Using Data Type Assistant” in the Simulink
User's Guide for more information.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector

1 Blocks

1-2188

Values: 'Enum: SlDemoSign' | <data type expression>
Default: 'Enum: SlDemoSign'

Mode — Category of data
Enumerated (default) | <data type expression>

Use a data type object, for example, Simulink.IntEnumType.

• Enumerated — Enumerated data class object.
• <data type expression> — Expressions that evaluate to data types. Selecting Expression

enables a second menu/text box to the right, where you can enter the expression.

Dependency

Clicking the Show data type assistant button enables this parameter.

Block Characteristics
Data Types enumerated | string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate | String
Constant | String Find | String Length | String to Single | String to Double | String To ASCII |
Substring | To String

Topics
“Convert String to Enumerated Data Type”
“Simulink Strings”

 String to Enum

1-2189

String to Single
Convert string signal to single signal

Libraries:
Simulink / String

Description
Scan String scans an input string and converts it to signals per the format specified by the Format
parameter. The block converts values to their decimal (base 10) representation and outputs the
results as numeric or string signals. For example, if the Format parameter is set to "%s is %f.",
the block outputs two parts, a string signal and a single signal. If the input is the string "Pi is
3.14", the two outputs are "Pi" and "3.14".

The Scan String, String to Double, and String to Single blocks are identical blocks. When configured
for String to Double, the block converts the input string signal to a double numerical output. When
configured for String to Single, the block converts the input string signal to a single numerical
output.

For code generation, configure models that contain this block for non-finite number support by
selecting the Configuration Parameters > Code Generation > Interface > Support non-finite
numbers check box.

Ports
Input

Port_1 — Input string
scalar

Input string, specified as a scalar.
Data Types: string

Output

d — Output data whose format matches %d format
scalar

Output data whose format matches specified format, defined as a scalar. Total maximum number of
outputs is 128.

If the block cannot match an input string to a format operator specified in Format, it returns a
warning and outputs an appropriate value (0 or "") for each unmatched format operator.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

f — Output data whose format matches %f format
scalar

1 Blocks

1-2190

Output data whose format matches the %f format, specified as a scalar. Total maximum number of
outputs is 128.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Port_N — Output data whose format matches N format
scalar

Output data whose format matches N format, specified as a scalar. Total maximum number of outputs
is 128.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Parameters
Format — Format operator for input
"%f" (default) | format string | character vector

Format operator for input, specified as a scalar. If the block cannot match the input string with the
specified format, it returns 0. The return of 0 differs from the sscanf function return, which is an
empty matrix if the function cannot match the input with the specified format.

• For the String to Double block, this parameter has a default value of %lf.
• For the String to Single block, this parameter has a default value of %f.

For more information about acceptable format operators, see the Algorithms section.

Programmatic Use
Block Parameter: Format
Type: character vector
Values: '<filename>'
Default: '"%f"'

Block Characteristics
Data Types double | integer | single | string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
The Scan String block uses this format specifier prototype:

%[width][length]specifier

 String to Single

1-2191

Numeric Fields

This table lists available conversion specifiers to convert text to numeric outputs. The block converts
values to their decimal (base 10) representation.

Output Port Data Type Conversion Specifier Description
Integer, signed %d Base 10
Integer, unsigned %u Base 10
Floating-point number %f, %e, or %g Floating-point values. Input

fields can contain NaN (case
sensitive). Input fields that
represents floating-point
numbers can include leading +
or - symbols and exponential
notation using e or E. The
conversion specifiers %f, %e,
and %g all treat input fields the
same way.

Character Fields

This table lists available conversion specifiers to convert text so that the output is a character array.

Character Field Type Conversion
Specifier

Description

String scalar %s Read the text until the block encounters white
space.

%c Read any single character, including white space. To
read multiple characters at a time, specify field
width. For example, %10c reads 10 characters at a
time.

Pattern-matching %[...] Read only characters in the brackets up to the first
nonmatching character or white space.

Example: %[mus] reads 'summer' as 'summ'.
%[^...] Read any characters not in the brackets up to the

first matching character or white space.

Example: %[^m] reads 'summer' as 'su'.

Optional Operators

• Field Width — To specify the maximum number of digits or text characters to read at a time, insert
a number after the percent character. For example, %10s reads up to 10 characters at a time,
including white space. %4f reads up to four digits at a time, including the decimal point.

• Literal Text to Ignore — This block must match the specified text immediately before or after the
conversion specifier.

Example: Hell%s reads "Hello!" as "o!".

1 Blocks

1-2192

Length Specifiers

The Scan String block supports the h and l length subspecifiers. These specifiers can change
according to the Configuration Parameters > Hardware Implementation > Number of bits
settings.

Length i u f e g s c
No length specifier int unsigned int single string
h short unsigned short — —
l long unsigned long double —

Notes for Specifiers that Specify Integer Data Types (d, u)

• Target int, long, short type sizes are controlled by settings in the Configuration Parameters
> Hardware Implementation pane. For example, if the target int is 32 bits and the specifier is
%u, then the expected input type will be uint32. For this example, the Scan String block requires
that the output type be exactly int32. It cannot be any other data type.

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
sscanf | ASCII to String | Compose String | Scan String | String Compare | String Concatenate |
String Constant | String Find | String Length | String to ASCII | String to Double | String to Enum |
Substring | To String

Topics
“Display and Extract Coordinate Data”
“Simulink Strings”

 String to Single

1-2193

Submatrix
Select subset of elements (submatrix) from matrix input

Libraries:
Simulink / Matrix Operations

Description
The Submatrix block extracts a contiguous submatrix, y, from the M-by-N input matrix u. For more
information about selecting the rows and columns to extract, see “Range Specification Options” on
page 1-2198.

Ports
Input

Port_1 — Input signal
vector | matrix

Input signal, from which the block extracts the specified submatrix.

This block supports Simulink virtual buses.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Selected submatrix
vector | matrix

Submatrix selected from the input signal. The data type of the output is the same as the input.

This block supports Simulink virtual buses.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Parameters
For more information about selecting the subset of elements to form the submatrix, see “Range
Specification Options” on page 1-2198.

Row span — Range of rows
All rows (default) | One row | Range of rows

The range of input rows to be retained in the output.

Row — First row of output
First (default) | Index | Offset from last | Last | Offset from middle | Middle

1 Blocks

1-2194

The input row to be used as the first and only row of the output.
Dependencies

To enable this parameter, set Row span to One row.

Starting row — First row of output
First (default) | Index | Offset from last | Last | Offset from middle | Middle

The input row to be used as the first row of the output.
Dependencies

To enable this parameter, set Row span to Range of rows.

Row index — Index of first row
1 (default) | positive integer

The index of the input row to be used as the first and only row of the output, specified as an integer
greater than or equal to one.
Dependencies

To enable this parameter, set Row span to One row and Row to Index.

Starting row index — Index of first row
1 (default) | positive integer

The index of the input row to be used as the first row of the output, specified as an integer greater
than or equal to one.
Dependencies

To enable this parameter, set Row span to Range of rows and Starting row to Index.

Row offset — Offset of first row
1 (default) | positive integer

The offset of the input row to be used as the first and only row of the output, specified as an integer
greater than or equal to one.
Dependencies

To enable this parameter, set Row span to One row and Row to Offset from last or Offset
from middle.

Starting row offset — Offset of first row
1 (default) | positive integer

The offset of the input row to be used as the first row of the output, specified as an integer greater
than or equal to one.
Dependencies

To enable this parameter, set Row span to Range of rows and Starting row to Offset from
last or Offset from middle.

Ending row — Last row
Last (default) | Index | Offset from last | Offset from middle | Middle

 Submatrix

1-2195

The input row to be used as the last row of the output.

Dependencies

To enable this parameter, set Row span to Range of rows and set Starting row to any value
except Last.

Ending row index — Index of last row
1 (default) | positive integer

The index of the input row to be used as the last row of the output, specified as an integer greater
than or equal to one.

Dependencies

To enable this parameter, set Ending row to Index.

Ending row offset — Offset of last row
1 (default) | positive integer

The offset of the input row to be used as the last row of the output.

Dependencies

To enable this parameter, set Ending row to Offset from middle or Offset from last.

Column span — Range of input columns
All columns (default) | One column | Range of columns

The range of input columns to be retained in the output.

Column — First column
First (default) | Index | Offset from last | Last | Offset from middle | Middle

The input column to be used as the first and only column of the output.

Dependencies

To enable this parameter, set Column span to One column.

Starting column — First column
First (default) | Index | Offset from last | Last | Offset from middle | Middle

The input column to be used as the first column of the output.

Dependencies

To enable this parameter, set Column span to Range of columns.

Starting column index — Index of first column
1 (default) | positive integer

The index of the input column to be used as the first column of the output, specified as an integer
greater than or equal to one.

Dependencies

To enable this parameter, set Column span to Range of columns and Starting column to Index.

1 Blocks

1-2196

Column index — Index of first column
1 (default) | positive integer

The index of the input column to be used as the first and only column of the output, specified as an
integer greater than or equal to one.

Dependencies

To enable this parameter, set Column span to One column and Column to Index.

Column offset — Offset of first column
1 (default) | positive integer

The offset of the input column to be used as the first and only column of the output, specified as an
integer greater than or equal to one.

Dependencies

To enable this parameter, set Column span to One column and Column to Offset from last or
Offset from middle.

Starting column offset — Offset of first column
1 (default) | positive integer

The offset of the input column to be used as the first column of the output, specified as an integer
greater than or equal to one.

Dependencies

To enable this parameter, set Column span to Range of columns and Starting column to
Offset from last or Offset from middle.

Ending column — Last column
Last (default) | Index | Offset from last | Offset from middle | Middle

The input column to be used as the last column of the output.

Dependencies

To enable this parameter, set Column span to Range of columns and set Starting column to any
value except Last.

Ending column index — Index of last column
1 (default) | positive integer

The index of the input column to be used as the last column of the output, specified as an integer
greater than or equal to one.

Dependencies

To enable this parameter, set Ending column to Index.

Ending column offset — Offset of last column
1 (default) | positive integer

The offset of the input column to be used as the last column of the output.

 Submatrix

1-2197

Dependencies

To enable this parameter, set Ending column to Offset from middle or Offset from last.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Range Specification Options

The block treats length-M unoriented vector input as an M-by-1 matrix. The Row span parameter
provides three options for specifying the range of rows in u to be retained in submatrix output y:

• All rows

Specifies that y contains all M rows of u.
• One row

Specifies that y contains only one row from u. Selecting One row enables the Row parameter to
allow selection of the desired row.

• Range of rows

Specifies that y contains a range of rows from u. Selecting Range of rows enables the Starting
row and Ending row parameters to allow selection of the desired range of rows.

The Column span parameter contains a corresponding set of three options for specifying the range
of columns in u to be retained in submatrix y: All columns, One column, or Range of columns.
The One column option enables the Column parameter, and Range of columns options enable
the Starting column and Ending column parameters.

When you select One row or Range of rows from the Row span parameter, you specify the desired
row or range of rows in the Row parameter, or the Starting row and Ending row parameters.
Similarly, when you select One column or Range of columns from the Column span parameter,
you specify the desired column or range of columns in the Column parameter, or the Starting
column and Ending column parameters.

The Row, Column, Starting row, or Starting column can be specified in six ways:

• First

For rows, this specifies that the first row of u should be used as the first row of y. When all
columns are to be included, this is equivalent to y(1,:) = u(1,:).

1 Blocks

1-2198

For columns, this specifies that the first column of u should be used as the first column of y. When
all rows are to be included, this is equivalent to y(:,1) = u(:,1).

• Index

For rows, this specifies that the row of u, firstrow, forward-indexed by the Row index
parameter or the Starting row index parameter, should be used as the first row of y. When all
columns are to be included, this is equivalent to y(1,:) = u(firstrow,:).

For columns, this specifies that the column of u, forward-indexed by the Column index parameter
or the Starting column index parameter, firstcol, should be used as the first column of y.
When all rows are to be included, this is equivalent to y(:,1) = u(:,firstcol).

• Offset from last

For rows, this specifies that the row of u offset from row M by the Row offset or Starting row
offset parameter, firstrow, should be used as the first row of y. When all columns are to be
included, this is equivalent to y(1,:) = u(M-firstrow,:).

For columns, this specifies that the column of u offset from column N by the Column offset or
Starting column offset parameter, firstcol, should be used as the first column of y. When all
rows are to be included, this is equivalent to y(:,1) = u(:,N-firstcol).

• Last

For rows, this specifies that the last row of u should be used as the only row of y. When all
columns are to be included, this is equivalent to y = u(M,:).

For columns, this specifies that the last column of u should be used as the only column of y. When
all rows are to be included, this is equivalent to y = u(:,N).

• Offset from middle

When you select this option, the block selects the first row or column of the output y by adding
the specified offset to the middle row or column of the input u. When the number, X, of input rows
or columns is even, the block defines the middle as X/2 +1. When the number of input rows or
columns is odd, the block defines the middle as ceil(X/2).

When all columns are to be included, the following code defines the starting row: y(1,:) =
u(MiddleRow+Offset,:), where Offset is the value of the Row offset or Starting row offset
parameter. When all rows are to be included, the following code defines the starting column:
y(1,:) = u(:,MiddleColumn+Offset), where Offset is the value of the Column offset or
Starting column offset parameter.

• Middle

When you select this option, the block uses the middle row or column of the input u as the first
row or column of the output y. When the number, X, of input rows or columns is even, the block
defines the middle as X/2 +1. When the number of input rows or columns is odd, the block defines
the middle as ceil(X/2).

When all columns are to be included, the following code defines the starting row: y =
u(MiddleRow,:). When all rows are to be included, the following code defines the starting
column: y = u(:,MiddleColumn).

The Ending row or Ending column can similarly be specified in five ways:

 Submatrix

1-2199

• Index

For rows, this specifies that the row of u forward-indexed by the Ending row index parameter,
lastrow, should be used as the last row of y. When all columns are to be included, this is
equivalent to y(end,:) = u(lastrow,:).

For columns, this specifies that the column of u forward-indexed by the Ending column index
parameter, lastcol, should be used as the last column of y. When all rows are to be included,
this is equivalent to y(:,end) = u(:,lastcol).

• Offset from last

For rows, this specifies that the row of u offset from row M by the Ending row offset parameter,
lastrow, should be used as the last row of y. When all columns are to be included, this is
equivalent to y(end,:) = u(M-lastrow,:).

For columns, this specifies that the column of u offset from column N by the Ending column
offset parameter, lastcol, should be used as the last column of y. When all rows are to be
included, this is equivalent to y(:,end) = u(:,N-lastcol).

• Last

For rows, this specifies that the last row of u should be used as the last row of y. When all columns
are to be included, this is equivalent to y(end,:) = u(M,:).

For columns, this specifies that the last column of u should be used as the last column of y. When
all rows are to be included, this is equivalent to y(:,end) = u(:,N).

• Offset from middle

When you select this option, the block selects the last row or column of the output y by adding the
specified offset to the middle row or column of the input u. When the number, X, of input rows or
columns is even, the block defines the middle as X/2 +1. When the number of input rows or
columns is odd, the block defines the middle as ceil(X/2).

When all columns are to be included, the following code defines the ending row: y(end,:) =
u(MiddleRow+Offset,:), where Offset is the value of the Ending row offset parameter.
When all rows are to be included, the following code defines the ending column: y(:,end) =
u(:,MiddleColumn+Offset), where Offset is the value of the Ending column offset
parameter.

• Middle

When you select this option, the block uses the middle row or column of the input u as the last row
or column of the output y. When the number, X, of input rows or columns is even, the block
defines the middle as X/2 +1. When the number of input rows or columns is odd, the block defines
the middle as ceil(X/2).

When all columns are to be included, the following code defines the ending row: y(end,:) =
u(MiddleRow,:). When all rows are to be included, the following code defines the ending
column: y(:,end) = u(:,MiddleColumn).

Version History
Introduced before R2006a

1 Blocks

1-2200

R2021b: Create Submatrix Block Moved to Simulink Matrix Operations Library
Behavior changed in R2021b

The Submatrix block has been moved from the DSP System Toolbox > Math Functions >
Matrices and Linear Algebra > Matrix Operations library to the Simulink > Matrix
Operationslibrary. All existing models continue to work.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on the memcpy or memset function (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Variable Selector | Reshape | Selector

Functions
reshape

Topics
“Split Multichannel Signals into Several Multichannel Signals” (DSP System Toolbox)

 Submatrix

1-2201

Substring
Extract substring from input string signal

Libraries:
Simulink / String

Description
The Substring block extracts a substring from the input string signal. The block extracts the
substring starting from the letter corresponding to idx and includes a len number of characters
starting at idx. For example, if the input string is "hello 123", input idx is 1, and input len is 5, the
output is "hello". The block extracts a substring starting at 1 and the next 4 characters for a total
of 5 characters (hello).

Ports
Input

str — Input string signal
scalar

Input string signal, specified as a string.
Data Types: string

idx — Start of string to extract
scalar

Start of string to extract, specified as a positive scalar integer.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

len — Length of string to extract
scalar

Length of string to extract, specified as a scalar. If len causes the substring to extend beyond the end
of the string, the output signal contains few than len characters.
Data Types: uint8 | uint16 | uint32

Output

sub — Extracted string
scalar

Extracted string, specified as a scalar.
Data Types: string

1 Blocks

1-2202

Parameters
Inherit maximum length from input — Use same maximum length as input string
on (default) | off

Use same maximum length as the input string source block.

 on
Use same maximum length. The substring includes the characters starting from the character at
idx to the end of the string.

 off
Do not use same maximum length.

Dependencies

Selecting this check box enables the Output data type parameter.

Programmatic Use
Block Parameter: InheritMaximumLength
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Output data type — Output data type
string (default) | <data type expression>

Output data type, specified using the string data type to specify a string with no maximum length.

To specify a string data type with a maximum length, specify stringtype(N). For example,
stringtype(31) creates a string data type with a maximum length of 31 characters.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the data type attributes. See “Specify Data Types Using Data Type Assistant” in the Simulink
User's Guide for more information.

Dependencies

To enable this parameter, select Inherit maximum length from input.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'string' | <data type expression>
Default: 'string'

Output string from 'idx' to end — Extract string from idx to end
off (default) | on

Extract string from idx to end of input string.

 Substring

1-2203

 on
Extract string from idx to end of input string.

 off
Do not extract string from idx to end of input string.

Dependencies

Selecting this parameter removes the third input port.

Programmatic Use
Block Parameter: StringFromIdxToEnd
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types integer | string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

1 Blocks

1-2204

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate | String
Constant | String Find | String Length | String to Double | String to Single | String to Enum | String to
ASCII | To String

Topics
“Extract a String”
“Simulink Strings”

 Substring

1-2205

Subsystem
Group blocks to create model hierarchy

Libraries:
Simulink / Commonly Used Blocks
Simulink / Ports & Subsystems
HDL Coder / Ports & Subsystems

Description
A Subsystem block contains a subset of blocks within a model or system. The Subsystem block can
represent a virtual subsystem or a nonvirtual subsystem.

• Nonvirtual subsystem – Control when the contents of the subsystem are evaluated as a single unit
(atomic execution). Create conditionally executed subsystems that run only when an event occurs
on a triggering, function-call, action, or enabling input (see “Conditionally Executed Subsystems
and Models”).

• Virtual subsystem – Subsystem is neither conditionally nor atomically executed. Virtual
subsystems do not have checksums. To determine if a subsystem is virtual, use the get_param
function for the Boolean block parameter IsSubsystemVirtual.

An Atomic Subsystem block is a Subsystem block with the block parameter Treat as atomic unit
selected, representing a nonvirtual subsystem.

A Code Reuse Subsystem block is a Subsystem block with the parameter Treat as atomic unit
selected and the parameter Function packaging set to Reusable function, specifying the
function code generation format for the subsystem.

To create a subsystem, do one of the following:

• Copy a Subsystem block from the Ports & Subsystems library into your model. Then add blocks to
the subsystem by opening the Subsystem block and copying blocks into it.

• Select all blocks and lines that make up the subsystem, and then in the Multiple tab, click Create
Subsystem. Simulink replaces the blocks with a Subsystem block, along with the necessary Inport
and Outport blocks to reflect signals entering and leaving the subsystem.

The number of input ports drawn on the Subsystem block icon corresponds to the number of Inport
blocks in the subsystem. Similarly, the number of output ports drawn on the block corresponds to the
number of Outport blocks in the subsystem.

The Subsystem block supports signal label propagation through subsystem Inport and Outport blocks.

Note A referenced subsystem is a subsystem stored in a separate file that is referenced using a
Subsystem Reference block. To reuse that subsystem, add multiple Subsystem Reference blocks that
reference that same subsystem file. A referenced subsystem behaves identically to a regular
subsystem during run-time.

1 Blocks

1-2206

Ports
Input

In — Signal input to a subsystem
scalar | vector | matrix

Placing an Inport block in a subsystem adds an external input port to the Subsystem block. The port
label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

reinit — Control signal for subsystem reinitialize event
scalar

A reinitialize event port provides a function-call control signal that triggers a subsystem reinitialize
event, which resets the states of the subsystem.

The subsystem must contain a Reinitialize Function block that corresponds to each subsystem
reinitialize event. For more information, see “Using Initialize, Reinitialize, Reset, and Terminate
Functions”.

To specify the port name, use the Event name parameter of the Event Listener block in the
Reinitialize Function block.

Dependencies

To enable this type of port, select the Show subsystem reinitialize ports check box.

Output

Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem adds an output port from the Subsystem block. The port
label on the Subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
Main

Show port labels — Display options for port labels

FromPortIcon (default) | FromPortBlockName | SignalName

Select how to display port labels on the Subsystem block icon.

 Subsystem

1-2207

none
Do not display port labels.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the Subsystem
block. Otherwise, display the port block name or the port number if the block name is a default
name.

FromPortBlockName
Display the name of the corresponding port block on the Subsystem block.

SignalName
If the signal connected to the port is named, display the name of the signal on the Subsystem
block. Otherwise, display the name of the corresponding port block.

For port label editing on Subsystem blocks, see “Edit Port Labels on Subsystems”.

Programmatic Use
Parameter: ShowPortLabels
Type: character vector
Value: 'FromPortIcon' | 'FromPortBlockName' | 'SignalName'
Default: 'FromPortIcon'

Read/Write permissions — Levels of access to contents of subsystem

ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the subsystem.

ReadWrite
Enable opening and modification of subsystem contents.

ReadOnly
Enable opening but not modification of the subsystem. If the subsystem resides in a block library,
you can create and open links to the subsystem and can make and modify local copies of the
subsystem but cannot change the permissions or modify the contents of the original library
instance.

NoReadOrWrite
Disable opening or modification of subsystem. If the subsystem resides in a library, you can create
links to the subsystem in a model but cannot open, modify, change permissions, or create local
copies of the subsystem.

Note You do not receive a response if you attempt to view the contents of a subsystem whose Read/
Write permissions parameter is set to NoReadOrWrite. For example, when double-clicking such a
subsystem, Simulink does not open the subsystem and does not display any messages.

Programmatic Use
Parameter: Permissions
Type: character vector
Value: 'ReadWrite' | 'ReadOnly' | 'NoReadOrWrite'
Default: 'ReadWrite'

1 Blocks

1-2208

Name of error callback function — Name of function to be called if error occurs

'' (default) | function name

Enter name of a function to be called if an error occurs while Simulink is executing the subsystem.

Simulink passes two arguments to the function: the handle of the subsystem and a character vector
that specifies the error type. If no function is specified, Simulink displays a generic error message if
executing the subsystem causes an error.

Programmatic Use
Parameter: ErrorFcn
Type: character vector
Value: '' | '<function name>'
Default: ''

Permit hierarchical resolution — Resolution for workspace variable names

All (default) | ExplicitOnly | None

Select whether to resolve names of workspace variables referenced by this subsystem.

For more information, see “Symbol Resolution” and “Symbol Resolution Process”.

All
Resolve all names of workspace variables used by this subsystem, including those used to specify
block parameter values and Simulink data objects (for example, Simulink.Signal objects).

ExplicitOnly
Resolve only names of workspace variables used to specify block parameter values, data store
memory (where no block exists), signals, and states marked as “must resolve”.

None
Do not resolve any workspace variable names.

Programmatic Use
Parameter: PermitHierarchicalResolution
Type: character vector
Value: 'All' | 'ExplicitOnly' | 'None'
Default: 'All'

Treat as atomic unit — Option to execute subsystem as one unit

off (default) | on

Causes Simulink to treat the subsystem as a unit when determining the execution order of block
methods.

 off
Treat all blocks in the subsystem as being at the same level in the model hierarchy as the
subsystem when determining block method execution order. This can cause execution of methods
of blocks in the subsystem to be interleaved with execution of methods of blocks outside the
subsystem.

 Subsystem

1-2209

 on
Treat the subsystem as a unit when determining the execution order of block methods. For
example, when it needs to compute the output of the subsystem, Simulink invokes the output
methods of all the blocks in the subsystem before invoking the output methods of other blocks at
the same level as the Subsystem block.

Programmatic Use
Parameter: TreatAsAtomicUnit
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Show subsystem reinitialize ports — Option to display reinitialize event ports

off (default) | on

Select this parameter to display the reinitialize event ports. Clear this parameter to remove the ports.
Dependencies

To enable this parameter, select the Treat as atomic unit check box.
Programmatic Use
Block parameter: ShowSubsystemReinitializePorts
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Minimize algebraic loop occurrences — Option to eliminate artificial algebraic loops

off (default) | on

Try to eliminate any artificial algebraic loops that include the atomic subsystem

 off
Do not try to eliminate any artificial algebraic loops that include the atomic subsystem.

 on
Try to eliminate any artificial algebraic loops that include the atomic subsystem.

Dependencies

To enable this parameter, select the Treat as atomic unit parameter.
Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Schedule As — Type of scheduling

Sample Time (default) | Periodic Partition | Aperiodic Partition

Specify how to schedule the subsystem.

1 Blocks

1-2210

Sample time
Specify whether all blocks in this subsystem must run at the same rate or can run at different
rates.

Periodic Partition
Schedule the subsystem as a periodic partition. Specify a partition name and a sample time
corresponding to the rate at which the partition runs.

Aperiodic Partition
Schedule the subsystem as an aperiodic partition. Specify a partition name.

Dependencies

To enable this parameter, select the Treat as atomic unit parameter.

Programmatic Use
Parameter: ScheduleAs
Type: character vector
Value: 'SampleTime' | 'PeriodicParition' | 'AperiodicPartition'
Default: 'SampleTime'

Partition Name — Name of partition

character vector

Specify name of the partition for the subsystem.

Dependencies

To enable this parameter, select the Treat as atomic unit parameter, and set Schedule As to
Periodic Partition or Aperiodic Partition.

Programmatic Use
Parameter: PartitionName
Type: character vector
Value: ''
Default: ''

Sample time — Time interval

-1 (default) | [Ts 0]

Specify whether all blocks in this subsystem must run at the same rate or can run at different rates.

• If the blocks in the subsystem can run at different rates, specify the subsystem sample time as
inherited (-1).

• If all blocks must run at the same rate, specify the sample time corresponding to this rate as the
value of the Sample time parameter.

• If any of the blocks in the subsystem specify a different sample time (other than -1 or inf),
Simulink displays an error message when you update or simulate the model. For example, suppose
all the blocks in the subsystem must run 5 times a second. To ensure this, specify the sample time
of the subsystem as 0.2. In this example, if any of the blocks in the subsystem specify a sample
time other than 0.2, -1, or inf, Simulink displays an error when you update or simulate the
model.

 Subsystem

1-2211

-1
Specify inherited sample time. Use this sample time if the blocks in the subsystem can run at
different rates.

[Ts 0]
Specify periodic sample time.

Dependencies

To enable this parameter, select the Treat as atomic unit parameter.

Programmatic Use
Parameter: SystemSampleTime
Type: character vector
Value: '-1' | '[Ts 0]'
Default: '-1'

Variant control — Variant control (condition) expression

Variant (default) | logical expression

Specify variant control (condition) expression that executes a variant Simulink Function block when
the expression evaluates to true.

For more information, see Simulink.Variant.

Variant
Default name for a logical (Boolean) expression.

logical expression
A logical (Boolean) expression or a Simulink.Variant object representing a logical expression.

The function is activated when the expression evaluates to true.

If you want to generate code for your model, define the variables in the expression as
Simulink.Parameter objects.

Dependencies

Enable this parameter by adding a Subsystem block inside a Variant Subsystem block.

Programmatic Use
Block parameter: VariantControl
Type: character vector
Value: 'Variant' | '<logical expression>'
Default: 'Variant'

Treat as grouped when propagating variant conditions — Option to treat subsystem as unit
when propagating variant conditions

on (default) | off

Causes Simulink to treat the subsystem as a unit when propagating variant conditions from Variant
Source blocks or to Variant Sink blocks.

1 Blocks

1-2212

 on
Simulink treats the subsystem as a unit when propagating variant conditions from Variant Source
blocks or to Variant Sink blocks. For example, when Simulink computes the variant condition of
the subsystem, it propagates that condition to all the blocks in the subsystem.

 off
Simulink treats all blocks in the subsystem as being at the same level in the model hierarchy as
the subsystem itself when determining their variant condition.

Programmatic Use
Parameter: TreatAsGroupedWhenPropagatingVariantConditions
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Code Generation

Parameters on the Code Generation tab require a Simulink Coder or Embedded Coder license.

Function packaging — Code format

Auto (default) | Inline | Nonreusable function | Reusable function

Select the code format to be generated for an atomic (nonvirtual) subsystem.

Auto
Simulink Coder and Embedded Coder choose the optimal format for you based on the type and
number of instances of the subsystem that exist in the model.

Inline
Simulink Coder and Embedded Coder inline the subsystem unconditionally.

Nonreusable function
If Filename options is set to Auto, Simulink Coder and Embedded Coder package separate
functions in the model file. If File name options is set to Use subsystem name, Use
function name, or User specified using different file names, Simulink Coder and Embedded
Coder package separate functions in separate files.

Subsystems with this setting generate functions that might have arguments depending on the
“Function interface” on page 1-0 parameter setting. You can name the generated function and
file using parameters “Function name” on page 1-0 and “File name (no extension)” on page 1-
0 . These functions are not reentrant.

Reusable function
Simulink Coder and Embedded Coder generate a function with arguments that allows reuse of
subsystem code when a model includes multiple instances of the subsystem.

This option also generates a function with arguments that allows subsystem code to be reused in
the generated code of a model reference hierarchy that includes multiple instances of a
subsystem across referenced models. In this case, the subsystem must be in a library.

For more information, see:

 Subsystem

1-2213

• “Generate Code and Executables for Individual Subsystems” (Simulink Coder)
• “Generate Inlined Subsystem Code” (Simulink Coder)
• “Generate Subsystem Code as Separate Function and Files” (Simulink Coder)
• “Generate Reusable Code from Library Subsystems Shared Across Models” (Simulink Coder)

Tips

• When you want multiple instances of a subsystem to be represented as one reusable function, you
can designate each one of them as Auto or as Reusable function. It is best to use one or the
other, as using both creates two reusable functions, one for each designation. The outcomes of
these choices differ only when reuse is not possible. Selecting Auto does not allow control of the
function or file name for the subsystem code.

• The Reusable function and Auto options both try to determine if multiple instances of a
subsystem exist and if the code can be reused. The difference between the options' behavior is
that when reuse is not possible:

• Auto yields inlined code, or if circumstances prohibit inlining, separate functions for each
subsystem instance.

• Reusable function yields a separate function with arguments for each subsystem instance
in the model.

• If you select Reusable function while your generated code is under source control, set File
name options to Use subsystem name, Use function name, or User specified.
Otherwise, the names of your code files change whenever you modify your model, which prevents
source control on your files.

• If you select an option other than Auto or Inline and the model configuration parameter States,
the code generator produces separate output and update methods. The code generator does not
take into account the Combine output and update methods for code generation and
simulation specification.

Dependencies

• This parameter requires Simulink Coder for code generation.
• To enable this parameter, select Treat as atomic unit.

Programmatic Use
Parameter: RTWSystemCode
Type: character vector
Value: 'Auto' | 'Inline' | 'Nonreusable function' | 'Reusable function'
Default: 'Auto'

Function name options — How to name generated function

Auto (default) | Use subsystem name | User specified

Select how Simulink Coder names the function it generates for the subsystem.

If you have an Embedded Coder license, you can control function names with options on the
Configuration Parameter Code Generation > Identifiers pane.

1 Blocks

1-2214

Auto
Assign a unique function name using the default naming convention, model_subsystem(),
where model is the name of the model and subsystem is the name of the subsystem (or that of
an identical one when code is being reused).

If you select Reusable function for the Function packaging parameter and there are
multiple instances of the reusable subsystem in a model reference hierarchy, in order to generate
reusable code for the subsystem, Function name options must be set to Auto.

Use subsystem name
Use the subsystem name as the function name. By default, the function name uses the naming
convention model_subsystem.

Note When a subsystem is in a library block and the subsystem parameter “Function packaging”
on page 1-0 is set to Reusable function, if you set the Use subsystem name option, the
code generator uses the name of the library block for the subsystem function name and file name.

User specified
Enable the Function name field. Enter any legal C or C++ function name, which must be
unique.

For more information, see “Generate Subsystem Code as Separate Function and Files” (Simulink
Coder).

Dependencies

• This parameter requires a Simulink Coder license.
• To enable this parameter, set Function packaging to Nonreusable function or Reusable

function.

Programmatic Use
Parameter: RTWFcnNameOpts
Type: character vector
Value: 'Auto' | 'Use subsystem name' | 'User specified'
Default: 'Auto'

Function name — Name of function for subsystem code

'' (default) | function name

Specify a unique, valid C or C++ function name for subsystem code.

Use this parameter if you want to give the function a specific name instead of allowing the Simulink
Coder code generator to assign its own autogenerated name or use the subsystem name. For more
information, see “Generate Subsystem Code as Separate Function and Files” (Simulink Coder).

Dependencies

• This parameter requires a Simulink Coder license.
• To enable this parameter, set the Function name options parameter to User specified.

 Subsystem

1-2215

Programmatic Use
Parameter: RTWFcnName
Type: character vector
Value: '' | '<function name>'
Default: ''

File name options — How to name generated file

Auto (default) | Use subsystem name | Use function name | User specified

Select how Simulink Coder names the separate file for the function it generates for the subsystem.

Auto
Depending on the configuration of the subsystem and how many instances are in the model, Auto
yields different results:

• If the code generator does not generate a separate file for the subsystem, the subsystem code
is generated within the code module generated from the subsystem parent system. If the
subsystem parent is the model itself, the subsystem code is generated within model.c or
model.cpp.

• If you select Reusable function for the Function packaging parameter and your
generated code is under source control, consider specifying a File name options value other
than Auto. This prevents the generated file name from changing due to unrelated model
modifications, which is problematic for using source control to manage configurations.

• If you select Reusable function for the Function packaging parameter and there are
multiple instances of the reusable subsystem in a model reference hierarchy, in order to
generate reusable code for the subsystem, File name options must be set to Auto.

Use subsystem name
The code generator generates a separate file, using the subsystem (or library block) name as the
file name.

Note When File name options is set to Use subsystem name, the subsystem file name is
mangled if the model contains Model blocks, or if a model reference target is being generated for
the model. In these situations, the file name for the subsystem consists of the subsystem name
prefixed by the model name.

Use function name
The code generator uses the function name specified by Function name options as the file
name.

User specified
This option enables the File name (no extension) text entry field. The code generator uses the
name you enter as the file name. Enter any file name, but do not include the .c or .cpp (or any
other) extension. This file name need not be unique.

Note While a subsystem source file name need not be unique, you must avoid giving nonunique
names that result in cyclic dependencies (for example, sys_a.h includes sys_b.h, sys_b.h
includes sys_c.h, and sys_c.h includes sys_a.h).

1 Blocks

1-2216

Dependencies

• This parameter requires a Simulink Coder license.
• To enable this parameter, set Function packaging to Nonreusable function or Reusable

function.

Programmatic Use
Parameter: RTWFileNameOpts
Type: character vector
Value: 'Auto' | 'Use subsystem name' | 'Use function name' | 'User specified'
Default: 'Auto'

File name (no extension) — Name of generated file

'' (default) | file name

The file name that you specify does not have to be unique. However, avoid giving non-unique names
that result in cyclic dependencies (for example, sys_a.h includes sys_b.h, sys_b.h includes
sys_c.h, and sys_c.h includes sys_a.h).

For more information, see “Generate Subsystem Code as Separate Function and Files” (Simulink
Coder).

Dependencies

• This parameter requires a Simulink Coder license.
• To enable this parameter, set File name options to User specified.

Programmatic Use
Parameter: RTWFileName
Type: character vector
Value: '' | '<file name>'
Default: ''

Function interface — Select to use arguments with generate function

void_void (default) | Allow arguments (Optimized) | Allow arguments (Match
graphical interface)

Select to use arguments with generated function.

void_void
Generate a function without arguments and pass data as global variables. For example:

void subsystem_function(void)

Allow arguments (Optimized)
Generate a function that uses arguments instead of passing data as global variables. This
specification reduces global RAM. It might reduce code size and improve execution speed and
enable the code generator to apply additional optimizations. For example:

void subsystem_function(real_T rtu_In1, real_T rtu_In2,
 real_T *rty_Out1)

 Subsystem

1-2217

In some cases, when generating optimized code, the code generator might not generate a
function that has arguments.

Allow arguments (Match graphical interface)
Generate a function interface that uses arguments that match the Subsystem graphical block
interface. The generated function interface is predictable and does not change. A predictable
interface can be useful for debugging and testing your code and integrating with external
applications. For example, if a model has two Inports and two Outports, then the generated
function interface is:

void subsystem_function(real_T rtu_In1, real_T rtu_In2,
 real_T *rty_Out1, real_T *rty_Out2)

For more information, see:

• “Reduce Global Variables in Nonreusable Subsystem Functions” (Embedded Coder)
• “Generate Predictable Function Interface to Match Graphical Block Interface” (Embedded Coder)
• “Generate Modular Function Code for Nonvirtual Subsystems” (Embedded Coder)

Dependencies

• This parameter requires Embedded Coder and an ERT-based system target file.
• To enable this parameter, set Function packaging to Nonreusable function.

Programmatic Use
Parameter: FunctionInterfaceSpec
Type: character vector
Value: 'void_void' | 'Allow arguments (Optimized)' | 'Allow arguments (Match
graphical interface)'
Default: 'void_void'

Function with separate data — Control code generation for subsystem

off (default) | on

Generate subsystem function code in which the internal data for an atomic subsystem is separated
from its parent model and is owned by the subsystem.

 off
Do not generate subsystem function code in which the internal data for an atomic subsystem is
separated from its parent model and is owned by the subsystem.

 on
Generate subsystem function code in which the internal data for an atomic subsystem is
separated from its parent model and is owned by the subsystem. The subsystem data structure is
declared independently from the parent model data structures. A subsystem with separate data
has its own block I/O and DWork data structure. As a result, the generated code for the subsystem
is easier to trace and test. The data separation also tends to reduce the maximum size of global
data structures throughout the model, because they are split into multiple data structures.

For details on how to generate modular function code for an atomic subsystem, see “Generate
Modular Function Code for Nonvirtual Subsystems” (Embedded Coder).

1 Blocks

1-2218

For details on how to apply memory sections to atomic subsystems, see “Override Default Memory
Placement for Subsystem Functions and Data” (Embedded Coder).

Dependencies

• This parameter requires a license for Embedded Coder and an ERT-based system target file.
• To enable this parameter, set Function packaging to Nonreusable function.

Programmatic Use
Parameter: FunctionWithSeparateData
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Memory section for initialize/terminate functions — Select how to apply memory sections

Inherit from model (default) | Default | The memory section of interest

Select how Embedded Coder applies memory sections to the subsystem initialization and termination
functions.

Inherit from model
Apply the root model memory sections to the subsystem function code

Default
Do not apply memory sections to the subsystem system code, overriding any model-level
specification

The memory section of interest
Apply one of the model memory sections to the subsystem

Tips

• The possible values vary depending on what (if any) package of memory sections you have set for
the model configuration. See “Control Data and Function Placement in Memory by Inserting
Pragmas” (Embedded Coder) and “Model Configuration Parameters: Code Generation” (Simulink
Coder).

• If you have not configured the model with a package, Inherit from model is the only value
that appears. Otherwise, the list includes Default and all memory sections the model package
contains.

• These options can be useful for overriding the model memory section settings for the given
subsystem. For details on how to apply memory sections to atomic subsystems, see “Override
Default Memory Placement for Subsystem Functions and Data” (Embedded Coder).

Dependencies

• This parameter requires a license for Embedded Coder software and an ERT-based system target
file.

• To enable this parameter, set Function packaging to Nonreusable function or Reusable
function.

Programmatic Use
Parameter: RTWMemSecFuncInitTerm
Type: character vector

 Subsystem

1-2219

Value: 'Inherit from model' | 'Default' | 'The memory section of interest'
Default: 'Inherit from model'

Memory section for execution functions — Select how to apply memory sections

Inherit from model (default) | Default | The memory section of interest

Select how Embedded Coder applies memory sections to the subsystem execution functions.

Inherit from model
Apply the root model memory sections to the subsystem function code

Default
Do not apply memory sections to the subsystem system code, overriding any model-level
specification

The memory section of interest
Apply one of the model memory sections to the subsystem

Tips

• The possible values vary depending on what (if any) package of memory sections you have set for
the model configuration. See “Control Data and Function Placement in Memory by Inserting
Pragmas” (Embedded Coder) and “Model Configuration Parameters: Code Generation” (Simulink
Coder).

• If you have not configured the model with a package, Inherit from model is the only value
that appears. Otherwise, the list includes Default and all memory sections the model package
contains.

• These options can be useful for overriding the model memory section settings for the given
subsystem. For details on how to apply memory sections to atomic subsystems, see “Override
Default Memory Placement for Subsystem Functions and Data” (Embedded Coder).

Dependencies

• This parameter requires a license for Embedded Coder software and an ERT-based system target
file.

• To enable this parameter, set Function packaging to Nonreusable function or Reusable
function.

Programmatic Use
Parameter: RTWMemSecFuncExecute
Type: character vector
Value: 'Inherit from model' | 'Default' | 'The memory section of interest'
Default: 'Inherit from model'

Memory section for constants — Select how to apply memory sections

Inherit from model (default) | Default | The memory section of interest

Select how Embedded Coder applies memory sections to the subsystem constants.

Inherit from model
Apply the root model memory sections to the subsystem data

1 Blocks

1-2220

Default
Not apply memory sections to the subsystem data, overriding any model-level specification

The memory section of interest
Apply one of the model memory sections to the subsystem

Tips

• The memory section that you specify applies to the corresponding global data structures in the
generated code. For basic information about the global data structures generated for atomic
subsystems, see “Standard Data Structures” (Simulink Coder).

• The possible values vary depending on what (if any) package of memory sections you have set for
the model configuration. See “Control Data and Function Placement in Memory by Inserting
Pragmas” (Embedded Coder).

• If you have not configured the model with a package, Inherit from model is the only value
that appears. Otherwise, the list includes Default and all memory sections the model package
contains.

• These options can be useful for overriding the model memory section settings for the given
subsystem. For details on how to apply memory sections to atomic subsystems, see “Override
Default Memory Placement for Subsystem Functions and Data” (Embedded Coder).

Dependencies

• This parameter requires a license for Embedded Coder and an ERT-based system target file.
• To enable this parameter, set Function packaging to Nonreusable function and select the

Function with separate data parameter.

Programmatic Use
Parameter: RTWMemSecDataConstants
Type: character vector
Value: 'Inherit from model' | 'Default' | 'The memory section of interest'
Default: 'Inherit from model'

Memory section for internal data — Select how to apply memory sections

Inherit from model (default) | Default | The memory section of interest

Select how Embedded Coder applies memory sections to the subsystem internal data.

Inherit from model
Apply the root model memory sections to the subsystem data

Default
Not apply memory sections to the subsystem data, overriding any model-level specification

The memory section of interest
Apply one of the model memory sections to the subsystem

Tips

• The memory section that you specify applies to the corresponding global data structures in the
generated code. For basic information about the global data structures generated for atomic
subsystems, see “Standard Data Structures” (Simulink Coder).

 Subsystem

1-2221

• The possible values vary depending on what (if any) package of memory sections you have set for
the model configuration. See “Control Data and Function Placement in Memory by Inserting
Pragmas” (Embedded Coder).

• If you have not configured the model with a package, Inherit from model is the only value
that appears. Otherwise, the list includes Default and all memory sections the model package
contains.

• These options can be useful for overriding the model memory section settings for the given
subsystem. For details on how to apply memory sections to atomic subsystems, see “Override
Default Memory Placement for Subsystem Functions and Data” (Embedded Coder).

Dependencies

• This parameter requires a license for Embedded Coder and an ERT-based system target file.
• To enable this parameter, set Function packaging to Nonreusable function and select the

Function with separate data parameter.

Programmatic Use
Parameter: RTWMemSecDataInternal
Type: character vector
Value: 'Inherit from model' | 'Default' | 'The memory section of interest'
Default: 'Inherit from model'

Memory section for parameters — Select how to apply memory sections

Inherit from model (default) | Default | The memory section of interest

Select how Embedded Coder applies memory sections to the subsystem parameters.

Inherit from model
Apply the root model memory sections to the subsystem function code

Default
Not apply memory sections to the subsystem system code, overriding any model-level
specification

The memory section of interest
Apply one of the model memory sections to the subsystem

Tips

• The memory section that you specify applies to the corresponding global data structure in the
generated code. For basic information about the global data structures generated for atomic
subsystems, see “Standard Data Structures” (Simulink Coder).

• The possible values vary depending on what (if any) package of memory sections you have set for
the model configuration. See “Control Data and Function Placement in Memory by Inserting
Pragmas” (Embedded Coder).

• If you have not configured the model with a package, Inherit from model is the only value
that appears. Otherwise, the list includes Default and all memory sections the model package
contains.

• These options can be useful for overriding the model memory section settings for the given
subsystem. For details on how to apply memory sections to atomic subsystems, see “Override
Default Memory Placement for Subsystem Functions and Data” (Embedded Coder).

1 Blocks

1-2222

Dependencies

• This parameter requires a license for Embedded Coder and an ERT-based system target file.
• To enable this parameter, set Function packaging to Nonreusable function and select the

Function with separate data parameter.

Programmatic Use
Parameter: RTWMemSecDataParameters
Type: character vector
Value: 'Inherit from model' | 'Default' | 'The memory section of interest'
Default: 'Inherit from model'

Subsystem Reference

Subsystem file name — File name of referenced subsystem

string scalar | character vector

Specify the subsystem file you want to reference. For information about subsystem references, see
“Subsystem Reference”.

Dependencies

To access this parameter, in the Subsystem Reference section, click Convert.

For more information on how to convert a subsystem to a referenced subsystem, see “Convert an
Existing Subsystem to a Referenced Subsystem”.

Programmatic Use
Parameter: ReferencedSubsystem
Type: character vector
Value: '' | '<filename>'
Default: ''

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced in R2007a

 Subsystem

1-2223

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only the input/

output port definitions for the subsystem. Therefore, you can use a subsystem in
your model to generate an interface to existing, manually written HDL code.

The black-box interface generation for subsystems is similar to the Model block
interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the subsystem in
simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization

For the BlackBox architecture, you can customize port names and set attributes of the external
component interface. See “Customize Black Box or HDL Cosimulation Interface” (HDL Coder).

HDL Block Properties

General
AdaptivePipelining Automatic pipeline insertion based on the synthesis tool, target frequency,

and multiplier word-lengths. The default is inherit. See also
“AdaptivePipelining” (HDL Coder).

BalanceDelays Detects introduction of new delays along one path and inserts matching
delays on the other paths. The default is inherit. See also
“BalanceDelays” (HDL Coder).

ClockRatePipelining Insert pipeline registers at a faster clock rate instead of the slower data
rate. The default is inherit. See also “ClockRatePipelining” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

1 Blocks

1-2224

General
DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also

“DSPStyle” (HDL Coder).
FlattenHierarchy Remove subsystem hierarchy from generated HDL code. The default is

inherit. See also “FlattenHierarchy” (HDL Coder).
InputPipeline Number of input pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

StreamingFactor Number of parallel data paths, or vectors, that are time multiplexed to
transform into serial, scalar data paths. The default is 0, which implements
fully parallel data paths. See also “Streaming” (HDL Coder).

If this block is not the DUT, the block property settings in the Target Specification tab are ignored.
In the HDL Workflow Advisor, if you use the IP Core Generation workflow, these target specification
block property values are saved with the model. If you specify these target specification block
property values using hdlset_param, when you open HDL Workflow Advisor, the fields are
populated with the corresponding values.

Target Specification
AdditionalTargetInter
faces

Additional target interfaces, specified as a character vector.

To save this block property on the model, in the Set Target Interface task
of the IP Core Generation workflow, corresponding to the DUT ports that
you want to add more interfaces, select Add more.... You can then add
more interfaces in the Add New Target Interfaces dialog box. Specify the
type of interface, number of additional interfaces, and a unique name for
each additional interface.

Values: '' (default) | cell array of character vectors

Example: '{{'AXI4-Stream','InterfaceID','AXI4-Stream1'}}'
ProcessorFPGASynch
ronization

Processor/FPGA synchronization mode, specified as a character vector.

To save this block property on the model, specify the Processor/FPGA
Synchronization in the Set Target Interface task of the IP Core
Generation workflow.

Values: Free running (default) | Coprocessing - blocking

Example: 'Free running'

 Subsystem

1-2225

Target Specification
TestPointMapping To save this block property on the model, specify the mapping of test point

ports to target platform interfaces in the Set Target Interface task of the
IP Core Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'TestPoint','AXI4-Lite','x"108"'}}'
TunableParameterMa
pping

To save this block property on the model, specify the mapping of tunable
parameter ports to target platform interfaces in the Set Target Interface
task of the IP Core Generation workflow.

Values: '' (default) | cell array of character vectors

Example: '{{'myParam','AXI4-Lite','x"108"'}}'
AXI4RegisterReadbac
k

To save this block property on the model, specify whether you want to
enable readback on AXI4 subordinate write registers in the Generate RTL
Code and IP Core task of the IP Core Generation workflow. To learn
more, see “Model Design for AXI4 Slave Interface Generation” (HDL
Coder).

Values: 'off' (default) | 'on'
AXI4SlaveIDWidth To save this block property on the model, specify the number of AXI

manager interfaces that you want to connect the DUT IP core to by using
the AXI4 Slave ID Width setting in the Generate RTL Code and IP
Core task of the IP Core Generation workflow. To learn more, see “Define
Multiple AXI Master Interfaces in Reference Designs to Access DUT AXI4
Slave Interface” (HDL Coder).

Values: 'off' (default) | 'on'
AXI4SlavePortToPipel
ineRegisterRatio

To save this block property on the model, specify the number of AXI4
subordinate ports for which you want a pipeline register to be inserted by
using the AXI4 Slave port to pipeline register ratio setting in the
Generate RTL Code and IP Core task of the IP Core Generation
workflow. To learn more, see “Model Design for AXI4 Slave Interface
Generation” (HDL Coder).

Values: 'off' (default) | 'on''10''20''35''50'
GenerateDefaultAXI4
Slave

To save this block property on the model, specify whether you want to
disable generation of default AXI4 subordinate interfaces in the Generate
RTL Code and IP Core task of the IP Core Generation workflow.

Values: 'on' (default) | 'off'

1 Blocks

1-2226

Target Specification
IPCoreAdditionalFiles Verilog or VHDL files for black boxes in your design. Specify the full path

to each file, and separate file names with a semicolon (;).

You can set this property in the HDL Workflow Advisor, in the Additional
source files field.

Values: '' (default) | character vector

Example: 'C:\myprojfiles
\led_blinking_file1.vhd;C:\myprojfiles
\led_blinking_file2.vhd;'

IPCoreName IP core name, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core
name field. If this property is set to the default value, the HDL Workflow
Advisor constructs the IP core name based on the name of the DUT.

Values: '' (default) | character vector

Example: 'my_model_name'
IPCoreVersion IP core version number, specified as a character vector.

You can set this property in the HDL Workflow Advisor, in the IP core
version field. If this property is set to the default value, the HDL Workflow
Advisor sets the IP core version.

Values: '' (default) | character vector

Example: '1.3'
IPDataCaptureBuffer
Size

FPGA Data Capture buffer size, specified as a character vector. Use FPGA
Data Capture to observe signals in a design when running on an FPGA.

The buffer size uses values that are 128*2^n, where n is an integer. By
default, the buffer size is 128 (n=0). The maximum value of n is 13, which
means that the maximum value for buffer size is 1048576 (=128*2^13).

Values: '' (default) | character vector

Example: '1.3'

Restrictions

If your DUT is a masked subsystem, you can generate code only if it is at the top level of the model.

For more information, see:

• “External Component Interfaces” (HDL Coder)
• “Generate Black Box Interface for Subsystem” (HDL Coder)

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Subsystem must be atomic to support PLC code generation.

 Subsystem

1-2227

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Enabled Subsystem | Enabled and Triggered Subsystem | Triggered Subsystem | Function-Call
Subsystem

Topics
“Create Subsystems”
“Preview Content of Model Components”
“Using Function-Call Subsystems”
“Export-Function Models Overview”

1 Blocks

1-2228

Switch
Switch output between first input and third input based on value of second input

Libraries:
Simulink / Commonly Used Blocks
Simulink / Signal Routing
HDL Coder / Commonly Used Blocks
HDL Coder / Signal Routing

Description
Types of Block Inputs

The Switch block passes through the first input or the third input based on the value of the second
input. The first and third inputs are called data inputs. The second input is called the control input.
Specify the condition under which the block passes the first input by using the Criteria for passing
first input and Threshold parameters.

To immediately back propagate a known output data type to the first and third input ports, set the
Output data type parameter to Inherit: Inherit via internal rule and select the Require
all data port inputs to have the same data type check box.

Limitations on Data Inputs

The sizes of the two data inputs can be different if you select Allow different data input sizes.
However, this block does not support variable-size input signals. Therefore, the size of each input
cannot change during simulation.

If the data inputs to the Switch block are buses, the element names of both buses must be the same.
Using the same element names ensures that the output bus has the same element names no matter
which input bus the block selects. To ensure that your model meets this requirement, use a bus object
to define the buses and set the Element name mismatch diagnostic to error. For more
information, see “Model Configuration Parameters: Connectivity Diagnostics”.

Block Icon Appearance

The block icon helps you identify Criteria for passing first input and Threshold without having to
open the block dialog box.

For information about port order for various block orientations, see “Identify Port Location on
Rotated or Flipped Block”.

Block Behavior for Boolean Control Input

When the control input is a Boolean signal, use one of these combinations of criteria and threshold
value:

• u2 >= Threshold, where the threshold value equals 1
• u2 > Threshold, where the threshold value equals 0

 Switch

1-2229

• u2 ~=0

Otherwise, the Switch block ignores the threshold and uses the Boolean input for signal routing. For
a control input of 1, the block passes the first input, and for a control input of 0, the block passes the
third input. In this case, the block icon changes after compile time and uses T and F to label the first
and third inputs, respectively.

Data Type Support

The control input can be of any data type that Simulink supports, including fixed-point and
enumerated types. The control input cannot be complex. If the control input is enumerated, the
Threshold parameter must be a value of the same enumerated type.

The data inputs can be of any data type that Simulink supports. If either data input is of an
enumerated type, the other must be of the same enumerated type.

When the output is of enumerated type, both data inputs should use the same enumerated type as the
output.

For more information, see “Data Types Supported by Simulink”.

Ports
Input

Port_1 — First data input signal
scalar | vector

First of two data inputs. The block propagates either the first or second data input to the output. The
block selects which input to pass based on the control input. Specify the condition for the control
input to pass the first input using the Criteria for passing first input and Threshold parameters.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Port_2 — Control input signal
scalar | vector

Control signal the block uses to determine whether to pass the first or second data input to the
output. If the control input meets the condition set in the Criteria for passing first input
parameter, then the block passes the first data input. Otherwise, the block passes the second data
input.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Port_3 — Second data input signal
scalar | vector

Second of two data inputs. The block propagates either the first or second data input to the output.
The block selects which input to pass based on the control input. Specify the condition for the control
input to pass the first or second input using the Criteria for passing first input and Threshold
parameters.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

1 Blocks

1-2230

Output

Port_1 — Output signal
scalar | vector

Output signal propagated from either the first or second input signal, based on the control signal
value.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
Main

Criteria for passing first input — Selection criteria to pass first data input

u2 > Threshold (default) | u2 >= Threshold | u2 ~= 0

Select the condition under which the block passes the first data input. If the control input meets the
condition set in the Criteria for passing first input parameter, the block passes the first input.
Otherwise, the block passes the second data input signal from input Port_3.

u2 >= Threshold
Checks whether the control input is greater than or equal to the threshold value.

u2 > Threshold
Checks whether the control input is greater than the threshold value.

u2 ~= 0
Checks whether the control input is nonzero.

Note The Switch block does not support u2 ~= 0 mode for enumerated data types.

Tip

When the control input is a Boolean signal, use one of these combinations of condition and threshold
value:

• u2 >= Threshold, where the threshold value equals 1
• u2 > Threshold, where the threshold value equals 0
• u2 ~= 0

Otherwise, the Switch block ignores threshold values and uses the Boolean value for signal routing.
For a value of 1, the block passes the first input, and for a value of 0, the block passes the third input.
A warning message that describes this behavior also appears in the MATLAB Command Window.

Programmatic Use
Block Parameter: Criteria
Type: character vector
Value: 'u2 >= Threshold' | 'u2 > Threshold' | 'u2 ~= 0'
Default: 'u2 > Threshold'

 Switch

1-2231

Threshold — Threshold used in criteria

0 (default) | scalar

Assign the threshold used in the Criteria for passing first input that determines which input the
block passes to the output. Threshold must be greater than Output minimum and less than
Output maximum.

To specify a nonscalar threshold, use brackets. For example, the following entries are valid:

• [1 4 8 12]
• [MyColors.Red, MyColors.Blue]

Dependencies

Setting Criteria for passing first input to u2 ~= 0 disables this parameter.

Programmatic Use
Block Parameter: Threshold
Type: character vector
Value: scalar
Default: '0'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'
Default: 'on'

Signal Attributes

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Require all data port inputs to have the same data type — Require data ports to have the same
data type

off (default) | on

Require all data inputs to have the same data type.

Programmatic Use
Block Parameter: InputSameDT
Type: character vector
Value: 'off' | 'on'
Default: 'off'

1 Blocks

1-2232

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

 Switch

1-2233

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first input | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | string | Enum: <class name> | <data type expression> |
Simulink.ImageType(480,640,3)

Specify the output data type.

Inherit: Inherit via internal rule
Uses the following rules to determine the output data type.

Data Type of First Input Port Output Data Type
Has a larger positive range than the third
input port

Inherited from the first input port

Has the same positive range as the third
input port

Inherited from the third input port

Has a smaller positive range than the third
input port
Is a Boolean value and third input port is
uint8
Is uint8 and third input port is a Boolean
value
Is a Boolean value and other is int8 Set to a Boolean value
Is uint8 and other is a Boolean value

Data Types of Two Input Ports Output Data Type
Has one input type as a Boolean value and
another as uint8

Set to data type of the third data port

Has one input as a Boolean value and another
as int8

Set to a Boolean value

Inherit: Inherit via back propagation
Uses data type of the driving block.

Inherit: Inherit same as first input
Uses data type of the first data input port.

double
Specifies output data type is double.

single
Specifies output data type is single.

1 Blocks

1-2234

half
Specifies output data type is half.

int8
Specifies output data type is int8.

uint8
Specifies output data type is uint8.

int16
Specifies output data type is int16.

uint16
Specifies output data type is uint16.

int32
Specifies output data type is int32.

uint32
Specifies output data type is uint32.

int64
Specifies output data type is int64.

uint64
Specifies output data type is uint64.

fixdt(1,16,0)
Specifies output data type is fixed point fixdt(1,16,0).

fixdt(1,16,2^0,0)
Specifies output data type is fixed point fixdt(1,16,2^0,0).

Enum: <class name>
Uses an enumerated data type, for example, Enum: BasicColors.

Simulink.ImageType(480,640,3)
Uses a Simulink.ImageType object if you have Computer Vision Toolbox.

string
Specifies output data type is string.

<data type expression>
Uses a data type object, for example, Simulink.NumericType.

Tip

When the output is of enumerated type, both data inputs should use the same enumerated type as the
output.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Inherit via back
propagation' | 'Inherit: Same as first input' | 'double' | 'single' | 'half' |
'int8' | 'uint8' | 'int16' | 'uint16', 'int32' | 'uint32' | 'int64' | 'uint64' |

 Switch

1-2235

'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | Enum: <class name> |
Simulink.ImageType(480,640,3) | 'string' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the MATLAB
ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the MATLAB
floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate rounding
code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector

1 Blocks

1-2236

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Default: 'Floor'
See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type can

represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

• Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

• In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Allow different data input sizes — Allow different data input sizes

off (default) | on

Select this check box to allow input signals with different sizes. The block propagates the input signal
size to the output signal. If the two data inputs are variable-size signals, the maximum size of the
signals can be equal or different.

Programmatic Use
Block Parameter: AllowDiffInputSizes
Type: character vector

 Switch

1-2237

Value: 'on' | 'off'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

1 Blocks

1-2238

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Multiport Switch | Manual Switch

 Switch

1-2239

Switch Case
Select subsystem execution using logic similar to switch statement

Libraries:
Simulink / Ports & Subsystems

Description
The Switch Case block with Switch Case Action Subsystem blocks containing Action Port blocks,
implements switch logic to control subsystem execution.

A Switch Case block has a single input. To select a case, define the input value using the Case
conditions parameter. The cases are evaluated top down starting with the first case.

Each case is associated with an output port that is attached to a Switch Case Action Subsystem block.
When a case is selected, the associated output port sends an action signal to execute the subsystem.

A default case is selected after all of the other case conditions evaluate to false. Providing a
default case is optional, even if the other case conditions do not exhaust every possible input value.

Cases for the Switch Case block contain an implied break after a Switch Case Action Subsystem block
is executed. Therefore, there is no fall through behavior for the Simulink Switch Case block as found
in standard C switch statements.

Limitations
The Switch Case block does not support tunable parameters. Values for Case conditions cannot
be tuned during a simulation in normal or accelerator mode, or when running generated code.

1 Blocks

1-2240

Ports
Input

u1 (logical operator) — Value for case selection
scalar

Input to the port labeled u1 of a Switch Case block can be:

• A scalar value with a built-in data type that Simulink supports. However, the Switch Case block
does not support Boolean or fixed-point data types, and it truncates numeric inputs to 32-bit
signed integers.

• A scalar value of any enumerated data type.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | enumerated

Output

case — Action signal for a Switch Case Action Subsystem block
scalar

Output from the Case and default ports are action signals connected to Switch Case Action
Subsystem blocks.

Parameters
Case conditions — Specify case values

{1} (default) | list of cases

Specify the cases values using MATLAB cell notation.

{1}
Specify the output port labeled case[1]outputs an action signal when the input port value is 1.

list of ports with case assignments
Specify multiple cases and ports using MATLAB cell notation. For example, entering {1,
[7,9,4]} specifies that output port case[1] is run when the input value is 1, and output port
case [7 9 4] is run when the input value is 7, 9, or 4.

You can use colon notation to specify a range of integer case conditions. For example, entering
{[1:5]} specifies that output port case[1 2 3 4 5] is run when the input value is 1, 2, 3, 4, or 5.

Depending on block size, cases from a long list of case conditions are displayed in shortened form
on the face of the Switch Case block, using a terminating ellipsis (...).

You can use the name of an enumerated type to specify case conditions that include a case for
every value in that enumerated type.

Programmatic Use
Block Parameter: CaseConditions
Type: character vector
Values: '{1}' | '<list of cases>'

 Switch Case

1-2241

Default: '{1}'

Show default case — Control display of default output port

on (default) | off

Control display of default output port.

on
Display default output port as the last case on the Switch Case block. This allows you to specify a
default case that executes when the input value does not match any of the other case values.

off
Hide default output port.

Programmatic Use
Block Parameter: ShowDefaultCase
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Enable zero-crossing detection — Control zero-crossing detection

on (default) | off

Control zero-crossing detection.

on
Detect zero crossings.

off
Do not detect zero crossings.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double | enumerated | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

1 Blocks

1-2242

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Subsystem | Action Port | Switch Case Action Subsystem

Topics
Select Subsystem Execution

 Switch Case

1-2243

Switch Case Action Subsystem
Subsystem whose execution is enabled by Switch Case block

Libraries:
Simulink / Ports & Subsystems

Description
The Switch Case Action Subsystem block is a Subsystem block preconfigured as a starting point for
creating a subsystem whose execution is controlled by a Switch Case block. The input port to a
Switch Case block selects a case defined using the Case conditions parameter. Depending on input
value and case selected, an action signal is sent to execute a Switch Case Action Subsystem block.
Execution of the subsystem is controlled by an Action Port block placed inside the subsystem.

Simulink ignores a priority set on an Switch Case Action Subsystem block. Instead, set the priority on
the Switch Case block that initiates execution of the subsystem.

All blocks in a Switch Case Action Subsystem block must run at the same rate as the driving Switch
Case block. You can achieve this requirement by setting each block sample time parameter to be
either inherited (-1) or the same value as the Switch Case block sample time.

Merge Signals from Switch Case Action Subsystem Blocks

The example model ex_switch_case_block shows how to create one signal from multiple
subsystem output signals.

1 Blocks

1-2244

The Switch Case block selects the execution of one If Action Subsystem block from a set of
subsystems. Regardless of which subsystem the Switch Case block selects, you can create one
resulting signal with a Merge block.

Ports
Input

In1 — Signal input to a subsystem
scalar | vector | matrix

Placing an Inport block in a subsystem adds an external input port to the Subsystem block. The port
label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Action — Control signal input to a subsystem
scalar | vector | matrix

Placing an Action Port block in a subsystem adds an external input port to the Subsystem block and
changes the block to a Switch Case Action Subsystem block.

Dot-dash lines from a Switch Case block to an Switch Case Action Subsystem block represent action
signals. An action signal is a control signal connected to the action port of an Switch Case Action
Subsystem block. A message on the action signal initiates execution of the subsystem.
Data Types: action

Output

Out1 — Signal output from a subsystem
scalar | vector | matrix

 Switch Case Action Subsystem

1-2245

Placing an Outport block in a subsystem adds an output port from the Subsystem block. The port
label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only the input/

output port definitions for the subsystem. Therefore, you can use a subsystem in
your model to generate an interface to existing, manually written HDL code.

The black-box interface generation for subsystems is similar to the Model block
interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the subsystem in
simulation, however, treat it as a “no-op” in the HDL code.

1 Blocks

1-2246

HDL Block Properties

General
AdaptivePipelining Automatic pipeline insertion based on the synthesis tool, target frequency,

and multiplier word-lengths. The default is inherit. See also
“AdaptivePipelining” (HDL Coder).

BalanceDelays Detects introduction of new delays along one path and inserts matching
delays on the other paths. The default is inherit. See also
“BalanceDelays” (HDL Coder).

ClockRatePipelining Insert pipeline registers at a faster clock rate instead of the slower data
rate. The default is inherit. See also “ClockRatePipelining” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

FlattenHierarchy Remove subsystem hierarchy from generated HDL code. The default is
inherit. See also “FlattenHierarchy” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

StreamingFactor Number of parallel data paths, or vectors, that are time multiplexed to
transform into serial, scalar data paths. The default is 0, which implements
fully parallel data paths. See also “Streaming” (HDL Coder).

Target Specification

This block cannot be the DUT, so the block property settings in the Target Specification tab are
ignored.

Restrictions

If the output of the subsystem is a bus then Initial condition of the outport must be 0.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

 Switch Case Action Subsystem

1-2247

See Also
Action Port | Switch Case | Subsystem

Topics
Select Subsystem Execution

1 Blocks

1-2248

Tapped Delay
Delay scalar signal multiple sample periods and output all delayed versions

Libraries:
Simulink / Discrete
HDL Coder / Discrete

Description
The Tapped Delay block delays an input by the specified number of sample periods and provides an
output signal for each delay. For example, when you specify 4 for Number of delays and Order
output starting with is Oldest, the block provides four outputs — the first delayed by four sample
periods, the second delayed by three, and so on. Use this block to discretize a signal in time or
resample a signal at a different rate.

The block accepts one scalar input and generates an output vector that contains data for each
incremental delay. Specify the order of the delayed signals in the output vector with the Order
output vector starting with parameter:

• Oldest orders the output vector starting with the oldest delay version and ending with the
newest delay version.

• Newest orders the output vector starting with the newest delay version and ending with the
oldest delay version.

Specify the output vector for the first sampling period with the Initial condition parameter. Careful
selection of this parameter can mitigate unwanted output behavior.

Specify the time between samples with the Sample time parameter. Specify the number of delays
with the Number of delays parameter. A value of -1 instructs the block to inherit the number of
delays by backpropagation. Each delay is equivalent to the z-1 discrete-time operator, which the Unit
Delay block represents.

Ports
Input

Port_1 — Input signal
scalar

Input signal to delay.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Delayed versions of input signal
scalar | vector

 Tapped Delay

1-2249

All versions of the delayed input signal. Use the Order output vector starting with parameter to
specify the order of delayed signals in the output vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Initial condition — Initial output

0.0 (default) | scalar

Specify the initial output of the simulation. The Initial condition parameter is converted from a
double to the input data type offline using round-to-nearest and saturation.

Limitations

The initial condition of this block cannot be inf or NaN.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar
Default: '0.0'

Sample time — Time between samples

-1 (default) | scalar | vector

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. For
more information, see “Specify Sample Time”.

Programmatic Use
Block Parameter: samptime
Type: character vector
Values: scalar | vector
Default: '-1'

Number of delays — Number of discrete-time operators

4 (default) | positive scalar | -1 (for inherited)

Specify the number of discrete-time operators as a positive scalar, or -1 for inherited.

Programmatic Use
Block Parameter: NumDelays
Type: character vector
Values: positive scalar | -1 (inherited)
Default: '4'

Order output vector starting with — Order of output

Oldest (default) | Newest

Specify whether to output the oldest delay version first, or the newest delay version first.

1 Blocks

1-2250

Programmatic Use
Block Parameter: DelayOrder
Type: character vector
Values: 'Oldest' | 'Newest'
Default: 'Oldest'

Include current input in output vector — Include current input in output vector

off (default) | on

Select this check box to include the current input in the output vector.

Programmatic Use
Block Parameter: includeCurrent
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

 Tapped Delay

1-2251

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Delay | Resettable Delay | Unit Delay | Variable Integer Delay

Topics
“Specify Sample Time”

1 Blocks

1-2252

Terminate Function
Execute subsystem on model terminate event

Libraries:
Simulink / User-Defined Functions

Description
The Terminate Function block is a preconfigured Subsystem block that executes on a model terminate
event. By default, the Terminate Function block includes:

• An Event Listener block with the Event type set to Terminate
• A Terminator block
• A State Reader block with no State owner block set

Customize the contents of the Terminate Function block by, for example, specifying a State owner
block for the State Reader block and replacing the Terminator block with blocks to save the state
value from the State Reader block.

Conditionally executed subsystems with output ports are fully supported within Terminate Function
blocks.

For a list of unsupported blocks and features, see “Initialize, Reinitialize, Reset, and Terminate
Function Limitations”.

The input and output ports of a component containing Initialize Function and Terminate Function
blocks must connect to input and output port blocks.

The code generated from this block is part of the model_terminate function that is called once at
the end of model execution.

You can select an Initialize Function, Reinitialize Function, Reset Function, or Terminate Function
block or a corresponding state owner block to highlight blocks related to it. To show a related block
in an open diagram or new tab, pause on the ellipsis that appears after selection. Then, select

Related Blocks from the action bar. When multiple blocks correspond to the selected block, a

 Terminate Function

1-2253

list of related blocks opens. You can filter the list of related blocks by entering a search term in the
text box. After you select a related block from the list, window focus goes to the open diagram or new
tab that shows the related block.

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals no
Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Initialize Function | Reinitialize Function | Reset Function | Event Listener | State Reader | State
Writer

Topics
“Using Initialize, Reinitialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”
“Startup, Reset, and Shutdown Function Interfaces” (Simulink Coder)

1 Blocks

1-2254

Terminator
Terminate unconnected output port

Libraries:
Simulink / Commonly Used Blocks
Simulink / Sinks
HDL Coder / Sinks

Description
Use the Terminator block to cap blocks whose output ports do not connect to other blocks. If you run
a simulation with blocks having unconnected output ports, Simulink issues warning messages. Using
Terminator blocks to cap those blocks helps prevent warning messages.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | n-D array | bus

Use this port to direct signals from output ports that are otherwise unconnected during a simulation.
The port accepts real or complex signals of all data types.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus | image

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Terminator

1-2255

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

You can use this block to terminate simulation when you use the block with subsystems that generate
HDL code. The block cannot be included in the hardware implementation.

HDL Block Properties

PreserveUpstreamLogic Control the removal of unconnected logic. The
default is off, which means unconnected logic is
not preserved in HDL code. For more details, see
“PreserveUpstreamLogic” (HDL Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Ground | “Unconnected block output ports”

Topics
“Model Configuration Parameters: Connectivity Diagnostics”
“Systematic Diagnosis of Errors and Warnings”

1 Blocks

1-2256

Timed-Based Linearization
Generate linear models in base workspace at specific times

Libraries:
Simulink / Model-Wide Utilities

Description
This block calls linmod or dlinmod to create a linear model for the system when the simulation
clock reaches the time specified by the Linearization time parameter. No trimming is performed.
The linear model is stored in the base workspace as a structure, along with information about the
operating point at which the snapshot was taken. Multiple snapshots are appended to form an array
of structures.

Note linmod and dlinmod provide only basic linearization functionality. For full linearization
functionality, use Simulink Control Design software. For more information, see “Choose Linearization
Tools” (Simulink Control Design).

The block sets the following model parameters to the indicated values:

• BufferReuse = 'off'
• RTWInlineParameters = 'on'
• BlockReductionOpt = 'off'

The name of the structure used to save the snapshots is the name of the model appended by
_Timed_Based_Linearization, for example, vdp_Timed_Based_Linearization. The structure
has the following fields:

Field Description
a The A matrix of the linearization
b The B matrix of the linearization
c The C matrix of the linearization
d The D matrix of the linearization
StateName Names of the model's states
OutputName Names of the model's output ports
InputName Names of the model's input ports
OperPoint A structure that specifies the operating point of the linearization. The

structure specifies the operating point time (OperPoint.t). The states
(OperPoint.x) and inputs (OperPoint.u) fields are not used.

Ts The sample time of the linearization for a discrete linearization

 Timed-Based Linearization

1-2257

Tip To generate models conditionally, use the Trigger-Based Linearization block.

Parameters
Linearization time — Time at which to generate a linear model

1 (default) | scalar | vector

Time at which you want the block to generate a linear model. Enter a vector of times if you want the
block to generate linear models at more than one time step.

Programmatic Use
Block Parameter: LinearizationTime
Type: character vector
Values: scalar | vector
Default: '1'

Sample time (of linearized model) — Sample time

0 (default) | scalar | vector

Specify a sample time for the linear model. To create a continuous-time model using linmod, specify
a sample time of 0. Otherwise, to create a discrete-time model using dlinmod, specify a positive
sample time (see “Discrete-Time System Linearization” on page 2-44).

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '0'

Block Characteristics
Data Types
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2010a

See Also
Trigger-Based Linearization | dlinmod | linmod

1 Blocks

1-2258

Topics
“Discrete-Time System Linearization” on page 2-44

 Timed-Based Linearization

1-2259

To File
Write data to file

Libraries:
Simulink / Sinks
HDL Coder / Sinks

Description
The To File block writes input signal data into a MAT-file. The block writes to the output file
incrementally, with minimal memory overhead during simulation. If the output file exists when the
simulation starts, the block overwrites the file. The file automatically closes when you pause the
simulation or the simulation completes. If simulation terminates abnormally, the To File block saves
the data it has logged up until the point of the abnormal termination.

The To File block icon shows the name of the output file.

Control Amount of Data Saved

If you specify data logging intervals with the Configuration Parameters > Data Import/Export >
Logging intervals parameter, the To File block logs only data inside of the intervals. For example,
the block logs no data if the intervals are empty ([]). The block stores the logged data in the file
associated with the block instead of in the variable that you specify for the Single simulation
output parameter.

For variable-step solvers, to control the amount of data available to the To File block, use the
Configuration Parameters > Data Import/Export > Additional parameters > Output options
parameter. For example, to write data at identical time points over multiple simulations, select the
Produce specified output only option.

Block parameters also control the amount of data saved. See “Decimation” on page 1-0 and
“Sample time” on page 1-0 .

Pause Simulation

After pausing a simulation, do not alter any file that a To File block logs into. For example, do not
save such a file with the MATLAB save command. Altering the file can cause an error when you
resume the simulation. If you want to alter the file after pausing, copy the file and work with the copy
of the file.

If you pause using the Simulation Stepper, the To File block captures the simulation data up to the
point of the pause. When you step back, the To File data file no longer contains any simulation data
past the new reduced time of the last output.

Limitations
When a To File block is in a referenced model, that model must be a single-instance model. Only one
instance of such a model can exist in a model hierarchy. See “Model Reuse” for more information.

1 Blocks

1-2260

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | array

Signal to store in file. Each sample consists of a timestamp and an associated data value. The data
can be in array format or MATLAB timeseries format. The To File block accepts real or complex
signal data of any data type that Simulink software supports, except fixed-point data with a word
length greater than 32 bits.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
File name — Path or file name

untitled.mat (default) | MAT-file path or name

Specify the path or file name of the MAT-file in which to store the output. On UNIX systems, the path
name can start with a tilde (~) character signifying your home folder. If you specify a file name
without path information, Simulink software stores the file in the MATLAB working folder. (To
determine the working folder, at the MATLAB command line, enter pwd.) If the file exists, Simulink
software overwrites it.

Programmatic Use
Block Parameter: FileName
Type: character vector
Values: MAT-file path or name
Default: 'untitled.mat'

Variable name — Matrix name

ans (default) | character vector

Specify the name of the matrix contained in the file.

Programmatic Use
Block Parameter: MatrixName
Type: character vector
Values: character vector
Default: 'ans'

Save format — Data format

Timeseries (default) | Array

Specify the data format that the To File block uses for writing data.

Use the Array format only for vector, double, noncomplex signals.

For the Timeseries format, the To File block:

 To File

1-2261

• Writes data in a MATLAB timeseries object.
• Supports writing multidimensional, real, or complex output values.
• Supports writing output values that have any built-in data type, including Boolean, enumerated

(enum), and fixed-point data with a word length of up to 32 bits.
• For virtual and nonvirtual bus input signals, creates a MATLAB structure that matches the bus

hierarchy. Each leaf of the structure is a MATLAB timeseries object.

For the Array format, the To File block:

• Writes data into a matrix containing two or more rows. The matrix has the following form:

t1 t2 … tf inal
u11 u12 … u1f inal
…

un1 un2 … unf inal

Simulink software writes one column to the matrix for each data sample. The first element of the
column contains the timestamp. The remainder of the column contains data for the corresponding
output values.

• Supports writing data that is one-dimensional, double, and noncomplex.

The From File block can use data written by a To File block in any format (Timeseries or Array)
without any modifications to the data or other special provisions.

The From Workspace block can read data that is in the Array format and is the transposition of the
data written by the To File block. To provide the required format, use MATLAB commands to load and
transpose the data from the MAT-file.

The following table shows how simulation mode support depends on the Save format value.

Simulation Mode Timeseries Array
Normal Supported Supported
Accelerator Supported Supported
Rapid Accelerator Supported Supported
Software-in-the-loop (SIL) Not supported Supported if MAT-file logging is

enabled
Processor-in-the-loop (PIL) Not supported Supported if MAT-file logging is

available and enabled
External Not supported Supported if MAT-file logging is

enabled
RSim target Supported Supported if MAT-file logging is

enabled

Programmatic Use
Block Parameter: SaveFormat
Type: character vector
Values: 'Timeseries' | 'Array'
Default: 'Timeseries'

1 Blocks

1-2262

Decimation — Decimation factor that determines when data writes

1 (default) | scalar | vector

Specify the decimation factor, n, that writes data at every nth time that the block executes. The
default value has this block writing data at every time step.

Programmatic Use
Block Parameter: Decimation
Type: character vector
Values: scalar | vector
Default: '1'

Sample time — Sample period and offset

-1 (default) | scalar | vector

Specifies the sample period and offset at which to collect data points. This parameter is useful when
you are using a variable-step solver where the interval between time steps is not constant. The
default value causes the block to inherit the sample time from the driving block. See “Specify Sample
Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed pointa | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

a Supports up to 32-bit fixed-point data types.

Tips
• If MATLAB encounters memory issues when you log many signals in a long simulation that has

many time steps, consider logging to persistent storage. When you log to persistent storage, the
Dataset format logging data is stored in a MAT-file. Compared to logging to persistent storage,
connecting a To File block to signals:

• Is a per-signal approach that can clutter a model with several To File blocks attached to
individual signals.

• Creates a separate MAT-file for each To File block, compared to the one MAT-file that logging to
persistent storage uses.

 To File

1-2263

For details, see “Log Data to Persistent Storage”.
• To avoid the overhead of compressing data in real time, the To File block writes an uncompressed

Version 7.3 MAT-file. To compress the data within the MAT-file, load and save the file in MATLAB.
The resaved file is smaller than the original MAT-file that the To File block created, because the
Save command compresses the data in the MAT-file.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times. While
the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code. Usually, blocks evolve toward being suitable for
production code. Thus, blocks suitable for production code remain suitable.

Code generation for RSim target provides identical support as Simulink; all other code generation
targets support only double, one-dimensional, real signals in array with time format.

To generate code for a To File block, on the Code Generation > Interface pane, select the
configuration parameter MAT-file logging (Simulink Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for writing simulation results to a file when used with subsystems that
generate HDL code, but is not included in the hardware implementation

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Supports up to 32-bit fixed-point data types.

See Also
From File | Record | To Workspace | From Workspace

Topics
“Save Run-Time Data from Simulation”
“Convert Data to Dataset Format”
“Specify Signal Values to Log”

1 Blocks

1-2264

To Workspace
Log data to workspace from Simulink model

Libraries:
Simulink / Sinks
DSP System Toolbox / Sinks
HDL Coder / Sinks

Description
The To Workspace block logs the data connected to its input port to a workspace from a Simulink
model. Typically, logged data is returned in the base workspace. When you simulate a model
programmatically inside a function, logged data is returned in the workspace for the function. During
simulation, logged data streams to the Simulation Data Inspector. Logged data is written to the
workspace when the simulation pauses or stops.

You can use the To Workspace block to log data for a signal, a bus, or an array of buses. The To
Workspace block supports logging scalar and multidimensional data, including data for variable-size
signals.

You can configure the name of the variable that stores the data the To Workspace block logs, and you
can specify the format for the logged data. You can also control which values the To Workspace block
logs by specifying block or model parameters. For more information, see “Specify Signal Values to
Log”.

Access Logged Data

How simulation results are returned to the workspace depends on how you simulate and configure
the model. Simulation results are returned in a single Simulink.SimulationOutput object in any
of these situations:

• You enable the Single simulation output parameter.

By default, the Single simulation output parameter is enabled when you create a new model.
You can enable the parameter using the Configuration Parameters dialog box. On the Modeling
tab, under Settings, click Model Settings. Then, in the Configuration Parameters dialog box,
select Data Import/Export and select Single simulation output.

• You run a set of simulations using the Multiple Simulations pane.
• You simulate the model programmatically using one or more Simulink.SimulationInput

objects.

You can configure simulations using SimulationInput objects when you run simulations using
the sim, parsim, and batchsim functions.

• You simulate the model using a sim function syntax that returns results as a single simulation
output.

For more information, see sim.

 To Workspace

1-2265

When simulation results are returned in a single output, the SimulationOutput object contains a
variable for each To Workspace block in the model. To access the data logged by a To Workspace
block:

• Use a dot with the variable name specified using the Variable name parameter of the block. By
default, models are configured to return a single simulation output using the variable name out,
and the To Workspace block saves data to a variable named simout.

toWksData = out.simout;
• Use the get function with the name of the variable that contains the logged data.

toWksData = get(out,simout);

In the model, the To Workspace block indicates how to access the data in the workspace. By default,
the block shows out.simout. The block appearance updates when you:

• Specify a different value for the Variable name parameter on the block.
• Specify a different variable name for the single simulation output.
• Clear the Single simulation output configuration parameter.

Ports
Input

Port_1 — Data to log to workspace
scalar | vector | matrix | array | bus

Input port that receives data to log to workspace. The To Workspace block supports logging real and
complex data of any built-in data type or user-defined data types such as buses, enumerations, and
fixed-point data.

Tips

Logging fixed-point data requires a license for Fixed-Point Designer.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | string | fixed point | enumerated | bus | image

Parameters
Variable name — Name of variable for saved data

simout (default) | string | character vector

Specify a name for the variable that contains the logged data. By default, the To Workspace block
saves logged data in a variable called simout. When a model contains multiple To Workspace blocks,
the Variable name parameter value for each block must be unique.

For information about naming MATLAB variables, see “Variable Names”.

Programmatic Use

t
Block Parameter: VariableName

1 Blocks

1-2266

Type: string | character vector
Value: Valid MATLAB variable name
Default: 'simout'

Limit data points to last — Number of samples to log

inf (default) | scalar | vector

When you want to save or analyze only the data from the end of a simulation, specify the number of
samples you want to log as a positive whole number greater than zero. By default, the To Workspace
block logs data for the entire simulation, and the value for the Limit data points to last parameter
is inf.

For more information about controlling which samples are logged during simulation, see “Specify
Signal Values to Log”.

Programmatic Use
Block Parameter: MaxDataPoints
Type: string | character vector
Values: 'inf' | positive integer greater than zero
Default: 'inf'

Decimation — Decimation factor

1 (default) | scalar

Specify a decimation factor to reduce the effective sample rate for the logged data. For a decimation
factor, n, the To Workspace block logs every nth sample value. For example, when you specify the
Decimation value as 2, the To Workspace block logs every other data point.

For more information about controlling which samples are logged during simulation, see “Specify
Signal Values to Log”.

Programmatic Use
Block Parameter: Decimation
Type: string | character vector
Values: scalar
Default: '1'

Save format — Format for data logged to workspace

Timeseries (default) | Structure With Time | Structure | Array

Specify the format for the data logged to the workspace. To log data for a bus or array of buses input,
use Timeseries format.

 To Workspace

1-2267

Save Format Value Workspace Data Format Simulation Workflow Support
Timeseries Nonbus input logged as a

timeseries object.

Bus input logged as a structure
of timeseries objects. The
hierarchy and names for fields
in the structure matches the
hierarchy and names specified
in the Simulink.Bus object
that defines the bus.

Array of buses input logged as
an array of structures of
timeseries objects.

Supported:

• Normal mode simulation
• Accelerator mode simulation
• Rapid accelerator mode

simulation
• External mode simulation

that uses XCP
communication provided
StreamToWks is set to 'on'
and MATFileLogging is set
to 'off'

Not supported:

• External mode simulation
that uses TCP/IP or serial
communication

• Software-in-the-loop (SIL)
simulation

• Processor-in-the-loop (PIL)
simulation

• Code generation for Simulink
Coder targets

Structure With Time Nonbus input logged as a
structure that contains these
fields:

• time — Column vector of
simulation time hits for
which input value was
logged.

• signals — Structure with
sample values that contains
the fields:

• values — Array of
sample values.

• dimensions — Sample
dimensions.

• label — Name of signal
line in model.

• blockName — Name of the
To Workspace block.

Always supported:

• Normal mode simulation.
• External mode simulation

that uses XCP
communication provided
StreamToWks is set to 'on'
and MATFileLogging is set
to 'off'

Supported except when the To
Workspace block is in a
referenced model:

• Accelerator mode simulation
• Rapid accelerator mode

simulation
• External mode simulation

that uses TCP/IP or serial
communication

Supported if MAT-file logging
is enabled for generated code,
except when the To Workspace
block is in a referenced model:

1 Blocks

1-2268

Save Format Value Workspace Data Format Simulation Workflow Support
Structure Nonbus input logged as a

structure that matches the
Structure With Time
format, but the time field of the
structure is empty.

• Software-in-the-loop (SIL)
simulation

• Processor-in-the-loop (PIL)
simulation

• Code generation for Simulink
Coder targetsArray Sample values for nonbus input

saved as N-dimensional array,
where N is one greater than the
dimensions of the input. For
example:

• Scalar signal data is logged
as a column vector.

• Vector signal data is logged
as a matrix.

• Matrix signal data is logged
as a 3-D array.

The structure of the values in
the array depends on the
dimensions of the input signal
data:

• For scalar and vector signals,
each sample value is a row in
the output array. The first
dimension of the array aligns
with time such that
simout(1,:) returns the
first logged signal value.

• For matrix signals, the third
dimension of the output
array aligns with time such
that simout(:,:,1)
returns the first logged
signal value.

• For N-dimensional signals,
the last dimension aligns
with time, such that the
number of elements in the
last dimension is equal to the
number of samples logged
from simulation.

The output array contains only
signal values and does not
contain time data.

 To Workspace

1-2269

Tips

• To log data as frame-based instead of sample-based:

• Configure the Save format parameter to log data using the Structure format or the Array
format.

• Specify the Save 2-D signals as parameter as 2-D array (concatenate along first
dimension)

• When you want to load the logged data using a From Workspace block, consider using the
Timeseries or Structure With Time formats. When you log data using the Array format, you
need to incorporate the sample time values into the array before loading the data.

Programmatic Use
Block Parameter: SaveFormat
Type: string | character vector
Values: 'Timeseries' | 'Structure with Time' | 'Structure' | 'Array'
Default: 'Timeseries'

Save 2-D signals as — Arrangement of 2-D sample values in logged data

3-D array (concatenate along third dimension) (default) | 2-D array (concatenate
along first dimension)

Specify whether to log 2-D input data as a 3-D array or a 2-D array.

Logging as a 3-D array is well suited for sample-based input data. Samples are concatenated along
the third dimension, allowing easy access of 2-dimensional sample data.

Logging as a 2-D array is well suited for frame-based input data. Samples are concatenated along the
first dimension, which in effect removes the frame buffering from the first dimension.

Input Data Dimensions Save 2-D Signal As... Workspace Data Dimensions
M-by-N 2-D array (concatenate

along first dimension)
K-by-N matrix, where K is equal
to M times the number of
samples logged from simulation.

For example, logging ten
samples of a 2-by-4 matrix input
creates a 20-by-4 matrix.

3-D array (concatenate
along first dimension)

M-by-N-by-K array, where K is
equal to the number of samples
logged from simulation.

For example, logging ten
samples of a 2-by-4 matrix input
creates a 2-by-4-by-10 array.

Dependencies

To enable this parameter, set the Save format to Array or Structure.

Programmatic Use
Block Parameter: Save2DSignal

1 Blocks

1-2270

Type: string | character vector
Values: '2-D array (concatenate along first dimension)' | '3-D array
(concatenate along third dimension)'
Default: '3-D array (concatenate along third dimension)'

Log fixed-point data as a fi object — Data type for logged fixed-point data

on (default) | off

Specify how to log fixed-point input data. By default, the To Workspace block logs fixed-point data as
a fi object. When you clear this parameter, the To Workspace block logs fixed-point input data as
double.

The To Workspace block always logs fixed-point data as a fi object when you:

• Simulate the model in rapid accelerator mode.
• Specify the Save format parameter as Timeseries.

Using the To Workspace block to log fixed-point data requires a license for Fixed-Point Designer.

Programmatic Use
Block Parameter: FixptAsFi
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Sampling interval and optional time offset

-1 (default) | scalar

Specify when the block logs the input value during simulation. By default, the sample time is
inherited (-1). For continuous sample time, specify the value as 0. To use a discrete sample time,
specify the Sample time parameter as a scalar. For more information, see “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: string | character vector
Values: scalar
Default: '-1'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

 To Workspace

1-2271

Tips
• You can convert data logged using the To Workspace block to Dataset format. Converting the

data can make post-processing easier if you use other logging techniques, such as signal logging,
that use the Dataset format. For more information, see “Convert timeseries object to Dataset
object”.

• When you call a function that simulates a model, data logged in simulation is returned to the
function workspace. To return data logged from a simulation in a function to the base workspace,
use the assignin function. For example, this function called myfunc simulates the model
myModel, which includes a To Workspace block that logs data to the variable simout and sends
the data logged by the To Workspace block to the base workspace.

function myfunc
 out = sim("myModel");
 toWksData = get(out,"simout");
 assignin("base","toWksData",toWksData);
end

Version History
Introduced before R2006a

R2022a: Log data to the Simulation Data Inspector as well as the workspace
Behavior changed in R2022a

Data is automatically logged to the Simulation Data Inspector as well as the workspace. The
Simulation Data Inspector automatically retains results from each simulation. Because data logged
using the To Workspace block streams to the Simulation Data Inspector, this data is also retained.

In previous releases, data logged using the To Workspace block only logged to the workspace and was
overwritten for each simulation unless you changed the logging variable names or manually saved the
results.

In most cases, you do not need to make any changes to your code. Logging large amounts of data or
running many simulations can produce large amounts of data that fill up disk space. To learn how to
control the amount of data retained in the Simulation Data Inspector, see “Limit the Size of Logged
Data”.

R2022a: Log int64 and uint64 data using built-in data types
Behavior changed in R2022a

Log int64 and uint64 data using the built-in data types.

In previous releases, the To Workspace block logged int64 and uint64 data as a fi object when a
license for Fixed-Point Designer was available and as double when the license was not available.

R2022a: Log signals with string and half data types

The To Workspace block supports logging signals with string and half data types.

R2022a: Log arrays of buses

1 Blocks

1-2272

The To Workspace block supports logging an array of buses.

R2022a: Log data using the Timeseries format in rapid accelerator simulations

Previously, only normal mode simulation or accelerator mode simulation could be used to log data in
Timeseries format.

R2022a: Log data using the Timeseries format for To Workspace blocks inside for-each
subsystems

You can use the Timeseries format to log data in a To Workspace block inside for-each subsystems.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

To generate code that logs the input to the To Workspace block to a MAT file, enable the MAT-file
logging parameter. For more information, see MAT-file logging.

Code generation is not supported for blocks inside referenced models or blocks that log data using
the Timeseries format. For more information, see Save format.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
From Workspace | Record | To File | From File

Topics
“Save Simulation Data”
“Specify Signal Values to Log”
“Convert Data to Dataset Format”

 To Workspace

1-2273

Toggle Switch
Change parameter or variable value using switch with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
Use the Toggle Switch block to change the value of the connected variable or parameter before or
during simulation. When you use the Toggle Switch block in the Customizable Blocks library, you can
customize the appearance of the block to look like a real switch in your system. You can configure the
switch with any number of states to customize the behavior. For example, you could design a three-
way toggle switch or a gearbox. Use the Toggle Switch block with other dashboard blocks to create
an interactive dashboard for your model.

Note Double-clicking the Toggle Switch block does not open its dialog box during simulation or when
the block is selected. To edit the block parameters, you can use the Property Inspector or open the
block dialog box by:

• Double-clicking the block when the block is not selected and the model is not simulating
• Right-clicking the block and selecting Block Parameters from the context menu

Customize Toggle Switch Blocks

When you add a Toggle Switch block to your model, the block is preconfigured with a default design.
You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

1 Blocks

1-2274

In design mode, you can add any number of states to the block. To add or delete states, use the
toolbar above the block.

For each state, you can:

• Upload an image that defines the appearance of the block in the state.
• Configure the size and position of the click area for the state.
• Specify the State Value.
• Specify the State Label text, color, and position.

To upload an image for a state, use the toolbar above the block.

To resize the click area of a state, in the toolbar above the block, select the state from the drop-down
menu. Then, click and drag the grab points of the yellow click area in the canvas. To reposition the
click area, click and drag it in the canvas.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

Use the Design tab to:

• Specify the State Value.
• Specify the State Label.
• Upload a foreground image.
• Upload a background image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at

 Toggle Switch

1-2275

once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

1 Blocks

1-2276

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Connection

Connection — Select variable or block parameter to connect
variable and parameter connection options

 Toggle Switch

1-2277

Use the Connection table in the Block Parameters dialog box to select or change the variable or
block parameter to control. To connect the block to a variable or block parameter:

1 If the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

2 Select a block in the model.
3 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy. Omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

4 Click Apply.

To help understand and debug your model, you can connect Dashboard blocks to variables and
parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Tip You can also use bind mode to select or change the variable or block parameter to control. To
enter bind mode:

• If you are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

•
Click the dashboard block in the canvas. If the dashboard block is not connected, Connect
and an ellipsis appear over the dashboard block. If the dashboard block is already connected, only
the ellipsis appears.

• If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
parameters and variables available for connection appears.

To connect the dashboard block in bind mode:

• From the list, select the variable or parameter you want to connect.

1 Blocks

1-2278

•
To exit bind mode, click Done Connecting over the dashboard block.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some properties apply to connecting dashboard blocks to parameters. Some
properties apply to connecting dashboard blocks to variables. Not all fields have a value for a
connection because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

Main

Label — Position of label displaying name of connected element

Hide (default) | Bottom | Top

You can display the name of the element to which the dashboard block connects in a label positioned
at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States — Pairings of value with label
scalar and character vector

 Toggle Switch

1-2279

Each state pairs a State Value with a State Label. When the block is in a given state, it assigns the
State Value for that state to the connected variable or parameter. You can use the State Label to
display the value assigned to the connected variable or parameter on the block or to provide a
descriptive text label.

By default, the switch has two states, one corresponding to each switch position:

• In the Off state, the block assigns the connected variable or parameter a value of 0.
• In the On state, the block assigns the connected variable or parameter a value of 1.

You can use a customizable switch block to design a switch with any number of states greater than or
equal to 1. To add a new state, click the + button. To delete the current state, click the - button.

Tip You can configure a variety of other parameters for a state besides the value and label in design
mode. For example, you can select an image that will appear on the switch when it is in the state. To
configure parameters in design mode:

1 Enter design mode. In the Property Inspector, on the Design tab, click the Edit button.
2 On the Design tab, open the States component, expand the Select State section, and select the

state that you want to configure from the drop-down menu.
3 Configure the parameter values for the selected state, either using the toolbar above the block,

or in the States component on the Design tab in the Property Inspector.

Programmatic Use

To configure the States for the block programmatically, specify the value of the States parameter as
a structure array containing two elements with fields:

• Value — Scalar double value for the state.
• Label — String or character array to use as the label for the switch position.

leftState.Value = 0;
leftState.Label = 'Off';
rightState.Value = 1;
rightState.Label = 'On';
switchStates = [leftState rightState];

Block Parameter: States
Type: two element array of structures

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Switch

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

1 Blocks

1-2280

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States

Select State — Management and configuration of states
scalar and character vector

Each state pairs a State Value with a State Label. When the block is in a given state, it assigns the
State Value for that state to the connected variable or parameter. You can use the State Label to
display the value assigned to the connected variable or parameter on the block or to provide a
descriptive text label.

By default, the switch has two states, one corresponding to each switch position:

• In the Off state, the block assigns the connected variable or parameter a value of 0.
• In the On state, the block assigns the connected variable or parameter a value of 1.

You can use a customizable switch block to design a switch with any number of states greater than or
equal to 1. To add a new state, click the + button. To delete the current state, click the X button.

To configure a state, in the States component, expand the Select State section and select the state.

You can configure the value, label text, and a variety of other parameters for the selected state in the
States component on the Design tab in the Property Inspector. For example, you can select an image
that will appear on the switch when it is in the state.

All changes that you make to parameter values in the States component are applied only to the
selected state. To configure a different state, in the Select State section, select the state in the drop-
down menu. Then, configure the parameter values of that state in the States component.

Tip Alternatively, you can:

• Configure the parameters for the selected state using the toolbar that appears above the switch
block in design mode

• Configure the values and label text of the states for the block using the Parameters tab in the
Property Inspector

Programmatic Use

To configure the States for the block programmatically, specify the value of the States parameter as
a structure array containing two elements with fields:

• Value — Scalar double value for the state.

 Toggle Switch

1-2281

• Label — String or character array to use as the label for the switch position.

leftState.Value = 0;
leftState.Label = 'Off';
rightState.Value = 1;
rightState.Label = 'On';
switchStates = [leftState rightState];

Block Parameter: States
Type: two element array of structures

Value — State value
scalar

Each state pairs a State Value with a State Label. Specify the State Value that activates the state
selected in the Design tab.

Text — State label text
string | character array

Each state pairs a State Value with a State Label. Specify the text for the State Label of the state
selected in the Design tab.

Label Color — Button label font color
[r g b] vector

Choose a font color for the button label from the palette of standard colors, or specify a custom color.
The color is applied to the button label for the state that is selected in the Select State section of the
States component on the Design tab.

Label X Offset — Horizontal offset of text center from left edge of block
scalar

Specify the horizontal offset of the center of the State Label from the left edge of the block as a ratio
of the block width. Relative to the position of the text when the offset is 0, an offset with a negative
value moves the text left, and an offset with a positive value moves the text right.

Label Y Offset — Vertical offset of text center from top edge of block
scalar

Specify the vertical offset of the center of the State Label from the top edge of the block as a ratio of
the block height. Relative to the position of the text when the offset is 0, an offset with a negative
value moves the text up, and an offset with a positive value moves the text down.

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

1 Blocks

1-2282

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Click Area X Offset — Horizontal offset of left edge of click area from left edge of block
scalar

Specify the horizontal offset of the left edge of the click area from the left edge of the block as a ratio
of the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Click Area Y Offset — Vertical offset of top edge of click area from top edge of block
scalar

Specify the vertical offset of the top edge of the click area from the top edge of the block as a ratio of
the block height. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image up, and a positive value moves the image down.
Example: 1

Width — Click area width
scalar

Specify the click area width as a ratio of the block width.
Example: 0.5

Height — Click area height
scalar

Specify the click area height as a ratio of the block height.
Example: 0.5

 Toggle Switch

1-2283

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can provide a background image or select a solid color. To select a
solid background color, select this parameter. To provide a background image, clear this parameter.

Note Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and enables the Use Background Color parameter.

Example: on

Color — Block background color
[r g b] vector

To select a solid background color, enable the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Corner Radius — Corner radius of area with block background color
scalar

Specify the corner radius of the area covered by the block background color as a ratio of half of the
smaller of the two block dimensions, width or height.
Example: 0.25

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

1 Blocks

1-2284

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Tips
• When you want to design a circular switch that distributes the state labels and the click areas that

cause state transitions on an arc, consider using the Rotary Switch block.
• To design a control that applies values to a connected variable or parameter from a continuous

range, use the Knob, Horizontal Slider, or Vertical Slider blocks.

 Toggle Switch

1-2285

Version History
Introduced in R2021b

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (⌘) instead of Ctrl.

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

1 Blocks

1-2286

R2022b: Extended support for customizable Dashboard blocks on Raspberry Pi boards

Starting in R2022b, the Simulink Support Package for Raspberry Pi Hardware supports deploying
these blocks from the Customizable Blocks library on your Raspberry Pi boards:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on a web browser you launch from a Raspberry Pi terminal.

R2022b: Extended support for customizable Dashboard blocks on Android devices

Starting in R2022b, the Simulink Support Package for Android Devices supports deploying these
blocks from the Customizable Blocks library on your Android devices:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

 Toggle Switch

1-2287

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Customizable Rocker Switch | Customizable Rotary Switch | Customizable Slider Switch | Rocker
Switch | Rotary Switch | Slider Switch | Toggle Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”
“Getting Started with Panels”

1 Blocks

1-2288

Toggle Switch
Toggle parameter between two values

Libraries:
Simulink / Dashboard

Description
The Toggle Switch block toggles the value of the connected block parameter between two values
during simulation. For example, you can connect the Toggle Switch block to a Switch block in your
model and change its state during simulation. Use the Toggle Switch block with other Dashboard
blocks to create an interactive dashboard for your model.

Double-clicking the Toggle Switch block does not open its dialog box during simulation and when the
block is selected. To edit the block's parameters, you can use the Property Inspector, or you can
right-click the block and select Block Parameters from the context menu.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus

 Toggle Switch

1-2289

or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

1 Blocks

1-2290

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

1 Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

States — Pair values and labels
scalar and character vector

 Toggle Switch

1-2291

Pairs of values to assign to the connected variable or parameter and text to display on the block.
Switches have two states — Top and Bottom — one corresponding to each switch position. Each
state contains a Value and a Label.

• Value — Value to assign to the connected variable or parameter when the switch is in the
corresponding position.

• Label — Text to display on the block for the corresponding position.

This table describes the default configuration for the block.

States

Position State Value State Label
Top 0 on
Bottom 1 off

Programmatic Use

To configure the States for the block programmatically, specify the value of the States parameter as
a structure array containing two elements with fields:

• Value — Scalar double value for the state.
• Label — String or character array to use as the label for the switch position.

topState.Value = 0;
topState.Label = 'Off';
bottomState.Value = 1;
bottomState.Label = 'On';
switchStates = [topState bottomState];

Block Parameter: States
Type: two element array of structures

Label — Block label position

Top (default) | Bottom | Hide

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

1 Blocks

1-2292

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2015a

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a
dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add_block and set_param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Rocker Switch | Slider Switch | Rotary Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

 Toggle Switch

1-2293

To String
Convert input signal to string signal

Libraries:
Simulink / String

Description
The To String block creates a string signal from an input signal. For example, consider using this
signal to convert a logical value 1 or 0 to its string equivalent "false" or "true".

When a MinGW compiler compiles code generated from the block, running the compiled code may
produce nonstandard results for floating-point inputs. For example, a numeric input of 501.987
returns the string "5.019870e+002" instead of the expected string "5.019870e+02".

Ports
Input

Port_1 — Input signal
scalar

Input signal, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Output string
scalar

Output string, specified as a scalar. This block returns the output as a string, surrounded by double
quotes.

• If the input is a Boolean, the output is a logical value (1 or 0) and the block returns its textual
equivalent (true or false).

• If the input is a numeric data type, such as an integer, single, double, or fixed point, the block
returns the number as a string. For example, an input of 1 converts to "1" and an input of 0
converts to "0".

Note The output string might not contain all the digits of the numeric value from the input port.

Data Types: string

1 Blocks

1-2294

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single |

string
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate | String
Constant | String Find | String Length | String to Double | String to Single | String To Enum | String
To ASCII | Substring

Topics
“Get Text Following a Keyword”
“Simulink Strings”

 To String

1-2295

Transfer Fcn
Model linear system by transfer function

Libraries:
Simulink / Continuous

Description
The Transfer Fcn block models a linear system by a transfer function of the Laplace-domain variable
s. The block can model single-input single-output (SISO) and single-input multiple-output (SIMO)
systems.

Conditions for Using This Block

The Transfer Fcn block assumes the following conditions:

• The transfer function has the form

H(s) = y(s)
u(s) = num(s)

den(s) = num(1)snn− 1 + num(2)snn− 2 + … + num(nn)
den(1)snd− 1 + den(2)snd− 2 + … + den(nd)

,

where u and y are the system input and outputs, respectively, nn and nd are the number of
numerator and denominator coefficients, respectively. num(s) and den(s) contain the coefficients
of the numerator and denominator in descending powers of s.

• The order of the denominator must be greater than or equal to the order of the numerator.
• For a multiple-output system, all transfer functions have the same denominator and all numerators

have the same order.

Modeling a Single-Output System

For a single-output system, the input and output of the block are scalar time-domain signals. To model
this system:

1 Enter a vector for the numerator coefficients of the transfer function in the Numerator
coefficients field.

2 Enter a vector for the denominator coefficients of the transfer function in the Denominator
coefficients field.

Modeling a Multiple-Output System

For a multiple-output system, the block input is a scalar and the output is a vector, where each
element is an output of the system. To model this system:

1 Enter a matrix in the Numerator coefficients field.

Each row of this matrix contains the numerator coefficients of a transfer function that determines
one of the block outputs.

2 Enter a vector of the denominator coefficients common to all transfer functions of the system in
the Denominator coefficients field.

1 Blocks

1-2296

Specifying Initial Conditions

A transfer function describes the relationship between input and output in Laplace (frequency)
domain. Specifically, it is defined as the Laplace transform of the response (output) of a system with
zero initial conditions to an impulse input.

Operations like multiplication and division of transfer functions rely on zero initial state. For example,
you can decompose a single complicated transfer function into a series of simpler transfer functions.
Apply them sequentially to get a response equivalent to that of the original transfer function. This will
not be correct if one of the transfer functions assumes a non-zero initial state. Furthermore, a
transfer function has infinitely many time domain realizations, most of whose states do not have any
physical meaning.

For these reasons, Simulink presets the initial conditions of the Transfer Fcn block to zero. To specify
initial conditions for a given transfer function, convert the transfer function to its controllable,
canonical state-space realization using tf2ss . Then, use the State-Space block. The tf2ss utility
provides the A, B, C, and D matrices for the system.

For more information, type help tf2ss or see the Control System Toolbox™ documentation.

Transfer Function Display on the Block

The Transfer Fcn block displays the transfer function depending on how you specify the numerator
and denominator parameters.

• If you specify each parameter as an expression or a vector, the block shows the transfer function
using the specified coefficients for the powers of s. If you specify a variable in parentheses, the
block evaluates the variable.

For example, if you specify the Numerator coefficients parameter value as [3 2 1] and the
Denominator coefficients parameter value as (den), where den is a workspace variable with a
value of [7 5 3 1], the block displays the equation using the specified values.

Tip When the block size is too small to accommodate the full numerator or denominator, the block
icon displays the numerator as num(s) and the denominator as den(s).

If you want the block to show the equation for the transfer function it implements, resize the block
by dragging a corner.

 Transfer Fcn

1-2297

• If you specify each parameter as a variable, the block shows the variable name followed by (s).

For example, if you specify the Numerator coefficients parameter as num and the Denominator
coefficients parameter as den, the block icon shows the numerator of the transfer function as
num(s) and the denominator as den(s)

Ports
Input

Port_1 — Input signal
scalar

Input signal, specified as a scalar with data type double.
Data Types: double

Output

Port_1 — Output signal
scalar | vector

Output signal, provided as a scalar or vector with data type double.

• For a single-output system, the input and output of the block are scalar time-domain signals.
• For a multiple-output system, the input is a scalar, and the output is a vector, where each element

is an output of the system.

Data Types: double

Parameters
Numerator coefficients — Vector or matrix of numerator coefficients

[1] (default) | vector | matrix

Define the numerator coefficients of the transfer function.

• For a single-output system, enter a vector for the numerator coefficients of the transfer function.
• For a multiple-output system, enter a matrix. Each row of this matrix contains the numerator
coefficients of a transfer function that determines one of the block outputs.

Programmatic Use
Block Parameter: Numerator
Type: character vector, string
Values: vector | matrix
Default: '[1]'

Denominator coefficients — Row vector of denominator coefficients

1 Blocks

1-2298

[1 1] (default) | vector

Define the row vector of denominator coefficients.

• For a single-output system, enter a vector for the denominator coefficients of the transfer
function.

• For a multiple-output system, enter a vector containing the denominator coefficients common to
all transfer functions of the system.

Programmatic Use
Block Parameter: Denominator
Type: character vector | string
Values: vector
Default: '[1 1]'

Parameter tunability — Tunable representation of block parameters in code

Auto (default) | Optimized | Unconstrained

Tunability level of the numerator and denominator coefficients for Accelerated simulation modes and
deployed simulations using Simulink Compiler. Set this parameter to Auto to allow Simulink to
choose the appropriate level of parameter tunability.

Set this parameter to Optimized to generate a representation of numerator and denominator
coefficients in generated code for accelerated and deployed simulations that is optimized for better
simulation performance.

Set this parameter to Unconstrained to generate a fully tunable (between simulations)
representation of the numerator and denominator coefficients in the generated code for accelerated
and deployed simulations. To let Simulink determine the appropriate tunability level, select Auto .

Programmatic Use
Block Parameter: ParameterTunability
Type: character vector, string
Values: 'Auto' | 'Optimized' | 'Unconstrained'
Default: 'Auto'

Absolute tolerance — Absolute tolerance for computing block states

auto (default) | scalar | vector

Absolute tolerance for computing block states, specified as a positive, real-valued, scalar or vector. To
inherit the absolute tolerance from the Configuration Parameters, specify auto or -1.

• If you enter a real scalar, then that value overrides the absolute tolerance in the Configuration
Parameters dialog box for computing all block states.

• If you enter a real vector, then the dimension of that vector must match the dimension of the
continuous states in the block. These values override the absolute tolerance in the Configuration
Parameters dialog box.

• If you enter auto or –1, then Simulink uses the absolute tolerance value in the Configuration
Parameters dialog box (see “Solver Pane”) to compute block states.

Programmatic Use
Block Parameter: AbsoluteTolerance

 Transfer Fcn

1-2299

Type: character vector, string
Values: 'auto' | '-1' | any positive real-valued scalar or vector
Default: 'auto'

State Name (e.g., 'position') — Assign unique name to each state

' ' (default) | 'position' | {'a', 'b', 'c'} | a | ...

Assign a unique name to each state. If this field is blank (' '), no name assignment occurs.

• To assign a name to a single state, enter the name between quotes, for example, 'position'.
• To assign names to multiple states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.
• To assign state names with a variable in the MATLAB workspace, enter the variable without

quotes. A variable can be a character vector, string, cell array, or structure.

Limitations

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector, string
Values: ' ' | user-defined
Default: ' '

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks

1-2300

Not recommended for production-quality code. Relates to resource limits and restrictions on speed
and memory often found in embedded systems. The code generated can contain dynamic allocation
and freeing of memory, recursion, additional memory overhead, and widely-varying execution times.
While the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code.

In general, consider using the Simulink Model Discretizer to map continuous blocks into discrete
equivalents that support production code generation. To start the Model Discretizer, in the Simulink
Editor, on the Apps tab, under Apps, under Control Systems, click Model Discretizer. One
exception is the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

See Also
Discrete Transfer Fcn | State-Space

Topics
“State”

 Transfer Fcn

1-2301

Transfer Fcn Direct Form II
Implement Direct Form II realization of transfer function

Libraries:
Simulink / Additional Math & Discrete / Additional Discrete

Description
The Transfer Fcn Direct Form II block implements a Direct Form II realization of the transfer function
that the Numerator coefficients and Denominator coefficients excluding lead parameters
specify. The block supports only single input-single output (SISO) transfer functions.

The block automatically selects the data types and scalings of the output, the coefficients, and any
temporary variables.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal, specified as a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector

Output signal, specified as a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Numerator coefficients — Numerator coefficients

[0.2 0.3 0.2] (default) | vector

Specify the numerator coefficients as a vector.

Programmatic Use
Block Parameter: NumCoefVec
Type: character vector

1 Blocks

1-2302

Values: vector
Default: '[0.2 0.3 0.2]'

Denominator coefficients excluding lead — Denominator coefficient

[-0.9 0.6] (default) | vector

Specify the denominator coefficients, excluding the leading coefficient, which must be 1.0.

Programmatic Use
Block Parameter: DenCoeffVec
Type: character vector
Values: vector
Default: '[-0.9 0.6]'

Initial condition — Initial condition

0.0 (default) | scalar

Specify the initial condition as a scalar.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar
Default: '0.0'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action

off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector

 Transfer Fcn Direct Form II

1-2303

Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked subsystem block to execute as an
atomic unit by selecting the Treat as atomic unit option.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Transfer Fcn Direct Form II Time Varying | Discrete Transfer Fcn

Topics
“Fixed-Point Numbers”

1 Blocks

1-2304

Transfer Fcn Direct Form II Time Varying
Implement time varying Direct Form II realization of transfer function

Libraries:
Simulink / Additional Math & Discrete / Additional Discrete

Description
The Transfer Fcn Direct Form II Time Varying block implements a Direct Form II realization of the
specified transfer function. The block supports only single input-single output (SISO) transfer
functions.

The input signal labeled Den No Lead contains the denominator coefficients of the transfer function.
The full denominator has a leading coefficient of one, but it is excluded from the input signal. For
example, to use a denominator of [1 -1.7 0.72], specify a signal with the value [-1.7 0.72].
The input signal labeled Num contains the numerator coefficients. The data types of the numerator
and denominator coefficients can be different, but the length of the numerator vector and the full
denominator vector must be the same. Pad the numerator vector with zeros, if needed.

The block automatically selects the data types and scalings of the output, the coefficients, and any
temporary variables.

Ports
Input

u — Input signal
scalar | vector

Input signal, specified as a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Num — Numerator coefficients
scalar | vector

Numerator coefficients of the transfer function, specified as a scalar or vector.
Dependencies

The data types of the numerator and denominator coefficients can be different, but the length of the
numerator vector and the full denominator vector must be the same. Pad the numerator vector with
zeros, if needed.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Den No Lead — Denominator coefficients
scalar | vector

 Transfer Fcn Direct Form II Time Varying

1-2305

Denominator coefficients of the transfer function, specified as a scalar or vector, without the leading
coefficient of one. The full denominator has a leading coefficient of one, but it is excluded from the
input signal.
Example: For a denominator coefficient of [1 -1.7 0.72], specify a signal with value [-1.7
0.72].

Dependencies

The data types of the numerator and denominator coefficients can be different, but the length of the
numerator vector and the full denominator vector must be the same.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

y — Output signal
scalar | vector

Output signal, specified as a scalar or vector.

The block automatically selects the data types and scalings of the output and any temporary
variables.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
Initial condition — Initial condition

0.0 (default) | scalar

Specify the initial condition as a scalar.

Programmatic Use
Block Parameter: vinit
Type: character vector
Values: scalar
Default: '0.0'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

1 Blocks

1-2306

Saturate to max or min when overflows occur — Method of overflow action

off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Booleana | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

a This block is not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked subsystem block to execute as an
atomic unit by selecting the Treat as atomic unit option.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Transfer Fcn Direct Form II | Discrete Transfer Fcn

 Transfer Fcn Direct Form II Time Varying

1-2307

Topics
“Fixed-Point Numbers”

1 Blocks

1-2308

Transfer Fcn First Order
Implement discrete-time first order transfer function

Libraries:
Simulink / Discrete

Description
The Transfer Fcn First Order block implements a discrete-time first order transfer function of the
input. The transfer function has a unity DC gain.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal to the first order transfer function algorithm.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Transfer function output signal
scalar | vector

Output signal that is the discrete-time first order transfer function of the input with a unity DC gain.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Pole (in Z plane) — Pole

0.95 (default) | scalar

Specify the pole.

Programmatic Use
Block Parameter: PoleZ
Type: character vector
Value: real scalar
Default: '0.95'

 Transfer Fcn First Order

1-2309

Initial condition for previous output — Initial condition for previous output

0.0 (default) | scalar

Specify the initial condition for the previous output.

Programmatic Use
Block Parameter: ICPrevOutput
Type: character vector
Value: real scalar
Default: '0.0'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action

off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes

1 Blocks

1-2310

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Transfer Fcn Lead or Lag | Transfer Fcn

 Transfer Fcn First Order

1-2311

Transfer Fcn Lead or Lag
Implement discrete-time lead or lag compensator

Libraries:
Simulink / Discrete

Description
The Transfer Fcn Lead or Lag block implements a discrete-time lead or lag compensator of the input.
The instantaneous gain of the compensator is 1, and the DC gain is equal to (1-z)/(1-p), where z
is the zero and p is the pole of the compensator.

The block implements a lead compensator when 0<z<p<1, and implements a lag compensator when
0<p<z<1.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal that the block applies the discrete-time lead or lag compensation to.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector

Output signal that is discrete-time lead or lag compensation of the input sign.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Pole of compensator (in Z plane) — Pole

0.95 (default) | scalar

Specify the pole of the compensator.

Programmatic Use
Block Parameter: PoleZ

1 Blocks

1-2312

Type: character vector
Value: real scalar
Default: '0.95'

Zero of compensator (in Z plane) — Zero of compensator

0.75 (default) | scalar

Specify the zero of compensator in the Z plane.

Programmatic Use
Block Parameter: ZeroZ
Type: character vector
Value: real scalar
Default: '0.75'

Initial condition for previous input — Initial condition for previous input

0.0 (default) | scalar

Specify the initial condition for the previous input.

Programmatic Use
Block Parameter: ICPrevInput
Type: character vector
Value: real scalar
Default: '0.0'

Initial condition for previous output — Initial condition for previous output

0.0 (default) | scalar

Specify the initial condition for the previous output.

Programmatic Use
Block Parameter: ICPrevOutput
Type: character vector
Value: real scalar
Default: '0.0'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'

 Transfer Fcn Lead or Lag

1-2313

Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action

off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Booleana | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

a This block is not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Transfer Fcn First Order | Transfer Fcn

1 Blocks

1-2314

Transfer Fcn Real Zero
Implement discrete-time transfer function that has real zero and no pole

Libraries:
Simulink / Discrete

Description
The Transfer Fcn Real Zero block implements a discrete-time transfer function that has a real zero
and effectively no pole.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal to the discrete-time transfer function algorithm.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector

Output signal that is the discrete-time transfer function with a real zero and effectively no pole of the
input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Zero (in Z plane) — Zero

0.75 (default) | scalar

Specify the zero in the Z plane.

Programmatic Use
Block Parameter: ZeroZ
Type: character vector
Value: real scalar
Default: '0.75'

 Transfer Fcn Real Zero

1-2315

Initial condition for previous input — Initial condition for previous input

0.0 (default) | scalar

Specify the initial condition for the previous input.

Programmatic Use
Block Parameter: ICPrevInput
Type: character vector
Value: real scalar
Default: '0.0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

1 Blocks

1-2316

Saturate to max or min when overflows occur — Method of overflow action

off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Booleana | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

a This block is not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Transfer Fcn | Transfer Fcn Lead or Lag

 Transfer Fcn Real Zero

1-2317

Transport Delay
Delay input by given amount of time

Libraries:
Simulink / Continuous

Description
The Transport Delay block delays the input by a specified amount of time. You can use this block to
simulate a time delay. The input to this block should be a continuous signal.

At the start of simulation, the block outputs the Initial output parameter until the simulation time
exceeds the Time delay parameter. Then, the block begins generating the delayed input. During
simulation, the block stores input points and simulation times in a buffer. You specify this size with
the Initial buffer size parameter.

When you want output at a time that does not correspond to times of the stored input values, the
block interpolates linearly between points. When the delay is smaller than the step size, the block
extrapolates from the last output point, which can produce inaccurate results. Because the block does
not have direct feedthrough, it cannot use the current input to calculate an output value. For
example, consider a fixed-step simulation with a step size of 1 and the current time at t = 5. If the
delay is 0.5, the block must generate a point at t = 4.5. Because the most recent stored time value is
at t = 4, the block performs forward extrapolation.

The Transport Delay block does not interpolate discrete signals. Instead, the block returns the
discrete value at the required time.

This block differs from the Unit Delay block, which delays and holds the output on sample hits only.

Tip Avoid using linmod to linearize a model that contains a Transport Delay block. For more
information, see “Linearizing Models”.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal to delay, specified as a scalar, vector, or matrix.
Data Types: double

Output

Port_1 — Delayed signal
scalar | vector | matrix

1 Blocks

1-2318

Input signal, delayed by specified amount of time. Output has the same dimensions and data type as
the input signal.
Data Types: double

Parameters
Time delay — Time delay

1 (default) | scalar | vector | matrix

Specify the amount of simulation time to delay the input signal before propagation to the output as a
nonnegative scalar, vector, or matrix.
Programmatic Use:
Block Parameter: DelayTime
Type: character vector, string
Values: nonnegative scalar, vector, or matrix
Default: '1'

Initial output — Initial output value

0 (default) | scalar | vector | matrix

Specify the output that the block generates until the simulation time first exceeds the time delay
input as a scalar, vector, or matrix.
Limitations

The initial output of this block cannot be inf or NaN.

A Run-to-run tunable parameter cannot be changed during a simulation run time. However,
changing it before a simulation begins does not cause Accelerator or Rapid Accelerator to regenerate
code.
Programmatic Use
Block Parameter: InitialOutput
Type: character vector, string
Values: scalar | vector | matrix
Default: '0'

Initial buffer size — Initial memory allocation

1024 (default) | positive integer scalar

Define the initial memory allocation for the number of input points to store.

• If the number of input points exceeds the initial buffer size, the block allocates additional memory.
• After simulation ends, a message shows the total buffer size needed.

Tips

• Because allocating memory slows down simulation, choose this value carefully if simulation speed
is an issue.

• For long time delays, this block can use a large amount of memory, particularly for
dimensionalized input.

 Transport Delay

1-2319

Programmatic Use
Block Parameter: BufferSize
Type: character vector, string
Value: positive integer scalar
Default: '1024'

Use fixed buffer size — Use fixed-size buffer

off (default) | on

Select this check box to use a fixed-size buffer to save input data from previous time steps.

The Initial buffer size parameter specifies the size of the buffer. If the buffer is full, new data
replaces data already in the buffer. Simulink software uses linear extrapolation to estimate output
values that are not in the buffer.

Note If you have a Simulink Coder license, ERT or GRT code generation uses a fixed-size buffer even
if you do not select this check box.

Tips

• If the input data is linear, selecting this check box can save memory.
• If the input data is nonlinear, do not select this check box. Doing so can yield inaccurate results.

Programmatic Use
Block Parameter: FixedBuffer
Type: character vector, string
Value: 'off' | 'on'
Default: 'off'

Direct feedthrough of input during linearization — Enable direct feedthrough

off (default) | on

Cause the block to output its input during linearization and trim, which sets the block mode to direct
feedthrough.

Tips

• Selecting this check box can cause a change in the ordering of states in the model when you use
the functions linmod, dlinmod, or trim. To extract this new state ordering:

1 Compile the model using the following command, where model is the name of the Simulink
model.

 [sizes, x0, x_str] = model([],[],[],'lincompile');
2 Terminate the compilation with the following command.

 model([],[],[],'term');

• The output argument x_str, which is a cell array of the states in the Simulink model, contains the
new state ordering. When you pass a vector of states as input to the linmod, dlinmod, or trim
functions, the state vector must use this new state ordering.

1 Blocks

1-2320

Programmatic Use
Block Parameter: TransDelayFeedthrough
Type: character vector, string
Value: 'off' | 'on'
Default: 'off'

Pade order (for linearization) — Order of Pade approximation

0 (default) | scalar | vector | matrix

Set the order of the Pade approximation for linearization routines as a scalar, vector, or matrix of
nonnegative integers.

• The default value is 0, which results in a unity gain with no dynamic states.
• Setting the order to a positive integer n adds n states to your model, but results in a more

accurate linear model of the transport delay.

Programmatic Use
Block Parameter: PadeOrder
Type: character vector, string
Values: scalar | vector | matrix
Default: '0'

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production-quality code. Relates to resource limits and restrictions on speed
and memory often found in embedded systems. The code generated can contain dynamic allocation
and freeing of memory, recursion, additional memory overhead, and widely-varying execution times.
While the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code.

In general, consider using the Simulink Model Discretizer to map continuous blocks into discrete
equivalents that support production code generation. To start the Model Discretizer, in the Simulink

 Transport Delay

1-2321

Editor, on the Apps tab, under Apps, under Control Systems, click Model Discretizer. One
exception is the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

See Also
Unit Delay | Variable Time Delay

Topics
“Model Discretizer”

1 Blocks

1-2322

Transpose
Compute transpose of matrix

Libraries:
Simulink / Matrix Operations

Description
The Transpose block computes the transpose of an M-by-N matrix.

Ports
Input

Port_1 — Matrix
M-by-N matrix

Matrix, specified as an M-by-N matrix.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Output

Port_1 — Transposed matrix
N-by-M matrix

Transposed matrix, returned as an N-by-M matrix.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2021b

 Transpose

1-2323

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Cross Product | Hermitian Transpose | Identity Matrix | IsSymmetric | IsTriangular | Matrix Square

Topics
“Compatible Array Sizes for Basic Operations”
MATLAB Matrix Operations

1 Blocks

1-2324

Trigger
Add trigger or function port to subsystem or model

Libraries:
Simulink / Ports & Subsystems
HDL Coder / Ports & Subsystems

Description
The Trigger block adds an external signal or message port to control the execution of a subsystem or
a model. To enable this functionality, add this block to a Subsystem block or at the root level of a
model that is referenced in a Model block.

Then, configure the Trigger block to execute a subsystem or model:

• Once at each time step, when the value of the control signal changes in a way that you specify.
• Multiple times during a time step, when the control signal is a function-call event from a Stateflow

chart, Function-Call Generator block, or S-Function block.
• Based on messages received at the control port.

Ports
Output

Port_1 — Value that describes control signal or message payload
scalar | vector | matrix

If the Trigger type is rising, falling, either, or function-call, the port outputs a value that
identifies a control signal, returned as a scalar or vector. For each element of the input signal, the
value at a given time step is:

• 1 for a signal that causes a rising trigger
• -1 for a signal that causes a falling trigger
• 2 for a function-call event
• 0 in all other cases

If the Trigger type is message, the port outputs data extracted from message received at the control
port.

Dependencies

To enable this port, select Show output port or select message from the Trigger type list.
Data Types: double | int8

 Trigger

1-2325

Parameters
Main

Trigger type — Select the type of control signal

rising (default) | falling | either | function-call | message

Select the type of control signal that executes a subsystem or model.

rising
Trigger execution of subsystem or model when the control signal rises from a negative or zero
value to a positive value. If the initial value is negative, a rising signal to zero triggers execution.

falling
Trigger execution of subsystem or model when the control signal falls from a positive or a zero
value to a negative value. If the initial value is positive, a falling signal to zero triggers execution.

either
Trigger execution of subsystem or model when the control signal is either rising or falling.

function-call
Execute subsystem or model when the control port receives a function-call event from a Stateflow
chart, Function-Call Generator block, S-Function block, or Hit Crossing block.

message
Trigger execution of subsystem when a message is available at the control port.

Note If Trigger type is set to message, the block must be placed inside a subsystem.

Programmatic Use
Block Parameter: TriggerType
Type: character vector
Values: 'rising' | 'falling' | 'either' | 'function-call' | 'message'
Default: 'rising'

Treat as Simulink function — Create Simulink Function block

off (default) | on

Select this parameter to create a Simulink Function block by configuring a Subsystem block that is
callable with arguments from a function caller. The Trigger block must reside within the subsystem.
You can edit the function prototype that displays on the block face to specify input and output
arguments for the block.

Clear this parameter to remove the configuration.

Dependencies

To display and enable this parameter, select function-call from the Trigger type list.

Programmatic Use
Block Parameter: IsSimulinkFunction
Type: character vector

1 Blocks

1-2326

Values: 'off' | 'on'
Default: 'off'

Execute function call asynchronously — Whether caller request to call function can wait for service
execution

off (default) | on

Specify whether to execute the Simulink Function block asynchronously for a subsystem containing
this Trigger port block.

• Select this check box to model asynchronous execution where the caller (client) makes a request
to call the function (server). The function is executed based on the ordering defined in the
Schedule Editor and then returns the output arguments to the caller.

• Clear this check box to model synchronous execution where the caller calls the function and the
function runs immediately then returns the output arguments to the caller.

Dependencies

To display and enable this parameter, from the Trigger type list, select function-call, then select
the Treat as a Simulink Function parameter. Then, from the Function visibility list, select port.

Programmatic Use
Block Parameter: AsynchronousFunction
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Function name — Specify function name for Simulink Function block

f (default) | function name

Specify the function name for a Simulink Function block. Alternatively, you can specify the name by
editing the function prototype on the face of the block.

f
Default name for a Simulink Function block.

function name
Function name that displays on the face of a Simulink Function block.

Dependencies

To display and enable this parameter, select function-call from the Trigger type list and select
the Treat as a Simulink Function check box.

Programmatic Use
Block Parameter: FunctionName
Type: character vector
Values: 'f' | '<function name>'
Default: 'f'

Function visibility — Select scope visibility of function

scoped (default) | global | port

 Trigger

1-2327

Select scope of Simulink Function block within subsystem or model.

scoped
Limit accessibility of function to:

• Hierarchic level containing the Simulink Function block and levels below.
• One hierarchical level above with qualification.

global
Function accessible from any part of the model hierarchy.

port
Function accessible only through an exporting function port created by a Function Element block.

Dependencies

To display and enable this parameter, select function-call from the Trigger type list, then select
the Treat as a Simulink Function check box.

Programmatic Use
Block Parameter: FunctionVisibility
Type: character vector
Values: 'scoped' | 'global' | 'port'
Default: 'scoped'

Scope to port — Specify name of exporting function port

'' (default) | character vector

For a Simulink Function block with port visibility, specify the name of the exporting function port
created by a Function Element block through which the function can be called.
Example: 'ServerPort'

Dependencies

To display and enable this parameter, from the Trigger type list, select function-call, then select
the Treat as a Simulink Function check box. Then, from the Function visibility list, select port.

Programmatic Use
Block Parameter: ScopeName
Type: character vector
Values:'PortName'
Default: ''

Enable variant condition — Controls activating the variant control (condition)

on (default) | off

Control activating the variant control (condition) defined with the Variant Control parameter.

Select this parameter to activate variant control of the subsystem. Selecting this parameter:

• Enables the Variant control parameter.
• Displays a variant badge on the face of the block indicating that variant conditions are enabled.

1 Blocks

1-2328

Clear this parameter to deactivate variant control of the subsystem.
Dependencies

To display and enable this parameter, select function-call from the Trigger type list and select
the Treat as Simulink function check box.
Programmatic Use
Block Parameter: Variant
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Variant control — Specify variant control (condition) expression

(inherit) (default) | logical expression

Specify variant control (condition) expression that executes a variant Simulink Function block when
the expression evaluates to true.

(inherit)
Default value for variant control. Inherits the variant condition from the corresponding Function
Caller blocks in the model. When Variant Control is set as (inherit) the value for Generate
preprocessor conditionals is inherited automatically from the Function Caller block in the
model.

logical expression
A logical (Boolean) expression or a Simulink.Variant object representing a logical expression.

The function is activated when the expression evaluates to true.

If you want to generate code for your model, define the variables in the expression as
Simulink.Parameter objects.

Dependencies

To display and enable this parameter, select function-call from the Trigger type list, select the
Treat as a Simulink Function check box, then select the Enable variant condition check box.
Programmatic Use
Block Parameter: VariantControl
Type: character vector
Values: '(inherit)'|<logical expression> | Simulink.Variant object
Default: '(inherit)'

Generate preprocessor conditionals — Control enclosing variant choices

off (default) | on

Control enclosing variant choices within C preprocessor conditional statements.

Select this parameter to enclose variant choices within C preprocessor conditional statements (#if)
when generating code for an ERT target.
Dependencies

To display and enable this parameter, select the Enable variant condition check box.

 Trigger

1-2329

Programmatic Use
Block Parameter: GeneratePreprocessorConditionals
Type: character vector
Values: 'off' | 'on'
Default: 'off'

States when enabling — Select how to set block state values

held (default) | reset | inherit

Select how to set block state values when the subsystem or model is disabled.

held
Leave the block states at their current values.

reset
Reset the block state values.

inherit
Use the held or reset setting from the parent subsystem initiating the function-call. If the
parent of the initiator is the model root, the inherited setting is held. If the trigger has multiple
initiators, set the parents of all initiators to either held or reset.

Dependencies

To enable this parameter, select function-call from the Trigger Type list.

This parameter setting applies only if the model explicitly enables and disables the function-call
subsystem. For example:

• The function-call subsystem resides in an enabled subsystem. In this case, the model enables and
disables the function-call subsystem along with the parent subsystem.

• The function-call initiator that controls the function-call subsystem resides in an enabled
subsystem. In this case, the model enables and disables the function-call subsystem along with the
enabled subsystem containing the function-call initiator.

• The function-call initiator is a Stateflow event bound to a particular state. See “Control Function-
Call Subsystems by Using bind Actions” (Stateflow).

• The function-call initiator is an S-function that explicitly enables and disables the function-call
subsystem. See ssEnableSystemWithTid for an example.

Programmatic Use
Block Parameter: StatesWhenEnabling
Type: character vector
Values: 'held' | 'reset'| 'inherit'
Default: 'held'

Propagate sizes of variable-size signals — Select when to propagate variable-size signals

During execution (default) | Only when enabling

Select when to propagate variable-size signals.

During execution
Propagate variable-size signals at each time step.

1 Blocks

1-2330

Only when enabling
Propagate variable-size signals when executing a Subsystem block or Model block containing an
Enable port, Trigger port with Trigger type set to function-call, or Action Port block. When
you select this option, sample time must be periodic.

Dependencies

To display and enable this parameter for a Trigger port block, select Function-call from the
Trigger type list.

Programmatic Use
Block Parameter: PropagateVarSize
Type: character vector
Values: 'During execution' | 'Only when enabling'
Default: 'During execution'

Show output port — Control display of output port

off (default) | on

Control display of an output port for a signal that identifies the trigger signal or function-call event
signal.

Select this parameter to display the output port and determine which signal caused the trigger signal
or function-call event. The width of the output port signal is the width of the control signal. The signal
value is:

• 1 for a signal that causes a rising trigger
• -1 for a signal that causes a falling trigger
• 2 for a function-call event
• 0 in all other cases

Clear this parameter to remove the output port.

Dependencies

To display and enable this parameter, select an option other than message from the Trigger type
list.

Programmatic Use
Block Parameter: ShowOutputPort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output data type — Select output port data type

auto (default) | double | int8

Select the output port data type for the signal that identifies the trigger signal or function-call event
signal.

auto
Data type is the same as the port connected to the output.

 Trigger

1-2331

double
Double value.

int8
Integer value

Dependencies

To enable this parameter, select the Show output port check box.

The Trigger block ignores the Data type override setting for the Fixed-Point Tool.

Programmatic Use
Block Parameter: OutputDataType
Type: character vector
Values: 'auto' | 'double' | 'int8'
Default: 'auto'

Sample time type — Select calling rate

triggered (default) | periodic

Select the calling rate for a subsystem or model.

triggered
Apply to applications that do not have a periodic function-call frequency. A function-call initiator
can execute a triggered (aperiodic) function-call subsystem one or more times per time step and
can provide a series of aperiodic function-call events.

periodic
A function-call initiator can execute a periodic function-call system only once per time step and
must provide a series of periodic function-call events.. A Stateflow chart is an example of a
function-call initiator.

Dependencies

To enable this parameter, select Function-call from the Trigger type list.

Programmatic Use
Block Parameter: SampleTimeType
Type: character vector
Values: 'triggered' | 'periodic'
Default: 'triggered'

Sample time — Specify time interval

-1 (default) | Ts | [Ts, To]

Specify the time interval between function calls to a subsystem or model containing this Trigger port
block. If the actual calling rate for the subsystem or model differs from the time interval this
parameter specifies, Simulink displays an error.

-1
Inherit time interval from the control signal.

1 Blocks

1-2332

Ts
Scalar where Ts is the time interval.

[Ts, To]
Vector where Ts is the time interval and To is the initial time offset.

Dependencies

To enable this parameter, select function-call from the Trigger type list and periodic from the
Sample time type list.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: '-1' | 'Ts'| '[Ts, To]'
Default: '-1'

Enable zero-crossing detection — Control zero-crossing detection

on (default) | off

Select this parameter to detect zero crossings.

Dependencies

To enable this parameter, select rising, falling, or either from the Trigger type list.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Initial trigger signal state — Select the initial state of the trigger signal

compatibility (no trigger on first evaluation) (default) | zero | positive | negative

Select the initial state of the trigger control signal.

compatibility (no trigger on first evaluation)
No trigger at the first evaluation of trigger signal. If you choose this option and the Trigger block
is in a subsystem where the states are reset, the block does not reset.

zero
Zero. Helps to evaluate a rising or falling trigger signal at the first time step.

positive
Positive value. Helps to evaluate a falling trigger signal at the first time step.

negative
Negative value. Helps to evaluate a rising trigger signal at the first time step.

Dependencies

To display and activate this parameter, select rising, falling, or either from the Trigger type
list.

 Trigger

1-2333

Programmatic Use
Block Parameter: InitialTriggerSignalState
Type: character vector
Values: 'compatibility (no trigger on first evaluation)' | 'zero' | 'positive' |
'negative'
Default: 'compatibility (no trigger on first evaluation)'

Trigger time — Specify when message input triggers execution of subsystem

on message available (default) | on sample time hit

For a subsystem triggered by message input, specify timing of execution.

on message available
Trigger execution of subsystem and pull messages whenever one or more messages are available
at the control port.

on sample time hit
At each time step, check whether a message is available at the control port. If so, pull one
message and trigger execution of subsystem. If no message is available, do not execute
subsystem at that time step.

Dependencies

To display and activate this parameter, select message from the Trigger type list.

Programmatic Use
Block Parameter: TriggerTime
Type: character vector
Values: 'on message available' | 'on sample time hit'
Default: 'on message available'

Schedule as aperiodic partition — Specify immediate mode or scheduled mode for execution

on (default) | off

For a subsystem triggered by message availability, specify execution mode.

Clear this check box for immediate mode, in which the subsystem executes as soon as a message is
available at the control port, which pushes the message to the subsystem without a queue buffering
the message.

Select this check box for scheduled mode, which allows subsystem execution to be deferred after a
specific Simulink task while staying at the same time step.

Dependencies

To display and activate this parameter, select message from the Trigger type list, then select on
message available from the Trigger time list.

Programmatic Use
Block Parameter: ScheduleAsAperiodic
Type: character vector
Values: 'on' | 'off'
Default: 'on'

1 Blocks

1-2334

Signal Attributes

Port dimensions — Specify dimensions for the trigger signal

1 (default) | [n] | [m n]

Specify dimensions for the trigger signal attached externally a Model block and passed to the inside
of the block.

1
Scalar signal.

[n]
Vector signal of width n.

[m n]
Matrix signal having m rows and n columns.

Dependencies

To display and enable this parameter for a Trigger port block at the root-level of a model, select
rising, falling, or either from the Trigger type list.
Programmatic Use
Block Parameter: PortDimensions
Type: character vector
Values: '1' | '[n]' | '[m n]'
Default: '1'

Trigger signal sample time — Specify time interval

-1 (default) | Ts | [Ts, To]

Specify time interval between block method executions for the block driving the trigger signal.

-1
Inherit time interval.

Ts
Scalar where Ts is the time interval.

[Ts, To]
Vector where Ts is the time interval and To is the initial time offset.

Dependencies

To display and enable this parameter for a Trigger port block at the root-level of a model, select
rising, falling, or either from the Trigger type list.
Programmatic Use
Block Parameter: TriggerSignalSampleTime
Type: character vector
Values: '-1' | 'Ts'| '[Ts, To]'
Default: '-1'

Minimum — Specify minimum output value for the trigger signal

 Trigger

1-2335

[] (default) | real scalar

Specify minimum value for the trigger signal attached externally to a Model block and passed to the
inside of the block.

Simulink uses this value to perform:

• Simulation range checking. See “Specify Signal Ranges”.
• Automatic scaling of fixed-point data types.
• Optimization of generated code. This optimization can remove algorithmic code and affect the

results of some simulation modes such as SIL or external mode. See Optimize using the specified
minimum and maximum values (Embedded Coder).

[]
Unspecified minimum value.

real scalar
Real scalar value.

Dependencies

To display and enable this parameter for a Trigger port block at the root-level of a model, select
rising, falling, or either from the Trigger type list.
Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]' | '<real scalar>'
Default: '[]'

Maximum — Specify maximum output value for the trigger signal

[] (default) | real scalar

Specify maximum value for the trigger signal attached externally to a Model block and passed to the
inside of the block.

Simulink uses this value to perform:

• Simulation range checking. See “Specify Signal Ranges”.
• Automatic scaling of fixed-point data types.
• Optimization of generated code. This optimization can remove algorithmic code and affect the

results of some simulation modes such as SIL or external mode. See Optimize using the specified
minimum and maximum values (Embedded Coder).

[]
Unspecified maximum value.

real scalar
Real scalar value.

Dependencies

To display and enable this parameter for a Trigger port block at the root-level of a model, select
rising, falling, or either from the Trigger type list.

1 Blocks

1-2336

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]' | '<real scalar>'
Default: '[]'

Data type — Select output data type for the trigger signal

double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^,0) | <data type expression>

Select data type for the trigger signal attached externally to a Model block and passed to the inside of
the block.

double
Double-precision floating point.

single
Single-precision floating point.

int8
Signed 8-bit integer.

uint8
Unsigned 8-bit integer.

int16
Signed 16-bit integer.

uint16
Unsigned 16-bit integer.

int32
Signed 32-bit integer.

uint32
Unsigned 32-bit integer.

int64
Signed 64-bit integer.

uint64
Unsigned 64-bit integer.

boolean
Boolean with a value of true or false.

fixdt(1,16)
Signed 16-bit fixed point number with binary point undefined.

fixdt(1,16,0)
Signed 16-bit fixed point number with binary point set to zero.

fixdt(1,16,2^,0)
Signed 16-bit fixed point number with slope set to 2^0 and bias set to 0.

 Trigger

1-2337

<data type expression>
Data type object, for example Simulink.NumericType. You cannot enter the name of a
Simulink.Bus object as a data type expression.

Dependencies

To display and enable this parameter for a Trigger port block at the root-level of a model, select
rising, falling, or either from the Trigger type list.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' |
'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'double'

Mode — Select data type category

Built in (default) | Fixed point | Expression

Select data type category and display drop-down lists to help you define the data type.

Built in
Display drop-down lists for data type and Data type override.

Fixed point
Display drop-down lists for Signedness, Scaling, and Data type override.

Expression
Display text box for entering an expression.

Dependencies

To enable this parameter, select the Show data type assistant button .

Programmatic Use

No equivalent command-line parameter.

Interpolate data — Control how missing workspace data is estimated

on (default) | off

Control how missing workspace data is estimated when loading data from the MATLAB workspace.

Select this parameter to linearly interpolate output at time steps for which no corresponding
workspace data exists.

Clear this parameter to set the output at such time steps equal to the output at the most recent time
step for which data exists.

Dependencies

To display and enable this parameter for a Trigger port block at the root-level of a model, select
rising, falling, or either from the Trigger type list.

1 Blocks

1-2338

Programmatic Use
Block Parameter: Interpolate
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

yes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic. See also “HDL Code Generation” on page 1-2345.

HDL Architecture

This block has one default HDL architecture.

Restriction

You cannot generate HDL code for a Trigger Block that has Trigger type set to function-call or
message.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Subsystem | Model | Triggered Subsystem | Enabled and Triggered Subsystem | Function-Call
Subsystem | Message Triggered Subsystem

 Trigger

1-2339

Topics
“Conditionally Executed Subsystems Overview”
“Using Triggered Subsystems”
“Using Enabled and Triggered Subsystems”
“Using Function-Call Subsystems”
“Export-Function Models Overview”
“Conditionally Execute Referenced Models”

1 Blocks

1-2340

Trigger-Based Linearization
Generate linear models in base workspace when triggered

Libraries:
Simulink / Model-Wide Utilities

Description
When triggered, this block calls linmod or dlinmod to create a linear model for the system at the
current operating point. No trimming is performed. The linear model is stored in the base workspace
as a structure, along with information about the operating point at which the snapshot was taken.
Multiple snapshots are appended to form an array of structures.

Note linmod and dlinmod provide only basic linearization functionality. For full linearization
functionality, use Simulink Control Design software. For more information, see “Choose Linearization
Tools” (Simulink Control Design).

The block sets the following model parameters to the indicated values:

• BufferReuse = 'off'
• RTWInlineParameters = 'on'
• BlockReductionOpt = 'off'

The name of the structure used to save the snapshots is the name of the model appended by
_Trigger_Based_Linearization, for example, vdp_Trigger_Based_Linearization. The
structure has the following fields:

Field Description
a The A matrix of the linearization
b The B matrix of the linearization
c The C matrix of the linearization
d The D matrix of the linearization
StateName Names of the model's states
OutputName Names of the model's output ports
InputName Names of the model's input ports
OperPoint A structure that specifies the operating point of the linearization. The

structure specifies the value of the model's states (OperPoint.x) and
inputs (OperPoint.u) at the operating point time (OperPoint.t).

Ts The sample time of the linearization for a discrete linearization

 Trigger-Based Linearization

1-2341

Tip Use the Timed-Based Linearization block to generate linear models at predetermined times.

Ports
Input

Port_1 — Input signal
scalar

Input trigger signal, specified as a scalar. Specify the type of event that triggers generation of a linear
model using the Trigger type parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Trigger type — Signal type that triggers generation of a linear model

rising | falling | either | function-call

Type of event on the trigger input signal that triggers generation of a linear model. You can select:

• rising — Trigger execution of subsystem or model when the trigger signal rises from a negative
or zero value to a positive value. If the initial value is negative, a rising signal to zero triggers
execution.

• falling — Trigger execution of subsystem or model when the trigger signal falls from a positive
or a zero value to a negative value. If the initial value is positive, a falling signal to zero triggers
execution.

• either — Trigger execution of subsystem or model when the trigger signal is either rising or
falling.

• function-call — Trigger execution of subsystem or model when the trigger signal is a function-
call event from a Stateflow chart, Function-Call Generator block, S-Function block, or Hit Crossing
block.

Programmatic Use
Block Parameter: TriggerType
Type: character vector
Values: 'rising' | 'falling' | 'either' | 'function-call'
Default: 'rising'

Sample time (of linearized model) — Sample time

0 (default) | scalar | vector

Specify a sample time for the linear model. To create a continuous-time model using linmod, specify
a sample time of 0. Otherwise, to create a discrete-time model using dlinmod, specify a positive
sample time (see “Discrete-Time System Linearization” on page 2-44).

Programmatic Use
Block Parameter: SampleTime
Type: character vector

1 Blocks

1-2342

Values: scalar | vector
Default: '0'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Timed-Based Linearization | linmod | dlinmod

Topics
“Discrete-Time System Linearization” on page 2-44

 Trigger-Based Linearization

1-2343

Triggered Subsystem
Subsystem whose execution is triggered by external input

Libraries:
Simulink / Ports & Subsystems
HDL Coder / Ports & Subsystems

Description
The Triggered Subsystem block is a Subsystem block preconfigured as a starting point for creating a
subsystem that executes each time the control signal has a trigger value.

Use Triggered Subsystem blocks to model:

• A task that runs with the detection of a trigger value.
• An interrupt from I/O hardware.
• A processor request to handle an exception or error.

Ports
Input

In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem adds an external input port to the Subsystem block. The port
label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Trigger — Control signal input to a subsystem block
scalar

1 Blocks

1-2344

Placing a Trigger block in a subsystem adds an external input port to the Subsystem block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem adds an output port from the Subsystem block. The port
label on the Subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
For an explanation of the Triggered Subsystem block parameters, see Subsystem.

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic. For information about best practices, restrictions, and how you can use the trigger signal as a
clock with the TriggerAsClock property, see “Using Triggered Subsystems for HDL Code
Generation” (HDL Coder).

 Triggered Subsystem

1-2345

HDL Architecture

Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only the input/

output port definitions for the subsystem. Therefore, you can use a subsystem in
your model to generate an interface to existing, manually written HDL code.

The black-box interface generation for subsystems is similar to the Model block
interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the subsystem in
simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization

For the BlackBox architecture, you can customize port names and set attributes of the external
component interface. See “Customize Black Box or HDL Cosimulation Interface” (HDL Coder).

HDL Block Properties

General
AdaptivePipelining Automatic pipeline insertion based on the synthesis tool, target frequency,

and multiplier word-lengths. The default is inherit. See also
“AdaptivePipelining” (HDL Coder).

BalanceDelays Detects introduction of new delays along one path and inserts matching
delays on the other paths. The default is inherit. See also
“BalanceDelays” (HDL Coder).

ClockRatePipelining Insert pipeline registers at a faster clock rate instead of the slower data
rate. The default is inherit. See also “ClockRatePipelining” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

FlattenHierarchy Remove subsystem hierarchy from generated HDL code. The default is
inherit. See also “FlattenHierarchy” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

1 Blocks

1-2346

General
SharingFactor Number of functionally equivalent resources to map to a single shared

resource. The default is 0. See also “Resource Sharing” (HDL Coder).
StreamingFactor Number of parallel data paths, or vectors, that are time multiplexed to

transform into serial, scalar data paths. The default is 0, which implements
fully parallel data paths. See also “Streaming” (HDL Coder).

Target Specification

This block cannot be the DUT, so the block property settings in the Target Specification tab are
ignored.

Restrictions

• HDL code generation supports only boolean datatype at the trigger input.
• If the output of the subsystem is a bus then Initial condition of the outport must be 0.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Enabled Subsystem | Enabled and Triggered Subsystem | Message Triggered Subsystem | Function-
Call Subsystem | Subsystem | Trigger

Topics
“Conditionally Executed Subsystems Overview”
“Using Enabled Subsystems”
“Using Triggered Subsystems”
“Using Enabled and Triggered Subsystems”
“Using Function-Call Subsystems”

 Triggered Subsystem

1-2347

Trigonometric Function
Specified trigonometric function on input

Libraries:
Simulink / Math Operations
HDL Coder / Math Operations

Description
The Trigonometric Function block performs common trigonometric functions and outputs the result
in rad or rev.

Supported Functions

You can select one of these functions from the Function parameter list.

Function Description Mathematical
Expression

MATLAB Equivalent

sin Sine of the input sin(u) sin
cos Cosine of the input cos(u) cos
tan Tangent of the input tan(u) tan
asin Inverse sine of the input asin(u) asin
acos Inverse cosine of the

input
acos(u) acos

atan Inverse tangent of the
input

atan(u) atan

atan2 Four-quadrant inverse
tangent of the input

atan2(u) atan2

sinh Hyperbolic sine of the
input

sinh(u) sinh

cosh Hyperbolic cosine of the
input

cosh(u) cosh

tanh Hyperbolic tangent of
the input

tanh(u) tanh

asinh Inverse hyperbolic sine
of the input

asinh(u) asinh

acosh Inverse hyperbolic
cosine of the input

acosh(u) acosh

atanh Inverse hyperbolic
tangent of the input

atanh(u) atanh

1 Blocks

1-2348

Function Description Mathematical
Expression

MATLAB Equivalent

sincos Sine of the input; cosine
of the input

— —

cos + jsin Complex exponential of
the input

— —

CORDIC Approximation Method

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations. For more information, see “More About” on page 1-2359. The block input has
further requirements.

For more information on when you set Function to sin, cos, sincos, or cos + jsin and set the
Approximation method to CORDIC, see “Port_1” on page 1-0 .

This table summarizes what happens for an invalid input.

Block Usage Effect of Invalid Input
Simulation modes An error appears.
Generated code Undefined behavior occurs. Avoid relying on undefined

behavior for generated code.

Lookup Approximation Method

For more information on when you set Function to sin, cos, sincos, or cos + jsin and set the
Approximation method to Lookup, see “Port_1” on page 1-0 .

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input specified as a scalar, vector, or matrix. The block accepts input signals of the following data
types:

Functions Input Data Types
• sin
• cos
• sincos
• cos + jsin
• atan2

• Floating point
• Fixed point (only when Approximation

method is CORDIC)

 Trigonometric Function

1-2349

Functions Input Data Types
• tan
• asin
• acos
• atan
• sinh
• cosh
• tanh
• asinh
• acosh
• atanh

• Floating point

CORDIC approximation fixed-point type propagations:

Input Data Type Function Output Data Type
Fixed point, signed or
unsigned

sin, cos, sincos, and cos
+ jsin

fixdt(1, WL, WL - 2) where WL is the
input word length

This fixed-point type provides the best
precision for the CORDIC algorithm.

Fixed point, signed atan2 fixdt(1, WL, WL – 3)
Fixed point, unsigned atan2 fixdt(1, WL, WL – 2)

Lookup approximation fixed-point type propagations:

Input Data Type Function Output Data Type
Fixed point, signed sin, cos, sincos, cos +

jsin, atan2
fixdt(1, WL, FL)

Fixed point, unsigned sin, cos, sincos, cos +
jsin, atan2

fixdt(1, WL - 1, FL)

Dependencies

• When you set Function to atan2, the block shows two input ports. The first input (Port_1) is the
y-axis or imaginary part of the function argument. The second input (Port_2) is the x-axis or real
part of the function argument.

• You can use floating-point input signals when you set Approximation method to None, CORDIC,
or Lookup. However, the block output data type depends on which of these approximation method
options you choose.

Input Data Type Approximation Method Output Data Type
Floating point None Depends on your selection for Output

signal type. Options are auto (same
data type as input), real, or complex.

1 Blocks

1-2350

Input Data Type Approximation Method Output Data Type
Floating point CORDIC Same as input. Output signal type is

not available when you use the CORDIC
approximation method to compute the
block output.

Floating point Lookup Same as input. Output signal type is
not available when you use the Lookup
approximation method to compute the
block output.

For CORDIC and Lookup approximations:

• Input must be real for the sin, cos, sincos, cos + jsin, and atan2 functions.
• Output is real for the sin, cos, sincos, and atan2 functions.
• Output is complex for the cos + jsin function.

Limitations

• You can use fixed-point input signals only when Approximation method is set to CORDIC or
Lookup. The CORDIC and Lookup approximations are available for the sin, cos, sincos, cos +
jsin, and atan2 functions.

• Complex input signals are supported for all functions in this block except atan2.
• When you set Approximation method to Lookup, the number of data points are limited by:

• smallEnoughNumDataPoints = 2(inputFractionLen-2)+1
• bigEnoughFractionLen = log2(numberOfDataPoints - 1)+2

where:

• smallEnoughNumDataPoints is the maximum number of data points represented by specified
input fraction length, inputFractionLen.

• bigEnoughFractionLen is the minimum fraction length needed to represent specified number
of data points, numberOfDataPoints.

• When you set Function to sin, cos, sincos, or cos + jsin and set the Approximation
method to CORDIC, the block has these limitations:

• When you use signed fixed-point types, the input angle must fall within the range [–2π, 2π) rad.
• When you use unsigned fixed-point types, the input angle must fall within the range [0, 2π) rad.

When you set Function to atan2 and the Approximation method to CORDIC, the block has
these limitations:

• Inputs must be the same size, or at least one value must be a scalar value.
• Both inputs must have the same data type.
• When you use signed fixed-point types, the word length must be 126 or less.
• When you use unsigned fixed-point types, the word length must be 125 or less.

• When you set Function to sin, cos, sincos, or cos + jsin and set the Approximation
method to Lookup, the block has these limitations.

 Trigonometric Function

1-2351

• When you use signed fixed-point types, the input angle must fall within the range [-2π,2π] rad.
• When you use unsigned fixed-point types, the input angle must fall within the range [0,2π) rad.
• When you set Function to atan2 and the Approximation method to Lookup, the block has

these limitations:

• Inputs must be the same size, or at least one value must be a scalar value.
• Both inputs must have the same data type.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Port_2 — x-axis or real part of the function argument for atan2
scalar | vector | matrix

Input the x-axis or real part of the function argument for atan2. When you set Function to atan2,
the block shows two input ports. The first input (Port_1) is the y-axis or imaginary part of the
function argument. The second input (Port_2) is the x-axis or real part of the function argument. (See
“Identify Port Location on Rotated or Flipped Block” for a description of the port order for various
block orientations.)

Dependencies

To enable this port, set Function to atan2.

Limitations

• Fixed-point input signals are supported only when you set Approximation method to CORDIC or
Lookup.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Output

Port_1 — Specified trigonometric function of input
scalar | vector | matrix

Result of applying the specified trigonometric function to one or more inputs in rad. Each function
supports:

• Scalar operations
• Element-wise vector and matrix operations

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

sin — Sine of input signal
scalar | vector | matrix

Sine of the input signal, in rad and rev.

Dependencies

To enable this port, set Function to sincos.

1 Blocks

1-2352

Limitations

Fixed-point input signals are supported only when you set Approximation method to CORDIC or
Lookup.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

cos — Cosine of input signal
scalar | vector | matrix

Cosine of the input signal, in rad and rev.

Dependencies

To enable this port, set Function to sincos.

Limitations

Fixed-point input signals are supported only when you set Approximation method to CORDIC or
Lookup.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
Algorithm

Function — Trigonometric function

sin (default) | cos | tan | asin | acos | atan | atan2 | sinh | cosh | tanh | asinh | acosh | atanh
| sincos | cos + jsin

Specify the trigonometric function. The name of the function on the block icon changes to match your
selection.

For more information on when you set Function to sin, cos, sincos, or cos + jsin and set the
Approximation method to CORDIC, see “Limitations” on page 1-0 .

Programmatic Use
Block Parameter: Operator
Type: character vector
Values: 'sin' | 'cos' | 'tan' | 'asin' | 'acos' | 'atan' | 'atan2' | 'sinh' |
'cosh' | 'tanh' | 'asinh' | 'acosh' | 'atanh' | 'sincos' | 'cos + jsin'
Default: 'sin'

Approximation method — CORDIC, Lookup, or none

None (default) | CORDIC | Lookup

Specify the type of approximation for computing output.

 Trigonometric Function

1-2353

Approximation Method Data Types Supported When to Use This Method
None (default) Floating point You want to use the default

Taylor series algorithm.
CORDIC Floating point and fixed point You want a fast, approximate

iterative calculation.
Lookup Floating point and fixed point

(double and single)
You want a fast, approximate
lookup table implementation.

For more information on when you set Function to sin, cos, sincos, or cos + jsin and set the
Approximation method to CORDIC, see “Limitations” on page 1-0 .

Dependencies

• To enable this parameter, set Function to sin, cos, sincos, cos + jsin, or atan2.
• To use fixed-point input signals, you must set Approximation method to CORDIC or Lookup.
• To enable the Table data type parameter, set this method to Lookup.

Programmatic Use
Block Parameter: ApproximationMethod
Type: character vector
Values: 'None' | 'CORDIC' | 'Lookup'
Default: 'None'

Interpolation method — Method of interpolation between breakpoint values

Linear point-slope (default) | Flat

When an input falls between breakpoint values, the block interpolates the output value using
neighboring breakpoints. For more information on interpolation methods, see “Interpolation
Methods”.

Programmatic Use
Block Parameter: InterpMethod
Type: character vector
Values: 'Linear point-slope' | 'Flat'
Default: 'Linear point-slope'

Number of iterations — Number of iterations for CORDIC algorithm

11 (default) | positive integer, less than or equal to word length of fixed-point input

Specify the number of iterations to perform the CORDIC algorithm. The default value is 11.

• When the block input uses a floating-point data type, the number of iterations can be a positive
integer.

• When the block input is a fixed-point data type, the number of iterations cannot exceed the word
length.

For example, if the block input is fixdt(1,16,15), the word length is 16. In this case, the
number of iterations cannot exceed 16.

1 Blocks

1-2354

Dependencies

To enable this parameter, you must set the Function and Approximation method parameters as
follows:

• Set Function to sin, cos, sincos, cos + jsin, or atan2.
• Set Approximation method to CORDIC.

Programmatic Use
Block Parameter: NumberOfIterations
Type: character vector
Values: positive integer, less than or equal to word length of fixed-point input
Default: '11'

Angle unit — Angle unit

radian (default) | revolution

Specify the angle unit for lookup method as radian or revolution.

Dependencies

To enable this parameter:

• Set Function to sin, cos, sincos, cos + jsin, or atan2.
• Set Approximation method to Lookup.

Programmatic Use
Block Parameter: AngleUnit
Type: character vector
Values: 'radian' | 'revolution'
Default: 'radian'

Number of data points — Number of data points for lookup table

16 (default) | scalar

Specify the number of data points for lookup table as a scalar real number.

Dependencies

To enable this parameter:

• Set Function to sin, cos, sincos, cos + jsin, or atan2.
• Set Approximation method to Lookup.

Programmatic Use
Block Parameter: NumberOfDataPoints
Type: character vector
Values: scalar
Default: '16'

Output signal type — Complexity of output signal

auto (default) | real | complex

 Trigonometric Function

1-2355

Specify the output signal type of the Trigonometric Function block as auto, real, or complex.

Function Input Signal Type Output Signal Type
Auto Real Complex

Any selection for
the Function
parameter

real real real complex
complex complex error complex

Dependencies

Setting Approximation method to CORDIC disables this parameter.

Note When Function is atan2, complex input signals are not supported for simulation or code
generation.

Programmatic Use
Block Parameter: OutputSignalType
Type: character vector
Values: 'auto' | 'real' | 'complex'
Default: 'auto'

Remove protection against out-of-range input — Remove protection against out-of-range input

off (default) | on

For acos and asin, select this check box to remove the protection against out-of-range inputs, which
reduces redundancy.

• When you clear this check box, the protection is enabled. The block saturates out-of-range inputs
to 1 or -1 before any operation is performed. Generated code contains code to check for out-of-
range input.

• When you select this check box, the protection is removed. The block performs all operations on
the input value without any changes. Generated code does not contain code to check for the out-
of-range input.

Enabling this check box can eliminate redundancy if the input is already in range.

Dependencies

Setting Function to acos and asin enables this parameter.

Programmatic Use
Block Parameter: RemoveProtectionAgainstOutOfRangeInput
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

1 Blocks

1-2356

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.
Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Data Types

Table data type — Data type of table

Inherit: Inherit via input (default) | double | single | fixdt(1,16,0) | <data type
expression>

Data type for the lookup table, specified as:

• Inherit: Inherit via input
• double
• single
• fixdt(1,16,0)
• <data type expression>

For more information on setting data types, see “Control Data Types of Signals”.
Programmatic Use
Block Parameter: TableDataTypeStr
Type: string scalar or character vector
Values: Inherit: Inherit via input | single | double | fixdt(1,16,0) | data type
expression
Default: Inherit: Inherit via input

Mode — Category of data to specify

Inherit (default) | Built in | Fixed point | Expression

Select how you would like to specify the data type properties of the Output data type. You can
choose:

• Inherit — Lets you specify a rule for inheriting a data type, for example, Inherit: Inherit
via internal rule

• Built in— Lets you specify a built-in data type.
• Fixed point — Lets you specify the fixed-point attributes of the data type.
• Expression — Lets you specify an expression that evaluates to a valid data type, for example,

fixdt([],16,0)

Dependencies

To enable this parameter, click >> at the Output data type parameter.

Signedness — Specify signed or unsigned

 Trigonometric Function

1-2357

Signed (default) | Unsigned

Specify the Signedness for the Output data type.

Dependencies

To enable this parameter, set Mode to Fixed point.

Scaling — Method for scaling fixed-point data

Binary point (default)

Specify the Scaling for the Output data type.

Dependencies

To enable this parameter, set Mode to Fixed point.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

• Inherit — Inherits the data type override setting specified for the model.
• Off — Ignores the data type override setting specified for the model and uses the fixed-point data

type you specify

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Dependencies

To enable this parameter, click the Show data type assistant button, and set Mode to Built in or
Fixed point.

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type

0 (default) | scalar integer

1 Blocks

1-2358

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set:

• Mode to Fixed point
• Scaling to Binary point

Block Characteristics
Data Types double | fixed pointa | half | integera | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

a This block supports fixed-point and base integer data types for 'Approximation method' CORDIC.

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

Version History
Introduced before R2006a

References
[1] Volder, Jack E., “The CORDIC Trigonometric Computing Technique.” IRE Transactions on

Electronic Computers EC-8 (1959); 330–334.

[2] Andraka, Ray “A Survey of CORDIC Algorithm for FPGA Based Computers.” Proceedings of the
1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays. Feb.
22–24 (1998): 191–200.

[3] Walther, J.S., “A Unified Algorithm for Elementary Functions,” Proceedings of the Spring Joint
Computer Conference, May 18-20, 1971: 379–386.

 Trigonometric Function

1-2359

[4] Schelin, Charles W., “Calculator Function Approximation,” The American Mathematical Monthly
90, no. 5 (1983): 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not all compilers support the asinh, acosh, and atanh functions. If you use a compiler that does
not support those functions, a warning appears and the generated code fails to link.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

You can generate HDL code for all functions of the block with floating-point data types and
architecture set to Trigonometric in native floating-point mode. The native floating-point mode
does not support double data types for the block.

This block has multi-cycle implementations that introduce additional latency in the generated code.
To see the added latency, view the generated model or validation model. See “Generated Model and
Validation Model” (HDL Coder).

The Trigonometric Function block supports HDL code generation for these functions in this table with
CORDIC approximation method and Cordic HDL architecture for fixed-point data types.

• sin
• cos
• sincos
• cos+jsin
• atan2

The latency calculation depends on the word length and LatencyStrategy settings. To learn more,
open the HDLMathLib library.

HDLMathLib

HDL Block Properties

General
ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

1 Blocks

1-2360

General
InputPipeline Number of input pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

LatencyStrategy To enable this property for fixed-point types, set Function as sin, cos,
sincos, cos+jsin, or atan2 and Approximation method as CORDIC.
Specify whether to map the blocks in your design to MAX, CUSTOM, or ZERO
latency for fixed-point and floating-point types. The default is MAX. See also
“LatencyStrategy” (HDL Coder).

CustomLatency To enable this property for fixed-point types, set Function as sin, cos,
sincos, cos+jsin, or atan2 and Approximation method as CORDIC.
When LatencyStrategy is set to CUSTOM, use this property to specify a
custom latency value between ZERO and MAX for fixed-point types. See also
“LatencyStrategy” (HDL Coder).

Native Floating Point
InputRangeReduction Use this property for the sin, cos, tan, sincos, and cos+jsin functions. If

your input range is unbounded, enable this property for HDL Coder to
insert additional logic to reduce the range of inputs to [-pi, pi]. See
also “InputRangeReduction” (HDL Coder).

HandleDenormals Specify whether you want HDL Coder to insert additional logic to handle
denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min, or
Zero for the floating-point operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

MultiplyStrategy Use this property for the sin, cos, tan, sincos, and cos+jsin functions. The
default is inherit. Specify whether you want to use FullMultiplier or
PartMultiplierPartAddShift. See also “MantissaMultiplyStrategy”
(HDL Coder).

To see the latency calculation for fixed-point types with the block, at the MATLAB command prompt,
enter:

HDLMathLib

ULP Considerations

The Trigonometric Function blocks have nonzero units in the last place (ULP) error for floating point
operations. For more information, see “ULP Considerations of Native Floating-Point Operators” (HDL
Coder).

 Trigonometric Function

1-2361

Restrictions

• For the sin and cos functions, only signed fixed-point data types are supported for CORDIC
approximations.

• For functions that have the CORDIC mode such as sin, cos, sincos, atan2, and cos+jsin,
fixed-point data types greater than 127 bits are not supported for HDL code generation.

• HDL Coder displays an error when you select these settings for a Trigonometric Function block
inside a feedback loop:

• HDL architecture as SinCosCordic
• UsePipelinedKernel as On

The error occurs because the block is in a feedback loop and the code generator is unable to
insert additional latency. To avoid this error, add a delay of length equal to the Number of
iterations + 3 adjacent to the block. The code generator then absorbs this delay to meet the
additional latency of the Trigonometric Function block.

For example, this Trigonometric Function block has Number of iterations set to 30. A Delay of
length 33 adjacent to the block meets the additional latency.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block supports fixed-point and base integer data types when you set the Function to sin, cos,
sincos, cos + jsin, or atan2 and set the Approximation method to CORDIC.

See Also
Blocks
Math Function | Sqrt | Sine, Cosine

Functions
cordicsin | cordiccos | cordicsincos

1 Blocks

1-2362

Unary Minus
Negate input

Libraries:
Simulink / Math Operations
HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description
The Unary Minus block negates the input.

Ports
Input

Port_1 — Signal to negate
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array.
Data Types: half | single | double | int8 | int16 | int32 | int64 | fixed point

Output

Port_1 — Negation of input signal
scalar | vector | matrix | N-D array

Negation of the input signal. The output has the same data type and dimensions as the input.
Data Types: half | single | double | int8 | int16 | int32 | int64 | fixed point

Parameters
Saturate on integer overflow — Method of overflow action

off (default) | on

Select to have integer overflows saturate. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

For signed-integer data types, the unary minus of the most negative value is not representable by the
data type. In this case, the Saturate on integer overflow check box controls the behavior of the
block:

 Unary Minus

1-2363

Parameter Setting Block Behavior Examples
Saturate on integer
overflow = on

Values saturate to the most
positive value of the integer
data type

• For 8-bit signed integers, -128 maps to 127.
• For 16-bit signed integers, -32768 maps to

32767.
• For 32-bit signed integers, -2147483648

maps to 2147483647.
Saturate on integer
overflow = off

Values wrap to the most
negative value of the
integer data type

• For 8-bit signed integers, -128 remains -128.
• For 16-bit signed integers, -32768 remains

-32768.
• For 32-bit signed integers, -2147483648

remains -2147483648.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than -1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use
Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics
Data Types double | fixed pointa | half | integera | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

a This block only supports signed fixed-point data types.

Version History
Introduced before R2006a

1 Blocks

1-2364

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block only supports signed fixed-point data types.

See Also
uminus

Topics
“Operator Precedence”

 Unary Minus

1-2365

Uniform Random Number
Generate uniformly distributed random numbers

Libraries:
Simulink / Sources

Description
The Uniform Random Number block generates uniformly distributed random numbers over an
interval that you specify. To generate normally distributed random numbers, use the Random Number
block. Both blocks use the Normal (Gaussian) random number generator ('v4': legacy MATLAB 4.0
generator of the rng function).

You can generate a repeatable sequence using any Uniform Random Number block with the same
nonnegative seed and parameters. The seed resets to the specified value each time a simulation
starts.

Avoid integrating a random signal, because solvers must integrate relatively smooth signals. Instead,
use the Band-Limited White Noise block.

The numeric parameters of this block must have the same dimensions after scalar expansion. If you
select the Interpret vector parameters as 1-D check box and the numeric parameters are row or
column vectors after scalar expansion, the block outputs a 1-D signal. If you clear the Interpret
vector parameters as 1-D check box, the block outputs a signal of the same dimensionality as the
parameters.

Ports
Output

Port_1 — Random number output signal
scalar | vector

Output signal of generated uniformly distributed random numbers over the interval you specify.
Data Types: double

Parameters
Minimum — Minimum interval

0 (default) | scalar | vector | matrix | N-D array

Specify the minimum of the interval.

Programmatic Use
Block Parameter: Minimum

1 Blocks

1-2366

Type: character vector
Values: scalar
Default: '-1'

Maximum — Maximum interval

0 (default) | scalar | vector | matrix | N-D array

Specify the maximum of the interval.

Programmatic Use
Block Parameter: Maximum
Type: character vector
Values: scalar
Default: '1'

Seed — Random number seed

0 (default) | scalar | vector | matrix | N-D array

Specify the starting seed for the random number generator.

The seed must be 0 or a positive integer. Output is repeatable for a given seed.

Programmatic Use
Block Parameter: See
Type: character vector
Values: scalar
Default: '0'

Sample time — Sample time

0.1 (default) | scalar

Specify the time interval between samples. See “Specify Sample Time” for more information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '0.1'

Interpret vector parameters as 1-D — Treat vectors as 1-D

on (default) | off

Select this check box to output a vector of length N if the Constant value parameter evaluates to an
N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if the Constant value
parameter evaluates to an N-element row or column vector. For example, the block outputs a
matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if the Constant
value parameter evaluates to an N-element row or column vector.

 Uniform Random Number

1-2367

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Random Number | Repeating Sequence | rng

1 Blocks

1-2368

Unit System Configuration
Restrict units to specified allowed unit systems

Libraries:
Simulink / Ports & Subsystems

Description
The Unit System Configuration block specifies allowed and disallowed unit systems for the
component. It restricts units systems for a subsystem or top model and all its children, unless you
override it with another Unit System Configuration block in a child.

This block supports normal, accelerator, and rapid accelerator modes and fast restart.

Parameters
Disallowed unit systems — Disallowed unit systems
SI | English | SI (extended) | CGS

Displays a list of the disallowed unit systems. By default, the Allow all unit systems check box is
selected, and all unit systems are allowed.

To designate a unit system as disallowed, select it in the Allowed unit systems column and click <<
Disallow.

Dependencies

To enable changes to this parameter, you must first clear the Allow all unit systems check box.

Allowed unit systems — Allowed unit systems
SI | English | SI (extended) | CGS

Displays a list of the allowed unit systems. By default, the Allow all unit systems check box is
selected, and all unit systems are allowed.

To designate a unit system as allowed, use the Allow >> and << Disallow buttons to move unit
systems between the Disallowed unit systems and Allowed unit systems columns.

Dependencies

To enable changes to this parameter, you must first clear the Allow all unit systems check box.

Programmatic Use
Block Parameter: UnitSystems
Type: cell array of character vectors
Values: cell array of the following character vectors: 'SI' | 'English' | 'SI (extended)' |
'CGS'
Default: {'SI', 'English', 'SI (extended)', 'CGS'}

 Unit System Configuration

1-2369

Allow all unit systems — Allow all unit systems

on (default) | off

When you select this check box, all unit systems are allowed. To restrict the allowed unit systems to
only the ones specified in the Allowed unit systems column, clear this check box.

Dependencies

Selecting the Allow all unit systems check box disables the Disallowed unit systems and Allowed
unit systems parameters.

Programmatic Use
Block Parameter: AllowAllUnitSystems
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Unit Conversion | Inport | Outport

Topics
“Update an Existing Model to Use Units”
“Units in Simulink”
“Unit Specification in Simulink Models”
“Restricting Unit Systems”

1 Blocks

1-2370

Unit Conversion
Convert units

Libraries:
Simulink / Signal Attributes

Description
The Unit Conversion block converts the unit of the input signal to the output signal. The block can
perform the conversion if the units are separated by a scaling factor or offset, or are inverse units, for
example:

• y = a*U
• y = a*U+b, where a is the scale and b is the offset
• y = a/U

This block supports normal, accelerator, and rapid accelerator modes and fast restart.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix | N-D array

Output signal with converted units with the same dimensions as the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Output data type — Output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation

Specify the output data type.

 Unit Conversion

1-2371

• Inherit: Inherit via internal rule — Simulink chooses intermediate and output data
types to balance numerical accuracy, performance, and generated code size, while accounting for
the properties of the embedded target hardware. If you change the embedded target settings, the
data type selected by the internal rule might change.

• Inherit: Inherit via back propagation — Output data type is inherited via back
propagation. Internal rules determine the intermediate data types and Simulink casts the final
results to the output data type.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit via internal rule' | 'Inherit via back propagation'
Default: 'Inherit via internal rule'

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
“Converting Units”

Topics
“Units in Simulink”
“Converting Units”

1 Blocks

1-2372

Unit Delay
Delay signal one sample period

Libraries:
Simulink / Discrete
HDL Coder / Discrete

Description
The Unit Delay block holds and delays its input by the sample period you specify. When placed in an
iterator subsystem, it holds and delays its input by one iteration. This block is equivalent to the z-1

discrete-time operator. The block accepts one input and generates one output. Each signal can be
scalar or vector. If the input is a vector, the block holds and delays all elements of the vector by the
same sample period.

You specify the block output for the first sampling period with the Initial conditions parameter.
Careful selection of this parameter can minimize unwanted output behavior. You specify the time
between samples with the Sample time parameter. A setting of -1 means the block inherits the
Sample time.

Note The Unit Delay block errors out if you use it to create a transition between blocks operating at
different sample rates. Use the Rate Transition block instead.

Comparison with Similar Blocks

The Memory, Unit Delay, and Zero-Order Hold blocks provide similar functionality but have different
capabilities. Also, the purpose of each block is different.

This table shows recommended usage for each block.

Block Purpose of the Block Reference Examples
Unit Delay Implement a delay using a discrete

sample time that you specify. The
block accepts and outputs signals with
a discrete sample time.

• “Engine Timing Model with Closed
Loop Control” on page 13-152
(Compression subsystem)

Memory on page 1-
1350

Implement a delay by one major
integration time step. Ideally, the
block accepts continuous (or fixed in
minor time step) signals and outputs a
signal that is fixed in minor time step.

• “Building a Clutch Lock-Up Model”
on page 13-156 (Friction Mode
Logic/Lockup FSM subsystem)

• “Capture the Velocity of a
Bouncing Ball with the Memory
Block” on page 12-89

 Unit Delay

1-2373

Block Purpose of the Block Reference Examples
Zero-Order Hold Convert an input signal with a

continuous sample time to an output
signal with a discrete sample time.

• “Developing the Apollo Lunar
Module Digital Autopilot” on page
13-215

• “Radar Tracking Using MATLAB
Function Block” on page 13-244

Each block has the following capabilities.

Capability Memory Unit Delay Zero-Order Hold
Specification of
initial condition

Yes Yes No, because the block
output at time t = 0 must
match the input value.

Specification of
sample time

No, because the block
can only inherit sample
time from the driving
block or the solver used
for the entire model.

Yes Yes

Support for frame-
based signals

No Yes Yes

Support for state
logging

No Yes No

String Support

The Unit Delay block can accept and output string data type only if the block is configured for a delay
length of 0 or 1 or for direct feedthrough.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal that the block delays by one sample period.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus | image

Output

Port_1 — Output signal
scalar | vector

Output signal that is the input delayed by one sample period.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus | image

1 Blocks

1-2374

Parameters
Main

Initial condition — First sample period output

0 (default) | scalar | vector

Specify the output of the simulation for the first sampling period, during which the output of the Unit
Delay block is otherwise undefined.

Programmatic Use
Block Parameter: InitialCondition
Type: character vector
Value: scalar | vector
Default: '0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Sample time (-1 for inherited) — Discrete interval between sample time hits

-1 (default) | scalar

Enter the discrete interval between sample time hits or specify -1 to inherit the sample time.

See also “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector

 Unit Delay

1-2375

Value: real scalar
Default: '-1'

State Attributes

State name — Unique name for block state

'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click
Apply.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Option to require that state names resolve
to signal object

off (default) | on

Specify whether state names are required to resolve to signal objects. If selected, the software
generates an error at run time if you specify a state name that does not match the name of a signal
object.

Selecting this parameter disables the Code generation storage class parameter.

Dependencies

Enabled when you specify a value for the State name parameter and set the Signal resolution
model configuration parameter to a value other than None.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string

1 Blocks

1-2376

Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (strong.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 Unit Delay

1-2377

See Also
Delay | Propagation Delay | Resettable Delay

1 Blocks

1-2378

Variable Integer Delay
Delay input signal by variable sample period

Libraries:
Simulink / Discrete

Description
The Variable Integer Delay block is a variant of the Delay block that has the source of the delay
length set to Input port, by default.

Ports
Input

u — Data input signal
scalar | vector

Input data signal delayed according to parameters settings.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

d — Delay length
scalar

Delay length specified as inherited from an input port. Enabled when you select the Delay length:
Source parameter as Input port.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

 Variable Integer Delay

1-2379

Enable — External enable signal
scalar

Enable signal that enables or disables execution of the block. To create this port, select the Show
enable port parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

External reset — External reset signal
scalar

External signal that resets execution of the block to the initial condition. To create this port, select
the External reset parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

x0 — Initial condition
scalar | vector

Initial condition specified as inherited from an input port. Enabled when you select the Initial
Condition: Source parameter as Input port.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Output

Port_1 — Output signal
scalar | vector

Output signal that is the input signal delayed by the length of time specified by the parameter Delay
length. The initial value of the output signal depends on several conditions. See “Initial Block
Output” on page 1-338.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
Main

Delay length — Delay length
Dialog (default) | Input port

Specify whether to enter the delay length directly on the dialog box (fixed delay) or to inherit the
delay from an input port (variable delay).

• If you set Source to Dialog, enter the delay length in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies a delay length for the d

input port. You can also specify its maximum value by specifying the parameter Upper limit.

Specify the scalar delay length as a real, non-negative integer. An out-of-range or non-integer value in
the dialog box (fixed delay) returns an error. An out-of-range value from an input port (variable delay)

1 Blocks

1-2380

casts it into the range. A non-integer value from an input port (variable delay) truncates it to the
integer.
Programmatic Use
Block Parameter: DelayLengthSource
Type: character vector
Values: 'Dialog' | 'Input port' |
Default: 'Dialog'
Block Parameter: DelayLength
Type: character vector
Values: scalar
Default: '2'
Block Parameter: DelayLengthUpperLimit
Type: character vector
Values: scalar
Default: '100'

Initial condition — Initial condition
Dialog (default) | Input port

Specify whether to enter the initial condition directly on the dialog box or to inherit the initial
condition from an input port.

• If you set Source to Dialog, enter the initial condition in the edit field under Value.
• If you set Source to Input port, verify that an upstream signal supplies an initial condition for

the x0 input port.

Simulink converts offline the data type of Initial condition to the data type of the input signal u
using a round-to-nearest operation and saturation.

Note When State name must resolve to Simulink signal object is selected on the State
Attributes pane, the block copies the initial value of the signal object to the Initial condition
parameter. However, when the source for Initial condition is Input port, the block ignores the
initial value of the signal object.

Programmatic Use
Block Parameter: InitialConditionSource
Type: character vector
Values: 'Dialog' | 'Input port' |
Default: 'Dialog'
Block Parameter: InitialCondition
Type: character vector
Values: scalar
Default: '0.0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

• Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

 Variable Integer Delay

1-2381

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).
• Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector
Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)'
Default: 'Elements as channels (sample based)'

Use circular buffer for state — Circular buffer for storing state
off (default) | on

Select to use a circular buffer for storing the state in simulation and code generation. Otherwise, an
array buffer stores the state.

Using a circular buffer can improve execution speed when the delay length is large. For an array
buffer, the number of copy operations increases as the delay length goes up. For a circular buffer, the
number of copy operations is constant for increasing delay length.

If one of the following conditions is true, an array buffer always stores the state because a circular
buffer does not improve execution speed:

• For sample-based signals, the delay length is 1.
• For frame-based signals, the delay length is no larger than the frame size.

Programmatic Use
Block Parameter: UseCircularBuffer
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Prevent direct feedthrough — Prevent direct feedthrough
off (default) | on

Select to increase the delay length from zero to the lower limit for the Input processing mode:

• For sample-based signals, increase the minimum delay length to 1.
• For frame-based signals, increase the minimum delay length to the frame length.

Selecting this check box prevents direct feedthrough from the input port, u, to the output port.
However, this check box cannot prevent direct feedthrough from the initial condition port, x0, to the
output port.

Dependency

To enable this parameter, set Delay length: Source to Input port.

1 Blocks

1-2382

Programmatic Use
Block Parameter: PreventDirectFeedthrough
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Remove delay length check in generated code — Remove delay length out-of-range check
off (default) | on

Select to remove code that checks for out-of-range delay length.

Check Box Result When to Use
Selected Generated code does not

include conditional statements
to check for out-of-range delay
length.

For code efficiency

Cleared Generated code includes
conditional statements to check
for out-of-range delay length.

For safety-critical applications

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: RemoveDelayLengthCheckInGeneratedCode
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostic for delay length — Diagnostic checks for delay length
None (default) | Warning | Error

Specify whether to produce a warning or error when the input d is less than the lower limit or greater
than the Delay length: Upper limit. The lower limit depends on the setting for Prevent direct
feedthrough.

• If the check box is cleared, the lower limit is zero.
• If the check box is selected, the lower limit is 1 for sample-based signals and frame length for

frame-based signals.

Options for the diagnostic include:

• None — Simulink software takes no action.
• Warning — Simulink software displays a warning and continues the simulation.
• Error — Simulink software terminates the simulation and displays an error.

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use
Block Parameter: DiagnosticForDelayLength

 Variable Integer Delay

1-2383

Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Show enable port — Create enable port

off (default) | on

Select to control execution of this block with an enable port. The block is considered enabled when
the input to this port is nonzero, and is disabled when the input is 0. The value of the input is checked
at the same time step as the block execution.

Programmatic Use
Block Parameter: ShowEnablePort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

External reset — External state reset

None (default) | Rising | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior
None No reset
Rising Reset on a rising edge
Falling Reset on a falling edge
Either Reset on either a rising or falling edge
Level Reset in either of these cases:

• When the reset signal is nonzero at the
current time step

• When the reset signal value changes from
nonzero at the previous time step to zero at
the current time step

Level hold Reset when the reset signal is nonzero at the
current time step

Programmatic Use
Block Parameter: ExternalReset
Type: character vector
Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'None'

Sample time (-1 for inherited) — Discrete interval between sample time hits
-1 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. This
block supports discrete sample time, but not continuous sample time.

1 Blocks

1-2384

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: real scalar
Default: '-1'

State Attributes

State name — Unique name for block state

'' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The default is ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

• A valid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

• The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click
Apply.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

Programmatic Use
Block Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if you set the
model configuration parameter Signal resolution to a value other than None.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string

 Variable Integer Delay

1-2385

Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced in R2012b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For information about HDL code generation, see “HDL Code Generation” on page 1-347 on the Delay
page.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Delay | Resettable Delay | Tapped Delay | Unit Delay

Topics
“Using Enabled Subsystems”

1 Blocks

1-2386

Variable Pulse Generator
Generate ideal, time varying pulse signal

Libraries:
Simulink / Discontinuities

Description
Use the Variable Pulse Generator block to create ideal modulated pulse signals.

Generally speaking, the output pulse of the block is described by

y(t) =
1 tk < t < tk + pw
0 tk + 1 < t < tk + pw

where pw is the output pulse width.

For an implementation of Pulse Width Modulation, see PWM.

Ports
Input

D — Duty Cycle
scalar

Desired duty cycle of the pulse P, specified as scalar within the range [0,1].
Data Types: double

P — Period
scalar

Time between rising edges of consecutive pulses of the output signal. A smaller value represents a
higher frequency pulse.
Data Types: double

Output

Port 1 — Modulated pulse signal
scalar

Modulated output pulse signal corresponding to input duty cycle.
Data Types: double

 Variable Pulse Generator

1-2387

Parameters
Allow zero pulse width — Allow zero magnitude of output signal

off (default) | on

Enable this parameter to allow the output pulse signal to support pulses of width 0.

Note Enabling this parameter causes the block to have direct feedthrough. This can cause algebraic
loops in your model.

Run at fixed time intervals — Choose continuous or discrete-time behavior

continuous (default) | discrete

Select whether the block should operate in continuous or discrete sampling modes.

By default, the block uses continuous sampling mode as it improves simulation performance with
variable step solvers.

Select discrete sampling mode if you need to:

• use a fixed-step solver
• generate code
• sample the block output

Sampling rate — Set pulse resolution

0.1 (default) | scalar

Specify the rate at which the block samples input duty cycle signal. This sampling rate becomes the
resolution of the output pulse signal.

Dependencies

This parameter requires that Sampling mode is set to discrete

Block Characteristics
Data Types double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

1 Blocks

1-2388

Algorithms
Continuous Sampling Mode

For a pulse starting at time tk

y(t) =
1 tk < t < tk + pw
0 tk + 1 < t < tk + pw

where pw is the pulse width. For a given period P, pw is proportional to the duty cycle D

pw = D(tk) * P(tk)

Discrete Sampling Mode

In Discrete sampling mode, the input duty cycle signal is sampled at the rate specified by the Run at
fixed time intervals parameter.

For a specified sampling rate tS , the number of samples needed for a pulse of width pw can be
expressed as follows

npw =
Dk . Pk

TS
0 < npw < nP

nP = P
TS

where nP is the number of samples needed to simulate a pulse of period P.

 Variable Pulse Generator

1-2389

Consider a nominal pulse of period P with the sampling rate of the block set to be tS= 0.25 P. The
number of samples needed for one period of the pulse, nP= 4. Thus, for the input duty cycle D= 0.47 ,
the number of samples n pw is floored to 0.47P

0.25 = 1. Therefore, the pulse is high for 1 of the 4
samples in the period.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production-quality code. Relates to resource limits and restrictions on speed
and memory often found in embedded systems. The code generated can contain dynamic allocation
and freeing of memory, recursion, additional memory overhead, and widely-varying execution times.
While the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code.

In general, consider using the Simulink Model Discretizer to map continuous blocks into discrete
equivalents that support production code generation. To start the Model Discretizer, in the Simulink
Editor, on the Apps tab, under Apps, under Control Systems, click Model Discretizer. One
exception is the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

See Also
PWM | Pulse Generator

1 Blocks

1-2390

Variable Time Delay
Delay input by variable amount of time

Libraries:
Simulink / Continuous

Description
The Variable Transport Delay and Variable Time Delay blocks appear as two blocks in the Simulink
block library. However, they are the same Simulink block with different settings for the Select delay
type parameter. Use this parameter to specify the mode in which the block operates.

Variable Time Delay

In this mode, the block has a data input, a time delay input, and a data output. (See “Identify Port
Location on Rotated or Flipped Block” for a description of the port order for various block
orientations.) The output at the current time step equals the value of its data input at a previous time
step. This time step is the current simulation time minus a delay time specified by the time delay
input.

y(t) = u(t − t0) = u(t − τ(t))

During the simulation, the block stores time and input value pairs in an internal buffer. At the start of
simulation, the block outputs the value of the Initial output parameter until the simulation time
exceeds the time delay input. Then, at each simulation step, the block outputs the signal at the time
that corresponds to the current simulation time minus the delay time.

If you want the output at a time between input storing times and the solver is a continuous solver, the
block interpolates linearly between points. If the time delay is smaller than the step size, the block
extrapolates an output point from a previous point. For example, consider a fixed-step simulation with
a step size of 1 and the current time at t = 5. If the delay is 0.5, the block must generate a point at
t = 4.5, but the most recent stored time value is at t = 4. Thus, the block extrapolates the input at
4.5 from the input at 4 and uses the extrapolated value as its output at t = 5.

Extrapolating forward from the previous time step can produce a less accurate result than
extrapolating back from the current time step. However, the block cannot use the current input to
calculate its output value because the input port does not have direct feedthrough.

If the model specifies a discrete solver, the block does not interpolate between time steps. Instead, it
returns the nearest stored value that precedes the required value.

 Variable Time Delay

1-2391

Variable Transport Delay

In this mode, the block output at the current time step is equal to the value of its data (top, or left)
input at an earlier time step equal to the current time minus a transport delay.

y(t) = u(t − td(t))

Simulink software finds the transport delay, td(t), by solving the following equation:

∫t − td(t)
t 1

ti(τ)dτ = 1

This equation involves an instantaneous time delay, ti(t), given by the time delay (bottom, or right)
input.

Suppose that you want to use this block to model the fluid flow through a pipe where the fluid speed
varies with time. In this case, the time delay input to the block is

ti(t) = L
vi(t)

where L is the length of the pipe and vi(t) is the speed of the fluid.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal specified as a scalar, vector, or matrix.
Data Types: double

t0 — Time delay input
scalar | vector | matrix

Time delay input specified as a scalar, vector, or matrix. When the block is in Variable time delay
mode, this value specifies the time delay. For more information about that calculation, see “Variable
Time Delay” on page 1-2391.

Dependencies

To enable this port, set Select delay type to Variable time delay.
Data Types: double

1 Blocks

1-2392

ti — Instantaneous time delay input
scalar | vector | matrix

Instantaneous time delay input specified as a scalar, vector, or matrix. When the block is in Variable
transport delay mode, this value is used to calculate the transport delay. For more information
about that calculation, see “Variable Transport Delay” on page 1-2392.

Dependencies

To enable this port, set Select delay type to Variable transport delay.
Data Types: double

Output

Port_1 — Delayed signal
scalar | vector | matrix

Output signal specified as a scalar, vector, or matrix.
Data Types: double

Parameters
Select delay type — Type of delay

Variable time delay | Variable transport delay

Specify the type of delay as Variable time delay or Variable transport delay.

The default value of this parameter depends on the block implementation: Variable time delay
for the Variable Time Delay block, and Variable transport delay for the Variable Transport
Delay block.

Dependencies

• Setting this parameter to Variable time delay enables the Handle zero delay parameter.
• Setting this parameter to Variable transport delay enables the Absolute tolerance and

State Name parameters.

Programmatic Use
Block Parameter: VariableDelayType
Type: character vector, string
Values: 'Variable transport delay' | 'Variable time delay'

Maximum delay — Maximum value of time delay input

10 (default) | scalar | vector

Set the maximum value of the time delay input. This value defines the largest time delay input that
this block allows. The block clips any delay that exceeds this value. This value cannot be negative. If
the time delay becomes negative, the block clips it to zero and issues a warning message.

Programmatic Use
Block Parameter: MaximumDelay
Type: character vector, string

 Variable Time Delay

1-2393

Value: scalar | vector
Default: '10'

Initial output — Initial output

0 (default) | scalar | vector

Specify the output that the block generates until the simulation time first exceeds the time delay
input.

Dependencies

• The initial output of this block cannot be inf or NaN.
• A Run-to-run tunable parameter cannot be changed during simulation run time. However,

changing it before a simulation begins does not cause Accelerator or Rapid Accelerator to
regenerate code.

Programmatic Use
Block Parameter: InitialOutput
Type: character vector, string
Values: scalar | vector
Default: '0'

Initial buffer size — Initial memory allocation

1024 (default) | scalar

Define the initial memory allocation for the number of input points to store. The input points define
the history of the input signal up to the current simulation time.

• If the number of input points exceeds the initial buffer size, the block allocates additional memory.
• After simulation ends, a message displays if the buffer is not sufficient and more memory must be

allocated.

Tips

• Because allocating memory slows down simulation, choose this value carefully if simulation speed
is an issue.

• For long time delays, this block might use a large amount of memory, particularly for
dimensionalized input.

Programmatic Use
Block Parameter: MaximumPoints
Type: character vector, string
Values: scalar | vector
Default: '1024'

Use fixed buffer size — Use fixed-size buffer

off (default) | on

Selecting this check box uses a fixed-size buffer to save input data from previous time steps. When
you clear this check box, the block does not use a fixed-size buffer.

1 Blocks

1-2394

The Initial buffer size parameter specifies the buffer size. If the buffer is full, new data replaces
data already in the buffer. Simulink software uses linear extrapolation to estimate output values that
are not in the buffer.

Note ERT or GRT code generation uses a fixed-size buffer even if you do not select this check box.

Tips

• If the input data is linear, selecting this check box can save memory.
• If the input data is nonlinear, do not select this check box. Doing so might yield inaccurate results.

Programmatic Use
Block Parameter: FixedBuffer
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Handle zero delay — Use direct feedthrough

off (default) | on

Selecting this check box converts this block to a direct feedthrough block. When you clear this check
box, the block does not use direct feedthrough.

Dependencies

To enable this parameter, set Select delay type to Variable time delay.

Programmatic Use
Block Parameter: ZeroDelay
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Direct feedthrough of input during linearization — Use direct feedthrough during linearization

off (default) | on

When you select this parameter, the block outputs its input during linearization and trim, which sets
the block mode to direct feedthrough. To disable direct feedthrough, clear this check box.

Tips

• Selecting this check box can cause a change in the ordering of states in the model when you use
the functions linmod, dlinmod, or trim. To extract this new state ordering:

1 Compile the model using the following command, where model is the name of the Simulink
model.

 [sizes, x0, x_str] = model([],[],[],'lincompile');
2 Terminate the compilation with the following command.

 model([],[],[],'term');

 Variable Time Delay

1-2395

• The output argument x_str, which is a cell array of the states in the Simulink model, contains the
new state ordering. When you pass a vector of states as input to the linmod, dlinmod, or trim
functions, the state vector must use this new state ordering.

Programmatic Use
Block Parameter: TransDelayFeedthrough
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Pade order (for linearization) — Order of Pade approximation

0 (default) | scalar

Set the order of the Pade approximation for linearization routines.

• The default value is 0, which results in a unity gain with no dynamic states.
• Setting the order to a positive integer n adds n states to your model, but results in a more

accurate linear model of the transport delay.

Programmatic Use
Block Parameter: PadeOrder
Type: character vector, string
Values: scalar
Default: '0'

Absolute tolerance — Absolute tolerance for computing block state

auto (default) | positive, real, scalar or vector

Specify the absolute tolerance for computing the block state.

Dependencies

To enable this parameter, set Select delay type to Variable transport delay.

Programmatic Use
Block Parameter: AbsoluteTolerance
Type: character vector, string
Values: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

State Name (e.g., 'position') — Unique name for each state

' ' (default) | character vector, string

Assign a unique name to each state. If this field is blank, no name assignment occurs.

Tips

• To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
• To assign names to multiple states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.
• The state names apply only to the selected block.

1 Blocks

1-2396

• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, string, cell array, or structure.

Dependencies

To enable this parameter, set Select delay type to Variable transport delay.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector, string
Values: ' ' | user-defined character vector, user-defined string
Default: ' '

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2007a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production-quality code. Relates to resource limits and restrictions on speed
and memory often found in embedded systems. The code generated can contain dynamic allocation
and freeing of memory, recursion, additional memory overhead, and widely-varying execution times.
While the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code.

In general, consider using the Simulink Model Discretizer to map continuous blocks into discrete
equivalents that support production code generation. To start the Model Discretizer, in the Simulink
Editor, on the Apps tab, under Apps, under Control Systems, click Model Discretizer. One
exception is the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

 Variable Time Delay

1-2397

See Also
Transport Delay | Variable Transport Delay

Topics
“State”

1 Blocks

1-2398

Variable Transport Delay
Delay input by variable amount of time

Libraries:
Simulink / Continuous

Description
The Variable Transport Delay and Variable Time Delay blocks appear as two blocks in the Simulink
block library. However, they are the same Simulink block with different settings for the Select delay
type parameter. Use this parameter to specify the mode in which the block operates.

Variable Transport Delay

In this mode, the block output at the current time step is equal to the value of its data (top, or left)
input at an earlier time step equal to the current time minus a transport delay.

y(t) = u(t − td(t))

Simulink software finds the transport delay, td(t), by solving the following equation:

∫t − td(t)
t 1

ti(τ)dτ = 1

This equation involves an instantaneous time delay, ti(t), given by the time delay (bottom, or right)
input.

Suppose that you want to use this block to model the fluid flow through a pipe where the fluid speed
varies with time. In this case, the time delay input to the block is

ti(t) = L
vi(t)

where L is the length of the pipe and vi(t) is the speed of the fluid.

Variable Time Delay

In this mode, the block has a data input, a time delay input, and a data output. (See “Identify Port
Location on Rotated or Flipped Block” for a description of the port order for various block
orientations.) The output at the current time step equals the value of its data input at a previous time
step. This time step is the current simulation time minus a delay time specified by the time delay
input.

 Variable Transport Delay

1-2399

y(t) = u(t − t0) = u(t − τ(t))

During the simulation, the block stores time and input value pairs in an internal buffer. At the start of
simulation, the block outputs the value of the Initial output parameter until the simulation time
exceeds the time delay input. Then, at each simulation step, the block outputs the signal at the time
that corresponds to the current simulation time minus the delay time.

If you want the output at a time between input storing times and the solver is a continuous solver, the
block interpolates linearly between points. If the time delay is smaller than the step size, the block
extrapolates an output point from a previous point. For example, consider a fixed-step simulation with
a step size of 1 and the current time at t = 5. If the delay is 0.5, the block must generate a point at
t = 4.5, but the most recent stored time value is at t = 4. Thus, the block extrapolates the input at
4.5 from the input at 4 and uses the extrapolated value as its output at t = 5.

Extrapolating forward from the previous time step can produce a less accurate result than
extrapolating back from the current time step. However, the block cannot use the current input to
calculate its output value because the input port does not have direct feedthrough.

If the model specifies a discrete solver, the block does not interpolate between time steps. Instead, it
returns the nearest stored value that precedes the required value.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal specified as a scalar, vector, or matrix.
Data Types: double

t0 — Time delay input
scalar | vector | matrix

Time delay input specified as a scalar, vector, or matrix. When the block is in Variable time delay
mode, this value specifies the time delay. For more information about that calculation, see “Variable
Time Delay” on page 1-2399.

Dependencies

To enable this port, set Select delay type to Variable time delay.
Data Types: double

ti — Instantaneous time delay input
scalar | vector | matrix

1 Blocks

1-2400

Instantaneous time delay input specified as a scalar, vector, or matrix. When the block is in Variable
transport delay mode, this value is used to calculate the transport delay. For more information
about that calculation, see “Variable Transport Delay” on page 1-2399.

Dependencies

To enable this port, set Select delay type to Variable transport delay.
Data Types: double

Output

Port_1 — Delayed signal
scalar | vector | matrix

Output signal specified as a scalar, vector, or matrix.
Data Types: double

Parameters
Select delay type — Type of delay

Variable time delay | Variable transport delay

Specify the type of delay as Variable time delay or Variable transport delay.

The default value of this parameter depends on the block implementation: Variable time delay
for the Variable Time Delay block, and Variable transport delay for the Variable Transport
Delay block.

Dependencies

• Setting this parameter to Variable time delay enables the Handle zero delay parameter.
• Setting this parameter to Variable transport delay enables the Absolute tolerance and

State Name parameters.

Programmatic Use
Block Parameter: VariableDelayType
Type: character vector, string
Values: 'Variable transport delay' | 'Variable time delay'

Maximum delay — Maximum value of time delay input

10 (default) | scalar | vector

Set the maximum value of the time delay input. This value defines the largest time delay input that
this block allows. The block clips any delay that exceeds this value. This value cannot be negative. If
the time delay becomes negative, the block clips it to zero and issues a warning message.

Programmatic Use
Block Parameter: MaximumDelay
Type: character vector, string
Value: scalar | vector
Default: '10'

 Variable Transport Delay

1-2401

Initial output — Initial output

0 (default) | scalar | vector

Specify the output that the block generates until the simulation time first exceeds the time delay
input.

Dependencies

• The initial output of this block cannot be inf or NaN.
• A Run-to-run tunable parameter cannot be changed during simulation run time. However,

changing it before a simulation begins does not cause Accelerator or Rapid Accelerator to
regenerate code.

Programmatic Use
Block Parameter: InitialOutput
Type: character vector, string
Values: scalar | vector
Default: '0'

Initial buffer size — Initial memory allocation

1024 (default) | scalar

Define the initial memory allocation for the number of input points to store. The input points define
the history of the input signal up to the current simulation time.

• If the number of input points exceeds the initial buffer size, the block allocates additional memory.
• After simulation ends, a message displays if the buffer is not sufficient and more memory must be

allocated.

Tips

• Because allocating memory slows down simulation, choose this value carefully if simulation speed
is an issue.

• For long time delays, this block might use a large amount of memory, particularly for
dimensionalized input.

Programmatic Use
Block Parameter: MaximumPoints
Type: character vector, string
Values: scalar | vector
Default: '1024'

Use fixed buffer size — Use fixed-size buffer

off (default) | on

Selecting this check box uses a fixed-size buffer to save input data from previous time steps. When
you clear this check box, the block does not use a fixed-size buffer.

The Initial buffer size parameter specifies the buffer size. If the buffer is full, new data replaces
data already in the buffer. Simulink software uses linear extrapolation to estimate output values that
are not in the buffer.

1 Blocks

1-2402

Note ERT or GRT code generation uses a fixed-size buffer even if you do not select this check box.

Tips

• If the input data is linear, selecting this check box can save memory.
• If the input data is nonlinear, do not select this check box. Doing so might yield inaccurate results.

Programmatic Use
Block Parameter: FixedBuffer
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Handle zero delay — Use direct feedthrough

off (default) | on

Selecting this check box converts this block to a direct feedthrough block. When you clear this check
box, the block does not use direct feedthrough.

Dependencies

To enable this parameter, set Select delay type to Variable time delay.

Programmatic Use
Block Parameter: ZeroDelay
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Direct feedthrough of input during linearization — Use direct feedthrough during linearization

off (default) | on

When you select this parameter, the block outputs its input during linearization and trim, which sets
the block mode to direct feedthrough. To disable direct feedthrough, clear this check box.

Tips

• Selecting this check box can cause a change in the ordering of states in the model when you use
the functions linmod, dlinmod, or trim. To extract this new state ordering:

1 Compile the model using the following command, where model is the name of the Simulink
model.

 [sizes, x0, x_str] = model([],[],[],'lincompile');
2 Terminate the compilation with the following command.

 model([],[],[],'term');
• The output argument x_str, which is a cell array of the states in the Simulink model, contains the

new state ordering. When you pass a vector of states as input to the linmod, dlinmod, or trim
functions, the state vector must use this new state ordering.

Programmatic Use
Block Parameter: TransDelayFeedthrough

 Variable Transport Delay

1-2403

Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Pade order (for linearization) — Order of Pade approximation

0 (default) | scalar

Set the order of the Pade approximation for linearization routines.

• The default value is 0, which results in a unity gain with no dynamic states.
• Setting the order to a positive integer n adds n states to your model, but results in a more

accurate linear model of the transport delay.

Programmatic Use
Block Parameter: PadeOrder
Type: character vector, string
Values: scalar
Default: '0'

Absolute tolerance — Absolute tolerance for computing block state

auto (default) | positive, real, scalar or vector

Specify the absolute tolerance for computing the block state.

Dependencies

To enable this parameter, set Select delay type to Variable transport delay.

Programmatic Use
Block Parameter: AbsoluteTolerance
Type: character vector, string
Values: 'auto' | '-1' | any positive real scalar or vector
Default: 'auto'

State Name (e.g., 'position') — Unique name for each state

' ' (default) | character vector, string

Assign a unique name to each state. If this field is blank, no name assignment occurs.

Tips

• To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
• To assign names to multiple states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.
• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

1 Blocks

1-2404

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, string, cell array, or structure.

Dependencies

To enable this parameter, set Select delay type to Variable transport delay.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector, string
Values: ' ' | user-defined character vector, user-defined string
Default: ' '

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2007a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production-quality code. Relates to resource limits and restrictions on speed
and memory often found in embedded systems. The code generated can contain dynamic allocation
and freeing of memory, recursion, additional memory overhead, and widely-varying execution times.
While the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code.

In general, consider using the Simulink Model Discretizer to map continuous blocks into discrete
equivalents that support production code generation. To start the Model Discretizer, in the Simulink
Editor, on the Apps tab, under Apps, under Control Systems, click Model Discretizer. One
exception is the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

See Also
Transport Delay | Variable Time Delay | Entity Transport Delay

Topics
“State”

 Variable Transport Delay

1-2405

Variant Sink
Route amongst multiple outputs using variants

Libraries:
Simulink / Signal Routing

Description
The Variant Sink block enables you to include multiple implementations of a component on the
destination (sink) of a signal in a single layer.

For example, suppose you want to simulate this model to control the speed of the car windshield
wiper by using different rain sensors. The Variant Sourceblock switches between different rain
sensors. The control logic uses this information to output the result to the Variant Sink block. The
Variant Sink then switches between the wiper motor model during simulation and the command to
the sensor during code generation. The variant blocks switch between choices based on the “Types of
Variant Control Modes in Variant Blocks” you select. For more information, see “Introduction to
Variant Controls”.

Note At most, one variant choice connected to output port of the Variant Sink block is active during
simulation.

1 Blocks

1-2406

The Variant Sink block has only one input port and one or more output ports. You can connect the
varying choices to the output port of the block so that, at most, one choice is active during model
execution.

The Variant Sink block is associated with a “Variant control mode” on page 1-0 and a “Variant
activation time” on page 1-0 . The variant control mode determines how to specify the variant
control. The variant activation time determines a time to activate the choices and to decide whether
to include only the active choice or both active and inactive choices in the generated code. During
simulation, Simulink connects the active choice directly to the input port of the Variant Sink block
and ignores the inactive choices.

Using a Variant Sink block allows you to:

• Propagate variant conditions throughout the model.
• Visualize all possible implementations of variant choices in a single layer of your model, which

improves model readability.
• Simulink eliminates inactive blocks throughout the model, which improves runtime performance.

If all the variant choices are inactive, Simulink removes the variant region completely from your
model.

• Variant sources and sinks provide variant component interfaces that you can use to quickly model
variant choices.

The color and icon of the variant badge on the block icon changes depending on the values of the
Variant activation time, Variant control mode, and Allow zero active variant controls
parameters set on the block. For more information, see “Variant Badges”.

Limitations
The Variant Sink block works with time-based, function-call, and action signals. You cannot use
SimEvents, Simscape Multibody™, or other non-time-based signals with these blocks.

 Variant Sink

1-2407

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal to be connected to the active output port.

You can auto insert inport on the Variant Sink block by hovering the mouse over the block side or by
dragging the signal near the block boundary. You can delete the port by either clicking delete on the
keyboard or with a mouse click.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | struct

Output

Port_1 — Output from first variant
scalar | vector | matrix

Output signal from the first variant. The variant control that evaluates to true determines which
output port is active.

You can auto insert outport on the Variant Sink block by hovering the mouse over the block side or by
dragging the signal near the block boundary. You can delete the port by either clicking delete on the
keyboard or with a mouse click.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Port_N — Output from Nth variant
scalar | vector | matrix

Output signal from the Nth variant. The variant control that evaluates to true determines which
output port is active.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
Variant control mode — Variant control mode

expression (default) | label | sim codegen switching

The variant control that determines the active variant choice can be any of these types.

• expression — In expression mode, Simulink chooses the active variant based on the
evaluation of the variant conditions. When a condition expression evaluates to true, the
corresponding variant choice becomes active. When a condition expression evaluates to false,
the corresponding variant choice becomes inactive. See “Switch Between Choices Using Condition
Expressions in Variant Blocks”.

1 Blocks

1-2408

• label — In label mode, Simulink chooses the active variant based on the name of the variant.
The variant control is a string and does not require you to create any variable in any workspaces.
See “Switch Between Choices Using Labels in Variant Blocks”.

• sim codegen switching — To automatically switch between the variants for simulation and
code generation workflows without creating any workspace variable, use sim codegen
switching mode. When you simulate a model, Simulink automatically chooses the sim branch as
the active choice. Similarly, when you do a software-in-the-loop (SIL) or processor-In-Loop (PIL)
simulation, generate code, or use external mode, Simulink automatically chooses the codegen
branch. This mode is not supported for models configured with an ERT-based system target file
and service code interface. See “Switch Between Choices for Simulation and Code Generation
Workflows Without Using Control Variables in Variant Blocks”.

For more information on variant control modes, see “Introduction to Variant Controls”. For a
comparison between different types of variant control modes, see “Compare Different Types of
Variant Control Modes in Variant Blocks”.

Dependencies

The availability of different variant activation times depends on the type of the Variant control
mode that you specify. The Variant activation time parameter determines the time when Simulink
sets the active choice. The parameter also determines which variability to include in the generated
code. This table explains the variant activation time supported by each variant control mode.

Variant activation time
Variant control
mode

update diagram update diagram
analyze all
choices

code compile startup

expression ✓ ✓ ✓ ✓

label ✓ x x x
sim codegen
switching

✓ ✓ x x

Programmatic Use
Block Parameter: VariantControlMode
Type: character vector
Values: expression | label | sim codegen switching |
Default: expression

Variant activation time — Time when Simulink chooses active variant choice

update diagram (default) | update diagram analyze all choices | code compile |
startup | inherit from Simulink.VariantControl

This parameter determines which variability to include in the simulation and code generation
workflows. For more information, see “Activate Variant During Different Stages of Simulation and
Code Generation Workflow”.

You can set the Variant activation time parameter as:

• update diagram — When you execute the model, only the active choice is included in the
simulation and the code generation workflow. Generated code contains only the active choice.

 Variant Sink

1-2409

• update diagram analyze all choices — When you execute the model, both active and
inactive choices are analyzed for consistency across the model. However, only the active choice is
included in the simulation and the code generation workflow. Generated code contains only the
active choice.

• code compile — When you execute the model, both active and inactive choices are analyzed for
consistency across the model, and all choices are included in the simulation and the code
generation workflow. Generated code contains both the active and inactive choices enclosed in the
preprocessor conditionals #if and #elif. However, the executable built from the generated code
contains only active choice.

• startup — When you execute the model, both active and inactive choices are analyzed for
consistency across the model, and all choices are included in the simulation and the code
generation workflow. With this option, you can improve the speed of iterative simulations using
fast restart. For more information, see “Run Iterative Simulations Without Recompiling Model for
Variant Systems Using Fast Restart”. Code generated from the model contains both the active and
inactive choices that are enclosed in regular if conditions. The executable built from the
generated code also contains both active and inactive choices.

• inherit from Simulink.VariantControl — When you execute the model, the block inherits
the activation time from its variant control variables of type Simulink.VariantControl. If a
variant block has multiple variant control variables of type Simulink.VariantControl, then all
those variables must have the same activation time.

Dependencies

The availability of different variant activation times depends on the type of the variant control mode
that you specify. The Variant activation time parameter determines when Simulink sets the active
choice. The parameter also determines which variability to include in the generated code. This table
explains the variant activation time supported by each variant control mode.

Variant activation time
Variant control
mode

update diagram update diagram
analyze all
choices

code compile startup

expression ✓ ✓ ✓ ✓

label ✓ x x x
sim codegen
switching

✓ ✓ x x

Programmatic Use
Block Parameter: VariantActivationTime
Type: character vector
Values: update diagram | update diagram analyze all choices | code compile |
startup
Default: update diagram

Port and associated conditions — Table of variant choices, variant controls, and conditions
empty table (default)

The table has a row for each variant choice connected to the output port of the Variant Sink block. If
there are no variant choices, the table is empty.

1 Blocks

1-2410

You can use buttons to the left of the Port and associated conditions table to modify the elements
in the table.

To... Click...
Add a new output port: Create a new output port as a variant choice and
add an entry for the new choice in the table.
Delete selected port: Delete the selected variant choice from the block
and its entry from the table.
Create/Edit selected variant object: Create or edit a
Simulink.Variant object for the selected variant choice in the global
workspace and specify the variant condition using the Simulink.Variant
object parameter dialog box.

Note For a model that uses the base workspace, this operation creates the
Simulink.Variant object in the base workspace, and the object is
available only for the current MATLAB session. To permanently store the
data, save the object in a MAT file or MATLAB script.

Port — Number of connected output port
no default

Number of the output port that is connected to one variant choice upstream of the Variant Sink block.
This value is read-only.

Click to add a port or to delete an existing one.

Variant control label — Name of choice in label mode

true or false (default) | string

A name for a choice, specified as a string.

Dependencies

To enable this parameter, set Variant control mode to label.

Variant control expression — Condition expression that determines the active choice

true or false (default) | boolean condition expression | a Simulink.Variant object representing a
boolean condition expression | (default)

Specify the condition expression to determine the active choice. When a condition expression
evaluates to true, Simulink activates the corresponding variant choice. When a condition expression
evaluates to false, Simulink deactivates the corresponding variant choice.

The variant controls can be:

• Boolean condition expression for rapid prototyping. For example, A == 1, A ~= B, A && B ==
1, and so on.

• A Simulink.Variant object that contains a condition expression for condition reuse. See
“Simulink.Variant Objects for Variant Condition Reuse of Variant Blocks”.

 Variant Sink

1-2411

• “Default Variant Choice” if none of the choices evaluates to true.

Here, A and B are operands called as variant control variables. ==, ~=, and && are operators in the
condition expression. The condition expression can contain one or more such variant control
variables and operators. For information on supported types and storage location of variant control
variables, see “Types of Variant Control Variables (Operands) in Variant Blocks” and “Storage
Locations for Variant Control Variables (Operands) in Variant Blocks”. For information on operators,
see “Types of Operators in Variant Blocks for Different Activation Times”.

For more information, see “Switch Between Choices Using Condition Expressions in Variant Blocks”.

Note In Variant Assembly Subsystem block, this parameter is a list of auto-generated boolean
expressions with Variant control variable on the left-hand side and the members of the Variant
enumeration choice are on the right-hand side of the expressions. Both the sides of the expressions
are connected with ==. This parameter is read-only.

Programmatic Use
Structure field: Represented by the read-only variant.Name field in the Variant parameter
structure
Type: character vector
Value: variant control that is associated with the variant choice
Default: 'variant'

Condition (read-only) — Condition expression in Simulink.Variant object

N/A (default)

This parameter is read-only.

This parameter displays the condition expression specified as Simulink.Variant object. To change
or edit the condition expression, use the Simulink.Variant parameter dialog box that appears
when you double-click the object in the workspace.

Note The operands that you specify in a condition expression of type Simulink.Variant must be
defined in the base workspace or a data dictionary. Specifying operands that are defined in the mask
or model workspace is not supported.

Label mode active choice — Name of active choice in label mode

true(Subsystem) (default) | false(Subsystem1)

This list contains the labels of all the variant choices. To set an active choice, select a label from the
list. The corresponding choice becomes active. Alternatively, you can follow the approaches described
in “Set Active Choices Using Variant Control Labels” to change the active choice in label mode.

Dependencies

To enable this parameter, set the Variant control mode parameter to label.

Programmatic Use
Parameter: LabelModeActivechoice

1 Blocks

1-2412

Type: character vector
Value: if no label mode active choice is specified, the value is empty. If label mode active choice is
specified, the value is the name of the label mode active choice.
Default: ''

Allow zero active variant controls — Simulate model without active variant choice

off (default) | on

• off — Simulink generates an error when there is no active variant choice.
• on — When you select this parameter and if there is no active variant choice, Simulink simulates

the model without any active variant choice connected to the Variant Sink block. Simulink
disconnects all the blocks connected to the input and output stream of Variant Sink block, thus
removing the variant regions completely from the model execution.

Consider the car windshield wiper example in the “Description” on page 1-2406 section. Suppose you
do not want to pass the wiper speed to either of the variant choices, wiper motor and D/A. When you
simulate the model with Allow zero active variant controls set to on and if there is no active
variant choice in the Variant Sink controlled by mode block, Simulink disconnects the
Variant Sink controlled by mode block and all its connected blocks, which removes the
variant region completely from the model.

This table shows the code that you generate with and without the Allow zero active variant
controls parameter for the code compile activation time. In the code that you generate with Allow
zero active variant controls set to off, only the variant choices wiper motor and D/A are
conditional, whereas the Gain block is unconditional. The Gain block is unconditional, and so it
executes for either of the choices. This code support only scenarios where either of the choices
evaluate to true. If none of the choices evaluate to true, both the choices are removed from
compilation. The output of the Gain remains unused and this results in an error. In the code that you
generate with Allow zero active variant controls set to on, the variant choices wiper motor, D/A,
and the connected Gain blocks are conditional. So, if none of the choices evaluate to true, the Gain
block is also removed, thus enabling you to completely remove the variant region from code
compilation.

Generated code without Allow zero active
variant controls

Generated code with Allow zero active
variant controls

/* If none of the conditions Mode == 1 or Mode == 2
 evaluate to true, the output of Gain remains unused which
resuls in an error.*/

/* logic for Gain; */

if Mode == 1
 /* logic for wiper motor; */
elif Mode == 2
 /* logic for digital to analog conversion; */
endif

if Mode == 1
 /* logic for wiper motor; */
elif Mode == 2
 /* logic digital to analog conversion; */
endif

/* The logic for Gain is executed only if
either of the conditions evaluate to true.
Gain is removed from code compilation if none of the
condition evaluates to true. */

if (Mode == 1) ∥ (Mode == 2)
 /* logic for Gain; */
endif

Dependencies

This parameter is available only if you set Variant control mode to expression.

 Variant Sink

1-2413

Programmatic Use
Block Parameter: AllowZeroVariantControls
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show variant condition on block — Annotate block ports

off (default) | on

When you select this option, Simulink annotates the variant condition expression on each port of the
Variant Sink block.

Programmatic Use
Block Parameter: ShowConditionOnBlock
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Variant Source | Manual Variant Source | Manual Variant Sink | Variant Subsystem

Topics
“Represent Variant Source and Sink Blocks in Generated Code” (Embedded Coder)

1 Blocks

1-2414

Variant Source
Route among multiple inputs using variants

Libraries:
Simulink / Signal Routing

Description
The Variant Source block enables you to include multiple implementations of a component on the
source of a signal in a single layer.

For example, suppose you want to simulate this model to control the speed of the car windshield
wiper by using different rain sensors. The Variant Source block switches between different rain
sensors. The control logic uses this information to output the result to the Variant Sink block. The
Variant Sink block then switches between the wiper motor model during simulation and the command
to the sensor during code generation. The variant blocks switch between choices based on the “Types
of Variant Control Modes in Variant Blocks” you select. For more information, see “Introduction to
Variant Controls”.

Note At most, one variant choice connected to input port of the Variant Source block is active during
simulation.

 Variant Source

1-2415

The Variant Source block has one or more input ports and only one output port. You can connect the
varying choices to the input port of the block so that, at most, one choice is active during model
execution.

The Variant Source block is associated with a “Variant control mode” on page 1-0 and a “Variant
activation time” on page 1-0 . The variant control mode determines how to specify the variant
control. The variant activation time determines a time to activate the choices and to decide whether
to include only the active choice or both active and inactive choices in the generated code. During
simulation, Simulink connects the active choice directly to the output port of the Variant Source block
and ignores the inactive choices.

Using a Variant Source block allows you to:

• Propagate variant conditions throughout the model.
• Visualize all possible implementations of variant choices in a single layer of your model, which

improves model readability.
• Simulink eliminates inactive blocks throughout the model, which improves runtime performance.

If all the variant choices are inactive, Simulink removes the variant region completely from your
model.

• Variant sources and sinks provide variant component interfaces that you can use to quickly model
variant choices.

The color and icon of the variant badge on the block icon changes depending on the values of the
Variant activation time, Variant control mode, and Allow zero active variant controls
parameters. For more information, see “Variant Badges”.

Limitations
The Variant Source block works with time-based, function-call, and action signals. You cannot use
SimEvents, Simscape Multibody, or other non-time-based signals with these blocks.

1 Blocks

1-2416

Ports
Input

Port_1 — Input port associated with first variant control
scalar | vector | matrix

Input port associated with the first variant control. The variant control that evaluates to true,
determines which input port is active.

You can auto insert inport on the Variant Source block by hovering the mouse over the block side or
by dragging the signal near the block boundary. You can delete the port by either clicking delete on
the keyboard or with a mouse click.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Port_N — Input port associated with Nth variant control
scalar | vector | matrix

Input port associated with the Nth variant control. The variant control that evaluates to true
determines which input port is active.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Output

Port_1 — Output of active variant
scalar | vector | matrix

Output signal from the active variant.

You can auto insert outport on the Variant Source block by hovering the mouse over the block side or
by dragging the signal near the block boundary. You can delete the port by either clicking delete on
the keyboard or with a mouse click.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
Variant control mode — Variant control mode

expression (default) | label | sim codegen switching

The variant control that determines the active variant choice can be any of these types.

• expression — In expression mode, Simulink chooses the active variant based on the
evaluation of the variant conditions. When a condition expression evaluates to true, the
corresponding variant choice becomes active. When a condition expression evaluates to false,
the corresponding variant choice becomes inactive. See “Switch Between Choices Using Condition
Expressions in Variant Blocks”.

 Variant Source

1-2417

• label — In label mode, Simulink chooses the active variant based on the name of the variant.
The variant control is a string and does not require you to create any variable in any workspaces.
See “Switch Between Choices Using Labels in Variant Blocks”.

• sim codegen switching — To automatically switch between the variants for simulation and
code generation workflows without creating any workspace variable, use sim codegen
switching mode. When you simulate a model, Simulink automatically chooses the sim branch as
the active choice. Similarly, when you do a software-in-the-loop (SIL) or processor-In-Loop (PIL)
simulation, generate code, or use external mode, Simulink automatically chooses the codegen
branch. This mode is not supported for models configured with an ERT-based system target file
and service code interface. See “Switch Between Choices for Simulation and Code Generation
Workflows Without Using Control Variables in Variant Blocks”.

For more information on variant control modes, see “Introduction to Variant Controls”. For a
comparison between different types of variant control modes, see “Compare Different Types of
Variant Control Modes in Variant Blocks”.

Dependencies

The availability of different variant activation times depends on the type of the Variant control
mode that you specify. The Variant activation time parameter determines the time when Simulink
sets the active choice. The parameter also determines which variability to include in the generated
code. This table explains the variant activation time supported by each variant control mode.

Variant activation time
Variant control
mode

update diagram update diagram
analyze all
choices

code compile startup

expression ✓ ✓ ✓ ✓

label ✓ x x x
sim codegen
switching

✓ ✓ x x

Programmatic Use
Block Parameter: VariantControlMode
Type: character vector
Values: expression | label | sim codegen switching |
Default: expression

Variant activation time — Time when Simulink chooses active variant choice

update diagram (default) | update diagram analyze all choices | code compile |
startup | inherit from Simulink.VariantControl

This parameter determines which variability to include in the simulation and code generation
workflows. For more information, see “Activate Variant During Different Stages of Simulation and
Code Generation Workflow”.

You can set the Variant activation time parameter as:

• update diagram — When you execute the model, only the active choice is included in the
simulation and the code generation workflow. Generated code contains only the active choice.

1 Blocks

1-2418

• update diagram analyze all choices — When you execute the model, both active and
inactive choices are analyzed for consistency across the model. However, only the active choice is
included in the simulation and the code generation workflow. Generated code contains only the
active choice.

• code compile — When you execute the model, both active and inactive choices are analyzed for
consistency across the model, and all choices are included in the simulation and the code
generation workflow. Generated code contains both the active and inactive choices enclosed in the
preprocessor conditionals #if and #elif. However, the executable built from the generated code
contains only active choice.

• startup — When you execute the model, both active and inactive choices are analyzed for
consistency across the model, and all choices are included in the simulation and the code
generation workflow. With this option, you can improve the speed of iterative simulations using
fast restart. For more information, see “Run Iterative Simulations Without Recompiling Model for
Variant Systems Using Fast Restart”. Code generated from the model contains both the active and
inactive choices that are enclosed in regular if conditions. The executable built from the
generated code also contains both active and inactive choices.

• inherit from Simulink.VariantControl — When you execute the model, the block inherits
the activation time from its variant control variables of type Simulink.VariantControl. If a
variant block has multiple variant control variables of type Simulink.VariantControl, then all
those variables must have the same activation time.

Dependencies

The availability of different variant activation times depends on the type of the variant control mode
that you specify. The Variant activation time parameter determines when Simulink sets the active
choice. The parameter also determines which variability to include in the generated code. This table
explains the variant activation time supported by each variant control mode.

Variant activation time
Variant control
mode

update diagram update diagram
analyze all
choices

code compile startup

expression ✓ ✓ ✓ ✓

label ✓ x x x
sim codegen
switching

✓ ✓ x x

Programmatic Use
Block Parameter: VariantActivationTime
Type: character vector
Values: update diagram | update diagram analyze all choices | code compile |
startup
Default: update diagram

Port and associated conditions — Table of variant choices, variant controls, and conditions
empty table (default)

The table has a row for each variant choice connected to the input port of the Variant Source block. If
there are no variant choices, the table is empty.

 Variant Source

1-2419

You can use buttons to the left of the Port and associated conditions table to modify the elements
in the table.

To... Click...
Add a new input port: Create a new input port as a variant choice and
add an entry for the new choice in the table.
Delete selected port: Delete the selected variant choice from the block
and its entry from the table.
Create/Edit selected variant object: Create or edit a
Simulink.Variant object for the selected variant choice in the global
workspace and specify the variant condition using the Simulink.Variant
object parameter dialog box.

Note For a model that uses the base workspace, this operation creates the
Simulink.Variant object in the base workspace, and the object is
available only for the current MATLAB session. To permanently store the
data, save the object in a MAT file or MATLAB script.

Port — Number of connected input port
no default

Number of the input port that is connected to one variant choice upstream of the Variant Source
block. This value is read-only.

Click to add a port or to delete an existing one.

Variant control label — Name of choice in label mode

true or false (default) | string

A name for a choice, specified as a string.

Dependencies

To enable this parameter, set Variant control mode to label.

Variant control expression — Condition expression that determines the active choice

true or false (default) | boolean condition expression | a Simulink.Variant object representing a
boolean condition expression | (default)

Specify the condition expression to determine the active choice. When a condition expression
evaluates to true, Simulink activates the corresponding variant choice. When a condition expression
evaluates to false, Simulink deactivates the corresponding variant choice.

The variant controls can be:

• Boolean condition expression for rapid prototyping. For example, A == 1, A ~= B, A && B ==
1, and so on.

• A Simulink.Variant object that contains a condition expression for condition reuse. See
“Simulink.Variant Objects for Variant Condition Reuse of Variant Blocks”.

1 Blocks

1-2420

• “Default Variant Choice” if none of the choices evaluates to true.

Here, A and B are operands called as variant control variables. ==, ~=, and && are operators in the
condition expression. The condition expression can contain one or more such variant control
variables and operators. For information on supported types and storage location of variant control
variables, see “Types of Variant Control Variables (Operands) in Variant Blocks” and “Storage
Locations for Variant Control Variables (Operands) in Variant Blocks”. For information on operators,
see “Types of Operators in Variant Blocks for Different Activation Times”.

For more information, see “Switch Between Choices Using Condition Expressions in Variant Blocks”.

Note In Variant Assembly Subsystem block, this parameter is a list of auto-generated boolean
expressions with Variant control variable on the left-hand side and the members of the Variant
enumeration choice are on the right-hand side of the expressions. Both the sides of the expressions
are connected with ==. This parameter is read-only.

Programmatic Use
Structure field: Represented by the read-only variant.Name field in the Variant parameter
structure
Type: character vector
Value: variant control that is associated with the variant choice
Default: 'variant'

Condition (read-only) — Condition expression in Simulink.Variant object

N/A (default)

This parameter is read-only.

This parameter displays the condition expression specified as Simulink.Variant object. To change
or edit the condition expression, use the Simulink.Variant parameter dialog box that appears
when you double-click the object in the workspace.

Note The operands that you specify in a condition expression of type Simulink.Variant must be
defined in the base workspace or a data dictionary. Specifying operands that are defined in the mask
or model workspace is not supported.

Label mode active choice — Name of active choice in label mode

true(Subsystem) (default) | false(Subsystem1)

This list contains the labels of all the variant choices. To set an active choice, select a label from the
list. The corresponding choice becomes active. Alternatively, you can follow the approaches described
in “Set Active Choices Using Variant Control Labels” to change the active choice in label mode.

Dependencies

To enable this parameter, set the Variant control mode parameter to label.

Programmatic Use
Parameter: LabelModeActivechoice

 Variant Source

1-2421

Type: character vector
Value: if no label mode active choice is specified, the value is empty. If label mode active choice is
specified, the value is the name of the label mode active choice.
Default: ''

Allow zero active variant controls — Simulate model without active variant choice

off (default) | on

• off — Simulink generates an error when there is no active variant choice.
• on — When you select this parameter and if there is no active variant choice, Simulink simulates

the model without any active variant choice connected to the Variant Source block. Simulink
disconnects all the blocks connected to the input and output stream of Variant Source block, thus
removing the variant regions completely from the model execution.

In the generated code, all the blocks that are connected to the input and output stream of the
Variant Source block becomes conditional.

Consider the car windshield wiper example in the “Description” on page 1-2415 section. Suppose you
want to simulate only a manual windshield car wiper and you do not need any of the rain sensor
settings in the model. When you set Allow zero active variant controls to on and if there is no
active variant choice in the Rain Sensor Variant Source block, Simulink disconnects the Rain
Sensor Variant Source block and all its connected blocks, which removes the variant region
completely from the model.

This table shows the code that you generate with and without the Allow zero active variant
controls parameter for the code compile activation time. In the code that you generate with Allow
zero active variant controls set to off, only the variant choices Rain Sensor Model 1 and the
Rain Sensor Model 2 are conditional. The F1 block is unconditional, and so it executes for either
of the choices. This code support only scenarios where either of the choices evaluate to true. If none
of the choices evaluate to true, both the choices are removed from compilation. The F1 block
receives an invalid input and this results in an error. In the code that you generate with Allow zero
active variant controls set to on, the variant choices Rain Sensor Model 1, Rain Sensor
Model 2, and the connected F1 blocks are conditional. So, if none of the choices evaluate to true,
the F1 block is also removed thus enabling you to completely remove the variant region from code
compilation.

Generated code without Allow zero active
variant controls

Generated code with Allow zero active
variant controls

if R == 1
 /* logic for Rain Sensor Model 1; */
elif R == 2
 /* logic for Rain Sensor Model 2; */
endif

/* If none of the conditions R == 1 or R == 2 evaluate to true,
the filter F1 receives an invalid input which
resuls in an error.*/

/* logic for filter F1; */

if R == 1
 /* logic for Rain Sensor Model 1; */
elif R == 2
 /* logic for Rain Sensor Model 2; */
endif

/* The logic for filter F1 is executed only if
either of the conditions evaluate to true.
F1 is removed from code compilation if none of the
condition evaluates to true. */

if (R == 1) ∥ (R == 2)
 /* logic for filter F1; */
endif

1 Blocks

1-2422

Dependencies

This parameter is available only if you set Variant control mode to expression.

Programmatic Use
Block Parameter: AllowZeroVariantControls
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output function call — Receive and output function-call signals

off (default) | on

When you select this parameter, Simulink enables the Variant Source block to receive function-call
signals at its input ports and conditionally merge the signals at its output port. For more information,
see “Propagate Variant Conditions from Variant Source Blocks to Conditionally Executed
Subsystems”.

Programmatic Use
Block Parameter: OutputFunctionCall
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show variant condition on block — Annotate block ports

off (default) | on

When you select this option, Simulink annotates the variant condition expression on each port of the
Variant Source block.

Programmatic Use
Block Parameter: ShowConditionOnBlock
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2016a

 Variant Source

1-2423

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Variant Sink | Manual Variant Source | Manual Variant Sink | Variant Subsystem

Topics
“Working with Variant Choices”
“Represent Variant Source and Sink Blocks in Generated Code” (Embedded Coder)

1 Blocks

1-2424

Variant Subsystem, Variant Model, Variant
Assembly Subsystem
Template subsystem containing Subsystem, Model, or Subsystem Reference blocks as variant choices

Libraries:
Simulink / Ports & Subsystems
HDL Coder / Ports & Subsystems

Description
The Variant Subsystem block enables you to include multiple implementations of a component in a
separate hierarchy.

For example, suppose you want to simulate a model that represents a vehicle with three possible
engine configurations: 4-cylinder gas, 6-cylinder gas, and 8-cylinder gas. You could implement each
engine model as a separate subsystem inside the Variant Subsystem and then switch between the
subsystems based on the “Types of Variant Control Modes in Variant Blocks” you select. For more
information, see “Introduction to Variant Controls”.

Note Only one implementation of a Variant Subsystem is active during simulation.

 Variant Subsystem, Variant Model, Variant Assembly Subsystem

1-2425

The Variant Subsystem block is a template preconfigured to contain two or more blocks to use as
Variant choices. These choices represent multiple implementations of a system. Only one child block
is active during model execution. The active child block is referred to as the active variant.

Each variant choice inside the Variant Subsystem block is associated with a “Variant control mode”
on page 1-0 and a “Variant activation time” on page 1-0 . The variant control mode determines
how to select the active variant. The variant activation time determines a time to activate the choices
and to decide whether to include only the active choice or both active and inactive choices in the
generated code.

A Variant Subsystem block can contain a mixture of Subsystem blocks, Model blocks, or Subsystem
Reference blocks as variant choices. A Variant Subsystem block with only Model blocks as choices is
called a Variant Model block. For more information, see “Implement Variations in Separate Hierarchy
Using Variant Subsystems”. A Variant Subsystem block with Model or Subsystem Reference blocks as
choices that can added or removed only from external files and not within the block is called a Variant
Assembly Subsystem block.

Apart from the variant choices, you can include Inport, control port (Enable, Trigger, Reset, and
Function-Call), Outport, or Connection Port (Simscape) blocks inside a Variant Subsystem block.
There are no drawn connections between the blocks that are inside the Variant Subsystem blocks.
Simulink automatically wires the active variant to the Inport and Outport blocks of the Variant
Subsystem during model compilation. The blocks representing variant choices can have input and

1 Blocks

1-2426

output ports that differ in number from the input and output ports in the parent Variant Subsystem
block. For more information, see “Map Inports and Outports of Variant Choices in Variant Subsystem”
on page 1-2428.

Using Variant Subsystem block allows you to:

• Mix Subsystem, Model, and Subsystem Reference blocks as variant choices.
• Model components that do not have similar interface. You can have different numbers of inports

and outports for multiple variant choices inside a Variant Subsystem. However, the conditions
listed in “Map Inports and Outports of Variant Choices in Variant Subsystem” on page 1-2428 must
be met.

• Establish a hierarchical block diagram, where the Variant Subsystem block is on one layer and the
variant choices are on another layer.

• Keeps functionally related blocks together.
• Reduce the complexity of your model.
• During model compilation, Simulink eliminates inactive blocks throughout the model, depending

on the variant activation time you select.

The color and icon of the variant badge on the block icon changes depending on the values of the
Variant activation time, Variant control mode, and Propagate conditions outside of variant
subsystem parameters set on the block. For more information, see “Variant Badges”.

Variant Assembly Subsystem

A Variant Assembly Subsystem block enables you to add or remove its variant choices from external
sources without modifying the model. A Variant Assembly Subsystem block can contain Model blocks,
“Subsystem Reference” on page 1-2223 blocks, or both as its variant choices. You specify the source
of variant choices in the block parameter dialog box once and then modify the source to add or
remove the variant choices from the block. Unlike Variant Subsystem, you cannot manage the variant
choices from inside the Variant Assembly Subsystem block. For more information, see “Add or
Remove Variant Choices of Variant Assembly Subsystem Blocks Using External Files”.

Note To convert a Variant Subsystem block to a Variant Assembly Subsystem block, follow the steps
in “Convert Variant Subsystem to Variant Assembly Subsystem”.

Ports
During simulation, Simulink disables the inactive ports in a Variant Subsystem block.

Input

In_1 — Input port corresponding to root-level Inport blocks contained in Variant Subsystem
same data types accepted by Inport blocks

Each Subsystem, Model, or Subsystem Reference block contained within a Variant Subsystem
represents one variant choice. The variant choices can contain Inport, control port (Enable, Trigger,
Reset, and Function-Call), or Connection Port (Simscape) blocks at its input. The variant choices can
have input ports that differ in number from the input ports in the parent Variant Subsystem block.
However, the conditions described in “Map Inports and Outports of Variant Choices in Variant
Subsystem” on page 1-2428 must be met.

 Variant Subsystem, Variant Model, Variant Assembly Subsystem

1-2427

Output

Out_1 — Output port corresponding to root-level Outport blocks contained in Variant Subsystem
same data types accepted by Outport blocks

Each Subsystem, Model, or Subsystem Reference block contained within a Variant Subsystem
represents one variant choice. The variant choices can contain Outport or Connection Port
(Simscape) blocks at its output. The variant choices can have output ports that differ in number from
the output ports in the parent Variant Subsystem block. However, the conditions described in “Map
Inports and Outports of Variant Choices in Variant Subsystem” on page 1-2428 must be met.

Note The unconnected outports (inactive outports) of a Variant Subsystem outputs a ground value.
To output a value other than ground, select the Specify output when source is unconnected
parameter of the Outport block and specify a value.

Map Inports and Outports of Variant Choices in Variant Subsystem

A Variant Subsystem block allows you to use a combination of Subsystem, Model, or Subsystem
Reference blocks as variant choices. The inputs that the Variant Subsystem block receives from
upstream model components map to the input and output ports of the variant choices.

The blocks that represent variant choices can have input and output ports that differ in number from
the input and output ports in the parent Variant Subsystem block. However, the following conditions
must be met:

• The variant choices must have same set of inports as the Variant Subsystem container block or it
must be a subset of ports on the container block.

• The variant choices must have same set of outports as the Variant Subsystem container block or it
must be a subset of ports on the container block.

• If the Variant Subsystem container block has control ports:

• The type of control port blocks in all the variant choices must be same as the Variant
Subsystem block. For example, you cannot use Enabled Subsystem and Function-Call
Subsystem blocks as choices within a Variant Subsystem block.

• The control port on the Variant Subsystem block and the corresponding control ports on its
variant choices must have the same name. For example, if the name of the control port on the
Variant Subsystem is fcn, then the name of the corresponding control ports on all its variant
choices must also be fcn.

Parameters
To access these parameters, right-click the variant badge on the block icon and select Block
Parameters. For more information, see “Variant Badges”.

Variant control mode — Variant control mode

expression (default) | label | sim codegen switching

The variant control that determines the active variant choice can be any of these types.

• expression — In expression mode, Simulink chooses the active variant based on the
evaluation of the variant conditions. When a condition expression evaluates to true, the

1 Blocks

1-2428

corresponding variant choice becomes active. When a condition expression evaluates to false,
the corresponding variant choice becomes inactive. See “Switch Between Choices Using Condition
Expressions in Variant Blocks”.

• label — In label mode, Simulink chooses the active variant based on the name of the variant.
The variant control is a string and does not require you to create any variable in any workspaces.
See “Switch Between Choices Using Labels in Variant Blocks”.

• sim codegen switching — To automatically switch between the variants for simulation and
code generation workflows without creating any workspace variable, use sim codegen
switching mode. When you simulate a model, Simulink automatically chooses the sim branch as
the active choice. Similarly, when you do a software-in-the-loop (SIL) or processor-In-Loop (PIL)
simulation, generate code, or use external mode, Simulink automatically chooses the codegen
branch. This mode is not supported for models configured with an ERT-based system target file
and service code interface. See “Switch Between Choices for Simulation and Code Generation
Workflows Without Using Control Variables in Variant Blocks”.

For more information on variant control modes, see “Introduction to Variant Controls”. For a
comparison between different types of variant control modes, see “Compare Different Types of
Variant Control Modes in Variant Blocks”.

Dependencies

The availability of different variant activation times depends on the type of the Variant control
mode that you specify. The Variant activation time parameter determines the time when Simulink
sets the active choice. The parameter also determines which variability to include in the generated
code. This table explains the variant activation time supported by each variant control mode.

Variant activation time
Variant control
mode

update diagram update diagram
analyze all
choices

code compile startup

expression ✓ ✓ ✓ ✓

label ✓ x x x
sim codegen
switching

✓ ✓ x x

Programmatic Use
Block Parameter: VariantControlMode
Type: character vector
Values: expression | label | sim codegen switching |
Default: expression

Variant activation time — Time when Simulink chooses active variant choice

update diagram (default) | update diagram analyze all choices | code compile |
startup | inherit from Simulink.VariantControl

This parameter determines which variability to include in the simulation and code generation
workflows. For more information, see “Activate Variant During Different Stages of Simulation and
Code Generation Workflow”.

You can set the Variant activation time parameter as:

 Variant Subsystem, Variant Model, Variant Assembly Subsystem

1-2429

• update diagram — When you execute the model, only the active choice is included in the
simulation and the code generation workflow. Generated code contains only the active choice.

• update diagram analyze all choices — When you execute the model, both active and
inactive choices are analyzed for consistency across the model. However, only the active choice is
included in the simulation and the code generation workflow. Generated code contains only the
active choice.

• code compile — When you execute the model, both active and inactive choices are analyzed for
consistency across the model, and all choices are included in the simulation and the code
generation workflow. Generated code contains both the active and inactive choices enclosed in the
preprocessor conditionals #if and #elif. However, the executable built from the generated code
contains only active choice.

• startup — When you execute the model, both active and inactive choices are analyzed for
consistency across the model, and all choices are included in the simulation and the code
generation workflow. With this option, you can improve the speed of iterative simulations using
fast restart. For more information, see “Run Iterative Simulations Without Recompiling Model for
Variant Systems Using Fast Restart”. Code generated from the model contains both the active and
inactive choices that are enclosed in regular if conditions. The executable built from the
generated code also contains both active and inactive choices.

• inherit from Simulink.VariantControl — When you execute the model, the block inherits
the activation time from its variant control variables of type Simulink.VariantControl. If a
variant block has multiple variant control variables of type Simulink.VariantControl, then all
those variables must have the same activation time.

Dependencies

The availability of different variant activation times depends on the type of the variant control mode
that you specify. The Variant activation time parameter determines when Simulink sets the active
choice. The parameter also determines which variability to include in the generated code. This table
explains the variant activation time supported by each variant control mode.

Variant activation time
Variant control
mode

update diagram update diagram
analyze all
choices

code compile startup

expression ✓ ✓ ✓ ✓

label ✓ x x x
sim codegen
switching

✓ ✓ x x

Programmatic Use
Block Parameter: VariantActivationTime
Type: character vector
Values: update diagram | update diagram analyze all choices | code compile |
startup
Default: update diagram

Variant control variable — Variable to determine active variant choices

Simulink.VariantControl | scalar variable | Simulink.Parameter | struct

1 Blocks

1-2430

When you specify a variable of type listed in “Types of Variant Control Variables (Operands) in Variant
Blocks”, Simulink generates variant control expressions for the variant choices of the Variant
Assembly Subsystem block. The Variant control variable that you specify here is on the left side
and the members of the Variant enumeration choice are on the right side of the generated
expressions. Both the sides are related by ==.

The variant control variable acts as a switch to change the active variant choice. You specify a value
for a variant control variable and run the simulation. During simulation, Simulink evaluates the
variant control expressions to determine the active variant choice. When an expression evaluates to
true, the corresponding variant choice is set active. To change the active variant, change the value
of the variant control variable such that the corresponding variant control expression evaluates to
true turns active.

Dependencies

This parameter is available only in Variant Assembly Subsystem block. To enable this parameter, set
Variant control mode to expression.

Programmatic Use
Block Parameter: VariantControlVariable
Type: character vector
Values: Simulink.VariantControl, scalar variable, Simulink.Parameter, struct
Default: ''

Variant choices enumeration — Enumeration class to add variant choices

enumeration class with model or subsystem filenames as its members

To add Model or Subsystem Reference blocks as variant choices to a Variant Assembly Subsystem
block, specify an enumeration class name that contains the corresponding model or subsystem
filenames as its members. You can then validate the enumeration class using the Refresh button in
the Variant choices table. On a successful validation, the members of the enumeration class are
added as variant choices to the Variant Assembly Subsystem block. Each choice has a variant control
expression with Variant control variable on its left side and the members of the Variant choices
enumeration that you specify here on its right side. Both the sides of the expression are related by
==. The newly added variant choices and their corresponding control expressions are displayed in the
Variant choices table.

To remove variant choices from a Variant Assembly Subsystem block, remove the corresponding
members from the enumeration class that you specify here. You cannot manage the variant choices
from inside the Variant Assembly Subsystem block.

The enumeration class that you specify must be on the search path of your current MATLAB session.
For information on how to add files or folders to the search path, see addpath.

For more information on how to add choices using the Variant choices enumeration parameter, see
“Add or Remove Variant Choices of Variant Assembly Subsystem Blocks Using External Files”.

Dependencies

This parameter is available only in Variant Assembly Subsystem block. To enable this parameter, set
Variant control mode to expression.

Programmatic Use
Block Parameter: VariantChoicesEnumeration

 Variant Subsystem, Variant Model, Variant Assembly Subsystem

1-2431

Type: character vector
Values: enumeration class defined using classdef or Simulink.defineIntEnumType
Default: ''

Variant choices specifier — MATLAB expression to add variant choices

any MATLAB expression that evaluates to a one-dimensional cell array of model or subsystem file
names, or file name patterns that match the model or subsystem file names

To add Model or Subsystem Reference blocks as variant choices to a Variant Assembly Subsystem
block, specify the corresponding model or subsystem file names. The file names must be specified as
a MATLAB expression that returns a one-dimensional cell array of character vectors when evaluated.
You can then validate the expression using the Refresh button in the Variant choices table. On a
successful validation, the blocks that correspond to the specified files are added as variant choices to
the Variant Assembly Subsystem block. For each choice, a variant control label is generated. The
name of the variant control label is same as the name of the choice. The newly added variant choices
and their corresponding control labels are displayed in the Variant choices table.

To remove variant choices from a Variant Assembly Subsystem block, modify the expression specified
in this parameter. You cannot manage the variant choices of a Variant Assembly Subsystem block
from inside the block.

The MATLAB expression that you specify must contain either of these:

• Model or subsystem file names that are on the search path of your current MATLAB session. For
example, if you specify {'model1.slx', 'subsystemRef1.slx'} as a specifier, the blocks
that correspond to the model1.slx and subsystemRef1.slx files are added as variant choices
of the Variant Assembly Subsystem block.

• File name patterns that match the model or subsystem file names on the MATLAB path. The paths
in the pattern can be absolute or relative to the parent folder of the model that contains the
Variant Assembly Subsystem block. For example, if you specify {'folder_1/*.slx',
'folder_2/*.slx'} as a specifier, Simulink passes the character vectors folder_1/* and
folder2/* to the dir function. The function then returns the model and the subsystem files that
are located inside the folder1 and folder2 folders. The blocks that correspond to the returned
files are added as variant choices of the Variant Assembly Subsystem block.

For information on how to add files or folders to the search path, see addpath.

For more information on how to specify choices in the Variant choices specifier parameter, see “Add
or Remove Variant Choices of Variant Assembly Subsystem Blocks Using External Files”.

Dependencies

This parameter is available only in Variant Assembly Subsystem block. To enable this parameter, set
Variant control mode to label.

Programmatic Use
Parameter: VariantChoicesSpecifier
Type: character vector
Value: Any MATLAB expression that evaluate to a one-dimensional cell array of file names or file
name patterns.
Default: ''

1 Blocks

1-2432

Variant choices (table of variant systems) — Table of variant choices, variant controls, and
conditions

empty table (default)

The table has a row for each variant choice contained in the Variant Subsystem. If there are no
variant choices, the table is empty.

You can use buttons to the left of the Variant choices table to modify the elements in the table.

To... Click...
Create and add a new subsystem choice: Create a new Subsystem
block as a variant choice and add an entry for the new choice in the table.
Create and add a new model variant choice: Create a new Model block
as a variant choice and add an entry for the new choice in the table.
Create/Edit selected variant object: Create or edit a
Simulink.Variant object in the global workspace and specify the variant
condition using the Simulink.Variant object parameter dialog box.

Note For a model that uses the base workspace, this operation creates the
Simulink.Variant object in the base workspace and the object is
available only for the current MATLAB session. To permanently store the
data, save the object in a MAT file or MATLAB script.
Open selected variant choice block: Open the Subsystem block for the
selected row.
Refresh dialog information from Variant Subsystem contents:
Update the Variant choices table according to the variant choices and
values of the variant control in the global workspace.

Dependencies

The Variant Assembly Subsystem block allows you to only open the selected variant choice and
refresh the list of variant choices using the buttons in this section. To add new variant choices to the
Variant Assembly Subsystem block, see “Add or Remove Variant Choices of Variant Assembly
Subsystem Blocks Using External Files”.

Name (read-only) — Variant choice name

Subsystem and Subsystem1 (default) | name of choices contained in Variant Subsystem

This parameter is read-only.

This parameter displays the name of the choices. Each choice has a variant control in the form of
labels, expressions, or switches. For Variant Assembly Subsystem in the label mode, no separate
variant control is available. The name of the choice is used as a variant control to set the active
choice.

Variant control label — Name of choice in label mode

true or false (default) | string

 Variant Subsystem, Variant Model, Variant Assembly Subsystem

1-2433

A name for a choice, specified as a string.
Dependencies

To enable this parameter, set Variant control mode to label.

Variant control expression — Condition expression that determines the active choice

true or false (default) | boolean condition expression | a Simulink.Variant object representing a
boolean condition expression | (default)

Specify the condition expression to determine the active choice. When a condition expression
evaluates to true, Simulink activates the corresponding variant choice. When a condition expression
evaluates to false, Simulink deactivates the corresponding variant choice.

The variant controls can be:

• Boolean condition expression for rapid prototyping. For example, A == 1, A ~= B, A && B ==
1, and so on.

• A Simulink.Variant object that contains a condition expression for condition reuse. See
“Simulink.Variant Objects for Variant Condition Reuse of Variant Blocks”.

• “Default Variant Choice” if none of the choices evaluates to true.

Here, A and B are operands called as variant control variables. ==, ~=, and && are operators in the
condition expression. The condition expression can contain one or more such variant control
variables and operators. For information on supported types and storage location of variant control
variables, see “Types of Variant Control Variables (Operands) in Variant Blocks” and “Storage
Locations for Variant Control Variables (Operands) in Variant Blocks”. For information on operators,
see “Types of Operators in Variant Blocks for Different Activation Times”.

For more information, see “Switch Between Choices Using Condition Expressions in Variant Blocks”.

Note In Variant Assembly Subsystem block, this parameter is a list of auto-generated boolean
expressions with Variant control variable on the left-hand side and the members of the Variant
enumeration choice are on the right-hand side of the expressions. Both the sides of the expressions
are connected with ==. This parameter is read-only.

Programmatic Use
Structure field: Represented by the read-only variant.Name field in the Variant parameter
structure
Type: character vector
Value: variant control that is associated with the variant choice
Default: 'variant'

Condition (read-only) — Condition expression in Simulink.Variant object

N/A (default)

This parameter is read-only.

This parameter displays the condition expression specified as Simulink.Variant object. To change
or edit the condition expression, use the Simulink.Variant parameter dialog box that appears
when you double-click the object in the workspace.

1 Blocks

1-2434

Note The operands that you specify in a condition expression of type Simulink.Variant must be
defined in the base workspace or a data dictionary. Specifying operands that are defined in the mask
or model workspace is not supported.

Label mode active choice — Name of active choice in label mode

true(Subsystem) (default) | false(Subsystem1)

This list contains the labels of all the variant choices. To set an active choice, select a label from the
list. The corresponding choice becomes active. Alternatively, you can follow the approaches described
in “Set Active Choices Using Variant Control Labels” to change the active choice in label mode.

Dependencies

To enable this parameter, set the Variant control mode parameter to label.

Programmatic Use
Parameter: LabelModeActivechoice
Type: character vector
Value: if no label mode active choice is specified, the value is empty. If label mode active choice is
specified, the value is the name of the label mode active choice.
Default: ''

Allow zero active variant controls — Whether to allow zero active variant choices

off (default) | on

• off — Simulink generates an error when there is no active variant choice.
• on — When you select this option and if there is no active variant choice, Simulink simulates the

model without any active variant choice in the Variant Subsystem. Simulink disconnects all the
blocks connected to the input and output stream of Variant Subsystem block, thus removing the
variant regions completely from the model. The inactive outports of the Subsystem output a
ground value. To output a value other than ground, select the Specify output when source is
unconnected parameter of the Outport block and specify a value of your choice.

Dependencies

This parameter is available only if there are no default variant choices in the Variant Subsystem
and if you set Variant control mode to expression.

Programmatic Use
Parameter: AllowZeroVariantControls
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Propagate conditions outside of variant subsystem — Option to choose if components outside of
the Variant Subsystem must be informed of the active and inactive state of underlying blocks

off (default) | on

When you select the Propagate conditions outside of variant subsystem parameter, Simulink
propagates the variant condition of the underlying blocks to the Variant Subsystem container block so
the subsystem can adapt its interface to the state of the underlying blocks. Ports that are mapped to

 Variant Subsystem, Variant Model, Variant Assembly Subsystem

1-2435

the ports on the active choice becomes active. Ports that are not mapped to the ports on the inactive
choice becomes inactive. Selecting this option ensures that the components outside of the Variant
Subsystem are aware of the active and inactive state of blocks within the Variant Subsystem block.
For more information, see “Propagate Variant Conditions Outside Variant Subsystems” and “Use
Variant Subsystem Blocks with Conditionally Executed Subsystems”

Note Variant conditions do not propagate outside a Variant Subsystem block if all variant choices
within the block have the same interface.

Programmatic Use
Parameter: PropagateVariantConditions
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced in R2010b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic. Actual data type or capability support depends on block implementation.

1 Blocks

1-2436

HDL Architecture

Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem. HDL

Coder generates code for all the variant choices.
BlackBox Generate a black-box interface. That is, the generated HDL code includes only the

input/output port definitions for the subsystem. In this way, you can use a
subsystem in your model to generate an interface to existing manually written
HDL code.

The black-box interface generated for subsystems is similar to the interface
generated for Model blocks, but without generation of clock signals.

No HDL Remove the subsystem from the generated code. You can use the subsystem in
simulation but treat it as a “no-op” in the HDL code.

Black Box Interface Customization

For the BlackBox architecture, you can customize port names and set attributes of the external
component interface. See “Customize Black Box or HDL Cosimulation Interface” (HDL Coder).

HDL Block Properties

General
AdaptivePipelining Automatic pipeline insertion based on the synthesis tool, target frequency,

and multiplier word-lengths. The default is inherit. See also
“AdaptivePipelining” (HDL Coder).

BalanceDelays Detects introduction of new delays along one path and inserts matching
delays on the other paths. The default is inherit. See also
“BalanceDelays” (HDL Coder).

ClockRatePipelining Insert pipeline registers at a faster clock rate instead of the slower data
rate. The default is inherit. See also “ClockRatePipelining” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

DSPStyle Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

FlattenHierarchy Remove subsystem hierarchy from generated HDL code. The default is
inherit. See also “FlattenHierarchy” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

 Variant Subsystem, Variant Model, Variant Assembly Subsystem

1-2437

General
OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared
resource. The default is 0. See also “Resource Sharing” (HDL Coder).

StreamingFactor Number of parallel data paths, or vectors, that are time multiplexed to
transform into serial, scalar data paths. The default is 0, which implements
fully parallel data paths. See also “Streaming” (HDL Coder).

Target Specification

This block cannot be the DUT, so the block property settings in the Target Specification tab are
ignored.

Restrictions

• The DUT cannot be a Variant Subsystem.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Variant Source | Variant Sink

Topics
“Working with Variant Choices”

1 Blocks

1-2438

Vector Concatenate
Concatenate input vectors of same data type for iterative processing

Libraries:
Simulink / Commonly Used Blocks
Simulink / Math Operations
Simulink / Signal Routing
HDL Coder / Math Operations
HDL Coder / Signal Routing

Alternative Configurations of Vector Concatenate Block:
Matrix Concatenate

Description
The Vector Concatenate block concatenates input signals to create a nonscalar signal that you can
iteratively process with a subsystem, for example, a for-each, while-iterator, or for-iterator subsystem.

You can use multiple Vector Concatenate blocks to create the output signal in stages, but the result is
flat, as if you used a single block to concatenate the signals.

The signals in the output signal appear in the same order as the input signals for the block. For a
description of the port order for various block orientations, see “Identify Port Location on Rotated or
Flipped Block”.

You must use a Vector Concatenate or Matrix Concatenate block to define an array of buses. For more
information, see “Group Nonvirtual Buses in Arrays of Buses”.

Examples

Concatenate Vectors

A Vector Concatenate block concatenates the vectors it receives, placing them side-by-side in the
output vector.

For example, simulate the VectorConcatenation model.

 Vector Concatenate

1-2439

The input vectors [1 2] and [3 4] are concatenated to create the output vector [1 2 3 4].

Ports
Input

Port_1 — First input to concatenate
scalar | vector | matrix | array

First input to concatenate, specified as a scalar, vector, matrix, or array.

• Inputs must be of the same data type.
• Matrix and array inputs are supported only when you set Mode to Multidimensional array.

When the data type is a Simulink.Bus object, the inputs must be nonvirtual buses.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Port_N — Nth input to concatenate
scalar | vector | matrix | array

Nth input to concatenate, specified as a scalar, vector, matrix, or array.

• Inputs must be of the same data type.
• Matrix and array inputs are supported only when you set Mode to Multidimensional array.

Dependencies

To add input ports, set Number of inputs to an integer greater than or equal to 2.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Output

Port_1 — Concatenation of input signals
scalar | vector | matrix | array

Concatenation of input signals along specified dimension. Outputs have the same data type as the
input.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters
To edit block parameters interactively, use the Property Inspector. From the Simulink Toolstrip, on
the Simulation tab, in the Prepare gallery, select Property Inspector.

Number of inputs — Number of input ports

2 (default) | positive integer

1 Blocks

1-2440

Specify the number of inputs for the block as a real-valued, positive integer, less than or equal to
65536.
Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: NumInputs

Values: '2' (default) | positive integer
Data Types: char | string

Example: set_param(gcb,'NumInputs','3')

Mode — Type of concatenation

Vector | Multidimensional array

Select whether the block operates in vector or multidimensional array concatenation mode. The
default Mode of the Vector Concatenate block is Vector. The default Mode of the Matrix
Concatenate block is Multidimensional array.

• When you select Vector, the block performs vector concatenation.
• When you select Multidimensional array, the block performs matrix concatenation.

Mode Setting Input Signals Output Signal
Vector • Vectors

• Row vectors (1-by-M matrices)
• Column vectors (M-by-1 matrices)
• Combination of vectors and either

row or column vectors

When all inputs are vectors, the output
is a vector.

If any of the inputs are row or column
vectors, the output is a row or column
vector, respectively.

Multidimension
al array

Signals of any dimensionality (scalars,
vectors, and matrices)

The output is always an array.

Trailing dimensions are assumed to be
1 for lower dimensionality inputs. For
example, if the output is 4-D and the
input is [2x3] (2-D), this block treats
the input as [2x3x1x1].

Concatenation is on the dimension that
you specify with the Concatenate
dimension parameter.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: Mode

Values: 'Vector' | 'Multidimensional array'

Example: set_param(gcb,'Mode','Vector')

Concatenate dimension — Output dimension along which to concatenate input arrays

 Vector Concatenate

1-2441

scalar integer

Specify the output dimension along which to concatenate the input arrays.

• 1 — Concatenate inputs vertically. The vertical matrix concatenation stacks the input matrices on
top of each other in the output matrix. When you insert a Vector Concatenate block and set Mode
to Multidimensional array, the default is 1.

• 2 — Concatenate inputs horizontally. The horizontal matrix concatenation places the input
matrices side-by-side in the output matrix. When you insert a Matrix Concatenate block, the
default is 2.

• 3 or more — Perform multidimensional concatenation on the inputs.

The input matrices must have compatible sizes for concatenation. Vertical concatenation requires the
input matrices to have the same number of columns. Horizontal concatenation requires input
matrices to have the same number of rows.

Dependencies

To enable this parameter, set Mode to Multidimensional array.

Programmatic Use

To set the block parameter value programmatically, use the set_param function.
Parameter: ConcatenateDimension

Values: scalar integer
Data Types: char | string

Example: set_param(gcb,'ConcatenateDimension','3')

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | image |

integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Matrix Concatenate — Concatenate input matrices of same data type for iterative
processing

The Matrix Concatenate block sets Mode to Multidimensional array.
Libraries:
Simulink / Math Operations
Simulink / Matrix Operations
DSP System Toolbox / Math Functions / Matrices and Linear Algebra / Matrix Operations

1 Blocks

1-2442

HDL Coder / Math Operations

Version History
Introduced in R2009b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

FOR-GENERATE Loop Support

For this block, HDL Coder generates code using FOR-GENERATE loop when you set the target
language to VHDL. For more information, see “Unroll For-Generate Loops in VHDL Code” (HDL
Coder)

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 Vector Concatenate

1-2443

See Also
Functions
cat

Blocks
Bus Creator | Selector

Topics
“Group Nonvirtual Buses in Arrays of Buses”
“Creating, Concatenating, and Expanding Matrices”

1 Blocks

1-2444

Vertical Gauge
Display signal value during simulation on vertical gauge with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
The Vertical Gauge block displays the value of the connected signal on a linear gauge that you can
customize to look like a gauge in a real system.

The Vertical Gauge block displays instantaneous value of the connected signal throughout simulation.
You can modify the range and tick values on the Vertical Gauge block to fit your data. Use the Vertical
Gauge block with other dashboard blocks to build an interactive dashboard of controls and indicators
for your model.

Customize Vertical Gauge Blocks

When you add a Vertical Gauge block to your model, the block is preconfigured with a default design.
You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

 Vertical Gauge

1-2445

In design mode, you can:

• Upload a needle image.
• Upload a background image or set a solid background color.
• Change the color and opacity of the scale, tick labels, and value bar.
• Change the size of the scale and needle.
• Reposition the scale and needle.
• Specify the location of the origin from which the value bar grows.
• Specify the scale direction as left to right or right to left.
• Upload a foreground image.

You can use the toolbar above the block to upload a needle or a background image and to change the
color and opacity of the scale, tick labels, and value bar. To change the color and opacity, in the
second section of the toolbar from the left, select a component. Then, click the color wheel in the
toolbar to change the color of the component. Move the slider to change the opacity.

To resize the scale or needle, select the component you want to change in the canvas. Then, click and
drag the grab points that define its dimensions.

To reposition the scale or needle, click and drag it in the canvas.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

Use the Design tab to:

• Specify the scale direction.

1 Blocks

1-2446

• Specify the origin.
• Upload a foreground image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

 Vertical Gauge

1-2447

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

• You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

• Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Connection — Signal to connect and display
signal connection options

Use the Connection table in the Block Parameters dialog box to select or change the signal that the
block connects to. To connect the block to a signal:

1 If the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

2 Select a signal in the model.
3 In the table, select the signal you want to connect.
4 Click Apply.

To help understand and debug your model, you can connect dashboard blocks to signals in the model
during simulation.

Tip You can also use bind mode select or change the signal that the block connects to. To enter bind
mode:

• If you are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

• Click the dashboard block in the canvas. If the dashboard block is not connected, the Connect

button and an ellipsis appear over the dashboard block. If the dashboard block is already
connected, only the ellipsis appears.

1 Blocks

1-2448

• If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
signals that are available for connection appears.

To connect the dashboard block in bind mode:

• From the list, select the signal you want to connect.
•

To exit bind mode, click Done Connecting over the dashboard block.

Programmatic Use
Block Parameter: Binding
Type: Simulink.HMI.SignalSpecification
Default: []

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.

 Vertical Gauge

1-2449

Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Scale Direction — Direction of increasing scale values
'Bottom to top' (default) | 'Top to bottom'

Set the direction of increasing scale values.

Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Label — Position of label displaying name of connected element

Top (default) | Bottom | Hide

You can display the name of the element to which the dashboard block connects in a label positioned
at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

1 Blocks

1-2450

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Scale Colors — Color indications on gauge scale
colors for scale ranges

Color specifications for value ranges on the scale. Click the + button to add a scale color. For each
color added, specify the minimum and maximum values of the range in which you want to display that
color.

Programmatic Use

To programmatically specify the Scale Colors parameter, use an array of structures with these
fields:

• Min — Minimum value for the color range on the scale
• Max — Maximum value for the color range on the scale
• Color — 1-by-3 vector of double values between 0 and 1 that specify the color for the range in

the form [r g b]

Include a structure in the array for each scale range for which you want to specify a color.

range1.Min = 0;
range1.Max = 10;
range1.Color = [0 0 1];
range2.Min = 10;
range2.Max = 15;
range2.Color = [0 1 0];
scaleRanges = [range1 range2];

Block Parameter: ScaleColors
Type: structure array
Default: 0x1 struct array

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Linear Gauge

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

 Vertical Gauge

1-2451

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Scale

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.

1 Blocks

1-2452

Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Origin — Value on scale from which needle moves and value bar grows
auto (default) | scalar

Specify the value on the scale from which the needle moves and the value bar grows. When set to
auto, the Origin is the minimum of the scale.
Example: 0

Scale Direction — Direction of increasing scale values
'Bottom to top' (default) | 'Top to bottom'

Set the direction of increasing scale values.

Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

X Offset — Horizontal offset of left edge of scale bounding box from left edge of block
scalar

Specify the horizontal offset of the left edge of the bounding box of the scale from the left edge of the
block as a ratio of the block width. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale left, and an offset with a positive value moves the scale right.
Example: 1

Y Offset — Vertical offset of top edge of scale bounding box from top edge of block
scalar

Specify the vertical offset of the top edge of the bounding box of the scale from the top edge of the
block as a ratio of the block height. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale up, and an offset with a positive value moves the scale down.
Example: 1

Width — Scale width
scalar

Specify the width of the bounding box of the scale as a ratio of the block width.
Example: 2

Height — Scale height
scalar

Specify the height of the bounding box of the scale as a ratio of the block height.
Example: 2

Lock Aspect Ratio — Option to maintain scale aspect ratio
on (default) | off

 Vertical Gauge

1-2453

Enable on this option to maintain the aspect ratio when resizing the scale using the Property
Inspector.

Tick Color — Color of scale tick marks, span line, and block name
[r g b] vector

Set the color of the scale tick marks, the span line, and the block name. Choose a color from the
palette of standard colors, or specify a custom color.

Tip You can also set the Tick Color by choosing a Foreground Color on the Format tab of the
Simulink Toolstrip.

To specify the color of the block text, use the Label Color parameter.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Label Color — Scale label font color
[r g b] vector

Choose a font color for the scale label from the palette of standard colors, or specify a custom color.

Tip To specify the color of the scale, use the Tick Color parameter.

Label Offset — Horizontal distance of scale labels from free end of scale tick marks
0.3 (default) | scalar

Specify the horizontal distance from the scale labels to the free end of their corresponding tick marks
on the scale as a ratio of the width of the bounding box of the scale.
Example: 0.5

Needle

Width — Needle image width
scalar

Specify the width of the needle image as a ratio of the block width.
Example: 1

Height — Needle image height
scalar

Specify the height of the needle image as a ratio of the block height.
Example: 1

1 Blocks

1-2454

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

X Offset — Horizontal offset of left edge of needle image from scale span line
scalar

Specify the horizontal offset of the left edge of the needle image from the span line of the scale as a
ratio of the needle image width. Relative to the position of the needle image when the offset is 0, an
offset with a negative value moves the image left, and an offset with a positive value moves the image
right.
Example: 1

Y Offset — Vertical offset of needle image center from scale origin
scalar

Specify the vertical offset of the needle image center from the scale origin as a ratio of the needle
image height. Relative to the position of the needle image when the offset is 0, an offset with a
negative value moves the image up, and an offset with a positive value moves the image down.
Example: 1

Value Bar

Offset from Scale — Distance of left edge of value bar from span line
0 (default) | scalar

Specify the distance from the left edge of the value bar to the span line as a ratio of the width of the
bounding box of the scale. Relative to the position of the value bar when the offset is 0, an offset with
a negative value moves the value bar left, and an offset with a positive value moves the value bar
right.
Example: 0.25

Size — Value bar thickness
scalar

Specify the thickness of the value bar as a ratio of the width of the bounding box of the scale.
Example: 0.3

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can provide a background image or select a solid color. To select a
solid background color, select this parameter. To provide a background image, clear this parameter.

Note Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and enables the Use Background Color parameter.

Example: on

 Vertical Gauge

1-2455

Color — Block background color
[r g b] vector

To select a solid background color, enable the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Corner Radius — Corner radius of area with block background color
scalar

Specify the corner radius of the area covered by the block background color as a ratio of half of the
smaller of the two block dimensions, width or height.
Example: 0.25

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

1 Blocks

1-2456

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2020a

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

 Vertical Gauge

1-2457

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (⌘) instead of Ctrl.

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2022b: Extended support for customizable Dashboard blocks on Raspberry Pi boards

Starting in R2022b, the Simulink Support Package for Raspberry Pi Hardware supports deploying
these blocks from the Customizable Blocks library on your Raspberry Pi boards:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on a web browser you launch from a Raspberry Pi terminal.

1 Blocks

1-2458

R2022b: Extended support for customizable Dashboard blocks on Android devices

Starting in R2022b, the Simulink Support Package for Android Devices supports deploying these
blocks from the Customizable Blocks library on your Android devices:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

R2022a: Change scale direction

Starting in R2022a, you can change the direction of the scale of these blocks from the Customizable
Blocks library:

• Circular Gauge
• Horizontal Gauge
• Horizontal Slider
• Knob
• Vertical Gauge
• Vertical Slider

R2022a: Specify origin for value bar and needle

The origin of a scale is the value on the scale from which the needle moves and the value bar grows.
Starting in R2022a, you can specify an origin for the scales of these blocks from the Customizable
Blocks library:

• Circular Gauge
• Horizontal Gauge
• Horizontal Slider
• Knob
• Vertical Gauge
• Vertical Slider

 Vertical Gauge

1-2459

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

R2021a: Customizable dashboard block gauges move to Customizable Blocks library
Behavior changed in R2021a

In prior releases, the Dashboard library contained the Circular Gauge, Horizontal Gauge, and Vertical
Gauge blocks. Starting in R2021a, these blocks are in the Customizable Blocks sublibrary within the
Dashboard library.

R2021a: Dashboard gauge blocks support foreground, background, and font color
Behavior changed in R2021a

Starting in R2021a, you can change the foreground, background, and font color of these blocks:

• Gauge
• Half Gauge
• Linear Gauge
• Quarter Gauge
• Circular Gauge
• Horizontal Gauge
• Vertical Gauge

R2020b: Simulink toolstrip support for dashboard blocks

Starting in R2020b, the Simulink Toolstrip opens a block-specific tab when you select a block in your
model from the Simulink Dashboard library or from the Flight Instruments library in the Aerospace
Blockset Flight Control Analysis Library. From the toolstrip, you can connect, disconnect, and modify
connections for the selected block. You can also jump to the model element connected to the selected
block and add the selected block to a panel.

R2020b: Add a foreground image to the Horizontal Gauge, Vertical Gauge, and Circular
Gauge blocks

Starting in R2020b, you can add a foreground image to a Horizontal Gauge, Vertical Gauge, or
Circular Gauge block in your model.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Circular Gauge | Horizontal Gauge | Gauge | Half Gauge | Linear Gauge | Quarter Gauge

1 Blocks

1-2460

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”
“Getting Started with Panels”

 Vertical Gauge

1-2461

Vertical Slider
Change parameter or variable value using vertical slider with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description
Use the Vertical Slider block to tune the value of a variable or block parameter during simulation. You
can customize the appearance of the Vertical Slider block to look like a control in a real system. You
can adjust the scale range and tick values to fit the desired range for the value you want to tune. Use
the Vertical Slider block with other dashboard blocks to create an interactive dashboard to control
your model.

Customize Vertical Slider Blocks

When you add a Vertical Slider block to your model, the block is preconfigured with a default design.
You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

• On the Gauge tab, under Design, click Edit.
• In the Property Inspector, on the Design tab, click Edit.
• Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

1 Blocks

1-2462

In design mode, you can:

• Upload a handle image.
• Upload a background image or set a solid background color.
• Change the color and opacity of the scale, tick labels, and value bar.
• Change the size of the scale and handle.
• Reposition the scale and handle.
• Specify the scale direction as left to right or right to left.
• Specify the location of the origin from which the value bar grows.
• Upload a foreground image.

You can use the toolbar above the block to upload a handle or a background image and to change the
color and opacity of the scale, tick labels, and value bar. To change the color and opacity, in the
second section of the toolbar from the left, select a component. Then, click the color wheel in the
toolbar to change the color of the component. Move the slider to change the opacity.

To resize the scale or handle, select the component you want to change in the canvas. Then, click and
drag the grab points that define its dimensions.

To reposition the scale or handle, click and drag it in the canvas.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

Use the Design tab to:

• Specify the scale direction.

 Vertical Slider

1-2463

• Specify the origin.
• Upload a foreground image.
• Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

1 Blocks

1-2464

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set_param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations
• Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect

to real scalar signals.
• The toolstrip does not support blocks that are inside a panel.
• You cannot use the Connection table in the block dialog to connect a dashboard block to a block

that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

• Dashboard blocks cannot connect to model elements inside referenced models.
• When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
• Dashboard blocks do not support rapid accelerator simulation.

• When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

• When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

 Vertical Slider

1-2465

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Connection

Connection — Select variable or block parameter to connect
variable and parameter connection options

Use the Connection table in the Block Parameters dialog box to select or change the variable or
block parameter to control. To connect the block to a variable or block parameter:

1 If the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

2 Select a block in the model.
3 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy. Omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

4 Click Apply.

To help understand and debug your model, you can connect Dashboard blocks to variables and
parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Tip You can also use bind mode to select or change the variable or block parameter to control. To
enter bind mode:

• If you are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

•
Click the dashboard block in the canvas. If the dashboard block is not connected, Connect
and an ellipsis appear over the dashboard block. If the dashboard block is already connected, only
the ellipsis appears.

• If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
parameters and variables available for connection appears.

1 Blocks

1-2466

To connect the dashboard block in bind mode:

• From the list, select the variable or parameter you want to connect.
•

To exit bind mode, click Done Connecting over the dashboard block.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some properties apply to connecting dashboard blocks to parameters. Some
properties apply to connecting dashboard blocks to variables. Not all fields have a value for a
connection because a given dashboard block connects to either a parameter or a variable.
Block Parameter: Binding
Type: Simulink.HMI.ParamSourceInfo
Default: []

Main

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.

 Vertical Slider

1-2467

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Scale Direction — Direction of increasing scale values
'Bottom to top' (default) | 'Top to bottom'

Set the direction of increasing scale values.

Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Label — Position of label displaying name of connected element

Top (default) | Bottom | Hide

You can display the name of the element to which the dashboard block connects in a label positioned
at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

1 Blocks

1-2468

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Slider

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | off

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip

• When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

• When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Scale

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits

 Vertical Slider

1-2469

Type: 1x3 vector
Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.
Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.
Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.
Block Parameter: Limits
Type: 1x3 vector
Default: [0 -1 100]

Origin — Value on scale from which handle moves and value bar grows
auto (default) | scalar

Specify the value on the scale from which the handle moves and the value bar grows. When set to
auto, the Origin is the minimum of the scale.
Example: 0

Scale Direction — Direction of increasing scale values
'Bottom to top' (default) | 'Top to bottom'

Set the direction of increasing scale values.
Programmatic Use
Block Parameter: ScaleDirection
Type: character vector
Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

X Offset — Horizontal offset of left edge of scale bounding box from left edge of block
scalar

1 Blocks

1-2470

Specify the horizontal offset of the left edge of the bounding box of the scale from the left edge of the
block as a ratio of the block width. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale left, and an offset with a positive value moves the scale right.
Example: 1

Y Offset — Vertical offset of top edge of scale bounding box from top edge of block
scalar

Specify the vertical offset of the top edge of the bounding box of the scale from the top edge of the
block as a ratio of the block height. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale up, and an offset with a positive value moves the scale down.
Example: 1

Width — Scale width
scalar

Specify the width of the bounding box of the scale as a ratio of the block width.
Example: 2

Height — Scale height
scalar

Specify the height of the bounding box of the scale as a ratio of the block height.
Example: 2

Lock Aspect Ratio — Option to maintain scale aspect ratio
on (default) | off

Enable on this option to maintain the aspect ratio when resizing the scale using the Property
Inspector.

Tick Color — Color of scale tick marks, span line, and block name
[r g b] vector

Set the color of the scale tick marks, the span line, and the block name. Choose a color from the
palette of standard colors, or specify a custom color.

Tip You can also set the Tick Color by choosing a Foreground Color on the Format tab of the
Simulink Toolstrip.

To specify the color of the block text, use the Label Color parameter.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.
Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Label Color — Scale label font color
[r g b] vector

 Vertical Slider

1-2471

Choose a font color for the scale label from the palette of standard colors, or specify a custom color.

Tip To specify the color of the scale, use the Tick Color parameter.

Label Offset — Horizontal distance of scale labels from free end of scale tick marks
0.3 (default) | scalar

Specify the horizontal distance from the scale labels to the free end of their corresponding tick marks
on the scale as a ratio of the width of the bounding box of the scale.
Example: 0.5

Handle

Width — Handle image width
scalar

Specify the width of the handle image as a ratio of the block width.
Example: 1

Height — Handle image height
scalar

Specify the height of the handle image as a ratio of the block height.
Example: 1

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

X Offset — Horizontal offset of left edge of handle image from scale span line
scalar

Specify the horizontal offset of the left edge of the handle image from the span line of the scale as a
ratio of the handle image width. Relative to the position of the handle image when the offset is 0, an
offset with a negative value moves the image up, and an offset with a positive value moves the image
down.
Example: 1

Y Offset — Vertical offset of handle image center from scale origin
scalar

Specify the vertical offset of the handle image center from the scale origin as a ratio of the handle
image height. Relative to the position of the handle image when the offset is 0, an offset with a
negative value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Value Bar

Offset from Scale — Distance of left edge of value bar from span line
0 (default) | scalar

1 Blocks

1-2472

Specify the distance from the left edge of the value bar to the span line as a ratio of the width of the
bounding box of the scale. Relative to the position of the value bar when the offset is 0, an offset with
a negative value moves the value bar left, and an offset with a positive value moves the value bar
right.
Example: 0.25

Size — Value bar thickness
scalar

Specify the thickness of the value bar as a ratio of the width of the bounding box of the scale.
Example: 0.3

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can provide a background image or select a solid color. To select a
solid background color, select this parameter. To provide a background image, clear this parameter.

Note Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and enables the Use Background Color parameter.

Example: on

Color — Block background color
[r g b] vector

To select a solid background color, enable the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.
Block Parameter: BackgroundColor
Type: character vector | string
Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Corner Radius — Corner radius of area with block background color
scalar

 Vertical Slider

1-2473

Specify the corner radius of the area covered by the block background color as a ratio of half of the
smaller of the two block dimensions, width or height.
Example: 0.25

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.
Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.
Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | off

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics
Data Types double | half | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

1 Blocks

1-2474

Version History
Introduced in R2021a

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

• You can add an empty panel.
• You can rename the selected panel.
• You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (⌘) instead of Ctrl.

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

• Manage the visibility of panels in the model.
• Fit all unhidden panels within the current view.
• Collapse the selected panel.
• Customize the size and the contents of the panel.
• Set a custom background image for the selected panel.
• Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

 Vertical Slider

1-2475

R2022b: Extended support for customizable Dashboard blocks on Raspberry Pi boards

Starting in R2022b, the Simulink Support Package for Raspberry Pi Hardware supports deploying
these blocks from the Customizable Blocks library on your Raspberry Pi boards:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on a web browser you launch from a Raspberry Pi terminal.

R2022b: Extended support for customizable Dashboard blocks on Android devices

Starting in R2022b, the Simulink Support Package for Android Devices supports deploying these
blocks from the Customizable Blocks library on your Android devices:

• Horizontal Gauge
• Horizontal Slider
• Lamp
• Push Button
• Rocker Switch
• Rotary Switch
• Slider Switch
• Toggle Switch
• Vertical Gauge
• Vertical Slider

You can customize the visual aspects of the blocks in a Simulink model and obtain the what you see is
what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

R2022a: Change scale direction

Starting in R2022a, you can change the direction of the scale of these blocks from the Customizable
Blocks library:

• Circular Gauge

1 Blocks

1-2476

• Horizontal Gauge
• Horizontal Slider
• Knob
• Vertical Gauge
• Vertical Slider

R2022a: Specify origin for value bar and needle

The origin of a scale is the value on the scale from which the needle moves and the value bar grows.
Starting in R2022a, you can specify an origin for the scales of these blocks from the Customizable
Blocks library:

• Circular Gauge
• Horizontal Gauge
• Horizontal Slider
• Knob
• Vertical Gauge
• Vertical Slider

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Blocks
Horizontal Slider | Slider

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”
“Getting Started with Panels”

 Vertical Slider

1-2477

Waveform Generator
Output waveforms using signal notations

Libraries:
Simulink / Sources

Description
The Waveform Generator block outputs waveforms based on signal notations that you enter in the
Waveform Definition table.

This block supports these syntaxes for the signal notations:

• Function syntax — Specify all arguments in the specific order for the signal syntax (see
“Algorithms” on page 1-2485).

• Name-value syntax — Specify optional comma-separated pairs of Name,Value arguments. Name is
the argument name and Value is the corresponding value. Name must appear inside single quotes
(' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. For more information, see “Algorithms” on page 1-2485.

This block supports normal, accelerator, and rapid accelerator modes and fast restart.

Supported Operators

Operation Operator
Absolute value abs()
Addition +
Division /
Multiplication *
Parentheses ()
Subtraction -
Unary minus -

The Waveform block observes the following rules of operator precedence:

1 ()
2 + - (unary)
3 * /
4 + -

Supported Operations

The Waveform Generator block outputs one signal at a time. You can change this output signal.
Express frequency and phase offset parameters in radians. You can also:

1 Blocks

1-2478

• Nest signal notations, for example:
sin('Amplitude',sin('Amplitude',1,'Frequency',1,'Phase',0),'Frequency',1,'Phase',1)

• Reference real scalar variables in the base or model workspace, for example:

sin('Amplitude',x,'Frequency',y,'Phase',z)

x, y, and z exist in the base workspace.

For more information on waveforms, see the Algorithms section.

To quickly determine the response of a system to different types of inputs, you can vary the output
signal of the Waveform Generator block while a simulation is in progress.

Limitations
• You cannot tune the parameters of a waveform, such as frequency or amplitude, during execution

of the code that you generate by using Simulink Coder. Instead, you can generate code that
enables you to switch between waveform variants that you specify. For more information, see
“Switch Between Output Waveforms During Code Execution for Waveform Generator Block”
(Simulink Coder).

 Waveform Generator

1-2479

Ports
Output

Port_1 — Generated output signal
scalar | vector

Output signal specified by an entry in the Waveform Definition table.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | bus

Parameters
Main

Output Signal — Waveform for output signal

1 (default) | integer

Select waveform definition to specify the output signal. The number corresponds to the line item in
the Waveform Definition table. You can change this parameter while a simulation is running.

Programmatic Use
Block Parameter: SelectedSignal
Type: character vector
Values: scalar
Default: '1'

Waveform Definition — Waveform signal notations

constant | gaussian(mean,variance,seed) | pulse(amplitude,trigger_time,duration) |
sawtooth(amplitude,frequence,phase_offset) |
sin(amplitude,frequence,phase_offset) |
square(amplitude,frequence,phase_offset) |
step(step_time,initial_value,final_value)

Enter signal notations in the Waveform Definition table, one waveform definition per line. For
syntax details, see Algorithms.

Signal Attributes

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

Output minimum — Minimum output value for range checking

[] (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

1 Blocks

1-2480

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[] (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

• Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]'| scalar
Default: '[]'

Output data type — Specify the output data type

 Waveform Generator

1-2481

double (default) | Inherit: Inherit via back propagation | single | int8 | int32 |
uint32 | int64 | uint64 | fixdt(1,16,2^0,0) | <data type expression> | ...

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: , 'Inherit: Inherit via back propagation', 'single', 'int8', 'uint8', int16,
'uint16', 'int32', 'uint32', 'int64', 'uint64', fixdt(1,16,0), fixdt(1,16,2^0,0),
fixdt(1,16,2^0,0). '<data type expression>'
Default: 'Double'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data types

off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select to lock data type settings of this block against changes by the Fixed-Point Tool and the Fixed-
Point Advisor. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the MATLAB
ceil function.

Convergent
Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

1 Blocks

1-2482

Floor
Rounds both positive and negative numbers toward negative infinity. Equivalent to the MATLAB
floor function.

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round
Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest
Automatically chooses between round toward floor and round toward zero to generate rounding
code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Default: 'Floor'
See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

 Waveform Generator

1-2483

Action Rationale Impact on Overflows Example
Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data
type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Time interval between samples

0.1 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See
“Specify Sample Time” for more information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '0.1'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

1 Blocks

1-2484

Algorithms
Enter signal notations in the Waveform Definition table, one waveform definition per line. To add a
waveform definition, click Add. The new waveform appears as an empty character vector. The block
interprets empty character vectors or white space character vectors as ground.

To remove a waveform definition, click Remove. You can select multiple waveforms using Ctrl+click
or Shift+click.

Constant

Constant values can be:

• Numbers
• Workspace variables

• Scalar, real variables only
• Built-in MATLAB constant, pi

Examples

• 1
• 1.1
• x
• pi

Gaussian Noise

Syntax

gaussian(mean,variance,seed)

gaussian('Mean',mean,'Variance',variance,'Seed',seed)

Input Arguments

• mean — Mean value of the random variable output.

• Default: 0
• variance — Standard deviation squared of the random variable output.

• Default: 1
• Value: Positive constant or positive real scalar variable

• seed — Initial seed value for the random number generator.

• Default: 0
• Value: Constant or real scalar variable

Example

gaussian('Mean',0,'Variance',10,'Seed',1)

 Waveform Generator

1-2485

Pulse
Syntax

pulse(amplitude,trigger_time,duration)

pulse('Amplitude',amplitude,'TriggerTime',trigger_time,'Duration',duration)

Input Arguments

• amplitude — Value of signal when pulse is high.

• Default: 1
• trigger_time — Elapsed simulation time when signal changes to amplitude, in seconds.

• Default: 1
• Value: Constant or real scalar variable

• duration — How long the signal remains at the given amplitude before returning to ground, in
seconds.

• Default: 1
• Value: Positive constant or positive real scalar variable

Example

pulse('Amplitude',1,'TriggerTime',1,'Duration',1)

1 Blocks

1-2486

Sawtooth
Syntax

sawtooth(amplitude,frequency,phase_offset)

sawtooth('Amplitude',amplitude,'Frequency',frequency,'Phase',phase_offset)

Input Arguments

• amplitude — Sawtooth peak value.

• Default: 1
• frequency — Waveform frequency, in rad/s.

• Default: 1
• phase_offset — Horizontal signal shift, based on elapsed simulation time, in seconds.

• Default: 0

Example

sawtooth('Amplitude',1,'Frequency',1,'Phase',0)

 Waveform Generator

1-2487

Sine Wave
Syntax

sin(amplitude,frequency,phase_offset)

sin('Amplitude',amplitude,'Frequency',frequency,'Phase',phase_offset)

Input Arguments

• amplitude — Amplitude of sine wave.

• Default: 1
• frequency — Waveform frequency, in rad/s.

• Default: 1
• phase_offset — Phase offset, in rads.

• Default: 0

Examples

sin('Amplitude',1,'Frequency',1,'Phase',0)

1 Blocks

1-2488

To get the cosine waveform:

sin('Amplitude',1,'Frequency',1,'Phase',pi/2)

Square
Syntax

square(amplitude,frequency,phase_delay,duty_cycle)

square('Amplitude',amplitude,'Frequency',frequency,'Phase',phase_delay,...
'DutyCycle',duty_cycle)

Input Arguments

• amplitude — Amplitude of signal.

• Default: 1
• frequency — Waveform frequency in rad/s.

 Waveform Generator

1-2489

• Default: 1
• phase_delay — Horizontal signal shift based on elapsed simulation time, in seconds.

• Default: 0
• duty_cycle — Percentage of high signal per period (0–100%). The block clips the minimum

signal to 0% and the maximum signal to 100%.

• Default: 50

Example

square('Amplitude',1,'Frequency',1,'Phase',0,'DutyCycle',50)

Step
Syntax

step(step_time,initial_value,final_value)

step('StepTime',step_time,'InitialValue',initial_value,'FinalValue',final_value)

Input Arguments

• step_time — Elapsed simulation time when signal changes from initial value to final
value, in seconds.

• Default: 1
• Value: Constant or positive real scalar variable.

• initial_value — Value of signal when elapsed simulation time is less than step_time, in
seconds.

• Default: 0
• final_value — Value of signal when elapsed simulation time is greater than or equal to step

time, in seconds.

• Default: 1

1 Blocks

1-2490

Example

step('StepTime',1,'InitialValue',0,'FinalValue',1)

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Signal Editor | Repeating Sequence

Topics
“Signal Basics”
Waveform Generator Block

 Waveform Generator

1-2491

https://www.mathworks.com/videos/waveform-generator-block-106837.html?s_tid=srchtitle_%2522waveform%2520generator%2522_1

Weighted Sample Time
Support calculations involving sample time

Libraries:
Simulink / Signal Attributes

Description
The Weighted Sample Time block outputs one of these values, depending on settings of the
Operation and Weight value parameters and the execution context of the function that contains the
block:

• Weighted sample time –- When used in a periodic function, the weighted sample time is the sample
time of an input signal (Ts times a weight value w , or Ts * w). When used in an aperiodic or
triggered function, the weighted sample time is the elapsed time since the last execution times the
specified weight value.

• Weighted sample rate –- When used in a periodic function, the weighted sample rate is the
reciprocal of the weighted sample time or 1/(Ts * w). The weighted sample rate is not relevant
when the block is used in an aperiodic function.

• Mathematically adjusted weighted sample time--- The block adds the value of an input signal u to,
subtracts u from, or multiplies or divides u by a weighted sample time.

You specify the block operation by using the Operation parameter.

The sample time used to derive the output depends on whether the block is used within a periodic or
aperiodic (or triggered) execution context. For a periodic execution context, the block uses the
sample time of the model. For an aperiodic or triggered execution context, the block uses the sample
time of the discrete signal.

Use the Weight value parameter to specify the sample time weight factor. If the weight value, w, is 1,
that value does not appear in the equation on the block icon.

Tip You can use the Weighted Sample Time and Weighted Sample Time Math blocks to extract the
sample time from a Simulink signal. Set the Operation parameter to Ts Only and the Weight value
parameter to 1.0. With this configuration, the block outputs the sample time of the input signal.

The block computes its output by using the precedence rules for MATLAB operators. For example, if
the Operation parameter is set to +, the block calculates the output by using this expression:

u + (Ts * w)

If the Operation parameter is set to /, the block calculates the output by using this expression:

(u / Ts) / w

For more information, see “Operator Precedence”.

1 Blocks

1-2492

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Specify input signal as a scalar, vector, or matrix.
Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean
| fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Depending on settings of the Operation and Weight value parameters and the execution context of
the function that contains the block, the block outputs a weighted sample time, weighted sample rate,
or mathematically adjusted weighted sample time.

• Weighted sample time –- When used in a periodic function, the weighted sample time is the sample
time of an input signal (Ts times the value specified for the Weight value parameter w), or Ts *
w. When used in an aperiodic or triggered function, the weighted sample time is the elapsed time
since the last execution times the weight value.

• Weighted sample rate –- When used in a periodic function, the weighted sample rate is the
reciprocal of the weighted sample time 1/(Ts * w). The weighted sample rate is not relevant
when the block is used in an aperiodic function.

• Mathematically adjusted weighted sample time –- The block adds the value of an input signal u to,
subtracts u from, or multiplies or divides u by a weighted sample time.

The sample time used to derive the output and the data type of the output depend on whether the
block is used within a periodic or aperiodic (or triggered) execution context.

Execution Context of
Block

Sample Time Used to
Derive Output

Data Type of Output Signal

Periodic Sample time of the model • Sign is the same sign as the value of the
input signal.

• Word length is the larger value of the
input signal word length or half of a
long long.

• Scaling is best precision scaling of the
weighted sample time.

Aperiodic or triggered Elapsed time since the
last execution

• Data type is unsigned.
• Word length is large enough to account

for the setting of model configuration
parameter Application lifespan.

• Scaling is best precision scaling of the
setting of model configuration
parameter Clock resolution.

 Weighted Sample Time

1-2493

Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean
| fixed point

Parameters
Main

Operation — Math operation

Ts Only (default) | + | - | * | / | 1/Ts Only

Specify the operation to use for adjusting the value of the input signal. For example, if you specify the
+ operation, the block adds the weighted sample time to the value of the input signal. The value 1/Ts
Only is not relevant when you use the block in an aperiodic function.

Programmatic Use
Block Parameter: TsamMathOp
Type: character vector
Values: '+' | '-' | '*' | '/' | 'Ts Only' | '1/Ts Only'
Default: 'Ts Only'

Weight value — Weight for sample time

1.0 (default) | real-valued scalar

Enter the weight for the sample time as a real-valued scalar. The block multiplies the sample time of
the input signal by the value that you specify. For example, if you use the block in a periodic function
of a model that has a sample time of 0.2 and you specify a weight value of 3, the weighted sample
time is 0.6.

Programmatic Use
Block Parameter: weightValue
Type: character vector
Values: real-valued scalar
Default: 1.0

Implement using — Method for adjusting sample time

Online Calculations (default) | Offline Scaling Adjustment

Select whether to adjust the sample time by applying online calculations or by applying offline
scaling.

Result of Ts * w Output Data Type of Two
Modes

Block Execution

A power of 2, or an integer
value

The same when Output data
type is set to Inherit:
Inherit via internal
rule

Equally efficient in both modes

Not a power of 2 and not an
integer value

Different More efficient for the offline
scaling mode

1 Blocks

1-2494

Note When the Implement using parameter is not enabled, operations default to online
calculations.

Dependencies

To enable this parameter, set Operation to * or /.
Programmatic Use
Block Parameter: TsampMathImp
Type: character vector
Values: 'Online Calculations' | 'Offline Scaling Adjustment'
Default: 'Online Calculations'

Signal Attributes

Output data type — Data type of output signal

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | <data type expression>

Specify the data type for the block output signal.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Inherit via back
propagation' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters round to the nearest representable value. To control the rounding of a block
parameter, enter an expression by using a MATLAB rounding function in the mask field.
Dependencies

To enable this parameter, set the Operation parameter to +, -, *, or /. If you set the Operation to *
or /, you must also set the Implement using parameter to Online Calculations.
Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether integer overflows saturate or wrap.

 Weighted Sample Time

1-2495

Goal Action Overflow Behavior Example
Model has possible overflow
conditions and you want
explicit saturation
protection in the generated
code.

Select check box (on). Saturate to the
minimum or maximum
value that the data type
can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. A block
operation result greater
than this maximum value
causes overflow of the 8-bit
integer. When you select
this parameter, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

You want to optimize
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see
“Troubleshoot Signal Range
Errors”.

Clear check box (off). Wrap overflows to the
appropriate value that is
representable by the
data type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. A block
operation result greater
than this maximum value
causes overflow of the 8-bit
integer. When you clear this
parameter, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is -126.

When you select Saturate on integer overflow, saturation applies to every internal operation on the
block, not just the output, or result. When the code generator detects that overflow is not possible, it
does not produce saturation code.

Dependencies

To enable this parameter, set the Operation parameter to +, -, *, or /. If you set Operation to *
or /, you must also set the Implement using parameter to Online Calculations.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes

1 Blocks

1-2496

Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Weighted Sample Time Math | Probe

Topics
“Sample Time Math Operations Using the Weighted Sample Time Math Block” on page 12-58
“What Is Sample Time?”
“Specify Sample Time”
“View Sample Time Information”

 Weighted Sample Time

1-2497

Weighted Sample Time Math
Support calculations involving sample time

Libraries:
Simulink / Math Operations

Description
The Weighted Sample Time Math block outputs one of these values, depending on the operation that
you specify and the execution context of the function that contains the block:

• Weighted sample time --- When used in a periodic function, the weighted sample time is the
sample time of an input signal (Ts times a weight value, or Ts * w). When used in an aperiodic or
triggered function, the weighted sample time is the elapsed time since the last execution times a
weight value.

• Weighted sample rate --- When used in a periodic function, the weighted sample rate is the value 1
divided by the weighted sample time or 1/(Ts * w). Weighted sample rate is not relevant when
the block is used in an aperiodic function.

• Mathematically adjusted weighted sample time --- The block adds the value of an input signal u to,
subtracts u from, or multiplies or divides u by a weighted sample time.

You specify the block operation by using the Operation parameter.

The sample time used to derive the output depends on whether the block is used within a periodic or
aperiodic (or triggered) execution context. For a periodic execution context, the block uses the
sample time of the model. For an aperiodic or triggered execution context, the block uses the sample
time of the discrete signal.

Use the Weight value parameter to specify the sample time weight factor. If the weight value, w, is 1,
that value does not appear in the equation on the block icon.

Tip You can use the Weighted Sample Time and Weighted Sample Time Math blocks to extract the
sample time from a Simulink signal. Set the Operation parameter to Ts Only and the Weight value
parameter to 1.0. With this configuration, the block outputs the sample time of the input signal.

The block computes its output by using the precedence rules for MATLAB operators. For example, if
the Operation parameter is set to +, the block calculates the output by using this expression:

u + (Ts * w)

If the Operation parameter is set to /, the block calculates the output by using this expression:

(u / Ts) / w

For more information, see “Operator Precedence”.

1 Blocks

1-2498

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Specify input signal as a scalar, vector, or matrix.
Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean
| fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Depending on settings of the Operation and Weight value parameters and the execution context of
the function that contains the block, the block outputs a weighted sample time, weighted sample rate,
or mathematically adjusted weighted sample time.

• Weighted sample time –- When used in a periodic function, the weighted sample time is the sample
time of an input signal (Ts times the value specified for the Weight value parameter w), or Ts *
w. When used in an aperiodic or triggered function, the weighted sample time is the elapsed time
since the last execution times the weight value.

• Weighted sample rate –- When used in a periodic function, the weighted sample rate is the
reciprocal of the weighted sample time 1/(Ts * w). The weighted sample rate is not relevant
when the block is used in an aperiodic function.

• Mathematically adjusted weighted sample time –- The block adds the value of an input signal u to,
subtracts u from, or multiplies or divides u by a weighted sample time.

The sample time used to derive the output and the data type of the output depend on whether the
block is used within a periodic or aperiodic (or triggered) execution context.

Execution Context of
Block

Sample Time Used to
Derive Output

Data Type of Output Signal

Periodic Sample time of the model • Sign is the same sign as the value of the
input signal.

• Word length is the larger value of the
input signal word length or half of a
long long.

• Scaling is best precision scaling of the
weighted sample time.

Aperiodic or triggered Elapsed time since the
last execution

• Data type is unsigned.
• Word length is large enough to account

for the setting of model configuration
parameter Application lifespan.

• Scaling is best precision scaling of the
setting of model configuration
parameter Clock resolution.

 Weighted Sample Time Math

1-2499

Data Types: double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean
| fixed point

Parameters
Main

Operation — Math operation

+ (default) | - | * | / | Ts Only | 1/Ts Only

Specify the operation to use for adjusting the input signal. For example, if you specify the +
operation, the block adds the weighted sample time to the value of the input signal. The value 1/Ts
Only is not relevant when you use the block in an aperiodic function.

Programmatic Use
Block Parameter: TsamMathOp
Type: character vector
Values: '+' | '-' | '*' | '/' | 'Ts Only' | '1/Ts Only'
Default: '+'

Weight value — Weight for sample time

1.0 (default) | real-valued scalar

Enter the weight for the sample time as a real-valued scalar. The block multiplies the sample time of
the input signal by the value that you specify. For example, if you use the block in a periodic function
of a model that has a sample time of 0.2 and you specify a weight value of 3, the weighted sample
time is 0.6.

Programmatic Use
Block Parameter: weightValue
Type: character vector
Values: real-valued scalar
Default: 1.0

Implement using — Method for adjusting sample time

Online Calculations (default) | Offline Scaling Adjustment

Select whether to adjust the sample time by applying online calculations or by applying offline
scaling.

Result of Ts * w Output Data Type of Two
Modes

Block Execution

A power of 2, or an integer
value

The same when Output data
type is set to Inherit:
Inherit via internal
rule

Equally efficient in both modes

Not a power of 2 and not an
integer value

Different More efficient for the offline
scaling mode

1 Blocks

1-2500

Note When the Implement using parameter is not enabled, operations default to online
calculations.

Dependencies

To enable this parameter, set Operation to * or /.
Programmatic Use
Block Parameter: TsampMathImp
Type: character vector
Values: 'Online Calculations' | 'Offline Scaling Adjustment'
Default: 'Online Calculations'

Signal Attributes

Output data type — Data type of output signal

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | <data type expression>

Specify the data type for the block output signal.
Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule | 'Inherit: Inherit via back
propagation' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters round to the nearest representable value. To control the rounding of a block
parameter, enter an expression by using a MATLAB rounding function in the mask field.
Dependencies

To enable this parameter, set the Operation parameter to +, -, *, or /. If you set the Operation to *
or /, you must also set the Implement using parameter to Online Calculations.
Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether integer overflows saturate or wrap.

 Weighted Sample Time Math

1-2501

Goal Action Overflow Behavior Example
Model has possible overflow
conditions and you want
explicit saturation
protection in the generated
code.

Select check box (on). Saturate to the
minimum or maximum
value that the data type
can represent.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. A block
operation result greater
than this maximum value
causes overflow of the 8-bit
integer. When you select
this parameter, the block
output saturates at 127.
Similarly, the block output
saturates at a minimum
output value of -128.

You want to optimize
generated code.

You want to avoid
overspecifying how a block
handles out-of-range
signals. For more
information, see
“Troubleshoot Signal Range
Errors”.

Clear check box (off). Wrap overflows to the
appropriate value that is
representable by the
data type.

The maximum value that
the int8 (signed, 8-bit
integer) data type can
represent is 127. A block
operation result greater
than this maximum value
causes overflow of the 8-bit
integer. When you clear this
parameter, the software
interprets the overflow-
causing value as int8,
which can produce an
unintended result. For
example, a block result of
130 (binary 1000 0010)
expressed as int8, is -126.

When you select Saturate on integer overflow, saturation applies to every internal operation on the
block, not just the output, or result. When the code generator detects that overflow is not possible, it
does not produce saturation code.

Dependencies

To enable this parameter, set the Operation parameter to +, -, *, or /. If you set Operation to *
or /, you must also set the Implement using parameter to Online Calculations.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes

1 Blocks

1-2502

Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Weighted Sample Time | Probe

Topics
“Sample Time Math Operations Using the Weighted Sample Time Math Block” on page 12-58
“What Is Sample Time?”
“Specify Sample Time”
“View Sample Time Information”

 Weighted Sample Time Math

1-2503

While Iterator
Control block for while-iterator subsystem

Description
The While Iterator block, when placed in a Subsystem block, repeatedly executes the contents of the
subsystem during the current time step while the value of the input condition is true or 1. Use this
block to implement the block diagram equivalent of a while loop in a programming language.

The While Iterator Subsystem block is preconfigured with a While Iterator block. Placing a While
Iterator block in a Subsystem block makes it an atomic subsystem.

Ports
Input

cond — Logical condition signal
scalar

Signal with the result from evaluating a logical condition. Because the subsystem is not externally
triggered during a time step, evaluating a condition as true (1) or false (0) must reside within the
subsystem.

The data type and values of the signal can be:

• Logical (Boolean) — true (1) or false (0) .
• Numerical — true (any positive or negative number) or false (0).

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

IC — Initial logical condition
scalar

Signal with the initial logical condition. At the beginning of each time step:

• If IC is false (0), the subsystem does not execute during the time step.
• If IC is true (value not equal to 0), the subsystem starts executing and continues to repeat

execution as long as the cond signal is true.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Output Arguments

Iteration number — Signal with the number of iterations
scalar

Signal with the number of While Iterator Subsystem block executions during each time step.
Data Types: double | int8 | int16 | int32

1 Blocks

1-2504

Parameters
Maximum number of iterations — Specify maximum number of iterations
-1 (default) | integer

Specify maximum number of iterations allowed during a time step.

-1
Any number of iterations as long as the cond signal is true (value not equal to 0) . If you specify
-1 and the cond signal never becomes false (0), the simulation runs in an infinite loop. In this
case, the only way to stop the simulation is to terminate MATLAB.

integer
Maximum number of iterations during a time step.

Programmatic Use
Block Parameter: MaxIters
Type: character vector
Values: '5' | '-1' | '<integer>'
Default: '5'

While loop type — Select type of block
while (default) | do-while

Select type of block.

while
The While Iterator block has two inputs, a cond (logical condition) input and an IC (initial logical
condition) input. The source of the IC signal must be external to the While Iterator Subsystem
block.

At the beginning of each time step:

• If the IC input is true (value not equal to 0), the blocks in the subsystem repeat execution
while the cond input is true. This process continues during a time step as long as the cond
input is true and the number of iterations is less than or equal to the Maximum number of
iterations.

• If the IC input is false, the While Iterator block does not execute the contents of the
subsystem.

do-while
The While Iterator block has one input, the cond (while condition) input.

At each time step, the blocks in the subsystem repeat execution while the cond input is true
(value not equal to 0). This process continues as long as the cond input is true and the number of
iterations is less than or equal to the Maximum number of iterations.

Programmatic Use
Block Parameter: WhileBlockType
Type: character vector
Values: 'while' | 'do-while'

 While Iterator

1-2505

Default: 'while'

States when starting — Select block states between time steps
held (default) | reset

Select how to handle block states between time steps.

held
Hold block states between time steps. Block state values persist across time steps.

reset
Reset block states to their initial values at the beginning of each time step and before the first
iteration loop.

Programmatic Use
Block Parameter: ResetStates
Type: character vector
Values: 'held' | 'reset'
Default: 'held'

Show iteration number port — Control display of output port
clear | select

Control display of output port for signal with number of block executions. The value of the signal from
this port starts at 1and is incremented by 1 for each succeeding iteration.

 off
Remove output port.

 on
Display output port for signal with iteration number.

Dependencies

Selecting this parameter enables the Output data type parameter.

Programmatic Use
Block Parameter: ShowIterationPort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output data type — Select output data type for current iteration number
int32 (default) | uint32 | int16 | uint16 | int8 | uint8 | double

Select output data type for iteration number signal. The value of this signal is the number of
iterations during a time step and the total number of iterations at the end of a time step.

int32
Signed 32-bit integer.

1 Blocks

1-2506

uint32
Unsigned 32-bit integer.

int16
Signed 16-bit integer.

uint16
unsigned 16-bit integer.

int8
Signed 8-bit integer.

uint8
Unsigned 8-bit integer.

double
Double-precision floating point.

Dependencies

Select the Show iteration number port check box to enable this parameter.

Programmatic Use
Block Parameter: OutputDataType
Type: character vector
Value: 'int32' | 'unt32'|'int16' | 'uint16'|'int8' | 'uint8'|'double'
Default: 'int32'

Version History
Introduced before R2006a

See Also
While Iterator Subsystem | Subsystem

Topics
Iterator Subsystem Execution

 While Iterator

1-2507

While Iterator Subsystem
Repeat subsystem execution during simulation time step while logical expression is true

Libraries:
Simulink / Ports & Subsystems

Description
The While Iterator Subsystem block is a Subsystem block preconfigured as a starting point for
creating a subsystem that repeats execution during a simulation time step while a logical condition is
true. Execution is controlled by a While Iterator block inside the subsystem. For an example, see
ex_while_iterator_block.

Use While Iterator Subsystem blocks to model:

• Block diagram equivalent of a program while or do-while loop.
• An iterative algorithm that converges on a more accurate solution after multiple iterations.

When using simplified initialization mode, if you place a block that needs elapsed time (such as a
Discrete-Time Integrator block) in a While Iterator Subsystem block, Simulink displays an error.

If the output signal from a While Iterator Subsystem block is a function-call signal, Simulink displays
an error when you simulate the model or update the diagram.

Ports
Input

In1 — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem block adds an external input port to the block. The port label
matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.

1 Blocks

1-2508

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

IC (initial logical condition) — Control initial execution of a subsystem block
scalar

Placing a While Iterator block connected to an Input block in a Subsystem block adds this external
input port to the block.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem block adds an output port from the block. The port label on
the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

yesa

Variable-Size Signals yesa

Zero-Crossing
Detection

no

a Actual data type or capability support depends on block implementation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

 While Iterator Subsystem

1-2509

See Also
While Iterator | Subsystem

Topics
“Iterate Subsystem Execution with While Iterator and For Iterator Subsystems”

1 Blocks

1-2510

Width
Output width of input vector

Libraries:
Simulink / Signal Attributes

Description
The Width block generates as output the width of its input vector.

You can use an array of buses as an input signal to a Width block. For details about defining and using
an array of buses, see “Group Nonvirtual Buses in Arrays of Buses”.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal specified as a scalar, vector, matrix, or N-D array.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Output

Port_1 — Width of input signal
scalar

Output is the width of the input signal, specified as a scalar.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fixed point

Parameters
Output data type mode — Output data type mode

Choose intrinsic data type (default) | Inherit via back propagation | All ports
same datatype

Specify the output data type to be the same as the input, or inherit the data type by back
propagation. You can also choose to specify a built-in data type from the drop-down list in the Output
data type parameter.

 Width

1-2511

Programmatic Use
Block Parameter: OutputDataTypeScalingMode
Type: character vector
Values: 'Choose intrinsic data type' | 'Inherit via back propagation' | 'All
ports same datatype'
Default: 'Choose intrinsic data type'

Output data type — Output data type

double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32

This parameter is visible when you select Choose intrinsic data type for Output data type
mode. Select a built-in data type from the drop-down list.

Programmatic Use
Block Parameter: DataType
Type: character vector
Values: 'double' | 'single' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32'
Default: 'double'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single | string
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Probe

Topics
“Variable-Size Signal Basics”

1 Blocks

1-2512

Wrap To Zero
Set output to zero if input is above threshold

Libraries:
Simulink / Discontinuities
HDL Coder / Discontinuities

Description
The Wrap To Zero block sets the output to zero when the input is above the Threshold value. When
the input is less than or equal to the Threshold, then the output is equal to the input.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal, specified as a scalar or vector. Signal values equal to or greater than the value of
Threshold are set to zero.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output signal
scalar | vector

Output signal set to the input signal value or zero. The data type of the output is the same data type
as the input.

Tip If the input data type cannot represent zero, parameter overflow occurs. To detect this overflow,
go to the Diagnostics > Data Validity pane of the Configuration Parameters dialog box and set
Parameters > Detect overflow to warning or error.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
To edit the parameters for the Wrap to Zero block, double-click the block icon.

Threshold — Threshold for outputting zero

255 (default) | scalar

Threshold value for setting the output value to zero.

 Wrap To Zero

1-2513

Programmatic Use
Block Parameter: Threshold
Type: character vector
Values: scalar
Default: '255'

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough yes
Multidimensional
Signals

yes

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

1 Blocks

1-2514

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

The input signal and Threshold parameter must have equal size. For example, if the input is a two-
dimensional vector, Threshold must also be a two-dimensional vector.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Saturation | Saturation Dynamic

 Wrap To Zero

1-2515

Zero-Order Hold
Implement zero-order hold sample period

Libraries:
Simulink / Discrete
HDL Coder / Discrete

Description
The Zero-Order Hold block holds its input for the sample period you specify. If the input is a vector,
the block holds all elements of the vector for the same sample period.

You specify the time between samples with the Sample time parameter. A setting of -1 means the
block inherits the Sample time.

Tip Do not use the Zero-Order Hold block to create a fast-to-slow transition between blocks
operating at different sample rates. Instead, use the Rate Transition block.

Bus Support

The Zero-Order Hold block is a bus-capable block. The input can be a virtual or nonvirtual bus signal.
No block-specific restrictions exist. All signals in a nonvirtual bus input to a Zero-Order Hold block
must have the same sample time, even if the elements of the associated bus object specify inherited
sample times. You can use a Rate Transition block to change the sample time of an individual signal,
or of all signals in a bus. See “Modify Sample Times for Nonvirtual Buses” and “Bus-Capable Blocks”
for more information.

You can use an array of buses as an input signal to a Zero-Order Hold block. For details about
defining and using an array of buses, see “Group Nonvirtual Buses in Arrays of Buses”.

Comparison with Similar Blocks

The Memory, Unit Delay, and Zero-Order Hold blocks provide similar functionality but have different
capabilities. Also, the purpose of each block is different.

This table shows recommended usage for each block.

Block Purpose of the Block Reference Examples
Unit Delay Implement a delay using a discrete

sample time that you specify. The
block accepts and outputs signals with
a discrete sample time.

• “Engine Timing Model with Closed
Loop Control” on page 13-152
(Compression subsystem)

1 Blocks

1-2516

Block Purpose of the Block Reference Examples
Memory on page 1-
1350

Implement a delay by one major
integration time step. Ideally, the
block accepts continuous (or fixed in
minor time step) signals and outputs a
signal that is fixed in minor time step.

• “Building a Clutch Lock-Up Model”
on page 13-156 (Friction Mode
Logic/Lockup FSM subsystem)

• “Capture the Velocity of a
Bouncing Ball with the Memory
Block” on page 12-89

Zero-Order Hold Convert an input signal with a
continuous sample time to an output
signal with a discrete sample time.

• “Developing the Apollo Lunar
Module Digital Autopilot” on page
13-215

• “Radar Tracking Using MATLAB
Function Block” on page 13-244

Each block has the following capabilities.

Capability Memory Unit Delay Zero-Order Hold
Specification of
initial condition

Yes Yes No, because the block
output at time t = 0 must
match the input value.

Specification of
sample time

No, because the block
can only inherit sample
time from the driving
block or the solver used
for the entire model.

Yes Yes

Support for frame-
based signals

No Yes Yes

Support for state
logging

No Yes No

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal that the block holds by one sample period.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Output

Port_1 — Output signal
scalar | vector

Output signal that is the input held by one sample period.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

 Zero-Order Hold

1-2517

Parameters
Sample time (-1 for inherited) — Discrete interval between sample time hits

-1 (default) | scalar

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See
“Specify Sample Time” in the online documentation for more information.

Do not specify a continuous sample time, either 0 or [0,0]. This block supports only discrete sample
times. When this parameter is -1, the inherited sample time must be discrete and not continuous.

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (strong.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

1 Blocks

1-2518

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Memory | Unit Delay

 Zero-Order Hold

1-2519

Zero-Pole
Model system by zero-pole-gain transfer function

Libraries:
Simulink / Continuous

Description
The Zero-Pole block models a system that you define with the zeros, poles, and gain of a Laplace-
domain transfer function. This block can model single-input single-output (SISO) and single-input
multiple-output (SIMO) systems.

Conditions for Using This Block

The Zero-Pole block assumes the following conditions:

• The transfer function has the form

H(s) = K Z(s)
P(s) = K (s− Z(1))(s− Z(2))…(s− Z(m))

(s− P(1))(s− P(2))…(s− P(n)) ,

where Z represents the zeros, P the poles, and K the gain of the transfer function.
• The number of poles must be greater than or equal to the number of zeros.
• If the poles and zeros are complex, they must be complex-conjugate pairs.
• For a multiple-output system, all transfer functions must have the same poles. The zeros can differ

in value, but the number of zeros for each transfer function must be the same.

Note You cannot use a Zero-Pole block to model a multiple-output system when the transfer
functions have a differing number of zeros or a single zero each. Use multiple Zero-Pole blocks to
model such systems.

Modeling a Single-Output System

For a single-output system, the input and the output of the block are scalar time-domain signals. To
model this system:

1 Enter a vector for the zeros of the transfer function in the Zeros field.
2 Enter a vector for the poles of the transfer function in the Poles field.
3 Enter a 1-by-1 vector for the gain of the transfer function in the Gain field.

Modeling a Multiple-Output System

For a multiple-output system, the block input is a scalar and the output is a vector, where each
element is an output of the system. To model this system:

1 Enter a matrix of zeros in the Zeros field.

1 Blocks

1-2520

Each column of this matrix contains the zeros of a transfer function that relates the system input
to one of the outputs.

2 Enter a vector for the poles common to all transfer functions of the system in the Poles field.
3 Enter a vector of gains in the Gain field.

Each element is the gain of the corresponding transfer function in Zeros.

Each element of the output vector corresponds to a column in Zeros.

Transfer Function Display on the Block

The Zero-Pole block displays the transfer function depending on how you specify the zero, pole, and
gain parameters.

• If you specify each parameter as an expression or a vector, the block shows the transfer function
with the specified zeros, poles, and gain. If you specify a variable in parentheses, the block
evaluates the variable.

For example, if you specify Zeros as [3,2,1], Poles as (poles), where poles is [7,5,3,1],
and Gain as gain, the block looks like this.

• If you specify each parameter as a variable, the block shows the variable name followed by (s) if
appropriate.

For example, if you specify Zeros as zeros, Poles as poles, and Gain as gain, the block looks
like this.

Ports
Input

Port_1 — Input signal
scalar

Input signal, specified as a scalar with data type double.
Data Types: double

Output

Port_1 — Output signal
scalar | vector

System modeled by a zero-pole gain transfer function, provided as a scalar or vector signal with data
type double.

• When modeling a single-output system, the block outputs a scalar time-domain signal. For more
information, see “Modeling a Single-Output System” on page 1-2520.

 Zero-Pole

1-2521

• When modeling a multiple-output system, the block outputs a vector, where each element is an
output of the system. For more information, see “Modeling a Multiple-Output System” on page 1-
2520.

Data Types: double

Parameters
Zeros — Matrix of zeros

[1] (default) | vector | matrix

Define the matrix of zeros.

• For a single-output system, enter a vector for the zeros of the transfer function.
• For a multiple-output system, enter a matrix. Each column of this matrix contains the zeros of a

transfer function that relates the system input to one of the outputs.

Programmatic Use
Block Parameter: Zeros
Type: character vector, string
Value: vector | matrix
Default: '[1]'

Poles — Vector of poles

[0 -1] (default) | vector

Define the vector of poles.

• For a single-output system, enter a vector for the poles of the transfer function.
• For a multiple-output system, enter a vector for the poles common to all transfer functions of the

system.

Programmatic Use
Block Parameter: Poles
Type: character vector, string
Value: vector
Default: '[0 -1]'

Gain — Vector of gains

[1] (default) | vector

Define the vector of gains.

• For a single-output system, enter a 1-by-1 vector for the gain of the transfer function.
• For a multiple-output system, enter a vector of gains. Each element is the gain of the

corresponding transfer function in Zeros.

Programmatic Use
Block Parameter: Gain
Type: character vector, string

1 Blocks

1-2522

Value: vector
Default: '[1]'

Parameter tunability — Tunable representation of block parameters in code

Auto (default) | Optimized | Unconstrained

Tunability level of the zeros, poles, and gains for accelerated simulation modes and simulations
deployed using Simulink Compiler. Set this parameter to Auto to allow Simulink to choose the
appropriate level of parameter tunability.

Set this parameter to Optimized to generate an optimized representation zeros, poles, and gain in
generated code for accelerated and deployed simulations.

Set this parameter to Unconstrained to support full tunability (between simulations) of zeros,
poles, and gain parameters in accelerated and deployed simulations.

Programmatic Use
Block Parameter: ParameterTunability
Type: character vector, string
Values: 'Auto' | 'Optimized' | 'Unconstrained'
Default: 'Auto'

Absolute tolerance — Absolute tolerance for computing block states

auto (default) | scalar | vector

Absolute tolerance for computing block states, specified as a positive, real-valued, scalar or vector. To
inherit the absolute tolerance from the Configuration Parameters, specify auto or -1.

• If you enter a real scalar, then that value overrides the absolute tolerance in the Configuration
Parameters dialog box for computing all block states.

• If you enter a real vector, then the dimension of that vector must match the dimension of the
continuous states in the block. These values override the absolute tolerance in the Configuration
Parameters dialog box.

• If you enter auto or –1, then Simulink uses the absolute tolerance value in the Configuration
Parameters dialog box (see “Solver Pane”) to compute block states.

Programmatic Use
Block Parameter: AbsoluteTolerance
Type: character vector, string
Values: 'auto' | '-1' | any positive real-valued scalar or vector
Default: 'auto'

State Name (e.g., 'position') — Assign unique name to each state

' ' (default) | 'position' | {'a', 'b', 'c'} | a | ...

Assign a unique name to each state. If this field is blank (' '), no name assignment occurs.

• To assign a name to a single state, enter the name between quotes, for example, 'position'.
• To assign names to multiple states, enter a comma-delimited list surrounded by braces, for

example, {'a', 'b', 'c'}. Each name must be unique.

 Zero-Pole

1-2523

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, string, cell array, or structure.

Limitations

• The state names apply only to the selected block.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

Programmatic Use
Block Parameter: ContinuousStateAttributes
Type: character vector, string
Values: ' ' | user-defined
Default: ' '

Block Characteristics
Data Types double
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production-quality code. Relates to resource limits and restrictions on speed
and memory often found in embedded systems. The code generated can contain dynamic allocation
and freeing of memory, recursion, additional memory overhead, and widely-varying execution times.
While the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code.

In general, consider using the Simulink Model Discretizer to map continuous blocks into discrete
equivalents that support production code generation. To start the Model Discretizer, in the Simulink
Editor, on the Apps tab, under Apps, under Control Systems, click Model Discretizer. One
exception is the Second-Order Integrator block because, for this block, the Model Discretizer
produces an approximate discretization.

1 Blocks

1-2524

See Also
Discrete Zero-Pole

Topics
“State”

 Zero-Pole

1-2525

Functions

2

add_block
Add block to model

Syntax
h = add_block(source,dest)
h = add_block(source,dest,'MakeNameUnique','on')
h = add_block(___ ,'CopyOption','nolink')
h = add_block(sourceIn,destIn,'CopyOption','duplicate')
h = add_block(___ ,Name,Value)

Description
h = add_block(source,dest) adds a copy of the block source from a library or model to the
specified destination model and block name. This syntax creates the block at the same location as it
appears in the model or the library model.

If you are copying between models or from a library, load the destination model first.

h = add_block(source,dest,'MakeNameUnique','on') ensures that the destination block
name is unique in the model. This syntax adds a number to the destination block name if a block with
that name exists, incrementing to ensure a unique name.

h = add_block(___ ,'CopyOption','nolink') copies the block or subsystem source from a
library without creating a link to the library block.

h = add_block(sourceIn,destIn,'CopyOption','duplicate') duplicates an input port
block in a subsystem, giving the destination block the same port number as the source block.
Duplicate an input port block to branch a signal from an input port without creating a port or adding
lines. For more information, see “Create Duplicate Inport Blocks” on page 1-921.

h = add_block(___ ,Name,Value) uses optional Name,Value arguments.

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

With the add_block function, you can use block parameter and value pairs. For a list of all the block
parameters, see “Common Block Properties” on page 6-12 and “Block-Specific Parameters” on page
6-24.

Examples

Add Block to Model from a Library

Add the block from the Simulink library to the model f14.

Load or open the destination model.

2 Functions

2-2

open_system('f14');

Add the Scope block from the Simulink Sinks library to f14, naming the new block MyScope.

add_block('simulink/Sinks/Scope','f14/MyScope');

Add a Block from Another Model

Add a copy of a block from the model f14 to vdp.

Load or open the destination model.

open_system('vdp');

Add the Actuator Model block from f14 to vdp.

add_block('f14/Actuator Model','vdp/Actuator Model');

Add a Block Using a Unique Name

Add the block from the Simulink library to the model vdp. Because there is already a block named
Scope in vdp, use the MakeNameUnique option to ensure that the new block name is unique.

Load or open the destination model.

open_system('vdp');

Add the Scope block from the Simulink Sinks library to vdp, ensuring that the name is unique.

add_block('simulink/Sinks/Scope','vdp/Scope','MakeNameUnique','on')

Duplicate an Inport Block in a Subsystem

Add an Inport block in the f14/Controller subsystem that uses the same port number as another
Inport block in that subsystem.

Duplicate the Inport block named Stick Input (in) in the Controller subsystem, and name the
copy Stick Input (in)2.

add_block('f14/Controller/Stick Input (in)',...
'f14/Controller/Stick Input (in)2','CopyOption','duplicate')

The resulting block uses the same port number as the block named Stick Input (in) but does not
add an input port on the parent subsystem. The signal that enters that port branches to both Inport
blocks.

Add a Block and Set Parameters

Add a block from a library to a model and set parameters using a Name,Value pair.

Load or open the destination model.

 add_block

2-3

open_system('vdp');

Add a Gain block from the library to vdp, and set the Gain value to 5.

add_block('simulink/Math Operations/Gain','vdp/Five','Gain','5')

Input Arguments
source — Block to copy to model
block path | library block path

Block to copy to model, specified as:

• The full block path if you are copying the block from a model, for example, 'vdp/Mu'. This usage
copies the block and its settings.

• The library block path if you want to add a block from a library, for example, 'simulink/Math
Operations/Gain'.

To get the library block path, you can pause on the block in the Library Browser. Alternatively, you
can open the library model, select the block, and enter gcb at the command line. To open the
library model, in the Library Browser, right-click the library name in the library list and select
Open library_name library.

You can also use the syntax 'built-in/blocktype' as the source block path, where blocktype is
the programmatic block name-—the value of the BlockType parameter (see “Common Block
Properties” on page 6-12). However, blocks added using 'built-in/blocktype' sometimes have
different default parameter values from library blocks.

For subsystems and masked blocks, use the library block path. Using the BlockType value
(SubSystem) creates an empty subsystem.
Example: 'vdp/Mu', 'simulink/Sinks/Scope'

dest — Name and location of new block
block path

Name and location of the new block in the model, specified as the block path.
Example: 'f14/Controller/MyNewBlock'

sourceIn — Input port block to duplicate
block path

Input port block to duplicate, specified as the block path.
Example: 'f14/Controller/Stick Input (in)', 'myModel/mySubsystem/In1'

destIn — Input port block to create
block path

Input port block to create, specified as the block path. Create the destination block in the same
system as the source block.
Example: 'myModel/mySubsystem/DupPortIn'

2 Functions

2-4

Output Arguments
h — New block
handle

New block, returned as a handle.

Version History
Introduced before R2006a

See Also
delete_block

Topics
“Create and Edit Annotations Programmatically”
“Programmatically Create Bus Element Ports” on page 12-10

 add_block

2-5

add_exec_event_listener
Register listener for block method execution event

Syntax
h = add_exec_event_listener(blk,event,listener);

Description
h = add_exec_event_listener(blk,event,listener) registers a listener for a block method
execution event where the listener is a MATLAB program that performs some task, such as logging
runtime data for a block, when the event occurs (see “Listen for Method Execution Events”). Simulink
software invokes the registered listener whenever the specified event occurs during simulation of the
model. You cannot register a listener for virtual blocks.

Note Simulink software can register a listener only while a simulation is running. Invoking this
function when no simulation is running results in an error message. To ensure that a listener catches
all relevant events triggered by a model's simulation, you should register the listener in the model's
StartFcn callback function (see “Customize Model Behavior with Callbacks”).

Input Arguments
blk

Specifies the block whose method execution event the listener is intended to handle. May be one
of the following:

• Full pathname of a block
• A block handle
• A block runtime object (see “Access Block Data During Simulation”.)

event
Specifies the type of event for which the listener listens. It may be any of the following:

Event Occurs...
'PreDerivatives' Before a block's Derivatives method executes
'PostDerivatives' After a block's Derivatives method executes
'PreOutputs' Before a block's Outputs method executes.
'PostOutputs' After a block's Outputs method executes
'PreUpdate' Before a block's Update method executes
'PostUpdate' After a block's Update method executes

listener
Specifies the listener to be registered. It may be either a character vector specifying a MATLAB
expression, e.g., 'disp(''here'')' or a handle to a MATLAB function that accepts two

2 Functions

2-6

arguments. The first argument is the block runtime object of the block that triggered the event.
The second argument is an instance of EventData class that specifies the runtime object and the
name of the event that just occurred.

Output Arguments
add_exec_event_listener returns a handle to the listener that it registered. To stop listening for
an event, use the MATLAB clear command to clear the listener handle from the workspace in which
the listener was registered.

Version History
Introduced before R2006a

 add_exec_event_listener

2-7

add_line
Add line to Simulink model

Syntax
h = add_line(sys,out,in)
h = add_line(sys,out,in,'autorouting',autoOption)
h = add_line(sys,points)

Description
h = add_line(sys,out,in) adds a line in the model or subsystem sys that connects one block's
output port out to another block's input port in. This syntax draws the most direct route from port to
port, for example, diagonal lines or lines that go through other blocks.

You can connect ports when:

• The input port does not already have a connection.
• The ports are compatible for connecting.

h = add_line(sys,out,in,'autorouting',autoOption) connects blocks, specifying whether
to route the lines around other blocks.

h = add_line(sys,points) adds a line drawn by (x,y) coordinate points relative to the upper-
left corner of the Simulink Editor canvas before any canvas resizing. If either end of the line is within
five pixels of a corresponding port, the function connects the line to it. The line can have multiple
segments.

Examples

Connect Blocks Using Port Numbers

Use the block port numbers to add a line to connect blocks.

Create and open a model.

open_system(new_system('connect_model'));

Add and position a Constant block and a Gain block.
add_block('simulink/Commonly Used Blocks/Constant','connect_model/Constant');
set_param('connect_model/Constant','position',[140,80,180,120]);
add_block('simulink/Commonly Used Blocks/Gain','connect_model/Gain');
set_param('connect_model/Gain','position',[220,80,260,120]);

Connect the blocks. Specify port 1.

add_line('connect_model','Constant/1','Gain/1');

2 Functions

2-8

Connect Blocks Using Port Handles

Get the port handles and connect the ports using add_line.

Open the model vdp.

open_system('vdp');

Delete the line that connects the Gain block named Mu to the Sum block.

delete_line('vdp','Mu/1','Sum/2');

Get the port handles from the Mu block and the Sum block.

h = get_param('vdp/Mu','PortHandles');
h1 = get_param('vdp/Sum','PortHandles');

Look at the h1 structure. Notice the two handles for the Inport property.

h1

h1 =

 struct with fields:

 Inport: [47.0002 54.0002]
 Outport: 39.0002
 Enable: []
 Trigger: []
 State: []
 LConn: []
 RConn: []
 Ifaction: []
 Reset: []

Index into the Outport and Inport properties on the port handles to get the handles you want and
connect them. Connect to the second inport.

add_line('vdp',h.Outport(1),h1.Inport(2));

Add a Branched Line

You can branch a line by adding a connection programmatically. You can use the points syntax to
draw the segment, or you can draw the line by specifying the ports to connect. When using the port,
use automatic line routing to improve the look of the branched line.

Add a scope to the vdp model above the outport.

vdp
add_block('simulink/Commonly Used Blocks/Scope','vdp/Scope1');
set_param('vdp/Scope1','position',[470,70,500,110]);

Connect the Integrator block x1 to Scope1. This code branches the existing line from the x1 output
and connects it to the scope. With autorouting on, the resulting line is segmented.

 add_line

2-9

add_line('vdp','x1/1','Scope1/1','autorouting','on')

Connect Blocks Using Points

You can use points on the canvas as the start and end of each segment. Get the port locations using
get_param with the 'PortConnectivity' option.

Open the model vdp and delete the line that connects the Mu and Sum blocks.

vdp
delete_line('vdp','Mu/1','Sum/2')

Get the port locations for Mu. Mu has two ports. The first is the input port, and the second is the
output port.

mu = get_param('vdp/Mu','PortConnectivity');
mu.Position

ans =

 190 150

ans =

 225 150

Get the port locations for Sum, which has three ports. The second position is the lower input port.

s = get_param('vdp/Sum','PortConnectivity');
s.Position

ans =

 250 135

ans =

 250 150

ans =

 285 145

Connect the ports using the output and input points.

add_line('vdp',[225 150; 250 150])

Connect Blocks Using Autorouting Options

Add lines with and without autorouting options.

Create a model route. Display default block names.

2 Functions

2-10

open_system(new_system('route'));
set_param('route','HideAutomaticNames','off')

Add two Subsystem blocks and a Gain block. Add an inport and outport to each Subsystem block.

Add lines to connect the outports of the Subsystem1 block to the inports of the Subsystem block.

add_line('route',{'Subsystem/1','Subsystem/2'},...
 {'Subsystem1/1','Subsystem1/2'})

Because you did not use the autorouting options, the function draws straight lines that cross over the
Gain block.

Delete the lines. Add lines again, this time with the autorouting option set to 'on'.

add_line('route',{'Subsystem/1','Subsystem/2'},...
 {'Subsystem1/1','Subsystem1/2'},'autorouting','on')

The lines route around the Gain block.

Delete the lines. Add lines again, using the smart autorouting option. When you use an array to
connect two sets of inports and outports, smart autorouting routes them together if doing so makes
better use of the space.

add_line('route',{'Subsystem/1','Subsystem/2'},...
 {'Subsystem1/1','Subsystem1/2'},'autorouting','smart')

 add_line

2-11

Input Arguments
sys — Model or subsystem to add line to
character vector

Model or subsystem to add the line to, specified as a character vector.
Example: 'vdp'
Example: 'f14/Controller'

out — Block output port to connect line from
block name/port number or name | port handle | array of port designators

Block output port to connect line from, specified as one of these values:

• The block name, a slash, and the port number. For a state port, use the port name State instead
of a port number.

• The port handle that you want to connect from.
• An array of either of these port designators.

Use 'PortHandles' with get_param to get the handles.
Example: 'Mu/1'
Example: 'Subsystem/2'
Example: h.Outport(1)
Example: {'Subsystem/1','Subsystem/2'}
Tips

• Most block ports are numbered from top to bottom or from left to right. For a description of the
port order for various block orientations, see “Identify Port Location on Rotated or Flipped Block”.

• Moving a port on a Subsystem block can change the port number. For more information, see
“Move Ports”.

in — Block input port to connect line to
block name/port number or name | port handle | array of port designators

Block input port to connect line to, specified as one of these values:

• The block name, a slash, and the port number. Use a port name instead of a port number for these
ports:

• Enable port — Use Enable. For example, use this port name for the enable port on enabled
subsystems.

2 Functions

2-12

• Trigger port — Use Trigger. For example, use this port name for the trigger port on triggered
subsystems.

• Action port — Use Ifaction. For example, use this port name for the action port on if-action
and switch-case-action subsystems.

• The port handle that you want to add the line to.
• An array of either of these port designators.

Use the 'PortHandles' option with get_param to get handles.
Example: 'Mu/1'
Example: 'Subsystem/2'
Example: h.Inport(1)
Example: {'Subsystem/1','Subsystem/2'}

Tips

• Most block ports are numbered from top to bottom or from left to right. For a description of the
port order for various block orientations, see “Identify Port Location on Rotated or Flipped Block”.

• Moving a port on a Subsystem block can change the port number. For more information, see
“Move Ports”.

autoOption — Type of automatic line routing
'off' (default) | 'on' | 'smart'

Type of automatic line routing around other blocks, specified as:

• 'off' for no automatic line routing
• 'on' for automatic line routing
• 'smart' for automatic line routing that takes the best advantage of the blank spaces on the

canvas and avoids overlapping other lines and labels

points — Points of the line to draw
matrix

Points of the line to draw, specified as at least a 2-by-2 matrix. Add a row for every segment you want
to draw. Specify points as (x,y) coordinates from the upper-left corner of the Editor before any canvas
resizing.
Example: [100 300; 200 300; 200 300; 200 500]

Output Arguments
h — Line
handle

Line created by add_line, returned as a handle.

Version History
Introduced before R2006a

 add_line

2-13

See Also
delete_line | add_block | delete_block | set_param | get_param

Topics
“Create an Enabled Subsystem”
“Create a Triggered Subsystem”

2 Functions

2-14

add_param
Add parameter to Simulink system

Syntax
add_param(sys,param1,val1,...,paramN,valN)

Description
add_param(sys,param1,val1,...,paramN,valN) adds the specified parameters to the specified
system and initializes the parameters to the specified values. The parameters are saved in the
corresponding SLX or MDL file. You can use the set_param and get_param functions on the
parameters.

Examples

Add Parameters and Values to System

Add the parameters DemoName and EquationOrder to the vdp model with the values
'VanDerPolEquation' and '2', respectively.

add_param('vdp','DemoName','VanDerPolEquation','EquationOrder','2')

Use the get_param function to query the values of the new parameters.

get_param('vdp','DemoName')

ans =

 'VanDerPolEquation'

Input Arguments
sys — System name or handle
character vector | string scalar | numeric scalar

System name or handle, specified as a character vector, string scalar, or numeric scalar. The system
must be an SLX or MDL file.
Data Types: double | char | string

paramN — Name of parameter
character vector | string scalar

Name of parameter, specified as a character vector or string scalar.

Parameter names are case insensitive. For example, 'ParameterName' is equivalent to
'parametername'.

You cannot add a parameter that has the same name as an existing parameter of the system.

 add_param

2-15

Dependencies

To use this parameter, specify a corresponding val1 argument.
Data Types: char | string

valN — Initial value of parameter
character vector | string scalar

Initial value of parameter, specified as a character vector or string scalar.

Values are case sensitive.

Dependencies

To use this parameter, specify a corresponding param1 argument.
Data Types: char | string

Version History
Introduced before R2006a

See Also
delete_param | get_param | set_param

2 Functions

2-16

addterms
Add terminators to unconnected ports in model

Syntax
addterms('sys')

Description
addterms('sys') adds Terminator and Ground blocks to the unconnected ports in the Simulink
block diagram sys.

Version History
Introduced before R2006a

See Also
upgradeadvisor

 addterms

2-17

attachConfigSet
Associate configuration set or configuration reference with model

Syntax
attachConfigSet(model, configObj)
attachConfigSet(model, configObj, allowRename)

Description
attachConfigSet(model, configObj) associates the configuration set or configuration
reference configObj with model.

attachConfigSet(model, configObj, allowRename) associates the configuration set to the
model and determines how Simulink handles a name conflict between configObj and any
configuration objects that are already attached to the model.

If allowRename is false and the configuration object specified by configObj has the same name
as a configuration object already attached to model, Simulink generates an error. If allowRename is
true and a name conflict occurs, Simulink provides a unique name for configObj before associating
it with the model.

Examples

Create and Attach a Configuration Set

Create a configuration set and attach it to a model.

Open the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys.
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
sldemo_fuelsys

Create a configuration set named Config1 and attach it to the model.

configObj = Simulink.ConfigSet;
set_param(configObj,'Name','Config1')
attachConfigSet('sldemo_fuelsys',configObj)

To use the configuration set for the model, activate it.

Attach and Rename a Configuration Set

Attach a configuration set to a model that already has a configuration set with the same name.

Open the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys. The model uses a configuration set with the default name Configuration.

2 Functions

2-18

openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')

Create another configuration set and name it Configuration.

configObj = Simulink.ConfigSet;
set_param(configObj,'Name','Configuration')

Attach the configuration to the model. Specify allowRename as true.

attachConfigSet('sldemo_fuelsys',configObj,true)

Because the model already has a configuration set named Configuration, Simulink changes the
name of configObj to Configuration1 before attaching it to the model.

To use the configuration for the model, activate Configuration1.

Input Arguments
model — Model to attach configuration set to
character vector | string scalar

Model to which you want to attach a configuration set, specified as a character vector or string scalar.
The model must be open.
Example: 'my_model'

configObj — Configuration object
ConfigSet object | ConfigSetRef object

Configuration object that you want to attach to the model, specified as a ConfigSet object or a
Simulink.ConfigSetRef object.
Example: myConfigObj

allowRename — Rename configuration object if there is a naming conflict
false (default) | true

Specification that determines if Simulink renames the configuration object in the case of a name
conflict, specified as a Boolean. If allowRename is false and a name conflict occurs, Simulink
generates an error. You cannot attach a configuration object to a model if the configuration object is
already attached to another model.
Example: true

Version History
Introduced before R2006a

See Also
setActiveConfigSet | getConfigSet | getConfigSets | attachConfigSetCopy |
detachConfigSet

Topics
“Manage Configuration Sets for a Model”

 attachConfigSet

2-19

“Share a Configuration with Multiple Models”

2 Functions

2-20

attachConfigSetCopy
Copy configuration set or configuration reference and associate it with model

Syntax
configObjCopy = attachConfigSetCopy(model, configObj)
attachConfigSetCopy(model, configObj, allowRename)

Description
configObjCopy = attachConfigSetCopy(model, configObj) creates a copy of the
configuration set or configuration reference configObj and associates it with model. The function
returns the copy of the configuration as a Simulink.ConfigSet object or a
Simulink.ConfigSetRef object.

attachConfigSetCopy(model, configObj, allowRename) associates the configuration copy
with the model and determines how Simulink handles a name conflict between the configuration and
any configuration objects that are already attached to the model.

If allowRename is false and the configuration object specified by configObj has the same name
as a configuration object already attached to model, Simulink generates an error. If allowRename is
true and a name conflict occurs, Simulink provides a unique name for the copy of configObj before
associating it with the model.

Examples

Copy Configuration From One Model to Another Model

This example shows to create a copy of the active configuration for the model sldemo_bounce and
attach the copy to the model sldemo_boiler.

Open the model sldemo_bounce and get the active configuration object.

sldemo_bounce
slbounceConfigObj = getActiveConfigSet('sldemo_bounce');

Each model has a configuration with the default name Configuration. To avoid a naming conflict when
you attach the configuration copy to sldemo_boiler, name the configuration slbounceConfig.

set_param(slbounceConfigObj,'Name','slbounceConfig');

Open the model sldemo_boiler. Copy the configuration object slbounceConfigObj and attach it
to sldemo_boiler.

sldemo_boiler
attachConfigSetCopy('sldemo_boiler',slbounceConfigObj);

To use the configuration in sldemo_boiler, activate it.

 attachConfigSetCopy

2-21

Copy and Rename Configuration Set

This example shows to create a copy of the active configuration for the model sldemo_bounce and
attach the copy to the model sldemo_boiler. Use the allowRename argument to avoid naming
conflicts.

Open the model sldemo_bounce and get the active configuration object.

sldemo_bounce
slbounceConfigObj = getActiveConfigSet('sldemo_bounce');

Open the model sldemo_boiler. Copy the configuration object slbounceConfigObj and attach it
to sldemo_boiler. Specify allowRename as true.

sldemo_boiler
attachConfigSetCopy('sldemo_boiler',slbounceConfigObj,true);

Because the model already has a configuration set named Configuration, Simulink® changes the
name of slbounceConfigObj to Configuration1 before attaching it to sldemo_boiler.

To use the configuration in sldemo_bounce, activate Configuration1.

Input Arguments
model — Model to attach configuration set to
character vector | string scalar

Model to which you want to attach a configuration set, specified as a character vector or string scalar.
The model must be open.
Example: 'my_model'

configObj — Configuration object
ConfigSet object | ConfigSetRef object

Configuration object that you want to copy, specified as a Simulink.ConfigSet object or a
Simulink.ConfigSetRef object.
Example: myConfigObj

allowRename — Rename configuration object copy if there is a naming conflict
false (default) | true

Specification that determines if Simulink renames the configuration object copy in the case of a name
conflict, specified as a Boolean. If allowRename is false and a name conflict occurs, Simulink
generates an error.
Example: true

Version History
Introduced in R2006b

2 Functions

2-22

See Also
setActiveConfigSet | getConfigSet | attachConfigSet | getConfigSets |
detachConfigSet

Topics
“Manage Configuration Sets for a Model”
“Share a Configuration with Multiple Models”

 attachConfigSetCopy

2-23

sltrace
Trace signals in a model

Syntax
g = sltrace(p)
g = sltrace(block, direction)
g = sltrace(___ , Name,Value)

Description
g = sltrace(p) traces a signal oriented from the port p and stores the results in the
sltrace.Graph object g.

g = sltrace(block, direction) traces a signal oriented from the block toward the
direction, and stores the results in g. The argument direction includes ‘source’ and
‘destination’.

g = sltrace(___ , Name,Value) traces a signal using one or more Name,Value arguments.

Examples

Trace all sources in model

Trace from the first inport of 'vdp/Scope' to all sources.

vdp
g = sltrace('vdp/Scope', 'Source', 'Port', 1, 'TraceAll','on')

g =

 Graph with properties:

 SrcBlocks: [2.0001 5.0001 6.0001 7.0001 9.0001 10.0001 11.0001 12.0001 13.0001]
 DstBlocks: []
 TraceGraph: [1×1 digraph]

Trace using block path

Trace from the second inport handle of 'vdp/Sum' to Stop block 'vdp/Product'and display the
results in Simulink.BlockPath format.

2 Functions

2-24

bPort = get_param('vdp/Sum', 'PortHandles').Inport(2);
G = sltrace(bPort, 'Stop', 'vdp/Product', 'BlockPath','On');

Input Arguments
p — Block port
port handle

Block port where tracing begins, specified as a port handle.

block — Block where tracing begins
block name | block handle | Simulink.BlockPath

Block where tracing begins, specified as a block name, block handle, or as Simulink.BlockPath
object.

direction — Direction of traced signal
'Source' | 'Destination'

Direction of traced signal, specified as either 'Source' or 'Destination'.
Data Types: char | string

Name-Value Pair Arguments

Specify optional Name,Value arguments, where Name is the argument name and Value is the
corresponding value. Name must appear inside quotes. You can specify several name and value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'TraceAll','on','BlockPath','on'

TraceAll — Trace to all sources and destinations
off (default) | on

Trace to all sources or destinations, specified as 'off' or 'on'. By default, tracing stops at the first
non-virtual block. Set this argument to 'on' to trace to all sources or destinations.
Example: 'TraceAll','on'

Stop — Block where tracing stops
block name | block handle | Simulink.BlockPath

Block where tracing stops, specified as a block name, block handle, or as Simulink.BlockPath
object. If the block where tracing stops is not on the tracing path, sltrace traces to all blocks.
Example: 'Stop','vdp/Sum'

Port — Port where tracing begins
real positive scalar

Port where tracing begins, specified as a real positive scalar. When tracing from a block with multiple
inports or outports, you can enable the 'Port' option to select a specific port to trace from. Without
enabling 'Port', sltrace will trace from all inports or outports. You can omit 'Port' when tracing
from a block port handle.
Example: 'Port','2'

 sltrace

2-25

Data Types: double | single

Element — Bus element where tracing begins
bus element name

Bus element where tracing begins. sltrace supports tracing to the source from a Bus Creator block
and tracing to a destination from a Bus Selector block. You do not need to specify this parameter if
tracing from block port handle p.
Example: 'Element','b'
Data Types: char | string

BlockPath — Option to return tracing information as Simulink.BlockPath
'off' (default) | 'on'

Option to return tracing information as Simulink.BlockPath object, specified as 'off' or 'on'. If
there are multiple instances of a referenced model, set 'BlockPath' to 'on' to obtain accurate
tracing results for different model instances.

Output Arguments
g — Tracing results
sltrace.Graph object

Tracing result, returned as a sltrace.Graph object.

Version History
Introduced in R2021b

See Also
sltrace.Graph

Topics
“Find Shortest Control Path in Simulink Model” on page 13-648

2 Functions

2-26

batchsim
Offload simulations to run on a compute cluster

Syntax
simJob = batchsim(in)
simJob = batchsim(myCluster,in)
simJob = batchsim(...,Name,Value)

Description
simJob = batchsim(in) runs a batch job on a single worker to simulate a model using the inputs
specified in the SimulationInput object, in.

simJob = batchsim(myCluster,in) runs a batch job on the cluster identified by the cluster
object myCluster. If a cluster profile is not specified, batchsim uses a default cluster profile as set
up in the parallel preferences. For more information, see “Discover Clusters and Use Cluster Profiles”
(Parallel Computing Toolbox).

simJob = batchsim(...,Name,Value) runs a batch job that simulates a model using the inputs
specified in the SimulationInput object and the options specified as Name,Value pair.

batchsim offloads simulations to a compute cluster, enabling you to carry out other tasks while the
batch job is processing, or close the client MATLAB and access the batch job later. Use the 'Pool'
argument to run simulations in parallel.

The batchsim command uses the Parallel Computing Toolbox™ and MATLAB Parallel Server™
licenses to run the simulations on compute cluster. batchsim runs the simulations in serial if a
parallel pool cannot be created. If Parallel Computing Toolbox license is not available, batchsim
errors out.

Examples

Run Parallel Simulations with batchsim

This example shows how to run parallel simulations in batch. batchsim offloads simulations to a
compute cluster, enabling you to carry out other tasks while the batch job is processing, or close the
client MATLAB and access the batch job later.

This example uses the ex_sldemo_househeat model and runs simulations in batch to observe the
model behavior for different temperature set points.

Open the model.

openExample('simulink/OpenTheModelExample');
open_system('ex_sldemo_househeat');
load_system('ex_sldemo_househeat')

 batchsim

2-27

Define a set of values for different temperatures. Here, the setPointValues are a standard range of
temperatures. The length of the vector helps create an array of Simulink.SimulationInput
objects in the following step.

setPointValues = 65:2:85;
spv_Length = length(setPointValues);

Using the setPointValues, initialize an array of Simulink.SimulationInput objects.

in(1:spv_Length) = Simulink.SimulationInput('ex_sldemo_househeat');
for i = 1:1:spv_Length
 in(i) = in(i).setBlockParameter('ex_sldemo_househeat/Set Point',...
 'Value',num2str(setPointValues(i)));
end

Specify the pool size of the number of workers to use. In addition to the number of workers used to
run simulations in parallel, a head worker is required. In this case, let's assume that three workers
are available to run a batch job for the parallel simulations. The job object returns useful metadata as
shown. You can use the job ID to access the job object later from any machine. NumWorkers tells you
how many workers are running the simulations. NumWorkers is always the number of workers
specified in the 'Pool' argument and an additional head worker. 'Pool' is set to 3, you can change
the value of 'Pool' based on the availability of the workers.

simJob = batchsim(in,'Pool',3)

 ID: 1
 Type: pool
 NumWorkers: 4
 Username: #####
 State: running
 SubmitDateTime: ##-###-#### ##:##:##
 StartDateTime:
 Running Duration: 0 days 0h 0m 0s

Access the results of the batch job using the fetchOutputs method. fetchOutputs method
retrieves the results from the workers and eturns an array of Simulink.SimulationOuput objects.

out = fetchOutputs(simJob)

1x11 Simulink.SimulationOutput array

Input Arguments
in — Simulink.SimulationInput object used to simulate the model
object, array

Specified as a Simulink.SimulationInput object or an array of Simulink.SimulationInput
objects that is used to specify changes to the model for simulation.
Example: in = Simulink.SimulationInput('vdp')

myCluster — parallel.Cluster object
object

Cluster object that is used to specify the cluster in which the batch job runs.

2 Functions

2-28

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. You can specify several name and value pair arguments in any
order as Name1,Value1,...,NameN,ValueN.
Example: 'Pool', 5

AdditionalPaths — Files to attach to parallel pool
character vector | cell array

Specified as a character vector, a cell array or an array of character vector to define paths to be
added to the MATLAB search path of the workers before the simulations execute. The default search
path might not be the same on the workers as it is on the client; the path difference could be the
result of different current working folders (pwd), platforms, or network file system access. The
'AdditionalPaths' property can assure that workers are looking in the correct locations for
necessary code files, data files, model files, etc.

AttachedFiles — Files to attach to parallel pool
cell array

Specified as a cell array of additional files to attach to the parallel pool.

AutoAddClientPath — Whether user-added entries on client path are added to each worker
path
true (default) | false

Specified as true or false to control whether user-added entries on the client path are added to each
worker path.

AutoAttachFiles — Whether code files should be automatically attached to the job
true (default) | false

Specified as true or false to control whether code files are automatically attached to the job.

CaptureDiary — Whether diary is collected
true (default) | false

Specified as true or false to indicate collection of the diary.

CleanupFcn — Function handle to run once per worker after running simulations
function handle

Specify a function handle to 'CleanupFcn' to run once per worker after the simulations are
completed.

EnvironmentVariables — Names of environment variables copied from client session to
workers
character vector | cell array

Specifies the names of environment variables copied from the client session to the workers. The
names specified here are appended to the 'EnvironmentVariables' property specified in the
applicable parallel profile to form the complete list of environment variables. Any variables listed
which are not set are not copied to the workers. These environment variables will be set on the
workers for the duration of the batch job.

 batchsim

2-29

ManageDependencies — Manage model dependencies
'on' (default) | 'off'

When ManageDependencies is set to 'on', model dependencies are automatically sent to the
parallel workers if necessary. If ManageDependencies is set to 'off', explicitly attach model
dependencies to the parallel pool.

Pool — Size of the number of workers for a parallel pool
integer

An integer specifying the number of workers to make into a parallel pool for the job in addition to the
worker running the batch job itself. The simulations use this pool for execution. Because the pool
requires N workers in addition to the worker running the batch, there must be at least N+1 workers
available on the cluster.

Profile — Cluster profile name
profile name

The name of a cluster profile used to identify the cluster. If this option is omitted, the default profile is
used to identify the cluster and is applied to the job and task properties.

SetupFcn — Function handle to run once per worker
function handle

Specify a function handle to 'SetupFcn' to run once per worker before the start of the
simulations.

Note To avoid a compilation error, either set 'LoadExternalInput' to 'off' or ensure that the
specified external input is available when using buildRapidAcceleratorTarget

ShowProgress — Show the progress of the simulations in diary
'on' | 'off'

Set to 'on', to copy the progress of the simulations in the command window to diary of
Simulink.Simulation.Job object. The progress is hidden when set to 'off'.

StopOnError — Stop simulations on errors
'off' (default) | 'on'

Setting 'StopOnError' to 'on' stops the execution of simulations if an error is encountered.

TransferBaseWorkspaceVariables — Transfer variables to the parallel workers
'off' (default) | 'on'

When TransferBaseWorkspaceVariables is set to true, variables used in the model and defined
in the base workspace are transferred to the parallel workers.

UseFastRestart — Use fast restart
'off' (default) | 'on'

When UseFastRestart is set to true, simulations run on the workers using fast restart.

2 Functions

2-30

Note When using batchsim, use the UseFastRestart option and not the FastRestart option.
See “Get Started with Fast Restart” for more information.

Output Arguments
simJob — Simulink.Simulation.Job job object
object

An object containing metadata of submitted batch job. Poll job object using its ID to check the status
of simulations or to access outputs on completion of the job.

Version History
Introduced in R2018b

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

Using batchsim with Parallel Computing Toolbox installed, MATLAB automatically opens a worker
and runs the job in the background on another session on your local machine. Specifying a pool size
runs the simulations on the number of workers specified. Control parallel behavior with the parallel
preferences, including scaling up to a cluster.

For details, see “Running Multiple Simulations”.

See Also
Functions
parsim | batch | parcluster | cancel | diary | fetchOutputs | listAutoAttachedFiles |
wait | getSimulationJobs

Classes
Simulink.SimulationInput | Simulink.Simulation.Job

Topics
“Comparison Between Multiple Simulation Workflows”
“Running Multiple Simulations”
“Batch Processing” (Parallel Computing Toolbox)
“Job Monitor” (Parallel Computing Toolbox)

 batchsim

2-31

bdclose
Close any or all Simulink system windows unconditionally

Syntax
bdclose
bdclose(sys)
bdclose('all')

Description
bdclose closes the current system window unconditionally and without confirmation. Any changes
made to the system since it was last saved are lost. To find out the current system, use gcs. If a
model was only loaded, bdclose clears the model from memory.

bdclose(sys) closes the specified system window, discarding all changes.

bdclose('all') closes all open system windows, discarding all changes.

Examples

Close a System Without Saving

Open the vdp system. Then, close it without saving any changes.

open_system('vdp')
bdclose('vdp')

Input Arguments
sys — System to close
character vector | string scalar | cell array

System to close, specified as a character vector, string scalar, or cell array. To specify multiple
systems to close, specify a cell array of system names.
Example: bdclose("vdp")
Example: bdclose({'vdp','f14'})
Data Types: char | string | cell

Version History
Introduced before R2006a

R2019b: Closing a window for a model hierarchy closes referenced models
Behavior changed in R2019b

2 Functions

2-32

Starting in R2019b, when you close a window for a model hierarchy by closing the top model, all
referenced models that are not open in another window are also closed, which clears them from
memory. To keep referenced models loaded in memory, use the close_system function and set the
'closeReferencedModels' argument to false.

See Also
close_system | new_system | open_system | save_system

 bdclose

2-33

bdIsDirty
Determine whether model, subsystem, or library has unsaved changes

Syntax
tf = bdIsDirty(bd)

Description
tf = bdIsDirty(bd) returns whether the specified model, subsystem, or library has unsaved
changes. Unsaved changes can include changes to the block diagram, configuration parameters, or
properties.

Examples

Check Models for Unsaved Changes

Check if models contain unsaved changes using bdIsDirty.

Check if a single model is dirty.

vdp
bdIsDirty('vdp')

ans =

 logical

 0

Check if multiple models are dirty.

vdp
f14
bdIsDirty({'f14','vdp'})

ans =

 1×2 logical array

 0 0

Input Arguments
bd — Name or handle of loaded model, subsystem, or library
numeric array | string array | character vector | cell array of character vectors

Name or handle of loaded model, subsystem, or library, specified as a numeric array, string array,
character vector, or cell array of character vectors.

2 Functions

2-34

You cannot check whether blocks, such as Subsystem blocks, have unsaved changes. You can check
whether referenced subsystems have unsaved changes. For more information, see “Subsystem
Reference”.
Data Types: double | char | string | cell

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical.

• 1 (true) — File has been modified in memory since it was loaded or last saved.
• 0 (false) — File has no unsaved changes.

When multiple files are specified, the function returns a logical array with one entry for each file.

Version History
Introduced in R2017a

See Also
bdIsLoaded

Topics
“Manage Shadowed and Dirty Models and Other Project Files”

 bdIsDirty

2-35

bdIsLibrary
Determine whether block diagram is a library

Syntax
tf = bdIsLibrary(bd)

Description
tf = bdIsLibrary(bd) returns whether the specified block diagram is a library.

Examples

Check Whether Block Diagrams Are Libraries

Load the MLFB_library and vdp block diagrams. Get the handle for MLFB_library.

load_system({'MLFB_library','vdp'})
h = get_param('MLFB_library','Handle');

Check whether vdp is a library. The returned value 0 indicates that it is not

bdIsLibrary('vdp')

ans = logical
 0

Check whether MLFB_library and vdp are libraries. The returned value shows that MLFB_library
is a library and vdp is not.

bdIsLibrary({'MLFB_library','vdp'})

ans = 1x2 logical array

 1 0

Using the handle to MLFB_library, check whether MLFB_library is a library. The value returned
shows that it is.

bdIsLibrary(h)

ans = logical
 1

Input Arguments
bd — Name or handle of loaded block diagram
numeric array | string array | character vector | cell array of character vectors

2 Functions

2-36

Name or handle of loaded block diagram, specified as a numeric array, string array, character vector,
or cell array of character vectors.
Data Types: double | char | string | cell

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical.

• 1 (true) — File is a library.
• 0 (false) — File is not a library.

When multiple files are specified, the function returns a logical array with one entry for each file.

Version History
Introduced in R2015a

See Also
bdIsLoaded | bdroot | find_system

 bdIsLibrary

2-37

bdIsLoaded
Determine whether model, subsystem, or library is loaded

Syntax
tf = bdIsLoaded(bd)

Description
tf = bdIsLoaded(bd) returns whether the specified model, subsystem, or library is loaded.

Examples

Check Whether Model Is Loaded

Check whether the f14 model is loaded.

bdIsLoaded('f14')

ans =

 logical

 0

The function returns a logical scalar, 0, which indicates that the file is not loaded.

To load the f14 model, use the load_system function.

load_system('f14')

Check Whether Multiple Models Are Loaded

Determine whether the f14 and vdp models are loaded.

bdIsLoaded({'f14','vdp'})

ans =

 1×2 logical array

 1 0

The function returns a 1-by-2 logical array, which indicates that the first model in the cell array (f14)
is loaded and the second model in the cell array (vdp) is not loaded.

To load the vdp model, use the load_system function.

2 Functions

2-38

load_system('vdp')

Input Arguments
bd — Name of model, subsystem, or library
string array | character vector | cell array of character vectors

Name of model, subsystem, or library, specified as a string array, character vector, or cell array of
character vectors.

Blocks, such as Subsystem blocks, cannot be loaded independently. Referenced subsystems can be
loaded independently. For more information, see “Subsystem Reference”.
Data Types: char | string | cell

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical.

• 1 (true) — File is loaded.
• 0 (false) — File is not loaded.

When multiple files are specified, the function returns a logical array with one entry for each file.

Version History
Introduced in R2008a

See Also
find_system | bdIsLibrary | bdIsDirty

 bdIsLoaded

2-39

bdroot
Top-level model of current system

Syntax
model = bdroot
model = bdroot(elements)

Description
model = bdroot returns the top-level model of the current system. The current system is the
currently active Simulink Editor window or the system in which a block is selected.

model = bdroot(elements) returns the top-level model of the specified model elements. Before
using bdroot, make sure the top-level model of each element in elements is loaded.

Examples

Get Top-Level Model

This example shows how to get the top-level model.

Get Top-Level Model of Current System

Open the system Controller in the model f14.

load_system('f14')
open_system('f14/Controller')

Get the top-level model of the current system.

bdroot

ans =
'f14'

Get Top-Level Model of a System

Open the system Controller in the model f14.

load_system('f14')
open_system('f14/Controller')

Get the top-level model of the current system.

bdroot(gcs)

2 Functions

2-40

ans =
'f14'

Input Arguments
elements — Model elements whose top-level models to return
model name | block path name | handle | cell array of character vectors | string array | numeric array

Model elements whose top-level model to return, specified as the model name, block or system path
name, handle, cell array of character vectors or string array of system names, or numeric array of
handles.

Tip Use bdroot with gcs, gcb, and gcbh to get the top-level model of the current system or block.

Output Arguments
model — Top-level model
character vector | cell array | string array

Top-level model, returned as a character vector of the model name. If the input was an array, model
is returned as an array of the same type as the input.

Version History
Introduced before R2006a

See Also
gcb | gcs | gcbh

 bdroot

2-41

dlinmod
Extract discrete-time linear state-space model around operating point

Syntax
argout = dlinmod('sys',Ts)

argout = dlinmod('sys',Ts,x,u)

argout = dlinmod('sys',Ts,x,u,para, 'v5')

argout = dlinmod('sys',Ts,x,u,para,xpert,upert,'v5')

Arguments
sys Name of the Simulink system from which the linear model is extracted.
x, u State (x) and the input (u) vectors. If specified, they set the operating point

at which the linear model is extracted. When a model has model references
using the Model block, you must use the Simulink structure format to
specify x. To extract the x structure from the model, use the following
command:
x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this structure by
editing x.signals.values.

If the state contains different data types (for example, 'double' and
'uint8'), then you cannot use a vector to specify this state. You must use a
structure instead. In addition, you can only specify the state as a vector if
the state data type is 'double'.

Ts Sample time of the discrete-time linearized model
'v5' An optional argument that invokes the perturbation algorithm created prior

to MATLAB 5.3. Invoking this optional argument is equivalent to calling
linmodv5.

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value used to perform the
perturbation of the states and the inputs of the model. This is valid for
linearizations using the 'v5' flag. The default value is 1e-05.

• para(2) — Linearization time. For blocks that are functions of time, you
can set this parameter with a nonnegative value that gives the time (t)
at which Simulink evaluates the blocks when linearizing a model. The
default value is 0.

• para(3) — Set para(3)=1 to remove extra states associated with
blocks that have no path from input to output. The default value is 0.

2 Functions

2-42

xpert, upert The perturbation values used to perform the perturbation of all the states
and inputs of the model. The default values are

xpert = para(1) + 1e-3*para(1)*abs(x)
upert = para(1) + 1e-3*para(1)*abs(u)

When a model has model references using the Model block, you must use
the Simulink structure format to specify xpert. To extract the xpert
structure, use the following command:
xpert = Simulink.BlockDiagram.getInitialState('sys');

You can then change the perturbation values within this structure by editing
xpert.signals.values.

The perturbation input arguments are only available when invoking the
perturbation algorithm created prior to MATLAB 5.3, either by calling
linmodv5 or specifying the 'v5' input argument to linmod.

argout linmod, dlinmod, and linmod2 return state-space representations if you
specify the output (left-hand) side of the equation as follows:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized model of
sys around an operating point with the specified state variables x and
the input u. If you omit x and u, the default values are zero.

linmod and dlinmod both also return a transfer function and MATLAB data
structure representations of the linearized system, depending on how you
specify the output (left-hand) side of the equation. Using linmod as an
example:

• [num, den] = linmod('sys', x, u) returns the linearized model
in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure that
contains the linearized model, including state names, input and output
names, and information about the operating point.

Description

Note dlinmod provides only basic linearization functionality. For full linearization functionality, use
Simulink Control Design software. For more information, see “Choose Linearization Tools” (Simulink
Control Design).

dlinmod computes a linear state-space model for a discrete-time system by linearizing each block in
a model individually.

linmod obtains linear models from systems of ordinary differential equations described as Simulink
models. Inputs and outputs are denoted in Simulink block diagrams using Inport and Outport blocks.

The default algorithm uses preprogrammed analytic block Jacobians for most blocks which should
result in more accurate linearization than numerical perturbation of block inputs and states. A list of
blocks that have preprogrammed analytic Jacobians is available in the Simulink Control Design
documentation along with a discussion of the block-by-block analytic algorithm for linearization.

 dlinmod

2-43

The default algorithm also allows for special treatment of problematic blocks such as the Transport
Delay and the Quantizer. See the mask dialog of these blocks for more information and options.

Discrete-Time System Linearization

The function dlinmod can linearize discrete, multirate, and hybrid continuous and discrete systems
at any given sampling time. Use the same calling syntax for dlinmod as for linmod, but insert the
sample time at which to perform the linearization as the second argument. For example,

[Ad,Bd,Cd,Dd] = dlinmod('sys', Ts, x, u);

produces a discrete state-space model at the sampling time Ts and the operating point given by the
state vector x and input vector u. To obtain a continuous model approximation of a discrete system,
set Ts to 0.

For systems composed of linear, multirate, discrete, and continuous blocks, dlinmod produces linear
models having identical frequency and time responses (for constant inputs) at the converted sampling
time Ts, provided that

• Ts is an integer multiple of all the sampling times in the system.
• The system is stable.

For systems that do not meet the first condition, in general the linearization is a time-varying system,
which cannot be represented with the [A,B,C,D] state-space model that dlinmod returns.

Computing the eigenvalues of the linearized matrix Ad provides an indication of the stability of the
system. The system is stable if Ts>0 and the eigenvalues are within the unit circle, as determined by
this statement:

all(abs(eig(Ad))) < 1

Likewise, the system is stable if Ts = 0 and the eigenvalues are in the left half plane, as determined
by this statement:

all(real(eig(Ad))) < 0

When the system is unstable and the sample time is not an integer multiple of the other sampling
times, dlinmod produces Ad and Bd matrices, which can be complex. The eigenvalues of the Ad
matrix in this case still, however, provide a good indication of stability.

You can use dlinmod to convert the sample times of a system to other values or to convert a linear
discrete system to a continuous system or vice versa.

You can find the frequency response of a continuous or discrete system by using the bode command.

Notes
By default, the system time is set to zero. For systems that are dependent on time, you can set the
variable para to a two-element vector, where the second element is used to set the value of t at
which to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model is maintained. For Simulink
systems, a character vector variable that contains the block name associated with each state can be
obtained using

2 Functions

2-44

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated with the ith state.
Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using the routine
ss2tf or to zero-pole form using ss2zp. You can also convert the linearized models to LTI objects
using ss. This function produces an LTI object in state-space form that can be further converted to
transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod and dlinmod handle Transport Delay blocks by replacing the
linearization of the blocks with a Pade approximation. For the 'v5' algorithm, linearization of a
model that contains Derivative or Transport Delay blocks can be troublesome. For more information,
see “Linearizing Models”.

Linearization is not supported for models that contain one or more referenced models configured to
use a local solver. For more information, see “Use Local Solvers in Referenced Models”.

Version History
Introduced in R2007a

See Also
linmod | linmod2 | linmodv5

 dlinmod

2-45

close_system
Close Simulink system window or block dialog box

Syntax
close_system
close_system(blockOrSys)
close_system(sys,saveflag)
close_system(sys,newsys)
close_system(sys, ___ ,Name,Value)

Description
close_system closes the current system or subsystem. If the current system is the top-level model
and has been modified, close_system returns an error.

Use the gcs function to determine the current system.

Note You cannot use close_system in a block or menu callback to close the root-level model.
Attempting to close the root-level model in a block or menu callback causes an error and discontinues
the callback execution.

close_system(blockOrSys) closes the specified model or subsystem, or the block dialog box of
the specified block. If the model was only loaded, that is, with load_system, this syntax clears the
model from memory.

close_system(sys,saveflag) lets you specify whether to save the model with its current name
or to close it without saving.

close_system(sys,newsys) saves the model to a file with the specified name before closing.

close_system(sys, ___ ,Name,Value) specifies additional options using one or more
Name,Value pair arguments.

Examples

Close the Current System

Open the model vdp and then close it.

vdp
close_system

Close a Block Dialog Box

Open the model vdp.

2 Functions

2-46

vdp

In the model, double-click the Mu block to open its block dialog box.

Close the block dialog box

close_system('vdp/Mu');

Close a Model and Save with New Name

Open a model, modify it, save the model with a new name and close it.

Open the model vdp and add a block to it.

vdp
block = add_block('vdp/Mu','vdp/Mu','MakeNameUnique','on');

Close the model, saving it with a new name.

close_system('vdp','myvdp');

Close a Model Using Name,Value Options

This command tries to save the vdp system to a file with the name 'max', but returns an error
because 'max' is the name of an existing MATLAB function.

close_system('vdp','max','ErrorIfShadowed',true)

Close a Top Model and Keep Referenced Models Loaded

Open a model hierarchy, load the referenced model, then close the top model, leaving the referenced
model loaded.

Open the sldemo_mdlref_basic model and load its referenced model, sldemo_mdlref_counter.

openExample('sldemo_mdlref_basic')
load_system('sldemo_mdlref_counter')

Check what models are loaded in memory.

loadedModels = Simulink.allBlockDiagrams('model');
modelNames = get_param(loadedModels,'Name')

modelNames =

 2×1 cell array

 {'sldemo_mdlref_counter'}
 {'sldemo_mdlref_basic' }

Close sldemo_mdlref_basic while keeping the referenced model loaded.

close_system('sldemo_mdlref_basic',0,'closeReferencedModels',false)

 close_system

2-47

Check what models are loaded in memory.

loadedModels = Simulink.allBlockDiagrams('model');
modelNames = get_param(loadedModels,'Name')

modelNames =

 'sldemo_mdlref_counter'

Closing the top model clears it from memory. By default, because they share a window, using
close_system on the top model would also close the referenced model and clear it from memory.
Setting 'closeReferencedModels' to false keeps the referenced model,
sldemo_mdlref_counter, loaded.

Input Arguments
blockOrSys — Block, model, or subsystem to close
character vector | cell array of character vectors | string array | handle | array of handles

Name of model, subsystem, or the block whose dialog box you want to close, specified as a character
vector, cell array of character vectors, string array, handle, or array of handles. Do not use a file
extension.
Example: "vdp/Mu" 'vdp'

sys — Name of model to close
character vector | cell array of character vectors | string array | handle | array of handles

Name of model to close, specified as a character vector, cell array of character vectors, string array,
handle, or array of handles. Do not use a file extension.

saveflag — Option to save file with current name
0 (default) | 1 | numeric array

Option to save model using the current file name, specified as 0 to close without saving or 1 to save
and then close. If sys is an array, you can supply a single character to apply to all of the models in
the array. Or you can provide a numeric array with values that correspond with each model in the
sys array.

For information on rules for naming models, see “Choose Valid Model File Names”.

newsys — File to save to
character vector | cell array of character vectors | string array

File to save to, specified as a character vector, cell array of character vectors, or string array. You can
specify a model name in the current folder or the full path name, with or without an extension.

When you specify a name without an extension, close_system saves to the file format specified in
your Simulink preferences. Possible model extensions are .slx and .mdl.

For information on rules for naming models, see “Choose Valid Model File Names”.

2 Functions

2-48

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
close_system('mymodel','newmodel','closeReferencedModels',false,'ErrorIfShado
wed',true,'OverwriteIfChangedOnDisk',true,'SaveModelWorkspace',true)

closeReferencedModels — Option to close all referenced models
true (default) | false | 'on' | 'off'

Option to close all referenced models when you close the window for the top model, specified as the
comma-separated pair consisting of 'closeReferencedModels' and true, false, 'on', or
'off'. Referenced models that are open in another window are unaffected by this setting. To keep
referenced models loaded, set this argument to false.

ErrorIfShadowed — Option to return an error if the new name is already used
false (default) | true | 'on' | 'off'

Option to return an error if the new name is already used on the MATLAB path or in the workspace,
specified as the comma-separated pair consisting of 'ErrorIfShadowed' and true, false, 'on',
or 'off'. To receive this error, you must use the newsys argument to save the model with a new
name. To learn about shadowed files, see “Shadowed Files”.

OverwriteIfChangedOnDisk — Option to overwrite the file on disk
false (default) | true | 'on' | 'off'

Option to overwrite the file on disk when you save the model, even if it has been modified since the
system was loaded, specified as the comma-separated pair consisting of
'OverwriteIfChangedOnDisk' and true, false, 'on', or 'off'. By default, if the file changed
on disk since the model was loaded, close_system displays an error to prevent the changes on disk
from being overwritten.

You can control whether saving the model displays an error if the file has changed on disk by using a
Simulink preference. In the Model File pane of the Simulink Preferences dialog box, under Change
Notification, select Saving the model. This preference is on by default.

SaveModelWorkspace — Option to save the model workspace
false (default) | true | 'on' | 'off'

Option to save the model workspace when you save the model, specified as the comma-separated pair
consisting of 'SaveModelWorkspace' and true, false, 'on', or 'off'. The model workspace
DataSource must be a MAT-file. If the data source is not a MAT-file, saving the model does not save
the workspace. See “Specify Source for Data in Model Workspace”.

Version History
Introduced before R2006a

R2019b: Closing a window for a model hierarchy closes referenced models
Behavior changed in R2019b

 close_system

2-49

Starting in R2019b, when you close a window for a model hierarchy by closing the top model, all
referenced models that are not open in another window are also closed, which clears them from
memory. To keep referenced models loaded in memory, set the 'closeReferencedModels'
argument to false.

See Also
bdclose | gcs | new_system | open_system | save_system | load_system

2 Functions

2-50

closeDialog
Close configuration parameters dialog

Syntax
closeDialog(configObj)

Arguments
configObj

A configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

Description
closeDialog closes an open configuration parameters dialog box. If configObj is a configuration
set, the function closes the dialog box that displays the configuration set. If configObj is a
configuration reference, the function closes the dialog box that displays the referenced configuration
set, or generates an error if the reference does not specify a valid configuration set. If the dialog box
is already closed, the function does nothing.

Examples
The following example closes a configuration parameters dialog box that shows the current
parameters for the current model. The parameter values derive from the active configuration set or
configuration reference (configuration object). The code is the same in either case; the only
difference is which type of configuration object is currently active.

myConfigObj = getActiveConfigSet(gcs);
closeDialog(myConfigObj);

Version History
Introduced in R2006b

See Also
attachConfigSet | attachConfigSetCopy | detachConfigSet | getActiveConfigSet |
getConfigSet | getConfigSets | openDialog | setActiveConfigSet

Topics
“Manage Configuration Sets for a Model”
“Share a Configuration with Multiple Models”

 closeDialog

2-51

coder.allowpcode
Package: coder

Control code generation from P-code files

Syntax
coder.allowpcode('plain')

Description
coder.allowpcode('plain') allows you to generate P-code files that you can then compile into
optimized MEX functions or embeddable C/C++ code. This function does not obfuscate the generated
MEX functions or embeddable C/C++ code.

With this capability, you can distribute algorithms as P-code files that provide code generation
optimizations.

Call this function in the top-level function before control-flow statements, such as if, while,
switch, and function calls.

MATLAB functions can call P-code. When the .m and .p versions of a file exist in the same folder, the
P-code file takes precedence.

coder.allowpcode is ignored outside of code generation.

Examples

Generate optimized embeddable code from P-code file

Write a function p_abs that returns the absolute value of its input:

function out = p_abs(in) %#codegen
% The directive %#codegen indicates that the function
% is intended for code generation
coder.allowpcode('plain');
out = abs(in);

Generate P-code file. In the MATLAB Command Window, enter:

pcode p_abs

The P-code file, p_abs.p, appears in the current folder.

Generate a MEX function for p_abs.p, using the -args option to specify the size, class, and
complexity of the input parameter (requires a MATLAB Coder license).

codegen p_abs -args { int32(0) }

codegen generates a MEX function in the current folder.

2 Functions

2-52

If you have MATLAB Coder, generate embeddable C code for p_abs.p.

codegen p_abs -config:lib -args { int32(0) };

codegen generates C library code in the codegen\lib\p_abs folder.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
pcode | codegen

 coder.allowpcode

2-53

coder.ceval
Call external C/C++ function

Syntax
coder.ceval(cfun_name)
coder.ceval(cfun_name,cfun_arguments)

coder.ceval('-global',cfun_name)
coder.ceval('-global',cfun_name,cfun_arguments)

coder.ceval('-gpudevicefcn',devicefun_name,devicefun_arguments)

coder.ceval('-layout:rowMajor',cfun_name,cfun_arguments)
coder.ceval('-layout:columnMajor',cfun_name,cfun_arguments)
coder.ceval('-layout:any',cfun_name,cfun_arguments)

cfun_return = coder.ceval(___)

Description
coder.ceval(cfun_name) executes the external C/C++ function specified by cfun_name. Define
cfun_name in an external C/C++ source file or library. Provide the external source, library, and
header files to the code generator.

coder.ceval(cfun_name,cfun_arguments) executes cfun_name with arguments
cfun_arguments. cfun_arguments is a comma-separated list of input arguments in the order that
cfun_name requires.

By default, coder.ceval passes arguments by value to the C/C++ function whenever C/C++
supports passing arguments by value. To make coder.ceval pass arguments by reference, use the
constructs coder.ref, coder.rref, and coder.wref. If C/C++ does not support passing
arguments by value, for example, if the argument is an array, coder.ceval passes arguments by
reference. If you do not use coder.ref, coder.rref or coder.wref, a copy of the argument can
appear in the generated code to enforce MATLAB semantics for arrays.

coder.ceval('-global',cfun_name) executes cfun_name and indicates that cfun_name uses
one or more MATLAB global variables. The code generator can then produce code that is consistent
with this global variable usage.

Note The -global flag is only supported for code generation. You cannot include this flag while
calling coder.ceval in MATLAB Function blocks.

coder.ceval('-global',cfun_name,cfun_arguments) executes cfun_name with arguments
cfun_arguments and indicates that cfun_name uses one or more MATLAB global variables.

coder.ceval('-gpudevicefcn',devicefun_name,devicefun_arguments) allows you to call
CUDA® GPU __device__ functions from within kernels. '-gpudevicefcn' indicates to
coder.ceval that the target function is on the GPU device. devicefun_name is the name of the

2 Functions

2-54

__device__ function and devicefun_arguments is a comma-separated list of input arguments in
the order that devicefun_name requires. This option requires the GPU Coder™ product.

coder.ceval('-layout:rowMajor',cfun_name,cfun_arguments) executes cfun_name with
arguments cfun_arguments and passes data stored in row-major layout. When called from a
function that uses column-major layout, the code generator converts inputs to row-major layout and
converts outputs back to column-major layout. For a shorter syntax, use coder.ceval('-
row',...).

coder.ceval('-layout:columnMajor',cfun_name,cfun_arguments) executes cfun_name
with arguments cfun_arguments and passes data stored in column-major layout. When called from
a function that uses row-major layout, the code generator converts inputs to column-major layout and
converts outputs back to row-major layout. For a shorter syntax, use coder.ceval('-col',...).

coder.ceval('-layout:any',cfun_name,cfun_arguments) executes cfun_name with
arguments cfun_arguments and passes data with its current array layout, even when array layouts
do not match. The code generator does not convert the array layout of the input or output data.

cfun_return = coder.ceval(___) executes cfun_name and returns a single scalar value,
cfun_return, corresponding to the value that the C/C++ function returns in the return statement.
To be consistent with C/C++, coder.ceval can return only a scalar value. It cannot return an array.
Use this option with any of the input argument combinations in the previous syntaxes.

Examples

Call External C Function

Call a C function foo(u) from a MATLAB function from which you intend to generate C code.

Create a C header file foo.h for a function foo that takes two input parameters of type double and
returns a value of type double.

double foo(double in1, double in2);

Write the C function foo.c.

#include <stdio.h>
#include <stdlib.h>
#include "foo.h"

double foo(double in1, double in2)
{
 return in1 + in2;
}

Write a function callfoo that calls foo by using coder.ceval. Provide the source and header files
to the code generator in the function.

function y = callfoo %#codegen
y = 0.0;
if coder.target('MATLAB')
 % Executing in MATLAB, call MATLAB equivalent of
 % C function foo
 y = 10 + 20;

 coder.ceval

2-55

else
 % Executing in generated code, call C function foo
 coder.updateBuildInfo('addSourceFiles','foo.c');
 coder.cinclude('foo.h');
 y = coder.ceval('foo', 10, 20);
end
end

Generate C library code for function callfoo. The codegen function generates C code in the
\codegen\lib\callfoo subfolder.

codegen -config:lib callfoo -report

Call a C Library Function

Call a C library function from MATLAB code.

Write a MATLAB function myabsval.

function y = myabsval(u)
%#codegen
y = abs(u);

Generate a C static library for myabsval, using the -args option to specify the size, type, and
complexity of the input parameter.

codegen -config:lib myabsval -args {0.0}

The codegen function creates the library file myabsval.lib and header file myabsval.h in the
folder \codegen\lib\myabsval. (The library file extension can change depending on your
platform.) It generates the functions myabsval_initialize and myabsval_terminate in the
same folder.

Write a MATLAB function to call the generated C library function using coder.ceval.

function y = callmyabsval(y)
%#codegen
% Check the target. Do not use coder.ceval if callmyabsval is
% executing in MATLAB
if coder.target('MATLAB')
 % Executing in MATLAB, call function myabsval
 y = myabsval(y);
else
 % add the required include statements to generated function code
 coder.updateBuildInfo('addIncludePaths','$(START_DIR)\codegen\lib\myabsval');
 coder.cinclude('myabsval_initialize.h');
 coder.cinclude('myabsval.h');
 coder.cinclude('myabsval_terminate.h');

 % Executing in the generated code.
 % Call the initialize function before calling the
 % C function for the first time
 coder.ceval('myabsval_initialize');

 % Call the generated C library function myabsval
 y = coder.ceval('myabsval',y);

2 Functions

2-56

 % Call the terminate function after
 % calling the C function for the last time
 coder.ceval('myabsval_terminate');
end

Generate the MEX function callmyabsval_mex. Provide the generated library file at the command
line.

codegen -config:mex callmyabsval codegen\lib\myabsval\myabsval.lib -args {-2.75}

Rather than providing the library at the command line, you can use coder.updateBuildInfo to
specify the library within the function. Use this option to preconfigure the build. Add this line to the
else block:

coder.updateBuildInfo('addLinkObjects','myabsval.lib','$(START_DIR)\codegen\lib\myabsval',100,true,true);

Note The START_DIR macro is only supported for generating code with MATLAB Coder.

Run the MEX function callmyabsval_mex which calls the library function myabsval.

callmyabsval_mex(-2.75)

ans =

 2.7500

Call the MATLAB function callmyabsval.

callmyabsval(-2.75)

ans =

 2.7500

The callmyabsval function exhibits the desired behavior for execution in MATLAB and in code
generation.

Call C Function That Uses Global Variable

Use the '-global' flag when you call a C function that modifies a global variable.

Write a MATLAB function useGlobal that calls a C function addGlobal. Use the '-global' flag to
indicate to the code generator that the C function uses a global variable.

function y = useGlobal()
global g;
t = g;
% compare execution with/without '-global' flag
coder.ceval('-global','addGlobal');
y = t;
end

Create a C header file addGlobal.h for the function addGlobal.

 coder.ceval

2-57

void addGlobal(void);

Write the C function addGlobal in the file addGlobal.c. This function includes the header file
useGlobal_data.h that the code generator creates when you generate code for the function
useGlobal. This header file contains the global variable declaration for g.

#include "addGlobal.h"
#include "useGlobal_data.h"
void addGlobal(void) {
 g++;
}

Generate the MEX function for useGlobal. To define the input to the code generator, declare the
global variable in the workspace.

global g;
g = 1;
codegen useGlobal -report addGlobal.h addGlobal.c
y = useGlobal_mex();

With the '-global' flag, the MEX function produces the result y = 1. The '-global' flag
indicates to the code generator that the C function possibly modifies the global variable. For
useGlobal, the code generator produces this code:

real_T useGlobal(const emlrtStack *sp)
{
 real_T y;
 (void)sp;
 y = g;
 addGlobal();
 return y;
}

Without the '-global' flag, the MEX function produces y = 2. Because there is no indication that
the C function modifies g, the code generator assumes that y and g are identical. This C code is
generated:

real_T useGlobal(const emlrtStack *sp)
{
 (void)sp;
 addGlobal();
 return g;
}

Call C Function That Uses Different Array Layout

Suppose that you have a C function testRM that is designed to use row-major layout. You want to
integrate this function into a MATLAB function bar that operates on arrays. The function bar is
designed to use column-major layout, employing the coder.columnMajor directive.

function out = bar(in)
%#codegen
coder.columnMajor;
coder.ceval('-layout:rowMajor','testRM', ...
 coder.rref(in),coder.wref(out));
end

2 Functions

2-58

In the generated code, the code generator inserts a layout conversion from column-major layout to
row-major layout on the variable in before passing it to testRM. On the output variable out, the
code generator inserts a layout conversion back to column-major.

In general, if you do not specify the layout option for coder.ceval, the external function
arguments are assumed to use column-major.

Call C Function That Takes Complex Number Inputs

Suppose you have a MATLAB function that calls custom C code that takes complex number inputs.
You must define your C code input parameters so that the complex number inputs from your MATLAB
function can map to your C code.

In generated code, complex numbers are defined as a struct that has two fields, re and im, which
are the real and imaginary part of a complex number respectively. This struct is defined in the
header file rtwtypes.h, which you can find in the codegen\lib\functionName folder of your
current path. The struct is defined as follows:

typedef struct {
 real32_T re; /*Real Component*/
 real32_T im; /*Imaginary Component*/
} creal_T;

For more information, see “Mapping MATLAB Types to Types in Generated Code” (MATLAB Coder).

The C code that you want to integrate must include the rtwtypes.h header file. An example C code
foo.c is shown below:

#include "foo.h"
#include<stdio.h>
#include<stdlib.h>
#include "rtwtypes.h"

double foo(creal_T x) {
 double z = 0.0;
 z = x.re*x.re + x.im*x.im;
 return (z);
}

The struct is named creal_T. A header file foo.h must also be defined as:

#include "rtwtypes.h"
double foo(creal_T x);

The MATLAB code executes foo.c by using the coder.ceval function that has a complex numbers
input:

function y = complexCeval %#codegen
y = 0.0;
coder.updateBuildInfo('addSourceFiles','foo.c');
coder.cinclude('foo.h');
y = coder.ceval('foo', 10+20i);
end

The coder.ceval command takes the complex number input. The code generator maps the complex
number to the struct creal_T variable x and its fields re and im.

 coder.ceval

2-59

Generate code for the function complexCeval by running this command:

codegen -config:lib -report complexCeval

Input Arguments
cfun_name — C/C++ function name
character vector | string scalar

Name of external C/C++ function to call.
Example: coder.ceval('foo')
Data Types: char | string

cfun_arguments — C/C++ function arguments
scalar variable | array | element of an array | structure | structure field | object property

Comma-separated list of input arguments in the order that cfun_name requires.
Example: coder.ceval('foo', 10, 20);
Example: coder.ceval('myFunction', coder.ref(x));
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | struct
Complex Number Support: Yes

Limitations
• You cannot use coder.ceval on functions that you declare extrinsic with coder.extrinsic.
• When the LCC compiler creates a library, it adds a leading underscore to the library function

names. If the compiler for the library was LCC and your code generation compiler is not LCC, you
must add the leading underscore to the function name, for example,
coder.ceval('_mylibfun'). If the compiler for a library was not LCC, you cannot use LCC to
generate code from MATLAB code that calls functions from that library. Those library function
names do not have the leading underscore that the LCC compiler requires.

• If a property has a get method, a set method, or validators, or is a System object property with
certain attributes, then you cannot pass the property by reference to an external function. See
“Passing By Reference Not Supported for Some Properties”.

• Variable-size matrices as entry-point parameters are not supported for row-major code generation.

Tips
• For code generation, before calling coder.ceval, you must specify the type, size, and complexity

data type of return values and output arguments.
• To apply coder.ceval to a function that accepts or returns variables that do not exist in MATLAB

code, such as pointers, FILE types for file I/O, and C/C++ macros, use the coder.opaque
function.

• Use coder.ceval only in MATLAB for code generation. coder.ceval generates an error in
uncompiled MATLAB code. To determine if a MATLAB function is executing in MATLAB, use
coder.target. If the function is executing in MATLAB, call the MATLAB version of the C/C++
function.

2 Functions

2-60

• External code called by using coder.ceval and the generated code run within the same process
and share memory. If external code erroneously writes to the memory that contains data
structures used by the generated code, it might cause the process to behave unexpectedly or
crash. For example, if the external code attempts to write data to an array after its end point, the
process might behave unexpectedly or crash.

• MATLAB uses UTF-8 as its system encoding on Windows platform. As a result, system calls made
from within a generated MEX function accept and return UTF-8 encoded strings. By contrast, the
code generated by MATLAB Coder encodes text data by using the encoding specified by the
Windows locale. So, if your MATLAB entry-point function uses coder.ceval to call external C/C+
+ functions that assume a different system encoding, then the generated MEX function might
produce garbled text. If this happens, you must update the external C/C++ functions to handle
this situation.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ref | coder.rref | coder.wref | coder.target | coder.extrinsic | coder.opaque |
coder.updateBuildInfo | coder.ExternalDependency | coder.reservedName

Topics
“Integrate C Code by Using the MATLAB Function Block”
“Generate Code That Uses Row-Major Array Layout” (MATLAB Coder)
“Interface with Row-Major Data in MATLAB Function Block”
“Unknown Output Type for coder.ceval”

 coder.ceval

2-61

coder.cinclude
Include header file in generated code

Syntax
coder.cinclude(headerfile)
coder.cinclude(headerfile,'InAllSourceFiles',allfiles)

Description
coder.cinclude(headerfile) includes a header file in generated C/C++ source code.

MATLAB Coder generates the include statement in the C/C++ source files that are generated from
the MATLAB code that contains the coder.cinclude call.

In a Simulink model, when a coder.cinclude call appears in a MATLAB Function block, the code
generator puts the include statement in the model header file.

Note Place a coder.cinclude call as close as possible to the coder.ceval call that requires the
header file.

coder.cinclude(headerfile,'InAllSourceFiles',allfiles) uses the allfiles option to
determine whether to include the header file in almost all C/C++ source files.

If allfiles is true, MATLAB Coder generates the include statement in almost all C/C++ source
files, except for some utility files. This behavior is the coder.cinclude behavior from R2016a and
earlier releases. The presence of the include statement in these additional files can increase compile
time and make the generated code less readable. Use this option only if your code depends on the
legacy behavior. If allfiles is false, the behavior is the same as the behavior of
coder.cinclude(headerfile).

In a MATLAB Function block, coder.cinclude(headerfile,'InAllSourceFiles',
allfiles) is the same as coder.cinclude(headerfile).

Examples

Include Header File in C/C++ Code Generated by Using the MATLAB Coder codegen
Command

Generate code from a MATLAB function that calls an external C function. Use coder.cinclude to
include the required header file in the generated C code.

In a writable folder, create a subfolder mycfiles.

Write a C function myMult2.c that doubles its input. Save it in mycfiles.

#include "myMult2.h"
double myMult2(double u)

2 Functions

2-62

{
 return 2 * u;
}

Write the header file myMult2.h. Save it in mycfiles.

#if !defined(MYMULT2)
#define MYMULT2
extern double myMult2(double);
#endif

Write a MATLAB function, myfunc, that includes myMult2.h and calls myMult2 for code generation
only.

function y = myfunc
%#codegen
y = 21;
if ~coder.target('MATLAB')
 % Running in generated code
 coder.cinclude('myMult2.h');
 y = coder.ceval('myMult2', y);
else
 % Running in MATLAB
 y = y * 2;
end
end

Create a code configuration object for a static library. Specify the locations of myMult2.h and
myMult2.c

cfg = coder.config('lib');
cfg.CustomInclude = fullfile(pwd,'mycfiles');
cfg.CustomSource = fullfile(pwd,'mycfiles','myMult2.c');

Generate the code.

codegen -config cfg myfunc -report

The file myfunc.c contains this statement:

#include "myMult2.h"

The include statement does not appear in any other file.

Include Header File in C/C++ Code Generated from a MATLAB Function Block in a Simulink
Model

Generate code from a MATLAB Function block that calls an external C function. Use
coder.cinclude to include the required header file in the generated C code.

In a writable folder, create a subfolder mycfiles.

Write a C function myMult2.c that doubles its input. Save it in mycfiles.

#include "myMult2.h"
double myMult2(double u)

 coder.cinclude

2-63

{
 return 2 * u;
}

Write the header file myMult2.h. Save it in mycfiles.

#if !defined(MYMULT2)
#define MYMULT2
extern double myMult2(double);
#endif

Create a Simulink model that contains a MATLAB Function block connected to an Outport block.

In the MATLAB Function block, add the function myfunc that includes myMult2.h and calls
myMult2.

function y = myfunc
%#codegen
y = 21;
coder.cinclude('myMult2.h');
y = coder.ceval('myMult2', y);
% Specify the locations of myMult2.h and myMult2.c
coder.extrinsic('pwd', 'fullfile');
customDir = coder.const(fullfile(pwd, 'mycfiles'));
coder.updateBuildInfo('addIncludePaths', customDir);
coder.updateBuildInfo('addSourcePaths', customDir);
coder.updateBuildInfo('addSourceFiles', 'myMult2.c');
end

Open the Configuration Parameters dialog box.

On the Solver pane, select a fixed-step solver.

Save the model as mymodel.

Build the model.

The file mymodel.h contains this statement:

#include "myMult2.h"

To read more about integrating custom code in a MATLAB Function block, see “Integrate C Code by
Using the MATLAB Function Block”.

Input Arguments
headerfile — Name of header file
character vector | string scalar

Name of a header file specified as a character vector or string scalar. headerfile must be a
compile-time constant.

2 Functions

2-64

Enclose a system header file name in angle brackets < >. The generated #include statement for a
system header file has the format #include <sysheader>. A system header file must be in a
standard location or on the include path. Specify the include path by using code generation custom
code parameters.
Example: coder.cinclude('<sysheader.h>')

For a header file that is not a system header file, omit the angle brackets. The generated #include
statement for a header file that is not a system header file has the format #include "myHeader".
The header file must be in the current folder or on the include path. Specify the include path by using
code generation custom code parameters.
Example: coder.cinclude('myheader.h')
Data Types: char

allfiles — All source files option
true | false

Option to include header file in all generated C/C++ source files. If allfiles is true, MATLAB
Coder generates the include statement in almost all of the C/C++ source files, except for some utility
files. If allfiles is false, the behavior is the same as the behavior of
coder.cinclude(headerfile).

In a MATLAB Function block, the code generator ignores the all source files option.
Data Types: logical

Limitations
• Do not call coder.cinclude inside run-time conditional constructs such as if statements,

switch statements, while-loops, and for-loops. You can call coder.cinclude inside compile-
time conditional statements, such as coder.target. For example:

...
 if ~coder.target('MATLAB')
 coder.cinclude('foo.h');
 coder.ceval('foo');
end
...

Tips
• Before a coder.ceval call, call coder.cinclude to include the header file required by the

external function that coder.ceval calls.
• Extraneous include statements in generated C/C++ code can increase compile time and reduce

code readability. To avoid extraneous include statements in code generated by MATLAB Coder,
follow these best practices:

• Place a coder.cinclude call as close as possible to the coder.ceval call that requires the
header file.

• Do not set allfiles to true.

For the MATLAB Function block, the code generator generates the include statement in the model
header file.

 coder.cinclude

2-65

• In R2016a and earlier releases, for any coder.cinclude call, MATLAB Coder included the
header file in almost all generated C/C++ source files, except for some utility files. If you have
code that depends on this legacy behavior, you can preserve the legacy behavior by using this
syntax:

coder.cinclude(headerfile,'InAllSourceFiles',true)

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ceval | coder.target | coder.reservedName

Topics
“Model Configuration Parameters: Code Generation Custom Code” (Simulink Coder)

2 Functions

2-66

coder.columnMajor
Specify column-major array layout for a function or class

Syntax
coder.columnMajor

Description
coder.columnMajor specifies column-major array layout for the data used by the current function
in generated code. When placed in a class constructor, coder.columnMajor specifies column-major
layout for data used by the class.

Note By default, code generation uses column-major array layout.

Examples

Specify Column-Major Array Layout for a Function

Specify column-major array layout for a function by inserting coder.columnMajor into the function
body.

Suppose that myFunction is the top-level function of your code. Your application requires you to
perform matrix addition with column-major array layout and matrix multiplication with row-major
layout.

function S = myFunction(A,B)
%#codegen
% check to make sure inputs are valid
if size(A,1) ~= size(B,1) || size(A,2) ~= size(B,2)
 disp('Matrices must be same size.')
 return;
end
% make both matrices symmetric
B = B*B';
A = A*A';
% add matrices
S = addMatrix(A,B);
end

Write a function for matrix addition called addMatrix. Specify column-major for addMatrix by
using coder.columnMajor.

function S = addMatrix(A,B)
%#codegen
S = zeros(size(A));
coder.columnMajor; % specify column-major array layout
S = A + B;
end

 coder.columnMajor

2-67

Generate code for myFunction. Use the codegen command.

codegen myFunction -args {ones(10,20),ones(10,20)} -config:lib -launchreport -rowmajor

Because of the codegen -rowmajor option, the matrix multiplication in myFunction uses row-
major layout. However, the generated code for addMatrix uses column-major array layout due to the
coder.columnMajor call.

Tips
• The code generator uses column-major array layout by default.
• The specification of array layout inside a function supersedes the array layout specified with the

codegen command. For example, if the function foo contains coder.columnMajor, and you
generate code by using:

codegen foo -rowmajor

then the generated code still uses column-major layout.
• Other functions called from within a column-major function inherit the column-major specification.

However, if one of the called functions has its own distinct coder.rowMajor call, the code
generator changes the array layout accordingly. If a row-major function and a column-major
function call the same function, which does not have its own array layout specification, the code
generator produces a row-major version and column-major version of the function.

• coder.columnMajor is ignored outside of code generation and simulation.

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ceval | coder.rowMajor | coder.isColumnMajor | coder.isRowMajor

Topics
“Interface with Row-Major Data in MATLAB Function Block”
“Specify Array Layout in Functions and Classes”
“Code Generation of Matrices and Arrays” (Simulink Coder)

2 Functions

2-68

coder.const
Fold expressions into constants in generated code

Syntax
out = coder.const(expression)
[out1,...,outN] = coder.const(handle,arg1,...,argN)

Description
out = coder.const(expression) evaluates expression and replaces out with the result of the
evaluation in generated code.

[out1,...,outN] = coder.const(handle,arg1,...,argN) evaluates the multi-output
function having handle handle. It then replaces out1,...,outN with the results of the evaluation
in the generated code.

Examples

Specify Constants in Generated Code

This example shows how to specify constants in generated code using coder.const.

Write a function AddShift that takes an input Shift and adds it to the elements of a vector. The
vector consists of the square of the first 10 natural numbers. AddShift generates this vector.

function y = AddShift(Shift) %#codegen
y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport AddShift -args 0

The code generator produces code for creating the vector. It adds Shift to each element of the
vector during vector creation. The definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])
{
 int k;
 for (k = 0; k < 10; k++) {
 y[k] = (double)((1 + k) * (1 + k)) + Shift;
 }
}

Replace the expression (1:10).^2 with coder.const((1:10).^2), and then generate code for
AddShift again using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport AddShift -args 0

 coder.const

2-69

The code generator creates the vector containing the squares of the first 10 natural numbers. In the
generated code, it adds Shift to each element of this vector. The definition of AddShift in
generated code looks as follows:

void AddShift(double Shift, double y[10])
{
 int i;
 static const signed char iv[10] = { 1, 4, 9, 16, 25, 36,
 49, 64, 81, 100 };

 for (i = 0; i < 10; i++) {
 y[i] = (double)iv[i] + Shift;
 }
}

Create Lookup Table in Generated Code

This example shows how to fold a user-written function into a constant in generated code.

Write a function getsine that takes an input index and returns the element referred to by index
from a lookup table of sines. The function getsine creates the lookup table using another function
gettable.

function y = getsine(index) %#codegen
 assert(isa(index, 'int32'));
 persistent tbl;
 if isempty(tbl)
 tbl = gettable(1024);
 end
 y = tbl(index);

function y = gettable(n)
 y = zeros(1,n);
 for i = 1:n
 y(i) = sin((i-1)/(2*pi*n));
 end

Generate code for getsine using an argument of type int32. Open the Code Generation Report.

codegen -config:lib -launchreport getsine -args int32(0)

The generated code contains instructions for creating the lookup table.

Replace the statement:

tbl = gettable(1024);

with:

tbl = coder.const(gettable(1024));

Generate code for getsine using an argument of type int32. Open the Code Generation Report.

2 Functions

2-70

The generated code contains the lookup table itself. coder.const forces the expression
gettable(1024) to be evaluated during code generation. The generated code does not contain
instructions for the evaluation. The generated code contains the result of the evaluation itself.

Specify Constants in Generated Code Using Multi-Output Function

This example shows how to specify constants in generated code using a multi-output function in a
coder.const statement.

Write a function MultiplyConst that takes an input factor and multiplies every element of two
vectors vec1 and vec2 with factor. The function generates vec1 and vec2 using another function
EvalConsts.

function [y1,y2] = MultiplyConst(factor) %#codegen
 [vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);
 y1=vec1.*factor;
 y2=vec2.*factor;

function [f1,f2]=EvalConsts(z,n)
 f1=z.^(2*n)/factorial(2*n);
 f2=z.^(2*n+1)/factorial(2*n+1);

Generate code for MultiplyConst using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport MultiplyConst -args 0

The code generator produces code for creating the vectors.

Replace the statement

[vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);

with

[vec1,vec2]=coder.const(@EvalConsts,pi.*(1./2.^(1:10)),2);

Generate code for MultiplyConst using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport MultiplyConst -args 0

The code generator does not generate code for creating the vectors. Instead, it calculates the vectors
and specifies the calculated vectors in generated code.

Read Constants by Processing XML File

This example shows how to call an extrinsic function using coder.const.

Write an XML file MyParams.xml containing the following statements:

<params>
 <param name="hello" value="17"/>
 <param name="world" value="42"/>
</params>

 coder.const

2-71

Save MyParams.xml in the current folder.

Write a MATLAB function xml2struct that reads an XML file. The function identifies the XML tag
param inside another tag params.

After identifying param, the function assigns the value of its attribute name to the field name of a
structure s. The function also assigns the value of attribute value to the value of the field.

function s = xml2struct(file)

s = struct();
doc = xmlread(file);
els = doc.getElementsByTagName('params');
for i = 0:els.getLength-1
 it = els.item(i);
 ps = it.getElementsByTagName('param');
 for j = 0:ps.getLength-1
 param = ps.item(j);
 paramName = char(param.getAttribute('name'));
 paramValue = char(param.getAttribute('value'));
 paramValue = evalin('base', paramValue);
 s.(paramName) = paramValue;
 end
end

Save xml2struct in the current folder.

Write a MATLAB function MyFunc that reads the XML file MyParams.xml into a structure s using the
function xml2struct. Declare xml2struct as extrinsic using coder.extrinsic and call it in a
coder.const statement.

function y = MyFunc(u) %#codegen
 assert(isa(u, 'double'));
 coder.extrinsic('xml2struct');
 s = coder.const(xml2struct('MyParams.xml'));
 y = s.hello + s.world + u;

Generate code for MyFunc using the codegen command. Open the Code Generation Report.

codegen -config:dll -launchreport MyFunc -args 0

The code generator executes the call to xml2struct during code generation. It replaces the
structure fields s.hello and s.world with the values 17 and 42 in generated code.

Input Arguments
expression — MATLAB expression or user-written function
expression with constants | single-output function with constant arguments

MATLAB expression or user-defined single-output function.

The expression must have compile-time constants only. The function must take constant arguments
only. For instance, the following code leads to a code generation error, because x is not a compile-
time constant.

function y=func(x)
 y=coder.const(log10(x));

2 Functions

2-72

To fix the error, assign x to a constant in the MATLAB code. Alternatively, during code generation, you
can use coder.Constant to define input type as follows:

codegen -config:lib func -args coder.Constant(10)

Example: 2*pi, factorial(10)

handle — Function handle
function handle

Handle to built-in or user-written function.
Example: @log, @sin
Data Types: function_handle

arg1,...,argN — Arguments to the function with handle handle
function arguments that are constants

Arguments to the function with handle handle.

The arguments must be compile-time constants. For instance, the following code leads to a code
generation error, because x and y are not compile-time constants.

function y=func(x,y)
 y=coder.const(@nchoosek,x,y);

To fix the error, assign x and y to constants in the MATLAB code. Alternatively, during code
generation, you can use coder.Constant to define input type as follows:

codegen -config:lib func -args {coder.Constant(10),coder.Constant(2)}

Output Arguments
out — Value of expression
value of the evaluated expression

Value of expression. In the generated code, MATLAB Coder replaces occurrences of out with the
value of expression.

out1,...,outN — Outputs of the function with handle handle
values of the outputs of the function with handle handle

Outputs of the function with handle handle. MATLAB Coder evaluates the function and replaces
occurrences of out1,...,outN with constants in the generated code.

Tips
• When possible, the code generator constant-folds expressions automatically. Typically, automatic

constant-folding occurs for expressions with scalars only. Use coder.const when the code
generator does not constant-fold expressions on its own.

• When constant-folding computationally intensive function calls, to reduce code generation time,
make the function call extrinsic. The extrinsic function call causes evaluation of the function call
by MATLAB instead of by the code generator. For example:

 coder.const

2-73

function j = fcn(z)
zTable = coder.const(0:0.01:100);
jTable = coder.const(feval('besselj',3,zTable));
j = interp1(zTable,jTable,z);
end

See “Use coder.const with Extrinsic Function Calls” (MATLAB Coder).
• If coder.const is unable to constant-fold a function call, try to force constant-folding by making

the function call extrinsic. The extrinsic function call causes evaluation of the function call by
MATLAB instead of by the code generator. For example:

function yi = fcn(xi)
y = coder.const(feval('rand',1,100));
yi = interp1(y,xi);
end

See “Use coder.const with Extrinsic Function Calls” (MATLAB Coder).

Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Topics
“Fold Function Calls into Constants” (MATLAB Coder)
“Use coder.const with Extrinsic Function Calls” (MATLAB Coder)

2 Functions

2-74

coder.cstructname
Package: coder

Name C structure type in generated code

Syntax
coder.cstructname(var,structName)
coder.cstructname(var,structName,'extern','HeaderFile',headerfile)
coder.cstructname(var,structName,'extern','HeaderFile',
headerfile,'Alignment',alignment)

outtype = coder.cstructname(intype,structName)
outtype = coder.cstructname(intype,structName,'extern','HeaderFile',
headerfile)
outtype = coder.cstructname(intype,structName,'extern','HeaderFile',
headerfile,'Alignment',alignment)

Description
coder.cstructname names the generated or externally defined C structure type to use for MATLAB
variables that are represented as structures in generated code.

coder.cstructname(var,structName) names the C structure type generated for the MATLAB
variable var. The input var can be a structure or a cell array. Use this syntax in a function from
which you generate code. Place coder.cstructname after the definition of var and before the first
use of var. If var is an entry-point (top-level) function input argument, place coder.cstructname
at the beginning of the function, before any control flow statements.

coder.cstructname(var,structName,'extern','HeaderFile',headerfile) specifies that
the C structure type to use for var has the name structName and is defined in the external file,
headerfileName.

It is possible to use the 'extern' option without specifying the header file. However, it is a best
practice to specify the header file so that the code generator produces the #include statement in
the correct location.

coder.cstructname(var,structName,'extern','HeaderFile',
headerfile,'Alignment',alignment) also specifies the run-time memory alignment for the
externally defined structure type structName. If you have Embedded Coder and use custom Code
Replacement Libraries (CRLs), specify the alignment so that the code generator can match CRL
functions that require alignment for structures. See “Data Alignment for Code Replacement”
(Embedded Coder).

outtype = coder.cstructname(intype,structName) returns a structure or cell array type
object outtype that specifies the name of the C structure type to generate. coder.cstructname
creates outtype with the properties of the input type intype. Then, it sets the TypeName property
to structName. Use this syntax to create a type object that you use with the codegen -args option.
You cannot use this syntax in a function from which you generate code.

 coder.cstructname

2-75

You cannot use this syntax in a MATLAB Function block.

outtype = coder.cstructname(intype,structName,'extern','HeaderFile',
headerfile) returns a type object outtype that specifies the name and location of an externally
defined C structure type. The code generator uses the externally defined structure type for variables
with type outtype.

You cannot use this syntax in a MATLAB Function block.

outtype = coder.cstructname(intype,structName,'extern','HeaderFile',
headerfile,'Alignment',alignment) creates a type object outtype that also specifies the C
structure type alignment.

You cannot use this syntax in a MATLAB Function block.

Examples

Name the C Structure Type for a Variable in a Function

In a MATLAB function, myfun, assign the name MyStruct to the generated C structure type for the
variable v.

function y = myfun()
%#codegen
v = struct('a',1,'b',2);
coder.cstructname(v, 'myStruct');
y = v;
end

Generate standalone C code. For example, generate a static library.

codegen -config:lib myfun -report

To see the generated structure type, open codegen/lib/myfun/myfun_types.h or view
myfun_types.h in the code generation report. The generated C structure type is:

typedef struct {
 double a;
 double b;
} myStruct;

Name the C Structure Type Generated for a Substructure

In a MATLAB function, myfun1, assign the name MyStruct to the generated C structure type for the
structure v. Assign the name mysubStruct to the structure type generated for the substructure v.b.

function y = myfun()
%#codegen
v = struct('a',1,'b',struct('f',3));
coder.cstructname(v, 'myStruct');
coder.cstructname(v.b, 'mysubStruct');
y = v;
end

2 Functions

2-76

The generated C structure type mysubStruct is:

typedef struct {
 double f;
} mysubStruct;

The generated C structure type myStruct is:

typedef struct {
 double a;
 mysubStruct b;
} myStruct;

Name the Structure Type Generated for a Cell Array

In a MATLAB function, myfun2, assign the name myStruct to the generated C structure type for the
cell arrayc.

function z = myfun2()
c = {1 2 3};
coder.cstructname(c,'myStruct')
z = c;

The generated C structure type for c is:

typedef struct {
 double f1;
 double f2;
 double f3;
} myStruct;

Name an Externally Defined C Structure Type

Specify that a structure passed to a C function has a structure type defined in a C header file.

Create a C header file mycadd.h for the function mycadd that takes a parameter of type mycstruct.
Define the type mycstruct in the header file.

#ifndef MYCADD_H
#define MYCADD_H

typedef struct {
 double f1;
 double f2;
} mycstruct;

double mycadd(mycstruct *s);
#endif

Write the C function mycadd.c.

#include <stdio.h>
#include <stdlib.h>

 coder.cstructname

2-77

#include "mycadd.h"

double mycadd(mycstruct *s)
{
 return s->f1 + s->f2;
}

Write a MATLAB function mymAdd that passes a structure by reference to mycadd. Use
coder.cstructname to specify that in the generated code, the structure has the C type mycstruct,
which is defined in mycadd.h.

function y = mymAdd
%#codegen
s = struct('f1', 1, 'f2', 2);
coder.cstructname(s, 'mycstruct', 'extern', 'HeaderFile', 'mycadd.h');
y = 0;
y = coder.ceval('mycadd', coder.ref(s));

Generate a C static library for function mymAdd.

codegen -config:lib mymAdd mycadd.c

The generated header file mymadd_types.h does not contain a definition of the structure
mycstruct because mycstruct is an external type.

Create a Structure Type Object That Names the Generated C Structure Type

Suppose that the entry-point function myFunction takes a structure argument. To specify the type of
the input argument at the command line:

1 Define an example structure S.
2 Create a type T from S by using coder.typeof.
3 Use coder.cstructname to create a type T1 that:

• Has the properties of T.
• Names the generated C structure type myStruct.

4 Pass the type to codegen by using the -args option.

For example:

S = struct('a',double(0),'b',single(0));
T = coder.typeof(S);
T1 = coder.cstructname(T,'myStruct');
codegen -config:lib myFunction -args T1

Alternatively, you can create the structure type directly from the example structure.

2 Functions

2-78

S = struct('a',double(0),'b',single(0));
T1 = coder.cstructname(S,'myStruct');
codegen -config:lib myFunction -args T1

Input Arguments
var — MATLAB structure or cell array variable
structure | cell array

MATLAB structure or cell array variable that is represented as a structure in the generated code.

structName — Name of C structure type
character vector | string scalar

Name of generated or externally defined C structure type, specified as a character vector or string
scalar.

headerfile — Header file that contains the C structure type definition
character vector | string scalar

Header file that contains the C structure type definition, specified as a character vector or string
scalar.

To specify the path to the file:

• Use the codegen -I option or the Additional include directories parameter on the MATLAB
Coder app settings Custom Code tab.

• For a MATLAB Function block, on the Simulation Target and the Code Generation > Custom
Code panes, under Additional build information, set the Include directories parameter.

Alternatively, use coder.updateBuildInfo with the 'addIncludePaths' option.
Example: 'mystruct.h'

alignment — Run-time memory alignment for structure
-1 (default) | power of 2

Run-time memory alignment for generated or externally defined structure.

intype — Type object or variable for creation of new type object
coder.StructType | coder.CellType | structure | cell array

Structure type object, cell array type object, structure variable, or cell array variable from which to
create a type object.

Limitations
• You cannot apply coder.cstructname directly to a global variable. To name the structure type

to use with a global variable, use coder.cstructname to create a type object that names the
structure type. Then, when you run codegen, specify that the global variable has that type. See
“Name the C Structure Type to Use With a Global Structure Variable” (MATLAB Coder).

• For cell array inputs, the field names of externally defined structures must be f1, f2, and so on.
• You cannot apply coder.cstructname directly to a class property.

 coder.cstructname

2-79

Tips
• For information about how the code generator determines the C/C++ types of structure fields, see

“Mapping MATLAB Types to Types in Generated Code” (MATLAB Coder).
• Using coder.cstructname on a structure array sets the name of the structure type of the base

element, not the name of the array. Therefore, you cannot apply coder.cstructname to a
structure array element, and then apply it to the array with a different C structure type name. For
example, the following code is not allowed. The second coder.cstructname attempts to set the
name of the base type to myStructArrayName, which conflicts with the previously specified
name, myStructName.

% Define scalar structure with field a
myStruct = struct('a', 0);
coder.cstructname(myStruct,'myStructName');
% Define array of structure with field a
myStructArray = repmat(myStruct,4,6);
coder.cstructname(myStructArray,'myStructArrayName');

• Applying coder.cstructname to an element of a structure array produces the same result as
applying coder.cstructname to the entire structure array. If you apply coder.cstructname to
an element of a structure array, you must refer to the element by using a single subscript. For
example, you can use var(1), but not var(1,1). Applying coder.cstructname to var(:)
produces the same result as applying coder.cstructname to var or var(n).

• Heterogeneous cell arrays are represented as structures in the generated code. Here are
considerations for using coder.cstructname with cell arrays:

• In a function from which you generate code, using coder.cstructname with a cell array
variable makes the cell array heterogeneous. Therefore, if a cell array is an entry-point
function input and its type is permanently homogeneous, then you cannot use
coder.cstructname with the cell array.

• Using coder.cstructname with a homogeneous coder.CellType object intype makes the
returned object heterogeneous. Therefore, you cannot use coder.cstructname with a
permanently homogeneous coder.CellType object. For information about when a cell array
is permanently homogeneous, see “Specify Cell Array Inputs at the Command Line” (MATLAB
Coder).

• When used with a coder.CellType object, coder.cstructname creates a
coder.CellType object that is permanently heterogeneous.

• When you use a structure named by coder.cstructname in a project with row-major and
column-major array layouts, the code generator renames the structure in certain cases, appending
row_ or col_ to the beginning of the structure name. This renaming provides unique type
definitions for the types that are used in both array layouts.

• These tips apply only to MATLAB Function blocks:

• MATLAB Function block input and output structures are associated with bus signals. The
generated name for the structure type comes from the bus signal name. Do not use
coder.cstructname to name the structure type for input or output signals. See “Create
Structures in MATLAB Function Blocks”.

• The code generator produces structure type names according to identifier naming rules, even
if you name the structure type with coder.cstructname. If you have Embedded Coder, you
can customize the naming rules. See “Construction of Generated Identifiers” (Embedded
Coder).

2 Functions

2-80

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ceval

Topics
“Structure Definition for Code Generation”
“Code Generation for Cell Arrays”
“Integrate C Code by Using the MATLAB Function Block”

 coder.cstructname

2-81

coder.extrinsic
Declare a function as extrinsic and execute it in MATLAB

Syntax
coder.extrinsic(function)
coder.extrinsic(function1, ... ,functionN)

coder.extrinsic('-sync:on', function1, ... ,functionN)
coder.extrinsic('-sync:off', function1, ... ,functionN)

Description
coder.extrinsic(function) declares function as an extrinsic function. The code generator
does not produce code for the body of the extrinsic function and instead uses the MATLAB engine to
execute the call. This functionality is available only when the MATLAB engine is available during
execution. Examples of situations where the MATLAB engine is available include execution of MEX
functions, Simulink simulations, or function calls at the time of code generation (also known as
compile time).

During standalone code generation, the code generator attempts to determine whether an extrinsic
function only has a side effect (for example, by displaying a plot) or whether it affects the output of
the function in which it is called (for example, by returning a value to an output variable). If there is
no change to the output, the code generator proceeds with code generation, but excludes the
extrinsic function from the generated code. Otherwise, the code generator produces a compilation
error.

You cannot use coder.ceval on functions that you declare as extrinsic by using coder.extrinsic.
Also, the coder.extrinsic directive is ignored outside of code generation.

See “Use MATLAB Engine to Execute a Function Call in Generated Code”.

Note The code generator automatically treats many common MATLAB visualization functions, such
as plot, disp, and figure, as extrinsic. You do not have to explicitly declare them as extrinsic
functions by using coder.extrinsic.

coder.extrinsic(function1, ... ,functionN) declares function1 through functionN as
extrinsic functions.

coder.extrinsic('-sync:on', function1, ... ,functionN) enables synchronization of
global data between MATLAB execution and generated code execution or Simulink simulation before
and after calls to the extrinsic functions function1 through functionN. If only a few extrinsic calls
use or modify global data, turn off synchronization before and after all extrinsic function calls by
setting the global synchronization mode to At MEX-function entry and exit. Use the '-
sync:on' option to turn on synchronization for only the extrinsic calls that do modify global data.

If you use MATLAB Coder to generate a MEX function, the '-sync:on' option enables verification of
consistency of constant global data between MATLAB and MEX functions after calls to the extrinsic
functions.

2 Functions

2-82

See “Generate Code for Global Data” (MATLAB Coder).

coder.extrinsic('-sync:off', function1, ... ,functionN) disables synchronization of
global data between MATLAB execution and generated code execution before and after calls to the
extrinsic functions function1 through functionN. If most extrinsic calls use or modify global data,
but a few do not, use the '-sync:off' option to turn off synchronization for the extrinsic calls that
do not modify global data.

If you use MATLAB Coder to generate a MEX function, the '-sync:off' option disables verification
of consistency of constant global data between MATLAB and MEX functions after calls to the extrinsic
functions.

See “Generate Code for Global Data” (MATLAB Coder).

Examples

Declare a Function as Extrinsic

The MATLAB function str2num is not supported for code generation. This example shows how you
can still use the functionality of str2num in your generated MEX function by declaring str2num as
extrinsic in your MATLAB function.

This MATLAB code declares str2num as extrinsic in the local function convertStringToNumber.
By declaring str2num as extrinsic, you instruct the code generator not to produce code for str2num.
Instead, the code generator dispatches str2num to MATLAB for execution.

function n = convertStringToNumber(c)
 %#codegen
 coder.extrinsic('str2num');
 n = str2num(c);
end

Generate a MEX function for convertStringToNumber.

codegen convertStringToNumber -args {coder.typeof('c', [1 Inf])} -report

In the report, you can view the generated code.

/* Function Definitions */
static const mxArray *str2num(const emlrtStack *sp,
 const mxArray *m1,emlrtMCInfo *location)
{
 const mxArray *m;
 const mxArray *pArray;
 pArray = m1;
 return emlrtCallMATLABR2012b((emlrtConstCTX)sp, 1, &m, 1,
 &pArray, "str2num", true, location);
}

Return Output of Extrinsic Function to MATLAB at Run Time

The output that an extrinsic function returns at run time is an mxArray, also known as a MATLAB
array. The only valid operations for an mxArray are storing it in a variable, passing it to another

 coder.extrinsic

2-83

extrinsic function, or returning it to MATLAB. To perform any other opeation on an mxArray value,
such as using it in an expression in your code, you must convert the mxArray to a known type at run
time. To perform this action, assign the mxArray to a variable whose type is already defined by a
prior assignment.

This example shows how to return an mxArray output from an extrinsic function directly to MATLAB.
The next example shows how to convert the same mxArray output to a known type, and then use it in
an expression inside your MATLAB function.

Define Entry-Point Function

Define a MATLAB function return_extrinsic_output that accepts source and target node indices
for a directed graph as inputs and determines if the graph is acyclic by using the hascycles
function. The hascycles function is not supported for code generation and is declared as extrinsic.

type return_extrinsic_output.m

function hasCycles = return_extrinsic_output(source,target)
coder.extrinsic('hascycles');
assert(numel(source) == numel(target))
G = digraph(source,target);
hasCycles = hascycles(G);
end

Generate and Call MEX Function

Generate MEX code for return_extrinsic_output. Specify the inputs to be unbounded vectors of
type double.

codegen return_extrinsic_output -args {coder.typeof(0,[1 Inf]),coder.typeof(0,[1 Inf])} -report

Code generation successful: To view the report, open('codegen\mex\return_extrinsic_output\html\report.mldatx')

Call the generated MEX function return_extrinsic_output_mex with suitable inputs:

return_extrinsic_output([1 2 4 4],[2 3 3 1])

ans = logical
 0

To visually inspect if the directed graph has cycles, plot the directed graph in MATLAB.

plot(digraph([1 2 4 4],[2 3 3 1]))

2 Functions

2-84

Use Output of Extrinsic Function in an Expression at Run Time

The output that an extrinsic function returns is an mxArray, also known as a MATLAB array. The only
valid operations for an mxArray are storing it in a variable, passing it to another extrinsic function,
or returning it to MATLAB. To perform any other operation on an mxArray value, such as using it in
an expression in your code, convert the mxArray to a known type at run time. To perform this action,
assign the mxArray to a variable whose type is already defined by a prior assignment.

This example shows how to convert the mxArray output of an extrinsic function to a known type, and
then use the output in an expression inside your MATLAB function.

Define Entry-Point Function

Define a MATLAB function use_extrinsic_output that accepts source and target node indices for
a directed graph as inputs and determines if the graph is acyclic by using the hascycles function.
The hascycles function is not supported for code generation and is declared as extrinsic. The entry-
point function displays a message based on the output of the hascycles function.

type use_extrinsic_output

function use_extrinsic_output(source,target) %#codegen
assert(numel(source) == numel(target))
G = digraph(source,target);

coder.extrinsic('hascycles');

 coder.extrinsic

2-85

hasCycles = true;

hasCycles = hascycles(G);
if hasCycles == true
 disp('The graph has cycles')
else
 disp('The graph does not have cycles')
end
end

The local variable hasCycles is first preassigned the Boolean value true before the assignment
hasCycles = hascycles(G) occurs. This preassignment enables the code generator to convert the
mxArray that the extrinsic function hascycles returns to a Bsoolean before assigning it to the
hasCycles variable. This conversion in turn enables you to compare hasCycles with the Boolean
true in the condition of the if statement.

Generate and Call MEX Function

Generate MEX code for use_extrinsic_output. Specify the inputs to be unbounded vectors of
type double.

codegen use_extrinsic_output -args {coder.typeof(0,[1 Inf]),coder.typeof(0,[1 Inf])} -report

Code generation successful: To view the report, open('codegen\mex\use_extrinsic_output\html\report.mldatx')

Call the generated MEX function use_extrinsic_output_mex with suitable inputs:

use_extrinsic_output_mex([1 2 4 4],[2 3 3 1])

The graph does not have cycles

To see if the directed graph has cycles, plot the graph in MATLAB.

plot(digraph([1 2 4 4],[2 3 3 1]))

2 Functions

2-86

Evaluate Extrinsic Function Call at Compile Time by Using coder.const

This example shows how to call an extrinsic function at the time of code generation (also known as
compile time) by using coder.const. Because the MATLAB engine is always available during the
evaluation of the expression inside coder.const, you can use this coding pattern when generating
either MEX or standalone code. Unlike the previous two examples that show run-time execution, you
do not need to explicitly convert the output of the extrinsic function to a known type if its evaluation
happens at compile time.

In this example, the entry-point function rotate_complex invokes another function xml2struct
that uses the MATLAB API for XML processing. Because code generation does not support the
MATLAB API for XML processing, the xml2struct function is declared as extrinsic in the body of the
entry-point function. Also, the call to xml2struct inside the entry-point function returns a compile-
time constant. So, this output is constant-folded by placing the function call inside the coder.const
directive.

Inspect XML File Containing Parameters

The supporting file complex.xml contains the values of real and imaginary parts of a complex
number.

type complex.xml

<params>
 <param name="real" value="3"/>

 coder.extrinsic

2-87

 <param name="imaginary" value="4"/>
</params>

Define xml2struct Function

The MATLAB function xml2struct reads an XML file that uses the format of complex.xml to store
parameter names and values, stores this information as structure fields, and returns this structure.

type xml2struct.m

function s = xml2struct(file)
s = struct();
import matlab.io.xml.dom.*
doc = parseFile(Parser,file);
els = doc.getElementsByTagName("params");
for i = 0:els.getLength-1
 it = els.item(i);
 ps = it.getElementsByTagName("param");
 for j = 0:ps.getLength-1
 param = ps.item(j);
 paramName = char(param.getAttribute("name"));
 paramValue = char(param.getAttribute("value"));
 paramValue = evalin("base", paramValue);
 s.(paramName) = paramValue;
 end
end

Define Entry-Point Function

Your MATLAB entry-point function rotate_complex first calls xml2struct to read the file
complex.xml. It then rotates the complex number by an angle that is equal to the input argument
theta in degrees and returns the resulting complex number.

type rotate_complex.m

function y = rotate_complex(theta) %#codegen
coder.extrinsic("xml2struct");
s = coder.const(xml2struct("complex.xml"));

comp = s.real + 1i * s.imaginary;
magnitude = abs(comp);
phase = angle(comp) + deg2rad(theta);
y = magnitude * cos(phase) + 1i * sin(phase);

end

The xml2struct function is declared as extrinsic and its output is constant-folded by placing the
function inside the coder.const directive.

Generate and Inspect Static Library

Generate a static library for read_complex by using the codegen (MATLAB Coder) command.
Specify the input type to be a scalar double.

codegen -config:lib rotate_complex -args {0} -report

Warning: Code generation is using a coder.EmbeddedCodeConfig object. Because
Embedded Coder is not installed, this might cause some Embedded Coder features

2 Functions

2-88

to fail.

Code generation successful (with warnings): To view the report, open('codegen\lib\rotate_complex\html\report.mldatx')

Inspect the generated C++ file rotate_complex.c. Observe that the output of the xml2struct
function is hardcoded in the generated code.

type codegen/lib/rotate_complex/rotate_complex.c

/*
 * File: rotate_complex.c
 *
 * MATLAB Coder version : 5.6
 * C/C++ source code generated on : 03-Mar-2023 07:28:32
 */

/* Include Files */
#include "rotate_complex.h"
#include <math.h>

/* Function Definitions */
/*
 * Arguments : double theta
 * Return Type : creal_T
 */
creal_T rotate_complex(double theta)
{
 creal_T y;
 double y_tmp;
 y_tmp = 0.017453292519943295 * theta + 0.92729521800161219;
 y.re = 5.0 * cos(y_tmp);
 y.im = sin(y_tmp);
 return y;
}

/*
 * File trailer for rotate_complex.c
 *
 * [EOF]
 */

Input Arguments
function — MATLAB function name
character vector

Name of the MATLAB function that is declared as extrinsic.
Example: coder.extrinsic('patch')
Data Types: char

Limitations
• Extrinsic function calls have some overhead that can affect performance. Input data that is passed

in an extrinsic function call must be provided to MATLAB, which requires making a copy of the

 coder.extrinsic

2-89

data. If the function has any output data, this data must be transferred back into the MEX function
environment, which also requires a copy.

• The code generator does not support the use of coder.extrinsic to call functions that are
located in a private folder.

• The code generator does not support the use of coder.extrinsic to call local functions.

Tips
• The code generator automatically treats many common MATLAB visualization functions, such as

plot, disp, and figure, as extrinsic. You do not have to explicitly declare them as extrinsic
functions by using coder.extrinsic.

• Use the coder.screener function to detect which functions you must declare as extrinsic. This
function runs the Code Generation Readiness Tool that screens the MATLAB code for features and
functions that are not supported for code generation.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ceval | coder.screener

Topics
“Use MATLAB Engine to Execute a Function Call in Generated Code”
“Generate Code for Global Data” (MATLAB Coder)
“Resolution of Function Calls for Code Generation”

2 Functions

2-90

coder.ignoreConst
Prevent use of constant value of expression for function specializations

Syntax
coder.ignoreConst(expression)

Description
coder.ignoreConst(expression) prevents the code generator from using the constant value of
expression to create function specializations on page 2-93. coder.ignoreConst(expression)
returns the value of expression.

Examples

Prevent Function Specializations Based on Constant Input Values

Use coder.ignoreConst to prevent function specializations for a function that is called with
constant values.

Write the function call_myfn, which calls myfcn.

function [x, y] = call_myfcn(n)
%#codegen
x = myfcn(n, 'mode1');
y = myfcn(n, 'mode2');
end

function y = myfcn(n,mode)
coder.inline('never');
if strcmp(mode,'mode1')
 y = n;
else
 y = -n;
end
end

Generate standalone C code. For example, generate a static library. Enable the code generation
report.

codegen -config:lib call_myfcn -args {1} -report

In the code generation report, you see two function specializations for call_myfcn.

 coder.ignoreConst

2-91

The code generator creates call_myfcn>myfcn>1 for mode with a value of 'mode1'. It creates
call_myfcn>myfcn>2 for mode with a value of 'mode2'.

In the generated C code, you see the specializations my_fcn and b_my_fcn.

static double b_myfcn(double n)
{
 return -n;
}

static double myfcn(double n)
{
 return n;
}

To prevent the function specializations, instruct the code generator to ignore that values of the mode
argument are constant.

function [x, y] = call_myfcn(n)
%#codegen
x = myfcn(n, coder.ignoreConst('mode1'));
y = myfcn(n, coder.ignoreConst('mode2'));
end

function y = myfcn(n,mode)
coder.inline('never');
if strcmp(mode,'mode1')
 y = n;
else
 y = -n;
end
end

Generate the C code.

codegen -config:lib call_myfcn -args {1} -report

In the code generation report, you do not see multiple function specializations.

In the generated C code, you see one function for my_fcn.

Input Arguments
expression — Expression whose value is to be treated as a nonconstant
MATLAB expression

Expression whose value is to be treated as a nonconstant, specified as a MATLAB expression.

2 Functions

2-92

More About
Function Specialization

Version of a function in which an input type, size, complexity, or value is customized for a particular
invocation of the function.

Function specialization produces efficient C code at the expense of code duplication. The code
generation report shows all MATLAB function specializations that the code generator creates.
However, the specializations might not appear in the generated C/C++ code due to later
transformations or optimizations.

Tips
• For some recursive function calls, you can use coder.ignoreConst to force run-time recursion.

See “Force Code Generator to Use Run-Time Recursion”.
• coder.ignoreConst(expression) prevents the code generator from using the constant value

of expression to create function specializations. It does not prevent other uses of the constant
value during code generation.

Version History
Introduced in R2017a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.inline | coder.ignoreSize

Topics
“Force Code Generator to Use Run-Time Recursion”
“Compile-Time Recursion Limit Reached”
“Avoid Duplicate Functions in Generated Code”

 coder.ignoreConst

2-93

coder.ignoreSize
Package: coder

Prevent code generator from creating function specializations for constant-size expressions

Syntax
coder.ignoreSize(expression)

Description
coder.ignoreSize(expression) declares that the code generator must not use the constant size
of an expression to create function specializations.

Examples
Duplicate Functions Generated for Multiple Input Sizes

If your MATLAB code calls a function multiple times and passes inputs of different sizes, the code
generator can create function specializations for each size. To avoid this issue, use
coder.ignoreSize on the function input. For example, this code uses coder.ignoreSize to avoid
creating multiple copies of the function indexOf:

function [out1, out2] = test1(in)
 a = 1:10;
 b = 2:40;
 % Without coder.ignoreSize duplicate functions are generated
 out1 = indexOf(coder.ignoreSize(a), in);
 out2 = indexOf(coder.ignoreSize(b), in);
end

function index = indexOf(array, value)
 coder.inline('never');
 for i = 1:numel(array)
 if array(i) == value
 index = i;
 return
 end
 end
 index = -1;
 return
end

To generate code, enter:

codegen test1 -config:lib -report -args {1}

Input Arguments
expression — Expression whose size is to be treated as nonconstant
MATLAB expression

2 Functions

2-94

Example: foo(coder.ignoreSize(1:10))

More About
Function Specialization

Version of a function in which an input type, size, complexity, or value is customized for a particular
invocation of the function.

Function specialization produces efficient C code at the expense of code duplication. The code
generation report shows all MATLAB function specializations that the code generator creates.
However, the specializations might not appear in the generated C/C++ code due to later
transformations or optimizations.

Tips
• If you assign an expression to a variable and declare the variable as variable-size by using

coder.varsize, this declaration has the same effect as using coder.ignoreSize on the
expression.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ignoreConst

Topics
“Avoid Duplicate Functions in Generated Code”

 coder.ignoreSize

2-95

coder.inline
Package: coder

Control inlining of a specific function in generated code

Syntax
coder.inline('always')
coder.inline('never')
coder.inline('default')

Description
coder.inline('always') forces inlining on page 2-97 of the current function in the generated
code. Place the coder.inline directive inside the function that you want to inline. The code
generator does not inline entry-point functions and recursive functions. Also, the code generator does
not inline functions into parfor loops, or inline functions called from parfor loops.

coder.inline('never') prevents inlining of the current function in the generated code. Prevent
inlining when you want to simplify the mapping between the MATLAB source code and the generated
code.

Note If you use the codegen or the fiaccel command, you can disable inlining for all functions by
using the -O disable:inline option.

If you generate C/C++ code by using the codegen command or the MATLAB Coder app, you might
have different speed and readability requirements for the code generated for functions that you write
and the code generated for MathWorks® functions. Certain additional global settings enable you to
separately control the inlining behavior for these two parts of the generated code base and at the
boundary between them. See “Control Inlining to Fine-Tune Performance and Readability of
Generated Code” (MATLAB Coder).

In cases where the code generator does not prevent inlining of a function in the generated code even
if it contains the coder.inline('never') directive, use the coder.ignoreConst function on an
input at the function call site in your MATLAB code. For more information, see “Resolve Issue:
coder.inline('never') Does Not Prevent Inlining of Function” (MATLAB Coder).

coder.inline('default') instructs the code generator to use internal heuristics to determine
whether to inline the current function. Usually, the heuristics produce highly optimized code. Use
coder.inline explicitly in your MATLAB functions only when you need to fine-tune these
optimizations.

Examples

Prevent Function Inlining

In this example, function foo is not inlined in the generated code:

2 Functions

2-96

function y = foo(x)
 coder.inline('never');
 y = x;
end

Use coder.inline in Control Flow Statements

You can use coder.inline in control flow code. If the software detects contradictory
coder.inline directives, the generated code uses the default inlining heuristic and issues a
warning.

Suppose that you want to generate code for a division function that runs on a system with limited
memory. To optimize memory use in the generated code, the inline_division function manually
controls inlining based on whether it performs scalar division or vector division:

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code
% than the function call itself.
if isscalar(dividend) && isscalar(divisor)
 coder.inline('always');
else
% Vector division produces a for-loop.
% Prohibit inlining to reduce code size.
 coder.inline('never');
end

if any(divisor == 0)
 error('Cannot divide by 0');
end

y = dividend / divisor;

More About
Inlining

Technique that replaces a function call with the contents (body) of that function. Inlining eliminates
the overhead of a function call, but can produce larger C/C++ code. Inlining can create opportunities
for further optimization of the generated C/C++ code.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

 coder.inline

2-97

See Also
Topics
“Resolve Issue: coder.inline('never') Does Not Prevent Inlining of Function” (MATLAB Coder)

2 Functions

2-98

coder.isColumnMajor
Determine whether the current function or variable uses column-major layout

Syntax
coder.isColumnMajor
coder.isColumnMajor(arg)

Description
coder.isColumnMajor resolves as true in the generated code if the current function uses column-
major array layout. Use the function as the expression in control flow (if, else, switch) statements.

coder.isColumnMajor(arg) resolves as true if the current variable uses column-major array
layout.

Examples

Query Array Layout of a Function

To query the array layout of a function at compile time, use coder.isColumnMajor or
coder.isRowMajor. This query can be useful for specializing your generated code when it involves
row-major and column-major functions. For example, consider this function:

function S = addMatrixRouted(A,B)
 if coder.isRowMajor
 %execute this code if row major
 S = addMatrix_OptimizedForRowMajor(A,B);
 elseif coder.isColumnMajor
 %execute this code if column major
 S = addMatrix_OptimizedForColumnMajor(A,B);
 end

The function addMatrixRouted behaves differently depending on whether it uses row-major layout
or column-major layout. The layout that the function uses, for example, can depend on whether it is
called from a function that contains coder.rowMajor or coder.columnMajor. When
addMatrixRouted uses row-major layout, it calls the addMatrix_OptimizedForRowMajor
function, which has efficient memory access for row-major data. When the function uses column-
major layout, it calls a version of the addMatrix function optimized for column-major data.

By using the query functions, the generated code for addMatrixRouted provides efficient memory
access for either choice of array layout.

Query Array Layout of a Variable

Consider the function bar:

function bar
coder.columnMajor;

 coder.isColumnMajor

2-99

x = magic(3);
if coder.isColumnMajor(x)
 fprintf('This will always be displayed in generated code.\n');
else
 fprintf('This will never be displayed in generated code.\n');
end
end

Generate code:

codegen bar

To run the MEX function, enter:

bar_mex

Input Arguments
arg — Variable name
array variable

Variable to query for array layout.
Example: coder.isColumnMajor(x);

Limitations
• You cannot query the array layout of a structure field or property.

Tips
• The code generator uses column-major layout by default.
• Outside of code generation and simulation, coder.isColumnMajor is always true.
• If coder.isColumnMajor always resolves to true for your code, other branches in the if

statement are ignored by the code generator. Otherwise, one instance of the current function is
created for each array layout.

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ceval | coder.rowMajor | coder.columnMajor | coder.isRowMajor

2 Functions

2-100

Topics
“Interface with Row-Major Data in MATLAB Function Block”
“Specify Array Layout in Functions and Classes”
“Code Generation of Matrices and Arrays” (Simulink Coder)

 coder.isColumnMajor

2-101

coder.isRowMajor
Determine whether the current function or variable uses row-major layout

Syntax
coder.isRowMajor
coder.isRowMajor(arg)

Description
coder.isRowMajor resolves as true in the generated code if the current function uses row-major
array layout. Use the function as the expression in control flow (if, else, switch) statements.

coder.isRowMajor(arg) resolves as true if the current variable uses row-major array layout.

Examples

Query Array Layout of a Function

To query the array layout of a function at compile time, use coder.isRowMajor or
coder.isColumnMajor. This query can be useful for specializing your generated code when it
involves row-major and column-major functions. For example, consider this function:

function S = addMatrixRouted(A,B)
 if coder.isRowMajor
 %execute this code if row major
 S = addMatrix_OptimizedForRowMajor(A,B);
 elseif coder.isColumnMajor
 %execute this code if column major
 S = addMatrix_OptimizedForColumnMajor(A,B);
 end

The function addMatrixRouted behaves differently depending on whether it uses row-major layout
or column-major layout. The layout that the function uses, for example, can depend on whether it is
called from a function that contains coder.rowMajor or coder.columnMajor. When
addMatrixRouted uses row-major layout, it calls the addMatrix_OptimizedForRowMajor
function, which has efficient memory access for row-major data. When the function uses column-
major layout, it calls a version of the addMatrix function optimized for column-major data.

By using the query functions, the generated code for addMatrixRouted provides efficient memory
access for either choice of array layout.

Query Array Layout of a Variable

Consider the function foo:

function foo
coder.rowMajor;

2 Functions

2-102

x = magic(3);
if coder.isRowMajor(x)
 fprintf('This will always be displayed in generated code.\n');
else
 fprintf('This will never be displayed in generated code.\n');
end
end

Generate code:

codegen foo

To run the MEX function, enter:

foo_mex

Input Arguments
arg — Variable name
array variable

Variable to query for array layout.
Example: coder.isRowMajor(x);

Limitations
• You cannot query the array layout of a structure field or property.

Tips
• Outside of code generation and simulation, coder.isRowMajor is always false.
• If coder.isRowMajor always resolves to true for your code, other branches in the if statement

are ignored by the code generator. Otherwise, one instance of the current function is created for
each array layout.

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ceval | coder.rowMajor | coder.columnMajor | coder.isColumnMajor

 coder.isRowMajor

2-103

Topics
“Interface with Row-Major Data in MATLAB Function Block”
“Specify Array Layout in Functions and Classes”
“Code Generation of Matrices and Arrays” (Simulink Coder)

2 Functions

2-104

coder.load
Load compile-time constants from MAT-file or ASCII file

Syntax
S = coder.load(filename)
S = coder.load(filename,var1,...,varN)
S = coder.load(filename,'-regexp',expr1,...,exprN)
S = coder.load(filename,'-ascii')
S = coder.load(filename,'-mat')
S = coder.load(filename,'-mat',var1,...,varN)
S = coder.load(filename,'-mat','-regexp', expr1,...,exprN)

Description
S = coder.load(filename) loads compile-time constants from filename.

• If filename is a MAT-file, then coder.load loads variables from the MAT-file into a structure
array.

• If filename is an ASCII file, then coder.load loads data into a double-precision array.

coder.load loads data at code generation time, also referred to as compile time. If you change the
content of filename after you generate code, the change is not reflected in the behavior of the
generated code.

S = coder.load(filename,var1,...,varN) loads only the specified variables from the MAT-file
filename.

S = coder.load(filename,'-regexp',expr1,...,exprN) loads only the variables that match
the specified regular expressions.

S = coder.load(filename,'-ascii') treats filename as an ASCII file, regardless of the file
extension.

S = coder.load(filename,'-mat') treats filename as a MAT-file, regardless of the file
extension.

S = coder.load(filename,'-mat',var1,...,varN) treats filename as a MAT-file and loads
only the specified variables from the file.

S = coder.load(filename,'-mat','-regexp', expr1,...,exprN) treats filename as a
MAT-file and loads only the variables that match the specified regular expressions.

Examples

 coder.load

2-105

Load compile-time constants from MAT-file

Generate code for a function edgeDetect1 which given a normalized image, returns an image where
the edges are detected with respect to the threshold value. edgeDetect1 uses coder.load to load
the edge detection kernel from a MAT-file at compile time.

Save the Sobel edge-detection kernel in a MAT-file.

k = [1 2 1; 0 0 0; -1 -2 -1];

save sobel.mat k

Write the function edgeDetect1.

function edgeImage = edgeDetect1(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

S = coder.load('sobel.mat','k');
H = conv2(double(originalImage),S.k, 'same');
V = conv2(double(originalImage),S.k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for edgeDetect1.

codegen -report -config cfg edgeDetect1

codegen generates C code in the codegen\lib\edgeDetect1 folder.

Load compile-time constants from ASCII file

Generate code for a function edgeDetect2 which given a normalized image, returns an image where
the edges are detected with respect to the threshold value. edgeDetect2 uses coder.load to load
the edge detection kernel from an ASCII file at compile time.

Save the Sobel edge-detection kernel in an ASCII file.

k = [1 2 1; 0 0 0; -1 -2 -1];
save sobel.dat k -ascii

Write the function edgeDetect2.

function edgeImage = edgeDetect2(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

k = coder.load('sobel.dat');
H = conv2(double(originalImage),k, 'same');
V = conv2(double(originalImage),k','same');

2 Functions

2-106

E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for edgeDetect2.

codegen -report -config cfg edgeDetect2

codegen generates C code in the codegen\lib\edgeDetect2 folder.

Input Arguments
filename — Name of file
character vector | string scalar

Name of file. filename must be a compile-time constant.

filename can include a file extension and a full or partial path. If filename has no extension, load
looks for a file named filename.mat. If filename has an extension other than .mat, load treats
the file as ASCII data.

ASCII files must contain a rectangular table of numbers, with an equal number of elements in each
row. The file delimiter (the character between elements in each row) can be a blank, comma,
semicolon, or tab character. The file can contain MATLAB comments (lines that begin with a percent
sign, %).
Example: 'myFile.mat'

var1,...,varN — Names of variables to load
character vector | string scalar

Names of variables, specified as one or more character vectors or string scalars. Each variable name
must be a compile-time constant. Use the * wildcard to match patterns.
Example: coder.load('myFile.mat','A*') loads all variables in the file whose names start with
A.

expr1,...,exprN — Regular expressions indicating which variables to load
character vector | string scalar

Regular expressions indicating which variables to load specified as one or more character vectors or
string scalars. Each regular expression must be a compile-time constant.
Example: coder.load('myFile.mat', '-regexp', '^A') loads only variables whose names
begin with A.

Output Arguments
S — Loaded variables or data
structure array | m-by-n array

If filename is a MAT-file, S is a structure array.

 coder.load

2-107

If filename is an ASCII file, S is an m-by-n array of type double. m is the number of lines in the file
and n is the number of values on a line.

Limitations
• Arguments to coder.load must be compile-time constants.
• The output S must be the name of a structure or array without any subscripting. For example,

S(i) = coder.load('myFile.mat') is not allowed.
• You cannot use save to save workspace data to a file inside a function intended for code

generation. The code generator does not support the save function. Furthermore, you cannot use
coder.extrinsic with save. Prior to generating code, you can use save to save workspace
data to a file.

Tips
• coder.load(filename) loads data at compile time, not at run time. If you change the content of

filename after you generate code, the change is not reflected in the behavior of the generated
code. If you are generating MEX code or code for Simulink simulation, you can use the MATLAB
function load to load run-time values.

• If the MAT-file contains unsupported constructs, use coder.load(filename,var1,...,varN)
to load only the supported constructs.

• If you generate code in a MATLAB Coder project, the code generator practices incremental code
generation for the coder.load function. When the MAT-file or ASCII file used by coder.load
changes, the software rebuilds the code.

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
matfile | regexp | save

Topics
“Regular Expressions”

2 Functions

2-108

coder.nullcopy
Package: coder

Declare uninitialized variables in code generation

Syntax
X = coder.nullcopy(A)

Description
X = coder.nullcopy(A) copies type, size, and complexity of A to X, but does not copy element
values. The function preallocates memory for X without incurring the overhead of initializing memory.
In code generation, the coder.nullcopy function declares uninitialized variables. In MATLAB,
coder.nullcopy returns the input such that X is equal to A.

If X is a structure or a class containing variable-sized arrays, then you must assign the size of each
array. coder.nullcopy does not copy sizes of arrays or nested arrays from its argument to its
result.

Note Before you use X in a function or a program, ensure that the data in X is completely initialized.
Declaring a variable through coder.nullcopy without assigning all the elements of the variable
results in nondeterministic program behavior. For more information, see “How to Eliminate
Redundant Copies by Defining Uninitialized Variables”.

Examples

Declare a Variable Without Initialization

This example shows how to declare an array type variable without initializing any value in the array.

To generate code for the following function, you must fully declare the output variable outp as a n-
by-n array of real doubles before subscripting into outp. To perform this declaration without
initializing all the values in the array, use coder.nullcopy.

function outp = foo(n) %#codegen

outp = coder.nullcopy(ones(n));
for idx = 1:n*n
 if mod(idx,2) == 0
 outp(idx) = idx;
 else
 outp(idx) = idx + 1;
 end
end

Run this codegen command to generate code and launch report.

codegen -config:lib -c foo -args {0} -launchreport

 coder.nullcopy

2-109

In the code generation report, click Trace Code to see the mapping between the MATLAB code and
the generated code. To use the code traceability feature, you must have Embedded Coder.

The following figures show the comparison between the code generated with and without
coder.nullcopy. Using coder.nullcopy with ones can specify the size of array outp without
initializing each element to one.

If you do not use coder.nullcopy, the generated code explicitly initializes every element in outp to
one (see lines 32 to 35).

Note In some situations, the code generator automatically performs the optimization corresponding
to coder.nullcopy, even if you do not explicitly include the coder.nullcopy directive in your
MATLAB code.

Input Arguments
A — Variable to copy
scalar | vector | matrix | class | multidimensional array

Variable to copy, specified as a scalar, vector, matrix, or multidimensional array.

2 Functions

2-110

Example: coder.nullcopy(A);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | class
Complex Number Support: Yes

Limitations
• You cannot use coder.nullcopy on sparse matrices.
• You cannot use coder.nullcopy with classes that support overloaded parentheses or require

indexing methods to access their data, such as table.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Topics
“Eliminate Redundant Copies of Variables in Generated Code”

 coder.nullcopy

2-111

coder.opaque
Declare variable in generated code

Syntax
y = coder.opaque(type)
y = coder.opaque(type,value)
y = coder.opaque(___ ,'Size',Size)
y = coder.opaque(___ ,'HeaderFile',HeaderFile)

Description
y = coder.opaque(type) declares a variable y with the specified type and no initial value in the
generated code.

• y can be a variable or a structure field.
• MATLAB code cannot set or access y, but external C functions can accept y as an argument.
• y can be an:

• Argument to coder.rref, coder.wref, or coder.ref
• Input or output argument to coder.ceval
• Input or output argument to a user-written MATLAB function
• Input to a subset of MATLAB toolbox functions supported for code generation

• Assignment from y declares another variable with the same type in the generated code. For
example:

y = coder.opaque('int');
z = y;

declares a variable z of type int in the generated code.
• You can assign y from another variable declared using either coder.opaque or assignment from

a variable declared using coder.opaque. The variables must have identical types.
• You can compare y to another variable declared using either coder.opaque or assignment from a

variable declared using coder.opaque. The variables must have identical types.

y = coder.opaque(type,value) specifies the type and initial value of y.

y = coder.opaque(___ ,'Size',Size) specifies the size, in bytes, of y. You can specify the size
with any of the previous syntaxes.

y = coder.opaque(___ ,'HeaderFile',HeaderFile) specifies the header file that contains the
type definition. The code generator produces the #include statement for the header file where the
statement is required in the generated code. You can specify the header file with any of the previous
syntaxes.

2 Functions

2-112

Examples
Declare Variable Specifying Initial Value

Generate code for a function valtest which returns 1 if the call to myfun is successful. This
function uses coder.opaque to declare a variable x1 with type int and initial value 0. The
assignment x2 = x1 declares x2 to be a variable with the type and initial value of x1.

Write a function valtest.

function y = valtest
%codegen
%declare x1 to be an integer with initial value '0'
x1 = coder.opaque('int','0');
%Declare x2 to have same type and initial value as x1
x2 = x1;
x2 = coder.ceval('myfun');
%test the result of call to 'myfun' by comparing to value of x1
if x2 == x1
 y = 0;
else
 y = 1;
end
end

Declare Variable Specifying Initial Value and Header File

Generate code for a MATLAB function filetest which returns its own source code using fopen/
fread/fclose. This function uses coder.opaque to declare the variable that stores the file pointer
used by fopen/fread/fclose. The call to coder.opaque declares the variable f with type FILE
*, initial value NULL, and header file <stdio.h>.

Write a MATLAB function filetest.
function buffer = filetest
%#codegen

% Declare 'f' as an opaque type 'FILE *' with initial value 'NULL"
%Specify the header file that contains the type definition of 'FILE *';

f = coder.opaque('FILE *', 'NULL','HeaderFile','<stdio.h>');
% Open file in binary mode
f = coder.ceval('fopen', cstring('filetest.m'), cstring('rb'));

% Read from file until end of file is reached and put
% contents into buffer
n = int32(1);
i = int32(1);
buffer = char(zeros(1,8192));
while n > 0
 % By default, MATLAB converts constant values
 % to doubles in generated code
 % so explicit type conversion to int32 is inserted.
 n = coder.ceval('fread', coder.ref(buffer(i)), int32(1), ...
 int32(numel(buffer)), f);
 i = i + n;
end
coder.ceval('fclose',f);

buffer = strip_cr(buffer);

% Put a C termination character '\0' at the end of MATLAB character vector

 coder.opaque

2-113

function y = cstring(x)
 y = [x char(0)];

% Remove all character 13 (CR) but keep character 10 (LF)
function buffer = strip_cr(buffer)
j = 1;
for i = 1:numel(buffer)
 if buffer(i) ~= char(13)
 buffer(j) = buffer(i);
 j = j + 1;
 end
end
buffer(i) = 0;

Compare Variables Declared Using coder.opaque

Compare variables declared using coder.opaque to test for successfully opening a file.

Use coder.opaque to declare a variable null with type FILE * and initial value NULL.

null = coder.opaque('FILE *', 'NULL', 'HeaderFile', '<stdio.h>');

Use assignment to declare another variable ftmp with the same type and value as null.

ftmp = null;
ftmp = coder.ceval('fopen', ['testfile.txt', char(0)], ['r', char(0)]);

Compare the variables.

if ftmp == null
 %error condition
end

Cast to and from Types of Variables Declared Using coder.opaque

This example shows how to cast to and from types of variables that are declared using
coder.opaque. The function castopaque calls the C run-time function strncmp to compare at
most n characters of the strings s1 and s2. n is the number of characters in the shorter of the
strings. To generate the correct C type for the strncmp input nsizet, the function casts n to the C
type size_t and assigns the result to nsizet. The function uses coder.opaque to declare nsizet.
Before using the output retval from strncmp, the function casts retval to the MATLAB type
int32 and stores the results in y.

Write this MATLAB function:

function y = castopaque(s1,s2)

% <0 - the first character that does not match has a lower value in s1 than in s2
% 0 - the contents of both strings are equal
% >0 - the first character that does not match has a greater value in s1 than in s2
%
%#codegen

coder.cinclude('<string.h>');
n = min(numel(s1), numel(s2));

% Convert the number of characters to compare to a size_t

nsizet = cast(n,'like',coder.opaque('size_t','0'));

2 Functions

2-114

% The return value is an int
retval = coder.opaque('int');
retval = coder.ceval('strncmp', cstr(s1), cstr(s2), nsizet);

% Convert the opaque return value to a MATLAB value
y = cast(retval, 'int32');

%--------------
function sc = cstr(s)
% NULL terminate a MATLAB character vector for C
sc = [s, char(0)];

Generate the MEX function.

codegen castopaque -args {blanks(3), blanks(3)} -report

Call the MEX function with inputs 'abc' and 'abc'.

castopaque_mex('abc','abc')

ans =

 0

The output is 0 because the strings are equal.

Call the MEX function with inputs 'abc' and 'abd'.

castopaque_mex('abc','abd')

ans =

 -1

The output is -1 because the third character d in the second string is greater than the third
character c in the first string.

Call the MEX function with inputs 'abd' and 'abc'.

castopaque_mex('abd','abc')

ans =

 1

The output is 1 because the third character d in the first string is greater than the third character c
in the second string.

In the MATLAB workspace, you can see that the type of y is int32.

Declare Variable Specifying Initial Value and Size

Declare y to be a 4-byte integer with initial value 0.

y = coder.opaque('int','0', 'Size', 4);

 coder.opaque

2-115

Input Arguments
type — Type of variable
character vector | string scalar

Type of variable in generated code. type must be a compile-time constant. The type must be a:

• Built-in C data type or a type defined in a header file
• C type that supports copy by assignment
• Legal prefix in a C declaration

Example: 'FILE *'

value — Initial value of variable
character vector | string scalar

Initial value of variable in generated code. value must be a compile-time constant. Specify a C
expression not dependent on MATLAB variables or functions.

If you do not provide the initial value in value, initialize the value of the variable before using it. To
initialize a variable declared using coder.opaque:

• Assign a value from another variable with the same type declared using either coder.opaque or
assignment from a variable declared using coder.opaque.

• Assign a value from an external C function.
• Pass the address of the variable to an external function using coder.wref.

Specify a value that has the type that type specifies. Otherwise, the generated code can produce
unexpected results.
Example: 'NULL'

Size — Size of variable
integer

Number of bytes for the variable in the generated code, specified as an integer. If you do not specify
the size, the size of the variable is 8 bytes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

HeaderFile — Name of header file
character vector | string scalar

Name of header file that contains the definition of type. HeaderFile must be a compile-time
constant.

For a system header file, use angle brackets.
Example: '<stdio.h>' generates #include <stdio.h>

For an application header file, use double quotes.
Example: '"foo.h"' generates #include "foo.h"

If you omit the angle brackets or double quotes, the code generator produces double quotes.

2 Functions

2-116

Example: 'foo.h' generates #include "foo.h"

Specify the include path in the build configuration parameters.
Example: cfg.CustomInclude = 'c:\myincludes'

Tips
• Specify a value that has the type that type specifies. Otherwise, the generated code can produce

unexpected results. For example, the following coder.opaque declaration can produce
unexpected results.

y = coder.opaque('int', '0.2')
• coder.opaque declares the type of a variable. It does not instantiate the variable. You can

instantiate a variable by using it later in the MATLAB code. In the following example, assignment
of fp1 from coder.ceval instantiates fp1.
% Declare fp1 of type FILE *
fp1 = coder.opaque('FILE *');
%Create the variable fp1
fp1 = coder.ceval('fopen', ['testfile.txt', char(0)], ['r', char(0)]);

• In the MATLAB environment, coder.opaque returns the value specified in value. If value is not
provided, it returns an empty character vector.

• You can compare variables declared using either coder.opaque or assignment from a variable
declared using coder.opaque. The variables must have identical types. The following example
demonstrates how to compare these variables. “Compare Variables Declared Using coder.opaque”
on page 2-114

• To avoid multiple inclusions of the same header file in generated code, enclose the header file in
the conditional preprocessor statements #ifndef and #endif. For example:

#ifndef MyHeader_h
#define MyHeader_h
<body of header file>
#endif

• You can use the MATLAB cast function to cast a variable to or from a variable that is declared
using coder.opaque. Use cast with coder.opaque only for numeric types.

To cast a variable declared by coder.opaque to a MATLAB type, you can use the B =
cast(A,type) syntax. For example:

x = coder.opaque('size_t','0');
x1 = cast(x, 'int32');

You can also use the B = cast(A,'like',p) syntax. For example:

x = coder.opaque('size_t','0');
x1 = cast(x, 'like', int32(0));

To cast a MATLAB variable to the type of a variable declared by coder.opaque, you must use the
B = cast(A,'like',p) syntax. For example:

x = int32(12);
x1 = coder.opaque('size_t', '0');
x2 = cast(x, 'like', x1));

Use cast with coder.opaque to generate the correct data types for:

 coder.opaque

2-117

• Inputs to C/C++ functions that you call using coder.ceval.
• Variables that you assign to outputs from C/C++ functions that you call using coder.ceval.

Without this casting, it is possible to receive compiler warnings during code generation.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ceval | coder.ref | coder.rref | coder.wref

Topics
“Integrate C Code by Using the MATLAB Function Block”

2 Functions

2-118

coder.ref
Indicate data to pass by reference

Syntax
coder.ref(arg)
coder.ref(arg,'gpu')

Description
coder.ref(arg) indicates that arg is an expression or variable to pass by reference to an external
C/C++ function. Use coder.ref inside a coder.ceval call only. The C/C++ function can read from
or write to the variable passed by reference. Use a separate coder.ref construct for each argument
that you pass by reference to the function.

See also coder.rref and coder.wref.

coder.ref(arg,'gpu') indicates that arg is a GPU argument. This option requires a valid GPU
Coder license. If the coder.ceval calls a CUDA GPU __device__ function, the code generator
ignores the 'gpu' specification.

Examples
Pass Scalar Variable by Reference

Consider the C function addone that returns the value of an input plus one:

double addone(double* p) {
 return *p + 1;
}

The C function defines the input variable p as a pointer to a double.

Pass the input by reference to addone:

...
y = 0;
u = 42;
y = coder.ceval('addone', coder.ref(u));
...

Pass Multiple Arguments by Reference
...
u = 1;
v = 2;
y = coder.ceval('my_fcn', coder.ref(u), coder.ref(v));
...

Pass Class Property by Reference
...
x = myClass;

 coder.ref

2-119

x.prop = 1;
coder.ceval('foo', coder.ref(x.prop));
...

Pass a Structure by Reference

To indicate that the structure type is defined in a C header file, use coder.cstructname.

Suppose that you have the C function incr_struct. This function reads from and writes to the input
argument.

#include "MyStruct.h"

void incr_struct(struct MyStruct *my_struct)
{
 my_struct->f1 = my_struct->f1 + 1;
 my_struct->f2 = my_struct->f2 + 1;
}

The C header file, MyStruct.h, defines a structure type named MyStruct:

#ifndef MYSTRUCT
#define MYSTRUCT

typedef struct MyStruct
{
 double f1;
 double f2;
} MyStruct;

void incr_struct(struct MyStruct *my_struct);

#endif

In your MATLAB function, pass a structure by reference to incr_struct. To indicate that the
structure type for s has the name MyStruct that is defined in the C header file MyStruct.h, use
coder.cstructname.

function y = foo
%#codegen
y = 0;
coder.updateBuildInfo('addSourceFiles','incr_struct.c');

s = struct('f1',1,'f2',2);
coder.cstructname(s,'MyStruct','extern','HeaderFile','MyStruct.h');
coder.ceval('incr_struct', coder.ref(s));

To generate standalone library code, enter:

codegen -config:lib foo -report

Pass Structure Field by Reference
...
s = struct('s1', struct('a', [0 1]));
coder.ceval('foo', coder.ref(s.s1.a));
...

You can also pass an element of an array of structures:

2 Functions

2-120

...
c = repmat(struct('u',magic(2)),1,10);
b = repmat(struct('c',c),3,6);
a = struct('b',b);
coder.ceval('foo', coder.ref(a.b(3,4).c(2).u));
...

Input Arguments
arg — Argument to pass by reference
scalar variable | array | element of an array | structure | structure field | object property

Argument to pass by reference to an external C/C++ function. The argument cannot be a class, a
System object, a cell array, or an index into a cell array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | struct
Complex Number Support: Yes

Limitations
• You cannot pass these data types by reference:

• Class or System object
• Cell array or index into a cell array

• If a property has a get method, a set method, or validators, or is a System object property with
certain attributes, then you cannot pass the property by reference to an external function. See
“Passing By Reference Not Supported for Some Properties”.

Tips
• If arg is an array, then coder.ref(arg) provides the address of the first element of the array.

The coder.ref(arg) function does not contain information about the size of the array. If the C
function must know the number of elements of your data, pass that information as a separate
argument. For example:

coder.ceval('myFun',coder.ref(arg),int32(numel(arg));

• When you pass a structure by reference to an external C/C++ function, use coder.cstructname
to provide the name of a C structure type that is defined in a C header file.

• In MATLAB, coder.ref results in an error. To parameterize your MATLAB code so that it can run
in MATLAB and in generated code, use coder.target.

• You can use coder.opaque to declare variables that you pass to and from an external C/C++
function.

Version History
Introduced in R2011a

 coder.ref

2-121

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.rref | coder.wref | coder.ceval | coder.opaque | coder.cstructname | numel

Topics
“Integrate C Code by Using the MATLAB Function Block”

2 Functions

2-122

coder.rowMajor
Specify row-major array layout for a function or class

Syntax
coder.rowMajor

Description
coder.rowMajor specifies row-major array layout for the data used by the current function in
generated code. When placed in a class constructor, coder.rowMajor specifies row-major layout for
data used by the class.

Note By default, code generation uses column-major array layout.

Examples

Specify Row-Major Array Layout for a Function

Specify row-major array layout for a function by inserting coder.rowMajor into the function body.

Suppose that myFunction is the top-level function of your code. Your application requires you to
perform matrix addition with row-major array layout and matrix multiplication with column-major
layout.

function S = myFunction(A,B)
%#codegen
% check to make sure inputs are valid
if size(A,1) ~= size(B,1) || size(A,2) ~= size(B,2)
 disp('Matrices must be same size.');
 return;
end
% make both matrices symmetric
B = B*B';
A = A*A';
% add matrices
S = addMatrix(A,B);
end

Write a function for matrix addition called addMatrix. Specify row-major layout for addMatrix by
using coder.rowMajor.

function S = addMatrix(A,B)
%#codegen
S = zeros(size(A));
coder.rowMajor; % specify row-major array layout
S = A + B;
end

Generate code for myFunction. Use the codegen command.

 coder.rowMajor

2-123

codegen myFunction -args {ones(10,20),ones(10,20)} -config:lib -launchreport

The code generator produces code for addMatrix that uses row-major array layout. However, the
matrix multiplication from the top-level function uses the default layout, column-major.

Tips
• To specify row-major array layout for all the functions in your generated code, use the codegen -

rowmajor option.
• Other functions called from within a row-major function inherit the row-major specification.

However, if one of the called functions has its own distinct coder.columnMajor call, the code
generator changes the array layout accordingly. If a row-major function and a column-major
function call the same function, which does not have its own array layout specification, the code
generator produces a row-major version and column-major version of the function.

• coder.rowMajor is ignored outside of code generation and simulation.

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ceval | coder.columnMajor | coder.isColumnMajor | coder.isRowMajor

Topics
“Interface with Row-Major Data in MATLAB Function Block”
“Specify Array Layout in Functions and Classes”
“Code Generation of Matrices and Arrays” (Simulink Coder)

2 Functions

2-124

coder.rref
Indicate read-only data to pass by reference

Syntax
coder.rref(arg)
coder.rref(arg,'gpu')

Description
coder.rref(arg) indicates that arg is a read-only expression or variable to pass by reference to an
external C/C++ function. Use coder.rref only inside a coder.ceval call.

The coder.rref function can enable the code generator to optimize the generated code. Because
the external function is assumed to not write to coder.rref(arg), the code generator can perform
optimizations such as expression folding on assignments to arg that occur before and after the
coder.ceval call. Expression folding is the combining of multiple operations into one statement to
avoid the use of temporary variables and improve code performance.

Note The code generator assumes that the memory that you pass with coder.rref(arg) is read-
only. To avoid unpredictable results, the C/C++ function must not write to this variable.

See also coder.ref and coder.wref.

coder.rref(arg,'gpu') indicates that arg is a GPU argument. This option requires a valid GPU
Coder license. If the coder.ceval calls a CUDA GPU __device__ function, the code generator
ignores the 'gpu' specification.

Examples
Pass Scalar Variable as a Read-Only Reference

Consider the C function addone that returns the value of a constant input plus one:

double addone(const double* p) {
 return *p + 1;
}

The C function defines the input variable p as a pointer to a constant double.

Pass the input by reference to addone:

...
y = 0;
u = 42;

 coder.rref

2-125

y = coder.ceval('addone', coder.rref(u));
...

Pass Multiple Arguments as a Read-Only Reference

...
u = 1;
v = 2;
y = coder.ceval('my_fcn', coder.rref(u), coder.rref(v));
...

Pass Class Property as a Read-Only Reference

...
x = myClass;
x.prop = 1;
y = coder.ceval('foo', coder.rref(x.prop));
...

Pass Structure as a Read-Only Reference

To indicate that the structure type is defined in a C header file, use coder.cstructname.

Suppose that you have the C function use_struct. This function reads from the input argument but
does not write to it.

#include "MyStruct.h"

double use_struct(const struct MyStruct *my_struct)
{
 return my_struct->f1 + my_struct->f2;
}

The C header file, MyStruct.h, defines a structure type named MyStruct:

#ifndef MYSTRUCT
#define MYSTRUCT

typedef struct MyStruct
{
 double f1;
 double f2;
} MyStruct;

double use_struct(const struct MyStruct *my_struct);

#endif

In your MATLAB function, pass a structure as a read-only reference to use_struct. To indicate that
the structure type for s has the name MyStruct that is defined in the C header file MyStruct.h, use
coder.cstructname.

function y = foo
%#codegen
y = 0;
coder.updateBuildInfo('addSourceFiles','use_struct.c');

s = struct('f1',1,'f2',2);

2 Functions

2-126

coder.cstructname(s,'MyStruct','extern','HeaderFile','MyStruct.h');
y = coder.ceval('use_struct', coder.rref(s));

To generate standalone library code, enter:

codegen -config:lib foo -report

Pass Structure Field as a Read-Only Reference

...
s = struct('s1', struct('a', [0 1]));
y = coder.ceval('foo', coder.rref(s.s1.a));
...

You can also pass an element of an array of structures:

...
c = repmat(struct('u',magic(2)),1,10);
b = repmat(struct('c',c),3,6);
a = struct('b',b);
coder.ceval('foo', coder.rref(a.b(3,4).c(2).u));
...

Input Arguments
arg — Argument to pass by reference
scalar variable | array | element of an array | structure | structure field | object property

Argument to pass by reference to an external C/C++ function. The argument cannot be a class, a
System object, a cell array, or an index into a cell array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | struct
Complex Number Support: Yes

Limitations
• You cannot pass these data types by reference:

• Class or System object
• Cell array or index into a cell array

• If a property has a get method, a set method, or validators, or is a System object property with
certain attributes, then you cannot pass the property by reference to an external function. See
“Passing By Reference Not Supported for Some Properties”.

Tips
• If arg is an array, then coder.rref(arg) provides the address of the first element of the array.

The coder.rref(arg) function does not contain information about the size of the array. If the C
function must know the number of elements of your data, pass that information as a separate
argument. For example:

coder.ceval('myFun',coder.rref(arg),int32(numel(arg));

 coder.rref

2-127

• When you pass a structure by reference to an external C/C++ function, use coder.cstructname
to provide the name of a C structure type that is defined in a C header file.

• In MATLAB, coder.rref results in an error. To parametrize your MATLAB code so that it can run
in MATLAB and in generated code, use coder.target.

• You can use coder.opaque to declare variables that you pass to and from an external C/C++
function.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ref | coder.wref | coder.ceval | coder.opaque | coder.cstructname

Topics
“Integrate C Code by Using the MATLAB Function Block”

2 Functions

2-128

coder.screener
Package: coder

Determine if function is suitable for code generation

Syntax
coder.screener(fcn)
coder.screener(fcn,'-gpu')
coder.screener(fcn_1,...,fcn_n)
info = coder.screener(___)

Description
coder.screener(fcn) analyzes the entry-point MATLAB function fcn to identify unsupported
functions and language features as code generation compliance issues. The code generation
compliance issues are displayed in the readiness report.

If fcn calls other functions directly or indirectly that are not MathWorks functions (MATLAB built-in
functions and toolbox functions), coder.screener analyzes these functions. It does not analyze the
MathWorks functions.

It is possible that coder.screener does not detect all code generation issues. Under certain
circumstances, it is possible that coder.screener reports false errors.

To avoid undetected code generation issues and false errors, before generating code, verify that your
MATLAB code is suitable for code generation by performing these additional checks:

• Before using coder.screener, fix issues that the Code Analyzer identifies.
• After using coder.screener, and before generating C/C++ code, verify that your MATLAB code

is suitable for code generation by generating and verifying a MEX function.

The coder.screener function does not report functions that the code generator treats as extrinsic.
Examples of such functions are plot, disp, and figure. See “Use MATLAB Engine to Execute a
Function Call in Generated Code”.

coder.screener(fcn,'-gpu') analyzes the entry-point MATLAB function fcn to identify
unsupported functions and language features for GPU code generation.

coder.screener(fcn_1,...,fcn_n) analyzes multiple entry-point MATLAB functions.

info = coder.screener(___) returns a coder.ScreenerInfo object. The properties of this
object contain the code generation readiness analysis results. Use info to access the code
generation readiness results programmatically. For a list of properties, see coder.ScreenerInfo
Properties.

Examples

 coder.screener

2-129

Identify Unsupported Functions

The coder.screener function identifies calls to functions that are not supported for code
generation. It checks the entry-point function, foo1, and the function, foo2, that foo1 calls.

Write the function foo2 and save it in the file foo2.m.

function [tf1,tf2] = foo2(source,target)
G = digraph(source,target);
tf1 = hascycles(G);
tf2 = isdag(G);
end

Write the function foo1 that calls foo2. Save foo1 in the file foo1.m.

function [tf1,tf2] = foo1(source,target)
assert(numel(source)==numel(target))
[tf1,tf2] = foo2(source,target);
end

Analyze foo1.

coder.screener('foo1')

The Code Generation Readiness report displays a summary of the unsupported MATLAB function
calls. The report Issues tab indicates that foo2.m contains one call to the isdag function and one
call to the hascycles, which are not supported for code generation.

2 Functions

2-130

The function foo2 calls two unsupported MATLAB functions. To generate a MEX function, modify the
code to make the calls to hascycles and isdag extrinsic by using the coder.extrinsic directive,
and then rerun the code generation readiness tool.

function [tf1,tf2] = foo2(source,target)
coder.extrinsic('hascycles','isdag');
G = digraph(source,target);
tf1 = hascycles(G);
tf2 = isdag(G);
end

Rerun coder.screener on the entry-point function foo1.

coder.screener('foo1')

The report no longer flags that code generation does not support the hascycles and isdag
functions. When you generate a MEX function for foo1, the code generator dispatches these two
functions to MATLAB for execution.

Access Code Generation Readiness Results Programmatically

You can call the coder.screener function with an optional output argument. If you use this syntax,
the coder.screener function returns a coder.ScreenerInfo object that contains the results of

 coder.screener

2-131

the code generation readiness analysis for your MATLAB code base. See coder.ScreenerInfo
Properties.

This example uses the files foo1.m and foo2.m defined in the previous example. Call the
coder.screener function:

info = coder.screener('foo1.m')

info =

 ScreenerInfo with properties:

 Files: [2×1 coder.CodeFile]
 Messages: [2×1 coder.Message]
 UnsupportedCalls: [2×1 coder.CallSite]

 View Screener Report

To access information about the first unsupported call, index into the UnsupportedCalls property,

firstCall = info.UnsupportedCalls(1)

firstCall =

 CallSite with properties:

 CalleeName: 'hascycles'
 File: [1×1 coder.CodeFile]
 StartIndex: 78
 EndIndex: 86

View the text of the file that contains this unsupported call to hascycles.

firstCall.File.Text

ans =

 'function [tf1,tf2] = foo2(source,target)
 G = digraph(source,target);
 tf1 = hascycles(G);
 tf2 = isdag(G);
 end
 '

To export the entire code generation readiness report to a MATLAB string, use the textReport
function.

reportString = textReport(info)

reportString =

 'Code Generation Readiness (Text Report)
 =======================================

 2 Code generation readiness issues
 2 Unsupported functions
 2 Files analyzed

 Configuration

2 Functions

2-132

 =============

 Language: C/C++ (MATLAB Coder)

 Code Generation Issues
 ======================

 Unsupported function: digraph (2)
 - foo2.m (Line 3)
 - foo2.m (Line 4)

 '

Identify Unsupported Data Types

The coder.screener function identifies MATLAB data types that code generation does not support.

Write the function myfun1 that contains a MATLAB calendar duration array data type.

function out = myfun1(A)
out = calyears(A);
end

Analyze myfun1.

coder.screener('myfun1');

The code generation readiness report indicates that the calyears data type is not supported for
code generation. Before generating code, fix the reported issue.

Input Arguments
fcn — Name of entry-point function
character vector | string scalar

Name of entry-point MATLAB function for analysis. Specify as a character vector or a string scalar.
Example: coder.screener('myfun');
Data Types: char | string

fcn_1,...,fcn_n — List of entry-point function names
character vector | string scalar

Comma-separated list of entry-point MATLAB function names for analysis. Specify as character
vectors or string scalars.
Example: coder.screener('myfun1','myfun2');
Data Types: char | string

Alternatives
• “Run the Code Generation Readiness Tool From the Current Folder Browser”

 coder.screener

2-133

Version History
Introduced in R2012b

See Also
coder.extrinsic

Topics
“Functions and Objects Supported for C/C++ Code Generation”
“Code Generation Readiness Tool”

2 Functions

2-134

coder.target
Determine if code generation target is specified target

Syntax
tf = coder.target(target)

Description
tf = coder.target(target) returns true (1) if the code generation target is target. Otherwise,
it returns false (0).

If you generate code for MATLAB classes, MATLAB computes class initial values at class loading time
before code generation. If you use coder.target in MATLAB class property initialization,
coder.target('MATLAB') returns true.

Examples

Use coder.target to Parametrize a MATLAB Function

Parametrize a MATLAB function so that it works in MATLAB or in generated code. When the function
runs in MATLAB, it calls the MATLAB function myabsval. The generated code, however, calls a C
library function myabsval.

Write a MATLAB function myabsval.

function y = myabsval(u)
%#codegen
y = abs(u);

Generate a C static library for myabsval, using the -args option to specify the size, type, and
complexity of the input parameter.

codegen -config:lib myabsval -args {0.0}

The codegen function creates the library file myabsval.lib and header file myabsval.h in the
folder \codegen\lib\myabsval. (The library file extension can change depending on your
platform.) It generates the functions myabsval_initialize and myabsval_terminate in the
same folder.

Write a MATLAB function to call the generated C library function using coder.ceval.

function y = callmyabsval(y)
%#codegen
% Check the target. Do not use coder.ceval if callmyabsval is
% executing in MATLAB
if coder.target('MATLAB')
 % Executing in MATLAB, call function myabsval
 y = myabsval(y);
else

 coder.target

2-135

 % add the required include statements to generated function code
 coder.updateBuildInfo('addIncludePaths','$(START_DIR)\codegen\lib\myabsval');
 coder.cinclude('myabsval_initialize.h');
 coder.cinclude('myabsval.h');
 coder.cinclude('myabsval_terminate.h');

 % Executing in the generated code.
 % Call the initialize function before calling the
 % C function for the first time
 coder.ceval('myabsval_initialize');

 % Call the generated C library function myabsval
 y = coder.ceval('myabsval',y);

 % Call the terminate function after
 % calling the C function for the last time
 coder.ceval('myabsval_terminate');
end

Generate the MEX function callmyabsval_mex. Provide the generated library file at the command
line.

codegen -config:mex callmyabsval codegen\lib\myabsval\myabsval.lib -args {-2.75}

Rather than providing the library at the command line, you can use coder.updateBuildInfo to
specify the library within the function. Use this option to preconfigure the build. Add this line to the
else block:

coder.updateBuildInfo('addLinkObjects','myabsval.lib','$(START_DIR)\codegen\lib\myabsval',100,true,true);

Note The START_DIR macro is only supported for generating code with MATLAB Coder.

Run the MEX function callmyabsval_mex which calls the library function myabsval.

callmyabsval_mex(-2.75)

ans =

 2.7500

Call the MATLAB function callmyabsval.

callmyabsval(-2.75)

ans =

 2.7500

The callmyabsval function exhibits the desired behavior for execution in MATLAB and in code
generation.

Input Arguments
target — code generation target
'MATLAB' | 'C' | 'C++' | 'CUDA' | 'OpenCL' | 'SystemC' | 'SystemVerilog' | 'Verilog' |
'VHDL' | 'MEX' | 'Sfun' | 'Rtw' | 'HDL ' | 'Custom'

2 Functions

2-136

Code generation target, specified as a character vector or a string scalar. Specify one of these
targets.

'MATLAB' Running in MATLAB (not generating code)
'C', 'C++', 'CUDA',
'OpenCL' 'SystemC',
'SystemVerilog',
'Verilog', 'VHDL'

Supported target languages for code generation

'MEX' Generating a MEX function
'Sfun' Simulating a Simulink model. Also used for running in Accelerator mode.
'Rtw' Generating a LIB, DLL, or EXE target. Also used for running in Simulink

Coder and Rapid Accelerator mode.
'HDL' Generating an HDL target
'Custom' Generating a custom target

Example: tf = coder.target('MATLAB')
Example: tf = coder.target("MATLAB")

Note In case of CUDA or SystemC code generation, coder.target('C++') is always true.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ceval | coder.cinclude | coder.updateBuildInfo | coder.BuildConfig |
coder.ExternalDependency

Topics
“Integrate C Code by Using the MATLAB Function Block”

 coder.target

2-137

coder.unroll
Unroll for-loop by making a copy of the loop body for each loop iteration

Syntax
coder.unroll()
coder.unroll(flag)

Description
coder.unroll() unrolls a for-loop. The coder.unroll call must be on a line by itself immediately
preceding the for-loop that it unrolls.

Instead of producing a for-loop in the generated code, loop unrolling produces a copy of the for-
loop body for each loop iteration. In each iteration, the loop index becomes constant. To unroll a loop,
the code generator must be able to determine the bounds of the for-loop.

For small, tight loops, unrolling can improve performance. However, for large loops, unrolling can
increase code generation time significantly and generate inefficient code.

coder.unroll is ignored outside of code generation.

coder.unroll(flag) unrolls a for-loop if flag is true. flag is evaluated at code generation
time. The coder.unroll call must be on a line by itself immediately preceding the for-loop that it
unrolls.

Examples

Unroll a for-loop

To produce copies of a for-loop body in the generated code, use coder.unroll.

In one file, write the entry-point function call_getrand and a local function getrand. getrand
unrolls a for-loop that assigns random numbers to an n-by-1 array. call_getrand calls getrand
with the value 3.

function z = call_getrand
%#codegen
z = getrand(3);
end

function y = getrand(n)
coder.inline('never');
y = zeros(n, 1);
coder.unroll();
for i = 1:n
 y(i) = rand();
end
end

2 Functions

2-138

Generate a static library.

codegen -config:lib call_getrand -report

In the generated code, the code generator produces a copy of the for-loop body for each of the three
loop iterations.

static void getrand(double y[3])
{
 y[0] = b_rand();
 y[1] = b_rand();
 y[2] = b_rand();
}

Control for-loop Unrolling with Flag

Control loop unrolling by using coder.unroll with the flag argument.

In one file, write the entry-point function call_getrand_unrollflag and a local function
getrand_unrollflag. When the number of loop iterations is less than 10, getrand_unrollflag
unrolls the for-loop. call_getrand calls getrand with the value 50.

function z = call_getrand_unrollflag
%#codegen
z = getrand_unrollflag(50);
end

function y = getrand_unrollflag(n)
coder.inline('never');
unrollflag = n < 10;
y = zeros(n, 1);
coder.unroll(unrollflag)
for i = 1:n
 y(i) = rand();
end
end

Generate a static library.

codegen -config:lib call_getrand_unrollflag -report

static void getrand_unrollflag(double y[50])
{
 int i;
 for (i = 0; i < 50; i++) {
 y[i] = b_rand();
 }
}

The number of iterations is not less than 10. Therefore, the code generator does not unroll the for-
loop. It produces a for-loop in the generated code.

 coder.unroll

2-139

Use Legacy Syntax to Unroll for-Loop

• function z = call_getrand
%#codegen
z = getrand(3);
end

function y = getrand(n)
coder.inline('never');
y = zeros(n, 1);
for i = coder.unroll(1:n)
 y(i) = rand();
end
end

Use Legacy Syntax to Control for-Loop Unrolling

• function z = call_getrand_unrollflag
%#codegen
z = getrand_unrollflag(50);
end

function y = getrand_unrollflag(n)
coder.inline('never');
unrollflag = n < 10;
y = zeros(n, 1);
for i = coder.unroll(1:n, unrollflag)
 y(i) = rand();
end
end

Input Arguments
flag — Indicates whether to unroll the for-loop
true (default) | false

When flag is true, the code generator unrolls the for-loop. When flag is false, the code
generator produces a for-loop in the generated code. flag is evaluated at code generation time.

Tips
• Sometimes, the code generator unrolls a for-loop even though you do not use coder.unroll.

For example, if a for-loop indexes into a heterogeneous cell array or into varargin or
varargout, the code generator unrolls the loop. By unrolling the loop, the code generator can
determine the value of the index for each loop iteration. The code generator uses heuristics to
determine when to unroll a for-loop. If the heuristics fail to identify that unrolling is warranted,
or if the number of loop iterations exceeds a limit, code generation fails. In these cases, you can
force loop unrolling by using coder.unroll. See “Nonconstant Index into varargin or varargout
in a for-Loop”.

Version History
Introduced in R2011a

2 Functions

2-140

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.inline

Topics
“Unroll for-Loops and parfor-Loops”
“Nonconstant Index into varargin or varargout in a for-Loop”

 coder.unroll

2-141

coder.updateBuildInfo
Update build information object RTW.BuildInfo

Syntax
coder.updateBuildInfo('addCompileFlags',options)
coder.updateBuildInfo('addLinkFlags',options)
coder.updateBuildInfo('addDefines',options)
coder.updateBuildInfo(___ ,group)

coder.updateBuildInfo('addLinkObjects',filename,path)
coder.updateBuildInfo('addLinkObjects',filename,path,priority,precompiled)
coder.updateBuildInfo('addLinkObjects',filename,path,priority,precompiled,
linkonly)
coder.updateBuildInfo(___ ,group)

coder.updateBuildInfo('addNonBuildFiles',filename)
coder.updateBuildInfo('addSourceFiles',filename)
coder.updateBuildInfo('addIncludeFiles',filename)
coder.updateBuildInfo(___ ,path)
coder.updateBuildInfo(___ ,path,group)

coder.updateBuildInfo('addSourcePaths',path)
coder.updateBuildInfo('addIncludePaths',path)
coder.updateBuildInfo(___ ,group)

Description
coder.updateBuildInfo('addCompileFlags',options) adds compiler options to the build
information object.

coder.updateBuildInfo('addLinkFlags',options) adds link options to the build information
object.

coder.updateBuildInfo('addDefines',options) adds preprocessor macro definitions to the
build information object.

coder.updateBuildInfo(___ ,group) assigns a group name to options for later reference.

coder.updateBuildInfo('addLinkObjects',filename,path) adds a link object from a file to
the build information object.

coder.updateBuildInfo('addLinkObjects',filename,path,priority,precompiled)
specifies if the link object is precompiled.

coder.updateBuildInfo('addLinkObjects',filename,path,priority,precompiled,
linkonly) specifies if the object is to be built before being linked or used for linking alone. If the
object is to be built, it specifies if the object is precompiled.

coder.updateBuildInfo(___ ,group) assigns a group name to the link object for later
reference.

2 Functions

2-142

coder.updateBuildInfo('addNonBuildFiles',filename) adds a nonbuild-related file to the
build information object.

coder.updateBuildInfo('addSourceFiles',filename) adds a source file to the build
information object.

coder.updateBuildInfo('addIncludeFiles',filename) adds an include file to the build
information object.

coder.updateBuildInfo(___ ,path) adds the file from specified path.

coder.updateBuildInfo(___ ,path,group) assigns a group name to the file for later reference.

coder.updateBuildInfo('addSourcePaths',path) adds a source file path to the build
information object.

coder.updateBuildInfo('addIncludePaths',path) adds an include file path to the build
information object.

coder.updateBuildInfo(___ ,group) assigns a group name to the path for later reference.

Examples

Add Multiple Compiler Options

Add the compiler options -Zi and -Wall during code generation for function, func.

Anywhere in the MATLAB code for func, add the following line:

coder.updateBuildInfo('addCompileFlags','-Zi -Wall');

Generate code for func using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport func

Add Source File Name

Add a source file to the project build information while generating code for a function,
calc_factorial.

1 Write a header file fact.h that declares a C function factorial.

 double factorial(double x);

fact.h will be included as a header file in generated code. This inclusion ensures that the
function is declared before it is called.

Save the file in the current folder.
2 Write a C file fact.c that contains the definition of factorial. factorial calculates the

factorial of its input.

#include "fact.h"

 coder.updateBuildInfo

2-143

 double factorial(double x)
 {
 int i;
 double fact = 1.0;
 if (x == 0 || x == 1) {
 return 1.0;
 } else {
 for (i = 1; i <= x; i++) {
 fact *= (double)i;
 }
 return fact;
 }
 }

fact.c is used as a source file during code generation.

Save the file in the current folder.
3 Write a MATLAB function calc_factorial that uses coder.ceval to call the external C

function factorial.

Use coder.updateBuildInfo with option 'addSourceFiles' to add the source file fact.c
to the build information. Use coder.cinclude to include the header file fact.h in the
generated code.

function y = calc_factorial(x) %#codegen

 coder.cinclude('fact.h');
 coder.updateBuildInfo('addSourceFiles', 'fact.c');

 y = 0;
 y = coder.ceval('factorial', x);

4 Generate code for calc_factorial using the codegen command.

 codegen -config:dll -launchreport calc_factorial -args 0

Add Link Object

Add a link object LinkObj.lib to the build information while generating code for a function func.
For this example, you must have a link object LinkObj.lib saved in a local folder, for example,
c:\Link_Objects.

Anywhere in the MATLAB code for func, add the following lines:

libPriority = '';
libPreCompiled = true;
libLinkOnly = true;
libName = 'LinkObj.lib';
libPath = 'c:\Link_Objects';
coder.updateBuildInfo('addLinkObjects', libName, libPath, ...
 libPriority, libPreCompiled, libLinkOnly);

Generate a MEX function for func using the codegen command. Open the Code Generation Report.

2 Functions

2-144

codegen -launchreport func

Add Include Paths

Add an include path to the build information while generating code for a function, adder. Include a
header file, adder.h, existing on the path.

When header files do not reside in the current folder, to include them, use this method:

1 Write a header file mysum.h that contains the declaration for a C function mysum.

double mysum(double, double);

Save it in a local folder, for example c:\coder\myheaders.
2 Write a C file mysum.c that contains the definition of the function mysum.

#include "mysum.h"

double mysum(double x, double y)
 {
 return(x+y);
 }

Save it in the current folder.
3 Write a MATLAB function adder that adds the path c:\coder\myheaders to the build

information.

Use coder.cinclude to include the header file mysum.h in the generated code.

function y = adder(x1, x2) %#codegen
 coder.updateBuildInfo('addIncludePaths','c:\coder\myheaders');
 coder.updateBuildInfo('addSourceFiles','mysum.c');
 %Include the source file containing C function definition
 coder.cinclude('mysum.h');
 y = 0;
 if coder.target('MATLAB')
 % This line ensures that the function works in MATLAB
 y = x1 + x2;
 else
 y = coder.ceval('mysum', x1, x2);
 end
end

4 Generate code for adder using the codegen command.

codegen -config:lib -launchreport adder -args {0,0}

Input Arguments
options — Build options
character vector | string scalar

Build options, specified as a character vector or string scalar. The value must be a compile-time
constant.

 coder.updateBuildInfo

2-145

Depending on the leading argument, options specifies the relevant build options to be added to the
project’s build information.

Leading Argument Values in options
'addCompileFlags' Compiler options
'addLinkFlags' Link options
'addDefines' Preprocessor macro definitions

The function adds the options to the end of an option vector.
Example: coder.updateBuildInfo('addCompileFlags','-Zi -Wall')

group — Group name
character vector | string scalar

Name of user-defined group, specified as a character vector or string scalar. The value must be a
compile-time constant.

The group option assigns a group name to the parameters in the second argument.

Leading Argument Second Argument Parameters Named by group
'addCompileFlags' options Compiler options
'addLinkFlags' options Link options
'addLinkObjects' filename Name of file containing linkable

objects
'addNonBuildFiles' filename Name of nonbuild-related file
'addSourceFiles' filename Name of source file
'addSourcePaths' path Name of source file path

You can use group to:

• Document the use of specific parameters.
• Retrieve or apply multiple parameters together as one group.

filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar. The value must be a compile-time constant.

Depending on the leading argument, filename specifies the relevant file to be added to the project’s
build information.

Leading Argument File Specified by filename
'addLinkObjects' File containing linkable objects
'addNonBuildFiles' Nonbuild-related file
'addSourceFiles' Source file

The function adds the file name to the end of a file name vector.
Example: coder.updateBuildInfo('addSourceFiles', 'fact.c')

2 Functions

2-146

path — Path name
character vector | string scalar

Relative path name, specified as a character vector or string scalar. The value must be a compile-time
constant.

Depending on the leading argument, path specifies the relevant path name to be added to the
project’s build information. The function adds the path to the end of a path name vector.

Leading Argument Path Specified by path
'addLinkObjects' Path to linkable objects
'addNonBuildFiles' Path to nonbuild-related files
'addSourceFiles', 'addSourcePaths' Path to source files

The relative path starts from the current working folder in which you generate code. In the relative
path name, reference the current working folder by using the START_DIR macro. For example,
suppose that your source file fact.c is contained in C:\myCode\mySrcDir, and you generate code
from C:\myCode. Write the path as in this example:
Example: coder.updateBuildInfo('addSourceFiles','fact.c','$(START_DIR)
\mySrcDir')

Note The START_DIR macro is only supported for generating code with MATLAB Coder.

priority — Relative priority of link object
' '

Priority of link objects.

This feature applies only when several link objects are added. Currently, only a single link object file
can be added for every coder.updateBuildInfo statement. Therefore, this feature is not available
for use.

To use the succeeding arguments, include '' as a placeholder argument.

precompiled — Variable indicating if link objects are precompiled
logical value

Variable indicating if the link objects are precompiled, specified as a logical value. The value must be
a compile-time constant.

If the link object has been prebuilt for faster compiling and linking and exists in a specified location,
specify true. Otherwise, the MATLAB Coder build process creates the link object in the build folder.

If linkonly is set to true, this argument is ignored.
Data Types: logical

linkonly — Variable indicating if objects must be used for linking only
logical value

Variable indicating if objects must be used for linking only, specified as a logical value. The value
must be a compile-time constant.

 coder.updateBuildInfo

2-147

If you want that the MATLAB Coder build process must not build or generate rules in the makefile for
building the specified link object, specify true. Instead, when linking the final executable, the
process should just include the object. Otherwise, rules for building the link object are added to the
makefile.

You can use this argument to incorporate link objects for which source files are not available.

If linkonly is set to true, the value of precompiled is ignored.
Data Types: logical

Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ref | coder.rref | coder.wref | coder.target | coder.ceval | coder.cinclude |
coder.ExternalDependency

Topics
“Build Process Customization” (MATLAB Coder)
“Integrate C Code by Using the MATLAB Function Block”

2 Functions

2-148

coder.varsize
Package: coder

Declare variable-size data

Syntax
coder.varsize(varName1,...,varNameN)
coder.varsize(varName1,...,varNameN,ubounds)
coder.varsize(varName1,...,varNameN,ubounds,dims)

Description
coder.varsize(varName1,...,varNameN) declares that the variables named
varName1,...,varNameN have a variable size. The declaration instructs the code generator to
allow the variables to change size during execution of the generated code. With this syntax, you do
not specify the upper bounds of the dimensions of the variables or which dimensions can change size.
The code generator computes the upper bounds. All dimensions, except singleton dimensions on page
2-154, are allowed to change size.

Use coder.varsize according to these restrictions and guidelines:

• Use coder.varsize inside a MATLAB function intended for code generation.
• The coder.varsize declaration must precede the first use of a variable. For example:

...
x = 1;
coder.varsize('x');
disp(size(x));
...

• Use coder.varsize to declare that an output argument has a variable size or to address size
mismatch errors. Otherwise, to define variable-size data, use the methods described in “Define
Variable-Size Data for Code Generation”.

Note For MATLAB Function blocks, to declare variable-size output variables, use the Symbols pane
and Property Inspector. See “Declare Variable-Size MATLAB Function Block Variables”. If you provide
upper bounds in a coder.varsize declaration, the upper bounds must match the upper bounds in
the Property Inspector.

For more restrictions and guidelines, see “Limitations” on page 2-153 and “Tips” on page 2-154.

coder.varsize(varName1,...,varNameN,ubounds) also specifies an upper bound for each
dimension of the variables. All variables must have the same number of dimensions. All dimensions,
except singleton dimensions on page 2-154, are allowed to change size.

coder.varsize(varName1,...,varNameN,ubounds,dims) also specifies an upper bound for
each dimension of the variables and whether each dimension has a fixed size or a variable size. If a
dimension has a fixed size, then the corresponding ubound element specifies the fixed size of the
dimension. All variables have the same fixed-size dimensions and the same variable-size dimensions.

 coder.varsize

2-149

The code generator uses a colon prefix to denote a variable-size dimension. For example, if the size of
an array A is denoted as 3x:5x:Inf, then:

• The first dimension has a fixed size 3
• The second dimension is variable-size with an upper bound 5
• The third dimension is variable-size and unbounded

Examples

Address Size Mismatch Error by Using coder.varsize

After a variable is used (read), changing the size of the variable can cause a size mismatch error. Use
coder.varsize to specify that the size of the variable can change.

Code generation for the following function produces a size mismatch error because x = 1:10
changes the size of the second dimension of x after the line y = size(x) that uses x.

function [x,y] = usevarsize(n)
%#codegen
x = 1;
y = size(x);
if n > 10
 x = 1:10;
end

To declare that x can change size, use coder.varsize.

function [x,y] = usevarsize(n)
%#codegen
x = 1;
coder.varsize('x');
y = size(x);
if n > 10
 x = 1:10;
end

If you remove the line y = size(x), you no longer need the coder.varsize declaration because x
is not used before its size changes.

Declare Variable-Size Array with Upper Bounds

Specify that A is a row vector of size 1x:20. This denotes that the second dimension of A has a
variable size with an upper bound of 20.

function fcn()
...
coder.varsize('A',[1 20]);
...
end

When you do not provide dims, all dimensions, except singleton dimensions, have a variable size.

2 Functions

2-150

Declare Variable-Size Array with a Mix of Fixed and Variable Dimensions

Specify that A is an array with size 3x:20. This denotes that the first dimension has a fixed size of
three and whose second dimension has a variable size with an upper bound of 20.

function fcn()
...
coder.varsize('A',[3 20], [0 1]);
...
end

Declare Variable-Size Structure Fields

In this function, the statement coder.varsize('data.values') declares that the field values
inside each element of data has a variable size.

function y = varsize_field()
%#codegen

d = struct('values', zeros(1,0), 'color', 0);
data = repmat(d, [3 3]);
coder.varsize('data.values');

for i = 1:numel(data)
 data(i).color = rand-0.5;
 data(i).values = 1:i;
end

y = 0;
for i = 1:numel(data)
 if data(i).color > 0
 y = y + sum(data(i).values);
 end
end

Declare Variable-Size Cell Array

Specify that cell array C has a fixed-size first dimension and variable-size second dimension with an
upper bound of three. The coder.varsize declaration must precede the first use of C.

...
C = {1 [1 2]};
coder.varsize('C', [1 3], [0 1]);
y = C{1};
...
end

Without the coder.varsize declaration, C is a heterogeneous cell array whose elements have the
same class and different sizes. With the coder.varsize declaration, C is a homogeneous cell array
whose elements have the same class and maximum size.

• The cell array C is of size 1x:3. The colon denotes that the second dimension of C is variable-size
with an upper bound of 3.

 coder.varsize

2-151

• Each element of C is a 1x:2 array.

Declare That a Cell Array Has Variable-Size Elements

Specify that the elements of cell array C are 1x:5 vectors. This denotes that the elements each have
a fixed-size first dimension and variable-size second dimension with an upper bound of 5.

...
C = {1 2 3};
coder.varsize('C{:}', [1 5], [0 1]);
C = {1, 1:5, 2:3};
...

You can also specify a specific element of a cell array to be variable-size. For example, in a 1-by-3 cell
array x, declare the first element x{1} to be a 1x:10 row vector.

...
x = {1,2,3};
coder.varsize('x{1}', [1 10]);
...

Input Arguments
varName1,...,varNameN — Names of variables to declare as having a variable size
character vectors | string scalars

Names of variables to declare as having a variable size, specified as one or more character vectors or
string scalars.
Example: coder.varsize('x','y')

ubounds — Upper bounds for array dimensions
[] (default) | vector of integer constants

Upper bounds for array dimensions, specified as a vector of integer constants.

When you do not specify ubounds, the code generator computes the upper bound for each variable.
If the ubounds element corresponds to a fixed-size dimension, the value is the fixed size of the
dimension.
Example: coder.varsize('x','y',[1 2])

dims — Indication of whether each dimension has a fixed size or a variable size
logical vector

Indication of whether each dimension has a fixed size or a variable size, specified as a logical vector.
Dimensions that correspond to 0 or false in dims have a fixed size. Dimensions that correspond to 1
or true have a variable size.

When you do not specify dims, the dimensions have a variable size, except for the singleton
dimensions.
Example: coder.varsize('x','y',[1 2], [0 1])

2 Functions

2-152

Limitations
• The coder.varsize declaration instructs the code generator to allow the size of a variable to

change. It does not change the size of the variable. Consider this code:

...
x = 7;
coder.varsize('x', [1,5]);
disp(size(x));
...

After the coder.varsize declaration, x is still a 1-by-1 array. You cannot assign a value to an
element beyond the current size of x. For example, this code produces a run-time error because
the index 3 exceeds the dimensions of x.

...
x = 7;
coder.varsize('x', [1,5]);
x(3) = 1;
...

• coder.varsize is not supported for a function input argument. Instead:

• If the function is an entry-point function, specify that an input argument has a variable size by
using coder.typeof at the command line. Alternatively, specify that an entry-point function
input argument has a variable size by using the Define Input Types step of the app.

• If the function is not an entry-point function, use coder.varsize in the calling function with
the variable that is the input to the called function.

• For sparse matrices, coder.varsize drops upper bounds for variable-size dimensions.
• Limitations for using coder.varsize with cell arrays:

• A cell array can have a variable size only if it is homogeneous. When you use coder.varsize
with a heterogeneous cell array, the code generator tries to make the cell array homogeneous.
The code generator tries to find a class and maximum size that apply to all elements of the cell
array. For example, consider the cell array c = {1, [2 3]}. Both elements can be
represented by a double type whose first dimension has a fixed size of 1 and whose second
dimension has a variable size with an upper bound of 2. If the code generator cannot find a
common class and a maximum size, code generation fails. For example, consider the cell array
c = {'a',[2 3]}. The code generator cannot find a class that can represent both elements
because the first element is char and the second element is double.

• If you use the cell function to define a fixed-size cell array, you cannot use coder.varsize
to specify that the cell array has a variable size. For example, this code causes a code
generation error because x = cell(1,3) makes x a fixed-size,1-by-3 cell array.

...
x = cell(1,3);
coder.varsize('x',[1 5])
...

You can use coder.varsize with a cell array that you define by using curly braces. For
example:

...
x = {1 2 3};
coder.varsize('x',[1 5])
...

 coder.varsize

2-153

• To create a variable-size cell array by using the cell function, use this code pattern:

function mycell(n)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
end

See “Definition of Variable-Size Cell Array by Using cell”.

To specify upper bounds for the cell array, use coder.varsize.

function mycell(n)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
coder.varsize('x',[1,20]);
end
end

More About
Singleton Dimension

Dimension for which size(A,dim) = 1.

Tips
• In a code generation report or a MATLAB Function report, a colon (:) indicates that a dimension

has a variable size. For example, a size of 1x:2 indicates that the first dimension has a fixed size
of one and the second dimension has a variable size with an upper bound of two.

• If you use coder.varsize to specify that the upper bound of a dimension is 1, by default, the
dimension has a fixed size of 1. To specify that the dimension can be 0 (empty array) or 1, set the
corresponding element of the dims argument to true. For example, this code specifies that the
first dimension of x has a fixed size of 1 and the other dimensions have a variable size of 5.

coder.varsize('x',[1,5,5])

In contrast, this code specifies that the first dimension of x has an upper bound of 1 and has a
variable size (can be 0 or 1).

coder.varsize('x',[1,5,5],[1,1,1])

• If you use input variables or the result of a computation using input variables to specify the size of
an array, it is declared as variable-size in the generated code. Do not re-use coder.varsize on
the array, unless you also want to specify an upper bound for its size.

• If you do not specify upper bounds with a coder.varsize declaration and the code generator is
unable to determine the upper bounds, the generated code uses dynamic memory allocation.
Dynamic memory allocation can reduce the speed of generated code. To avoid dynamic memory
allocation, specify the upper bounds by providing the ubounds argument.

2 Functions

2-154

Version History
Introduced in R2011a

See Also
Topics
“Code Generation for Variable-Size Arrays”
“Incompatibilities with MATLAB in Variable-Size Support for Code Generation”
“Avoid Duplicate Functions in Generated Code”

 coder.varsize

2-155

coder.wref
Indicate write-only data to pass by reference

Syntax
coder.wref(arg)
coder.wref(arg,'gpu')

Description
coder.wref(arg) indicates that arg is a write-only expression or variable to pass by reference to
an external C/C++ function. Use coder.wref only inside a coder.ceval call. This function enables
the code generator to optimize the generated code by ignoring prior assignments to arg in your
MATLAB code, because the external function is assumed to not read from the data. Write to all the
elements of arg in your external code to fully initialize the memory.

Note The C/C++ function must fully initialize the memory referenced by coder.wref(arg).
Initialize the memory by assigning values to every element of arg in your C/C++ code. If the
generated code tries to read from uninitialized memory, it can cause undefined run-time behavior.

See also coder.ref and coder.rref.

coder.wref(arg,'gpu') indicates that arg is a GPU argument. This option requires a valid GPU
Coder license. If the coder.ceval calls a CUDA GPU __device__ function, the code generator
ignores the 'gpu' specification.

Examples
Pass Array by Reference as Write-Only

Suppose that you have a C function init_array.

void init_array(double* array, int numel) {
 for(int i = 0; i < numel; i++) {
 array[i] = 42;
 }
}

The C function defines the input variable array as a pointer to a double.

Call the C function init_array to initialize all elements of y to 42:

...
Y = zeros(5, 10);
coder.ceval('init_array', coder.wref(Y), int32(numel(Y)));
...

Pass Multiple Arguments as a Write-Only Reference
...
U = zeros(5, 10);

2 Functions

2-156

V = zeros(5, 10);
coder.ceval('my_fcn', coder.wref(U), int32(numel(U)), coder.wref(V), int32(numel(V)));
...

Pass Class Property as a Write-Only Reference

...
x = myClass;
x.prop = 1;
coder.ceval('foo', coder.wref(x.prop));
...

Pass Structure as a Write-Only Reference

To indicate that the structure type is defined in a C header file, use coder.cstructname.

Suppose that you have the C function init_struct. This function writes to the input argument but
does not read from it.

#include "MyStruct.h"

void init_struct(struct MyStruct *my_struct)
{
 my_struct->f1 = 1;
 my_struct->f2 = 2;
}

The C header file, MyStruct.h, defines a structure type named MyStruct:

#ifndef MYSTRUCT
#define MYSTRUCT

typedef struct MyStruct
{
 double f1;
 double f2;
} MyStruct;

void init_struct(struct MyStruct *my_struct);

#endif

In your MATLAB function, pass a structure as a write-only reference to init_struct. Use
coder.cstructname to indicate that the structure type for s has the name MyStruct that is
defined in the C header file MyStruct.h.

function y = foo
%#codegen
y = 0;
coder.updateBuildInfo('addSourceFiles','init_struct.c');

s = struct('f1',1,'f2',2);
coder.cstructname(s,'MyStruct','extern','HeaderFile','MyStruct.h');
coder.ceval('init_struct', coder.wref(s));

To generate standalone library code, enter:

 coder.wref

2-157

codegen -config:lib foo -report

Pass Structure Field as a Write-Only Reference

...
s = struct('s1', struct('a', [0 1]));
coder.ceval('foo', coder.wref(s.s1.a));
...

You can also pass an element of an array of structures:

...
c = repmat(struct('u',magic(2)),1,10);
b = repmat(struct('c',c),3,6);
a = struct('b',b);
coder.ceval('foo', coder.wref(a.b(3,4).c(2).u));
...

Input Arguments
arg — Argument to pass by reference
scalar variable | array | element of an array | structure | structure field | object property

Argument to pass by reference to an external C/C++ function. The argument cannot be a class, a
System object, a cell array, or an index into a cell array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | struct
Complex Number Support: Yes

Limitations
• You cannot pass these data types by reference:

• Class or System object
• Cell array or index into a cell array

• If a property has a get method, a set method, or validators, or is a System object property with
certain attributes, then you cannot pass the property by reference to an external function. See
“Passing By Reference Not Supported for Some Properties”.

Tips
• If arg is an array, then coder.wref(arg) provides the address of the first element of the array.

The coder.wref(arg) function does not contain information about the size of the array. If the C
function must know the number of elements of your data, pass that information as a separate
argument. For example:

coder.ceval('myFun',coder.wref(arg),int32(numel(arg));

• When you pass a structure by reference to an external C/C++ function, use coder.cstructname
to provide the name of a C structure type that is defined in a C header file.

• In MATLAB, coder.wref results in an error. To parametrize your MATLAB code so that it can run
in MATLAB and in generated code, use coder.target.

2 Functions

2-158

• You can use coder.opaque to declare variables that you pass to and from an external C/C++
function.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.ref | coder.rref | coder.ceval | coder.opaque | coder.cstructname

Topics
“Integrate C Code by Using the MATLAB Function Block”

 coder.wref

2-159

configset.reference.getOverriddenParameters
Parameters that are overridden in a configuration reference

Syntax
parameters = configset.reference.getOverriddenParameters(model)

Description
parameters = configset.reference.getOverriddenParameters(model) returns the
parameters that are overridden in the configuration reference that is active for the model.

Examples

Override Parameters in a Configuration Reference

Programmatically override a parameter in a configuration reference and set a value that is different
from the referenced configuration set.

Open the model slexConfigSetRefExample, which uses a configuration reference as the active
configuration.

model = 'slexConfigSetRefExample';
open(model)

Check if the model has any overridden parameters.

configset.reference.hasOverriddenParameters(model)

ans = logical
 0

The model does not have any overridden parameters. For this example, override the parameter
ModelReferenceNumInstancesAllowed. This parameter controls the number of times that the
model can be referenced directly or indirectly by another model. In the referenced configuration set,
the value is Multi. For the model slexConfigSetRefExample, override the parameter and set the
value to Single so that it can be referenced only once by another model.

configset.reference.overrideParameter(model,"ModelReferenceNumInstancesAllowed","Single");

Verify that the parameter ModelReferenceNumInstancesAllowed is overridden and check its
value for the model.

configset.reference.isParameterOverridden(model,"ModelReferenceNumInstancesAllowed")

ans = logical
 1

get_param(model,"ModelReferenceNumInstancesAllowed")

2 Functions

2-160

ans =
'Single'

Restore the parameter to the value in the referenced configuration set. Restoring the parameter
makes it read-only again.

configset.reference.restoreOverriddenParameter(model,"ModelReferenceNumInstancesAllowed");

If multiple parameters are overridden for the model, you can interact with all of them at once. For
example, override the parameters StartTime, StopTime, and SolverType. Then, use the function
configset.reference.getOverriddenParameters to see a list of the overridden parameters.

configset.reference.overrideParameter(model,"StartTime");
configset.reference.overrideParameter(model,"StopTime");
configset.reference.overrideParameter(model,"Solver");
configset.reference.getOverriddenParameters(model)

ans = 3x1 string
 "StartTime"
 "StopTime"
 "Solver"

Now, restore all of the overridden parameters for the model. The parameters reset to the values in
the referenced configuration set and become read-only again.

configset.reference.restoreAllOverriddenParameters(model)

Input Arguments
model — Model that uses configuration reference
character vector | string scalar

Model that uses configuration reference, specified as a character vector or string scalar.
Example: 'mymodel'

Output Arguments
parameters — Overridden parameters
string array

Overridden parameters, returned as a string array.

Version History
Introduced in R2021a

See Also
configset.reference.overrideParameter |
configset.reference.restoreOverriddenParameter |
configset.reference.restoreAllOverriddenParameters

 configset.reference.getOverriddenParameters

2-161

Topics
“Change Parameter Value in a Configuration Reference”

2 Functions

2-162

configset.reference.hasOverriddenParameters
Determine if model configuration reference has overridden parameters

Syntax
tf = configset.reference.hasOverriddenParameters(model)

Description
tf = configset.reference.hasOverriddenParameters(model) determines if the model
uses a configuration reference that contains overridden parameters. An overridden parameter can
have a value that is different from the value in the referenced configuration set.

Examples

Override Parameters in a Configuration Reference

Programmatically override a parameter in a configuration reference and set a value that is different
from the referenced configuration set.

Open the model slexConfigSetRefExample, which uses a configuration reference as the active
configuration.

model = 'slexConfigSetRefExample';
open(model)

Check if the model has any overridden parameters.

configset.reference.hasOverriddenParameters(model)

ans = logical
 0

The model does not have any overridden parameters. For this example, override the parameter
ModelReferenceNumInstancesAllowed. This parameter controls the number of times that the
model can be referenced directly or indirectly by another model. In the referenced configuration set,
the value is Multi. For the model slexConfigSetRefExample, override the parameter and set the
value to Single so that it can be referenced only once by another model.

configset.reference.overrideParameter(model,"ModelReferenceNumInstancesAllowed","Single");

Verify that the parameter ModelReferenceNumInstancesAllowed is overridden and check its
value for the model.

configset.reference.isParameterOverridden(model,"ModelReferenceNumInstancesAllowed")

ans = logical
 1

 configset.reference.hasOverriddenParameters

2-163

get_param(model,"ModelReferenceNumInstancesAllowed")

ans =
'Single'

Restore the parameter to the value in the referenced configuration set. Restoring the parameter
makes it read-only again.

configset.reference.restoreOverriddenParameter(model,"ModelReferenceNumInstancesAllowed");

If multiple parameters are overridden for the model, you can interact with all of them at once. For
example, override the parameters StartTime, StopTime, and SolverType. Then, use the function
configset.reference.getOverriddenParameters to see a list of the overridden parameters.

configset.reference.overrideParameter(model,"StartTime");
configset.reference.overrideParameter(model,"StopTime");
configset.reference.overrideParameter(model,"Solver");
configset.reference.getOverriddenParameters(model)

ans = 3x1 string
 "StartTime"
 "StopTime"
 "Solver"

Now, restore all of the overridden parameters for the model. The parameters reset to the values in
the referenced configuration set and become read-only again.

configset.reference.restoreAllOverriddenParameters(model)

Input Arguments
model — Model that uses configuration reference
character vector | string scalar

Model that uses configuration reference, specified as a character vector or string scalar.
Example: 'vdp'

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical.

Version History
Introduced in R2021a

See Also
configset.reference.overrideParameter |
configset.reference.getOverriddenParameters |

2 Functions

2-164

configset.reference.restoreOverriddenParameter |
configset.reference.restoreAllOverriddenParameters

Topics
“Change Parameter Value in a Configuration Reference”

 configset.reference.hasOverriddenParameters

2-165

configset.reference.isParameterOverridden
Determine if parameter is overridden in configuration reference of model

Syntax
tf = configset.reference.isParameterOverridden(model, parameter)

Description
tf = configset.reference.isParameterOverridden(model, parameter) determines if the
specified model uses a configuration reference in which the parameter that you specify is overridden.
An overridden parameter can have a value that is different from the value in the referenced
configuration set.

Examples

Override Parameters in a Configuration Reference

Programmatically override a parameter in a configuration reference and set a value that is different
from the referenced configuration set.

Open the model slexConfigSetRefExample, which uses a configuration reference as the active
configuration.

model = 'slexConfigSetRefExample';
open(model)

Check if the model has any overridden parameters.

configset.reference.hasOverriddenParameters(model)

ans = logical
 0

The model does not have any overridden parameters. For this example, override the parameter
ModelReferenceNumInstancesAllowed. This parameter controls the number of times that the
model can be referenced directly or indirectly by another model. In the referenced configuration set,
the value is Multi. For the model slexConfigSetRefExample, override the parameter and set the
value to Single so that it can be referenced only once by another model.

configset.reference.overrideParameter(model,"ModelReferenceNumInstancesAllowed","Single");

Verify that the parameter ModelReferenceNumInstancesAllowed is overridden and check its
value for the model.

configset.reference.isParameterOverridden(model,"ModelReferenceNumInstancesAllowed")

ans = logical
 1

2 Functions

2-166

get_param(model,"ModelReferenceNumInstancesAllowed")

ans =
'Single'

Restore the parameter to the value in the referenced configuration set. Restoring the parameter
makes it read-only again.

configset.reference.restoreOverriddenParameter(model,"ModelReferenceNumInstancesAllowed");

If multiple parameters are overridden for the model, you can interact with all of them at once. For
example, override the parameters StartTime, StopTime, and SolverType. Then, use the function
configset.reference.getOverriddenParameters to see a list of the overridden parameters.

configset.reference.overrideParameter(model,"StartTime");
configset.reference.overrideParameter(model,"StopTime");
configset.reference.overrideParameter(model,"Solver");
configset.reference.getOverriddenParameters(model)

ans = 3x1 string
 "StartTime"
 "StopTime"
 "Solver"

Now, restore all of the overridden parameters for the model. The parameters reset to the values in
the referenced configuration set and become read-only again.

configset.reference.restoreAllOverriddenParameters(model)

Input Arguments
model — Model that uses configuration reference
character vector | string scalar

Model that uses configuration reference, specified as a character vector or string scalar.
Example: 'vdp'

parameter — Parameter to check
character vector | string scalar

Parameter to check, specified as a character vector or string scalar.
Example: 'ModelReferenceNumInstancesAllowed'

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical.

 configset.reference.isParameterOverridden

2-167

Version History
Introduced in R2021a

See Also
configset.reference.restoreOverriddenParameter |
configset.reference.overrideParameter

Topics
“Change Parameter Value in a Configuration Reference”

2 Functions

2-168

configset.reference.overrideParameter
Change value of parameter in configuration reference

Syntax
configset.reference.overrideParameter(model,parameter)
configset.reference.overrideParameter(model,parameter,value)

Description
configset.reference.overrideParameter(model,parameter) overrides the parameter
parameter in the active configuration reference that model uses. By default, a configuration
reference uses the parameter values from the configuration set that it references and does not enable
editing. Overriding a parameter enables editing in the configuration reference so that you can change
the value for the parameter in the reference without changing the referenced configuration set.
Changing the value in the referenced configuration set does not affect the value of the overridden
parameter. Some parameters cannot be overridden.

configset.reference.overrideParameter(model,parameter,value) overrides the
parameter and sets the value in the configuration reference to value.

Examples

Override Parameters in a Configuration Reference

Programmatically override a parameter in a configuration reference and set a value that is different
from the referenced configuration set.

Open the model slexConfigSetRefExample, which uses a configuration reference as the active
configuration.

model = 'slexConfigSetRefExample';
open(model)

Check if the model has any overridden parameters.

configset.reference.hasOverriddenParameters(model)

ans = logical
 0

The model does not have any overridden parameters. For this example, override the parameter
ModelReferenceNumInstancesAllowed. This parameter controls the number of times that the
model can be referenced directly or indirectly by another model. In the referenced configuration set,
the value is Multi. For the model slexConfigSetRefExample, override the parameter and set the
value to Single so that it can be referenced only once by another model.

configset.reference.overrideParameter(model,"ModelReferenceNumInstancesAllowed","Single");

 configset.reference.overrideParameter

2-169

Verify that the parameter ModelReferenceNumInstancesAllowed is overridden and check its
value for the model.

configset.reference.isParameterOverridden(model,"ModelReferenceNumInstancesAllowed")

ans = logical
 1

get_param(model,"ModelReferenceNumInstancesAllowed")

ans =
'Single'

Restore the parameter to the value in the referenced configuration set. Restoring the parameter
makes it read-only again.

configset.reference.restoreOverriddenParameter(model,"ModelReferenceNumInstancesAllowed");

If multiple parameters are overridden for the model, you can interact with all of them at once. For
example, override the parameters StartTime, StopTime, and SolverType. Then, use the function
configset.reference.getOverriddenParameters to see a list of the overridden parameters.

configset.reference.overrideParameter(model,"StartTime");
configset.reference.overrideParameter(model,"StopTime");
configset.reference.overrideParameter(model,"Solver");
configset.reference.getOverriddenParameters(model)

ans = 3x1 string
 "StartTime"
 "StopTime"
 "Solver"

Now, restore all of the overridden parameters for the model. The parameters reset to the values in
the referenced configuration set and become read-only again.

configset.reference.restoreAllOverriddenParameters(model)

Input Arguments
model — Model that uses configuration reference
character vector | string scalar

Model that uses the configuration reference, specified as a character vector or string scalar.
Example: 'vdp'

parameter — Parameter to override
character vector | string scalar

Parameter to override, specified as a character vector or string scalar.
Example: 'ModelReferenceNumInstancesAllowed'

value — Value to set
character vector | string scalar

2 Functions

2-170

Value to set for the overridden parameter, specified as a character vector or string scalar.
Example: 'Multi'

Version History
Introduced in R2021a

See Also
configset.reference.restoreOverriddenParameter |
configset.reference.getOverriddenParameters

Topics
“Change Parameter Value in a Configuration Reference”

 configset.reference.overrideParameter

2-171

configset.reference.restoreAllOverriddenParamete
rs
Restore all overridden parameters in configuration reference of model

Syntax
configset.reference.restoreAllOverriddenParameters(model)

Description
configset.reference.restoreAllOverriddenParameters(model) restores all parameters
that are overridden in the configuration reference that is active in the model. The overridden
parameters reset to the values in the referenced configuration and become read-only again.

Examples

Override Parameters in a Configuration Reference

Programmatically override a parameter in a configuration reference and set a value that is different
from the referenced configuration set.

Open the model slexConfigSetRefExample, which uses a configuration reference as the active
configuration.

model = 'slexConfigSetRefExample';
open(model)

Check if the model has any overridden parameters.

configset.reference.hasOverriddenParameters(model)

ans = logical
 0

The model does not have any overridden parameters. For this example, override the parameter
ModelReferenceNumInstancesAllowed. This parameter controls the number of times that the
model can be referenced directly or indirectly by another model. In the referenced configuration set,
the value is Multi. For the model slexConfigSetRefExample, override the parameter and set the
value to Single so that it can be referenced only once by another model.

configset.reference.overrideParameter(model,"ModelReferenceNumInstancesAllowed","Single");

Verify that the parameter ModelReferenceNumInstancesAllowed is overridden and check its
value for the model.

configset.reference.isParameterOverridden(model,"ModelReferenceNumInstancesAllowed")

2 Functions

2-172

ans = logical
 1

get_param(model,"ModelReferenceNumInstancesAllowed")

ans =
'Single'

Restore the parameter to the value in the referenced configuration set. Restoring the parameter
makes it read-only again.

configset.reference.restoreOverriddenParameter(model,"ModelReferenceNumInstancesAllowed");

If multiple parameters are overridden for the model, you can interact with all of them at once. For
example, override the parameters StartTime, StopTime, and SolverType. Then, use the function
configset.reference.getOverriddenParameters to see a list of the overridden parameters.

configset.reference.overrideParameter(model,"StartTime");
configset.reference.overrideParameter(model,"StopTime");
configset.reference.overrideParameter(model,"Solver");
configset.reference.getOverriddenParameters(model)

ans = 3x1 string
 "StartTime"
 "StopTime"
 "Solver"

Now, restore all of the overridden parameters for the model. The parameters reset to the values in
the referenced configuration set and become read-only again.

configset.reference.restoreAllOverriddenParameters(model)

Input Arguments
model — Model that uses configuration reference
character vector | string scalar

Model that uses configuration reference, specified as a character vector or string scalar.
Example: 'vdp'

Version History
Introduced in R2021a

See Also
configset.reference.restoreOverriddenParameter |
configset.reference.getOverriddenParameters |
configset.reference.overrideParameter

Topics
“Change Parameter Value in a Configuration Reference”

 configset.reference.restoreAllOverriddenParameters

2-173

configset.reference.restoreOverriddenParameter
Restore overridden parameter in configuration reference of model

Syntax
configset.reference.restoreOverriddenParameter(model,parameter)

Description
configset.reference.restoreOverriddenParameter(model,parameter) restores the
overridden parameter that you specify in the configuration reference that is active in the model. The
overridden parameter resets to the value in the referenced configuration and becomes read-only
again.

Examples

Override Parameters in a Configuration Reference

Programmatically override a parameter in a configuration reference and set a value that is different
from the referenced configuration set.

Open the model slexConfigSetRefExample, which uses a configuration reference as the active
configuration.

model = 'slexConfigSetRefExample';
open(model)

Check if the model has any overridden parameters.

configset.reference.hasOverriddenParameters(model)

ans = logical
 0

The model does not have any overridden parameters. For this example, override the parameter
ModelReferenceNumInstancesAllowed. This parameter controls the number of times that the
model can be referenced directly or indirectly by another model. In the referenced configuration set,
the value is Multi. For the model slexConfigSetRefExample, override the parameter and set the
value to Single so that it can be referenced only once by another model.

configset.reference.overrideParameter(model,"ModelReferenceNumInstancesAllowed","Single");

Verify that the parameter ModelReferenceNumInstancesAllowed is overridden and check its
value for the model.

configset.reference.isParameterOverridden(model,"ModelReferenceNumInstancesAllowed")

ans = logical
 1

2 Functions

2-174

get_param(model,"ModelReferenceNumInstancesAllowed")

ans =
'Single'

Restore the parameter to the value in the referenced configuration set. Restoring the parameter
makes it read-only again.

configset.reference.restoreOverriddenParameter(model,"ModelReferenceNumInstancesAllowed");

If multiple parameters are overridden for the model, you can interact with all of them at once. For
example, override the parameters StartTime, StopTime, and SolverType. Then, use the function
configset.reference.getOverriddenParameters to see a list of the overridden parameters.

configset.reference.overrideParameter(model,"StartTime");
configset.reference.overrideParameter(model,"StopTime");
configset.reference.overrideParameter(model,"Solver");
configset.reference.getOverriddenParameters(model)

ans = 3x1 string
 "StartTime"
 "StopTime"
 "Solver"

Now, restore all of the overridden parameters for the model. The parameters reset to the values in
the referenced configuration set and become read-only again.

configset.reference.restoreAllOverriddenParameters(model)

Input Arguments
model — Model that uses configuration reference
character vector | string scalar

Model that uses configuration reference, specified as a character vector or string scalar.
Example: 'vdp'

parameter — Parameter to restore
character vector | string scalar

Parameter to restore, specified as a character vector or string scalar.
Example: 'ModelReferenceNumInstancesAllowed'

Version History
Introduced in R2021a

See Also
configset.reference.restoreAllOverriddenParameters |
configset.reference.overrideParameter |
configset.reference.isParameterOverridden

 configset.reference.restoreOverriddenParameter

2-175

Topics
“Change Parameter Value in a Configuration Reference”

2 Functions

2-176

createCustomDBFromExcel
Create custom units database file from Microsoft Excel spreadsheet

Syntax
createCustomDBFromExcel(units_db.xlsx)

Description
createCustomDBFromExcel(units_db.xlsx) creates a custom units database file from an Excel
spreadsheet that contains custom units. On all supported platforms, the
createCustomDBFromExcel function supports: .xls and .xlsx files.

To see the supported spreadsheet format, see “Custom Units Spreadsheet Format”.

Examples

Create Custom Units Database File from Excel Spreadsheet

Create a custom units database file from custom Excel spreadsheet file, unitsDB.xlsx.

Create a Excel spreadsheet containing these columns and data in any order:

• name, containing ounce_force
• symbol, containing ozf
• asciiSymbol, containing ozf
• displayName, containing {\rm{}oz_{force}}
• definitionExpression, containing oz*gn
• conversionFactor, containing 1
• conversionOffset, containing 0
• physicalQuantity, containing force

Enter your custom unit specifications.

Save the database file, for example unitsDB.xlsx.

Create the database.

createCustomDBFromExcel('unitsDB.xlsx')

The function creates unitsDB.slunitdb.mldatx in the current folder.

Add the current folder to the MATLAB path.

addpath C:\work\custom_units

Load the new units database into memory.

 createCustomDBFromExcel

2-177

rehashUnitDBs

Input Arguments
units_db.xlsx — Custom unit database
Excel units database file name

Custom unit database, specified as the file name of an Excel units database file. Create this file as an
Excel spreadsheet with columns that contain custom unit information.

The function creates a unit database file, units_db.slunitdb.mldatx, in the current folder, where
units_db is the name of the Excel file. If the unit entry is empty for the symbol, asciiSymbol, or
displayName columns, the function uses the unit name for the missing symbol, asciiSymbol, or
displayName entries.

To see the supported spreadsheet format, see “Custom Units Spreadsheet Format”.
Example: custom_units.xlsx
Data Types: char | string

Version History
Introduced in R2020a

See Also
rehashUnitDBs | Unit System Configuration | Unit Conversion

Topics
“Working with Custom Unit Databases”
“Unit Specification in Simulink Models”
“Displaying Units”
“Unit Consistency Checking and Propagation”
“Converting Units”

2 Functions

2-178

createInputDataset
Generate dataset object for root-level Inport or bus element ports in model

Syntax
[inports_dataset] = createInputDataset(model)
[inports_dataset] = createInputDataset(model,'DatasetSignalFormat',value)

Description
[inports_dataset] = createInputDataset(model) generates a
Simulink.SimulationData.Dataset object from the root-level Inport blocks or bus element ports
in a model. Signals in the generated dataset have the properties of the root inports and the
corresponding ground values at model start and stop times. You can create timetable or
timeseries objects for the time and values for signals for which you want to load data for
simulation. The other signals use ground values.

[inports_dataset] = createInputDataset(model,'DatasetSignalFormat',value)
generates a Simulink.SimulationData.Dataset object whose signal dataset signal elements are
either timeseries or timetable.

Examples

Generate and Populate Dataset for Root-Level Inport Blocks

This example shows how to create a timeseries dataset with elements for the four root-level Inport
blocks in a model. Use that dataset as a basis for creating a dataset to load signal data into the
model.

The In1 block outputs a double, In2 and In3 each output a nonvirtual bus, and In4 outputs an
int16.

mdl = 'ex_dataset_for_inports';
open_system(mdl)

 createInputDataset

2-179

Create a Dataset object for the root-level Inport blocks.

ds = createInputDataset(mdl)

Exporting logged dataset prior to deleting run...done.

ds =

Simulink.SimulationData.Dataset '' with 4 elements

 Name BlockPath
 ____ _________
 1 [1x1 timeseries] In1 ''
 2 [1x1 struct] In2 ''
 3 [1x1 struct] In3 ''
 4 [1x1 timeseries] In4 ''

 - Use braces { } to access, modify, or add elements using index.

Replace the placeholder value for the first signal in the Dataset with actual signal values that you
want to load into the model.

ds{1} = ds{1}.delsample('Index',[1,2]);
ds{1} = ds{1}.addsample('time',[1 3 3 10]','data',[1 1 5 5]');

Examine the In2 signal.

ds{2}

ans =

 struct with fields:

 a: [1x1 timeseries]
 b: [1x1 timeseries]

2 Functions

2-180

For In2 , create data for bus elements a and b.

ds{2}.a = ds{2}.a.delsample('Index',[1,2]);
ds{2}.a = addsample(ds{2}.a,'time',[1:10]','data',[1:10]');
ds{2}.b = timeseries((1:10)',0.1:.1:1,'Name','sig2_b');

For In3, specify data for element a of the bus, and use ground values for element b.

ds{3}.a = timeseries((1:10)',0.1:.1:1,'Name','sig3_a');

Plot ds.

plot(ds)

Set the Input configuration parameter to ds. Alternatively, you can use the Root Inport Mapper tool
to set the Input parameter.

set_param(mdl,'LoadExternalInput','on');
set_param(mdl,'ExternalInput','ds');

Run the simulation. The Inport blocks use the signal data specified in ds or ground values for
elements that do not have specified signal data.

sim(mdl)

Input Arguments
model — Model for which to generate dataset for root-level Inport blocks or bus element
ports
string | character vector | model handle

Model for which to generate a dataset with an element for each root-level Inport block, specified as a
string, character vector, or model handle.

'DatasetSignalFormat',value — Signal format for dataset signal elements
'timeseries' (default) | 'timetable'

Signal format for dataset signal elements, specified as 'timetable' or 'timeseries'.

Output Arguments
inports_dataset — Dataset with element for each root-level Inport block
Simulink.SimulationData.Dataset object

Dataset with an element for each root-level Inport block, returned as a
Simulink.SimulationData.Dataset object.

Version History
Introduced in R2017a

R2023a: createInputDataset Function Allows Signal Format Specification

 createInputDataset

2-181

The createInputDataset function allows specification of the signal formats for the signal elements
in the dataset.

See Also
Simulink.SimulationData.Dataset | timeseries | timetable

Topics
“Create a Dataset Object for Inport Blocks”

2 Functions

2-182

getHardwareImplementation
Class: coder.BuildConfig
Package: coder

Get handle of copy of hardware implementation object

Syntax
hw = getHardwareImplementation(bldcfg)

Description
hw = getHardwareImplementation(bldcfg) returns the handle of a copy of the hardware
implementation object.

Input Arguments
bldcfg — Build context during code generation
coder.BuildConfig object

Build context during code generation, specified as a coder.BuildConfig object. Use
coder.BuildConfig methods to get information about the build context.

Output Arguments
hw — Hardware implementation
handle

Hardware implementation, returned as a handle of a copy of the coder.HardwareImplementation
object.

Version History
Introduced in R2013b

See Also
coder.HardwareImplementation

 getHardwareImplementation

2-183

getStdLibInfo
Class: coder.BuildConfig
Package: coder

Get standard library information

Syntax
[linkLibPath,linkLibExt,execLibExt,libPrefix] = getStdLibInfo(bldcfg)

Description
[linkLibPath,linkLibExt,execLibExt,libPrefix] = getStdLibInfo(bldcfg) returns
standard library information associated with the build context, bldcfg.

Input Arguments
bldcfg — Build context during code generation
coder.BuildConfig object

Build context during code generation, specified as a coder.BuildConfig object. Use
coder.BuildConfig methods to get information about the build context.

Output Arguments
linkLibPath — Architecture-specific library path
character vector

Standard MATLAB architecture-specific library path returned as a character vector. The character
vector can be empty.
Data Types: char

linkLibExt — Library file extension used at link time
'.lib' | '.dylib' | '.so' | ''

Platform-specific library file extension for use at link time, returned as '.lib','.dylib','.so', or
''.
Data Types: enumerated

execLibExt — Library file extension used at run time
'.lib' | '.dylib' | '.so' | ''

Platform-specific library file extension for use at run time, returned as '.lib','.dylib','.so', or
''.
Data Types: enumerated

libPrefix — Architecture-specific library name prefix
character vector

2 Functions

2-184

Standard architecture-specific library name prefix, specified as a character vector. The character
vector can be empty.
Data Types: char

Version History
Introduced in R2013b

See Also
coder.BuildConfig

 getStdLibInfo

2-185

getTargetLang
Class: coder.BuildConfig
Package: coder

Get target code generation language

Syntax
lang = getTargetLang(bldcfg)

Description
lang = getTargetLang(bldcfg) returns the target code generation language of the build
context, bldcfg.

Input Arguments
bldcfg — Build context during code generation
coder.BuildConfig object

Build context during code generation, specified as a coder.BuildConfig object. Use
coder.BuildConfig methods to get information about the build context.

Output Arguments
lang — Target code generation language
'C' | 'C++'

Target code generation language, returned as either 'C' or 'C++'.

Version History
Introduced in R2013b

See Also
coder.BuildConfig

2 Functions

2-186

getToolchainInfo
Class: coder.BuildConfig
Package: coder

Returns handle of copy of toolchain information object

Syntax
tc = getToolchainInfo(bldcfg)

Description
tc = getToolchainInfo(bldcfg) returns the toolchain information associated with the build
context, bldcfg.

Input Arguments
bldcfg — Build context during code generation
coder.BuildConfig object

Build context during code generation, specified as a coder.BuildConfig object. Use
coder.BuildConfig methods to get information about the build context.

Output Arguments
tc — Toolchain information
coder.make.ToolchainInfo handle

Toolchain information, returned as a handle of a copy of the coder.make.ToolchainInfo object.

Version History
Introduced in R2013b

See Also
coder.BuildConfig

 getToolchainInfo

2-187

isCodeGenTarget
Class: coder.BuildConfig
Package: coder

Determine if build context represents specified target

Syntax
tf = isCodeGenTarget(bldcfg,target)

Description
tf = isCodeGenTarget(bldcfg,target) checks if the code generation target of the build
context bldcfg represents the code generation target specified by target.

Input Arguments
bldcfg — Build context during code generation
coder.BuildConfig object

Build context during code generation, specified as a coder.BuildConfig object. Use
coder.BuildConfig methods to get information about the build context.

target — Code generation target
character vector | cell array of character vectors

Code generation target, specified as a character vector or a cell array of character vectors with one
or more of the following values:

Value Description
'rtw' C/C++ dynamic Library, C/C++ static library, or

C/C++ executable
'sfun' S-function (Simulation)
'mex' MEX-function

Example: bldcfg.isCodeGenTarget({'sfun','mex'}) checks whether the build context
represents an S-function target or a MEX-function target.
Data Types: char | cell

Output Arguments
tf — Whether build context represents code generation target
true(1) | false(0)

Whether the build context represents the code generation target, returned as either true(1) or
false(0). If you specify more than one value for target, the function returns true(1) if the build
context represents any of the code generation targets.

2 Functions

2-188

Data Types: logical

Version History
Introduced in R2013b

See Also
Classes
coder.BuildConfig

Functions
coder.target

 isCodeGenTarget

2-189

isMatlabHostTarget
Class: coder.BuildConfig
Package: coder

Determine if hardware implementation object target is MATLAB host computer

Syntax
tf = isMatlabHostTarget(bldcfg)

Description
tf = isMatlabHostTarget(bldcfg) returns if the current hardware implementation targets the
MATLAB host computer.

Input Arguments
bldcfg — Build context during code generation
coder.BuildConfig object

Build context during code generation, specified as a coder.BuildConfig object. Use
coder.BuildConfig methods to get information about the build context.

Output Arguments
tf — Whether current hardware implementation targets host computer
true(1) | false(0)

Whether the current hardware implementation object targets the MATLAB host computer, returned
as either true(1) or false(0).
Data Types: logical

Version History
Introduced in R2013b

See Also
coder.BuildConfig

2 Functions

2-190

coder.ExternalDependency.getDescriptiveName
Class: coder.ExternalDependency
Package: coder

Return descriptive name for external dependency

Syntax
extname = coder.ExternalDependency.getDescriptiveName(bldcfg)

Description
extname = coder.ExternalDependency.getDescriptiveName(bldcfg) returns the name
that you want to associate with an “external dependency” on page 2-192. The code generator uses
the external dependency name for error messages.

You must implement this method in a subclass of coder.ExternalDependency.

Input Arguments
bldcfg — Build context during code generation
coder.BuildConfig object

Build context during code generation, specified as a coder.BuildConfig object. Use
coder.BuildConfig methods to get information about the “build context” on page 2-192.

Output Arguments
extname — External dependency name
character vector

External dependency name, returned as a character vector.
Data Types: char

Examples

Return external dependency name

Define a method that always returns the same name.

function myextname = getDescriptiveName(~)
 myextname = 'MyLibrary';
end

 coder.ExternalDependency.getDescriptiveName

2-191

Return external library name based on the code generation target

Define a method that uses the build context to determine the name.

function myextname = getDescriptiveName(context)
 if context.isMatlabHostTarget()
 myextname = 'MyLibary_MatlabHost';
 else
 myextname = 'MyLibrary_Local';
 end
end

More About
external dependency

External code interface represented by a class derived from a coder.ExternalDependency class.
The external code can be a library, object files, or C/C++ source.

build context

Information used by the build process including:

• Target language
• Code generation target
• Target hardware
• Build toolchain

Version History
Introduced in R2013b

See Also
coder.updateBuildInfo | coder.BuildConfig | coder.ceval | coder.ExternalDependency

Topics
“Develop Interface for External C/C++ Code” (MATLAB Coder)
“Build Process Customization” (MATLAB Coder)
“Integrate External/Custom Code” (MATLAB Coder)

2 Functions

2-192

coder.ExternalDependency.isSupportedContext
Class: coder.ExternalDependency
Package: coder

Determine if build context supports external dependency

Syntax
tf = coder.ExternalDependency.isSupportedContext(bldcfg)

Description
tf = coder.ExternalDependency.isSupportedContext(bldcfg) returns if you can use the
“external dependency” on page 2-194 in the “build context” on page 2-194, bldcfg.

If you cannot use the external dependency in the current build context, display an error message and
stop code generation. The error message must describe why you cannot use the external dependency
in this build context. If the method returns false (0), the code generator uses a default error
message. The default error message uses the name returned by the getDescriptiveName method
of the coder.ExternalDependency class.

You must implement this method in a subclass of coder.ExternalDependency.

Input Arguments
bldcfg — Build context during code generation
coder.BuildConfig object

Build context during code generation, specified as a coder.BuildConfig object. Use
coder.BuildConfig methods to get information about the build context.

Output Arguments
tf — Whether build context supports external dependency
true (1) | false (0)

Whether the build context supports the external dependency, returned as either true (1) or false
(0).
Data Types: logical

Examples

Report error when build context does not support external library

This method returns true(1) if the code generation target is a MATLAB host target. Otherwise, the
method reports an error and stops code generation.

Write isSupportedContext method.

 coder.ExternalDependency.isSupportedContext

2-193

function tf = isSupportedContext(ctx)
 if ctx.isMatlabHostTarget()
 tf = true;
 else
 error('adder library not available for this target');
 end
end

More About
external dependency

External code interface represented by a class derived from coder.ExternalDependency class.
The external code can be a library, object file, or C/C++ source.

build context

Information used by the build process including:

• Target language
• Code generation target
• Target hardware
• Build toolchain

Version History
Introduced in R2013b

See Also
coder.updateBuildInfo | coder.BuildConfig | coder.ceval | coder.ExternalDependency

Topics
“Develop Interface for External C/C++ Code” (MATLAB Coder)
“Build Process Customization” (MATLAB Coder)
“Integrate External/Custom Code” (MATLAB Coder)

2 Functions

2-194

coder.ExternalDependency.updateBuildInfo
Class: coder.ExternalDependency
Package: coder

Update build information

Syntax
coder.ExternalDependency.updateBuildInfo(buildInfo,bldcfg)

Description
coder.ExternalDependency.updateBuildInfo(buildInfo,bldcfg) updates the build
information, buildInfo with the build context, bldcfg. After code generation, the build information
object has standard information. Use this method to provide additional information required to link to
external code.

You must implement this method in a subclass of coder.ExternalDependency.

Input Arguments
buildInfo — Build information
handle

Build information, specified as a handle.

bldcfg — Build context during code generation
coder.BuildConfig object

Build context during code generation, specified as a coder.BuildConfig object. Use
coder.BuildConfig methods to get information about the “build context” on page 2-195.

Limitations
• The build information method AddIncludeFiles has no effect in a

coder.ExternalDependency.updateBuildInfo method.

More About
build context

Information used by the build process including:

• Target language
• Code generation target
• Target hardware
• Build toolchain

 coder.ExternalDependency.updateBuildInfo

2-195

Version History
Introduced in R2013b

See Also
coder.updateBuildInfo | coder.BuildConfig | coder.ceval | coder.ExternalDependency

Topics
“Develop Interface for External C/C++ Code” (MATLAB Coder)
“Build Process Customization” (MATLAB Coder)
“Integrate External/Custom Code” (MATLAB Coder)

2 Functions

2-196

coder.read
Package: coder

Read data files at run time in generated code

Syntax
dataFromFile = coder.read(fileName)
dataFromFile = coder.read(fileName,TypeHeaderFrom=typeHeaderFilename)
[dataFromFile,errID] = coder.read(___)

Description
dataFromFile = coder.read(fileName) reads from the fileName.coderdata storage file and
returns the data stored within the file. This syntax works for a constant fileName input only. Use this
function in your MATLAB code for which you want to generate C/C++ code. The generated code
performs the data read at run time.

To store your workspace variables in a .coderdata file, use the coder.write function in MATLAB.

dataFromFile = coder.read(fileName,TypeHeaderFrom=typeHeaderFilename) uses the
information contained in typeHeaderFilename to determine the type and size of the data to be read
from fileName. Both fileName and typeHeaderFilename must be .coderdata files. The
typeHeaderFilename argument must be a compile-time constant and the file that this name
represents must exist in your current directory during code generation.

Each .coderdata file contains a type header that specifies the type and size of the data stored in the
file. The code generated for the coder.read function can read any .coderdata file at run-time,
while the file type and size is consistent with the type and size information that you supply using the
typeHeaderFilename file during code generation.

To create a .coderdatafile to use with the TypeHeaderFrom argument, use the coder.write
function in MATLAB.

[dataFromFile,errID] = coder.read(___) suppresses run-time errors during a read
operation. errID is a coder.ReadStatus enumeration object. If any errors occur, coder.read
returns the first error through errID and dataFromFile returns unusable content. Use this option
to test the generated code for targets for which run-time errors are disabled.

Examples

Read Data from a Fixed .coderdata File at Run Time

In this example, you use coder.write to create a .coderdata file that stores a single array from
your MATLAB workspace. You then generate code for a coder.read function call that reads this file
at run time.

Create a 20-by-20 array of double type in your workspace.

 coder.read

2-197

c = rand(20);

Store this variable in a file named exampleData.coderdata in your current directory.

coder.write("exampleData.coderdata",c);

To read from a .coderdata file with the constant file name exampleData, use the coder.read
function as shown in your MATLAB entry-point function.

function data = readSingleFile %#codegen
data = coder.read("exampleData.coderdata");
end

Generate a MEX function for readSingleFile.

codegen readSingleFile -report

Read the data stored in exampleData.coderdata at run time by running the generated MEX.

readSingleFile_mex

Read Data from Multiple .coderdata Files at Run Time

This example shows how to generate code for a coder.read command that can read
multiple .coderdata files at run time. These files contain array data that have the same type, but
different sizes. To enable a single coder.read call to read all these files, pass a type header file that
is consistent with all your individual data files to the coder.read function call.

To start, create a storage file that you want the generated code to read. The following coder.write
command creates the storage file file_a.coderdata, which contains two variables with array data
of type double. Variables a and b are of different sizes.

a = rand(10,20);
b = rand(5,30);
coder.write("file_a.coderdata",a);

A coder.Type object that is consistent with both variables a and b must have variable-size
dimensions. The upper bounds of the two array dimensions must be at least 10 and 30 respectively.
Create a coder.Type object that represents a variable-size double type with these bounds.

t = coder.typeof(a,[10 30],[1 1])

t =

coder.PrimitiveType
 :10×:30 double

You can modify the header information of file_a.coderdata and use the modified file as the source
of the type header information.

coder.write("file_a.coderdata",a,TypeHeader=t);

You can also create the file_b.coderdata file with the required type header information by
running this command.

coder.write("file_b.coderdata",b,TypeHeader=t);

2 Functions

2-198

Create a MATLAB entry-point function, readMultipleFiles, that can read file_a.coderdata
and file_b.coderdata.

function data = readMultipleFiles(filename) %#codegen
data = coder.read(filename,TypeHeaderFrom="file_b.coderdata");
end

Generate a MEX for readMultipleFiles. Specify the input argument type as an unbounded
variable-size character vector.

codegen readMultipleFiles -args {coder.typeof('a',[1 inf])} -report

Run the generated MEX with inputs 'file_a.coderdata' and 'file_b.coderdata'.

readMultipleFiles_mex('file_a.coderdata')
readMultipleFiles_mex('file_b.coderdata')

Input Arguments
fileName — Name of .coderdata storage file
string scalar (default) | character vector

Name of the .coderdata storage file from which you want to read data, specified as a string scalar
or character vector.

To store your workspace variables in a .coderdata file, use the coder.write function in MATLAB.

typeHeaderFilename — Constant name of .coderdata file that stores type and size
information
string scalar | character vector

Constant file name of a .coderdata file that stores type and size information about the files to read
at run time, specified as a string scalar or character vector.

Each .coderdata file contains a type header that specifies the type and size of the data stored in the
file. The code generated for the coder.read function can read any .coderdata file at run time
while the file type and size is consistent with the type and size information that you supply using the
typeHeaderFilename file during code generation. This file is also referred to as the type header
file.

To create a type header file, use the coder.write function in MATLAB.

Output Arguments
dataFromFile — Data read from .coderdata storage file
array | structure | cell array | enumeration | categorical | sparse array

Data read from the .coderdata storage file, returned as an array or multiple arrays stored within a
structure or cell array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | cell | categorical | sparse

errID — Read error enumeration object
coder.ReadStatus object

 coder.read

2-199

Read error enumeration object, specified as one of these values.

Enumeration Member Enumeration Value Error Reference
Success 0 Read operation success.
CoderReadCouldNotOpen 1 Unable to open

specified .coderdata file.
CoderReadProblemReading 2 Issue while

reading .coderdata file.
CoderReadUnexpectedValue 3 Unexpected value

in .coderdata file.
CoderReadWrongHeader 4 .coderdata file does not

contain expected metadata. The
input file might be corrupted or
is not a .coderdata file. Use
coder.write to
create .coderdata files.

CoderReadWrongVersion 5 .coderdata file is not
compatible with this release of
MATLAB Coder. Create a
new .coderdata file with this
version of the product to
generate a compatible file.

CoderReadStructArray 6 Expected to read a scalar
structure, but .coderdata file
contains a structure array. Use a
compatible TypeHeader to read
this file or a constant file name.

MATFile 7 coder.read cannot read MAT
file. Convert your MAT file to
a .coderdata files by running
these commands in the
command window:

s = load('MATFileName');
coder.write('fileName.coderdata',s);

Read the new .coderdata file
by using coder.read.

WrongType 8 The type information of
the .coderdata file does not
match the type information in
the specified by the
TypeHeaderFrom argument.

Version History
Introduced in R2023a

2 Functions

2-200

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
coder.write | coder.load | fread | fwrite | fscanf | fprintf

Topics
“Data Read and Write Considerations” (MATLAB Coder)

 coder.read

2-201

coder.write
Package: coder

Create data files that the generated code reads at run time

Syntax
coder.write(fileName,data)
coder.write(fileName,data,Name=Value)

Description
coder.write(fileName,data) stores the argument data in a file with the name
fileName.coderdata in your current directory. Use this function in MATLAB execution only and
not the MATLAB code you intend to use for C/C++ code generation.

Use the coder.read function to read data from a .coderdata file in MATLAB and in the generated
code.

A .coderdata file contains a type header that specifies the type and size of the data stored in the
file. The code generated for the coder.read function can read any .coderdata file at run-time,
whose type and size is consistent with the type and size information that you supply to coder.read
during code generation.

coder.write(fileName,data,Name=Value) creates a type header file, which is a .coderdata
file that you use to specify the type and size of data to the coder.read function. Use the name-value
arguments to:

• Specify a custom type header for the .coderdata file that is consistent with the variable data.
• Omit the actual data and create a .coderdata file with a type header only.

Examples

Store Variable in .coderdata File

This example shows how to create a storage file for a single variable. This storage file can be read at
run-time by using the coder.read function.

Create a 20-by-20 array of double type in your workspace.

c = rand(20);

Store this variable in a file named storageFile.coderdata in your current directory.

coder.write("storageFile.coderdata",c);

2 Functions

2-202

Store Multiple Variables in .coderdata File

This example shows how to create a storage file for multiple variables.

Create two arrays of double type in your workspace. Array a is of size 10-by-10 and array b is 20-
by-20.

a = rand(10);
b = rand(20);

Create structure s that contains arrays a and b in its fields.

s = struct('a',a,'b',b);

Store the structure s in a .coderdata file.

coder.write("storageFile.coderdata",s);

Alternatively, you can use a cell array to store multiple variables in a .coderdata file.

Create Type Header File Compatible with Multiple Data Files

In this example, you generate code for a coder.read command that can read multiple .coderdata
files at run time. These files contain array data that have the same type, but different sizes. To
generate code, you must pass a type header file that is consistent with all your individual data files to
the coder.read function call.

Create the storage file file_a.coderdata, which contains two variables with array data of type
double. Variables a and b are of different sizes.

a = rand(10,20);
b = rand(5,30);
coder.write("file_a.coderdata",a);

A coder.Type object that is consistent with both variables a and b must have variable-size
dimensions. The upper bounds of the two array dimensions must be at least 10 and 30 respectively.
Create a coder.Type object that represents a variable-size double type with these bounds.

t = coder.typeof(a,[10 30],[1 1])

t =

coder.PrimitiveType
 :10×:30 double

You can modify the header information of file_a.coderdata and use the modified file as the source
of the type header information.

coder.write("file_a.coderdata",a,TypeHeader=t);

You can also create the file_b.coderdata file with the required type header information by
running this command.

coder.write("file_b.coderdata",b,TypeHeader=t);

 coder.write

2-203

Alternatively, you can create a separate type header file, myTypeHeader.coderdata, that contains
only the type header compatible with all the existing storage files and does not contain any actual
data.

coder.write("file_b.coderdata",b,TypeHeader=t,TypeHeaderOnly=true);

Such a type header file is useful if you are working with large data files, and want to use the
generated file as a type header file only.

Input Arguments
fileName — Name or full file path of new or existing storage file
string scalar | character vector

Name or full file path of a new or existing storage file, specified as a string scalar or character vector.
The generated storage file has the name fileName.coderdata, or just fileName if the value you
supplied already has the extension.

data — Data source to save in storage file
array | structure | cell array | enumeration | categorical | sparse array

Data source to save in the storage file, specified as an array or multiple arrays stored within a
structure or cell array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | cell | categorical | sparse
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: coder.write('example.coderdata',rand(1000),TypeHeader=coder.typeof(1,
[1000 1000],1 1]),TypeHeaderOnly=true)

TypeHeader — Type information for storage data
coder.typeof(data) (default) | coder.Type object

Type information for storage data, specified as a coder.Type object. This type object must be
compatible with the input argument data.

To create a type object, use the coder.typeof or coder.newtype function. You can also create and
edit coder.Type objects interactively by using the Coder Type Editor. See “Create and Edit Input
Types by Using the Coder Type Editor” (MATLAB Coder).
Example: coder.write('example.coderdata',rand(10),TypeHeader=coder.typeof(1,[10
10],1 1]))

TypeHeaderOnly — Whether to create .coderdata file with type header only
false (default) | true

2 Functions

2-204

Option to specify whether to omit the data and create a .coderdata file with the type header only,
specified as true or false. If data is a large array and you want to use the .coderdata file as a
type header file only, set this argument to true.
Example: coder.write('example.coderdata',rand(1000),TypeHeaderOnly=true)

Verbose — Whether to report when writing a file
true (default) | false

Option to specify whether to report when writing a.coderdata file at the MATLAB command line,
specified as true or false.

Version History
Introduced in R2023a

See Also
coder.read | coder.load | fread | fwrite | fscanf | fprintf

Topics
“Data Read and Write Considerations” (MATLAB Coder)

 coder.write

2-205

convertToSLDataset
Convert contents of MAT-file to Simulink.SimulationData.Dataset object

Syntax
success=convertToSLDataset(source,destination)
success=convertToSLDataset(source,destination,datasetname)

Description
success=convertToSLDataset(source,destination) converts the contents of a MAT-file
(source) to a destination MAT-file (destination).

success=convertToSLDataset(source,destination,datasetname) names the dataset
datasetname.

When converting structure signal data, the function names the signal using the value contained in the
label field of the structure signal field, such as: mySignal.signal(1).label.

This function ignores time expressions in source.

Examples

Save Signals to Dataset in file2.mat

Save signals from file1.mat to a dataset named file1 in file2.mat.

success=convertToSLDataset('file1.mat','file2.mat')

Save Signals to Dataset Named myDataset in file2.mat

Save signals from file1.mat to a dataset named myDataset in file2.mat.

success=convertToSLDataset('file1.mat','file2.mat','myDataset')

Input Arguments
source — MAT-file
character vector

MAT–file that contains Simulink inputs.

destination — MAT-file
character vector

MAT–file to contain Simulink.SimulationData.Dataset converted from contents of source.

2 Functions

2-206

datasetname — Data set name
character vector

Data set name for new Simulink.SimulationData.Dataset object.

Output Arguments
success — Outcome of conversion
binary

Outcome of conversion, specified as binary:

• 1

Conversion is successful.
• 0

Conversion is not successful.

Version History
Introduced in R2016a

 convertToSLDataset

2-207

delete_block
Delete blocks from Simulink system

Syntax
delete_block(blockArg)

Description
delete_block(blockArg) deletes the specified blocks from a system. Open the system before you
delete blocks.

Examples

Delete Block Using Full Path Name

Delete the block Mu from the vdp system.

open_system('vdp')
delete_block('vdp/Mu')

Delete Block Using Block Handle

Delete the block Out2 from the vdp system using the block handle.

Open the vdp system.

open_system('vdp')

Interactively select the block Out1. Get the block’s handle and assign it to the variable
Out1_handle. Delete the block using the handle.

Out1_handle = get_param(gcb,'Handle');
delete_block(Out1_handle)

Delete Blocks Using Vector of Handles

Delete three blocks from the vdp system.

Open the vdp system. Add three blocks and assign their handles to variables.

open_system('vdp')
Constant_handle = add_block('built-in/Constant','vdp/MyConstant');
Gain_handle = add_block('built-in/Gain','vdp/MyGain');
Outport_handle = add_block('built-in/Outport','vdp/MyOutport');

Delete the blocks you added using a vector of handles.

2 Functions

2-208

delete_block([Constant_handle Gain_handle Outport_handle])

Input Arguments
blockArg — Blocks to delete
full path name | handle | vector of handles | 1-D cell array or string array of handles or block path
names

Blocks to delete, specified as the full block path name, a handle, a vector of handles, or a 1-D cell
array or string array of handles or block path names.
Example: 'vdp/Mu'
Example: [handle1 handle2]
Example: {'vdp/Mu' 'vdp/Out1' 'vdp/Out2'}
Example: "vdp/Out"+(1:2)

Version History
Introduced before R2006a

See Also
add_block

 delete_block

2-209

delete_line
Delete line from Simulink model

Syntax
delete_line(sys,out,in)
delete_line(sys,point)
delete_line(lineHandle)

Description
delete_line(sys,out,in) deletes the line from the model or subsystem sys that connects the
output port out to the input port in.

delete_line(sys,point) deletes the line that includes the point point.

delete_line(lineHandle) deletes the line using the line handle.

Examples

Remove Line Using Block Port Names

For the model vdp, remove the line connecting the Product block with the Gain block.

load_system('vdp');
delete_line('vdp','Product/1','Mu/1');

Remove Line Using Line Handle

For the model vdp, remove a line using the line handle. You can get the line handle using different
techniques.

load_system('vdp');
h = get_param('vdp/Mu','LineHandles');
delete_line(h.Outport(1));

Get a line handle when you create the line. Delete the line using that handle.

a = add_line('vdp','Mu/1','Sum/2');
delete_line(a)

Delete a Line Using a Point

You can use a point on the line to delete the whole line.

Find the port coordinates for the block Mu in the model vdp.

2 Functions

2-210

open_system('vdp');
mu = get_param('vdp/Mu','PortConnectivity');
mu.Position

ans = 1×2

 190 150

ans = 1×2

 225 150

The line that connects the Mu block to the Sum block starts at the output port, which is at (225,150).
You can use any point to the right of that point along the same x-axis to delete the line.

delete_line('vdp',[230,150]);

Delete Segments of Branched Lines

Use delete_line with branched lines to remove the segment for any connection.

Open the model vdp.

open_system('vdp');

Delete the signal line segment that connects the x1 block to the Out1 block.

delete_line('vdp','x1/1','Out1/1')

Delete the signal line segment that connects the x2 block to the Mux block.

delete_line('vdp','x2/1','Mux/2')

 delete_line

2-211

Delete the line segment that connects the x2 block to the Product block.

delete_line('vdp','x2/1','Product/2')

Input Arguments
sys — Model or subsystem to delete line from
character vector

Model or subsystem to delete the line from, specified as a character vector.
Example: 'vdp' , 'f14/Controller'

out — Block output port to delete line from
block/port name or number character vector | port handle

Block output port to delete line from, specified as either:

• The block name, a slash, and the port name or number. Most block ports are numbered from top
to bottom or from left to right. For a state port, use the port name State instead of a port number.

• The port handle that you want to delete the line from.

Use 'PortHandles' with get_param to get the handles.
Example: 'Mu/1', 'Subsystem/2'

2 Functions

2-212

in — Block input port to delete line from
block/port name or number character vector | port handle

Block input port to delete line from, specified as either:

• The block name, a slash, and the port name or number. The port name on:

• An enabled subsystem is Enable.
• A triggered subsystem is Trigger.
• If Action and Switch Case Action subsystems is Action.

• The port handle that you want to delete the line from.

Use 'PortHandles' with get_param to get handles.
Example: 'Mu/1', 'Subsystem/2'

point — Point on the line you want to delete
1-by-2 matrix

Point that falls on the line you want to delete, specified as a 1-by-2 matrix.
Example: [150 200]

lineHandle — Handle of the line you want to delete
handle

Handle of the line you want to delete. You can get the line handle by using get_param with the
'LineHandles' option or by assigning the line to a handle when you create it programmatically.

Version History
Introduced before R2006a

See Also
add_line | get_param

 delete_line

2-213

delete_param
Delete system parameter added with add_param function

Syntax
delete_param(sys,param1,...,paramN)

Description
delete_param(sys,param1,...,paramN) deletes parameters that were added to the system
using the add_param function. If a specified parameter was not added with the add_param function,
you receive an error.

Examples

Delete Added Parameter

Add parameters to a system, then delete one of the parameters from the system.

Load the vdp system.

load_system('vdp')

Add the DemoName and EquationOrder parameters to the vdp system.

add_param('vdp','DemoName','VanDerPolEquation','EquationOrder','2')

Delete the DemoName parameter from the vdp system.

delete_param('vdp','DemoName')

Input Arguments
sys — System name
character vector | string scalar

System name, specified as a character vector or string scalar.
Data Types: char | string

param1,...,paramN — One or more parameters to delete from system
character vector | string scalar

One or more parameters to delete from system, each specified as a character vector or string scalar.
Data Types: char | string

Version History
Introduced before R2006a

2 Functions

2-214

See Also
add_param

 delete_param

2-215

dependencies.fileDependencyAnalysis
Find model file dependencies

Syntax
files = dependencies.fileDependencyAnalysis('modelname')
[files,missing] = dependencies.fileDependencyAnalysis('modelname')
[files,missing,depfile] = dependencies.fileDependencyAnalysis('modelname')
[files,missing,depfile,manifestfile] = dependencies.fileDependencyAnalysis('
modelname','manifestfile')

Description
files = dependencies.fileDependencyAnalysis('modelname') returns the full paths of all
existing files referenced by the model modelname.

[files,missing] = dependencies.fileDependencyAnalysis('modelname') also returns
missing, any referenced files that cannot be found.

[files,missing,depfile] = dependencies.fileDependencyAnalysis('modelname') also
returns depfile, the full path of the user dependencies (.smd) file, if it exists, that stores the names
of any files the user manually added or excluded.

[files,missing,depfile,manifestfile] = dependencies.fileDependencyAnalysis('
modelname','manifestfile') also creates a manifest file specified in manifestfile.

Examples

Find Model File Dependencies

Programmatically find all the file dependencies of the model sldemo_mdlref_depgraph.

files = dependencies.fileDependencyAnalysis('sldemo_mdlref_depgraph')

files = 7x1 cell
 {'C:\TEMP\Bdoc23a_2213998_3568\ib570499\14\tp74e06091\simulink-ex05898741\sldemo_mdlref_F2C.slx' }
 {'C:\TEMP\Bdoc23a_2213998_3568\ib570499\14\tp74e06091\simulink-ex05898741\sldemo_mdlref_depgraph.slx' }
 {'C:\TEMP\Bdoc23a_2213998_3568\ib570499\14\tp74e06091\simulink-ex05898741\sldemo_mdlref_heat2cost.slx' }
 {'C:\TEMP\Bdoc23a_2213998_3568\ib570499\14\tp74e06091\simulink-ex05898741\sldemo_mdlref_heater.slx' }
 {'C:\TEMP\Bdoc23a_2213998_3568\ib570499\14\tp74e06091\simulink-ex05898741\sldemo_mdlref_house.slx' }
 {'C:\TEMP\Bdoc23a_2213998_3568\ib570499\14\tp74e06091\simulink-ex05898741\sldemo_mdlref_outdoor_temp.slx'}
 {'C:\TEMP\Bdoc23a_2213998_3568\ib570499\14\tp74e06091\simulink-ex05898741\sldemo_mdlref_thermostat.slx' }

Input Arguments
modelname — Model, library, or subsystem name or path
character vector | string

2 Functions

2-216

Full name or path of a model, library, or subsystem to analyze, specified as a character vector or
string.
Data Types: char | string

manifestfile — Manifest file name or path
character vector | string

(Optional) Full name or path of the manifest file to create, specified as a character vector or string.
The function adds the suffix .smf to the user-specified name.
Data Types: char | string

Output Arguments
files — Full paths of referenced files
character vector | cell array of character vectors

Full paths of all existing files referenced by the model or library modelname, returned as a character
vector or a cell array of character vectors.

missing — Full paths of missing files
character vector | cell array of character vectors

Full paths of files referenced by the model or library modelname that cannot be found, returned as a
character vector or a cell array of character vectors.

depfile — Full path of user dependencies file
character vector

Full path of user dependencies (.smd) file, if it exists, that stores the names of any files the user
manually added or excluded, returned as a character vector.

manifestfile — Full path of created manifest file
character vector

Full path of new manifest (.smf) file, returned as a character vector.

Tips
• Interactively generate a dependency graph and a report summarizing the list of required files and

products. For more details, see “Analyze Model Dependencies”.
• If your model is in a project, use listRequiredFiles instead.
• To programmatically check which add-ons are required, use

dependencies.toolboxDependencyAnalysis instead.

Version History
Introduced in R2012a

R2020b: Output arguments manifestfile and depfile will be removed
Not recommended starting in R2020b

Output arguments manifestfile and depfile will be removed in a future release.

 dependencies.fileDependencyAnalysis

2-217

Starting in R2020b, you can only generate the manifest file programmatically. You can open manifest
files created prior to R2020b using the Dependency Analyzer. To interactively generate a dependency
graph and report, perform a dependency analysis. For more details, see “Analyze Model
Dependencies”.

Starting in R2020b, you can no longer generate a user dependencies file (.smd file). The function
only returns a .smd file if it already exists. To manually add or exclude dependencies, create a project
from your model. For more details, see “Create a Project from a Model” and “Add Files to the
Project”.

See Also
listRequiredFiles | listImpactedFiles | dependencies.toolboxDependencyAnalysis |
Dependency Analyzer

2 Functions

2-218

dependencies.toolboxDependencyAnalysis
Find add-on dependencies

Syntax
names = dependencies.toolboxDependencyAnalysis(files)
[names, folders] = dependencies.toolboxDependencyAnalysis(files)

Description
names = dependencies.toolboxDependencyAnalysis(files) returns names, a cell array of
the add-on names required by the files in files.

[names, folders] = dependencies.toolboxDependencyAnalysis(files) also returns
folders, a cell array of the add-on folders.

Examples

Find Required Add-Ons

Find all the required add-ons for the opened model vdp.

openExample("vdp.slx");
names = dependencies.toolboxDependencyAnalysis(bdroot)

names =

 1×1 cell array

 {'Simulink'}

Tip You can interactively run a dependency analysis. You can find the required add-ons for the entire
project, for selected files, or for a model. You can see which products a new team member requires to
use the design, or find which file is introducing a product dependency. See “Find Required Products
and Add-Ons”.

To programmatically check which files are required, see
dependencies.fileDependencyAnalysis.

To view long product names, examine the names cell array as follows:

names{:}

ans =

 'Simulink'

 dependencies.toolboxDependencyAnalysis

2-219

Find Names and Folders of Required Add-Ons

Find the names and folders of the required add-ons for the opened model vdp.

openExample("vdp.slx");
[names, folders] = dependencies.toolboxDependencyAnalysis(bdroot)

names =

 1×1 cell array

 {'Simulink'}

folders =

 1×1 cell array

 {'simulink'}

Input Arguments
files — Files names or paths
" " (default) | cell array of strings

Names of files on the MATLAB path or full paths to files, specified as a cell array of strings.

Output Arguments
names — Add-on names
cell array of character vectors

Add-on names required by the files in files, returned as a cell array of character vectors.

folders — Add-on folders
cell array of character vectors

(Optional) Required add-on folders, returned as a cell array of character vectors.

Version History
Introduced in R2012a

See Also
dependencies.fileDependencyAnalysis | Dependency Analyzer

2 Functions

2-220

depview
Analyze and visualize model referencing dependencies with or without library dependencies

Syntax
depview(sys)
depview(sys,Name,Value)

Description
depview opens the Dependency Analyzer. While view_mdlrefs also opens the Dependency
Analyzer, depview provides programmatic options that allow you to open a specific configuration of
the dependency graph.

depview(sys) opens the Dependency Analyzer and displays a graph of dependencies for the model
or library specified by sys.

depview(sys,Name,Value) opens the Dependency Analyzer and displays a graph of dependencies
as specified by one or more Name,Value pair arguments.

Examples

Open Dependency Analyzer with Default Settings

Open the Dependency Analyzer for the sldemo_mdlref_depgraph model.

depview('sldemo_mdlref_depgraph');

 depview

2-221

Open Dependency Analyzer with Custom Settings

Open the Dependency Analyzer for the sldemo_mdlref_depgraph model in Model Instances view
with a Horizontal layout.

depview('sldemo_mdlref_depgraph','ModelReferenceInstance',true,'ShowHorizontal',true);

In Model Instances view, node appearance corresponds to simulation mode.

Input Arguments
sys — Name or path of model or library
' ' (default) | character vector

Name or path of model or library, specified as a character vector.
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify two name and
value pair arguments in any order as Name1,Value1,Name2,Value2.
Example:
depview('sldemo_mdlref_depgraph','ModelReferenceInstance',true,'ShowHorizonta
l',true)

FileDependenciesExcludingLibraries — Graph with only models
false (default) | true

To open the dependency graph with only models, set this parameter to true. In this view, node
appearance corresponds to file type.

2 Functions

2-222

Dependencies

You can only set one of 'FileDependenciesExcludingLibraries',
'FileDependenciesIncludingLibraries', and 'ModelReferenceInstance' to true.

FileDependenciesIncludingLibraries — Graph with models and user-defined libraries
true (default) | false

To open the dependency graph with models and user-defined libraries, use the default setting. In this
view, node appearance corresponds to file type.

Dependencies

You can only set one of 'FileDependenciesExcludingLibraries',
'FileDependenciesIncludingLibraries', and 'ModelReferenceInstance' to true.

ModelReferenceInstance — Graph with only models that shows each model instance
separately
false (default) | true

To open the dependency graph with each instance of a model as a separate node in the graph, set this
parameter to true. In this view, node appearance corresponds to simulation mode.

Dependencies

You can only set one of 'FileDependenciesExcludingLibraries',
'FileDependenciesIncludingLibraries', and 'ModelReferenceInstance' to true.

ShowHorizontal — Horizontal dependency display
false (default) | true

To open the dependency graph with referenced models and libraries to the right of their parents, set
this parameter to true. By default, the Dependency Analyzer shows referenced models and libraries
below their parents.

Version History
Introduced in R2006b

See Also
Blocks
Model

Functions
find_mdlrefs

Topics
“Model Reference Basics”
“Analyze Model Dependencies”

 depview

2-223

detachConfigSet
Dissociate configuration set or configuration reference from model

Syntax
configObj = detachConfigSet(model, configObjName)

Description
configObj = detachConfigSet(model, configObjName) dissociates the configuration set or
configuration reference with the name configObjName from the model. The function returns the
detached configuration as a Simulink.ConfigSet object or a Simulink.ConfigSetRef object.
You cannot detach the active configuration from a model. When you want to detach the active
configuration, first activate a different configuration for the model.

Examples

Detach Configuration Set From Model

Create, attach, and activate a configuration set for a model. Then, detach the default configuration
set from the model.

Open the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys. Create a configuration set named 'MyConfig' and attach it to the model.
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
sldemo_fuelsys
configObj = Simulink.ConfigSet;
set_param(configObj,'Name','MyConfig')
attachConfigSet('sldemo_fuelsys',configObj)

The active configuration for sldemo_fuelsys is the default configuration set, Configuration. To
detach Configuration, activate another configuration for the model. For this example, set
MyConfig as the active configuration set for sldemo_fuelsys.

setActiveConfigSet('sldemo_fuelsys','MyConfig')

Detach the default configuration set Configuration from the model.

detachConfigSet('sldemo_fuelsys','Configuration');

Input Arguments
model — Model from which to detach configuration set
character vector | string scalar

Model from which to disassociate a configuration set, specified as a character vector or string scalar.
The model must be open.
Example: 'my_model'

2 Functions

2-224

configObjName — Configuration object name
character vector | string scalar

Name of the configuration object to detach from the model, specified as a character vector or string
scalar.
Example: 'Configuration'

Version History
Introduced in R2006a

See Also
setActiveConfigSet | attachConfigSet | attachConfigSetCopy

Topics
“Manage Configuration Sets for a Model”

 detachConfigSet

2-225

disableimplicitsignalresolution
Convert model to use only explicit signal resolution

Syntax
retVal = disableimplicitsignalresolution('model')
retVal = disableimplicitsignalresolution('model', displayOnly)

Description
retVal = disableimplicitsignalresolution('model') inputs a model, reports all signals
and states that implicitly resolve to signal objects, and converts the model to resolve only signals and
states that explicitly require it. The report and any changes are limited to the model itself; they do not
include blocks that are library links.

Before executing this function, ensure that all relevant Simulink data objects are defined in the base
workspace or a data dictionary to which the model is linked. The function ignores any data objects
that are defined elsewhere.

The function scans model, returns a structure of handles to signals and states that resolve implicitly
to signal objects, and performs the following operations on model:

• Search the model for all output ports and block states that resolve to Simulink signal objects.
• Modify these ports and blocks to enforce signal object resolution in the future.
• Set the model's SignalResolutionControl parameter to 'UseLocalSettings' (GUI:

Explicit Only).

If SignalResolutionControl is already set to 'UseLocalSettings' or to 'None', the
function takes no action and returns a warning.

• If any Stateflow output data resolves to a Simulink signal object:

• Turn off hierarchical scoping of signal objects from within the Stateflow chart.
• Explicitly label the output signal of the Stateflow chart.
• Enforce signal object resolution for this signal in the future.

Any changes made by disableimplicitsignalresolution permanently change the model. Be
sure to back up the model before calling the function with displayOnly defaulted to or specified as
false.

retVal = disableimplicitsignalresolution('model', displayOnly) is equivalent to
disableimplicitsignalresolution(model) if displayOnly is false.

If displayOnly is true, the function returns a structure of handles to signals and states that resolve
implicitly to signal objects, but leaves the model unchanged.

2 Functions

2-226

Input Arguments
displayOnly

Boolean specifying whether to change the model.

• false — Changes the model.
• true — The function returns a structure of handles to signals and states that resolve implicitly to

signal objects, but leaves the model unchanged.

Default: false

model

Model name or handle

Output Arguments
retVal

A MATLAB structure containing:

Signals Handles to ports with signal names that resolve
to signal objects

States Handles to blocks with states that resolve to
signal objects

Version History
Introduced in R2007a

See Also
Simulink.Signal

Topics
“Model Configuration Parameters: Data Validity Diagnostics”
“Symbol Resolution”

 disableimplicitsignalresolution

2-227

docblock
Get or set editor invoked by Simulink DocBlock block

Syntax
docblock(setEditorType,command)

editCommand = docblock(getEditorType)

Description
docblock(setEditorType,command) uses the specified command to set the editor opened by
double-clicking a DocBlock block.

By default, a DocBlock block opens Microsoft Word to edit HTML or RTF files. If Word is not available
on your system, the block opens these file types using the text editor specified on the Editor/
Debugger Preferences pane of the MATLAB Preferences dialog box. For text files, the default editor
is the text editor specified in the MATLAB preferences.

The editor specifications persist between MATLAB sessions.

editCommand = docblock(getEditorType) returns the current command to open the specified
editor from a DocBlock block.

Examples

Set DocBlock Text Editor

Specify Notepad as the DocBlock editor for text files.

docblock('setEditorTXT','system(''notepad "%<FileName>"'');')

Set and Get Current HTML Editor

You can use the docblock command to get the current editor.

Set your HTML editor for the DocBlock block to Mozilla Composer. The ampersand executes the
command in the background.

docblock('setEditorHTML',...
 'system(''/usr/local/bin/mozilla -edit "%<FileName>" &'');')

Get the current HTML editor.

htmlEd = docblock('getEditorHTML')

2 Functions

2-228

htmlEd =

 'system('/usr/local/bin/mozilla -edit "%<FileName>" &');'

Reset Text Editor to Default

Specify Notepad as the DocBlock editor for text files.

docblock('setEditorTXT','system(''notepad "%<FileName>"'');')

Get the current text editor.

txtEd = docblock('getEditorTXT')

txtEd =

 'system('notepad "%<FileName>"');'

Reset the editor to the default editor.

docblock('setEditorTXT','')

Input Arguments
setEditorType — File type for which to set editor command
'setEditorHTML' | 'setEditorDOC' | 'setEditorTXT'

File type for which to set editor command, specified as 'setEditorHTML', 'setEditorDOC', or
'setEditorTXT'.

command — Command to open file type in editor
character vector | ''

Command to open file type in editor from the MATLAB Command Window, specified as a character
vector. Use '' to reset to the default editor for that file type.

In the command, use the "%<FileName>" token to represent the full pathname to the document.

getEditorType — File type of editor command to return
'getEditorHTML' | 'getEditorDOC' | 'getEditorTXT'

File type of editor command to return, specified as 'getEditorHTML', 'getEditorDOC', or
'getEditorTXT'.

Output Arguments
editCommand — Command to open editor
character vector

Command to open editor, returned as a character vector.

 docblock

2-229

Version History
Introduced in R2007a

R2021b: Editor specification does not persist between previous releases and R2021b or
later
Behavior changed in R2021b

If you used docblock to specify the editors that a DocBlock block uses for HTML, RTF, or text
documents before R2021b, you must specify the editors again in R2021b or a later release.
Otherwise, a DocBlock block uses the default editor for the document type.

See Also
DocBlock

Topics
“Use a Simulink DocBlock to Add a Comment” (Embedded Coder)

2 Functions

2-230

edittime.getDisplayIssues
Check whether model design warnings and errors is on

Syntax
val = edittime.getDisplayIssues

Description
Use the val = edittime.getDisplayIssues function to check whether model design errors and
warnings is on.

Examples

Enable model design errors and warnings via the command-line

By default, model design errors and warnings are visible while you edit a model. You can turn them
off by entering this command at the MATLAB command line.

edittime.setDisplayIssues('off')

You can turn them on by entering this command at the MATLAB command line.

edittime.setDisplayIssues('on')

You can check whether they are on by entering this command at the MATLAB command line.

val = edittime.getDisplayIssues

Output Arguments
val — Returns on or off
char

If edit-time checking is on, this function returns on. If edit-time checking is off, this function returns
off.

Version History
Introduced in R2019a

See Also
edittime.setDisplayIssues | Simulink Editor

 edittime.getDisplayIssues

2-231

edittime.setDisplayIssues
Detect model design errors and warnings

Syntax
edittime.setDisplayIssues(value)

Description
edittime.setDisplayIssues(value) function sets whether to display model design errors and
warnings while you design your model. This function is equivalent to selecting Diagnostics > Edit-
Time Errors & Warnings. This setting persists for all models.

Examples

Enable model design errors and warnings through the command-line

By default, model design errors and warnings are visible while you edit a model. You can turn them
off. At the MATLAB command line, enter:

edittime.setDisplayIssues('off')

To turn on errors and warnings, at the MATLAB command line, enter:

edittime.setDisplayIssues('on')

Input Arguments
value — Enable model design warning and error detection
character vector

To enable warnings and errors while you edit your model, set value to on. To disable warnings and
errors while you edit, set value to off.
Data Types: char

Version History
Introduced in R2019a

See Also
edittime.getDisplayIssues | Simulink Editor

Topics
“Detect Modeling Errors During Edit Time” (Stateflow)

2 Functions

2-232

find_mdlrefs
Find referenced models and Model blocks in model hierarchy

Syntax
[models,blocks] = find_mdlrefs(system)
[models,blocks] = find_mdlrefs(system,Name,Value)

Description
[models,blocks] = find_mdlrefs(system) finds all referenced models and Model blocks in
the model hierarchy below the specified system. The find_mdlrefs function temporarily loads the
models.

[models,blocks] = find_mdlrefs(system,Name,Value) provides additional search options
using one or more name-value pairs. For example, to keep the models loaded instead of temporarily
loading them, set KeepModelsLoaded to true.

Examples

Find Referenced Models in Model Hierarchy

Find referenced models and Model blocks for all models referenced by the specified model.

load_system('sldemo_mdlref_basic');
[myModels,myModelBlks] = find_mdlrefs('sldemo_mdlref_basic')

myModels = 2x1 cell
 {'sldemo_mdlref_counter'}
 {'sldemo_mdlref_basic' }

myModelBlks = 3x1 cell
 {'sldemo_mdlref_basic/CounterA'}
 {'sldemo_mdlref_basic/CounterB'}
 {'sldemo_mdlref_basic/CounterC'}

Find and Load All Models in Model Hierarchy

By default, the find_mdlrefs function loads and then closes the models that were not already
loaded. To identify what models are loaded, use the find_system function.

find_mdlrefs('sldemo_mdlref_depgraph');
find_system('type','block_diagram')

ans =

 0x1 empty cell array

 find_mdlrefs

2-233

To find and load all models in the model hierarchy, set KeepModelsLoaded to true.

find_mdlrefs('sldemo_mdlref_depgraph','KeepModelsLoaded',true);
find_system('type','block_diagram')

ans = 8x1 cell
 {'sldemo_mdlref_thermostat' }
 {'sldemo_mdlref_heater' }
 {'sldemo_mdlref_F2C' }
 {'sldemo_mdlref_outdoor_temp'}
 {'sldemo_mdlref_house' }
 {'sldemo_mdlref_heat2cost' }
 {'simulink_extras' }
 {'sldemo_mdlref_depgraph' }

The top model and all referenced models remain loaded. If you open sldemo_mdlref_depgraph,
you can navigate the model hierarchy without waiting for the referenced models to load as you open
them.

Input Arguments
system — System name, block path, or handle
character vector | string scalar | numeric scalar

System name, block path, or handle, specified as a character vector, string scalar, or numeric scalar.

The system must be an SLX file, MDL file, Model block, or Subsystem block.

If you specify a file name, do not include the file extension.
Data Types: double | char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: refModels =
find_mdlrefs(topmodel,'KeepModelsLoaded',true,'ReturnTopModelAsLastElement',f
alse)

KeepModelsLoaded — Option to keep models loaded
false or 0 (default) | true or 1

Option to keep models loaded, specified as the comma-separated pair consisting of
'KeepModelsLoaded' and a numeric or logical 1 (true) or 0 (false).

By default the function loads and then closes the models that were not already loaded. To keep the
models loaded, set this argument to true. Keeping the models loaded can be useful if you plan on
interacting with the models after finding them.
Data Types: logical

2 Functions

2-234

AllLevels — Levels to search
true or 1 (default) | false or 0

Levels to search, specified as the comma-separated pair consisting of 'AllLevels' and a numeric or
logical 1 (true) or 0 (false).

• true — Search all Model blocks in the model hierarchy of the specified system.
• false — Search only the top-level system.

Data Types: logical

IncludeProtectedModels — Option to include protected models
false or 0 (default) | true or 1

Option to include protected models in the search results, specified as the comma-separated pair
consisting of 'IncludeProtectedModels' and a numeric or logical 1 (true) or 0 (false).

This setting only affects the returned list of referenced models; It does not affect the returned list of
Model blocks.
Data Types: logical

IncludeCommented — Option to include commented blocks
false or 0 (default) | true or 1

Option to include commented blocks in the search results, specified as the comma-separated pair
consisting of 'IncludeCommented' and a numeric or logical 1 (true) or 0 (false).
Data Types: logical

CaseSensitive — Option to match case when searching
true (default) | false

Option to match case when searching, specified as true for case-sensitive search or false for case-
insensitive search.
Data Types: logical

FollowLinks — Option for search to follow library links
true (default) | false

Option for the search to follow library links, specified as true or false. If true, search follows links
into library blocks.
Data Types: logical

LookUnderMasks — Options to search masked blocks
'all' (default) | 'none' | 'functional' | 'graphical'

Options to search masked blocks, specified as:

• 'all' — Search in all masked blocks.
• 'none' — Prevent searching in masked systems.
• 'functional' — Include masked subsystems that do not have dialogs.
• 'graphical' — Include masked subsystems that do not have workspaces or dialogs.

 find_mdlrefs

2-235

Data Types: char | string

MatchFilter — Option to match and filter elements in search
function handle

Option to match and filter elements such as blocks, system, lines, ports, and annotations in a search,
specified as function handle. Use MatchFilter to determine whether elements should be included
or skipped in the search.

The argument:

• Allows you to filter elements with custom filter functions
• Avoids processing elements when filters do not match
• Applies complex filters on blocks, lines, or annotations, to filter the results internally

The named function must be defined within a MATLAB program file. The function takes the handle of
the element as input and returns two outputs.

 function [match, prune] = func(element)

• The input element is the handle of the block being processed.
• The first output, match, is a logical value. If false, search skips the element.
• The second output, prune, is an optional logical value that only applies when element is a

subsystem. The default value is false. If this value is set to true, the entire subsystem is omitted
from the search.

For example, use MatchFilter to find all Model blocks in a model for which the InitFcn callback is
defined, using the filter function initFcnMdlBlocks:

function match = initFcnMdlBlocks(handle)
 match = ~isempty(get_param(handle,'InitFcn'));
end

openExample('simulink_variants/SimulinkVariantsExample');
model='slexVariantMdlRefCondProp';
load_system(model);
[models,blocks] = find_mdlrefs(model,'MatchFilter',@initFcnMdlBlocks)

Variants: Simulink provides these built-in match filter functions to find variant blocks that are active
in simulation or part of the generated code.

• Simulink.match.activeVariants — Filter function to find blocks that are active in simulation
after model compilation.

• Simulink.match.codeCompileVariants — Filter function to find blocks that are part of
generated code after model compilation.

• Simulink.match.allVariants — Filter function to find all blocks irrespective of whether the
block is active or inactive due to variants.

Note To get correct results, you must compile the model before using
Simulink.match.activeVariants and Simulink.match.codeCompileVariants filters. If the
model is not compiled, these filters return all blocks in the model.

For example, use the Simulink.match.activeVariants option to find active variants in a model.

2 Functions

2-236

openExample('simulink_variants/SimulinkVariantsExample');
model='slexVariantMdlRefCondProp';
load_system(model);
set_param(model,'SimulationCommand','update');
[models,blocks] = find_mdlrefs(model,'MatchFilter',@Simulink.match.activeVariants);

For example, use the Simulink.match.codeCompileVariants option to find variant choices that
are part of the generated C code.
openExample('simulink_variants/SimulinkVariantsExample');
load_system('slexVariantMdlRefCondProp');
assignin('base','VSS_MODE',2);
slexVariantMdlRefCondProp([],[],[],'compileForCodegen');
[models,blocks] = find_mdlrefs('slexVariantMdlRefCondProp',...
 'MatchFilter',@Simulink.match.codeCompileVariants);
slexVariantMdlRefCondProp([],[],[],'term');

Example: Use the Simulink.match.allVariants() filter to find all blocks in a model.

openExample('simulink_variants/SimulinkVariantsExample');
model='slexVariantMdlRefCondProp';
load_system(model);
[models,blocks]=find_mdlrefs(model,'MatchFilter',@Simulink.match.allVariants);

Variants — Option to include variant models
'ActivePlusCodeVariants' (default) | 'ActiveVariants' | 'AllVariants'

Note The Variants argument will be removed. Use MatchFilter instead. For more information,
see “Compatibility Considerations” on page 2-238.

Option to include variant models in the search results, specified as the comma-separated pair
consisting of 'Variants' and 'ActivePlusCodeVariants', 'ActiveVariants', or
'AllVariants'.

• 'ActivePlusCodeVariants' — Include all variant models in the Variant Subsystem that are
active in simulation and is part of the generated code.

• 'ActiveVariants' — Include the active variant models in the Variant Subsystem block.
• 'AllVariants' — Include all variant models in the Variant Subsystem block.

This search constraint applies only to Variant Subsystem blocks that have the Variant control mode
set to expression or label. Use the find_mdlrefs function with the MatchFilter option to
operate on all types of variant blocks.
Data Types: char | string

ReturnTopModelAsLastElement — Option to include specified system
true or 1 (default) | false or 0

Option to include the specified system in the search results, specified as the comma-separated pair
consisting of 'ReturnTopModelAsLastElement' and a numeric or logical 1 (true) or 0 (false).

By default, the last element in the returned list of referenced models is the name of the model,
library, or subsystem file that you specified with the system argument. If you specify a block, the last
element is the name of the file that contains it.
Data Types: logical

 find_mdlrefs

2-237

Output Arguments
models — Names of models
cell array of character vectors

Names of models, returned as a cell array of character vectors.

By default, the last element is the name of the model, library, or subsystem file that you specified with
the system argument. If you specify a block, the last element is the model, library, or subsystem file
that contains it.

blocks — Names of Model blocks
cell array of character vectors

Names of Model blocks, returned as a cell array of character vectors.

Version History
Introduced before R2006a

R2022b: Warnings for removal of Variants argument
Warns starting in R2022b

As part of the removal of the Variants argument in a future release, these warnings have been
introduced:

• When you use the find_mdlrefs function without the Variants argument, the function
generates a warning if it skips the inactive choice of a Variant Subsystem block during the search.

Consider a model with a Variant Model block that has two variant choices,
Mdl_Linear_Controller and Mdl_NonLinear_Controller. The
Mdl_NonLinear_Controller block is the active choice.

This command skips the inactive Mdl_Linear_Controller block and generates a warning.

[myModels,myModelBlks] = find_mdlrefs...
('sldemo_variant_subsystems_modelblocks')

Warning: Using find_mdlrefs without the 'Variants' argument skips inactive Variant Subsystem blocks in the
search. This behavior will change in a future release to look at all choices of the Variant Subsystem. To find
blocks that are active in simulation or code generation, compile the model and use the built-in variant filters
with the 'MatchFilter' option.
myModels =

 2×1 cell array

 {'mdlref_nonlinear_controller' }
 {'sldemo_variant_subsystems_modelblocks'}

myModelBlks =

 1×1 cell array

 {'sldemo_variant_subsystems_modelblocks/Controller/Mdl_NonLinear_Controller'}

• When you use the Variants argument with its value set to 'AllVariants', the function
generates a warning.

[myModels,myModelBlks] = find_mdlrefs...
('sldemo_variant_subsystems_modelblocks','Variants','AllVariants')

2 Functions

2-238

Warning: 'Variants' will be removed. Instead of using 'Variants' with value set to 'AllVariants',
use 'MatchFilter' with value set to @Simulink.match.allVariants.
myModels =

 3×1 cell array

 {'Linear_Controller' }
 {'Nonlinear_Controller' }
 {'sldemo_variant_subsystems_modelblocks'}

myModelBlks =

 2×1 cell array

 {'sldemo_variant_subsystems_modelblocks/Controller/Linear Controller' }
 {'sldemo_variant_subsystems_modelblocks/Controller/Nonlinear Controller'}

R2022a: New built-in match filter to find all variant blocks

You can use the built-in match filter, Simulink.match.allVariants, to find all the blocks in a
variant model regardless of whether the block is active or inactive due to variants. This filter is the
recommended replacement for the AllVariants option.

To be removed Recommended Replacement
find_mdlrefs(model,'Variants','AllVariants');find_mdlrefs(model,'MatchFilter', ...

@Simulink.match.allVariants);

R2021a: Default behavior has changed for Variants and MatchFilter arguments in model
with variant blocks
Behavior changed in R2021a

• Variants: When you use the find_mdlrefs function without the Variants argument, for
Variant Subsystem blocks, the function currently includes only those choices that are active
during simulation or code generation in the search by default.

For other variant blocks such as Variant Source, Variant Sink, or Variant Subsystem blocks with
the Propagate conditions outside of variant subsystem parameter set to on, the function
includes all choices in the search.

Consider a model with a Variant Model block that has two variant choices,
Mdl_Linear_Controller and Mdl_NonLinear_Controller.

This command returns only the active Model blocks in the model.

[myModels,myModelBlks] = find_mdlrefs...
('sldemo_variant_subsystems_modelblocks')

myModels =

 2×1 cell array

 {'mdlref_nonlinear_controller' }
 {'sldemo_variant_subsystems_modelblocks'}

myModelBlks =

 1×1 cell array

 {'sldemo_variant_subsystems_modelblocks/Controller/Mdl_NonLinear_Controller'}

• MatchFilter: When you use the find_mdlrefs function with the MatchFilter argument, the
function applies the filters on the active and inactive variant choices by default.

 find_mdlrefs

2-239

Consider a model with a Variant Model block that has two variant choices, Mdl_Linear_
Controller and Mdl_NonLinear_Controller. The filter function initFcnMdlBlocks finds
all the Model blocks for which the InitFcn callback is set.

 function match = initFcnMdlBlocks(handle)
 match = ~isempty(get_param(handle, 'InitFcn'));
 end

This command returns the active and inactive Model blocks in the model.
[myModels,myModelBlks] = find_mdlrefs('sldemo_variant_subsystems_modelblocks',...
 'MatchFilter', @initFcnMdlBlocks)

myModels =

 3×1 cell array

 {'mdlref_linear_controller' }
 {'mdlref_nonlinear_controller' }
 {'sldemo_variant_subsystems_modelblocks'}

myModelBlks =

 2×1 cell array

 {'sldemo_variant_subsystems_modelblocks/Controller/Mdl_Linear_Controller' }
 {'sldemo_variant_subsystems_modelblocks/Controller/Mdl_NonLinear_Controller'}

R2021a: Variants argument will be removed
Warns starting in R2021a

The Variants argument will be removed from find_mdlrefs in a future release. Function calls
that use the Variants argument continue to work with a warning.

Using the find_mdlrefs function with the Variants argument produces inconsistent search
results. The find_mdlrefs function is an edit-time operation, but to determine whether a block is
active in a model with all types of variant blocks, you need to compile the model.

To find Model blocks that are active during simulation or code generation, compile the model and use
the find_mdlrefs function with the MatchFilter argument.

This table lists the recommended replacement for different values of the Variants argument.

To Be Removed Recommended Replacement
find_mdlrefs(model,'Variants', ...
'ActiveVariants');

set_param(model,'SimulationCommand','update');
find_mdlrefs(model,'MatchFilter', ...
@Simulink.match.activeVariants);

find_mdlrefs(model,'Variants', ...
'ActivePlusCodeVariants');

model([],[],[],'compileForCodegen');
[models,blocks] = find_mdlrefs(model,'MatchFilter', ...
@Simulink.match.codeCompileVariants);
model([],[],[],'term');

When you use the find_system function, you cannot specify both of the MatchFilter and
Variants arguments.

This command produces an error.

2 Functions

2-240

find_mdlrefs(bdroot,'MatchFilter',@Simulink.match.activeVariants,...
 'Variants','ActiveVariants');

R2020b: Filter elements during search with MatchFilter

To match and filter model elements during a search, you can define a custom filter function and pass
the function handle as value to the MatchFilter name-value argument.

To find variant blocks that are active in a simulation or part of the generated code, you can use the
built-in match filter functions, Simulink.match.activeVariants,
Simulink.match.codeCompileVariants, and Simulink.match.allVariants, after compiling
the model.

R2020b: Specifying a logical value as the second argument of find_mdlrefs is discouraged
Not recommended starting in R2020b

The find_mdlrefs function provides two ways to specify whether to search all levels of the model
hierarchy. Both techniques give the same results, but only the name-value pair technique allows you
to specify additional options.

Instead of specifying whether to search all levels of the model hierarchy with a logical as the second
argument, use the AllLevels name-value pair.

See Also
Blocks
Model

Functions
find_system

Topics
“Model Reference Basics”
“Inspect Model Hierarchies”

 find_mdlrefs

2-241

find_system
Find systems, blocks, lines, ports, and annotations

Syntax
Objects = find_system
Objects = find_system(System)
Objects = find_system(Name,Value)
Objects = find_system(System,Name,Value)

Description
Objects = find_system returns loaded systems and their blocks, including subsystems.

Objects = find_system(System) returns the specified system and its blocks.

Objects = find_system(Name,Value) returns loaded systems and the objects in those systems
that meet the criteria specified by one or more Name,Value pair arguments. You can use this syntax
to specify search constraints and to search for specific parameter values. Specify the search
constraints before the parameter and value pairs.

Objects = find_system(System,Name,Value) returns the objects in the specified system that
meet the specified criteria.

Examples

Find Loaded Systems and Their Blocks

Return the names of all loaded systems and their blocks.

load_system('vdp')
find_system

ans = 15x1 cell
 {'vdp' }
 {'vdp/Constant' }
 {'vdp/More Info' }
 {'vdp/More Info/Model Info'}
 {'vdp/Mu' }
 {'vdp/Mux' }
 {'vdp/Product' }
 {'vdp/Scope' }
 {'vdp/Square' }
 {'vdp/Sum' }
 {'vdp/Sum1' }
 {'vdp/x1' }
 {'vdp/x2' }
 {'vdp/Out1' }
 {'vdp/Out2' }

2 Functions

2-242

Returns loaded systems and libraries, including vdp.

Find Specific System and Its Blocks

Return vdp system and its blocks.

load_system({'vdp','ex_sldemo_clutch'})
find_system('vdp')

ans = 15x1 cell
 {'vdp' }
 {'vdp/Constant' }
 {'vdp/More Info' }
 {'vdp/More Info/Model Info'}
 {'vdp/Mu' }
 {'vdp/Mux' }
 {'vdp/Product' }
 {'vdp/Scope' }
 {'vdp/Square' }
 {'vdp/Sum' }
 {'vdp/Sum1' }
 {'vdp/x1' }
 {'vdp/x2' }
 {'vdp/Out1' }
 {'vdp/Out2' }

Return Names of Loaded Models, Subsystems, and Libraries

Return the names of the loaded models, subsystems, and libraries. A subsystem name is returned only
if the subsystem can be loaded independently.

load_system('vdp');
find_system('type','block_diagram')

ans = 1x1 cell array
 {'vdp'}

Search Children of Subsystem

Return the names of all Goto blocks that are children of the Unlocked subsystem in the
ex_sldemo_clutch system.

load_system('ex_sldemo_clutch');
find_system('ex_sldemo_clutch/Unlocked','SearchDepth',1,'BlockType','Goto')

ans = 2x1 cell
 {'ex_sldemo_clutch/Unlocked/Goto' }
 {'ex_sldemo_clutch/Unlocked/Goto1'}

 find_system

2-243

Copyright 2020 The MathWorks, Inc.

Search Using Multiple Criteria

Search in the vdp system and return the names of all Gain blocks whose Gain value is set to 1.

load_system('vdp');
find_system('vdp','BlockType','Gain','Gain','1')

ans = 1x1 cell array
 {'vdp/Mu'}

Return Lines and Annotations as Handles

Get the handles of all lines and annotations in the vdp system. With 'FindAll', the function returns
handles regardless of how you specify the system to search.

load_system('vdp');
L = find_system('vdp','FindAll','on','type','line')

L = 19×1

 35.0023
 34.0023
 33.0031
 32.0027
 30.0027
 29.0027
 28.0031
 27.0026
 26.0027
 25.0027
 ⋮

A = find_system('vdp','FindAll','on','type','annotation')

A = 2×1

 37.0022
 36.0023

Search for Specific Block Parameter Value

Find any block dialog box parameters with a value of 0 in the vdp and ex_sldemo_clutch systems.

load_system({'vdp','f14'})
find_system({'vdp','f14'},'BlockDialogParams','0')

2 Functions

2-244

ans =

 32×1 cell array

 {'vdp/More Info' }
 {'vdp/More Info/Model Info' }
 {'vdp/Scope' }
 {'vdp/x2' }
 {'vdp/Out1' }
 {'vdp/Out1' }
 {'vdp/Out2' }
 {'vdp/Out2' }
 {'f14/Aircraft↵Dynamics↵Model' }
 {'f14/Aircraft↵Dynamics↵Model/Vertical Velocity↵w (ft//sec)'}
 {'f14/Aircraft↵Dynamics↵Model/Vertical Velocity↵w (ft//sec)'}
 {'f14/Aircraft↵Dynamics↵Model/Pitch Rate↵q (rad//sec)' }
 {'f14/Aircraft↵Dynamics↵Model/Pitch Rate↵q (rad//sec)' }
 .
 .
 .

Search Using Regular Expressions

Find all blocks in the top level of the currently loaded systems with a block dialog parameter value
that starts with 3.

load_system({'ex_sldemo_clutch','vdp'});
find_system('SearchDepth','1','regexp','on','BlockDialogParams','^3')

ans = 4x1 cell
 {'vdp/Scope' }
 {'vdp/Scope' }
 {'vdp/Square' }
 {'ex_sldemo_clutch/w'}

Regular Expression Search for Partial Match

When you search using regular expressions, you can specify a part of the character vector you want
to match to return all objects that contain that character vector. Find all the inport and outport blocks
in the ex_sldemo_clutch model.

load_system('ex_sldemo_clutch');
find_system('ex_sldemo_clutch','regexp','on','blocktype','port')

ans = 39x1 cell
 {'ex_sldemo_clutch/Friction...' }
 {'ex_sldemo_clutch/Friction...' }
 {'ex_sldemo_clutch/Friction...' }
 {'ex_sldemo_clutch/Friction Mode Logic/Tin' }
 {'ex_sldemo_clutch/Friction Mode Logic/Tfmaxs' }
 {'ex_sldemo_clutch/Friction Mode Logic/Break Apart...' }
 {'ex_sldemo_clutch/Friction Mode Logic/Break Apart...' }

 find_system

2-245

 {'ex_sldemo_clutch/Friction Mode Logic/Break Apart...' }
 {'ex_sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'ex_sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'ex_sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'ex_sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'ex_sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'ex_sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'ex_sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'ex_sldemo_clutch/Friction Mode Logic/Lockup...' }
 {'ex_sldemo_clutch/Friction Mode Logic/Lockup FSM/lock' }
 {'ex_sldemo_clutch/Friction Mode Logic/Lockup FSM/unlock' }
 {'ex_sldemo_clutch/Friction Mode Logic/Lockup FSM/locked' }
 {'ex_sldemo_clutch/Friction Mode Logic/Requisite Friction/Tin'}
 {'ex_sldemo_clutch/Friction Mode Logic/Requisite Friction/Tf' }
 {'ex_sldemo_clutch/Friction Mode Logic/locked' }
 {'ex_sldemo_clutch/Friction Mode Logic/lock' }
 {'ex_sldemo_clutch/Friction Mode Logic/unlock' }
 {'ex_sldemo_clutch/Friction Mode Logic/Tf' }
 {'ex_sldemo_clutch/Locked/Tin' }
 {'ex_sldemo_clutch/Locked/w' }
 {'ex_sldemo_clutch/Unlocked/Tfmaxk' }
 {'ex_sldemo_clutch/Unlocked/Tin' }
 {'ex_sldemo_clutch/Unlocked/we' }
 ⋮

Update Library Links in a Subsystem

In this example, myModel contains a single subsystem, which is a library link. After the model was
last opened, a Gain block was added to the corresponding subsystem in the library.

Open the model. Use find_system with 'FollowLinks' set to 'off'. The command does not
follow the library links into the subsystem and returns only the subsystem at the top level.

open_system('myModel')
find_system(bdroot,'LookUnderMasks','on','FollowLinks', 'off')

ans =

 'myModel'
 'myModel/Subsystem'

Use find_system with 'FollowLinks' set to 'on'. find_system updates the library links and
returns the block in the subsystem.

find_system(bdroot,'LookUnderMasks','on','FollowLinks','on')

Updating Link: myModel/Subsystem/Gain
Updating Link: myModel/Subsystem/Gain

ans =

 'myModel'

2 Functions

2-246

 'myModel/Subsystem'
 'myModel/Subsystem/Gain'

Return Values as Handles

Provide the system to find_system as a handle. Search for block dialog box parameters with a value
of 0. If you make multiple calls to get_param for the same block, then using the block handle is more
efficient than specifying the full block path as a character vector.

load_system('vdp');
sys = get_param('vdp','Handle');
find_system(sys,'BlockDialogParams','0')

ans = 8×1

 3.0032
 4.0032
 8.0027
 13.0029
 14.0028
 14.0028
 15.0031
 15.0031

Input Arguments
System — System to search
path name | cell array of path names | handle | vector of handles

System to search, specified as the full system path name, a cell array of system path names, a handle,
or a vector of handles.
Example: 'MyModel/Subsystem1'
Example: {'vdp','ex_sldemo_clutch'}

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

When you use the find_system function, Name,Value pair arguments can include search
constraints and parameter name and value pairs. You can specify search constraints in any order, but
they must precede the parameter name and value pairs.

See “Block-Specific Parameters” on page 6-24 for the list of block parameters.
Example: 'SearchDepth','0','LookUnderMasks','none','BlockType','Goto' searches in
loaded systems, excluding masked subsystems, for Goto blocks.

 find_system

2-247

BlockDialogParams — Option to search block dialog box parameters for the specified value
character vector | string scalar

Option to search block dialog box parameters for the specified value, specified as the comma-
separated pair consisting of 'BlockDialogParams' and a character vector or string scalar. This
pair must follow the other search constraint pairs.

CaseSensitive — Option to consider case when matching
'on' (default) | 'off'

Option to consider case when matching, specified as the comma-separated pair consisting of
'CaseSensitive' and 'on' for case-sensitive searching or 'off'.

FindAll — Option to include lines, ports, and annotations within systems
'off' (default) | 'on'

Option to include lines, ports, and annotations in systems in the search, specified as the comma-
separated pair consisting of 'FindAll' and 'on' or 'off'.When this option is set to 'on',
find_system returns a vector of handles regardless of how you specify the System argument .

FirstResultOnly — Option to return only the first result
'off' (default) | 'on'

Option to return only the first result and then stop the search, specified as the comma-separated pair
consisting of 'FirstResultOnly' and 'on' or 'off'.

LookInsideSubsystemReference — Option to look inside a referenced subsystem
'on' (default) | 'off'

Option to look inside a referenced subsystem in a model and list child blocks specified as the comma-
separated pair consisting of 'LookInsideSubsystemReference' and 'on' or 'off'.

FollowLinks — Option to follow links into library blocks
'off' (default) | 'on'

Option to follow links into library blocks, specified as the comma-separated pair consisting of
'FollowLinks' and 'on' or 'off'. If you do not specify a system to search, find_system
includes loaded libraries in the results, whether you set 'FollowLinks' to 'on' or 'off'. You can
use 'FollowLinks' with 'LookUnderMasks' to update library links in subsystems. See “Update
Library Links in a Subsystem” on page 2-246.

IncludeCommented — Option to include commented blocks
'off' (default) | 'on'

Option to include commented blocks in the search, specified as the comma-separated pair consisting
of 'IncludeCommented' and 'on' or 'off'.

LoadFullyIfNeeded — Option to load any partially loaded models
'on' (default) | 'off'

Option to load any partially loaded models, specified as the comma-separated pair of
'LoadFullyIfNeeded' and 'on' to load models or 'off' to disable loading. Use this option, for
example, to prevent load warnings.

2 Functions

2-248

LookUnderMasks — Options for searching under masks
'graphical' (default) | 'none' | 'functional' | 'all' | 'on' | 'off'

Options for searching under masks, specified as the comma-separated pair consisting of
'LookUnderMasks' and one of these options:

• 'graphical' — Search includes masked subsystems that have no workspaces and no dialogs.
• 'none' — Search skips masked subsystems.
• 'functional' — Search includes masked subsystems that do not have dialogs.
• 'all' — Search includes all masked subsystems.
• 'on' — Search includes all masked subsystems.
• 'off' — Search skips masked subsystem.

RegExp — Option to treat search expressions as regular expressions
'off' (default) | 'on'

Option to treat search expressions as regular expressions specified as the comma-separated pair
consisting of 'RegExp' and 'on' to treat search expressions as regular expressions or 'off'. To
learn more about MATLAB regular expressions, see “Regular Expressions”.

SearchDepth — Option to restrict the search depth
positive integer character vector or string scalar

Option to restrict the search depth to the specified level, specified as the comma-separated pair
consisting of 'SearchDepth' and a positive integer character vector or string scalar. For example,
specify '0' to search loaded systems only, '1' for blocks and subsystems of the top-level system,
'2' for the top-level system and its children, etc. The default is to search all levels.

Variants — Options for searching variants
'ActiveVariants' (default) | 'AllVariants' | 'ActivePlusCodeVariants'

Note The Variants argument will be removed. Use MatchFilter instead. For more information,
see “Compatibility Considerations” on page 2-251.

Options for searching variants, specified as the comma-separated pair consisting of 'Variants' and
one of these options:

• 'ActiveVariants' — Search only the active variant choice in the Variant Subsystem.
• 'AllVariants' — Search all variant choices in the Variant Subsystem.
• 'ActivePlusCodeVariants' — Search all variant choices in the Variant Subsystem that are

active in simulation and is part of the generated code.

This search constraint applies only to Variant Subsystem blocks that have the Variant control mode
set to expression or label. Use the find_system function with the MatchFilter option to
operate on all types of variant blocks.

MatchFilter — Option to match and filter elements in search
function handle

 find_system

2-249

Option to match and filter elements such as blocks, system, lines, ports, and annotations in a search,
specified as function handle. Use MatchFilter to determine whether elements should be included
or skipped in a search.

The argument:

• Allows you to filter elements with custom filter functions
• Avoids processing elements when filters do not match
• Applies complex filters on blocks, lines, or annotations, to filter the results internally

The named function must be defined within a MATLAB program file. The function takes the handle of
the element as input and returns two outputs.

 function [match, prune] = func(element)

• The input element is the handle of the block being processed.
• The first output, match, is a logical value. If false, search skips the element.
• The second output, prune, is an optional logical value that only applies when element is a

subsystem. The default value is false. If this value is set to true, the entire subsystem is omitted
from the search.

Example: Use MatchFilter to find all non Inport and Outport blocks in a model using your own
defined filter function, nonInOutBlocks.

function match = nonInOutBlocks(handle)
match = true;
if strcmp(get_param(handle, 'Type'), 'block')
 blockType = get_param(handle, 'BlockType');
 if strcmp(blockType, 'Inport') || ...
 strcmp(blockType, 'Outport')
 match = false;
 end
end
end

load_system('vdp');
blks = find_system('vdp', 'MatchFilter', @nonInOutBlocks)

Variants: Simulink provides these built-in match filter functions to find variant blocks that are active
in simulation or part of the generated code.

• Simulink.match.activeVariants — Filter function to find blocks that are active in simulation
after model compilation.

• Simulink.match.codeCompileVariants — Filter function to find blocks that are part of
generated code after model compilation.

• Simulink.match.allVariants — Filter function to find all blocks irrespective of whether the
block is active or inactive due to variants.

• Simulink.match.variantAssemblySubsystems — Filter function to find all the Variant
Assembly Subsystem blocks.

2 Functions

2-250

Note To get correct results, you must compile the model before using
Simulink.match.activeVariants and Simulink.match.codeCompileVariants filters. If the
model is not compiled, these filters return all blocks in the model.

For an example that compares the pre-compile and post-compile time results for these filters, see
“Use find_system with Built-In MatchFilter Options for Variant Blocks”.

Example: Use the Simulink.match.activeVariants filter to find active variants in a model.
openExample('simulink_variants/BuiltInMatchFiltersWithfindsystemForVariantBlocksExample');
model='sldemo_variant_subsystems';
load_system(model);
assignin('base','VSS_MODE',2);
set_param(model, 'SimulationCommand', 'update');
activeBlks = find_system(model, 'MatchFilter', @Simulink.match.activeVariants);

Example: Use the Simulink.match.codeCompileVariants filter to find variant choices that are
part of the generated C code.

openExample('simulink_variants/BuiltInMatchFiltersWithfindsystemForVariantBlocksExample');
load_system('sldemo_variant_subsystems');
assignin('base','VSS_MODE',2);
sldemo_variant_subsystems([], [], [], 'compileForCodegen');
activeBlks= find_system('sldemo_variant_subsystems', 'MatchFilter', @Simulink.match.codeCompileVariants);
sldemo_variant_subsystems([], [], [], 'term');

Example: Use the Simulink.match.allVariants() filter to find all blocks in a model.

 find_system('sldemo_variant_subsystems', 'MatchFilter', @Simulink.match.allVariants);

Example: Use the Simulink.match.variantAssemblySubsystems() filter to find all the Variant
Assembly Subsystem blocks in a model.

openExample('simulink_variants/ChoicesMaskVariantAssemblySubsystemMaskParamObjectExample');
load_system('slexVariantAssemblySubsystemWithMask')
find_system('slexVariantAssemblySubsystemWithMask', 'MatchFilter', @Simulink.match.variantAssemblySubsystems)

Output Arguments
Objects — Matching objects
cell array of path names | vector of handles

Matching objects found, returned as:

• A cell array of path names if you specified System as a path name or cell array of path names, or
if you did not specify a system

• A vector of handles if you specified System as a handle or vector of handles

Version History
Introduced before R2006a

R2022b: Warnings for removal of Variants argument
Warns starting in R2022b

As part of the removal of the Variants argument in a future release, these warnings have been
introduced:

 find_system

2-251

• When you use the find_system function without the Variants argument, the function
generates a warning if it skips the inactive choice of a Variant Subsystem block during the search.

Consider a model with a Variant Subsystem block that has two variant choices, Linear
Controller and Nonlinear Controller. The Nonlinear Controller block is the active
choice.

This command skips the inactive Linear Controller block and generates a warning.

blocks = find_system('sldemo_variant_subsystems/Controller')

Warning: Using find_system without the 'Variants' argument skips inactive Variant Subsystem blocks in the search.
This behavior will change in a future release to look at all choices of the Variant Subsystem. To find blocks that
are active in simulation or code generation, compile the model and use the built-in variant filters with the
'MatchFilter' option.

blocks =

 12×1 cell array

 {'sldemo_variant_subsystems/Controller' }
 {'sldemo_variant_subsystems/Controller/sensor1' }
 {'sldemo_variant_subsystems/Controller/sensor2' }
 {'sldemo_variant_subsystems/Controller/sensor3' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/sensor1' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/sensor2' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/sensor3' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/1-D Lookup Table'}
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/Add' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/Out1' }
 {'sldemo_variant_subsystems/Controller/Out1' }

• When you use the Variants argument with its value set to 'AllVariants', the function
generates a warning.

blocks = find_system('sldemo_variant_subsystems/Controller','Variants','AllVariants')

Warning: 'Variants' will be removed. Instead of using 'Variants' with value set to 'AllVariants',
use 'MatchFilter' with value set to @Simulink.match.allVariants.

blocks =

 19×1 cell array

 {'sldemo_variant_subsystems/Controller' }
 {'sldemo_variant_subsystems/Controller/sensor1' }
 {'sldemo_variant_subsystems/Controller/sensor2' }
 {'sldemo_variant_subsystems/Controller/sensor3' }
 {'sldemo_variant_subsystems/Controller/Linear Controller' }
 {'sldemo_variant_subsystems/Controller/Linear Controller/sensor1' }
 {'sldemo_variant_subsystems/Controller/Linear Controller/sensor2' }
 {'sldemo_variant_subsystems/Controller/Linear Controller/sensor3' }
 {'sldemo_variant_subsystems/Controller/Linear Controller/Add' }
 {'sldemo_variant_subsystems/Controller/Linear Controller/Discrete↵Transfer Fcn'}
 {'sldemo_variant_subsystems/Controller/Linear Controller/Out1' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/sensor1' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/sensor2' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/sensor3' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/1-D Lookup Table' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/Add' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/Out1' }
 {'sldemo_variant_subsystems/Controller/Out1' }

2 Functions

2-252

R2022a: New built-in match filter to find all variant blocks

You can use the built-in match filter, Simulink.match.allVariants, to find all the blocks in a
variant model regardless of whether the block is active or inactive due to variants. This filter is the
recommended replacement for the AllVariants option.

To be removed Recommended Replacement
find_system(model,'Variants', ...
'AllVariants');

find_system(model,'MatchFilter', ...
@Simulink.match.allVariants);

R2021a: Default behavior has changed for Variants and MatchFilter arguments in model
with variant blocks
Behavior changed in R2021a

• Variants: When you use the find_system function without specifying the Variants argument,
the function currently includes only the active variant choice for Variant Subsystem blocks in the
search by default.

For other variant blocks such as Variant Source, Variant Sink, or Variant Subsystem blocks with
the Propagate conditions outside of variant subsystem parameter set to on, the function
includes all choices in the search.

Consider a model with a Variant Subsystem that has two variant choices, Linear Controller
and Nonlinear Controller.

This command returns only the active Add blocks in the model.

add_blocks = find_system('sldemo_variant_subsystems/Controller',...
'BlockType','Sum')

add_blocks =

 1×1 cell array

 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/Add'}
• MatchFilter: When you use the find_system function with the MatchFilter argument, the

function applies the filters on the active and inactive variant choices by default.

Consider a model with a Variant Subsystem that has two variant choices, Linear Controller
and Nonlinear Controller. The filter function findAddBlocks finds all the Add blocks in the
model.

 function match = findAddBlocks(handle)
 match = strcmp(get_param(handle, 'Type'), 'block') &&...
 strcmp(get_param(handle, 'BlockType'), 'Sum');
 end

This command returns the active and inactive Add blocks in the model.

add_blocks = find_system('sldemo_variant_subsystems','MatchFilter',...
@findAddBlocks)

add_blocks =

 2×1 cell array

 find_system

2-253

 {'sldemo_variant_subsystems/Controller/Linear Controller/Add' }
 {'sldemo_variant_subsystems/Controller/Nonlinear Controller/Add'}

R2021a: Variants argument will be removed
Warns starting in R2021a

The Variants argument will be removed from find_system in a future release. Function calls that
use the Variants argument continue to work with a warning.

Using the find_system function with the Variants argument produces inconsistent search results.
The find_system function is an edit-time operation, but to determine whether a block is active in a
model with all types of variant blocks, you need to compile the model.

To find variant blocks that are active during simulation or code generation, compile the model and
use the find_system function with the MatchFilter argument.

This table lists the recommended replacement for different values of the Variants argument.

To Be Removed Recommended Replacement
find_system(model,'Variants', ...
'ActiveVariants');

set_param(model,'SimulationCommand','update');
find_system(model,'MatchFilter', ...
@Simulink.match.activeVariants);

find_system(model,'Variants', ...
'ActivePlusCodeVariants');

model([], [], [], 'compileForCodegen');
activeBlks= find_system(model,'MatchFilter', ...
@Simulink.match.codeCompileVariants);
model([], [], [], 'term');

When you use the find_system function, you cannot specify both of the MatchFilter and
Variants arguments.

This command produces an error.

find_system(bdroot,'MatchFilter',@Simulink.match.activeVariants,...
 'Variants','ActiveVariants');

R2020b: Filter elements during search with MatchFilter

To match and filter model elements during a search, you can define a custom filter function and pass
the function handle as value to the MatchFilter name-value argument.

To find variant blocks that are active in a simulation or part of the generated code, you can use the
built-in match filter functions, Simulink.match.activeVariants,
Simulink.match.codeCompileVariants, and Simulink.match.allVariants, after compiling
the model.

See Also
Simulink.findBlocksOfType | Simulink.findBlocks | Simulink.allBlockDiagrams |
find_mdlrefs | get_param | getSimulinkBlockHandle | set_param | Model Explorer |
Simulink Editor

Topics
“Edit and Manage Workspace Variables by Using Model Explorer”
“Regular Expressions”

2 Functions

2-254

“Block-Specific Parameters” on page 6-24

 find_system

2-255

fixdt
Package: Simulink

Create Simulink.NumericType object describing a fixed-point or floating-point data type

Syntax
a = fixdt(Signed,WordLength)
a = fixdt(Signed,WordLength,FractionLength)
a = fixdt(Signed,WordLength,TotalSlope,Bias)
a = fixdt(Signed,WordLength,SlopeAdjustmentFactor,FixedExponent,Bias)
a = fixdt(DataTypeNameString)
a = fixdt(___ ,'DataTypeOverride','Off')
[a,IsScaledDouble] = fixdt(___)

Description
a = fixdt(Signed,WordLength) returns a Simulink.NumericType object that describes a
fixed-point data type with the specified signedness and word length, and unspecified scaling.

a = fixdt(Signed,WordLength,FractionLength) returns a Simulink.NumericType object
that describes a fixed-point data type with binary point scaling.

a = fixdt(Signed,WordLength,TotalSlope,Bias) returns a Simulink.NumericType object
that describes a fixed-point data type with slope and bias scaling.

a = fixdt(Signed,WordLength,SlopeAdjustmentFactor,FixedExponent,Bias) returns a
Simulink.NumericType object that describes a fixed-point data type with slope and bias scaling.

a = fixdt(DataTypeNameString) returns a Simulink.NumericType object that describes an
integer, fixed-point, or floating-point data type specified by the name of a data type.

a = fixdt(___ ,'DataTypeOverride','Off') returns a Simulink.NumericType object with
its DataTypeOverride parameter set to Off. The default value for this property is Inherit. You
can specify the DataTypeOverride parameter after any combination of other input parameters.

[a,IsScaledDouble] = fixdt(___) returns a Simulink.NumericType object that describes a
fixed-point or floating-point data type and a flag that indicates whether the specified data type is of a
scaled double data type.

Examples

Create a Simulink.NumericType Object with Unspecified Scaling

Create a signed Simulink.NumericType object with a word length of 16 bits and unspecified
scaling.

a = fixdt(1,16)

2 Functions

2-256

a =
 NumericType with properties:

 DataTypeMode: 'Fixed-point: unspecified scaling'
 Signedness: 'Signed'
 WordLength: 16
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

Create a Simulink.NumericType Object with Binary Point Scaling

Create a Simulink.NumericType object that describes a signed fixed-point data types with a word
length of 16 bits and fraction length of 2 bits.

a = fixdt(1,16,2)

a =
 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Signed'
 WordLength: 16
 FractionLength: 2
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

Create a Simulink.NumericType Object with Slope and Bias Scaling

The real-world value of a slope bias scaled number is represented by:

real world value = slope × integer + bias

Create a Simulink.NumericType object that describes a signed fixed-point data type with a word
length of 16 bits, slope of 2^-2, and bias of 4.

a = fixdt(1,16,2^-2,4)

a =
 NumericType with properties:

 DataTypeMode: 'Fixed-point: slope and bias scaling'
 Signedness: 'Signed'
 WordLength: 16
 Slope: 0.2500
 Bias: 4
 IsAlias: 0
 DataScope: 'Auto'

 fixdt

2-257

 HeaderFile: ''
 Description: ''

Alternatively, the slope can by represented by:

slope = slopeadjustmentfactor × 2fixedexponent

a = fixdt(1,16,1,-2,4)

a =
 NumericType with properties:

 DataTypeMode: 'Fixed-point: slope and bias scaling'
 Signedness: 'Signed'
 WordLength: 16
 Slope: 0.2500
 Bias: 4
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

The DataTypeMode property of the Simulink.NumericType object, a, is slope and bias
scaling.

Create a Simulink.NumericType Object Using a Data Type Name

Use a data type name to create a Simulink.NumericType object that describes an 8-bit, unsigned,
fixed-point data type and return a flag that indicates whether the object is of a scaled double data
type.

[a,IsScaledDouble] = fixdt('ufix8')

a =
 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'
 WordLength: 8
 FractionLength: 0
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

IsScaledDouble = logical
 0

The IsScaledDouble output returns 0, which indicates that the data type of a is not a scaled double
data type.

2 Functions

2-258

Create a Simulink.NumericType Object with DataTypeOverride Set to Off

Create a Simulink.NumericType object with its DataTypeOverride property set to Off.

a = fixdt(0,8,2,'DataTypeOverride','Off')

a =
 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'
 WordLength: 8
 FractionLength: 2
 DataTypeOverride: 'Off'
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

Input Arguments
Signed — Signedness
true or 1 | false or 0

Signedness of the Simulink.NumericType object, specified as a numeric or logical 1 (true) or 0
(false). A value of 1, or true, indicates a signed data type. A value of 0, or false, indicates an
unsigned data type.
Data Types: logical

WordLength — Word length
positive scalar

Word length, in bits, of the Simulink.NumericType object, specified as a positive scalar.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

FractionLength — Fraction length
0 (default) | scalar

Fraction length, in bits, of the Simulink.NumericType object, specified as a scalar.

FractionLength can be greater than WordLength. For more information, see “Binary Point
Interpretation” (Fixed-Point Designer).
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

TotalSlope — Slope of the scaling
1 (default) | scalar

Slope of the scaling, specified as a scalar.

 fixdt

2-259

The following equation represents the real-world value of a slope bias scaled number:

realworldvalue = (slope × integer) + bias

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Bias — Bias of the scaling
0 (default) | scalar

Bias of the scaling, specified as a scalar.

The following equation represents the real-world value of a slope bias scaled number:

realworldvalue = (slope × integer) + bias

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

SlopeAdjustmentFactor — Slope adjustment factor of slope and bias scaled number
1 (default) | positive scalar

Slope adjustment factor of a slope bias scaled number, specified as a positive scalar.

The slope adjustment factor must be greater than or equal to 1 and less than 2. If you input a
SlopeAdjustmentFactor outside this range, fixdt automatically applies a scaling normalization
to the values of SlopeAdjustmentFactor and FixedExponent so that the revised slope
adjustment factor is greater than or equal to 1 and less than 2, and maintains the value of the slope.

The following equation demonstrates the relationship between the slope, fixed exponent, and slope
adjustment factor:

slope = slopead justmentfactor × 2f ixedexponent

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

FixedExponent — Fixed exponent of slope and bias scaled number
0 (default) | scalar

Fixed exponent of a slope bias scaled number, specified as a scalar.

The following equation demonstrates the relationship between the slope, fixed exponent, and slope
adjustment factor:

slope = slopead justmentfactor × 2f ixedexponent

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DataTypeNameString — Data type name
character vector

Data type name, specified as a character vector.

The data type name can be either the name of a built-in Simulink data type or the name of a fixed-
point data type that conforms to the naming convention for fixed-point names established by the

2 Functions

2-260

Fixed-Point Designer product. For more information, see “Fixed-Point Data Type and Scaling
Notation” (Fixed-Point Designer).
Data Types: char

Output Arguments
a — Data type
Simulink.NumericType object

Data type, returned as a Simulink.NumericType object.

IsScaledDouble — Scaled double flag
logical

Scaled double flag, returned as a logical that indicates whether the specified data type name is the
name of a scaled double data type.

Version History
Introduced before R2006a

See Also
Topics
“Fixed-Point Data Type and Scaling Notation” (Fixed-Point Designer)

 fixdt

2-261

fixpt_evenspace_cleanup
Modify breakpoints of lookup table to have even spacing

Syntax
xdata_modified = fixpt_evenspace_cleanup(xdata,xdt,xscale)

Description
xdata_modified = fixpt_evenspace_cleanup(xdata,xdt,xscale) modifies breakpoints of a
lookup table to have even spacing after quantization. By adjusting breakpoints to have even spacing
after quantization, Simulink Coder generated code can exclude breakpoints from memory.

xdata is the breakpoint vector of a lookup table to make evenly spaced, such as 0:0.005:1. xdt is
the data type of the breakpoints, such as sfix(16). xscale is the scaling of the breakpoints, such
as 2^-12. Using these three inputs, fixpt_evenspace_cleanup returns the modified breakpoints
in xdata_modified.

This function works only with nontunable data and considers data to have even spacing relative to the
scaling slope. For example, the breakpoint vector [0 2 5], which has spacing value 2 and 3, appears to
have uneven spacing. However, the difference between the maximum spacing 3 and the minimum
spacing 2 equals 1. If the scaling slope is 1 or greater, a spacing variation of 1 represents a 1-bit
change or less. In this case, the fixpt_evenspace_cleanup function considers a spacing variation
of 1 bit or less to be even.

Modifications to breakpoints can change the numerical behavior of a lookup table. To check for
changes, test the model using simulation, rapid prototyping, or other appropriate methods.

Examples
Modify breakpoints of a lookup table to have even spacing after quantization:

xdata = 0:0.005:1;
xdt = sfix(16);
xscale = 2^-12;
xdata_modified = fixpt_evenspace_cleanup(xdata,xdt,xscale)

Version History
Introduced before R2006a

See Also
fixdt | fixpt_look1_func_approx | fixpt_look1_func_plot

Topics
“Effects of Spacing on Speed, Error, and Memory Usage” (Fixed-Point Designer)
“Create Lookup Tables for a Sine Function” (Fixed-Point Designer)

2 Functions

2-262

fixpt_look1_func_approx
Optimize fixed-point approximation of nonlinear function by interpolating lookup table data points

Syntax
[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax)
[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[])
[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax)
[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydtydt,yscale,rndmeth,errmax,nptsmax,spacing)

Description
[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax) returns the optimal
breakpoints of a lookup table, an ideal function applied to the breakpoints, and the worst-case
approximation error. The lookup table satisfies the maximum acceptable error and maximum number
of points that you specify.

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[]) returns the optimal breakpoints of
a lookup table, an ideal function applied to the breakpoints, and the worst-case approximation error.
The lookup table satisfies the maximum acceptable error that you specify.

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax) returns the optimal breakpoints of
a lookup table, an ideal function applied to the breakpoints, and the worst-case approximation error.
The lookup table satisfies the maximum number of points that you specify.

[xdata,ydata,errworst] = fixpt_look1_func_approx('func',...
xmin,xmax,xdt,xscale,ydtydt,yscale,rndmeth,errmax,nptsmax,spacing) returns the
optimal breakpoints of a lookup table, an ideal function applied to the breakpoints, and the worst-
case approximation error. The lookup table satisfies the maximum acceptable error, maximum
number of points, and breakpoint spacing that you specify.

In each case, fixpt_look1_func_approx interpolates between lookup table data points to optimize
the fixed-point approximation. The inputs xmin and xmax specify the range over which to
approximate the breakpoints. The inputs xdt, xscale, ydt, yscale, and rndmeth follow
conventions used by fixed-point Simulink blocks.

The inputs errmax, nptsmax, and spacing are optional. Of these inputs, you must specify at least
errmax or nptsmax. If you omit one of those two inputs, you must use brackets, [], in place of the
omitted input. fixpt_look1_func_approx ignores that requirement for the lookup table.

If you do not specify spacing, and more than one spacing satisfies errmax and nptsmax,
fixpt_look1_func_approx chooses in this order: power-of-2 spacing, even spacing, uneven

 fixpt_look1_func_approx

2-263

spacing. This behavior applies when you specify both errmax and nptsmax, but not when you specify
just one of the two.

Input Arguments
func

Function of x for which to approximate breakpoints. Enclose this expression in single quotes, for
example, 'sin(2*pi*x)'.

xmin

Minimum value of x.

xmax

Maximum value of x.

xdt

Data type of x.

xscale

Scaling for the x values.

ydt

Data type of y.

yscale

Scaling for the y values.

rndmeth

Rounding mode supported by fixed-point Simulink blocks:

'Ceiling' Round to the nearest representable number in
the direction of positive infinity.

'Floor' (default) Round to the nearest representable number in
the direction of negative infinity.

'Nearest' Round to the nearest representable number.
'Toward Zero' Round to the nearest representable number in

the direction of zero.

errmax

Maximum acceptable error between the ideal function and the approximation given by the lookup
table.

nptsmax

Maximum number of points for the lookup table.

2 Functions

2-264

spacing

Spacing of breakpoints for the lookup table:

'even' Even spacing
'pow2' Even, power-of-2 spacing
'unrestricted' (default) Uneven spacing

If you specify... The breakpoints of the lookup table...
errmax and nptsmax Meet both criteria, if possible.

The errmax requirement has higher priority than
nptsmax. If the breakpoints cannot meet both criteria
with the specified spacing, nptsmax does not apply.

errmax only Meet the error criteria, and
fixpt_look1_func_approx returns the fewest number
of points.

nptsmax only Meet the points criteria, and
fixpt_look1_func_approx returns the smallest worst-
case error.

Output Arguments
xdata

Vector of breakpoints for the lookup table.

ydata

Vector of values from applying the ideal function to the breakpoints.

errworst

Worst-case error, which is the maximum absolute error between the ideal function and the
approximation given by the lookup table.

Examples
Approximate a fixed-point sine function using a lookup table:

func = 'sin(2*pi*x)';
% Define the range over which to optimize breakpoints
xmin = 0;
xmax = 0.25;
% Define the data type and scaling for the inputs
xdt = ufix(16);
xscale = 2^-16;
% Define the data type and scaling for the outputs
ydt = sfix(16);
yscale = 2^-14;
% Specify the rounding method
rndmeth = 'Floor';

 fixpt_look1_func_approx

2-265

% Define the maximum acceptable error
errmax = 2^-10;
% Choose even, power-of-2 spacing for breakpoints
spacing = 'pow2';
% Create the lookup table
[xdata,ydata,errworst] = fixpt_look1_func_approx(func,...
 xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

Version History
Introduced before R2006a

See Also
fixpt_evenspace_cleanup | fixpt_look1_func_plot

Topics
“Producing Lookup Table Data” (Fixed-Point Designer)
“Use Lookup Table Approximation Functions” (Fixed-Point Designer)

2 Functions

2-266

fixpt_look1_func_plot
Plot fixed-point approximation function for lookup table

Syntax
fixpt_look1_func_plot(xdata,ydata,'func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)
errworst = fixpt_look1_func_plot(xdata,ydata,'func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

Description
fixpt_look1_func_plot(xdata,ydata,'func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth) plots a lookup table approximation function and
the error from the ideal function.

errworst = fixpt_look1_func_plot(xdata,ydata,'func',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth) plots a lookup table approximation function and
the error from the ideal function. The output errworst is the maximum absolute error.

You can use fixpt_look1_func_approx to generate xdata and ydata, the breakpoints and table
data for the lookup table, respectively. fixpt_look1_func_approx applies the ideal function to the
breakpoints in xdata to produce ydata. While this method is the easiest way to generate ydata, you
can choose other values for ydata as input for fixpt_look1_func_plot. Choosing different values
for ydata can, in some cases, produce a lookup table with a smaller maximum absolute error.

Input Arguments
xdata

Vector of breakpoints for the lookup table.

ydata

Vector of values from applying the ideal function to the breakpoints.

func

Function of x for which to approximate breakpoints. Enclose this expression in single quotes, for
example, 'sin(2*pi*x)'.

xmin

Minimum value of x.

xmax

Maximum value of x.

 fixpt_look1_func_plot

2-267

xdt

Data type of x.

xscale

Scaling for the x values.

ydt

Data type of y.

yscale

Scaling for the y values.

rndmeth

Rounding mode supported by fixed-point Simulink blocks:

'Ceiling' Round to the nearest representable number in
the direction of positive infinity.

'Floor' (default) Round to the nearest representable number in
the direction of negative infinity.

'Nearest' Round to the nearest representable number.
'Toward Zero' Round to the nearest representable number in

the direction of zero.

Examples
Plot a fixed-point approximation of the sine function using data points generated by
fixpt_look1_func_approx:

func = 'sin(2*pi*x)';
% Define the range over which to optimize breakpoints
xmin = 0;
xmax = 0.25;
% Define the data type and scaling for the inputs
xdt = ufix(16);
xscale = 2^-16;
% Define the data type and scaling for the outputs
ydt = sfix(16);
yscale = 2^-14;
% Specify the rounding method
rndmeth = 'Floor';
% Define the maximum acceptable error
errmax = 2^-10;
% Choose even, power-of-2 spacing for breakpoints
spacing = 'pow2';
% Generate data points for the lookup table
[xdata,ydata,errworst]=fixpt_look1_func_approx(func,...
 xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);
% Plot the sine function (ideal and fixed-point) & errors
fixpt_look1_func_plot(xdata,ydata,func,xmin,xmax,...
 xdt,xscale,ydt,yscale,rndmeth);

2 Functions

2-268

fixpt_look1_func_plot plots the fixed-point sine function, using generated data points, and plots
the error between the ideal function and the fixed-point function. The maximum absolute error and
the number of points required appear on the plot. The error drops to zero at a breakpoint, but
increases between breakpoints due to curvature differences between the ideal function and the line
drawn between breakpoints.

The lookup table requires 33 points to achieve a maximum absolute error of 2^-11.3922.

Version History
Introduced before R2006a

See Also
fixpt_evenspace_cleanup | fixpt_look1_func_approx

Topics
“Producing Lookup Table Data” (Fixed-Point Designer)
“Use Lookup Table Approximation Functions” (Fixed-Point Designer)

 fixpt_look1_func_plot

2-269

fixpt_set_all
Set property for each fixed-point block in subsystem

Syntax
fixpt_set_all(SystemName,fixptPropertyName,fixptPropertyValue)

Description
fixpt_set_all(SystemName,fixptPropertyName,fixptPropertyValue) sets the property
fixptPropertyName of every applicable block in the model or subsystem SystemName to the value
fixptPropertyValue

Examples
Set each fixed-point block in a model Filter_1 to round towards the floor and saturate upon
overflow:
% Round towards the floor
fixpt_set_all('Filter_1','RndMeth','Floor')

% Saturate upon overflow
fixpt_set_all('Filter_1','DoSatur','on')

Version History
Introduced before R2006a

2 Functions

2-270

fixptbestexp
Exponent that gives best precision for fixed-point representation of value

Syntax
out = fixptbestexp(RealWorldValue, TotalBits, IsSigned)
out = fixptbestexp(RealWorldValue, FixPtDataType)

Description
out = fixptbestexp(RealWorldValue, TotalBits, IsSigned) returns the exponent that
gives the best precision for the fixed-point representation of RealWorldValue. TotalBits specifies
the number of bits for the fixed-point number. IsSigned specifies whether the fixed-point number is
signed: 1 indicates the number is signed and 0 indicates the number is not signed.

out = fixptbestexp(RealWorldValue, FixPtDataType) returns the exponent that gives the
best precision based on the data type FixPtDataType.

Examples
Get the exponent that gives the best precision for the real-world value 4/3 using a signed, 16-bit
number:

out = fixptbestexp(4/3,16,1)

out =
 -14

Alternatively, specify the fixed-point data type:

out = fixptbestexp(4/3,sfix(16))

out =
 -14

This shows that the maximum precision representation of 4/3 is obtained by placing 14 bits to the
right of the binary point:

01.01010101010101

You can specify the precision of this representation in fixed-point blocks by setting the scaling to
2^-14 or 2^fixptbestexp(4/3,16,1).

Version History
Introduced before R2006a

See Also
fixptbestprec

 fixptbestexp

2-271

fixptbestprec
Determine maximum precision available for fixed-point representation of value

Syntax
out = fixptbestprec(RealWorldValue,TotalBits,IsSigned)
out = fixptbestprec(RealWorldValue,FixPtDataType)

Description
out = fixptbestprec(RealWorldValue,TotalBits,IsSigned) determines the maximum
precision for the fixed-point representation of the real-world value specified by RealWorldValue.
You specify the number of bits for the fixed- point number with TotalBits, and you specify whether
the fixed-point number is signed with IsSigned. If IsSigned is 1, the number is signed. If
IsSigned is 0, the number is not signed. The maximum precision is returned to out.

out = fixptbestprec(RealWorldValue,FixPtDataType) determines the maximum precision
based on the data type specified by FixPtDataType.

Examples
Example 1

The following command returns the maximum precision available for the real-world value 4/3 using a
signed, 8-bit number:

out = fixptbestprec(4/3,8,1)

out =
 0.015625

Alternatively, you can specify the fixed-point data type:

out = fixptbestprec(4/3,sfix(8))

out =
 0.015625

This value means that the maximum precision available for 4/3 is obtained by placing six bits to the
right of the binary point since 2-6 equals 0.015625:

01.010101

Example 2

You can use the maximum precision as the scaling in fixed-point blocks. This enables you to use
fixptbestprec to perform a type of autoscaling if you would like to designate a known range of
your simulation. For example, if your known range is -13 to 22, and you are using a safety margin of
30%:

knownMax = 22;
knownMin = -13;

2 Functions

2-272

localSafetyMargin = 30;
slope = max(fixptbestprec((1+localSafetyMargin/100)* ...
 [knownMax,knownMin], sfix(16)));

The variable slope can then be used in the expression that you specify for the Output data type
parameter in a block mask. Be sure to select the Lock output data type setting against changes
by the fixed-point tools check box in the same block to prevent the Fixed-Point Tool from overriding
the scaling. If you know the range, you can use this technique in place of relying on a model
simulation to provide the range to the autoscaling tool, as described in autofixexp.

Version History
Introduced before R2006a

See Also
fixptbestexp

 fixptbestprec

2-273

fmudialog.createBusType
Create all FMU bus objects required for structured input or output ports in workspace

Syntax
fmudialog.createBusType(currentBlock)

Description
fmudialog.createBusType(currentBlock) creates all the FMU bus objects required for
structured input or output ports in the workspace.

Examples

Create FMU Bus Object in Current Workspace

Create FMU bus object in current workspace.

fmudialog.createBusType(gcb)

Input Arguments
currentBlock — Current block
current block

Current block for which to create all required FMU bus objects.
Data Types: char | string

Version History
Introduced in R2020b

See Also
FMU

Topics
“Import FMUs”
“Implement an FMU Block”

2 Functions

2-274

frameedit
Open PrintFrame Editor to edit print frames for Simulink and Stateflow block diagrams

Syntax
frameedit
frameedit(filename)

Description
frameedit opens a new file in the PrintFrame Editor, which is a graphical interface you use to
create borders for Simulink and Stateflow block diagrams.

frameedit(filename) opens the specified file in the PrintFrame Editor.

Examples

 frameedit

2-275

Open Existing Print Frame for Editing

Suppose you have a print frame named myFrame.fig. You can open it directly in the PrintFrame
Editor from the MATLAB Command Window.

frameedit('myFrame.fig')

The PrintFrame Editor opens the print frame named myFrame.fig.

Input Arguments
filename — Print frame file name
character vector | string scalar

Print frame file name, specified as a character vector or string scalar.

The specified file must be a figure file (.fig) previously created and saved with the PrintFrame
Editor.
Example: frameedit('myFrame.fig')
Data Types: char | string

Version History
Introduced in R2008b

See Also
Topics
“Print Model Diagrams”
“Create Print Frames for Printed Pages”

2 Functions

2-276

gcb
Get path name of current block

Syntax
bl = gcb
bl = gcb(sys)

Description
bl = gcb returns the full block path name of the current block in the current system. The current
block is:

• The most recently clicked block
• The S-Function block currently executing its corresponding MATLAB function
• The block whose callback routine is being executed
• The block whose mask is being evaluated as part of the MaskInitialization parameter

evaluation
• The last block loaded after opening a model

bl = gcb(sys) returns the full block path name of the current block in the specified system. Load
the system first.

Examples

Get Path Name of Most Recently Selected Block

Open a model.

vdp

In the model, select a block. For example, select the Gain block. Then, enter gcb at the command
prompt.

gcb

ans =

vdp/Mu

Get Parameters of Current Block

Open a model.

vdp

Select the Gain block.

 gcb

2-277

Use the value of gcb with get_param to get the value of the Gain parameter.

x = get_param(gcb,'Gain')

x =

1

Get Current Block in Specified System

Load the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys.
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
load_system('sldemo_fuelsys');

Get the current block in the fuel_rate_control subsystem.

bl = gcb('sldemo_fuelsys/fuel_rate_control')

bl =

sldemo_fuelsys/fuel_rate_control/validate_sample_time

Input Arguments
sys — System that contains the block
character vector

System that contains the block, specified as a character vector.
Example: 'vdp' 'sldemo_fuelsys/fuel_rate_control'

Version History
Introduced before R2006a

See Also
gcbh | gcbp | gcs | get_param

Topics
“Mask Callback Code”

2 Functions

2-278

gcbh
Get handle of current block

Syntax
handle = gcbh

Description
handle = gcbh returns the handle of the current block in the current system.

Examples

Get Handle of Current Block

Get the handle of the most recently selected block.

handle = gcbh

handle =

 281.0001

Version History
Introduced before R2006a

See Also
gcb | gcbp | gcs | getSimulinkBlockHandle

 gcbh

2-279

gcbp
Get Simulink.BlockPath object for current block

Syntax
path = gcbp

Description
path = gcbp returns the Simulink.BlockPath object of the current block in the current system.
The current block is:

• The most recently clicked block
• The last block loaded after opening a model

The returned Simulink.BlockPath object is context sensitive to model hierarchy.

Examples

Create Simulink.BlockPath Object for Selected Block

Open sldemo_mdlref_basic.

openExample('sldemo_mdlref_basic')

Click a block in the model hierarchy. For example, click the block labeled ScopeA in the CounterA
instance of sldemo_mdlref_counter. Then, use gcbp in the Command Window.

path = gcbp

path =

 Simulink.BlockPath
 Package: Simulink

 Block Path:
 sldemo_mdlref_basic/CounterA
 sldemo_mdlref_counter/ScopeA

 Use the getBlock method to access block path strings from this object.

 Methods

Version History
Introduced in R2019a

2 Functions

2-280

See Also
Objects
Simulink.BlockPath

Functions
gcb | gcbh | gcs | get_param | open (BlockPath)

 gcbp

2-281

gcs
Get path name of current system

Syntax
gcs

Description
gcs returns the path name of the current system. The current system is one of these:

• During editing, the system or subsystem most recently clicked or that contains the block most
recently clicked

• During simulation of a system that contains an S-Function block, the system or subsystem
containing the S-Function block currently being evaluated

• When a callback is invoked, the system executing the callback
• During evaluation of MaskInitialization, the system containing the block whose mask is

being evaluated
• The system most recently loaded into memory with load_system; only the first use of

load_system makes the model the current system

The current system is the current model or a subsystem of the current model. Use bdroot to get the
current model.

If you close the model that contains the current system, another open or loaded system becomes the
current one. Use gcs to find out the new current system.

To explicitly set the current system, you can either:

• Use set_param with the 'CurrentSystem' parameter on the root Simulink model, for example:

set_param(0,'CurrentSystem','mymodel')
• Open the model by using open_system or the model name at the MATLAB command prompt.

Examples

Get Current System That Contains a Block

Return the path of the system that contains the most recently selected block.

Open the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys. Open the subsystem To Controller.
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
sldemo_fuelsys
open_system('sldemo_fuelsys/To Controller')

Click the Rate Transition block. Get the current system.

2 Functions

2-282

gcs

ans =

 'sldemo_fuelsys/To Controller'

Get Current System After Loading a Model

Open the model f14 and get the current system.

f14
gcs

ans =

 'f14'

Load the model vdp using load_system. Then get the current system.

load_system('vdp');
gcs

ans =

 'vdp'

To remove vdp from memory, close it. In this example, the current system becomes the open model,
f14.

close_system('vdp');
gcs

ans =

 'f14'

Version History
Introduced before R2006a

See Also
bdroot | gcb | gcbp

 gcs

2-283

get_param
Get parameter names and values

Syntax
value = get_param(object,parameter)

Description
value = get_param(object,parameter) returns the value value of the specified parameter
parameter for the target object specified by object. The target object can be a model, subsystem,
library, block, line, port, or bus element port element.

Open or load the related Simulink model, subsystem, or library before calling this function.

Examples

Get Block Parameter Value and Model Parameter Value

Load the vdp model.

load_system('vdp');

Get the value for the Expression block parameter.

BlockParameterValue = get_param('vdp/Mu','Multiplication')

BlockParameterValue =

 'Element-wise(K.*u)'

Get the value for the SolverType model parameter.

SolverType = get_param('vdp','SolverType')

SolverType =

 'Variable-step'

Get Root Parameter Names and Values

Get a list of global parameter names by finding the difference between the Simulink root parameter
names and the model parameter names.

RootParameterNames = fieldnames(get_param(0,'ObjectParameters'));
load_system('vdp')
ModelParameterNames = fieldnames(get_param('vdp','ObjectParameters'));
GlobalParameterNames = setdiff(RootParameterNames,ModelParameterNames)

GlobalParameterNames =

2 Functions

2-284

 79×1 cell array

 {'AccelNoncompliantBlocksRatioLimit' }
 {'AutoAccelerationStepsPerBlockLimit' }
 {'AutoAccelerationStepsPerCodegenLimit' }
 . . .
 {'CurrentSystem' }

Get the value of a global parameter.

GlobalParameterValue = get_param(0,'CurrentSystem')

GlobalParameterValue =

 'vdp'

Get Model Parameter Names and Values

Get a list of model parameters for the vdp model .

load_system('vdp')
ModelParameterNames = get_param('vdp','ObjectParameters')

ModelParameterNames =

 struct with fields:

 Name: [1×1 struct]
 Tag: [1×1 struct]
 Description: [1×1 struct]
 Type: [1×1 struct]
 Parent: [1×1 struct]
 Handle: [1×1 struct]
 . . .
 ZeroInternalMemoryAtStartup: [1×1 struct]

Get the current value of the ModelVersion model parameter for the vdp model.

ModelParameterValue = get_param('vdp','ModelVersion')

ModelParameterValue =

 '7.0'

Get List of Blocks and Parameter Value

Get a list of block paths and names for the blocks in the sldemo_fuelsys model. For one of the
blocks, get a list of block dialog parameters and the value of a block dialog parameter.

Open the Model a Fault-Tolerant Fuel Control System example.

openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample');

Get a list of block paths and names for all blocks in the top level of the sldemo_fuelsys model.

 get_param

2-285

BlockPaths = get_param(gcs,'blocks')

BlockPaths =

 21×1 cell array

 {'Callback Button' }
 {'Constant2' }
 {'Constant3' }
 {'Constant4' }
 {'Constant5' }
 {'Dashboard' }
 {'EGO Fault Switch' }
 {'Engine Gas Dynamics' }
 {'Engine Speed' }
 {'Engine Speed↵Fault Switch' }
 {'Engine_Speed_Selector' }
 {'MAP Fault Switch' }
 {'MAP_Selector' }
 {'O2_Voltage_Selector' }
 {'Scope' }
 {'Throttle↵Command' }
 {'Throttle Angle↵Fault Switch'}
 {'Throttle_Angle_Selector' }
 {'To Controller' }
 {'To Plant' }
 {'fuel_rate_control' }

The command outputs a list of block paths and names for all blocks in the top hierarchical level of the
current system. If the current system is a subsystem, the command outputs a list of block paths and
names for all blocks in the top hierarchical level of the subsystem.

In this example, the current system is sldemo_fuelsys, so the command outputs a list of block
paths and names for all blocks in the top hierarchical level of the sldemo_fuelsys system.

Get a list of block paths and names for all blocks in all levels of the sldemo_fuelsys model.

BlockPaths = find_system(gcs,'Type','Block')

BlockPaths =

 188×1 cell array

 {'sldemo_fuelsys/Callback Button' }
 {'sldemo_fuelsys/Constant2' }
 {'sldemo_fuelsys/Constant3' }
 ...
 {'sldemo_fuelsys/fuel_rate_control/fuel_rate' }

The command outputs a list of block paths and names for all blocks in the top hierarchical level of the
current system and in all lower levels of model hierarchy that the current system contains. In this
example, the current system is sldemo_fuelsys, so the output is a list of block paths and names for
all blocks in the sldemo_fuelsys model.

Get a list of block dialog parameters for the Gain block named RT/Vm. The first argument in the
get_param function is the block path and name. Get the block path and name from the BlockPaths
cell array.

2 Functions

2-286

BlockDialogParameters = get_param(BlockPaths{44},'DialogParameters')

BlockDialogParameters =

 struct with fields:

 Gain: [1×1 struct]
 Multiplication: [1×1 struct]
 ParamMin: [1×1 struct]
 ParamMax: [1×1 struct]
 ParamDataTypeStr: [1×1 struct]
 OutMin: [1×1 struct]
 OutMax: [1×1 struct]
 OutDataTypeStr: [1×1 struct]
 LockScale: [1×1 struct]
 RndMeth: [1×1 struct]
 SaturateOnIntegerOverflow: [1×1 struct]
 SampleTime: [1×1 struct]

Get the value for the Multiplication block parameter.

BlockParameterValue = get_param(BlockPaths{44},'Multiplication')

BlockParameterValue =

 'Element-wise(K.*u)'

Get Block Parameter Value Using Block Handle

Get the value of the Multiplication block parameter of the Gain block named Mu in the vdp
model.

Get the handle of the Gain block named Mu in the vdp model using the getSimulinkBlockHandle
function. Specify the model and block names by entering 'vdp/Mu' as the input argument. If the vdp
model is not loaded, load the model by specifying true as the second input argument to the
getSimulinkBlockHandle function.

mublockhandle = getSimulinkBlockHandle('vdp/Mu',true)

mublockhandle =

 5.0001

The handle contains a double, for example, 5.0001. If you display a handle number in the MATLAB
Command Window, the display might not show all digits of the number. Do not try to use this handle
number by manually entering what you see in the display. Instead, assign the handle to a variable and
use that variable name to specify the block.

Tip If you make multiple calls to get_param for the same block, use the block handle instead of
repeatedly specifying the full block path as a character vector such as 'vdp/Mu'. You can use the
block handle in subsequent calls to get_param or set_param.

 get_param

2-287

To get the value of the Multiplication block parameter, use the get_param function. Specify the
block handle as the first input argument and the name of the block parameter as the second input
argument.

BlockParameterValue = get_param(mublockhandle,'Multiplication')

BlockParameterValue =

 'Element-wise(K.*u)'

Display Block Types for All Blocks in Model

Get a list of block paths and names for the vdp model.

load_system('vdp')
BlockPaths = find_system('vdp','Type','Block')

BlockPaths =

 14×1 cell array

 {'vdp/Constant' }
 {'vdp/More Info' }
 {'vdp/More Info/Model Info'}
 {'vdp/Mu' }
 {'vdp/Mux' }
 {'vdp/Product' }
 {'vdp/Scope' }
 {'vdp/Square' }
 {'vdp/Sum' }
 {'vdp/Sum1' }
 {'vdp/x1' }
 {'vdp/x2' }
 {'vdp/Out1' }
 {'vdp/Out2' }

Get the value for the BlockType parameter for each of the blocks in the vdp model.

BlockTypes = get_param(BlockPaths,'BlockType')

BlockTypes =

 14×1 cell array

 {'Constant' }
 {'SubSystem' }
 {'SubSystem' }
 {'Gain' }
 {'Mux' }
 {'Product' }
 {'Scope' }
 {'Math' }
 {'Sum' }
 {'Sum' }
 {'Integrator'}
 {'Integrator'}

2 Functions

2-288

 {'Outport' }
 {'Outport' }

Get List of Options for Masked Parameter, Simulink Object, Block Diagram, or Annotation

You can retrieve the list of options for a parameter, Simulink object, block diagram, or annotation
using the get_param function with the keyword options.

Get the list of options for a masked parameter. For example, consider the masked Subsystem block in
the ACSystem model. Get the list of options for the Subsystem block parameter Show port labels.

openExample('simulink_masking/DesignAMaskDialogBoxExample')
get_param('ACSystem/AC System','options@showportlabels')

ans =

 1×4 cell array

 {'none'} {'FromPortIcon'} {'FromPortBlockName'} {'SignalName'}

Get the list of options for a block parameter. For example, get the list of options for the Icon
display parameter of an Inport block.

get_param('ACSystem/In1','options@icondisplay')

ans =

 1×3 cell array

 {'Signal name'} {'Port number'} {'Port number and si…'}

Get Evaluated Value of Mask Parameter

You can access the evaluated value of a masked block parameter using the get_param function with
the keyword value.

For example, consider the masked Subsystem block in the ACSystem model. Get the evaluated value
of the edit parameter on the mask called Room Width (W).

openExample('simulink_masking/DesignAMaskDialogBoxExample')
get_param('ACSystem/AC System','value@W')

ans =

 133

The option to retrieve the evaluated value is limited to mask parameters.

Open the mask of the AC System block by double-clicking the block. The value of the Room Width
(W) parameter is the same as the value you get using the get_param function.

 get_param

2-289

Input Arguments
object — Name, path, or handle of object or root
character vector | cell array of character vectors | string array | numeric scalar | 0

Name, path, or handle of object or root, specified as a character vector, cell array of character
vectors, string array, numeric scalar, or 0.

How you specify the target object depends on its type.

• Model — Model name or handle.
• Subsystem — Subsystem name or handle.
• Library — Library name or handle.
• Block — Block path or handle.
• Line — Line handle.
• Port — Port handle.
• Bus element port element — Block path of model component with element label. The element can

be any element of the port, such as a top-level bus, nested bus, signal, or message.

To specify multiple objects with a common parameter, use a cell array of character vectors, a string
array, or an array of handles. All the specified objects must have the specified parameter, otherwise,
the function returns an error.

Specify 0 to get root parameter names, including global parameters and model parameters for the
current Simulink session.

2 Functions

2-290

• Global parameters include Editor preferences and Simulink Coder parameters.
• Model parameters include configuration parameters, Simulink Coder parameters, and Simulink

Code Inspector parameters.

Example: 'vdp/Mu'
Example: 'mymodel/Subsystem1/Out1.nonsinusoidal.saw'

Tips

• If you make multiple calls to get_param for the same block, specify the block with a numeric
handle. This method is more efficient than using the full block path with get_param. Use
getSimulinkBlockHandle to get a block handle.

• Do not try to manually specify the number of a handle, for example, 5.007, because you usually
need to specify more digits than MATLAB displays. Assign the handle to a variable and use that
variable name.

Data Types: char | string | double

parameter — Parameter, property, or attribute name
character vector | string scalar

Parameter, property, or attribute name, specified as a character vector or string scalar. Some names
are case sensitive.

This table shows special cases.

Specified Parameter Result
'ObjectParameters' Parameter names of the specified object as

separate fields in a structure array.
'DialogParameters' Block dialog box parameter names as separate

fields in a structure array. If the block has a
mask, the function instead returns the mask
parameters.

For information about parameters, properties, or attributes, see the programmatic use information on
the corresponding reference pages. For example:

• Models — See the configuration parameter reference pages.
• Blocks — See “Common Block Properties” on page 6-12 and block reference pages.
• Ports — See the Signal Properties tool reference page.
• Bus element port elements — See the In Bus Element and Out Bus Element block reference pages.

Example: 'ObjectParameters'
Example: 'Solver'
Example: 'SimulationCommand'
Example: 'Position'
Example: 'NameLocation'
Data Types: char | string

 get_param

2-291

Output Arguments
value — Parameter value
format determined by parameter type

Parameter value, returned in the format determined by the parameter type. If you specify multiple
objects, the output is a cell array.

This table shows special cases.

Specified Parameter Result
'ObjectParameters' Parameter names of the specified object as

separate fields in a structure array.
'DialogParameters' Block dialog box parameter names as separate

fields in a structure array. If the block has a
mask, the function instead returns the mask
parameters.

If you get the root parameters by specifying get_param(0,'ObjectParameters'), then the output
value is a structure array with the root parameter names as separate fields in the structure. Each
parameter field is a structure containing these fields:

• Type — Parameter type values are 'boolean', 'string', 'int', 'real', 'point',
'rectangle', 'matrix', 'enum', 'ports', or 'list'.

• Enum — Cell array of enumeration character vector values that applies only to 'enum' parameter
types.

• Attributes — Cell array of character vectors defining the attributes of the parameter. Values are
'read-write', 'read-only', 'read-only-if-compiled', 'write-only', 'dont-eval',
'always-save', 'never-save', 'nondirty', or 'simulation'.

Version History
Introduced before R2006a

See Also
Functions
set_param | getSimulinkBlockHandle | find_system | gcb | gcs | bdroot

Tools
Signal Properties

Blocks
In Bus Element | Out Bus Element

Topics
“Common Block Properties” on page 6-12
“Block-Specific Parameters” on page 6-24
“Set Model Configuration Parameters for a Model”
“Associating User Data with Blocks”

2 Functions

2-292

“Use MATLAB Commands to Change Workspace Data”

 get_param

2-293

getActiveConfigSet
Get active configuration set or configuration reference of model

Syntax
myConfigObj = getActiveConfigSet(model)

Description
myConfigObj = getActiveConfigSet(model) returns the active configuration object of the
model as a ConfigSet object or a Simulink.ConfigSetRef object.

Examples

Get Active Configuration Set

Get the active configuration set for a model that is open.

Open the model vdp and get the active configuration set.

vdp
vdpConfig = getActiveConfigSet('vdp');

Input Arguments
model — Name of model
character vector | string scalar

Name of model, specified as a character vector or string scalar. The model must be open.
Example: 'vdp'

Output Arguments
myConfigObj — Configuration object
ConfigSet object | ConfigSetRef object

The configuration object, returned as a ConfigSet object or a Simulink.ConfigSetRef object.

Version History
Introduced before R2006a

See Also
setActiveConfigSet | attachConfigSet | attachConfigSetCopy | detachConfigSet |
getConfigSet | getConfigSets

2 Functions

2-294

Topics
“Manage Configuration Sets for a Model”

 getActiveConfigSet

2-295

getCallbackAnnotation
Get annotation executing callback

Syntax
ann = getCallbackAnnotation

Description
ann = getCallbackAnnotation gets the annotation from which a callback was invoked. Invoke a
callback from an annotation click function. After you get the annotation, you can, for example, get
text or parameters from the annotation to use someplace else in your model.

For information on click functions, see “Add Hyperlinks to Annotations”.

Examples

Click Annotation to Change Parameter Value

Invoke a callback by way of an annotation click function. This example shows how to change a
parameter value on a block to the value shown on an annotation.

Open vdp. Add and position two annotations. Each annotation displays a different value.

open_system('vdp');
an1 = Simulink.Annotation('vdp/1');
an1.position = [100,300];
an2 = Simulink.Annotation('vdp/3');
an2.position = [150,300];

Assign a click function to each annotation. The click function uses getAnnotationCallback to get
the annotation instance. Get the text from each annotation and use it to set the parameter on the
Gain block (Mu).

an1.ClickFcn = 'ann = getCallbackAnnotation; v = ann.Text; set_param(''vdp/Mu'',''Gain'',v)';
an2.ClickFcn = 'ann = getCallbackAnnotation; v = ann.Text; set_param(''vdp/Mu'',''Gain'',v)';

Click each annotation. When you click, the gain value on the Mu block changes to the number shown
on the annotation.

Output Arguments
ann — Annotation
Simulink.Annotation instance

Annotation, returned as a Simulink.Annotation instance.

2 Functions

2-296

Version History
Introduced before R2006a

See Also
Simulink.Annotation

Topics
“Annotate Models”

 getCallbackAnnotation

2-297

getConfigSet
Get configuration set or configuration reference from model

Syntax
myConfigObj = getConfigSet(model, configObjName)

Description
myConfigObj = getConfigSet(model, configObjName) returns the configuration set or
configuration reference that is attached to model and is named configObjName.

Examples

Get a Configuration Set

Get a configuration set for a model that is open.

Open the model vdp and get the configuration set Configuration.

vdp
vdpConfig = getConfigSet('vdp','Configuration');

Input Arguments
model — Name of model
character vector | string scalar

Name of model, specified as a character vector or string scalar. The model must be open.
Example: 'vdp'

configObjName — Configuration object
character vector | string scalar

Name of the configuration object, specified as a character vector or string scalar.
Example: 'Configuration'

Output Arguments
myConfigObj — Configuration object
ConfigSet object | ConfigSetRef object

The configuration object, returned as a ConfigSet object or a Simulink.ConfigSetRef object. If
no such object exists, the function returns an empty object.

2 Functions

2-298

Version History
Introduced before R2006a

See Also
setActiveConfigSet | attachConfigSet | attachConfigSetCopy | detachConfigSet |
getActiveConfigSet | getConfigSets

Topics
“Manage Configuration Sets for a Model”

 getConfigSet

2-299

getConfigSets
Get names of all of model's configuration sets or configuration references

Syntax
myConfigObjNames = getConfigSets(model)

Description
myConfigObjNames = getConfigSets(model) returns the names of the configuration objects
that are attached to the model. You can use the returned name of a configuration set from
myConfigObjNames to activate it for the model.

Examples

Get Names of Configurations for a Model

Get the names of the configuration sets and configuration references that are attached to a model.

Open the “Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139
example model sldemo_fuelsys_dd and the referenced model
sldemo_fuelsys_dd_controller. Get the configuration object names.

openExample('simulink_automotive/UseDDForFuelContSysExample')
sldemo_fuelsys_dd
sldemo_fuelsys_dd_controller
configObjNames = getConfigSets('sldemo_fuelsys_dd_controller')

configObjNames =

 1×1 cell array

 {'ModelReferencing'}

The model has one configuration set with the name ModelReferencing.

Input Arguments
model — Name of model
character vector | string scalar

Name of model, specified as a character vector or string scalar. The model must be open.
Example: 'vdp'

Output Arguments
myConfigObjNames — Names of configuration objects
cell array of character vectors

2 Functions

2-300

Names of the configuration objects that are attached to the model, returned as a cell array of
character vectors. The configuration objects include configuration sets and configuration references.

Version History
Introduced before R2006a

See Also
setActiveConfigSet | detachConfigSet | ConfigSet | Simulink.ConfigSetRef |
getActiveConfigSet

Topics
“Manage Configuration Sets for a Model”

 getConfigSets

2-301

getCurrentAnnotation
Get current annotation object

Syntax
getCurrentAnnotation

Description
getCurrentAnnotation gets the current annotation as a Simulink.Annotation object.

Examples

Get Current Annotation Object

Open the model vdp.

vdp

Select the annotation at the top of the diagram. To get the annotation object, use the function
getCurrentAnnotation.

title = getCurrentAnnotation

title =

 Annotation with properties:

 Name: 'van der Pol Equation'

Version History
Introduced in R2019a

See Also
Simulink.Annotation

Topics
“Annotate Models”
“Create and Edit Annotations Programmatically”

2 Functions

2-302

getfullname
Get path that identifies block or line

Syntax
path = getfullname(handle)

Description
path = getfullname(handle) returns the full path that identifies the block or line specified by
handle. If you specify multiple block or line handles, the function returns a cell array of paths.

Examples

Get Path That Identifies Block

Open the vdp model.

vdp

Interactively, select the block named Mu.

Get the path that identifies the currently selected block.

blkpath = getfullname(gcb)

blkpath =

 'vdp/Mu'

Get Path That Identifies Line

Open the vdp model.

vdp

Interactively, select the output line from the block named Mu.

Get the handle associated with the currently selected line.

line = find_system(gcs, 'SearchDepth', 1, 'FindAll', 'on', ...
 'Type', 'line', 'Selected', 'on');

Get the path that identifies the currently selected line.

linepath = getfullname(line)

linepath =

 'vdp/Mu/1'

 getfullname

2-303

The path describes the source port of the line.

Input Arguments
handle — Block or line
handle | cell array of handles

Block or line, specified as a handle or cell array of handles.
Example: getfullname(gcb)
Example: getfullname({handle1,handle2})
Data Types: double | cell

Version History
Introduced in R2007a

See Also
gcb | find_system

2 Functions

2-304

getInputString
Create comma-separated list of variables to map

Syntax
externalInputString = getInputString(inputmap,'base')

externalInputString = getInputString(inputmap,filename)

externalInputString = getInputString(inputmap)

Description
externalInputString = getInputString(inputmap,'base') creates an input character
vector using the supplied mapping inputmap and the variables loaded in the base workspace
('base').

This function generates a comma-separated list of variables (input character vector) to be mapped.
You can then use this list:

• As input to the sim command. Load the variables in the base workspace first.
• As input for the Configuration Parameters > Data Import/Export > Input parameter. Copy

the contents of the input character vector into the text field.

This function is most useful if you have created a custom mapping.

externalInputString = getInputString(inputmap,filename) creates an input character
vector using the supplied mapping inputmap and the variables defined in filename.

externalInputString = getInputString(inputmap) creates an input character vector using
the signals from the most recently created mapping.

Examples

Create an input character vector from the base workspace

Create an input character vector from the base workspace and simulate a model.

Open the model.

openExample('slexAutotransRootInportsExample');

Create signal variables in the base workspace

Throttle = timeseries(ones(10,1)*10);
Brake = timeseries(zeros(10,1));

Create a mapping (inputMap) for the model.

inputMap = getRootInportMap('model',...
'slexAutotransRootInportsExample',...

 getInputString

2-305

'signalName',{'Throttle','Brake'},...
'blockName',{'Throttle','Brake'});

Call getInputString with inputMap and 'base' as inputs.

externalInputString = getInputString(inputMap,'base')

externalInputString =

Throttle,Brake

Simulate the model with the input character vector.

sim('slexAutotransRootInportsExample','ExternalInput',...
externalInputString);

Create an external input character vector from variables in a MAT-file

Create an external input character vector from variables in a MAT-file named input.mat.

In a writable folder, create a MAT-file with input variables.

Throttle = timeseries(ones(10,1)*10);
Brake = timeseries(zeros(10,1));
save('input.mat','Throttle','Brake');

Open the model.

openExample('slexAutotransRootInportsExample');

Create map object.

inputMap = getRootInportMap('model',...
'slexAutotransRootInportsExample',...
'signalName',{'Throttle','Brake'},...
'blockName',{'Throttle','Brake'});

Get the resulting input character vector.

externalInputString = getInputString(inputMap,'input.mat')

externalInputString =

Throttle,Brake

Load variables from the base workspace for the simulation.

load('input.mat');

Simulate the model.

sim('slexAutotransRootInportsExample','ExternalInput',...
externalInputString);

2 Functions

2-306

Create an external input character vector from only an input map

Create an input character vector from only an input map vector and simulate the model.

Open the model.

openExample('slexAutotransRootInportsExample');

Create signal variables in the base workspace

Throttle = timeseries(ones(10,1)*10);
Brake = timeseries(zeros(10,1));

Create a mapping vector for the model.

inputMap = getSlRootInportMap('model', 'slexAutotransRootInportsExample',...
'MappingMode','BlockName',...
'signalName',{'Throttle', 'Brake'},...
'signalValue',{Throttle, Brake});

Get the resulting input character vector.

externalInputString = getInputString(inputMap)

Simulate the model with the input character vector.

sim('slexAutotransRootInportsExample','ExternalInput',...
externalInputString);

Alternatively, if you want to input the list of variables through the Configuration Parameters dialog,
copy the contents of externalInputString (Throttle,Brake) into the Data Import/Export >
Input parameter. Apply the changes, and then simulate the model.

Input Arguments
inputmap — Map object
character vector

Map object, as returned from the getRootInportMap or getSlRootInportMap functions.

filename — Input variables
MAT-file name as character vector

Input variables, contained in a MAT-file. The file contains variables to map.
Example: 'data.mat'
Data Types: char

Output Arguments
externalInputString — External input
comma-separated character vector

External input, returned as a comma-separated character vector. The character vector contains root
inport information that you can specify to the sim command or the Configuration Parameters >
Data Import/Export > Input parameter.

 getInputString

2-307

Version History
Introduced in R2013a

See Also
getRootInportMap | getSlRootInportMap

Topics
“Map Root Inport Signal Data”

2 Functions

2-308

getRootInportMap
Create custom object to map signals to root-level inports

Syntax
map = getRootInportMap('Empty');
map = getRootInportMap(model,mdl,Name,Value);
map = getRootInportMap(inputmap,map,Name,Value);

Description
map = getRootInportMap('Empty'); creates an empty map object, map. Use this map object to
set up an empty custom mapping object. Load the model before using this function. If you do not load
the model first, the function loads the model to make the mapping and then closes the model
afterwards.

map = getRootInportMap(model,mdl,Name,Value); creates a map object for model, mdl, with
block names and signal names specified. Load the model before using this function. If you do not load
the model first, the function loads the model to make the mapping and then closes the model
afterwards. To create a comma-separated list of variables to map from this object, use the
getInputString function.

map = getRootInportMap(inputmap,map,Name,Value); overrides the mapping object with the
specified property. You can override only the properties model, blockName, and signalName. Load
the model before using this function. If you do not load the model first, the function loads the model
to make the mapping and then closes the model afterwards. To create a comma-separated list of
variables to map from this object, use the getInputString function.

Use the getRootInportMap function when creating a custom mapping mode to map data to root-
level inports. For more information, see “Create and Use Custom Map Modes”.

Input Arguments
Empty

Create an empty map object.

Default: none

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

model

Name of model to associate with the root inport map.

 getRootInportMap

2-309

Default: None

blockName

Block names of root-level input ports. The tool assigns data to ports according to the name of the
root-inport block. If the tool finds a data element whose name matches the name of a root-inport
block, it maps the data to the corresponding port.

The value for this argument can be:
Block name of root-level input ports.
Cell array containing multiple block names of root-level input ports.

Default: None

blockPath

Block paths of root-level input ports. The tool assigns data to ports according to the block path of the
root-inport block. If the tool finds a data element whose name matches the block path of a root-inport
block, it maps the data to the corresponding port.

The value for this argument can be:
Block path of root-level input ports.
Cell array containing multiple block paths of root-level input ports.

Default: None

signalName

Signal names to be mapped. The tool assigns data to ports according to the name of the signal on the
port. If the tool finds a data element whose name matches the name of a signal at a port, it maps the
data to the corresponding port.

The value for this argument can be:
Signal name to be mapped.
Cell array containing multiple signal names of signals to be mapped.

Default: None

inputmap

Name of mapping object to override.

Default: None

Output Arguments
map

Custom object that you can use to map data to root-level input port. To create a comma-separated list
of variables to map from this object, use the getInputString function.

Examples

2 Functions

2-310

Create Empty Mapping Object

Create an empty mapping object.

map = getRootInportMap('Empty')

map =

 1x0 InputMap array with properties:

 Type
 DataSourceName
 Destination
 Status
 BlockName
 BlockPath
 SignalName
 PortNumber

Create Simple Mapping Object

Create a simple mapping object using a MATLAB® time series object.

Create a time series object, signalIn1.

signalIn1 = timeseries((1:10)')

 timeseries

 Common Properties:
 Name: 'unnamed'
 Time: [10x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [10x1 double]
 DataInfo: tsdata.datametadata

Create a mapping object for the time series object for the model,

model = 'ex_three_inports'

model =
'ex_three_inports'

open_system(model);
map = getRootInportMap('model','ex_three_inports',...
'blockName','In1','signalname','signalIn1')

map =
 InputMap with properties:

 Type: 'Inport'
 DataSourceName: 'signalIn1'
 Destination: [1x1 Simulink.iospecification.Destination]
 Status: -1
 BlockName: 'In1'
 BlockPath: 'ex_three_inports/In1'

 getRootInportMap

2-311

 SignalName: 'signalGain5'
 PortNumber: 1

Mapping Object with Vectors

Create a mapping object using vectors of block names and signal names for the model

Create a mapping object of vectors.

model = 'ex_three_inports';
open_system(model);
map = getRootInportMap('model','ex_three_inports',...
'blockName',{'In1' 'In2'}, ...
'signalname',{'signalIn1' 'signalIn2'})

map=1×2 object
 1x2 InputMap array with properties:

 Type
 DataSourceName
 Destination
 Status
 BlockName
 BlockPath
 SignalName
 PortNumber

Override Maps

Create a mapping object that contains the signal var2, then override var2 with var1.

Load the model and define variables

model = 'ex_three_inports';
open_system(model);
blockNameValue = 'In1';
signalNameValue = 'var2';
portType = 'Inport';

Define var1 and override var2 with var1.

signalNameToOverload = 'var1';
mapToOverload = getRootInportMap('model',model,...
'blockName',blockNameValue,...
 'signalName',signalNameToOverload)

mapToOverload =
 InputMap with properties:

 Type: 'Inport'
 DataSourceName: 'var1'

2 Functions

2-312

 Destination: [1x1 Simulink.iospecification.Destination]
 Status: -1
 BlockName: 'In1'
 BlockPath: 'ex_three_inports/In1'
 SignalName: 'signalGain5'
 PortNumber: 1

Tips
• Load the model before running this function.
• If your custom mapping mode is similar to an existing Simulink mapping mode, consider using the

getSlRootInportMap function instead.

Version History
Introduced in R2012b

See Also
getInputString | getSlRootInportMap

Topics
“Create Custom Mapping File Function”
“Create and Use Custom Map Modes”

 getRootInportMap

2-313

getSimulinkBlockHandle
Get block handle from block path

Syntax
handle = getSimulinkBlockHandle(path)
handle = getSimulinkBlockHandle(path,true)

Description
handle = getSimulinkBlockHandle(path) returns the numeric handle of the block specified by
path, if it exists in a loaded model or library. Returns -1 if the block is not found. Library links are
resolved where necessary.

Use the numeric handle returned by getSimulinkBlockHandle to manipulate the block in
subsequent calls to get_param or set_param. This approach is more efficient than making multiple
calls to these functions using the full block path. Do not try to use the number of a handle alone (e.g.,
5.007) because you usually need to specify many more digits than MATLAB displays. Assign the
handle to a variable and use that variable name to specify a block. The handle applies only to the
current MATLAB session.

Use getSimulinkBlockHandle to check whether a block path is valid. This approach is more
efficient than calling get_param inside a try statement.

handle = getSimulinkBlockHandle(path,true) attempts to load the model or library
containing the specified block path, and then checks if the block exists. No error is returned if the
model or library is not found. Any models or libraries loaded this way remain in memory even if the
function does not find a block with the specified path.

Examples

Get the Handle of a Block

Get the handle of the Pilot block.

load_system('f14')
handle = getSimulinkBlockHandle('f14/Pilot')

handle =

 562.0004

You can use the handle in subsequent calls to get_param or set_param.

Load the Model and Get the Block Handle

Load the model f14 if necessary (by specifying true), and get the handle of the Pilot block.

2 Functions

2-314

handle = getSimulinkBlockHandle('f14/Pilot',true)

handle =

 562.0004

You can use the handle in subsequent calls to get_param or set_param.

Check If a Model Contains a Specific Block

Check whether the model f14 is loaded and contains a block named Pilot. Valid handles are always
greater than zero. If the function does not find the block, it returns -1.

valid_block_path = getSimulinkBlockHandle('f14/Pilot') > 0

valid_block_path =

 0

The model contains the block but the model is not loaded, so this command returns 0 because it
cannot find the block.

Using getSimulinkBlockHandle to check whether a block path is valid is more efficient than
calling get_param inside a try statement.

Input Arguments
path — Block path name
character vector | cell array of character vectors

Block path name, specified as a character vector or a cell array of character vectors.
Example: 'f14/Pilot'
Data Types: char

Output Arguments
handle — Numeric handle of a block
double | array of doubles

Numeric handle of a block, returned as a double or an array of doubles. Valid handles are always
greater than zero. If the function does not find the block, it returns -1. If the path input is a cell
array of character vectors, then the output is a numeric array of handles.
Data Types: double

Version History
Introduced in R2015a

 getSimulinkBlockHandle

2-315

See Also
get_param | set_param

2 Functions

2-316

getSlRootInportMap
Create custom object to map signals to root-level inports using Simulink mapping mode

Syntax
inputMap = getSlRootInportMap('model',modelname,'MappingMode',
mappingmode,'SignalName',signalname,'SignalValue',signalvalue)
[inputMap, hasASignal] = getSlRootInportMap('model',modelname,'MappingMode',
mappingmode,'SignalName',signalname,'SignalValue',signalvalue)

inputMap = getSlRootInportMap('model',
modelname,'MappingMode','Custom','CustomFunction',
customfunction,'SignalName',signalname,'SignalValue',signalvalue)
[inputMap,hasASignal] = getSlRootInportMap('model',
modelname,'MappingMode','Custom','CustomFunction',
customfunction,'SignalName',signalname,'SignalValue',signalvalue)

Description
inputMap = getSlRootInportMap('model',modelname,'MappingMode',
mappingmode,'SignalName',signalname,'SignalValue',signalvalue) creates a root
inport map using one of the Simulink mapping modes. Load the model before using this function. If
you do not load the model first, the function loads the model to make the mapping and then closes the
model afterwards. To create a comma-separated list of variables to map from this object, use the
getInputString function.

[inputMap, hasASignal] = getSlRootInportMap('model',modelname,'MappingMode',
mappingmode,'SignalName',signalname,'SignalValue',signalvalue) returns a vector of
logical values specifying whether or not the root inport map has a signal associated with it. To create
a comma-separated list of variables to map from this object, use the getInputString function.

inputMap = getSlRootInportMap('model',
modelname,'MappingMode','Custom','CustomFunction',
customfunction,'SignalName',signalname,'SignalValue',signalvalue) creates a root
inport map using a custom mapping mode specified in customfunction. Load the model before
using this function. If you do not load the model first, the function loads the model to make the
mapping and then closes the model afterwards. To create a comma-separated list of variables to map
from this object, use the getInputString function.

[inputMap,hasASignal] = getSlRootInportMap('model',
modelname,'MappingMode','Custom','CustomFunction',
customfunction,'SignalName',signalname,'SignalValue',signalvalue) returns a vector
of logical values specifying whether or not the root inport map has a signal associated with it. To
create a comma-separated list of variables to map from this object, use the getInputString
function.

To map signals to root-level inports using custom mapping modes, you can use getSlRootInport
with the Root Inport Mapper dialog box custom mapping capability.

 getSlRootInportMap

2-317

Examples

Create inport map using Simulink mapping mode

Create a vector of inport maps using a built-in mapping mode.

openExample('slexAutotransRootInportsExample');
Throttle = timeseries(ones(10,1)*10);
Brake = timeseries(zeros(10,1));
inputMap = getSlRootInportMap('model','slexAutotransRootInportsExample',...
 'MappingMode','BlockName', ...
 'SignalName',{'Throttle' 'Brake'},...
 'SignalValue',{Throttle Brake});

Create inport map using custom function

Create a vector of inport maps using a custom function

openExample('slexAutotransRootInportsExample');
port1 = timeseries(ones(10,1)*10);
port2 = timeseries(zeros(10,1));
inputMap = getSlRootInportMap('model','slexAutotransRootInportsExample',...
 'MappingMode','Custom', ...
 'CustomFunction','slexCustomMappingMyCustomMap',...
 'SignalName',{'port1' 'port2'},...
 'SignalValue',{port1 port2});

Input Arguments
modelname — Model name
character vector

Specify the model to associate with the root inport map.
Data Types: char

mappingmode — Simulink mapping mode
character vector

Specify the mapping mode to use with model name and data source. Possible values are:

'Index' Assign sequential index numbers, starting at 1, to the data in the MAT-file,
and map this data to the corresponding inport.

'BlockName’ Assign data to ports according to the name of the root-inport block. If the
block name of a data element matches the name of a root-inport block,
map the data to the corresponding port.

‘SignalName' Assign data to ports according to the name of the signal on the port. If the
signal name of a data element matches the name of a signal at a port, map
the data to the corresponding port.

'BlockPath' Assign data to ports according to the block path of the root-inport block. If
the block path of a data element matches the block path of a root-inport
block, map the data to the corresponding port.

'Custom' Apply mappings according to the definitions in a custom file.

2 Functions

2-318

Data Types: char

customfunction — Custom function file name
character vector

Specify name of file that implements a custom method to map signals to root-level ports. This
function must be on the MATLAB path.
Data Types: char

signalname — signal name
scalar | cell array of character vectors

Specify the signal name(s) of the signal to associate with the root inport map.
Data Types: char | cell

signalvalue — signal value
scalar | cell arrays

Specify the values of the signals to map to the root inport map. For the list of supported data types
for the values, see “Choose a Base Workspace and MAT-File Format”.

Output Arguments
inputMap — input map
scalar | vector

Mapping object that defines the mapping of input signals to root-level ports. To create a comma-
separated list of variables to map from this object, use the getInputString function.

hasASignal — signal presence indicator
scalar | vector

A vector of logical values with the same length as inputMap. If the value is true the inputMap has a
signal associated with it. If the value is false the inputMap does not have a signal associated with it
and will use a ground value as an input
Data Types: logical

Tips
• Load the model before running this function.
• If your custom mapping mode is not similar to an existing Simulink mapping mode, consider using

the getRootInportMap function instead.

Version History
Introduced in R2013b

See Also
getRootInportMap | getInputString

 getSlRootInportMap

2-319

Topics
“Map Root Inport Signal Data”

2 Functions

2-320

hdllib
Display blocks that are compatible with HDL code generation

Syntax
hdllib
hdllib('off')
hdllib('html')
hdllib('librarymodel')

Description
hdllib displays the blocks that are supported for HDL code generation, and for which you have a
license, in the Library Browser. To build models that are compatible with the HDL Coder software,
use blocks from this Library Browser view.

If you close and reopen the Library Browser in the same MATLAB session, the Library Browser
continues to show only the blocks supported for HDL code generation. To show all blocks, regardless
of HDL code generation compatibility, at the command prompt, enter hdllib('off').

hdllib('off') displays all the blocks for which you have a license in the Library Browser,
regardless of HDL code generation compatibility.

hdllib('html') creates a library of blocks that are compatible with HDL code generation. It
generates two additional HTML reports: a categorized list of blocks (hdlblklist.html) and a table
of blocks and their HDL code generation parameters (hdlsupported.html).

To run hdllib('html'), you must have an HDL Coder license.

hdllib('librarymodel') displays blocks that are compatible with HDL code generation in the
Library Browser. To build models that are compatible with the HDL Coder software, use blocks from
this library.

The default library name is hdlsupported. After you generate the library, you can save it to a folder
of your choice.

To keep the library current, you must regenerate it each time that you install a new software release.

To run hdllib('librarymodel'), you must have an HDL Coder license.

Examples

Display Supported Blocks in the Library Browser

To display blocks that are compatible with HDL code generation in the Library Browser:

hdllib

Generating view of HDL Coder compatible blocks in Library Browser.
To restore the Library Browser to the default Simulink view, enter "hdllib off".

 hdllib

2-321

Display All Blocks in the Library Browser

To restore the Library Browser to the default view, in the Library Browser, click the button.
Alternatively, at the command line, enter:

hdllib('off')

Restoring Library Browser to default view; removing the HDL Coder compatibility filter.

2 Functions

2-322

Create a Supported Blocks Library and HTML Reports

To create a library and HTML reports showing the blocks that are compatible with HDL code
generation:

hdllib('html')

HDL supported block list hdlblklist.html
HDL implementation list hdlsupported.html

The hdlsupported library opens. To view the reports, click the hdlblklist.html and
hdlsupported.html links.

 hdllib

2-323

Create a Supported Blocks Library

To create a library that contains blocks that are compatible with HDL code generation:

hdllib('librarymodel')

The hdlsupported block library opens.

2 Functions

2-324

Version History
Introduced in R2006b

See Also
Topics
“Display Blocks for HDL Code Generation in Library Browser” (HDL Coder)
“View HDL-Supported Blocks and HDL-Specific Block Documentation” (HDL Coder)
“Create HDL-Compatible Simulink Model” (HDL Coder)

 hdllib

2-325

hilite_system
Highlight block, signal line, port, or annotation

Syntax
hilite_system(obj)
hilite_system(obj,style)

Description
hilite_system(obj) highlights a block, line, port, or annotation in an open model using the
default highlight style. Use hilite_system with a port to highlight the signal line attached to the
port. Each use of hilite_system adds to the highlighting. Highlighting is not saved with the model.

hilite_system(obj,style) uses the specified highlighting style.

Examples

Highlight Block Using Default Highlight Style

Open the model slexAircraftExample.

openExample('slexAircraftExample')

Highlight the Controller block. When you use the default highlight style, the block appears
highlighted with a red outline and yellow fill.

hilite_system('slexAircraftExample/Controller')

Highlight a Block Using a Highlight Style

Open the model vdp.

vdp

Highlight the Mu block using the style 'fade'.

hilite_system('vdp/Mu','fade')

Use Block Highlighting to Trace Generated Code

If you have a Simulink Coder license, you can trace generated code to the corresponding source block
in a model.

Open the model f14.

f14

2 Functions

2-326

In the model configuration parameters, in the Solver pane, set Type to Fixed-step.

Generate code for the model. In the Apps tab, under Code Generation, click Embedded Coder. The
C Code tab appears. Click Build.

In an editor or in the code generation report, open a generated source or header file. As you review
lines of code, note traceability tags that correspond to code of interest.

Highlight a block using a traceability tag.

hilite_system('<Root>/Stick Input')

Highlight a block in a subsystem.

hilite_system('<S3>/W-gust model')

Customize a Highlighting Style

You can customize a highlighting style by setting the 'HiliteAncestorsData' parameter on the
root-level model using set_param in this form:

 hilite_system

2-327

set_param(0,'HiliteAncestorsData',hiliteData)

Specify hiliteData as a structure array that has these fields:

• 'HiliteType' — Highlighting style to customize, such as 'user1', 'debug', or 'error'.
• 'ForegroundColor' — Color for block fill.
• 'BackgroundColor' — Color for block outline.

The supported values for 'ForegroundColor' and 'BackgroundColor' are:

• 'black'
• 'white'
• 'gray'
• 'red'
• 'orange'
• 'yellow'
• 'green'
• 'darkGreen'
• 'blue'
• 'lightBlue'
• 'cyan'
• 'magenta'

Define a highlight style for 'user1', and customize the style for 'debug'.

set_param(0,'HiliteAncestorsData',...
 struct('HiliteType','user1',...
 'ForegroundColor','darkGreen',...
 'BackgroundColor','lightBlue'));
set_param(0,'HiliteAncestorsData',...
 struct('HiliteType','debug',...
 'ForegroundColor','red',...
 'BackgroundColor','black'));

Use the defined style to highlight a block.

f14
hilite_system('f14/Controller/Alpha-sensor Low-pass Filter','user1')

Input Arguments
obj — Block, port, line, or annotation to highlight
block path name | Simulink.BlockPath object | numeric handle | Simulink identifier | traceability
tag

Block, port, line, or annotation to highlight, specified as:

• The full block path name
• A Simulink.BlockPath object

2 Functions

2-328

• A numeric handle for lines, ports, or annotations
• Simulink identifier
• A traceability tag from the comments of Simulink Coder generated code.

Using a traceability tag requires a Simulink Coder license.

The format for a traceability tag is <system>/block, where system is either:

• Root
• A unique system number assigned by Simulink during code generation

Example: 'vdp/Mu', 'sldemo_fuelsys/fuel_rate_control/airflow_calc', 'vdp:3',
'<Root>/Mu'

style — Highlighting style
'default' (default) | character vector

Highlighting style, specified as one of these values. You can customize the appearance of any of the
styles. See “Customize a Highlighting Style” on page 2-327.

• 'default' — Default color scheme: red outline, yellow fill.
• 'none' — Clears the highlight.

To clear all highlighting, in the Simulink Editor, in the Signal tab, click Remove Trace.
• 'debug' — Uses default color scheme.
• 'different' — Applies red outline, white fill.
• 'error' — Uses default color scheme.
• 'fade' — Applies gray outline, white fill.
• 'find' — Applies dark blue outline, blue fill.
• 'lineTrace' — Applies red outline, blue fill.
• 'unique' — Dark blue outline, white fill.
• 'user1', 'user2', 'user3', 'user4', 'user5' — Applies custom highlight: black outline,

white fill by default (i.e., no highlight).

In addition, you can use these color schemes. The first word is the outline and the second is the fill
color.

• 'orangeWhite'
• 'blackWhite'
• 'redWhite'
• 'blueWhite'
• 'greenWhite'

Version History
Introduced before R2006a

 hilite_system

2-329

See Also
rtwtrace | find_system

2 Functions

2-330

isSimulinkStarted
Check whether Simulink is started

Syntax
tf = isSimulinkStarted

Description
tf = isSimulinkStarted returns whether Simulink is started.

Examples

Check Whether Simulink Is Started

isSimulinkStarted

ans =

 logical

 0

The returned value 0 indicates that Simulink is not started.

Start Simulink.

simulink

Confirm that Simulink is started.

isSimulinkStarted

ans =

 logical

 1

The returned value 1 indicates that Simulink is started.

Output Arguments
tf — True or false result
1 | 0

True or false result, returned as a 1 or 0 of data type logical.

• 1 (true) — Simulink is started.
• 0 (false) — Simulink is not started.

 isSimulinkStarted

2-331

Version History
Introduced in R2020b

See Also
bdIsLoaded | simulink | start_simulink

Topics
“Create a Simple Model”

2 Functions

2-332

learning.simulink.launchOnramp
Open self-paced, interactive trainings

Syntax
learning.simulink.launchOnramp(id)

Description
learning.simulink.launchOnramp(id) opens the training that corresponds to the specified id
argument.

Examples

Open Simulink Onramp

To open Simulink Onramp, in the MATLAB Command Window, enter this command.

learning.simulink.launchOnramp('simulink')

Input Arguments
id — Identifier for training
"simulink" | "slbe" | "stateflow" | "controls" | "simscape" | "circuits" |
"powerelectronics"

Identifier for training, specified as one of these values:

• "simulink" — Simulink Onramp
• "slbe" — Simulink Fundamentals
• "stateflow" — Stateflow Onramp
• "controls" — Control Design Onramp with Simulink
• "simscape" — Simscape Onramp
• "circuits" — Circuit Simulation Onramp
• "powerelectronics" — Power Electronics Simulation Onramp

Version History
Introduced in R2019a

 learning.simulink.launchOnramp

2-333

legacy_code
Integrate existing C/C++ code by using the Legacy Code Tool

Syntax
legacy_code('help')
specs = legacy_code('initialize')
legacy_code('sfcn_cmex_generate', specs)
legacy_code('compile', specs, compilerOptions)
legacy_code('generate_for_sim', specs, modelname)
legacy_code('slblock_generate', specs, modelname)
legacy_code('sfcn_tlc_generate', specs)
legacy_code('sfcn_makecfg_generate', specs)
legacy_code('rtwmakecfg_generate', specs)
legacy_code('backward_compatibility')

Description
legacy_code('help') displays instructions for using Legacy Code Tool.

specs = legacy_code('initialize') initializes the Legacy Code Tool data structure, specs,
which registers characteristics of existing C or C++ code and properties of the S-function that the
Legacy Code Tool generates.

legacy_code('sfcn_cmex_generate', specs) generates an S-function source file as specified
by the Legacy Code Tool data structure, specs.

legacy_code('compile', specs, compilerOptions) compiles and links the S-function
generated by the Legacy Code Tool based on the data structure, specs, and compiler options that
you might specify. The compiler options must be supported by the mex function.

legacy_code('generate_for_sim', specs, modelname) generates, compiles, and links the S-
function in a single step. If the Options.useTlcWithAccel field of the Legacy Code Tool data
structure is set to logical 1 (true), the function also generates a TLC file for accelerated simulations.

legacy_code('slblock_generate', specs, modelname) generates a masked S-Function
block for the S-function generated by the Legacy Code Tool based on the data structure, specs. The
block appears in the Simulink model specified by modelname. If you omit modelname, the block
appears in an empty model editor window.

legacy_code('sfcn_tlc_generate', specs) generates a TLC file for the S-function generated
by the Legacy Code Tool based on the data structure, specs. This option is relevant if you want to:

• Force Accelerator mode in Simulink software to use the TLC inlining code of the generated S-
function. See the description of the ssSetOptions SimStruct function and
SS_OPTION_USE_TLC_WITH_ACCELERATOR S-function option for more information.

• Use Simulink Coder software to generate code from your Simulink model. For more information,
see “Import Calls to External Code into Generated Code with Legacy Code Tool” (Simulink Coder).

legacy_code('sfcn_makecfg_generate', specs) generates an sFunction_makecfg.m file
for the S-function generated by the Legacy Code Tool based on the data structure, specs. If you use

2 Functions

2-334

Simulink Coder to generate code from your Simulink model, you can use this option to specify
additional items for the S-function build process such as source folders, preprocessor macros, and
link objects. For example, you can specify source files that the S-function depends on that are in
folders other than the folder containing the generated S-function executable. For more information,
see “Use makecfg to Customize Generated Makefiles for S-Functions” (Simulink Coder) and “Import
Calls to External Code into Generated Code with Legacy Code Tool” (Simulink Coder).

legacy_code('rtwmakecfg_generate', specs) generates an rtwmakecfg.m file for the S-
function generated by the Legacy Code Tool based on the data structure, specs. If you use Simulink
Coder to generate code from your Simulink model, you can use this option to specify additional items
for the S-function build process such as source folders, preprocessor macros, and link objects. For
example, you can specify source files that the S-function depends on that are in folders other than the
folder containing the generated S-function executable. For more information, see “Use rtwmakecfg.m
API to Customize Generated Makefiles” (Simulink Coder) and “Import Calls to External Code into
Generated Code with Legacy Code Tool” (Simulink Coder).

legacy_code('backward_compatibility') automatically updates syntax for using Legacy Code
Tool to the supported syntax described in this reference page and in “Integrate C Functions Using
Legacy Code Tool”.

Examples

Inputs Passed by Value or Address to Legacy Functions

This example shows you how to use the Legacy Code Tool to integrate legacy C functions that pass
their input arguments by value versus address.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using 'initialize'
as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototypes of the legacy functions being
called in this example are:

• FLT filterV1(const FLT signal, const FLT prevSignal, const FLT gain)
• FLT filterV2(const FLT* signal, const FLT prevSignal, const FLT gain)

where FLT is a typedef to float. The legacy source code is found in the files your_types.h,
myfilter.h, filterV1.c, and filterV2.c.

Note the difference in the OutputFcnSpec defined in the two structures; the first case specifies that
the first input argument is passed by value, while the second case specifies pass by pointer.

defs = [];

 legacy_code

2-335

% sldemo_sfun_filterV1
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_filterV1';
def.OutputFcnSpec = 'single y1 = filterV1(single u1, single u2, single p1)';
def.HeaderFiles = {'myfilter.h'};
def.SourceFiles = {'filterV1.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
defs = [defs; def];

% sldemo_sfun_filterV2
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_filterV2';
def.OutputFcnSpec = 'single y1 = filterV2(single u1[1], single u2, single p1)';
def.HeaderFiles = {'myfilter.h'};
def.SourceFiles = {'filterV2.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
defs = [defs; def];

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by
the input argument 'defs'. This S-function is used to call the legacy functions in simulation. The
source code for the S-function is found in the files sldemo_sfun_filterV1.c and
sldemo_sfun_filterV2.c.

legacy_code('generate_for_sim', defs);

Start Compiling sldemo_sfun_filterV1
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp5a18a0c4_5935_489c_bbb0_545b8391115f', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368\sldemo_lct_src\filterV1.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_filterV1.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp5a18a0c4_5935_489c_bbb0_545b8391115f\filterV1.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_filterV1
Exit

Start Compiling sldemo_sfun_filterV2
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpf288f272_ac94_4343_983b_3792c4df7915', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368\sldemo_lct_src\filterV2.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_filterV2.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpf288f272_ac94_4343_983b_3792c4df7915\filterV2.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_filterV2
Exit

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

2 Functions

2-336

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating Masked S-Function Blocks for Calling the Generated S-Functions

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate masked S-function blocks which are
configured to call those S-functions. The blocks are placed in a new model and can be copied to an
existing model.

% legacy_code('slblock_generate', defs);

Integrate the Legacy Code

The model sldemo_lct_filter shows integration with the legacy code. The subsystem TestFilter
serves as a harness for the calls to the legacy C functions via the generate S-functions, with unit
delays serving to store the previous output values.

open_system('sldemo_lct_filter')
open_system('sldemo_lct_filter/TestFilter')
sim('sldemo_lct_filter');

Input Arguments
specs — Specification for existing C or C++ code and S-function
structure

Specification for existing C or C++ code and the S-function being generated, specified as a struct
with these fields:

 legacy_code

2-337

Name the S-function

SFunctionName (required) — Name for the S-function to be generated by the Legacy Code Tool,
specified as a character vector or string.

Define Legacy Code Tool Function Specifications

• InitializeConditionsFcnSpec — Function that the S-function calls to initialize and reset
states, specified as a nonempty character vector or string. You must declare this function by using
tokens that Simulink software can interpret as explained in “Declaring Legacy Code Tool Function
Specifications”.

• OutputFcnSpec — Function that the S-function calls at each time step, specified as a nonempty
character vector or string. You must declare this function by using tokens that Simulink software
can interpret as explained in “Declaring Legacy Code Tool Function Specifications”.

• StartFcnSpec — Function that the S-function calls when it begins execution, specified as a
character vector or string. This function can access S-function parameter arguments and work
data. You must declare this function by using tokens that Simulink software can interpret as
explained in “Declaring Legacy Code Tool Function Specifications”.

• TerminateFcnSpec — Function that the S-function calls when it terminates execution, specified
as a character vector or string. This function can access S-function parameter arguments and
work data. You must declare this function by using tokens that Simulink software can interpret as
explained in “Declaring Legacy Code Tool Function Specifications”.

Define Compilation Resources

• HeaderFiles — File names of header files required for compilation, specified as a cell array of
character vectors or string array.

• SourceFiles — Source files required for compilation, specified as a cell array of character
vectors or string array. You can specify the source files using absolute or relative path names.

• HostLibFiles — Library files required for host compilation, specified as a cell array of character
vectors or string array. You can specify the library files using absolute or relative path names.

• TargetLibFiles — Library files required for target (that is, standalone) compilation, specified
as a cell array of character vectors or string array. You can specify the library files using absolute
or relative path names.

• IncPaths — Directories containing header files, specified as a cell array of character vectors or
string array. You can specify the directories using absolute or relative path names.

• SrcPaths — Directories containing source files, specified as a cell array of character vectors or
string array. You can specify the directories using absolute or relative path names.

• LibPaths — Directories containing host and target library files, specified as a cell array of
character vectors or string array. You can specify the directories using absolute or relative path
names.

Specify a Sample Time

SampleTime — One of the following:

• 'inherited' (default) — Sample time is inherited from the source block.
• 'parameterized' — Sample time is represented as a tunable parameter. Generated code can

access the parameter by calling MEX API functions, such as mxGetPr or mxGetData.
• Fixed — Sample time that you explicitly specify. For information on how to specify sample time,

see “Specify Sample Time”.

2 Functions

2-338

If you specify this field, you must specify it last.

Define S-Function Options

Options — S-function options, specified as a structure. The structure's fields include:

• canBeCalledConditionally — Setting of the S-function
SS_OPTION_CAN_BE_CALLED_CONDITIONALLY option, specified as a logical. By default, the
value is true (1).

• convertNDArrayToRowMajor— Automatic conversion of a matrix between a column-major
format and a row-major format, specified as a logical. The column-major format is used by
MATLAB, Simulink, and the generated code. The row-major format is used by C. By default, the
value is false (0). If you currently specify the previous version of the option,
convert2DMatrixToRowMajor, the function automatically specifies the new
convertNDArrayToRowMajor option.

Note This option does not support a 2–D matrix of complex data.
• isMacro — Whether the legacy code is a C macro, specified as a logical. By default, the value is

false (0).
• isVolatile — Setting of the S-function SS_OPTION_NONVOLATILE option, specified as a logical.

By default, the value is true (1).
• language — Target language of the S-function that Legacy Code Tool will produce, specified as

either 'C' or 'C++'. By default, the value is 'C'.

Note The Legacy Code Tool can interface with C++ functions, but not C++ objects. For a work
around, see “Legacy Code Tool Limitations” in the Simulink documentation.

• outputsConditionallyWritten— Whether the legacy code conditionally writes the output
ports, specified as a logical. If true, the generated S-function specifies that the memory
associated with each output port cannot be overwritten and is global
(SS_NOT_REUSABLE_AND_GLOBAL). If false, the memory associated with each output port is
reusable and is local (SS_REUSABLE_AND_LOCAL). By default, the value is false (0). For more
information, see ssSetOutputPortOptimOpts.

• singleCPPMexFile — Whether generated code:

• Requires you to generate and manage an inlined S-function as only one file (.cpp) instead of
two (.c and .tlc).

• Maintains model code style (level of parentheses usage and preservation of operand order in
expressions and condition expressions in if statements) as specified by model configuration
parameters.

Specified as a logical. By default, the value is false.

Limitations You cannot set the singleCPPMexFile field to true if

• Options.language='C++'
• You use one of the following Simulink objects with the IsAlias property set to true:

• Simulink.Bus

 legacy_code

2-339

• Simulink.AliasType
• Simulink.NumericType

• The Legacy Code Tool function specification includes a void* or void** to represent scalar
work data for a state argument

• HeaderFiles field of the Legacy Code Tool structure specifies multiple header files

• supportsMultipleExecInstances— Option to include a call to the
ssSupportsMultipleExecInstances function, specified as a logical. By default, the value is
false (0).

• supportCodeReuseAcrossModels— Whether the generated S-function can be reused across
the model reference hierarchy, specified as a logical. If true, the generated S-function includes
the ssSetSupportedForCodeReuseAcrossModels function call. The code generator produces
the code for the S-functions in the slprj\ert_sharedutils folder.

• supportCoverage— Whether the generated S-function must be compatible with Model
Coverage, specified as a logical. By default, the value is false (0).

• supportCoverageAndDesignVerifier— Whether the generated S-function must be
compatible with Model Coverage and Simulink Design Verifier, specified as a logical. By default,
the value is false (0).

• useTlcWithAccel — Setting of the S-function SS_OPTION_USE_TLC_WITH_ACCELERATOR
option, specified as a logical. By default, the value is true (1).

Data Types: struct

modelname — Model name
string | character vector

The name of a Simulink model, specified as a string or character vector. When you specify
legacy_code with the action 'slblock_generate', Legacy Code Tool inserts the generated
masked S-function block into the specified model. If you omit this argument, the block appears in an
empty model editor window.
Data Types: char | string

compilerOptions — Compiler options
string | character vector

Compiler options to include when you specify legacy_code with the action 'compile', specified as
a string or character vector. The compiler options must be supported by the mex function.
Data Types: char | string

Version History
Introduced in R2006b

See Also
Topics
“Integrate C Functions Using Legacy Code Tool”
“Import Calls to External Code into Generated Code with Legacy Code Tool” (Simulink Coder)
“Inputs Passed by Value or Address to Legacy Functions” on page 13-534

2 Functions

2-340

“Legacy Code Tool Examples” (Simulink Coder)

 legacy_code

2-341

libinfo
Get information about library blocks referenced by model

Syntax
libdata = libinfo('system')
libdata = libinfo('system', constraint1, value1, ...)

Description
libdata = libinfo('system') returns information about library blocks referenced by system
and all the systems underneath it.

libdata = libinfo('system', constraint1, value1, ...) restricts the search as
indicated by the search constraint(s) c1, v1, ...

Input Arguments
system

The system to search recursively for library blocks.

constraint1, value1, ...

One or more pairs, each consisting of a search constraint followed by a constraint value. You can
specify any of the search constraints that you can use with find_system.

Output Arguments
libdata

An array of structures that describes each library block referenced by system. Each structure has
the following fields:

Block Path of the link to the library block
Library Name of the library containing the referenced

block
ReferenceBlock Path of the library block
LinkStatus Value of the LinkStatus parameter for the link

to the library block

Version History
Introduced before R2006a

See Also
find_system

2 Functions

2-342

Topics
“Create Custom Library”

 libinfo

2-343

LibraryBrowser.LibraryBrowser2
Get handle of Library Browser object

Syntax
libraryhandle = LibraryBrowser.LibraryBrowser2

Description
libraryhandle = LibraryBrowser.LibraryBrowser2 creates the Library Browser object
LibraryBrowser.LBStandalone and returns the object handle. When you have the object handle,
you can use the object properties and functions to display, hide, size, position, and refresh the Library
Browser in standalone mode. For more information, see Library Browser in Standalone Mode,
LibraryBrowser.LBStandalone, show, hide, getPosition, setPosition, and refresh.

Note You can also use slLibraryBrowser to create and get the handle of the Library Browser
object.

When you use slLibraryBrowser to get the object handle:

• If the Library Browser is open in standalone mode, the Library Browser window moves in front of
all other Simulink windows.

• If the Library Browser is not open in standalone mode, the Library Browser opens in standalone
mode.

Examples

Keep Library Browser in Front of Other Windows

Create and get the handle of the LibraryBrowser.LBStandalone object that lets you
programmatically access the Library Browser.

lb = LibraryBrowser.LibraryBrowser2;

Set the IsOnTop property of the Library Browser to 1 (true), using dot notation to access the
property.

lb.IsOnTop = 1;

Limitations
The LibraryBrowser.LibraryBrowser2 function does not act on a docked Library Browser. To
use the LibraryBrowser.LibraryBrowser2 function, open the Library Browser in standalone

mode by clicking the Launch standalone library browser button .

2 Functions

2-344

Version History
Introduced in R2014b

R2016b: LibraryBrowser.LBStandalone object replaces
LibraryBrowser.LibraryBrowser2 object
Behavior changed in R2016b

In previous releases, these two commands returned a LibraryBrowser.LibraryBrowser2 object:

lb = slLibraryBrowser
lb = LibraryBrowser.LibraryBrowser2

Starting in R2016b, each command returns a LibraryBrowser.LBStandalone object. The
functions to access Library Browser operations such as show and refresh support
LibraryBrowser.LBStandalone objects.

See Also
Functions
slLibraryBrowser | simulink | start_simulink

Tools
Library Browser

Objects
LibraryBrowser.LBStandalone

Topics
“Add Blocks to Models Using Library Browser”

 LibraryBrowser.LibraryBrowser2

2-345

linmod
Extract continuous-time linear state-space model around operating point

Syntax
argout = linmod('sys')

argout = linmod('sys',x,u)

argout = linmod('sys',x,u,para)

argout = linmod('sys',x,u,'v5')

argout = linmod('sys',x,u,para,'v5')

argout = linmod('sys',x,u,para,xpert,upert,'v5')

Arguments
sys Name of the Simulink system from which the linear model is extracted.
x and u State (x) and the input (u) vectors. If specified, they set the operating point

at which the linear model is extracted. When a model has model references
using the Model block, you must use the Simulink structure format to
specify x. To extract the x structure from the model, use the following
command:
x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this structure by
editing x.signals.values.

If the state contains different data types (for example, 'double' and
'uint8'), then you cannot use a vector to specify this state. You must use a
structure instead. In addition, you can only specify the state as a vector if
the state data type is 'double'.

Ts Sample time of the discrete-time linearized model
'v5' An optional argument that invokes the perturbation algorithm created prior

to MATLAB 5.3. Invoking this optional argument is equivalent to calling
linmodv5.

2 Functions

2-346

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value used to perform the
perturbation of the states and the inputs of the model. This is valid for
linearizations using the 'v5' flag. The default value is 1e-05.

• para(2) — Linearization time. For blocks that are functions of time, you
can set this parameter with a nonnegative value that gives the time (t)
at which Simulink evaluates the blocks when linearizing a model. The
default value is 0.

• para(3) — Set para(3)=1 to remove extra states associated with
blocks that have no path from input to output. The default value is 0.

xpert and upert The perturbation values used to perform the perturbation of all the states
and inputs of the model. The default values are

xpert = para(1) + 1e-3*para(1)*abs(x)
upert = para(1) + 1e-3*para(1)*abs(u)

When a model has model references using the Model block, you must use
the Simulink structure format to specify xpert. To extract the xpert
structure, use the following command:
xpert = Simulink.BlockDiagram.getInitialState('sys');

You can then change the perturbation values within this structure by editing
xpert.signals.values.

The perturbation input arguments are only available when invoking the
perturbation algorithm created prior to MATLAB 5.3, either by calling
linmodv5 or specifying the 'v5' input argument to linmod.

argout linmod, dlinmod, and linmod2 return state-space representations if you
specify the output (left-hand) side of the equation as follows:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized model of
sys around an operating point with the specified state variables x and
the input u. If you omit x and u, the default values are zero.

linmod and dlinmod both also return a transfer function and MATLAB data
structure representations of the linearized system, depending on how you
specify the output (left-hand) side of the equation. Using linmod as an
example:

• [num, den] = linmod('sys', x, u) returns the linearized model
in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure that
contains the linearized model, including state names, input and output
names, and information about the operating point.

 linmod

2-347

Description

Note linmod provides only basic linearization functionality. For full linearization functionality, use
Simulink Control Design software. For more information, see “Choose Linearization Tools” (Simulink
Control Design).

linmod compute a linear state-space model by linearizing each block in a model individually.

linmod obtains linear models from systems of ordinary differential equations described as Simulink
models. Inputs and outputs are denoted in Simulink block diagrams using Inport and Outport blocks.

The default algorithm uses preprogrammed analytic block Jacobians for most blocks which should
result in more accurate linearization than numerical perturbation of block inputs and states. A list of
blocks that have preprogrammed analytic Jacobians is available in the Simulink Control Design
documentation along with a discussion of the block-by-block analytic algorithm for linearization.

The default algorithm also allows for special treatment of problematic blocks such as the Transport
Delay and the Quantizer. See the mask dialog of these blocks for more information and options.

Notes
By default, the system time is set to zero. For systems that are dependent on time, you can set the
variable para to a two-element vector, where the second element is used to set the value of t at
which to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model is maintained. For Simulink
systems, a character vector variable that contains the block name associated with each state can be
obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated with the ith state.
Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using the routine
ss2tf or to zero-pole form using ss2zp. You can also convert the linearized models to LTI objects
using ss. This function produces an LTI object in state-space form that can be further converted to
transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod handle Transport Delay blocks by replacing the linearization of the
blocks with a Pade approximation. For the 'v5' algorithm, linearization of a model that contains
Derivative or Transport Delay blocks can be troublesome. For more information, see “Linearizing
Models”.

Linearization is not supported for models that contain one or more referenced models configured to
use a local solver. For more information, see “Use Local Solvers in Referenced Models”.

Examples
Linearization with Referenced Models

2 Functions

2-348

You can use linmod to extract a linear model from a Simulink® environment that contains Model
blocks. For example, open the referenced model mdlref_dynamics and the top model mdlref_f14.

open_system('mdlref_dynamics');
open_system('mdlref_f14');

In the mdlref_f14 model, the Aircraft Dynamics Model block references the mdlref_dynamics
model.

 linmod

2-349

To linearize the mdlref_f14 model, use the linmod command.

[A,B,C,D] = linmod('mdlref_f14');

Starting serial model reference simulation build.
Successfully updated the model reference simulation target for: mdlref_dynamics

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
mdlref_dynamics Code generated and compiled. mdlref_dynamics_msf.mexw64 does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 39s

The resulting state-space model corresponds to the complete mdlref_f14 model, including the
referenced model.

You can call linmod with a state and input operating point for models that contain Model blocks.
When using operating points, the state vector x refers to the total state vector for the top model and
any referenced models. You must enter the state vector using the structure format. To get the
complete state vector, use getInitialState.

x = Simulink.BlockDiagram.getInitialState(topModelName)

Tip

In Normal mode, the linmod command applies the block-by-block linearization algorithm on blocks
inside the referenced model. If the Model block is in Accelerator mode, the linmod command uses
numerical perturbation to linearize the referenced model. Due to limitations on linearizing multirate
Model blocks in Accelerator mode, you should use Normal mode simulation for all models referenced
by Model blocks when linearizing with referenced models.

Linearization Using the 'v5' Algorithm

Calling the linmod command with the 'v5' argument invokes the perturbation algorithm created
prior to MATLAB software version 5.3. This algorithm also allows you to specify the perturbation
values used to perform the perturbation of all the states and inputs of the model.

[A,B,C,D]=linmod('sys',x,u,para,xpert,upert,'v5')

Using linmod with the 'v5' option to linearize a model that contains Derivative or Transport Delay
blocks can be troublesome. Before linearizing, replace these blocks with specially designed blocks
that avoid the problems. These blocks are in the Simulink Extras library in the Linearization
sublibrary.

You access the Extras library by opening the Blocksets & Toolboxes icon:

• For the Derivative block, use the Switched derivative for linearization.

When using a Derivative block, you can also try to incorporate the derivative term in other blocks. For
example, if you have a Derivative block in series with a Transfer Fcn block, it is better implemented
(although this is not always possible) with a single Transfer Fcn block of the form

2 Functions

2-350

s
s + a .

In this example, the blocks on the left of this figure can be replaced by the block on the right.

Version History
Introduced in R2007a

See Also
Functions
dlinmod | linmod2 | linmodv5 | linearize | slLinearizer

Apps
Model Linearizer

Topics
“Choose Linearization Tools” (Simulink Control Design)
“Linearize Nonlinear Models” (Simulink Control Design)
“Exact Linearization Algorithm” (Simulink Control Design)

 linmod

2-351

linmod2
Extract continuous-time linear state-space model around operating point

Syntax
argout = linmod2('sys',x,u)

argout = linmod2('sys',x,u,para)

Arguments
sys Name of the Simulink system from which the linear model is extracted.
x, u State (x) and the input (u) vectors. If specified, they set the operating point

at which the linear model is extracted. When a model has model references
using the Model block, you must use the Simulink structure format to
specify x. To extract the x structure from the model, use the following
command:
x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this structure by
editing x.signals.values.

If the state contains different data types (for example, 'double' and
'uint8'), then you cannot use a vector to specify this state. You must use a
structure instead. In addition, you can only specify the state as a vector if
the state data type is 'double'.

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value used to perform the
perturbation of the states and the inputs of the model. This is valid for
linearizations using the 'v5' flag. The default value is 1e-05.

• para(2) — Linearization time. For blocks that are functions of time, you
can set this parameter with a nonnegative value that gives the time (t)
at which Simulink evaluates the blocks when linearizing a model. The
default value is 0.

• para(3) — Set para(3)=1 to remove extra states associated with
blocks that have no path from input to output. The default value is 0.

2 Functions

2-352

argout linmod, dlinmod, and linmod2 return state-space representations if you
specify the output (left-hand) side of the equation as follows:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized model of
sys around an operating point with the specified state variables x and
the input u. If you omit x and u, the default values are zero.

linmod and dlinmod both also return a transfer function and MATLAB data
structure representations of the linearized system, depending on how you
specify the output (left-hand) side of the equation. Using linmod as an
example:

• [num, den] = linmod('sys', x, u) returns the linearized model
in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure that
contains the linearized model, including state names, input and output
names, and information about the operating point.

Description

Note linmod2 provides only basic linearization functionality. For full linearization functionality, use
Simulink Control Design software. For more information, see “Choose Linearization Tools” (Simulink
Control Design).

linmod2 computes a linear state-space model by perturbing the model inputs and model states, and
uses an advanced algorithm to reduce truncation error.

linmod2 obtains linear models from systems of ordinary differential equations described as Simulink
models. Inputs and outputs are denoted in Simulink block diagrams using Inport and Outport blocks.

Notes
By default, the system time is set to zero. For systems that are dependent on time, you can set the
variable para to a two-element vector, where the second element is used to set the value of t at
which to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model is maintained. For Simulink
systems, a character vector variable that contains the block name associated with each state can be
obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated with the ith state.
Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using the routine
ss2tf or to zero-pole form using ss2zp. You can also convert the linearized models to LTI objects
using ss. This function produces an LTI object in state-space form that can be further converted to
transfer function or zero-pole-gain form using tf or zpk.

 linmod2

2-353

The default algorithms in linmod and dlinmod handle Transport Delay blocks by replacing the
linearization of the blocks with a Pade approximation. For more information, see “Linearizing
Models”.

Linearization is not supported for models that contain one or more referenced models configured to
use a local solver. For more information, see “Use Local Solvers in Referenced Models”.

Version History
Introduced in R2007a

See Also
linmod | dlinmod | linmodv5

2 Functions

2-354

linmodv5
Extract continuous-time linear state-space model around operating point

Syntax
argout = linmodv5('sys')

argout = linmodv5('sys',x,u)

argout = linmodv5('sys',x,u,para)

argout = linmodv5('sys',x,u,para,xpert,upert)

Arguments
sys Name of the Simulink system from which the linear model is extracted.
x, u State (x) and the input (u) vectors. If specified, they set the operating point

at which the linear model is extracted. When a model has model references
using the Model block, you must use the Simulink structure format to
specify x. To extract the x structure from the model, use the following
command:
x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this structure by
editing x.signals.values.

If the state contains different data types (for example, 'double' and
'uint8'), then you cannot use a vector to specify this state. You must use a
structure instead. In addition, you can only specify the state as a vector if
the state data type is 'double'.

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value used to perform the
perturbation of the states and the inputs of the model. This is valid for
linearizations using the 'v5' flag. The default value is 1e-05.

• para(2) — Linearization time. For blocks that are functions of time, you
can set this parameter with a nonnegative value that gives the time (t)
at which Simulink evaluates the blocks when linearizing a model. The
default value is 0.

• para(3) — Set para(3)=1 to remove extra states associated with
blocks that have no path from input to output. The default value is 0.

 linmodv5

2-355

xpert, upert The perturbation values used to perform the perturbation of all the states
and inputs of the model. The default values are

xpert = para(1) + 1e-3*para(1)*abs(x)
upert = para(1) + 1e-3*para(1)*abs(u)

When a model has model references using the Model block, you must use
the Simulink structure format to specify xpert. To extract the xpert
structure, use the following command:
xpert = Simulink.BlockDiagram.getInitialState('sys');

You can then change the perturbation values within this structure by editing
xpert.signals.values.

The perturbation input arguments are only available when invoking the
perturbation algorithm created prior to MATLAB 5.3, either by calling
linmodv5 or specifying the 'v5' input argument to linmod.

argout linmod, dlinmod, and linmod2 return state-space representations if you
specify the output (left-hand) side of the equation as follows:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized model of
sys around an operating point with the specified state variables x and
the input u. If you omit x and u, the default values are zero.

linmod and dlinmod both also return a transfer function and MATLAB data
structure representations of the linearized system, depending on how you
specify the output (left-hand) side of the equation. Using linmod as an
example:

• [num, den] = linmod('sys', x, u) returns the linearized model
in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure that
contains the linearized model, including state names, input and output
names, and information about the operating point.

Description

Note linmodv5 provides only basic linearization functionality. For full linearization functionality, use
Simulink Control Design software. For more information, see “Choose Linearization Tools” (Simulink
Control Design).

linmodv5 computes a linear state space model using the full model perturbation algorithm created
prior to MATLAB 5.3.

linmodv5 obtains linear models from systems of ordinary differential equations described as
Simulink models. Inputs and outputs are denoted in Simulink block diagrams using Inport and
Outport blocks.

2 Functions

2-356

Notes
By default, the system time is set to zero. For systems that are dependent on time, you can set the
variable para to a two-element vector, where the second element is used to set the value of t at
which to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model is maintained. For Simulink
systems, a character vector variable that contains the block name associated with each state can be
obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated with the ith state.
Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using the routine
ss2tf or to zero-pole form using ss2zp. You can also convert the linearized models to LTI objects
using ss. This function produces an LTI object in state-space form that can be further converted to
transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod and dlinmod handle Transport Delay blocks by replacing the
linearization of the blocks with a Pade approximation. For the 'v5' algorithm, linearization of a
model that contains Derivative or Transport Delay blocks can be troublesome. For more information,
see “Linearizing Models”.

Linearization is not supported for models that contain one or more referenced models configured to
use a local solver. For more information, see “Use Local Solvers in Referenced Models”.

Version History
Introduced in R2011b

See Also
linmod | dlinmod | linmod2

 linmodv5

2-357

load_system
Load Simulink model into memory

Syntax
handle = load_system(sys)

Description
handle = load_system(sys) loads the model sys into memory without opening the model in the
Simulink Editor. After you load a model into memory, you can work with it using Simulink API
commands. Save changes to the model using save_system.

Examples

Load Model into Memory

Load the model vdp into memory and return the model handle.

h = load_system("vdp")

h =

 172.0004

Input Arguments
sys — System to search
character vector | string scalar

System to search, specified as the full system path name, a cell array of system path names, a handle,
or a vector of handles.
Example: "vdp"
Example: 'MyModel/Subsystem1'
Example: {'vdp','fuelsys'}

Output Arguments
handle — Handle of loaded model
handle

Handle of loaded model.

Version History
Introduced before R2006a

2 Functions

2-358

See Also
close_system | open_system | save_system

 load_system

2-359

loadIntoMemory
Load logged data into memory

Syntax
logs = loadIntoMemory(logs)

Description
logs = loadIntoMemory(logs) loads the data in logs into memory. Data is logged to a
repository and brought into memory on an as-needed basis. When you want to work with all elements
of a large set of logged data, use loadIntoMemory to bring all of the elements into memory at once.
Loading all the data at once, rather than element by element, is much faster.

Examples

Load Logged Data into Memory

This example shows how to load a set of logged data into memory all at once, rather than element by
element.

% Simulate model to generate logged data
sim('sldemo_fuelsys')

The simulation logs all of the instrumented signals in the model to the
Simulink.SimulationData.Dataset object sldemo_fuelsys_output. At the end of simulation,
the signal data remains in the repository until used in the MATLAB workspace. When you work with
small sets of data or only postprocess a subset, leaving signals in the repository improves
performance. But when you have a large set of data and need to postprocess all of the signals, you
should bring them all into memory at once.

% Load all logged signals into memory
loadIntoMemory(sldemo_fuelsys_output);

All of the data in sldemo_fuelsys_output is now available for efficient postprocessing.

Input Arguments
logs — Data to load into memory
'Simulink.SimulationData.Dataset' | 'Simulink.SimulationOutput'

Data to load into memory. The loadIntoMemory function can load
Simulink.SimulationData.Dataset and Simulink.SimulationOutput data.
Example: logsout

2 Functions

2-360

Output Arguments
logs — Data
'Simulink.SimulationData.Dataset' | 'Simulink.SimulationOutput'

Data loaded into memory.

Version History
Introduced in R2017b

See Also
Simulink.SimulationData.Dataset | Simulink.SimulationOutput

 loadIntoMemory

2-361

lookupTableEditor
Start Lookup Table Editor

Syntax
lookupTableEditor
lookupTableEditor(path)

Description
lookupTableEditor starts a stand-alone version of the Lookup Table Editor.

lookupTableEditor(path) starts the Lookup Table Editor for a model, subsystem, or lookup table
block.

Examples

Start Lookup Table Editor for Model

Start the Lookup Table Editor for the sldemo_fuelsys model.

lookupTableEditor('sldemo_fuelsys')

Input Arguments
path — Path
character vector

Path to system containing lookup table, specified as a character vector or string.
Data Types: char | string

Version History
Introduced in R2022a

See Also
1-D Lookup Table | 2-D Lookup Table | Direct Lookup Table (n-D) | n-D Lookup Table | Interpolation
Using Prelookup | Prelookup

2 Functions

2-362

modeladvisor
Open Model Advisor

Syntax
modeladvisor(model)
modeladvisor(model,'configuration',configfile)

Description
modeladvisor(model) opens the Model Advisor for the model or subsystem specified by model. If
the specified model or subsystem is not open, this command opens it.

If you have a Simulink Check™ license, you can specify a name-value pair with modeladvisor(
model,'configuration',configfile) that opens the Model Advisor with a custom
configuration. The configuration defines the organization of folders and checks in the Model Advisor.
For more information, see “Create and Deploy a Model Advisor Custom Configuration” (Simulink
Check).

Examples

Open Model Advisor for model

Open the Model Advisor for vdp example model:

modeladvisor('vdp')

Open Model Advisor for subsystem

Open the Model Advisor for the Aircraft Dynamics Model subsystem of the f14 example model:

modeladvisor('f14/Aircraft Dynamics Model')

Open Model Advisor for currently selected model

Open the Model Advisor on the currently selected model:

modeladvisor(bdroot)

Open Model Advisor for currently selected subsystem

Open the Model Advisor on the currently selected subsystem:

 modeladvisor

2-363

modeladvisor(gcs)

Input Arguments
model — Model or subsystem name
character vector

Model or subsystem name or handle, specified as a character vector.
Data Types: char

configfile — Custom configuration
character vector

File that contains a Model Advisor custom configuration of folders and checks (available with a
Simulink Check license).
Data Types: char

Version History
Introduced before R2006a

See Also
“Run Model Advisor Checks”

2 Functions

2-364

modelfinder
Search and open example models

Syntax
modelfinder(str)
modelfinder(Name,Value)

Description
modelfinder(str) finds models that match the specified search string. If there is more than one
match, then all matching items are displayed as a list and you are prompted to select one.. Other
options in the prompt include q to quit and m to see more results. If there are more than three words
in the search term, then modelfinder treats the search as a natural language query and finds
models that satisfy the natural language query.

modelfinder(Name,Value) specifies search options using one or more name-value arguments. For
example, you can filter models based on the combination of specific search strings and blocks.

Examples
Models Matching Search String

Use this command to display models that has the word autosar.

modelfinder('autosar');

1. AUTOSARCounterExample
 2. AuthorAUTOSARCompositionsInArchitectureModelExample
 3. > autosar_tpc_actuator
 4. > autosar_tpc_composition
 5. > autosar_tpc_controller
 6. > autosar_tpc_pedal_sensor
 7. > autosar_tpc_system
 8. > autosar_tpc_throttle_sensor1
 9. > autosar_tpc_throttle_sensor2
 10. > autosar_tpc_throttle_sensor_monitor
 11. ConfigureAndSimulateAUTOSARFiMServiceCallsExample
 12. > autosar_bsw_fim
 13. > autosar_bsw_fimmonitor
 14. > autosar_bsw_fimoperationcycle
 15. > autosar_bsw_fimsensor1
 16. > autosar_bsw_fimsensor2
 17. CreateAndConfigureAUTOSARAdaptiveSoftwareComponentExample
 18. DesignAUTOSARComponentsExample
 19. > autosar_composition
 20. > autosar_swc_actuator
 21. > autosar_swc_controller
 22. > autosar_swc_monitor
 23. > autosar_swc_pedal_sensor
 24. > autosar_swc_throttle_sensor
 25. > autosar_system

 modelfinder

2-365

 Showing 1-25 of 68 matches. Enter (m) for more results.
 Enter the example number you want to open (choose number) OR
 see more results (m) OR quit (q)

Using Natural Language Query

Use this command to filter models that satisfies the query solar panel models in simulink.

modelfinder('solar panel models in simulink')

1. GenerateHDLFromMultipleSimscapeNetworksExample
 2. > Solar_Power_Inverter_Multiple_Network_HDL
 3. > Solar_Power_Inverter_Multiple_Network_StateSpace
 4. HybridSolarPanelExample
 > sscv_hybrid_solar_panel
 5. PartitionLargeNetworkIntoMultipleSmallerNetworksExample
 > Solar_Power_Inverter_Single_Network_HDL
 6. ee_mars_helicopter_system
 7. ee_solar_boostconverter_maxpowerpoint
 8. ee_solar_generator
 9. ee_solar_gridconnected_singlephase
 10. ee_solar_gridconnected_threephase
 11. ee_solar_inverter
 12. ee_solar_panel
 13. ee_solar_standalone_acsystem_withbatterybackup
 14. ee_solar_standalone_dcsystem_withbatterybackup
 15. power_microgrid
 16. sm_solar_tracker
Enter the example number you want to open (choose number) OR quit (q) :

Models with Additional Filters

You can filter models that contains specific search string and blocks . For example, use this command
to filter models that contains the word motor and the block gain.

modelfinder('fluid','blocks',{'condenser'},'verbose','off')

 1. ssc_rankine_cycle
 2. ssc_refrigeration
 3. sscfluids_condenser_evaporator
 4. sscfluids_ev_thermal_management
 5. sscfluids_liquid_air_energy_storage
 6. sscfluids_refrigeration
 7. sscfluids_refrigeration_step2
 8. sscfluids_refrigeration_step3
 9. sscfluids_refrigeration_step4
 10. sscfluids_refrigeration_step5
 11. sscfluids_refrigeration_step6
 12. sscfluids_refrigerator
 13. sscfluids_residential_air_source_heat_pump
Enter the example number you want to open (choose number) OR quit (q) :

Input Arguments
str — Search string
(default) | ' '

2 Functions

2-366

Search string specified as string. You can use wildcard (*) characters in the search. If there are more
than three words in the string modelfinder treats it as natural language query.
Example: modelfinder('autosar')
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: modelfinder('fluid','blocks',{'condenser'}) finds models with the search
string fluid having block name condenser. “Models with Additional Filters” on page 2-366

blocks — Block names in search criteria
(default) | ' '

Block names in search criteria specified as string. This argument limits the models displayed in the
search result based on blocks present in the models.
Example: modelfinder('motor','blocks','gain')
Data Types: char | string

verbose — Option to display path of matched model and matched character from search
term
(default) | off

If you specify this argument as on, search results are displayed with the path of the matched models
and the matching characters from the search term. Additional information about the matched
component, such as model name, annotations, and description is displayed. Search results that
appear indented and prefixed with > are individual Simulink models that are part of a bigger example
or project. You may open an individual model or an entire example, with the corresponding number.
Example: modelfinder('pmsm models using discrete pulse
generator','verbose','on')

Data Types: char | string

resultsPerPage — Number of results displayed per page
(default) | 20

Number of results per page specified as positive integer. By default, 20 results are displayed per
page.

Note The number of results displayed may vary to preserve the model hierarchy in output.

Example: modelfinder('pmsm models using discrete pulse
generator','resultsPerPage',5)

Data Types: char | string

 modelfinder

2-367

Version History
Introduced in R2022a

See Also
modelfinder.registerFolder | modelfinder.unregisterFolder

Topics
“Use modelfinder to Index Simulink Models and Improve Their Discoverability”

2 Functions

2-368

modelfinder.registerFolder
Register folder path to search index of modelfinder

Syntax
modelfinder.registerFolder(pathToFolder)

Description
modelfinder.registerFolder(pathToFolder) registers all models from the path to
modelfinder search result. The function searches for models recursively within the specified folder.

Input Arguments
pathToFolder — Path to folder
string

Path to folder specified as string. Specify the path of the models to be included for indexing.
Example: modelfinder.registerFolder("~/Desktop/myFolder")
Example: modelfinder.registerFolder(["~/Desktop/myFolder1","~/Desktop/
myFolder2"])

Version History
Introduced in R2022a

See Also
modelfinder | modelfinder.unregisterFolder

Topics
“Use modelfinder to Index Simulink Models and Improve Their Discoverability”

 modelfinder.registerFolder

2-369

modelfinder.unregisterFolder
Unregister folder path from search path of modelfinder

Syntax
modelfinder.unregisterFolder(pathToFolder)

Description
modelfinder.unregisterFolder(pathToFolder) unregisters all model from the specified
pathToFolder from modelfinder search index so that the models does not appear in search
results. The function unregisters all models recursively within the specified folder.

Input Arguments
pathToFolder — Path to folder
string

Path to folder specified as string. Specify path of the models to be excluded from indexing.
Example: modelfinder.unregisterFolder("~/Desktop/myFolder")
Example: modelfinder.unregisterFolder(["~/Desktop/myFolder1","~/Desktop/
myFolder2"])

Version History
Introduced in R2022a

See Also
modelfinder | modelfinder.registerFolder | “Use modelfinder to Index Simulink Models and
Improve Their Discoverability”

2 Functions

2-370

new_system
Create Simulink model or library in memory

Syntax
h = new_system

h = new_system(name)
h = new_system(name,'FromTemplate',template)
h = new_system(name,'FromFile',file)
h = new_system(___ ,'ErrorIfShadowed')

h = new_system(name,'Model')
h = new_system(name,'Model',subsys)
h = new_system(name,'Subsystem')
h = new_system(name,'Library')
h = new_system(___ ,'ErrorIfShadowed')

Description
h = new_system creates a model named untitled (and then untitled1, untitled2, and so on)
based on your default model template and returns the new model’s numeric handle. Select your
default model template on the Simulink start page or by using the
Simulink.defaultModelTemplate function.

The new_system function does not open the new model. This function creates the model in memory.
To save the model, use save_system, or open the model with open_system and then save it using
the Simulink Editor.

h = new_system(name) creates a model based on your default model template and gives the new
model the specified name. This function returns the new model’s numeric handle. Select your default
model template on the Simulink start page or by using the Simulink.defaultModelTemplate
function.

If name is empty, the function creates a model named untitled, untitled1, untitled2, and so on.

The new_system function does not open the new model. This function creates the model in memory.
To save the model, use save_system, or open the model with open_system and then save it using
the Simulink Editor.

h = new_system(name,'FromTemplate',template) creates the model based on the specified
template.

h = new_system(name,'FromFile',file) creates the model based on the specified model or
template.

h = new_system(___ ,'ErrorIfShadowed') creates the model or returns an error if another
model, MATLAB file, or variable with the same name is on the MATLAB path or in the workspace. It
uses any of the input arguments in the previous syntaxes.

 new_system

2-371

h = new_system(name,'Model') creates an empty model based on the Simulink default model
and returns the new model’s numeric handle. The Simulink default model is also known as the root
block diagram and has the numeric handle 0. If name is empty, the function creates a model or library
named untitled, untitled1, untitled2, and so on.

The new_system function does not open the new model. This function creates the model in memory.
To save the model, use save_system, or open the model with open_system and then save it using
the Simulink Editor.

h = new_system(name,'Model',subsys) creates a model based on the subsystem subsys in a
currently loaded model.

h = new_system(name,'Subsystem') creates an empty subsystem file that has the specified
name.

h = new_system(name,'Library') creates an empty library that has the specified name and
returns a numeric handle.

h = new_system(___ ,'ErrorIfShadowed') returns an error if another model, MATLAB file, or
variable with the same name is on the MATLAB path or in the workspace. This syntax uses any of the
input arguments in the previous syntaxes.

Examples

Create a Model Based on Default Template

Create a model in memory called untitled.

h = new_system;

You can use get_param to get the name.

get_param(h,'Name')
open_system(h)
open_system('untitled')
open_system(get_param(h,'Name'))

ans =

untitled

Use the name, the handle, or get_param command as input to open_system. You can use any of
these commands:

Create a Model Based on Named Template

Before you use this syntax, create a template. In the Simulink Editor, create the model you want to
use as the template, then in the Simulation tab, select Save > Template. For this example, name
the template mytemplate.

By default, the template is on the MATLAB path, so if you change location, add the folder to the
MATLAB path.

2 Functions

2-372

Create a model named templateModel based on the template mytemplate.

h = new_system('templateModel','FromTemplate','mytemplate');

Invoking template \\myuserdir\Documents\MATLAB\mytemplate.sltx

Create a Model Based on Another Model

Create a model named mynewmodel based on myoldmodel, which is in the current folder.

h = new_system('mynewmodel','FromFile','myoldmodel.slx');

Create Model from Subsystem

Load the model f14. Create a model based on the Controller subsystem.

load_system('f14');
new_system('mycontroller','Model','f14/Controller');
open_system('mycontroller');

Create a Library

Create a library in memory and then open it.

 new_system

2-373

new_system('mylib','Library')
open_system('mylib')

Create a Subsystem File

Create a subsystem file in memory and then open it.

new_system('mysubsystem','Subsystem')
open_system('mysubsystem')

Ensure Model Name Is Unique

Create a variable with the name myvar.

myvar = 17;

Try to create a model that uses the same name as the variable. When you use the
'ErrorIfShadowed' option, the new_system function returns an error.

new_system('myvar','Model','ErrorIfShadowed')

The model 'myvar' cannot be created because this name is shadowing another name on the MATLAB
path or in the workspace. Choose another name, or do not use the option 'ErrorIfShadowed'

Input Arguments
name — Name of new model or library
character vector

Name of new model or library, specified as a character vector that:

• Has 63 or fewer characters
• Is not a MATLAB keyword
• Is not 'simulink'
• Is unique among model names, variables, and MATLAB files on the MATLAB path and in the

workspace

Example: 'mymodel', 'mylibrary'

subsys — Subsystem to base new model on
subsystem block path name

Subsystem to base the new model on, specified as the subsystem block path name in a currently open
model.
Example: 'f14/Controller'

template — Name of template to base new model on
character vector

Name of the template to base the new model on, specified as a character vector of the name of a
template on the MATLAB path. Create a template in the Simulink Editor. In the Simulation tab,
select Save > Template.

2 Functions

2-374

Example: 'mytemplate', 'mytemplate.sltx'

file — Path name of model or template to base new model on
character vector

Path name of the model or template to base the new model on, specified as a character vector. You
can use an .mdl, .slx, or ..sltx file. Include the extension and use a full or relative path.
Example: 'Models/mymodel.slx', 'mytemplate.sltx', 'model.mdl'

Version History
Introduced before R2006a

See Also
open_system | save_system | Simulink.defaultModelTemplate

 new_system

2-375

open_system
Open model, library, subsystem, or block dialog box

Syntax
open_system(obj)

open_system(sys,'loadonly')

open_system(sbsys,'window')
open_system(sbsys,'tab')

open_system(blk,'mask')
open_system(blk,'force')
open_system(blk,'parameter')
open_system(blk,'OpenFcn')

Description
open_system(obj) opens the specified model, library, subsystem, or block. This is equivalent to
double-clicking the model or library in the Current Folder Browser, or the subsystem or block in the
Simulink Editor.

A model or library opens in a new window. For a subsystem or block within a model, the behavior
depends on the type of block and its properties.

• Any OpenFcn callback parameter is evaluated.
• If there is no OpenFcn callback, and a mask is defined, the mask parameter dialog box opens.
• Without an OpenFcn callback or a mask parameter, Simulink opens the object.

• A referenced model opens in a new window.
• A subsystem opens in a new tab in the same window.
• For blocks, the parameters dialog box for the block opens.

To open a specific subsystem or block, you must load the model or library containing it. Otherwise
Simulink returns an error.

You can override the default behavior by supplying a second input argument.

open_system(sys,'loadonly') loads the specified model or library without opening the Simulink
Editor. This is equivalent to using load_system.

open_system(sbsys,'window') opens the subsystem sbsys in a new Simulink Editor window.
Before opening a specific subsystem or block, load the model or library containing it. Otherwise
Simulink returns an error.

open_system(sbsys,'tab') opens the subsystem in a new Simulink Editor tab in the same
window. Before opening a specific subsystem or block, load the model or library containing it.
Otherwise Simulink returns an error.

2 Functions

2-376

open_system(blk,'mask') opens the mask dialog box of the block or subsystem specified by blk.
Load the model or library containing blk before opening it.

open_system(blk,'force') looks under the mask of a masked block or subsystem. It opens the
dialog box of the block under the mask or opens a masked subsystems in a new Simulink Editor tab.
This is equivalent to the Look Under Mask menu item. Before opening a specific subsystem or
block, load the model or library containing it. Otherwise Simulink returns an error.

open_system(blk,'parameter') opens the block parameter dialog box.

open_system(blk,'OpenFcn') runs the block callback OpenFcn.

Examples

Open a Model

Open the f14 model.

open_system('f14')

Load a Model Without Opening it

Load the f14 model.

open_system('f14','loadonly')

Open a Subsystem

Open the Controller subsystem of the f14 model.

load_system('f14')
open_system('f14/Controller')

Open a Subsystem in New Tab in Existing Window

Open the f14 model and open the Controller subsystem in a new tab.

f14
open_system('f14/Controller','tab')

Open a Subsystem in a Separate Window

Open a subsystem in its own Simulink Editor window.

open_system('f14')
open_system('f14/Controller','window')

 open_system

2-377

Open a Referenced Model

Open the model sldemo_mdlref_counter, which is referenced by the CounterA Model block in
sldemo_mdlref_basic.

openExample('sldemo_mdlref_basic')
open_system('sldemo_mdlref_basic/CounterA')

The referenced model opens in its own Simulink Editor window as a top model. To open the
referenced model in the context of a model hierarchy, use the open function with a
Simulink.BlockPath object.

Open Block Dialog Box

Open the block parameters dialog box for the first Gain block in the Controller subsystem.

load_system('f14')
open_system('f14/Controller/Gain')

Run Block Open Callback Function

Define an OpenFcn callback for a block and execute the block callback.

f14
set_param('f14/Pilot','OpenFcn','disp(''Hello World!'')')
open_system('f14/Pilot','OpenFcn')

The words Hello World appear on the MATLAB Command Prompt.

Open Masked Subsystem

Open the contents of the masked subsystem Pump in the model sldemo_hydcyl.

openExample('sldemo_hydcyl')
open_system('sldemo_hydcyl/Pump', 'force')

Open Multiple Systems with One Command

Create a cell array of two model names, f14 and vdp. Open both models using open_system with
the cell array name.

models = {'f14','vdp'}
open_system(models)

Input Arguments
obj — Model, referenced model, library, subsystem, or block path
character vector

2 Functions

2-378

Model, referenced model, library, subsystem, or block path, specified as a character vector. If the
model is not on the MATLAB path, specify the full path to the model file. Specify the block or
subsystem using its full name, e.g., f14/Controller/Gain, on an opened or loaded model. On
UNIX systems, the fully qualified path name of a model can start with a tilde (~), signifying your
home directory.
Data Types: char

sys — Model or library path
character vector

The full name or path of a model or library, specified as a character vector.
Data Types: char

sbsys — Subsystem path
character vector

The full name or path of a subsystem in an open or loaded model, specified as a character vector.
Data Types: char

blk — Block or subsystem path
character vector

The full name or path of a block or subsystem in an open or loaded model, specified as a character
vector.
Data Types: char

Tips
To open a referenced model in the context of a model hierarchy, use the open function with a
Simulink.BlockPath object.

Version History
Introduced before R2006a

See Also
new_system | load_system | close_system | save_system | open (BlockPath)

 open_system

2-379

openDialog
Open configuration parameters dialog

Syntax
openDialog(configObj)

Arguments
configObj

A configuration set (Simulink.ConfigSet) or configuration reference
(Simulink.ConfigSetRef)

Description
openDialog opens a configuration parameters dialog box. If configObj is a configuration set, the
dialog box displays the configuration set. If configObj is a configuration reference, the dialog box
displays the referenced configuration set, or generates an error if the reference does not specify a
valid configuration set. If the dialog box is already open, its window becomes selected.

Examples
The following example opens a configuration parameters dialog box that shows the current
parameters for the current model. The parameter values derive from the active configuration set or
configuration reference (configuration object). The code is the same in either case; the only
difference is which type of configuration object is currently active.

myConfigObj = getActiveConfigSet(gcs);
openDialog(myConfigObj);

Version History
Introduced in R2006b

See Also
attachConfigSet | attachConfigSetCopy | closeDialog | detachConfigSet |
getActiveConfigSet | getConfigSet | getConfigSets | setActiveConfigSet

Topics
“Manage Configuration Sets for a Model”
“Share a Configuration with Multiple Models”

2 Functions

2-380

parsim
Simulate dynamic system multiple times in parallel or serial

Syntax
simOut = parsim(in)
simOut = parsim(in,'ShowSimulationManager','on')
simOut = parsim(in,Name,Value)

Description
simOut = parsim(in) simulates a model using the inputs specified in the SimulationInput
object, in. The parsim command uses an array of SimulationInput objects to run multiple
simulations.

simOut = parsim(in,'ShowSimulationManager','on') simulates a model in parallel using
the inputs specified in the SimulationInput object and opens the Simulation Manager UI. For more
information, see Simulation Manager.

simOut = parsim(in,Name,Value) simulates a model in parallel using the inputs specified in the
SimulationInput object and the options specified as the Name,Value pair.

The parsim command uses the Parallel Computing Toolbox license to run the simulations in parallel.
parsim runs the simulations in serial if a parallel pool cannot be created or if Parallel Computing
Toolbox is not used.

Examples

Using parsim with Rapid Accelerator

Simulate the model, vdp, in rapid accelerator mode.

Load the model.

model = 'vdp';
load_system(model)

This step builds the Rapid Accelerator target

Simulink.BlockDiagram.buildRapidAcceleratorTarget(model);

Create a SimulationInput object and use setModelParameter method to set
RapidAcceleratorUpToDateCheck to 'off'.

in = Simulink.SimulationInput(model);
in = in.setModelParameter('SimulationMode', 'rapid-accelerator');
in = in.setModelParameter('RapidAcceleratorUpToDateCheck', 'off');

Simulate the model.

 parsim

2-381

out = parsim(in)

Simulate Model in Parallel with parsim

Simulate the model, CSTR, in parallel by sweeping over a variable. An array of SimulationInput
objects is used to perform the sweep.

Specify sweep values.

FeedTempSweep = 250:10:300;

Create an array of SimulationInput objects.

for i = length(FeedTempSweep):-1:1
in(i) = Simulink.SimulationInput('CSTR');
in(i) = in(i).setVariable('FeedTemp0',FeedTempSweep(i));
end

Simulate the model in parallel.

out = parsim(in, 'ShowSimulationManager', 'on')

[29-Jun-2022 15:05:52] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to the parallel pool (number of workers: 6).
[29-Jun-2022 15:07:01] Starting Simulink on parallel workers...
[29-Jun-2022 15:07:34] Configuring simulation cache folder on parallel workers...
[29-Jun-2022 15:07:35] Loading model on parallel workers...
[29-Jun-2022 15:07:49] Running simulations...
[29-Jun-2022 15:08:24] Completed 1 of 6 simulation runs
[29-Jun-2022 15:08:24] Completed 2 of 6 simulation runs
[29-Jun-2022 15:08:24] Completed 3 of 6 simulation runs
[29-Jun-2022 15:08:27] Completed 4 of 6 simulation runs
[29-Jun-2022 15:08:28] Completed 5 of 6 simulation runs
[29-Jun-2022 15:08:28] Completed 6 of 6 simulation runs
[29-Jun-2022 15:08:28] Cleaning up parallel workers...

out =

1x6 Simulink.SimulationOutput array

Input Arguments
in — Simulink.SimulationInput object used to simulate the model
object, array

A Simulink.SimulationInput object or an array of Simulink.SimulationInput objects that is
used to specify changes to the model for a simulation.
Example: in = Simulink.SimulationInput('vdp')
Example: for i = 10:-1:1 in(i) = Simulink.SimulationInput('vdp'); end

2 Functions

2-382

Name-Value Pair Arguments

Note All parameters passed to parsim command are unrelated to the parameters that are used with
the sim command. To pass to the parsim command, use the list of following input arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name and Value must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ShowProgress', 'on'

AttachedFiles — Files to attach to parallel pool
cell array

Additional files to attach to the parallel pool, specified as a cell array. parsim does not support
loading data from From File blocks that make reference to mat files in subdirectories.

ShowProgress — Show the progress of the simulations
'on'(default) | 'off'

Set to 'on', to see the progress of the simulations in the command window. The progress is hidden
when set to 'off'.

Note When the progress is shown, a message 'Cleaning up parallel workers..' may be
displayed before the completion of the last few simulations. This message does not depend on the
completion of the simulations. Simulations complete when the outputs are fetched from the future.
For more information, see Simulink.Simulation.Future.

RunInBackground — Run simulations in background
'off' (default) | 'on'

Set to 'on' to run simulations asynchronously, keeping the MATLAB command prompt available for
use. To terminate the simulations running in the background, use the cancel method on the
Simulink.Simulation.Future objects.

SetupFcn — Function handle to run once per worker
function handle

Specify a function handle to 'SetupFcn' to run once per worker before the start of the
simulations.
Example: 'SetupFcn',@()currentProject('Modelex/Model_example.prj')

Note When buildRapidAcceleratorTarget is used in the SetupFcn and the model has external
inputs specified, either set 'LoadExternalInput' to 'off' or ensure that the specified external
input is available on the workers to prevent compilation error.

CleanupFcn — Function handle to run once per worker after running simulations
function handle

 parsim

2-383

Specify a function handle to 'CleanupFcn' to run once per worker after the simulations are
completed.

ManageDependencies — Manage model dependencies
'on' (default) | 'off'

When ManageDependencies is set to on, model dependencies are automatically sent to the parallel
workers if required. If ManageDependencies is set to off, explicitly attach model dependencies to
the parallel pool.

UseFastRestart — Use fast restart
'off' (default) | 'on'

When UseFastRestart is set to on, simulations run on the workers using fast restart.

When performing a parameter sweep varying properties of a Simscape component (e.g. mass and
inertia of a Solid block in Simscape Multibody), specify the Simscape block parameter as run-time
configurable. For more information, see “About Simscape Run-Time Parameters” (Simscape).

Note When using parsim, use the UseFastRestart option and not the FastRestart option. See
“Get Started with Fast Restart” for more information.

parsim in fast restart mode does not support models with ToFile blocks.

TransferBaseWorkspaceVariables — Transfer variables to the parallel workers
'off' (default) | 'on'

When TransferBaseWorkspaceVariables is set to on, variables used in the model and everything
defined in the base workspace are transferred to the parallel workers.

ShowSimulationManager — Starts the Simulation Manager app
'off' (default) | 'on'

When 'ShowSimulationManager' is set to 'on', you can use the Simulation Manager App to
monitor simulations.

StopOnError — Stop simulations on errors
'off' (default) | 'on'

Setting 'StopOnError' to 'on' stops the execution of simulations if an error is encountered.

Output Arguments
simOut — Simulation object containing logged simulation results
object

Array of Simulink.SimulationOutput objects that contains all of the logged simulation results.
The size of the array is equal to the size of the array of Simulink.SimulationInput objects.

All simulation outputs (logged time, states, and signals) are returned in a single
Simulink.SimulationOutput object. You define the model time, states, and output that is logged
using the Data Import/Export pane of the Model Configuration Parameters dialog box. You can log

2 Functions

2-384

signals using blocks such as the To Workspace and Scope blocks. The Signal & Scope Manager can
directly log signals.

Version History
Introduced in R2017a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

If you have Parallel Computing Toolbox installed, then when you use parsim, MATLAB automatically
opens a parallel pool of workers on your local machine. MATLAB runs the simulations across the
available workers. Control parallel behavior with the parallel preferences, including scaling up to a
cluster.

For details, see “Running Multiple Simulations”.

See Also
Simulink.SimulationInput | Simulink.Simulation.Future | applyToModel |
setBlockParameter | setModelParameter | setInitialState | ExternalInput |
setVariable | validate | setPreSimFcn | setPostSimFcn | Simulation Manager | cancel |
fetchNext | fetchOutputs | wait

Topics
“Rapid Accelerator Simulations Using Parsim” on page 13-606
“Parallel Simulations Using Parsim: Test-Case Sweep” on page 13-594
“Parallel Simulations Using Parsim: Parameter Sweep in Normal Mode” on page 13-598
“Parallel Simulations Using Parsim: Parameter Sweep in Rapid Accelerator Mode” on page 13-602
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”
“Run Parallel Simulations”

 parsim

2-385

polyspacePackNGo
Generate and package options files to run Polyspace analysis on code generated from Simulink model

Syntax
archivePath = polyspacePackNGo(mdlName)
archivePath = polyspacePackNGo(mdlName,psOpt)
archivePath = polyspacePackNGo(mdlName,psOpt,asModelRef)

Description
archivePath = polyspacePackNGo(mdlName) examines the Simulink model mdlName, extracts
Polyspace® options files from it, and packages the options files in the zip file located at
archivePath. Before using polyspacePackNGo, generate code from your Simulink model. Then
archive the generated code, for instance, by using packNGo. Generate the Polyspace options files
from the Simulink model and include them in the code archive by using polyspacePackNGo. In a
different development environment, when running a Polyspace analysis of the generated code, use
the options files included in the code archive to preserve model-specific information, such as design
range specifications. You must have Embedded Coder to use slbuild.

archivePath = polyspacePackNGo(mdlName,psOpt) generates and packages the Polyspace
options files that are generated according to the specification in psOpt. The object psOpt must be a
Polyspace options object that is generated by using pslinkoptions. Using psOpt, modify the
options for the Polyspace analysis.

archivePath = polyspacePackNGo(mdlName,psOpt,asModelRef) generates and packages
the Polyspace options files by using asModelRef to specify whether to generate option files for
model reference code or standalone code.

Examples

Generate and Package Polyspace Options Files

To generate and package Polyspace options files for a Simulink model, use polyspacePacknGo.

Open the Simulink model rtwdemo_counter and specify a folder for storing the generated code.

% Make temporary folders for code genration
[TEMPDIR, CGDIR] = rtwdemodir();
% Open the model
mdlName = 'rtwdemo_counter';
open_system(mdlName);
% Specify a folder for generated code
codegenFolder = 'rtwdemo_counter_ert_rtw';

To enable packing the generated code in an archive, set the option
PackageGeneratedCodeAndArtifacts to true. Specify the name of the generated code archive
as genCodeArchive.zip.

2 Functions

2-386

configSet = getActiveConfigSet(mdlName);
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
set_param(configSet, 'PackageName', 'genCodeArchive.zip');

To make the model compatible with Polyspace, set SystemTargetFile to ert.tlc.

set_param(configSet, 'SystemTargetFile', 'ert.tlc');

After configuring the model, generate code.

slbuild(mdlName)

Because PackageGeneratedCodeAndArtifacts is set to true, the generated code is packed into
the archive genCodeArchive.zip.

Generate and package Polyspace options files.

zipFile = polyspacePackNGo(mdlName);

In the code archive genCodeArchive.zip, the Polyspace options files are packaged in the
polyspace folder.

Package Polyspace Options Files That Have Specific Polyspace Analysis Options

To specify the Polyspace analysis options when packaging and generating options files, use
pslinktoptions.

Open the Simulink model rtwdemo_counter and configure the model for generating a code archive
that is compatible with Polyspace.

% Make temporary folders for code genration
[TEMPDIR, CGDIR] = rtwdemodir();
% Open the model
mdlName = 'rtwdemo_counter';
open_system(mdlName);
% Specify a folder for generated code
codegenFolder = 'rtwdemo_counter_ert_rtw';
configSet = getActiveConfigSet(mdlName);
% Enable packing the generated code into an archive
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
% Specify a name for the code archive
set_param(configSet, 'PackageName', 'genCodeArchive.zip');
% Configure the model to be Polyspace Compatible
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

After configuring the model, generate code.

slbuild(mdlName)

Because PackageGeneratedCodeAndArtifacts is set to true, the generated code is packed into
the archive genCodeArchive.zip.

To specify the model configuration for the Polyspace analysis, use a pslinkoptions object. Create
this object by using the function pslinkoptions.

psOpt = pslinkoptions(mdlName);

 polyspacePackNGo

2-387

The object psopt is a structure where the fields are model configurations that you can specify.

Specify the model configuration by using psOpt object. For instance, set InputRangeMode to full
range. For a full options list, see the input argument psOpt.

psOpt.InputRangeMode = 'FullRange';

Generate and package Polyspace options files. Use the psOpt object as the second argument in
polyspacePacknGo.

zipFile = polyspacePackNGo(mdlName,psOpt);

In the code archive genCodeArchive.zip, the Polyspace options files are packaged in the
polyspace folder. The file optionsFile.txt contains the specified Polyspace analysis options.

Package Polyspace Options Files for Code Generated as a Model Reference

To accelerate model simulations, invoke referenced Simulink models as simulation targets. To
generate model reference simulation targets from a Simulink model, generate code from the model
by using slbuild with the build process specified as ModelReferenceCoderTarget. Then,
package the generated code by using packNGo. To generate and package Polyspace options files for
analyzing such code, use the function polyspacePacknGo with the optional argument asModelRef
set to true.

Open the Simulink model rtwdemo_counter and configure the model for generating a code archive
that is compatible with Polyspace.

% Make temporary folders for code genration
[TEMPDIR, CGDIR] = rtwdemodir();
% Load model
mdlName = 'rtwdemo_counter';
load_system(mdlName);
configSet = getActiveConfigSet(mdlName);
% Enable packing the generated code into an archive
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
set_param(configSet, 'PackageName', '');
% Configure the model to be Polyspace Compatible
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

After configuring the model, generate a model reference simulation target from it by using the
function slbuild. Specify the option ModelReferenceCoderTarget. See slbuild.

slbuild(mdlName,'ModelReferenceCoderTarget');

The code that is generated is stored in the folder slprj.

To package the code that is generated as a model reference, use the function packNGo. Locate the
file buildinfo.mat in <working folder>/slprj/ert/rtwdemo_counter and use the full path
to it as the input to packNGo. This command generates an archive containing the generated code and
the object buildinfo.mat. See packNGo.

% Locate buildinfo and generate code archive
buildinfo = fullfile(pwd,'slprj','ert',mdlName,'buildinfo.mat');
packNGo(buildinfo)

2 Functions

2-388

Generate and package Polyspace options files. Omit the optional second argument. Set the third
argument asModelRef to true.

zipFile = polyspacePackNGo(mdlName,[],true);

In the code archive rtwdemo_counter.zip, the Polyspace options files are packaged in the
polyspace folder.

Input Arguments
mdlName — Name of Simulink model for which to generate Polyspace options files
model name

A character array containing the name of the model for which you want to generate and package the
Polyspace options files.
Example: polyspacePackNGo('rtwdemo_roll')
Data Types: char

psOpt — Polyspace options object
options associated with model (default) | object created by using pslinkoptions

Specifies the model configuration for the Polyspace analysis by using a pslinkoptions object. You
can modify certain analysis options by modifying psOpt, which is a structure where individual fields
represent analysis options. For a fill list of options that you can modify, see the table Polyspace
Analysis Options Supported by polyspacePacknGo.

 polyspacePackNGo

2-389

Polyspace Analysis Options Supported by polyspacePacknGo

Property Value Description
EnableAdditionalFileList:
Enable an additional file list to
be analyzed, specified as true
or false. Use with the
AdditionalFileList option.

true Polyspace verifies additional
files specified in the
AdditionalFileList option.

false (default) Polyspace does not verify
additional files.

AdditionalFileList: List of
additional files to be analyzed
specified as a cell array of files.
To add these files to the
analysis, use the
EnableAdditionalFileList
option.

cell array Polyspace considers the listed
files for verification.

InputRangeMode: Specifies the
range of the input variables.

'DesignMinMax' (default) Polyspace uses the input range
defined in the workspace or a
block.

'Fullrange' Polyspace uses full range inputs.
ParamRangeMode: Specifies the
range of the constant
parameters.

'DesignMinmax' Polyspace uses the constant
parameter range defined in the
workspace or in a block.

'None' (default) Polyspace uses the value of
parameters specified in the
code.

OutputRangeMode: Specifies
the output assertions.

'DesignMinMax' Polyspace applies assertions to
outputs by using a range
defined in a block or the
workspace.

'None' (default) Polyspace does not apply
assertions to the output
variables.

ModelRefVerifDepth: Specify
the depth for analyzing the
models that are referenced by
the current model.

'Current model Only'
(default)

Polyspace analyzes only the top
model without analyzing the
referenced models. Use this
option when you refer to models
that do not need to be analyzed,
such as library models.

2 Functions

2-390

Property Value Description
'1'|'2'|'3' Polyspace analyzes referenced

models up to the specified depth
in the reference hierarchy. To
analyze the models that are
referenced by the top model,
specify the property
ModelRefVerifDepth as '1'.
To analyze models that are
referenced by the first level of
references, specify this property
as '2'.

'All' Polyspace verifies all referenced
models.

ModelRefByModelRefVerif:
Specify whether you want to
analyze all referenced models
together or individually.

true Polyspace analyzes the top
model and the referenced
models together. Use this option
to check for integration or
scaling issues.

false (default) Polyspace analyzes the top
model and the referenced
models individually.

AutoStubLUT: Specifies how
lookup tables are used.

true (default) Polyspace stubs the lookup
tables and verifies the model
without analyzing the lookup
table code.

false Polyspace includes the lookup
table code in the analysis.

CheckConfigBeforeAnalysis:
Specifies the level of
configuration checking done
before the Polyspace analysis
starts.

'Off' Polyspace checks only for
errors. The analysis stops if
errors are found.

'OnWarn' (default) Polyspace stops the analysis
when errors are found and
displays a message when
warnings are found.

'OnHalt' Polyspace stops the analysis
when either errors or warnings
are found.

Example: polyspacePackNGo('rtwdemo_roll', psOpt), where ps_opt is an options object
created by calling pslinkoptions

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), the function generates options files so that Polyspace analyzes
the generated code as standalone code.

 polyspacePackNGo

2-391

• If asModelRef is true, the function generates options files so that Polyspace analyzes the
generated code as model reference code.

Note If you set asModelRef to true, use slbuild to generate code.

Example: polyspacePackNGo('rtwdemo_roll', psOpt,true)
Data Types: logical

Output Arguments
archivePath — The full path to the archive containing the generated options files
path to archive

A character array containing the path to the generated archive. The options files are located in the
polyspace folder in the archive. The polyspace folder contains these options files:

• optionsFile.txt: a text file containing the Polyspace options required to run a Polyspace
analysis on the generated code without losing model-specific information, such as design range
specification.

• model_drs.xml: A file containing the design range specification of the model.
• linksData.xml: A file that links the generated code to the components of the model.

To run a Polyspace analysis on the generated code in an environment that is different than the
environment where the code was generated from the Simulink model, use these files.
Data Types: char

Version History
Introduced in R2020b

See Also
slbuild | pslinkoptions

Topics
“Run Polyspace Analysis on Generated Code by Using Packaged Options Files” (Polyspace Bug
Finder)

2 Functions

2-392

pslinkoptions
Create an options object to customize configuration of a Simulink model, generated code or a S-
Function block. Use the object to specify configuration options for these Simulink objects in a
Polyspace run from the MATLAB command line

Syntax
opts = pslinkoptions(codegen)
opts = pslinkoptions(model)
opts = pslinkoptions(sfunc)

Description
opts = pslinkoptions(codegen) returns an options object with the configuration options for
code generated by codegen.

opts = pslinkoptions(model) returns an options object with the configuration options for the
Simulink model.

opts = pslinkoptions(sfunc) returns an options object with the configuration options for the
S-Function.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink” (Polyspace Bug Finder).

Examples

Create generic options object for code generated by Embedded Coder

This example shows how you can create a generic Polyspace options object that is suitable for
analyzing code generated by using Embedded Coder. This options object is prepopulated with
appropriate Embedded Coder parameters. Edit the options object to modify the generic analysis.

Create a new Polyspace configuration object new_opt by calling the function pslinkoptions and
specify 'ec' as the input argument.

new_opt = pslinkoptions('ec')

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0

 pslinkoptions

2-393

 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'
 VerifAllSFcnInstances: 0

By default, this options object uses the same verification settings that you specify in the Polyspace
project. To check MISRA C® 2012 coding rule violations in addition to the existing verifications
specified in the project, run this code at the MATLAB command line:

new_opt.VerificationSettings = 'PrjConfigAndMisraC2012'

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisraC2012'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'
 VerifAllSFcnInstances: 0

When you start the Polyspace analysis of the generated code, you might want to open the Polyspace
User Interface to follow the progress of the and to review the results afterwards. To open the
Polyspace interface when you start the analysis, run this code:

new_opt.OpenProjectManager = true

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisraC2012'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0

2 Functions

2-394

 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'
 VerifAllSFcnInstances: 0

Create and edit options object to modify Polyspace configuration

This example shows how you can store the Polyspace configurations of a Simulink model in to an
object, and use the object to edit the configuration options.

Load the model closed_loop_control.

load_system('closed_loop_control');

To create an object containing the Polyspace configurations of the model, call pslinkoptions.

model_opt = pslinkoptions('closed_loop_control')

model_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'
 VerifAllSFcnInstances: 0

The model is already configured for Embedded Coder®, so only the Embedded Coder configuration
options appear as the fields of the object model_opt.

To modify a Polyspace configuration option, set the corresponding field of model_opt. For instance,
change the results directory and set the verification mode to CodeProver by modifying fields :
model_opt.ResultDir and model_opt.VerificationMode, respectively.

model_opt.ResultDir = 'results_v1_$ModelName$';
model_opt.VerificationMode = 'CodeProver'

 pslinkoptions

2-395

model_opt =

 ResultDir: 'results_v1_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'
 VerifAllSFcnInstances: 0

Create and edit an options object for TargetLink at the command line

Create a Polyspace® options object called new_opt with TargetLink® parameters:

new_opt = pslinkoptions('tl')

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 AutoStubLUT: 1

Set the OpenProjectManager option to true to follow the progress in the Polyspace interface. Also
change the configuration to check for both run-time errors and MISRA C® coding rule violations:

new_opt.OpenProjectManager = true;
new_opt.VerificationSettings = 'PrjConfigAndMisra'

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisra'
 OpenProjectManager: 1

2 Functions

2-396

 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 AutoStubLUT: 1

Input Arguments
codegen — Code generator
'ec' | 'tl'

Code generator, specified as either 'ec' for Embedded Coder or 'tl' for TargetLink®. Each
argument creates a Polyspace options object with properties specific to that code generator.

For a description of all configuration options and their values, see pslinkoptions.
Example: ec_opt = pslinkoptions('ec')
Example: tl_opt = pslinkoptions('tl')
Data Types: char

model — Simulink model name
model name

Simulink model, specified by the model name. Creates a Polyspace options object with the
configuration options of that model. If you have not set any options, the object has the default
configuration options. If you have set a code generator, the object has the default options for that
code generator.

For a description of all configuration options and their values, see pslinkoptions.
Example: model_opt = pslinkoptions('my_model')
Data Types: char

sfunc — path to S-Function
character vector

Path to S-Function, specified as a character vector. Creates a Polyspace options object with the
configuration options for the S-function. If you have not set any options, the object has the default
configuration options.

For a description of all configuration options and their values, see pslinkoptions.
Example: sfunc_opt = pslinkoptions('path/to/sfunction')
Data Types: char

 pslinkoptions

2-397

Output Arguments
opts — Polyspace configuration options
options object

Polyspace configuration options, returned as an options object. The object is used with pslinkrun to
run Polyspace from the MATLAB command line.

For the list of object properties, see pslinkoptions.
Example: opts= pslinkoptions('ec')
opts.VerificationSettings = 'Misra'

Version History
Introduced in R2012a

See Also
pslinkoptions

2 Functions

2-398

rehashUnitDBs
Refresh unit database files on MATLAB path

Syntax
rehashUnitDBs

Description
rehashUnitDBs refreshes unit database files on the MATLAB path. To load a custom unit database,
use this function in conjunction with the createCustomDBFromExcel function.

The rehashUnitDBs function:

• Clears all previously loaded custom units in memory.
• Resets the set of supported units to the built-in set of units.
• Looks for database files with the extension .slunitdb.mldtax on the MATLAB path and loads

those databases.
• Issues warnings if units with the same names are loaded. If units have several definitions with the

same name in different databases, by default the function tries to use the definition in a built-in
units databases. If the unit is not defined in a built-in database, the function uses the definition in
the database highest on the MATLAB path.

To see the supported spreadsheet format, see “Custom Units Spreadsheet Format”.

Examples

Create Custom Units Database File from Excel Spreadsheet

Create a custom units database file from custom Excel spreadsheet file, unitsDB.xlsx.

Create a Excel spreadsheet containing these columns and data in any order:

• name, containing ounce_force
• symbol, containing ozf
• asciiSymbol, containing ozf
• displayName, containing {\rm{}oz_{force}}
• definitionExpression, containing oz*gn
• conversionFactor, containing 1
• conversionOffset, containing 0
• physicalQuantity, containing force

Enter your custom unit specifications.

Save the database file, for example unitsDB.xlsx .

 rehashUnitDBs

2-399

Create the database.

createCustomDBFromExcel('unitsDB.xlsx')

The function creates unitsDB.slunitdb.mldatx in the current folder.

Add the current folder to the MATLAB path.

addpath C:\work\custom_units

Load the new units database into memory.

rehashUnitDBs

Version History
Introduced in R2020a

See Also
createCustomDBFromExcel | Unit System Configuration | Unit Conversion

Topics
“Working with Custom Unit Databases”
“Unit Specification in Simulink Models”
“Displaying Units”
“Unit Consistency Checking and Propagation”
“Converting Units”

2 Functions

2-400

replace_block
Replace blocks in Simulink model

Syntax
replBlks = replace_block(sys,current,new)
replBlks = replace_block(sys,Name,Value,new)
replBlks = replace_block(___ ,'noprompt')

Description
replBlks = replace_block(sys,current,new) replaces the blocks current in the model sys
with blocks of type new.

You can use a block from a Simulink library or from another model as the replacement block.

The replace_block function prompts you to select the blocks you want to replace from a list of
blocks that match the current argument.

Before using the replace_block function:

• Load the model sys. For more information on how to load a model, see load_system and
open_system.

• If the library containing the new block with which you want to replace the current block is not
loaded, load the library. For example, to replace the current block with a Message Triggered
Subsystem block, load the Simulink library by entering this command in the MATLAB Command
Window:

load_system('simulink.slx');

Tip Save the model before replacing blocks.

replBlks = replace_block(sys,Name,Value,new) replaces the blocks that match the block
parameters specified by the Name,Value pair arguments. You can also use find_system
Name,Value pairs to qualify the search for blocks to replace.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

With the replace_block function, you can use block parameter and value pairs. For a list of all the
block parameters, see “Common Block Properties” on page 6-12 and “Block-Specific Parameters” on
page 6-24.

To specify additional information about the search for blocks to replace, you use find_system
Name,Value pairs before the block parameters. For example, you can use

 replace_block

2-401

'CaseSensitive','off' to make the search for blocks case insensitive or 'FollowLinks','on'
to follow links into library links. See find_system for that list of Name,Value pairs.

replBlks = replace_block(___ ,'noprompt') replaces the blocks without prompting you to
select them from a dialog box.

Examples

Replace Blocks in a Model

Replace blocks in the 'vdp' model.

Load the model 'vdp'.

load_system('vdp');

Replace Gain blocks with Integrator blocks.

RepNames = replace_block('vdp','Gain','Integrator');

A dialog box prompts you to select the blocks you want to replace.

With vdp/Mu selected in the dialog box, click OK.

Replace Scope blocks with To Workspace blocks.

RepNames = replace_block('vdp','Scope','simulink/Sinks/To Workspace');

A dialog box prompts you to select the blocks you want to replace.

With vdp/Scope selected in the dialog box, click OK.

To replace blocks in the model with blocks from the Simulink Extras library, load the Simulink
Extras library.

load_system('simulink_extras.slx');

Replace Integrator blocks with Transfer Fcn (with initial states) blocks from the Simulink Extras
library.

RepNames = replace_block('vdp', 'Integrator', 'simulink_extras/Additional Linear/Transfer Fcn (with initial states)');

A dialog box prompts you to select the blocks you want to replace.

With vdp/Mu, vdp/x1, and vdp/x2 selected in the dialog box, click OK.

Replace Blocks in a Subsystem Using Parameter Values

Replace blocks in the Unlocked subsystem of the sldemo_clutch model. Replace blocks whose
Gain parameter is set to bv.

Load the model sldemo_clutch.

openExample('sldemo_clutch');

2 Functions

2-402

In the 'Unlocked' subsystem, replace blocks whose Gain value is bv with Integrator blocks.

replace_block('sldemo_clutch/Unlocked','Gain','bv','Integrator');

A dialog box prompts you to select the blocks to replace.

With sldemo_clutch/Unlocked/VehicleDamping selected in the dialog box, click OK.

Replace Blocks Without Dialog Box

Load the model f14.

load_system('f14')

Replace Gain blocks with Integrator blocks. The command returns the blocks it found to replace and
replaces the blocks.

repl = replace_block('f14','Gain','Integrator','noprompt')

repl = 13x1 cell
 {'f14/Aircraft...' }
 {'f14/Aircraft...' }
 {'f14/Aircraft...' }
 {'f14/Aircraft...' }
 {'f14/Controller/Gain' }
 {'f14/Controller/Gain2'}
 {'f14/Controller/Gain3'}
 {'f14/Gain' }
 {'f14/Gain1' }
 {'f14/Gain2' }
 {'f14/Gain5' }
 {'f14/Nz pilot...' }
 {'f14/Nz pilot...' }

Use find_system Pairs with replace_block

Select a block that is a library link. Follow the library links and replace Gain blocks with Integrator
blocks within them.

 replace_block(gcb, 'FollowLinks', 'on', 'BlockType', 'Gain', 'Integrator', 'noprompt')

Input Arguments
sys — Model or subsystem whose blocks to replace
character vector

Name of model whose blocks to replace, specified as a character vector. If you specify a model, the
command replaces all blocks that match in the model. If you specify a subsystem, the command
replaces blocks in that subsystem and below.
Example: 'vdp', 'sldemo_fuelsys/fuel_rate_control'

 replace_block

2-403

current — Type of block to replace
BlockType value | MaskType value

Type of block to replace, specified as a BlockType or MaskType value. To find out the block type,
select the block and, at the command prompt, enter:

get_param(gcb,'BlockType')

For masked blocks, to find out the mask type, select the block and enter:

get_param(gcb,'MaskType')

new — Block to replace current blocks
BlockType value | MaskType value | library path | block path name from a model

Block to replace the current block, specified in one of these forms:

• BlockType value of the replacement block. Specifying this value uses a library block as the
replacement block.

• MaskType value of the replacement block. Specifying this value uses a library block as the
replacement block.

• Library path of the replacement block, for example, 'simulink/Sinks/To Workspace'. Hover
over the block in the library to see the library path.

• Block path name of a block from a different model, for example, 'vdp/Mu'. Use this value to
reuse an instance of a block from another model in your model.

Output Arguments
replBlks — Blocks returned by the current argument
cell array of character vectors

Blocks returned by the current argument, returned as a cell array of character vectors. The
function returns the values regardless of whether you complete the replacement.

Version History
Introduced before R2006a

See Also
find_system | get_param

Topics
“Common Block Properties” on page 6-12
“Block-Specific Parameters” on page 6-24

2 Functions

2-404

save_system
Save Simulink model

Syntax
filename = save_system
filename = save_system(sys)
filename = save_system(sys,newsys)
filename = save_system(sys,Name,Value)
filename = save_system(sys,newsys,Name,Value)

Description
filename = save_system saves the current top-level model. If the model was not previously
saved, save_system creates a file in the current folder.

To save a subsystem, instead use Simulink.SubSystem.copyContentsToBlockDiagram to copy
the subsystem contents to a new model. You can then save that model using save_system. See
Simulink.SubSystem.copyContentsToBlockDiagram.

filename = save_system(sys) saves the model sys. The model must be open or loaded.

filename = save_system(sys,newsys) saves the model to a new file newsys. If you do not
specify an extension, then save_system uses the file format specified in your Simulink preferences.

filename = save_system(sys,Name,Value) saves the system with additional options specified
by one or more Name,Value pair arguments.

filename = save_system(sys,newsys,Name,Value) saves the system to a new file with
additional options specified by one or more Name,Value pair arguments. To use Name,Value pairs
without saving to a new file, use [] for newsys.

Examples

Save Named Model

Create a model.

new_system('newmodel')

Save the model.

save_system('newmodel')

Save Model with Another Name

Open the model vdp. Save it to a model named myvdp in the current folder. Without a file extension,
the function saves the model using the format specified in your Simulink preferences.

 save_system

2-405

open_system('vdp')
save_system('vdp','myvdp')

After you save the model by another name, the model is no longer open under its original name. Open
vdp again and save it as an .mdl file in the current folder.

open_system('vdp')
save_system('vdp','mynewvdp.mdl')

Return Error If Name Exists

Save a model with a new name and return an error if something with this name exists on the MATLAB
path. In this case, save_system displays an error because max is the name of a MATLAB function.
The model is not saved.

open_system('vdp')
save_system('vdp','max','ErrorIfShadowed',true)

Error using save_system (line 38)
The model 'vdp' cannot be saved with the new name 'max', because this name is
shadowing another name on the MATLAB path or in the workspace. Choose another
name, or do not use the option 'ErrorIfShadowed'

Save Model with Options

Suppose that you have a model named mymodel. Open the model and save it to a model named
newmodel. Also save the model workspace, break links to user-defined library blocks, and overwrite
if the file has changed on disk,
open_system('mymodel')
save_system('mymodel','mynewmodel','SaveModelWorkspace',
true,'BreakUserLinks',true,'OverwriteIfChangedOnDisk',true)

Save Model to Same Name and Use Options

Save the model mymodel, breaking links to user-defined library blocks in the model.

save_system('mymodel','BreakUserLinks',true)

Input Arguments
sys — Name of model to save
character vector | cell array of character vectors | string array | handle | array of handles

Name of model to save, specified as a character, cell array of character vectors, string array, handle,
or array of handles. Do not use a file extension.

newsys — File to save to
character vector | cell array of character vectors | string array | []

File to save to, specified as a character vector, cell array of character vectors, string array, or, to use
Name,Value pairs without changing the file name, []. You can specify a model name in the current
folder or the full path name, with or without an extension.

2 Functions

2-406

With no an extension, save_system saves to the file format specified in your Simulink preferences.
Possible model extensions are .slx and .mdl. With the 'ExportToXML' option, use the
extension .xml.

For information on rules for naming models, see “Choose Valid Model File Names”.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
save_system('mymodel','newmodel','SaveModelWorkspace',true,'BreakUserLinks',t
rue,'OverwriteIfChangedOnDisk',true)

AllowPrompt — Allow dialog box prompts
false (default) | true | 'on' | 'off'

Option to allow dialog box prompts, specified as true, false, 'on', or 'off'. By default, warnings
and error messages appear at the command line.

BreakAllLinks — Replace links to library blocks
false (default) | true | 'on' | 'off'

Option to, in the saved file, replace links to library blocks with copies of the library blocks, specified
as true, false, 'on', or 'off'. This option affects user-defined blocks and Simulink library blocks.

Caution The 'BreakAllLinks' option can result in compatibility issues when upgrading to newer
versions of Simulink. For example:

• Any masks on top of library links to Simulink S-functions do not upgrade to the new version of the
S-function.

• Any library links to masked subsystems in a Simulink library do not upgrade to the new subsystem
behavior.

• Any broken links prevent the library forwarding mechanism from upgrading the link. See
“Maintain Compatibility of Library Blocks Using Forwarding Tables”.

If you saved a model with broken links to built-in libraries, use the Upgrade Advisor to scan the model
for out-of-date blocks. Then upgrade the Simulink blocks to their current versions.

BreakUserLinks — Replace links to user-defined blocks
false (default) | true | 'on' | 'off'

Option to, in the saved file, replace links to user-defined library blocks with copies of the library
blocks, specified as true, false, 'on', or 'off'.

BreakToolboxLinks — Replace links to built-in library block
false (default) | true | 'on' | 'off'

 save_system

2-407

Option to, in the saved file, replace links to built-in library blocks with copies of the library blocks,
specified as true, false, 'on', or 'off'. This option affects Simulink library blocks and blocks
from libraries supplied with MathWorks toolboxes or blocksets.

ErrorIfShadowed — Return an error if name exists
false (default) | true | 'on' | 'off'

Option to return an error if the new name exists on the MATLAB path or workspace, specified as
true, false, 'on', or 'off'.

ExportToXML — Export model to XML format
false (default) | true | 'on' | 'off'

Option to export the model to a file in a simple XML format, specified as true, false, 'on', or
'off'. Specify the full name of the file, including the .xml extension. The block diagram in memory
does not change and no callbacks execute. Use this option without any other Name,Value pair
arguments. This option warns and will be removed in a future release.
Example: save_system('mymodel','exportfile.xml','ExportToXML',true)

ExportToVersion — MATLAB release name to export to
character vector | string scalar

MATLAB release name to export to, specified in either of these forms (not case sensitive). You can
export to seven years of previous releases.

• Release name, for example, 'R2013B', 'R2016B'
• Release name, followed by an underscore and then the extension, for example, 'R2016A_SLX',

'R2014A_MDL'. If you do not specify an extension, you export to the file format specified in your
Simulink preferences.

save_system exports the system such that the specified Simulink version can load it. If the system
contains functionality not supported by the specified Simulink version, the command removes the
functionality in the exported file. It also replaces unsupported blocks with empty masked subsystem
blocks colored yellow. As a result, the exported system might generate different results.

Alternatively, use Simulink.exportToVersion or, interactively, the Export to Previous Version
dialog box.

To export a project to previous releases, see “Export a Project to a Previous Version” on page 2-607.

OverwriteIfChangedOnDisk — Overwrite file
false (default) | true | 'on' | 'off'

Option to overwrite the file on disk even if it has been modified since the system was loaded, specified
as true, false, 'on', or 'off'. By default, if the file changed on disk since the model was loaded,
save_system displays an error to prevent the changes on disk from being overwritten.

You can control whether save_system displays an error if the file has changed on disk using a
Simulink preference. In the Model File pane of the Simulink Preferences dialog box, under Change
Notification, select Saving the model. This preference is on by default.

SaveDirtyReferencedModels — Save referenced models with unsaved changes
false (default) | true | 'on' | 'off'

2 Functions

2-408

Option to save referenced models that have unsaved changes while saving changes to their parent
model, specified as true, false, 'on', or 'off'. This option applies to models that are directly
referenced by each model that is saved. If the parent model of a dirty referenced model is not saved,
the dirty referenced model is not saved.

Suppose you have a model hierarchy in which model A references model B, and model B references
model C. If models B and C both have unsaved changes, they are both saved. If model C has unsaved
changes but model B does not have unsaved changes, neither model is saved.

By default, attempting to save a model that contains unsaved referenced models return an error.

SaveModelWorkspace — Save model workspace
false (default) | true | 'on' | 'off'

Option to save the contents of the model workspace, specified as true, false, 'on', or 'off'. The
model workspace DataSource must be a MAT-file. If the data source is not a MAT-file, save_system
does not save the workspace. See “Specify Source for Data in Model Workspace”.

Output Arguments
filename — Name of saved file
character vector | cell array of character vectors

Full name of saved file, returned as a character vector or a cell array of character vectors.

Version History
Introduced before R2006a

See Also
close_system | new_system | open_system | Simulink.exportToVersion

Topics
“Save Models”

 save_system

2-409

set_param
Set Simulink parameter value

Syntax
set_param(object,parameter1,value1,...,parameterN,valueN)

Description
set_param(object,parameter1,value1,...,parameterN,valueN) sets the specified
Simulink parameter parameter to the specified value value for the target object specified by
object. The target object can be a model, subsystem, library, block, line, port, or bus element port
element.

To set multiple parameter values for the target object, call the set_param function once with
multiple name-value arguments instead of separately calling the function for each parameter. Setting
multiple parameters with one function call is efficient because one call evaluates the parameters only
once. If any parameter names or values are invalid, then the function does not set any parameters.

Examples

Set Configuration Parameters of Model

Open the vdp model and set the Solver and StopTime parameter values.

vdp
set_param('vdp','Solver','ode15s','StopTime','3000')

Set Configuration Parameters of Current Model

Open a model and set the Solver and StopTime parameters. Use the bdroot function to get the
current top model.

vdp
set_param(bdroot,'Solver','ode15s','StopTime','3000')

Set Gain Block Parameter Value

Open vdp and set the Gain parameter value of the Gain block named Mu.

vdp
set_param('vdp/Mu','Gain','10')

2 Functions

2-410

Set Position of Block

Open vdp and set the position of the Gain block named Mu.

vdp
set_param('vdp/Mu','Position',[50 100 110 120])

Set Position of Block Using a Handle

Set the position of the Gain block named Mu in the vdp model using the block handle.

To get a handle to the Gain block named Mu, use the getSimulinkBlockHandle function. To load
the vdp model, specify true.

mublockhandle = getSimulinkBlockHandle('vdp/Mu',true);

If you make multiple calls to set_param for the same block, use the block handle, which is more
efficient than the full block path.

You can use the block handle in subsequent calls to get_param or set_param. The handle contains a
double. Do not try to manually enter the number of a handle, for example 5.007, because you usually
need to specify more digits than MATLAB displays. Instead, assign the handle to a variable and use
that variable name to specify the block.

Use the block handle with set_param to set the position.

set_param(mublockhandle,'Position',[50 100 110 120])

Put Block Name on Top of Block

Open vdp and, for the Gain block named Mu, set the block name on top of the block.

vdp
set_param('vdp/Mu','NameLocation','top')

Input Arguments
object — Name, path, or handle of object
character vector | string scalar | numeric scalar

Name, path, or handle of object, specified as a character vector, string scalar, or numeric scalar.

How you specify the target object depends on its type.

• Model — Model name or handle.
• Subsystem — Subsystem name or handle.
• Library — Library name or handle.
• Block — Block path or handle.
• Line — Line handle.
• Port — Port handle.

 set_param

2-411

• Bus element port element — Block path of model component with element label. The element can
be any element of the port, such as a top-level bus, nested bus, signal, or message.

Example: 'vdp/Mu'
Example: 'mymodel/Subsystem1/Out1.nonsinusoidal.saw'

Tips

• If you make multiple calls to set_param for the same block, specify the block with a numeric
handle. This method is more efficient than using the full block path with set_param. Use
getSimulinkBlockHandle to get a block handle.

• Do not try to manually specify the number of a handle, for example, 5.007, because you usually
need to specify more digits than MATLAB displays. Assign the handle to a variable and use that
variable name.

Data Types: char | string | double

parameter — Parameter, property, or attribute name
character vector | string scalar

Parameter, property, or attribute name, specified as a character vector or string scalar. Some names
are case sensitive.

For information about parameters, properties, or attributes, see the programmatic use information on
the corresponding reference pages. For example:

• Models — See the configuration parameter reference pages.
• Blocks — See “Common Block Properties” on page 6-12 and block reference pages.
• Ports — See the Signal Properties tool reference page.
• Bus element port elements — See the In Bus Element and Out Bus Element block reference pages.

To get all parameters of a target object, use the get_param function with the 'ObjectParameters'
option. Some of the returned parameters may be for internal use only.
Example: 'Solver'
Example: 'SimulationCommand'
Example: 'Position'
Example: 'NameLocation'
Data Types: char | string

value — Parameter value
format determined by parameter type

Parameter value, specified in the format determined by the parameter type. Some parameter values
are case sensitive. Values are often character vectors or string scalars, but they can also be numeric
scalars, arrays, and other types.

Many block parameter values are specified as character vectors or string scalars. Two exceptions are
Position, which is specified as a vector, and UserData, which can be any data type.

2 Functions

2-412

Limitations
If you use matlab -nodisplay to start a session, you cannot use set_param to run a simulation.
The -nodisplay mode does not support simulation using set_param. Use the sim function instead.

Tips
After you set parameters in the MATLAB workspace, to see the changes in a model, update the
diagram.

set_param(model,'SimulationCommand','Update')

Version History
Introduced before R2006a

See Also
Functions
get_param | getSimulinkBlockHandle | gcs | gcb | bdroot | open_system | new_system

Tools
Signal Properties

Blocks
In Bus Element | Out Bus Element

Topics
“Common Block Properties” on page 6-12
“Block-Specific Parameters” on page 6-24
“Associating User Data with Blocks”
“Use MATLAB Commands to Change Workspace Data”
“Run Simulations Programmatically”

 set_param

2-413

setActiveConfigSet
Specify active configuration set or configuration reference for model

Syntax
setActiveConfigSet(model, configObjName)

Description
setActiveConfigSet(model, configObjName) activates the configuration set or configuration
reference that is attached to model and is named configObjName. Before you activate a
configuration, attach the configuration to the model by using attachConfigSet.

Examples

Activate Configuration Set

Create a configuration set, attach it to a model, and activate it.

Open the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys.
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
sldemo_fuelsys

Create a configuration set named Config1 and attach it to the model.

configObj = Simulink.ConfigSet;
set_param(configObj,'Name','Config1')
attachConfigSet('sldemo_fuelsys',configObj)

Activate the Config1 configuration set.

setActiveConfigSet('sldemo_fuelsys','Config1')

Input Arguments
model — Model for which to activate configuration
character vector | string scalar

Name of model for which you want to activate a configuration set, specified as a character vector or
string scalar. The model must be open.
Example: 'my_model'

configObjName — Name of configuration object
character vector | string scalar

Name of the configuration object that you want to activate, specified as a character vector or string
scalar.

2 Functions

2-414

Example: 'Configuration'

Version History
Introduced before R2006a

See Also
attachConfigSet | attachConfigSetCopy | getActiveConfigSet | getConfigSet

Topics
“Manage Configuration Sets for a Model”
“Share a Configuration with Multiple Models”

 setActiveConfigSet

2-415

shareMATLABForFMUCoSim
Share current MATLAB session for FMU tool-coupling co-simulation

Syntax
shareMATLABForFMUCoSim

Description
shareMATLABForFMUCoSim dedicates the current MATLAB session available for requests from the
external tool to co-simulate an imported FMU. When an FMU is connected to this session, the
Simulink editor and Simulink project are loaded, and co-simulation starts automatically. You can use
this session to pause, resume co-simulation, tune parameters, and plot signals from the command
window while co-simulation is running. If co-simulation is finished, stopped by you, or interrupted by
a runtime error, MATLAB closes, unloads the Simulink editor and Simulink project, and discards
changes to the model. If an error occurs, it displays in the simulation tool that imports this FMU.
Each session can connect to one FMU instance at the same time.

Examples

Dedicate Current MATLAB Session for Co-Simulation

Dedicate the current MATLAB session for requests from external tools to co-simulate an imported
FMU.

shareMATLABForFMUCoSim

The current MATLAB session ('MATLAB_27284') is now dedicated
for tool-coupling co-simulation FMU usage. Make sure your work
is saved, and no other application is connecting to this MATLAB session.

Version History
Introduced in R2019a

See Also
FMU

Topics
“Export a Model as a Tool-Coupling FMU”

2 Functions

2-416

showblockdatatypetable
Display HTML page of Simulink block data type support

Syntax
showblockdatatypetable

Description
showblockdatatypetable displays an HTML page of the Simulink block data type support. This
table that lists the data types that Simulink blocks support.

Examples

Display Support of Simulink Block Data Types

Display an HTML page of the Simulink block data type support.

showblockdatatypetable

Tips
To open the Block Support Table using a block, double-click the Block Support Table block in the
block library or add it to a model and then double-click it.

Version History
Introduced before R2006a

See Also
Block Support Table

Topics
“Data Types Supported by Simulink”

 showblockdatatypetable

2-417

showunitslist
Show built-in units, physical quantities, and unit systems supported by Simulink

Syntax
showunitslist

Description
showunitslist opens a web browser that contains the list of built-in units, physical quantities, and
unit systems supported by Simulink.

Examples

Show Built-in Units, Physical Quantities, and Unit Systems

Show built-in units, physical quantities, and unit systems supported by Simulink.

showunitslist

This function opens a web browser displaying the allowed units.

Version History
Introduced in R2016a

See Also
Topics
“Unit Specification in Simulink Models”

2 Functions

2-418

signalbuilder
(Not recommended) Create and access Signal Builder blocks

Note The signalbuilder function is not recommended. For more information on why you should
migrate your models, see “Migrate from Signal Builder Block to Signal Editor Block”.

Syntax
[time,data] = signalbuilder(block)
[time,data,signames] = signalbuilder(block)
[time,data,signames,groupnames] = signalbuilder(block)

block = signalbuilder(path,'create',time,data)
block = signalbuilder(path,'create',time,data,signames,groupnames)
block = signalbuilder(path,'create',time,data,signames,groupnames,vis)
block = signalbuilder(path,'create',time,data,signames,groupnames,vis,pos)
block = signalbuilder(path,'create',time,data,signames,groupnames,vis,pos,{
openui openmodel})

block = signalbuilder(block,'appendgroup',time,data,signames,groupnames)
signalbuilder(block,'appendgroup',ds)
signalbuilder(block,'appendgroup',[ds1 ...dsN])
signalbuilder(block,'appendsignal',time,data,signames)

signalbuilder(block,'showsignal',signal,group)
signalbuilder(block,'hidesignal',signal, group)

[time,data] = signalbuilder(block,'get',signal,group)
ds = signalbuilder(block,'get',group)
[ds, …dsN] = signalbuilder(block,'get',group)
signalbuilder(block,'set',signal,group,time,data)
signalbuilder(block,'set',group,ds)
signalbuilder(block,'set',group,[ds1 ...dsN])

index = signalbuilder(block,'activegroup')
[index, activeGroupLabel] = signalbuilder(block,'activegroup')
signalbuilder(block,'activegroup',index)

signalbuilder(block,'annotategroup')

signalbuilder(block,'print',config,printArgs)
figh = signalbuilder(block,'print',config,'figure')

Description
[time,data] = signalbuilder(block) returns the time and data of the Signal Builder block,
block.

 signalbuilder

2-419

[time,data,signames] = signalbuilder(block) returns signal names, signames, and time
and data.

[time,data,signames,groupnames] = signalbuilder(block) returns the signal names,
signames, and group names, groupnames, and time and data.

block = signalbuilder(path,'create',time,data) creates a new Signal Builder block at
path with specified time and data. Signal and group names are default.

block = signalbuilder(path,'create',time,data,signames,groupnames) creates a new
Signal Builder block at path with specified time and data, signal names, and group names.

block = signalbuilder(path,'create',time,data,signames,groupnames,vis) creates a
new Signal Builder block and sets the visible signals in each group based on the values of the matrix
vis.

block = signalbuilder(path,'create',time,data,signames,groupnames,vis,pos)
creates a new Signal Builder block and sets the block position to pos.

If you create signals that are smaller than the display range or do not start from 0, the Signal Builder
block extrapolates the undefined signal data. It does so by holding the final value.

block = signalbuilder(path,'create',time,data,signames,groupnames,vis,pos,{
openui openmodel}) creates a new Signal Builder block and opens or invisibly loads the model and
Signal Builder block window.

block = signalbuilder(block,'appendgroup',time,data,signames,groupnames)
appends new groups (groupnames) containing signames to the Signal Builder block, block. The
time and data arguments must have the same number of signals as the existing block.

signalbuilder(block,'appendgroup',ds) appends one dataset.

signalbuilder(block,'appendgroup',[ds1 ...dsN]) appends N datasets.

signalbuilder(block,'appendsignal',time,data,signames) appends new signals to all
signal groups in the Signal Builder block, block. You can append either the same signals to all
groups, or append different signals to different groups. Regardless of which signals you append,
append the same number of signals to all the groups. Append signals to all the groups in the block;
you cannot append signals to a subset of the groups. Correspondingly, provide time and data
arguments for either one group (append the same information to all groups) or different time and
data arguments for different groups.

signalbuilder(block,'showsignal',signal,group) makes signals that are hidden from
the Signal Builder block visible. By default, signals in the current active group are visible when
created.

signalbuilder(block,'hidesignal',signal, group) makes signals, signal, hidden from
the Signal Builder block. By default, all signals are visible when created.

[time,data] = signalbuilder(block,'get',signal,group) gets the time and data values
for the specified signal(s) and group(s).

ds = signalbuilder(block,'get',group) gets one or more datasets for one requested Signal
Builder group. r gets N datasets for N requested Signal Builder groups.

2 Functions

2-420

[ds, …dsN] = signalbuilder(block,'get',group) gets N datasets for N requested Signal
Builder groups.

signalbuilder(block,'set',signal,group,time,data) sets the time and data values for the
specified signal and group. Use empty values of time and data to remove groups and signals. To
remove a signal group, you must also remove all the signals in that group in the same command.

signalbuilder(block,'set',group,ds) sets one dataset for the requested Signal Builder
group. Specifying an empty dataset deletes the groups specified in group.

signalbuilder(block,'set',group,[ds1 ...dsN]) sets N datasets for N requested groups.

index = signalbuilder(block,'activegroup') gets the index of the active group.

[index, activeGroupLabel] = signalbuilder(block,'activegroup') gets the label value
of the active group.

signalbuilder(block,'activegroup',index) sets the active group to indexed active group.

signalbuilder(block,'annotategroup') controls the display of the current group name on the
mask of the Signal Builder block. 'annotategroup' takes one of these values:

• 'on' — Shows the current group name
• 'off' — Hides the current group name

signalbuilder(block,'print',config,printArgs) prints the currently active signal group or
the signal group that config specifies. Use the config to customize the printed appearance of a
signal group.

figh = signalbuilder(block,'print',config,'figure') prints the currently active signal
group or the signal group that config specifies to a new hidden figure handle, figh.

Examples

Create Signal Builder Block

Create a Signal Builder block in a new model editor window.

block = signalbuilder([], 'create', [0 5], {[2 2];[0 2]});

Get Signal Builder data from this block.
[time, data, signames, groupnames] = signalbuilder(block)

time =

 2×1 cell array

 {1×2 double}
 {1×2 double}

data =

 2×1 cell array

 signalbuilder

2-421

 {1×2 double}
 {1×2 double}

signames =

 1×2 cell array

 {'Signal 1'} {'Signal 2'}

groupnames =

 1×1 cell array

 {'Group 1'}

The Signal Builder block contains two signals in one group. Alter the second signal in the group.

signalbuilder(block, 'set', 2, 1, [0 5], [2 0]);

To make this same change using the signal name and group name:

signalbuilder(block, 'set', 'Signal 2', 'Group 1', [0 5], [2 0])

Create Signal Builder Block and Delete Group

Create a Signal Builder block with two signal groups and delete one of the groups.

block = signalbuilder([], 'create', [0 2], {[0 1],[1 0]});

The Signal Builder block has two groups, each of which contains a signal.

To delete the second group, also delete its signal.

signalbuilder(block, 'set', 1, 2, [], [])

Create Signal Builder Block with Two Groups

Create a Signal Builder block with two groups, each of which contains three signals.

block = signalbuilder([], 'create', [0 1], ...
 {[0 0],[1 1];[1 0],[0 1];[1 1],[0 0]});

Create Signal Builder Block and Append Signal Groups

Create a Signal Builder block in a new model editor window.

block = signalbuilder([],'create',{[0 10],[0 20]},{[6 -6],...
[2 5]});

The Signal Builder block has two groups. Each group contains one signal.

Append a new signal group to the existing block.

block = signalbuilder(block,'appendgroup',[0 30],[10 -10]);

2 Functions

2-422

Append a new signal, sig3, to all groups.

signalbuilder(block,'appendsignal',[0 30],[0 10],'sig3');

Create Signal Builder Block and Delete Signal Group

Create a Signal Builder block in a new model editor window.

time = [0 1];
data = {[0 0],[1 1];[1 0],[0 1];[1 1],[0 0]};
block = signalbuilder([], 'create', time, data);

The Signal Builder block has two groups. Each group contains three signals.

Delete the second group. To delete a signal group, also delete all the signals in the group.

signalbuilder(block, 'set',[1,2,3],'Group 2',[]);

Create Signal Builder Block and Hide Signal

Create a Signal Builder block in a new model editor window and hide signal.

block = signalbuilder([], 'create', [0 5], {[2 2];[0 2]});

The Signal Builder block has one group that contains two signals.

Hide the signal, Signal 1.

signalbuilder(block,'hidesignal','Signal 1', 'Group 1')

Signal 1 is no longer visible in the Signal Builder block.

Make Signal 1 visible again.

signalbuilder(block,'showsignal','Signal 1', 'Group 1')

Create Two Signal Builder Blocks

Create two Signal Builder blocks in new model editor windows.
block = signalbuilder([], 'create', [0 5], {[2 2];[0 2]});
block1 = signalbuilder('untitled/Signal Builder1', 'create', [1 2], {[1 2];[0 10]});

Get a dataset for group 1 of block.

ds=signalbuilder(block,'get',1);

Get a dataset for group 1 of block1.

ds1=signalbuilder(block1,'get',1);

Set the dataset for group 1 of block to ds1.

signalbuilder(block,'set',1,ds1);

 signalbuilder

2-423

Append the original dataset for group 1 of block (ds) to block.

signalbuilder(block,'appendgroup',ds);

To create a third group in block, append ds1 to the end of the groups in block.

signalbuilder(block,'appendgroup',ds1);

Input Arguments
block — Signal Builder block path or handle
[] (default) | block handle | block name

Signal Builder block handle or name. If you specify [] for this argument, the block has the path
'untitled/Signal Builder'.
Example: 'untitled/Signal Builder'
Example: block_handle = gcbh
Data Types: char | string

time — Time
row vector | column cell vector | row cell vector | cell matrix

Specify time format depending on the block configuration.

If data is a cell array and time is a vector, the time values are duplicated for each element of data.
Each vector within time and data must be the same length and have at least two elements. If time
is a cell array, all elements in a column must have the same initial and final value.

Configuration Time Format
1 signal, 1 group Row vector of break points.
>1 signal, 1 group Column cell vector where each element corresponds to

a separate signal and contains a row vector of points.
1 signal, >1 group Row cell vector where each element corresponds to a

separate group and contains a row vector of points.
>1 signal, >1 group Cell matrix where each element (i, j) corresponds to

signal i and group j.

Dependencies

If signalbuilder is called for an existing block, the time argument must have the same number of
signals as the existing block.
Data Types: double

data — Data
row vector | column cell vector | row cell vector | cell matrix

Specify data format depending on the block configuration.

If data is a cell array and time is a vector, the time values are duplicated for each element of data.
Each vector within time and data must be the same length and have at least two elements. If time
is a cell array, all elements in a column must have the same initial and final value.

2 Functions

2-424

Configuration Time/Data Format
1 signal, 1 group Row vector of break points.
>1 signal, 1 group Column cell vector where each element corresponds to

a separate signal and contains a row vector of points.
1 signal, >1 group Row cell vector where each element corresponds to a

separate group and contains a row vector of points.
>1 signal, >1 group Cell matrix where each element (i, j) corresponds to

signal i and group j.

Data Types: double

config — Configuration structure name
structure name

Configuration structure containing instructions to display signal group information on the block
mask. Set up the structure with one or more of these fields before you print.

Field Description Example Value
groupIndex Scalar specifying index of signal group to print 2
timeRange Two-element vector specifying the time range to

print (must not exceed the block's time range)
[3 6]

visibleSignals Vector specifying index of signals to print [1 2]
yLimits Cell array specifying limits for each signal's y-axis {[-1 1],

 [0 1]}
extent Two-element vector of the form:

[width, height]

specifying the dimensions (in pixels) of the area in
which to print the signals

[500 300]

showTitle Logical value specifying whether to print a title:
true (1) prints the title

false

For example, to print just group 2 using a configuration structure, configstruct, set up the
structure as follows. You do not need to specify any other fields.

configstruct.groupIndex=1

Example: configstruct
Data Types: char | string

'create' — Create directive
'create'

Create new Signal Builder block.
Data Types: char | string

signames — Signal names
Signal 1 (default) | ' ' | {} | character vector | cell array of character vectors

 signalbuilder

2-425

Signal names, specified as ' ', {}, a character vector, or cell array of character vectors.

If you specify a value of ' ' or {}, the function uses existing signal names for the new groups.
Data Types: char | string

groupnames — Signal group names
Group 1 (default) | character vector | cell array of character vectors

Group names, specified as a character vector or cell array of character vectors.
Data Types: char | string

path — Block path
[] (default) | full block path

Block path, specified as full block path. To create a Signal Builder block in a new model, untitled,
with the name Signal Builder, specify [].
Data Types: char | string

vis — Signal visibility
matrix

Signal visibility, specified as a matrix. The Signal Builder block displays signals in each group based
on the values of the matrix vis. This matrix must be the same size as the cell array, data. You cannot
create Signal Builder blocks in which all signals are invisible. For example, if you set the vis
parameter for all signals to 0, the first signal is still visible.
Data Types: double

pos — Block position in model
[0 0] (default) | [x y right bottom]

Block position in model, specified as [x y right bottom].
Data Types: double

openui — Open Signal Builder block dialog box
0 (default) | 1

Open Signal Builder block dialog upon creation by signalbuilder function, specified as 0 or 1.
Data Types: double

openmodel — Open model
1 (default) | 0

Open model upon creation by signalbuilder function, specified as one of:

• 0 — Load the model but do not open it.
• 1 — Open the model.

Data Types: double

'appendsignal' — Append signals
'appendsignal' (default)

2 Functions

2-426

Append new signals to all signal groups in the Signal Builder block. You can append either the same
signals to all groups, or append different signals to different groups. Regardless of which signals you
append, append the same number of signals to all the groups. Append signals to all the groups in the
block. You cannot append signals to a subset of the groups.
Data Types: char | string

'appendgroup' — Append new signal group
'appendgroup'

Append new signal groups whose number of time and signal elements are the same as existing signal
groups in the Signal Builder block.

For the showsignal and hidesignal methods, if you do not specify a value for the group
argument, signalbuilder applies the operation to all the signals and groups.
Data Types: char

'set' — Set values
'set'

Set values based on input arguments.

• time and data — Return time and data values.
• ds — Return Simulink.SimulationData.Dataset object(s).

Data Types: char

'get' — Get values
'get'

Get values based on output arguments.

• [time, data] — Return time and data values.
• [ds, ...dsN] — Return Simulink.SimulationData.Dataset object(s).

Data Types: char | string

'showsignal' — Make signal visible
'showsignal'

Make one or more signals visible in a signal group. If no group is specified, all the signals and groups
are visible.
Data Types: char | string

'hidesignal' — Hide signal
'hidesignal'

Hide one or more signals in a signal group. If no group is specified, all the signals and groups are
hidden.
Data Types: char

ds — Dataset
timeseries data elements | 1-D scalar data value at each time | nonempty data and/or time | empty
values

 signalbuilder

2-427

Dataset of timeseries elements, specified as a Simulink.SimulationData.Dataset object.
Data Types: double

ds1 ...dsN — Multiple datasets
vectors of timeseries data elements | vectors of 1-D scalar data value at each time | nonempty data
and/or time

One or more datasets of timeseries elements, specified as Simulink.SimulationData.Dataset
objects.
Example: [ds1 ds2 ds3]
Data Types: double

signal — Signal
signal name | scalar index | array of signal indices

Signal, specified as a signal name, scalar index, or array of signal indices.
Data Types: char | double | string

group — Signal group
group name | scalar index | array of group indices

Signal group, specified as a group name, scalar index, or array of group indices.
Data Types: char | double | string

index — Group index
active group index

Active signal group index.
Data Types: double

'activegroup' — Get active group
'activegroup'

Get currently active signal group.
Data Types: char | string

'annotategroup' — Display active signal group name
'on' (default) | 'off'

Display active signal group name on Signal Builder block mask:

• 'on' — Display active signal group names on block mask.
• 'off' — Do not display active signal group names on block mask.

Data Types: char | string

'print' — Print signal group
'print'

Print signal group.
Data Types: char | string

2 Functions

2-428

printArgs — Configure print options
[] | print function arguments

Configure print options (see print).

To print the entire contents of the Signal Builder block, specify [].
Data Types: char | string

'figure' — Figure
'figure'

Create a figure containing contents of Signal Builder block.
Data Types: char | double | string

Output Arguments
time — Time
row vector | column cell vector | row cell vector | cell matrix

Time for the Signal Builder block, returned as row vector, column cell vector, row cell vector, or cell
matrix. For the Signal Builder block, time is the x-coordinate.

time returns in different formats depending on the block configuration.

Configuration Time Format
1 signal, 1 group Row vector of break points.
>1 signal, 1 group Column cell vector where each element corresponds to

a separate signal and contains a row vector of points.
1 signal, >1 group Row cell vector where each element corresponds to a

separate group and contains a row vector of points.
>1 signal, >1 group Cell matrix where each element (i, j) corresponds to

signal i and group j.

data — Data
row vector | column cell vector | row cell vector | cell matrix

Data of the Signal Builder block, returned as a one-dimensional array. For the Signal Builder block,
time is the y-coordinate.

data takes different formats depending on the block configuration.

Configuration Data Format
1 signal, 1 group Row vector of break points.
>1 signal, 1 group Column cell vector where each element corresponds to

a separate signal and contains a row vector of points.
1 signal, >1 group Row cell vector where each element corresponds to a

separate group and contains a row vector of points.
>1 signal, >1 group Cell matrix where each element (i, j) corresponds to

signal i and group j.

 signalbuilder

2-429

Datasets must have the same number of elements as the signals in a signal group. Dataset format
limitations for the set, append, and appendgroup functions include:

• Elements must be MATLAB timeseries data.

Timeseries data and/or time cannot be empty.
• Timeseries data must be of type double.
• Timeseries data must be 1-D (scalar value at each time).

signames — Signal names
character vector | cell array of character vectors

Signal names, returned as a character vector or cell array of character vectors.

block — Signal Builder block path or handle
block handle

Signal Builder block path or handle, returned by block creation or append commands.

ds — Dataset
timeseries data elements | 1-D scalar data value at each time | nonempty data and/or time

Dataset of timeseries elements, returned as a Simulink.SimulationData.Dataset object.

ds, …dsN — Multiple datasets
vectors of timeseries data elements | vectors of 1-D scalar data value at each time | nonempty data
and/or time

One or more datasets of timeseries elements, returned as Simulink.SimulationData.Dataset
objects.

index — Group index
active group index

Active signal group index.

activeGroupLabel — Active group label
index

Active group label, returned as an index.

figh — Figure handle
handle

Figure handle, returned when contents of Signal Builder block are printed to the hidden figure.

More About
Interpolating Missing Data Values

When specifying a periodic signal such as a Sine Wave, the signalbuilder function uses linear
Lagrangian interpolation to compute data values for time steps that occur between time steps for
which the signalbuilder function supplies data. When specifying periodic signals, specify them as
a time vector that is defined as multiples of sample time, for example:

2 Functions

2-430

t = 0.2*[0:49]';

Version History
Introduced in R2007a

R2019a: signalbuilder Function is not Recommended
Not recommended starting in R2019a

The signalbuilder function is not recommended. Use the signalEditor function instead.

See Also
Signal Editor | Simulink.SimulationData.Dataset | signalBuilderToSignalEditor

Topics
“Load Data with Interchangeable Scenarios”
“Migrate from Signal Builder Block to Signal Editor Block”
“Signal Groups”

 signalbuilder

2-431

signalEditor
Start Signal Editor

Syntax
signalEditor
signalEditor(Name,Value)

Description
signalEditor starts Signal Editor without an associated model.

signalEditor(Name,Value) starts signal Editor using additional options specified by one or more
name-value pair arguments.

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes (' '). You can specify the
name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

• Model - Model name, specified as a character array, for which Signal Editor is to start. You can
specify one model per call to the signalEditor function.

Note Load the model before starting Signal Editor for it.
• DataSource - Data set name, specified as a character array, to be edited. You can specify one data

set file per call to the signalEditor function.

Note You can start multiple sessions of Signal Editor for the same model. However, you can
associate a data set file with only one Signal Editor at a time. A data set file cannot have multiple
Signal Editor sessions associated with it.

To add a scenario to the Signal Editor interface, select Scenario from the Insert section of the Signal
Editor toolstrip.

Examples

Start Signal Editor for a Model

Start the Signal Editor for the model, slexAutotransRootInportsExample.

Load the slexAutotransRootInportsExample model, then start Signal Editor for it.

openExample('slexAutotransRootInportsExample')
signalEditor('Model','slexAutotransRootInportsExample');

2 Functions

2-432

Start Signal Editor to Edit a Data Set File

Start Signal Editor to edit myFile.mat.

signalEditor('DataSource','myFile.mat');

Start Signal Editor and Data Set File for a Model

Load the slexAutotransRootInportsExample model, then start Signal Editor for the model, and edit
myFile.mat.

openExample('slexAutotransRootInportsExample')
signalEditor('Model','slexAutotransRootInportsExample','DataSource','myFile.mat');

Version History
Introduced in R2017b

See Also
Topics
“Create and Edit Signal Data”

 signalEditor

2-433

sim
Simulate Simulink model

Syntax
simOut = sim(simIn)
simOut = sim(simIn,Name,Value)

simOut = sim(modelName)
simOut = sim(modelName,Name,Value)
simOut = sim(modelName,paramStruct)
simOut = sim(modelName,configSet)

Description
Simulink.SimulationInput Object Syntax

simOut = sim(simIn) runs one or more simulations of a Simulink model according to the
properties defined on one or more Simulink.SimulationInput objects.

• If simIn is a scalar Simulink.SimulationInput object, then simOut is a scalar
Simulink.SimulationOutput object.

• If simIn is an array of Simulink.SimulationInput objects, then simOut is an array of
Simulink.SimulationOutput objects.

You can use a SimulationInput object to configure options and inputs for simulations, including:

• The model to simulate
• Source variables or files for external input data
• Block parameter values to use for the simulation
• Model configuration parameter values to use for the simulation

When a property of the SimulationInput object modifies a model or block parameter value, the
value is modified during simulation and reverted at the end of the simulation.

When you configure programmatic simulations using SimulationInput objects, you can easily
transition from using the sim function to using other functions, such as parsim and batchsim.

simOut = sim(simIn,Name,Value) simulates a model according to the properties defined on the
Simulink.SimulationInput object simIn with additional options specified using one or more
name-value arguments.

For a list of name-value arguments supported for the Simulink.SimulationInput syntax, see
“Simulink.SimulationInput Object Syntax” on page 2-0 .

Model Name Syntax

simOut = sim(modelName) simulates the model specified by modelName using the current
configuration parameter and block parameter values for the model.

2 Functions

2-434

• If the model has the Single simulation output parameter enabled, simOut is a
Simulink.SimulationOutput object.

• If the model does not have the Single simulation output parameter enabled, simOut is a vector
that contains the simulation times. For more information, see “Returning multiple output
arguments not recommended” on page 2-442.

simOut = sim(modelName,Name,Value) simulates the model specified by modelName with
options specified using one or more name-value arguments. For example, you can modify a model
configuration parameter value for the simulation by specifying the parameter name and value as a
name-value argument.

When you modify model configuration parameters by providing inputs to the sim function, the
changes are applied during simulation and reverted at the end of the simulation.

For a list of name-value arguments supported for the model name syntax, see “Model Name Syntax”
on page 2-0 .

simOut = sim(modelName,paramStruct) simulates the model specified by modelName using the
model configuration parameter values specified by the structure paramStruct.

simOut = sim(modelName,configSet) simulates the model specified by modelName using model
configuration parameter values in the configuration set configSet.

Examples

Set Block Parameters for Simulation Using Simulink.SimulationInput Object

Modify the parameter values for blocks in a model using a SimulationInput object.

Open the model.

openExample("simulink_general/sldemo_househeatExample")

Create a SimulationInput object for this model.

mdl = "sldemo_househeat";
simIn = Simulink.SimulationInput(mdl);

Change the set point for the thermostat to 300 by modifying the Value parameter for the Set Point
block.

simIn = setBlockParameter(simIn,"sldemo_househeat/Set Point",...
 "Value","300");

Simulate the model.

out = sim(simIn);

Simulate Model with Current Parameter Settings

Simulate the model vdp in its present state, whether the model is not loaded yet or is loaded with
unsaved changes.

 sim

2-435

simOut = sim("vdp");

Simulate Model with Options Specified in Structure

Simulate the model vdp using model configuration parameter values specified in a structure.

Create the structure paramStruct. Configure the model to log states using the variable name
xoutNew.

paramStruct.SaveState = 'on';
paramStruct.StateSaveName = 'xoutNew';

Add more fields to the structure to configure the model to log outputs using the variable name
youtNew.

paramStruct.SaveOutput = 'on';
paramStruct.OutputSaveName = 'youtNew';

Simulate the model using the options specified in the structure.

simOut = sim('vdp',paramStruct)

simOut =
 Simulink.SimulationOutput:

 xoutNew: [64x2 double]
 youtNew: [64x2 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

Simulate Model Using Simulink.Configset Object

Open the model vdp and get the Simulink.ConfigSet object for the active configuration.

mdl = "vdp";
open_system(mdl)
cs = getActiveConfigSet(mdl);

Create a copy of the Simulink.ConfigSet object. Then, use the set_param function to modify
parameter values in the configuration set. Configure the parameters in the ConfigSet object to:

• Use an absolute tolerance of 1e-5
• Log states using the variable name xoutNew
• Log outputs using the variable name youtNew

csNew = copy(cs);
set_param(csNew,"AbsTol","1e-5",...
 "SaveState","on","StateSaveName","xoutNew",...
 "SaveOutput","on","OutputSaveName","youtNew")

Simulate the model using the modified Simulink.ConfigSet object.

2 Functions

2-436

simOut = sim(mdl,csNew)

simOut =
 Simulink.SimulationOutput:

 xoutNew: [65x2 double]
 youtNew: [65x2 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

Input Arguments
simIn — Simulation configuration
Simulink.SimulationInput object

Simulation configuration, specified as a Simulink.SimulationInput object. The properties of the
SimulationInput object specify options and parameter values to use in the simulation, including:

• The model to simulate
• Source variables or files for external input data
• Block parameter values to use for the simulation
• Model configuration parameter values to use for the simulation

The values defined in the properties of the SimulationInput object are applied to the model for the
simulation and reverted at the end of simulation.

modelName — Model to simulate
string | character vector

Model to simulate, specified as a string or a character vector.
Example: simOut = sim("vdp") simulates the model named vdp using the parameter values
currently configured in the model.
Data Types: char | string

paramStruct — Model configuration to simulate
structure

Model configuration to simulate, specified as a structure. The fields of the structure are the names of
model configuration parameters. The value for each field indicates the parameter value to use in
simulation. For example, to simulate a model from a start time of 5 to a stop time of 10, create this
structure:

paramStruct.StartTime = "5";
paramStruct.StopTime = "10";

Data Types: struct

configSet — Model configuration to simulate
Simulink.Configset object

Model configuration to simulate, specified as a Simulink.ConfigSet object.

 sim

2-437

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: simOut = sim(simIn,"UseFastRestart","on") runs a set of simulations configured
using an array of Simulink.SimulationInput objects with fast restart enabled.
Example: simOut = sim(modelName,"Solver","ode15s","StopTime","30") configures a
simulation of the model specified by modelName to use the ode15s solver with a stop time of 30.

The sim function supports different name-value arguments depending on whether you specify the
first input as a Simulink.SimulationInput object or as the name of the model to simulate. In
addition to the arguments listed on this page, you can specify values for model configuration
parameters using inputs to the sim function.

• When the first input argument is a Simulink.SimulationInput object, configure model
parameter values for the simulation on the input object using the setModelParameter function.

• When the first input argument is the model name, specify any model configuration parameter as a
name-value argument.

Simulink.SimulationInput Object Syntax

UseFastRestart — Option to enable fast restart
'off' (default) | 'on'

Option to enable fast restart, specified as 'off' or 'on'. Fast restart reduces the time required to
run a set of simulations by skipping the compilation and termination phases when appropriate.
Consider using fast restart when you run multiple simulations of the same model.

For more information, see “How Fast Restart Improves Iterative Simulations”.

This argument is supported only when you specify the first input argument for the sim function as a
Simulink.SimulationInput object.
Example: sim(simIn,"UseFastRestart","on")
Data Types: char | string

StopOnError — Option to stop process that started simulation when error occurs
'off' | 'on'

Option to stop process that started simulation when error occurs, specified as 'off' or 'on'.

• 'off' — When an error occurs in a simulation, that simulation stops and the process that started
the simulation continues. For example, when you run a set of simulations using an array of
Simulink.SimulationInput objects, if the first simulation encounters an error, that simulation
stops and subsequent simulations still run.

• 'on' — When an error occurs in a simulation, that simulation and the process that started the
simulation both stop. For example, when you run a set of simulations using an array of
Simulink.SimulationInput objects, if the first simulation encounters an error, that simulation
stops and subsequent simulations do not run.

2 Functions

2-438

This argument is supported only when you specify the first input argument for the sim function as a
Simulink.SimulationInput object.
Example: sim(simIn,"StopOnError","on")
Tips

• When you specify the name of the model as the first input argument for the sim function,
configure this behavior using the CaptureErrors name-value argument.

• When an error does not stop the process that started a simulation, error message information is
captured in the Simulink.SimulationOutput object and the
Simulink.SimulationMetadata object.

• To view the message, use the ErrorMessage property of the SimulationOutput object.
• For more information about the error, use the ExecutionInfo property of the

Simulink.SimulationMetadata object. The ErrorDiagnostic field includes information
about the error, including the simulation phase where the error occurred.

Data Types: char | string

ShowProgress — Option to indicate simulation progress
'off' | 'on'

Option to indicate simulation progress, specified as 'off' or 'on'.

• 'off' — Simulations run without displaying progress messages.
• 'on' — Progress updates are displayed as simulations progress.

This option is useful when you run multiple simulations using an array of
Simulink.SimulationInput objects.

This argument is supported only when you specify the first input argument for the sim function as
a Simulink.SimulationInput object.

Example: sim(simIn,"ShowProgress","on")

ShowSimulationManager — Option to open Simulation Manager
'off' (default) | 'on'

Option to open Simulation Manager, specified as 'off' or 'on'. Use the Simulation Manager to
monitor the progress of simulations you run. Consider using the Simulation Manager when you run
multiple simulations using an array of Simulink.SimulationInput objects.

This argument is supported only when you specify the first input argument for the sim function as a
Simulink.SimulationInput object.
Example: sim(simIn,"ShowSimulationManager","on")

Model Name Syntax

CaptureErrors — Option to continue process that started simulation if error occurs
'off' (default) | 'on'

Option to continue process that started simulation if error occurs, specified as 'off' or 'on'. By
default, when you run a simulation using the sim function and specify the name of the model as the
first input:

 sim

2-439

• Errors are reported in the MATLAB Command Window.
• Both the simulation and the process that invoked the simulation stop when the error occurs.
• The error message is not captured in the Simulink.SimulationOutput object or

Simulink.SimulationMetadata object.

When you specify CaptureErrors as 'on', errors are reported only in the simulation outputs. The
execution of the simulation with the error stops, but if the simulation was invoked by another
process, that process continues. For example, when you run multiple simulations in a loop, if you
specify CaptureErrors as 'on', subsequent simulations continue to run following a simulation with
an error.

This argument is supported only when you specify the first input argument for the sim function as
the name of the model to simulate.
Example: sim("myModel","CaptureErrors","on")

Tips

• This option is not supported for software-in-the-loop (SIL) and processor-in-the-loop (PIL)
simulations.

• When you specify one or more Simulink.SimulationInput objects as input to the sim
function, configure this behavior using the StopOnError name-value argument.

• When you specify CaptureErrors as 'on', error message information is captured in the
Simulink.SimulationOutput object and the Simulink.SimulationMetadata object.

• To view the message, use the ErrorMessage property of the SimulationOutput object.
• For more information about the error, use the ExecutionInfo property of the

Simulink.SimulationMetadata object. The ErrorDiagnostic field includes information
about the error, including the simulation phase where the error occurred.

Data Types: char | string

Debug — Option to start simulation in debug mode
'off' (default) | 'on'

Option to start simulation in debug mode, specified as 'off' or 'on'.

This argument is supported only when you specify the first input argument for the sim function as
the name of the model to simulate.
Example: sim("modelName","Debug","on")
Data Types: char | string

RapidAcceleratorUpToDateCheck — Option to disable rebuilding rapid accelerator target
'on' (default) | 'off'

Option to disable rebuilding rapid accelerator target, specified as 'on' or 'off'. When you specify
this argument as 'on', changes that require rebuilding the rapid accelerator target are ignored.
When you use this option, modify only options that do not require rebuilding the rapid accelerator
target.

This argument is supported only when you specify the first input argument for the sim function as
the name of the model to simulate.

2 Functions

2-440

Example: sim("modelName","RapidAcceleratorUpToDateCheck","off")
Tips

To specify this option for a simulation configured using a Simulink.SimulationInput object, use
the setModelParameter function.

simIn = Simulink.SimulationInput("myModel");
simIn = setModelParameter(simIn,"RapidAcceleratorUpToDateCheck","off");

Data Types: char | string

TimeOut — Maximum simulation run time
positive scalar

Maximum simulation run time, specified as a positive scalar. Specify the time, in seconds, to allow the
simulation to run. If the simulation runs for longer than the value you specify, the software issues a
warning and stops the simulation. For example, if you specify TimeOut as 30, the software stops the
simulation and issues a warning if computing simulation results takes more than 30 seconds.

The TimeOut parameter specifies a limit on the amount of clock time for a simulation to run. To
specify the maximum time value to simulate, use the Stop time parameter.

This argument is supported only when you specify the first input argument for the sim function as
the name of the model to simulate.
Example: sim("modelName","TimeOut",60) configures a simulation to run for a maximum
duration of 60 seconds.
Tips

To specify this option for a simulation configured using a Simulink.SimulationInput object, use
the setModelParameter function.

simIn = Simulink.SimulationInput("modelName");
simIn = setModelParameter(simIn,"TimeOut",60);

Trace — Option to display summary of parameters before simulation
'siminfo'

Option to display summary of parameters before simulation, specified as 'siminfo'.

This argument is supported only when you specify the first input argument for the sim function as
the name of the model to simulate.
Example: sim("modelName","Trace","siminfo")
Data Types: char | string

Output Arguments
simOut — Simulation outputs
Simulink.SimulationOutput object | array of Simulink.SimulationOutput objects | vector

Simulation outputs, returned as a Simulink.SimulationOutput object, an array of
Simulink.SimulationOutput objects, or a vector. The Simulink.SimulationOutput object
contains all data logged from simulation as well as metadata about the simulation, including timing
information and diagnostics.

 sim

2-441

When you specify only the model name as an input argument and the model you simulate has the
Single simulation output parameter disabled, the output from the sim function is a vector of
simulation times. For the sim function to return results in a consistent format for any syntax, save the
model with the Single simulation output parameter enabled.

Tips
• To ensure the sim function returns results in the same format regardless of which input

arguments you specify, save your model with the Single simulation output parameter enabled.
With this option enabled, simulation results are returned as a Simulink.SimulationOutput
that contains all logged data as well as simulation metadata, including timing information and
diagnostics. Analyzing results from multiple simulations is easier when all simulation data and
metadata is stored in a single object.

• To get a list of model configuration parameters, use the getActiveConfigSet function and the
get_param function. For example, to see the configuration parameters for the model vdp, enter
these commands in the MATLAB Command Window.

configSet = getActiveConfigSet("vdp");
configSetNames = get_param(configSet,"ObjectParameters")

The return from the get_param function lists the model configuration parameters such as
StopTime, SaveTime, SaveState, SaveOutput, and SignalLogging.

• When you simulate a model hierarchy, model configuration parameters you specify as input
arguments to the sim function apply to the top model.

• When you run a simulation using the sim function, the simulation runs until an error occurs or the
simulation reaches the specified stop time. To programmatically run an interactive simulation that
you can pause and continue programmatically, use the set_param function with the
SimulationCommand input argument. For more information, see “Run Simulations
Programmatically”.

• When you simulate a model with infinite stop time, stop the simulation from the MATLAB
Command Window by pressing Ctrl+C. The simulation stops, and simulation results are not saved
in the MATLAB workspace.

• Configure logging for time, states, and outputs using the Configuration Parameters dialog box. On
the Modeling tab, under Setup, click Model Settings. Then, in the Configuration Parameters
dialog box, select Data Import/Export.

• To log signals throughout a model, use signal logging or logging blocks such as the To Workspace
block or the Record, XY Graph block. For more information about signal logging, see “Save Signal
Data Using Signal Logging”.

Version History
Introduced before R2006a

R2009b: Returning multiple output arguments not recommended
Not recommended starting in R2009b

Starting in R2009b, the sim function provides enhanced compatibility with parallel computing,
including an option to return simulation results as a single simulation object, which simplifies data
and variable management. The single simulation output syntax is recommended. Syntaxes that return
more than one output argument are not recommended.

2 Functions

2-442

To configure a model to always return results as a single output object, use the Single simulation
output parameter.

To simulate a model programmatically in R2009a and earlier, use this syntax.

[T,X,Y1,Y2,Yn] = sim('model',Timespan,Options,UT);

Only the model input argument is required. When you do not specify other input arguments, the
simulation uses the current configuration parameter values for the model. When you specify
additional arguments, those arguments override the current values for the model. When you specify
an argument as [], the simulation uses the current value in the model for that argument.

The tables describe the input and output arguments and provide information about how to update
your code to use syntaxes recommended for R2009b and later.

 sim

2-443

Input Argument Descriptions and Replacements

Input Argument Description Replacement
model Name of model to simulate,

specified as a character vector.
No change.

Starting in R2017a, you can
specify the model to simulate
using a
Simulink.SimulationInput
object.

Timespan Simulation start and stop times,
specified as a scalar or a vector.

• TFinal — Specifies the stop
time for the simulation,
which starts from zero.

• [TStart TFinal] —
Specifies the start time and
the stop time for the
simulation.

• [TStart OutputTimes
TFinal] — Specifies start
and stop times for the
simulation along with output
times for which to calculate
a value. When you do not
specify output times, the
simulation engine
determines the times for
which to calculate values.
Specifying output times
ensures that the simulation
computes a value for each
time you specify.

Configure these options by
specifying model configuration
parameters as name-value
arguments:

• Stop time — Specify the
stop time for the simulation.

• Start time — Specify the
start time for the simulation.

• Output times — Specify
output times for which to
calculate a value.

Starting in R2017a, you can
configure these options using a
Simulink.SimulationInput
object.

Options One or more simulation
parameters, specified as a
structure.

Specify model configuration
parameters using name-value
arguments.

Starting in R2017a, you can
configure simulation options
using a
Simulink.SimulationInput
object.

2 Functions

2-444

Input Argument Description Replacement
UT External input data for root-

level input ports.
Specify input data for root-level
input ports using the Input
parameter. Specify the
parameter as a name-value
argument.

Starting in R2017a, you can
specify external inputs using a
Simulink.SimulationInput
object.

Output Argument Descriptions and Replacements

Output Argument Description Replacement
T Simulation times, returned as a

vector.
Access time, states, and output
data through the
Simulink.SimulationOutpu
t object. When you log time,
states, and outputs, the
SimulationOutput object
contains the logged data, which
you can access as a property
using a dot and the variable
name for the logged data. For
example, if the
SimulationOutput object is
returned as simOut, and you
save time data to the variable
tout:

tout = simOut.tout;

Use the model configuration
parameters to specify data to
log and the variables names for
the logged data.

• Time
• States
• Output

X Logged states, returned as an
array or a structure.

Y1,Y2,...,YN Logged outputs, returned as one
or more vectors.

R2009b: SrcWorkspace argument not recommended
Not recommended starting in R2009b

Starting in R2009b, the SrcWorkspace name-value argument is not recommended. Specifying this
argument can lead to transparency violations for parallel simulations. Instead of using values defined
in a workspace, specify values for simulation as input arguments to the sim function.

• Before R2017a, specify parameter values for simulation using a structure that contains fields with
names that match the parameter names and values that indicate the value to use for the
parameter.

 sim

2-445

• Starting in R2017a, configure model parameter, block parameter, and variable values using a
Simulink.SimulationInput object.

See Also
Functions
parsim | sldebug

Objects
Simulink.SimulationInput | Simulink.SimulationOutput | Simulink.ConfigSet

Model Settings
Single simulation output

Topics
“Run Simulations Programmatically”
“Running Multiple Simulations”
“Manage Configuration Sets for a Model”
“Set Model Configuration Parameters for a Model”

2 Functions

2-446

simplot
Redirects to the Simulation Data Inspector

Note simplot will be removed in a future release. Use the Simulation Data Inspector instead.

Syntax
simplot

Description
simplot redirects to the Simulation Data Inspector and returns empty handles. This function is no
longer supported and has been replaced by the Simulation Data Inspector. Use the Simulation Data
Inspector button in the Simulink Editor to capture simulation output in the Simulation Data
Inspector. Programmatically, use the function Simulink.sdi.view instead.

See Also
Simulink.sdi.view

 simplot

2-447

simulink
Open Simulink Start Page

Syntax
simulink

Description
simulink opens the Simulink Start Page. From the Start Page, choose a model or project template or
browse the examples.

Examples

Open Simulink from MATLAB Command Window

In the MATLAB Command Window, use the simulink function.

simulink

The Simulink Start Page opens.

Tips
To start Simulink without opening the Library Browser or Start Page, use start_simulink, which is
faster than simulink.

Version History
Introduced before R2006a

R2016a: simulink function opens Simulink Start Page
Behavior changed in R2016a

The behavior of the simulink function changed in R2016a. Formerly, it opened the Simulink Library
Browser and loaded the Simulink block library.

• To open the Library Browser, use slLibraryBrowser.
• To only load the Simulink block library, use this command.

load_system simulink

See Also
start_simulink | slLibraryBrowser

Topics
“Modeling”

2 Functions

2-448

simulinkproject
(Not recommended) Open project and get project object

Note simulinkproject is not recommended. Use currentProject or openProject instead. For
more information, see “Compatibility Considerations”.

Syntax
simulinkproject
simulinkproject(projectPath)

proj = simulinkproject
proj = simulinkproject(projectPath)

Description
simulinkproject opens the project or brings focus to the tool if it is already open. After you open
the tool, you can create projects or access recent projects using the Project tab.

simulinkproject(projectPath) opens the project specified by any file or folder under the
project root in projectPath and gives focus to the project.

proj = simulinkproject returns a project object proj you can use to manipulate the project at
the command line. You need to get a project object before you can use any of the other project
functions.

proj = simulinkproject(projectPath) opens the project specified by projectPath and
returns a project object.

Examples

Open Project Tool

Open the Project Tool.

simulinkproject

Open a Project

Specify either the .prj file path or the folder that contains your .SimulinkProject folder
and .prj file. The project opens and brings focus to the project.

simulinkproject('C:/projects/project1/')

 simulinkproject

2-449

Open a Project and Get a Project Object

Open a specified project and get a project object to manipulate the project at the command line. To
avoid your startup script opening windows that take focus away from the MATLAB Desktop, use
start_simulink instead of the simulink function, and use simulinkproject with an output
argument instead of uiopen. If you use uiopen(myproject.prj) this calls simulinkproject
with no output argument and gives focus to the project.

start_simulink
proj = simulinkproject('C:/projects/project1/myproject.prj')

Get Airframe Example Project

Open the Airframe project and create a project object to manipulate and explore the project at the
command line.

sldemo_slproject_airframe
proj = simulinkproject

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'
 Information: [1x1 slproject.Information]
 Dependencies: [1x1 slproject.Dependencies]
 Categories: [1×1 slproject.Category]
 Files: [1×31 slproject.ProjectFile]
 Shortcuts: [1×7 slproject.Shortcut]
 ProjectPath: [1×7 slproject.PathFolder]
ProjectReferences: [1×0 slproject.ProjectReference]
 StartupFiles: [1×0 slproject.StartupFile]
 ShutdownFiles: [1×0 slproject.ShutdownFile]
 RootFolder: 'C:\slexamples\airframe11'

Find Project Commands

Find out what you can do with your project.

methods(proj)

Methods for class slproject.ProjectManager:

addFile
addFolderIncludingChildFiles
addPath
addReference
addShortcut
addShutdownFile
addStartupFile
close
createCategory
export

2 Functions

2-450

findCategory
findFile
isLoaded
listModifiedFiles
listRequiredFiles
refreshSourceControl
reload
removeCategory
removeFile
removePath
removeReference
removeShortcut
removeShutdownFile
RemoveStartupFile

Examine Project Properties Programmatically

After you get a project object using the simulinkproject function, you can examine project
properties.

Examine the project files.

files = proj.Files

files =

 1x31 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Use indexing to access files in this list. The following command gets file number 14. Each file has
properties describing its path, attached labels, and source control information.

proj.Files(15)

ans =

 ProjectFile with properties:

 Path: 'C:\slexamples\airframe24\models\DigitalControl.slx'
 Labels: [1x1 slproject.Label]
 Revision: '2'
 SourceControlStatus: Unmodified

Examine the labels of the file.

proj.Files(15).Labels

ans =

 Label with properties:

File: 'C:\slexamples\airframe24\models\DigitalControl.slx'
 DataType: 'none'

 simulinkproject

2-451

 Data: []
 Name: 'Design'
 CategoryName: 'Classification'

Get a particular file by name.

myfile = findFile(proj,'models/AnalogControl.slx')

myfile =

 ProjectFile with properties:

 Path: 'C:\slexamples\airframe24\models\AnalogControl.slx'
 Labels: [1×1 slproject.Label]
 Revision: '2'
 SourceControlStatus: Unmodified

Find out what you can do with the file.

methods(myfile)

Methods for class slproject.ProjectFile:

addLabel findLabel removeLabel

Update the file dependencies.

update(proj.Dependencies)

The project runs a dependency analysis to update the known dependencies between project files.

For more information on working with project files, including modified files and dependencies, see
“Automate Project Tasks Using Scripts”.

Input Arguments
projectPath — Full path to project file or folder
character vector

Full path to project .prj file, or the path to the project root folder, or any subfolder or file under your
project root, specified as a character vector.
Example: 'C:/projects/project1/myProject.prj'
Example: 'C:/projects/project1/'

Output Arguments
proj — Project
project object

Project, returned as a project object. Use the project object to manipulate the currently open project
at the command line.

Properties of proj output argument.

2 Functions

2-452

Project Property Description
Categories Categories of project labels
Dependencies Dependencies between project files in a MATLAB

digraph object
Files Paths and names of project files
Information Information about the project such as the

description, source control integration, repository
location, and whether it is a top-level project

Name Project name
ProjectPath Folders that the project puts on the MATLAB

path
ProjectReferences Folders that contain referenced projects.

Contains read-only project objects for referenced
projects.

RootFolder Full path to project root folder
Shortcuts An array of the shortcuts in this project
ShutdownFiles An array of the shutdown files in this project
StartupFiles An array of the startup files in this project

Tips
Alternatively, you can use slproject.loadProject to load a project, and
slproject.getCurrentProjects to get a project object. Use simulinkproject to open projects
and explore projects interactively. Use slproject.getCurrentProjects and
slproject.loadProject for project automation scripts.

Version History
Introduced in R2012a

R2019a: Simulink project API is not recommended
Not recommended starting in R2019a

Starting in R2019a, instead of simulinkproject and related functions, use the currentProject
or openProject functions in MATLAB. The Simulink project API will continue to be supported, but,
after R2019a, new features will be available only if you use the new MATLAB project API. There are
no plans to remove the Simulink project API at this time.

You can continue to use simulinkproject and related functions listed in
methods(simulinkproject). New functions added after R2019a, such as runChecks and
listImpactedFiles, do not work with simulinkproject. Use currentProject instead.

The new MATLAB project API is part of the R2019a functionality enabling you to use projects in
MATLAB, with or without Simulink. You can now share projects with users who do not have Simulink.

 simulinkproject

2-453

See Also
Functions
currentProject | slproject.create | slproject.getCurrentProjects |
slproject.loadProject

Topics
“Automate Project Tasks Using Scripts”
“Create a New Project from a Folder”
“Open Recent Projects”
“Clone Git Repository”
“Check Out SVN Repository”
“What Are Projects?”

2 Functions

2-454

Simulink.allBlockDiagrams
Find loaded Simulink models and libraries

Syntax
bd = Simulink.allBlockDiagrams()
bd = Simulink.allBlockDiagrams(type)

Description
bd = Simulink.allBlockDiagrams() returns all loaded block diagrams, including models and
libraries.

bd = Simulink.allBlockDiagrams(type) returns either models or libraries.

Examples

Find Loaded Models

Find all loaded models in the current Simulink session, excluding libraries. The example shows a
result from a typical session.

Simulink.allBlockDiagrams('model')

ans =

 237.0001
 56.0001
 2.0001

Get Names of Loaded Block Diagrams

Find all loaded models in the current Simulink session and return results as names. Use
Simulink.allBlockDiagrams with get_param to get the names. The example shows a result from
a typical session and includes loaded libraries and models.

get_param(Simulink.allBlockDiagrams(),'Name')

ans =

 5×1 cell array

 {'simulink_extras'}
 {'simulink' }
 {'sldemo_fuelsys' }

 Simulink.allBlockDiagrams

2-455

 {'f14' }
 {'vdp' }

Get Loaded Block Diagrams Based on Parameter

Find all loaded models in the current Simulink session whose 'Dirty' parameter is 'on'.

bds = Simulink.allBlockDiagrams();
dirtyBds = bds(strcmp(get_param(bds,'Dirty'),'on'));

Input Arguments
type — Type of block diagram whose blocks to return
'model' | 'library'

Type of block diagram whose blocks to return, specified as 'model' or 'library'.

Output Arguments
bd — Loaded block diagrams
array of handles

Loaded block diagrams, returned as an array of handles.

Version History
Introduced in R2018a

See Also
Simulink.FindOptions | Simulink.findBlocksOfType | Simulink.findBlocks

2 Functions

2-456

Simulink.architecture.add
Add tasks or triggers to selected architecture of model

Syntax
Simulink.architecture.add(Type,Object)

Description
Simulink.architecture.add(Type,Object) adds the new task or trigger Object of the
specified Type to a model.

Examples

Add periodic trigger

Add a task, MyTask1, to the software node MulticoreProcessor of the selected architecture of the
slexMulticoreExample model.
slexMulticoreExample;
Simulink.architecture.add('Task','slexMulticoreExample/MulticoreProcessor/Core2/MyTask1');

Input Arguments
Type — Object type
'PeriodicTrigger' | 'AperiodicTrigger' | 'Task'

Object type that identifies the kind of trigger or task to add, , specified as a 'PeriodicTrigger',
'AperiodicTrigger', or 'Task'.

• 'PeriodicTrigger'

Adds a periodic trigger to the architecture. Set the properties of the trigger with the
Simulink.architecture.set_param function.

• 'AperiodicTrigger'

Adds an aperiodic trigger to the architecture. Set the properties of the trigger with the
Simulink.architecture.set_param function.

• 'Task'

Adds a task to the architecture. Set the properties of the task with the
Simulink.architecture.set_param function.

Object — Trigger or task object identifier
character vector

Trigger or task object identifier to add to architecture, specified as a character vector.
Example: 'slexMulticoreExample/MulticoreProcessor/Core2/MyTask1'

 Simulink.architecture.add

2-457

Data Types: char

Version History
Introduced in R2014a

See Also
Simulink.architecture.set_param | Simulink.architecture.get_param |
Simulink.architecture.delete | Simulink.architecture.find_system |
Simulink.architecture.importAndSelect | Simulink.architecture.profile |
Simulink.architecture.register

2 Functions

2-458

Simulink.architecture.config
Create or convert configuration for concurrent execution

Syntax
Simulink.architecture.config(model,'Convert')
Simulink.architecture.config(model,'Add')
Simulink.architecture.config(model,'OpenDialog')

Description
Simulink.architecture.config(model,'Convert') converts the active configuration set in
the specified model to one for concurrent execution.

Simulink.architecture.config(model,'Add') adds and activates a new configuration set for
concurrent execution.

Simulink.architecture.config(model,'OpenDialog') opens the Concurrent Execution
dialog box for a model configuration.

Examples

Convert existing configuration set

Convert existing configuration set for concurrent execution in the model vdp.

vdp;
Simulink.architecture.config('vdp','Convert');

Add new configuration set

Add a new configuration set (copied from the existing configuration set) for concurrent execution in
the model vdp.

vdp;
Simulink.architecture.config('vdp','Add');

Open Concurrent Execution dialog box

Open the Concurrent Execution dialog box in the model slexMulticoreExample.

 Simulink.architecture.config

2-459

slexMulticoreExample;
Simulink.architecture.config('slexMulticoreExample','OpenDialog');

Input Arguments
model — Model name
character vector

Model name whose configuration set you want to convert or add to, specified as a character vector.
Example:
Data Types: char

Version History
Introduced in R2014a

See Also
Simulink.architecture.add | Simulink.architecture.set_param |
Simulink.architecture.profile

2 Functions

2-460

signalBuilderToSignalEditor
Import signal data and properties from Signal Builder block to Signal Editor block

Syntax
signal_editor = signalBuilderToSignalEditor(signal_builder,Name,Value)
[signal_editor,sorted_group_index,sorted_group_names] =
signalBuilderToSignalEditor(signal_builder,Name,Value)

Description
signal_editor = signalBuilderToSignalEditor(signal_builder,Name,Value) imports
signal data and properties from Signal Builder block to the Signal Editor block. This function adds a
Signal Editor block to the current model using the signal data and properties from the Signal Builder
block. To contain the signal data and properties, the function creates a new MAT-file.

During the port, the signalBuilderToSignalEditor function:

• Unicode group names are prefixed with Test_Case_.
• Group names are converted to valid MATLAB variable names with leading and trailing white

spaces removed.
• Group names are converted with trailing underscores removed.
• Remaining numbers maintained in the scenario name.
• Orders signal groups alphabetically.
• Creates unique group names from existing names following MATLAB conventions.

The signalBuilderToSignalEditor function does not support

• Models that contain test case parameters. You can successfully port data from the Signal Builder
block, but you cannot initialize parameters with the Signal Editor block in test harnesses
generated by Simulink Design Verifier.

• Models that contain Signal Builder signal generators created from the Create and Connect
Generator context menu.

[signal_editor,sorted_group_index,sorted_group_names] =
signalBuilderToSignalEditor(signal_builder,Name,Value) outputs vectors containing the
signal groups and group names.

Examples

Replace Signal Builder Block with Signal Editor Block

This example shows how to replace an existing Signal Builder block with a Signal Editor block. To
store signals from Signal Builder, the example creates RoadProfilesMine.mat.

model = 'ex_replace_signalbuilder';
open_system(model);

 signalBuilderToSignalEditor

2-461

sbBlockH = [model '/Road Profiles'];
seBlockH = signalBuilderToSignalEditor(sbBlockH,...
'Replace',true,'FileName','RoadProfilesMine.mat');

Input Arguments
signal_builder — Signal Builder block to replace
current model (default) | scalar

Signal Builder block to replace, specified as a scalar.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FileName','RoadProfilesMine.mat'

FileName — MAT-file that stores signals
'dataset.mat' (default) | scalar

MAT-file that signalBuilderToSignalEditor creates to store signals and properties, specified as
a scalar. Do not use a file name from one locale in a different locale. When using the block on multiple
platforms, consider specifying just the MAT-file name and having the MAT-file be on the MATLAB
path.
Data Types: char | string

Replace — Replace Signal Builder block with Signal Editor block
false (default) | true

Replace Signal Builder block with Signal Editor block, specified as true or false.
Data Types: logical

Output Arguments
signal_editor — Signal Editor block handle
scalar

2 Functions

2-462

Signal Editor block handle, specified as a scalar.

sorted_group_index — List of Signal Builder group indices
vector

List of Signal Builder group indices, specified as a vector and ordered as they will appear in the
Signal Editor.

sorted_group_names — List of Signal Builder group names
cell array

Signal Editor group names, specified as a cell array of vectors, in alphabetical order.

The names are unique valid MATLAB variable names generated from the Signal Builder group names.

.

Limitations
The Signal Editor block can output a bus for each signal, but cannot output all signals in a single bus.
If the Signal Builder block from which you are importing signal data has a bus as output, consider:

• Creating or using an existing Simulink.Bus bus object to contain the Signal Builder bus signals.
The Simulink.Bus object contains the Simulink.BusElement that define each element in the
Simulink.Bus object.

• In the Signal Editor user interface, creating a bus element and dragging and dropping the signals
imported from the Signal Builder block into that bus element.

• After running the signalBuilderToSignalEditor function, select the Output a bus signal
check box in the Signal Editor block and enter the Signal Builder bus object name in Select bus
object text box.

Version History
Introduced in R2018a

See Also
Signal Editor | signalbuilder | signalEditor

Topics
“Replace Signal Builder Block with Signal Editor Block”
“Migrate from Signal Builder Block to Signal Editor Block”

 signalBuilderToSignalEditor

2-463

Simulink.architecture.delete
Delete triggers and tasks from selected architecture of model

Syntax
Simulink.architecture.delete(Object)

Description
Simulink.architecture.delete(Object) deletes the specified object trigger or task.

Examples

Delete task Plant

Delete the task Task3 from the Core2 periodic trigger of the MulticoreProcessor software node of the
selected architecture of the slexMulticoreExample model.

slexMulticoreExample
Simulink.architecture.delete('slexMulticoreExample/MulticoreProcessor/Core2/Task3')

Input Arguments
Object — Object to delete, specified as a character vector
character vector

Object to be deleted. Possible objects are:

• Periodic trigger

Note You cannot delete the last periodic trigger. The software node must contain at least one
periodic trigger.

• Aperiodic trigger
• Task

Example: [bdroot '/MulticoreProcessor/Core2/Task3']
Data Types: char

Version History
Introduced in R2014a

2 Functions

2-464

See Also
Simulink.architecture.get_param | Simulink.architecture.add |
Simulink.architecture.find_system | Simulink.architecture.importAndSelect |
Simulink.architecture.profile | Simulink.architecture.register

 Simulink.architecture.delete

2-465

Simulink.architecture.find_system
Find objects under architecture object

Syntax
object = Simulink.architecture.find_system(RootObject)

object = Simulink.architecture.find_system(RootObject,ParamName,ParamValue)

Description
object = Simulink.architecture.find_system(RootObject) looks for all objects under
RootObject.

object = Simulink.architecture.find_system(RootObject,ParamName,ParamValue)
returns the object in RootObject whose parameter ParamName has the value ParamValue.
Parameter name and value character vectors are case-sensitive.

Examples

Look for all objects

To find all the objects in slexMulticoreExample:

slexMulticoreExample
t = Simulink.architecture.find_system('slexMulticoreExample')

t =

 'slexMulticoreExample'
 'slexMulticoreExample/MulticoreProcessor'
 'slexMulticoreExample/MulticoreProcessor/Core1'
 'slexMulticoreExample/MulticoreProcessor/Core1/Task1'
 'slexMulticoreExample/MulticoreProcessor/Core1/Task2'
 'slexMulticoreExample/MulticoreProcessor/Core2'
 'slexMulticoreExample/MulticoreProcessor/Core2/Task3'
 'slexMulticoreExample/MulticoreProcessor/Core2/Task4'

Look for all tasks

To find all the tasks in slexMulticoreExample:

slexMulticoreExample
t = Simulink.architecture.find_system('slexMulticoreExample','Type','Task')

t =

 'slexMulticoreExample/MulticoreProcessor/Core1/Task1'
 'slexMulticoreExample/MulticoreProcessor/Core1/Task2'

2 Functions

2-466

 'slexMulticoreExample/MulticoreProcessor/Core2/Task3'
 'slexMulticoreExample/MulticoreProcessor/Core2/Task4'

Input Arguments
RootObject — Object to search
character vector

Object to search for parameter value, specified as a character vector giving the object full path name.
Possible objects are:

• Model
• Software node
• Hardware node
• Periodic trigger
• Aperiodic trigger
• Task

Example: 'slexMulticoreExample'

ParamName — Name of parameter to find
character vector | scalar | vector

Name of the parameter to find. Possible values are:

• 'Name'
• 'Type'
• 'ClockFrequency'
• 'Color'
• 'Period'
• 'EventHandlerType'
• 'SignalNumber'
• 'EventName'

Example: 'EventName'

ParamValue — Parameter value to find
character vector | scalar | vector

Parameter value to find, specified as a character vector, a scalar, or a vector.
Example: 'ERTDefaultEvent'

Version History
Introduced in R2014a

 Simulink.architecture.find_system

2-467

See Also
Simulink.architecture.set_param | Simulink.architecture.add |
Simulink.architecture.delete | Simulink.architecture.importAndSelect |
Simulink.architecture.profile | Simulink.architecture.register

2 Functions

2-468

Simulink.architecture.get_param
Get configuration parameters of architecture objects

Syntax
ParamValue = Simulink.architecture.get_param(Object,ParamName)

Description
ParamValue = Simulink.architecture.get_param(Object,ParamName) returns the value of
the specified parameter for the object, Object. ParamName is case-sensitive.

Examples

Get period

Get the period of task Task3 of trigger Core2 of software node MulticoreProcessor of the selected
architecture for the model slexMulticoreExample.
slexMulticoreExample;
p = Simulink.architecture.get_param('slexMulticoreExample/MulticoreProcessor/Core2/Task3','Period')

p =

0.2

Input Arguments
Object — Object whose parameter value to return
character vector

Object whose parameter value to return, specified as a character vector giving the object full path
name. Possible objects are:

• Software node
• Hardware node
• Periodic trigger
• Aperiodic trigger
• Task

ParamName — Parameter whose value to return
character vector

Name of a parameter for which Simulink.architecture.get_param returns a value.

The following are the possible ParamName values:

For a model:

 Simulink.architecture.get_param

2-469

• 'ArchitectureName'
• 'Type'

For a software node:

• 'Name'
• 'Type'

For a hardware node

• 'Name'
• 'ClockFrequency'
• 'Color'
• 'Type'

For a periodic trigger:

• 'Name'
• 'Period'
• 'Color'
• 'Type'

For an aperiodic trigger:

• 'Name'
• 'Color'
• 'EventHandlerType'
• 'SignalNumber'
• 'EventName'
• 'Type'

For a task:

• 'Name'
• 'Period'
• 'Color'
• 'Type'

Version History
Introduced in R2014a

See Also
Simulink.architecture.set_param | Simulink.architecture.add |
Simulink.architecture.delete | Simulink.architecture.find_system |
Simulink.architecture.importAndSelect | Simulink.architecture.profile |
Simulink.architecture.register

2 Functions

2-470

Simulink.architecture.importAndSelect
Import and select target architecture for concurrent execution environment for model

Syntax
Simulink.architecture.importAndSelect(model,Architecture)

Simulink.architecture.importAndSelect(model,
CustomArchitectureDescriptionFile)

Description
Simulink.architecture.importAndSelect(model,Architecture) imports and selects the
built-in target architecture for the concurrent execution environment for the model.

Importing and selecting target architectures requires that the associated support packages or
hardware is installed on your computer.

Simulink.architecture.importAndSelect(model,
CustomArchitectureDescriptionFile) imports and selects the architecture from an XML-based
architecture description file.

Importing and selecting target architectures requires that the associated support packages or
hardware is installed on your computer.

Examples

Import and select a different architecture

Import and select the sample architecture to the model slexMulticoreExample.

slexMulticoreExample
Simulink.architecture.importAndSelect('slexMulticoreExample','Sample Architecture')

Import and select a custom architecture

Import and select the custom architecture defined in the XML file custom_arch.xml. This example
requires you to create a custom_arch.xml file first.

slexMulticoreExample
Simulink.architecture.importAndSelect('slexMulticoreExample','custom_arch.xml')

Input Arguments
model — Model
character vector

Model to import architecture to, specified as a character vector.

 Simulink.architecture.importAndSelect

2-471

Data Types: char

Architecture — Target architecture name
character vector

Target architecture name to import into the concurrent execution environment for the model.
Possible target names are:

Property Description
'Multicore' Single CPU with multiple cores
'Sample Architecture' Example architecture consisting of single CPU with

multiple cores and two FPGAs. You can use this
architecture to model for concurrent execution.

'Simulink Real-Time' Simulink Real-Time™ target
'Xilinx Zynq ZC702 evaluation kit' Xilinx® Zynq® ZC702 evaluation kit target
'Xilinx Zynq ZC706 evaluation kit' Xilinx Zynq ZC706 evaluation kit target
'Xilinx Zynq Zedboard' Xilinx Zynq ZedBoard™ target

Data Types: char

CustomArchitectureDescriptionFile — Custom target architecture file
XML file

Custom target architecture file name, in XML format, that describes a custom target for the
concurrent execution environment for the model, specified as a character vector giving the XML file
name.
Example: custom_arch.xml

Version History
Introduced in R2014a

See Also
Simulink.architecture.set_param | Simulink.architecture.add |
Simulink.architecture.delete | Simulink.architecture.find_system |
Simulink.architecture.profile | Simulink.architecture.register

Topics
“Define a Custom Architecture File”

2 Functions

2-472

Simulink.architecture.profile
Generate profile report for model configured for concurrent execution

Syntax
Simulink.architecture.profile(model)
Simulink.architecture.profile(model,numSamples)

Description
Simulink.architecture.profile(model) generates a profile report for a model configured for
concurrent execution. Subsequent calls to the command for the same model name overwrite the
existing profile report.

Simulink.architecture.profile(model,numSamples) specifies the number of samples to
generate a profile report.

Examples

Generate profile report

Generate profile report for the model slexMulticoreExample.

slexMulticoreExample;
Simulink.architecture.profile('slexMulticoreExample');

The command creates the file slexMulticoreExample_ProfileReport.html in the current
folder and opens it.

Generate profile report for 120 time steps

Generate profile report for the model slexMulticoreExample with data for 120 time steps.

slexMulticoreExample;
Simulink.architecture.profile('slexMulticoreExample',120);

The command creates the file slexMulticoreExample_ProfileReport.html in the current
folder.

Input Arguments
model — Model to profile
character vector

Model to profile, specified as a character vector. Specify a model that is configured for concurrent
execution.
Data Types: char

 Simulink.architecture.profile

2-473

numSamples — Number of time steps
100 (default) | real, positive integer

Number of time steps, specified as a real, positive integer. This value determines the number of steps
to collect data for in the profiled model.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced in R2014a

See Also
Simulink.architecture.get_param | Simulink.architecture.set_param |
Simulink.architecture.add | Simulink.architecture.delete |
Simulink.architecture.find_system | Simulink.architecture.importAndSelect |
Simulink.architecture.register

Topics
“Profile and Evaluate Explicitly Partitioned Models on a Desktop”

2 Functions

2-474

Simulink.architecture.register
Add custom target architecture to concurrent execution target architecture selector

Syntax
Simulink.architecture.register(CustomArchFile)

Description
Simulink.architecture.register(CustomArchFile) adds an XML-format custom target
architecture file CustomArchFile to the concurrent execution target architecture selector. To access
this selector, click the Select button on the Concurrent Execution pane of the Concurrent Execution
dialog box.

Examples

Add custom target architecture

Add custom target architecture defined in the XML file custom_arch.xml to the concurrent
execution target architecture selector. This example requires you to create a custom_arch.xml
first.

slexMulticoreExample
Simulink.architecture.register('custom_arch.xml')

Input Arguments
CustomArchFile — Custom target architecture file
XML file

Custom target architecture file that describes a custom target for concurrent execution, specified as
an XML file.

Version History
Introduced in R2014a

See Also
Simulink.architecture.set_param | Simulink.architecture.add |
Simulink.architecture.delete | Simulink.architecture.find_system |
Simulink.architecture.profile | Simulink.architecture.importAndSelect

 Simulink.architecture.register

2-475

Simulink.Block.getInternalDataType
Get data type of block parameter

Syntax
dataType = Simulink.Block.getInternalDataType(block,parameter,mode)
dataType = Simulink.Block.getInternalDataType(block,parameter)

Description
dataType = Simulink.Block.getInternalDataType(block,parameter,mode) returns the
data type of block parameter when its value is set to Inherit: Inherit via internal rule.
Specify mode to compile or not compile the model before returning the data type.

dataType = Simulink.Block.getInternalDataType(block,parameter) returns the data
type of the parameter from the previous model compilation.

Examples

Return Data Type for Parameters

Return the data type for the Gain block of the slex_getInternalDataType model.

Gain Block ParamDataTypeStr Parameter with Uncompiled Model

Return the data type for the ParamDataTypeStr parameter in the Gain block.

Set model to slex_getInternalDataType.

model='slex_getInternalDataType';

Load slex_getInternalDataType.

load_system('slex_getInternalDataType');

Get the data type of the Gain block with uncompiled model.

dataType=Simulink.Block.getInternalDataType([model, '/Gain'],...
 'ParamDataTypeStr','cached')

dataType =
'auto'

Gain Block ParamDataTypeStr Parameter with Compiled Model

Get the data type of the Gain block with compiled model.

dataType=Simulink.Block.getInternalDataType([model, '/Gain'],...
 'ParamDataTypeStr','compiled')

2 Functions

2-476

dataType =
'ufix16_En15'

Input Arguments
block — Block
character vector | block handle

Block, specified as a character vector or block handle.
Example: [model,'/Gain']

parameter — Block parameter
character vector | string

Block parameter programmatic name, specified as character vector or string. This parameter must be
set to Inherit: Inherit via internal rule in the model.
Example: 'ParamDataTypeStr'
Data Types: char | string

mode — Model compilation
cached (default) | compiled

Model compilation, specified as:

• cached — Return data before model is compiled.
• compiled — Return data after model is compiled.

The function compiles the model based on this setting.
Example: 'cached'

Output Arguments
dataType — Data type of parameter
scalar

Data type of parameter, returned as a scalar character vector.

Limitations
This function returns the data type for only these blocks:

• Sqrt — IntermediateResultsDataTypeStr
• 1-D Lookup Table block, 2-D Lookup Table block, and n-D Lookup Table block —

IntermediateResultsDataTypeStr or FractionDataTypeStr
• Gain — ParamDataTypeStr

Version History
Introduced in R2023a

 Simulink.Block.getInternalDataType

2-477

See Also
Gain | Sqrt | 1-D Lookup Table | 2-D Lookup Table | n-D Lookup Table

Topics
Control Block Parameter Data Types

2 Functions

2-478

Simulink.architecture.set_param
Set architecture object properties

Syntax
Simulink.architecture.set_param(Object,ParamName,ParamValue)

Description
Simulink.architecture.set_param(Object,ParamName,ParamValue) sets the specified
parameter of Object to the specified value. Parameter name and value character vectors are case
sensitive.

Examples

Set software node name

Set the software node name from MulticoreProcessor to MyCPUNewName.
slexMulticoreExample
Simulink.architecture.set_param([bdroot '/MulticoreProcessor'],'Name','MyCPUNewName');

Change Periodic

Set Core2 trigger period to .01.
slexMulticoreExample
Simulink.architecture.set_param([bdroot '/MyCPUNewName/Core2'],'Period','.01')

Input Arguments
Object — Object whose parameter value to set
character vector

Object whose parameter value to set, specified as a character vector giving the object full path name.
Possible objects are:

• Software node
• Hardware node
• Periodic trigger
• Aperiodic trigger
• Task

ParamName — Name of the parameter to set
character vector

Name of parameter whose value to set.

 Simulink.architecture.set_param

2-479

These are the possible parameters whose values you can set for each of the object types:

For software node:

• 'Name' — Name of the software node.

For hardware node:

• 'Name' — Name of the hardware node.
• 'ClockFrequency' — Frequency of the hardware node clock.
• 'Color' — Color of the trigger icon, specified as an RGB triplet (vector).

For a periodic trigger:

• 'Name' — Name of the trigger.
• 'Period' — Period of the trigger.
• 'Color' — Color of the trigger icon, specified as an RGB triplet (vector).

For an aperiodic trigger:

• 'Name' — Name of the trigger.
• 'Color' — Color of the trigger icon, specified as an RGB triplet (vector).
• 'EventHandlerType' — Trigger source for the interrupt-driven task. Possible values:

• 'Event (Windows)'
• 'Posix Signal (Linux/VxWorks 6.x)'

• 'SignalNumber' — Signal number for the trigger. You can set this value only if
EventHandlerType is set to Event (Windows).

• 'EventName' — Event name for the trigger. You can set this value only if EventHandlerType is
set to Posix Signal (Linux/VxWorks 6.x).

For task:

• 'Name' — Name of the task.
• 'Period' — Period of the task.
• 'Color' — Color of the task icon, specified as an RGB triplet (vector).

Data Types: char

ParamValue — Value to set the parameter to
character vector | vector

Value to set the parameter to, specified as a character vector, scalar, or vector. The possible values
depend on the parameter.
Example: 'MyCPUNewName'

Version History
Introduced in R2014a

2 Functions

2-480

See Also
Simulink.architecture.get_param | Simulink.architecture.add |
Simulink.architecture.delete | Simulink.architecture.find_system |
Simulink.architecture.importAndSelect | Simulink.architecture.profile |
Simulink.architecture.register

 Simulink.architecture.set_param

2-481

Simulink.Block.getSampleTimes
Return sample time information for a block

Syntax
ts = Simulink.Block.getSampleTimes(block)

Input Arguments
block

Full name or handle of a Simulink block

Output Arguments
ts

The command returns ts which is a 1xn array of Simulink.SampleTime objects associated with
the model passed to Simulink.Block.getSampleTimes. Here n is the number of sample times
associated with the block. The format of the returns is:

1xn Simulink.SampleTime
Package: Simulink
value: [1x2 double]
Description: [char string]
ColorRGBValue: [1x3 double]
Annotation: [char string]
OwnerBlock: [char string]
ComponentSampleTimes: [1x2 struct]
Methods

• value — A two-element array of doubles that contains the sample time period and offset
• Description — A character vector or string that describes the sample time type
• ColorRGBValue — A 1x3 array of doubles that contains the red, green and blue (RGB) values of

the sample time color
• Annotation — A character vector or string that represents the annotation of a specific sample

time (e.g., 'D1')
• OwnerBlock — For asynchronous and variable sample times, a character vector or string

containing the full path to the block that controls the sample time. For all other types of sample
times, an empty character vector or string.

• ComponentSampleTimes — A structure array of elements of the same type as
Simulink.BlockDiagram.getSampleTimes if the sample time is an async union or if the
sample time is hybrid and the component sample times are available.

Description
ts = Simulink.Block.getSampleTimes(block) performs an update diagram and then returns
the sample times of the block connected to the input argument mdl/signal. This method performs
an update diagram to ensure that the sample time information returned is up-to-date. If the model is
already in the compiled state via a call to the model API, then an update diagram is not necessary.

2 Functions

2-482

Using this method allows you to access all information in the Sample Time Legend programmatically.

Version History
Introduced in R2009a

See Also
Simulink.BlockDiagram.getSampleTimes

 Simulink.Block.getSampleTimes

2-483

Simulink.BlockDiagram.addBusToVector
Convert virtual bus signals into vector signals by adding Bus to Vector blocks

Syntax
[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model)
[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model,includeLibs)
[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model,includeLibs,reportOnly)
[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model,includeLibs,reportOnly,strictOnly)

Description
[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model) searches a model, excluding any library
blocks, for bus signals used implicitly as vectors, and returns the results of the search.

[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model,includeLibs) searches a model, and if
includeLibs is true, includes in the search library blocks for bus signals used implicitly as vectors.

[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model,includeLibs,reportOnly) searches a
model, and if reportOnly is set to false, then the function inserts a Bus to Vector block into each
bus that is used as a vector in any block that it searches. The insertion replaces the implicit use of a
bus as a vector with an explicit conversion of the bus to a vector. The source and destination blocks of
the signal do not change.

If Simulink.BlockDiagram.addBusToVector adds Bus to Vector blocks to the model or any
library, the function changes the saved copy of the diagram.

If Simulink.BlockDiagram.addBusToVector changes a library block, the change affects every
instance of that block in every model that uses the library.

[destBlocks,busToVectorBlocks,ignoredBlocks] =
Simulink.BlockDiagram.addBusToVector(model,includeLibs,reportOnly,strictOnly)
searches a model, and if strictOnly is true, the function checks for input bus signals used
implicitly as vectors that are fed into one of these blocks. These blocks cannot take virtual bus
signals, but they can accept nonvirtual bus signals:

• Delay
• Selector
• Assignment
• Vector Concatenate
• Reshape

2 Functions

2-484

• Permute Dimensions

Examples

Identify Bus-To-Vector Conversions

Model ex_bus_to_vector simulates correctly, but the input to the Gain block is a bus, while the
output is a vector. The Gain block implicitly converts the bus to a vector.

Open the model.

openExample('simulink/ConvertBusSignalToAVectorExample',...
'supportingFile','ex_bus_to_vector.slx')

Identify buses treated as vectors.

[blocks] = Simulink.BlockDiagram.addBusToVector(...
'ex_bus_to_vector')

Processing block diagram 'ex_bus_to_vector'
Number of blocks left that are connected to a bus being used as a vector: 2
Done processing block diagram 'ex_bus_to_vector'

blocks =

 1×2 struct array with fields:

 BlockPath
 InputPort
 LibPath

To understand the relationship between Simulink.BlockDiagram.addBusToVector and the Bus
signal treated as vector configuration parameter, see “Manage Bus-to-Vector Conversions” on page
12-16.

Add Bus to Vector Blocks

Model ex_bus_to_vector simulates correctly, but the input to the Gain block is a bus, while the
output is a vector. The Gain block implicitly converts the bus to a vector.

Open the model.

openExample('simulink/ConvertBusSignalToAVectorExample',...
'supportingFile','ex_bus_to_vector.slx')

 Simulink.BlockDiagram.addBusToVector

2-485

Insert Bus to Vector blocks.

When you use function Simulink.BlockDiagram.addBusToVector with reportOnly set to
false, the function saves the model. To create a writable copy of model ex_bus_to_vector, this
example uses the save_system function.

save_system('ex_bus_to_vector','ex_bus_to_vector_blocks');
[blocks,busToVectors] = Simulink.BlockDiagram.addBusToVector(...
'ex_bus_to_vector_blocks',true,false);

The Gain block no longer implicitly converts the bus to a vector. The inserted Bus to Vector block
performs the conversion explicitly. The Bus to Vector block is virtual and does not affect simulation
results, code generation, or performance.

To understand the relationship between Simulink.BlockDiagram.addBusToVector and the Bus
signal treated as vector configuration parameter, see “Manage Bus-to-Vector Conversions” on page
12-16.

Input Arguments
model — Model name or handle
character vector | string scalar | numeric scalar

Model name or handle, specified as a character vector, string scalar, or numeric scalar.
Data Types: double | char | string

includeLibs — Search library blocks
false (default) | true

Search library blocks, specified as false or true.

• false — Search only the blocks in the model.
• true — Search library blocks for bus signals used implicitly as vectors.

Specify as the second argument.

2 Functions

2-486

Data Types: logical

reportOnly — Report results without changing model
true (default) | false

Choice to report results without changing the model, specified as false or true.

• false — Update the model by inserting Bus to Vector blocks for bus signals that are implicitly
used as vectors.

• true — Report search results, but do not change the model.

Specify as the third argument. Also specify the model and includeLibs arguments.
Data Types: logical

strictOnly — Check input bus signals used implicitly as vectors that feed blocks that can
accept nonvirtual, but not virtual, bus signals
false (default) | true

Check input bus signals used implicitly as vectors that feed blocks that can accept nonvirtual, but not
virtual, bus signals, specified as false or true. If strictOnly is true, the function checks for
input bus signals used implicitly as vectors that are fed into one of these blocks. These blocks cannot
take virtual bus signals, but they can accept nonvirtual bus signals.

• Delay
• Selector
• Assignment
• Vector Concatenate
• Reshape
• Permute Dimensions

Specify as the fourth argument. You must also specify the model, includeLibs, and reportOnly
arguments.
Data Types: logical

Output Arguments
destBlocks — Blocks connected to buses but that treat buses as vectors
array of structures

Blocks connected to buses that treat buses as vectors, returned as an array of structures. Each
structure in the array contains these fields:

• BlockPath — Character vector specifying the path to the block to which the bus connects.
• InputPort — Integer specifying the input port to which the bus connects.
• LibPath — If the block is a library block instance, and if includeLibs is true, the field value is

the path to the source library block. Otherwise, LibPath is empty ([]).

busToVectorBlocks — Bus to Vector blocks added by function
cell array

 Simulink.BlockDiagram.addBusToVector

2-487

Bus to Vector blocks added by function, specified as a cell array. If reportOnly is set to false, the
cell array contains the paths to each Bus to Vector block that the function added to replace buses
used as vectors. Otherwise, busToVectorBlocks is empty ([]).

ignoredBlocks — Cases where function cannot insert Bus to Vector block
array of structures

Cases where function cannot insert Bus to Vector block, specified as an array of structures. Each
structure in the array contains these fields:

• BlockPath — Character vector specifying the path to the block to which the bus connects.
• InputPort — Integer specifying the input port to which the bus connects.

These cases occur when a Bus to Vector cannot be inserted because the input virtual bus signal
consists of elements with mixed attributes.

Tips
• Before you execute this function:

1 Ensure that the model compiles without error.
2 Save the model.

• Back up the model and any libraries before calling the function with reportOnly set to false.
• To preview the effects of the change on blocks in all models, call

Simulink.BlockDiagram.addBusToVector with includeLibs set to true and reportOnly
set to true. Then, examine the information returned in the destBlocks output argument.

Version History
Introduced in R2007a

See Also
Bus to Vector

2 Functions

2-488

Simulink.BlockDiagram.arrangeSystem
Improve layout of block diagram

Syntax
Simulink.BlockDiagram.arrangeSystem(bd)
Simulink.BlockDiagram.arrangeSystem(bd,FullLayout=tf)

Description
Simulink.BlockDiagram.arrangeSystem(bd) improves the layout of the specified block
diagram by realigning, resizing, and moving blocks and straightening signal lines.

Simulink.BlockDiagram.arrangeSystem(bd,FullLayout=tf) specifies whether to apply the
automated layout even when the automated layout might not improve upon the original layout.

Examples

Arrange Programmatically Populated Model

You can use Simulink.BlockDiagram.arrangeSystem with any open model, and it is particularly
useful with models you populate programmatically.

Blocks in the model ex_arrange_system are poorly arranged.

open_system('ex_arrange_system')

Blocks in its subsystem are also poorly arranged.

 Simulink.BlockDiagram.arrangeSystem

2-489

open_system('ex_arrange_system/Subsystem')

Programmatically arrange blocks in the top layer of the specified system.

Simulink.BlockDiagram.arrangeSystem('ex_arrange_system')

Simulink.BlockDiagram.arrangeSystem('ex_arrange_system/Subsystem')

Force Automated Layout

By default, Simulink.BlockDiagram.arrangeSystem applies an automated layout only when the
automated layout is expected to improve upon the original layout. You can force this function to apply
the layout even when the automated layout might not improve upon the original layout.

Blocks in the model ForceArrangeSystem are arranged well.

open_system('ex_arrange_system2')

The automated layout might not improve upon the original layout because the blocks are already
arranged well.

Suppose you want to apply the automated layout regardless of whether the automated layout is an
improvement. To force the automated layout, set FullLayout to true.

2 Functions

2-490

Simulink.BlockDiagram.arrangeSystem('ex_arrange_system2',FullLayout='true')

Input Arguments
bd — Block diagram of system
character vector | string scalar | numeric scalar

Block diagram of system, specified as a character vector, string scalar, or numeric scalar.

Specify one of the following options:

• System name (must not include a path or extension)
• System handle
• Subsystem block path

Data Types: double | char | string

tf — Option to force automated layout
'false' (default) | 'true'

Option to force automated layout, specified as 'true' or 'false'.

• 'true' — Applies the automated layout even when the automated layout might not improve upon
the original layout

• 'false' — Applies the automated layout only when the automated layout is expected to improve
upon the original layout.

Version History
Introduced in R2018a

See Also
add_block | add_line | Simulink.BlockDiagram.routeLine

Topics
“Configure Model Layout”
“Programmatic Modeling Basics”

 Simulink.BlockDiagram.arrangeSystem

2-491

Simulink.BlockDiagram.buildRapidAcceleratorTarg
et
Build Rapid Accelerator target for model and return run-time parameter set

Syntax
rtp = Simulink.BlockDiagram.buildRapidAcceleratorTarget(mdl)

Description
rtp = Simulink.BlockDiagram.buildRapidAcceleratorTarget(mdl) builds a Rapid
Accelerator target for model, mdl, and returns run-time parameter set, rtp.

Examples

Build Rapid Accelerator Target for Model

In the MATLAB Command Window, type:
rtp = Simulink.BlockDiagram.buildRapidAcceleratorTarget('f14')

Building the rapid accelerator target for model: f14
Successfully built the rapid accelerator target for model: f14

rtp =

 modelChecksum: [2.6812e+09 2.7198e+09 589261472 4.0180e+09]
 parameters: [1x1 struct]

Input Arguments
mdl — Simulink model name
string

Name or handle of a Simulink model
Example: 'modelName'

Output Arguments
rtp — Run-time parameter
string

Run-time parameter set that contains two elements:

• modelChecksum– 1x4 vector that encodes the structure of the model.
• parameters– A structure of the tunable parameters in the model. This structure contains the

following fields.

2 Functions

2-492

Run-time parameters

Field Description
dataTypeName The data type name, for example, double.
dataTypeId Internal data type identifier for use by

Simulink Coder.
complex Complex type or real type specification. Value

is 0 if real, 1 if complex.
dtTransIdx Internal data type identifier for use by

Simulink Coder.
values All values associated with this entry in the

parameters substructure.
map Mapping structure information that correlates

the values to the model tunable parameters.
This structure contains the following fields:

• Identifier: Tunable parameter name.
• ValueIndices: Start and end indices into

the values field, [startIdx, endIdx]
• Dimensions: Dimension of this tunable

parameter (matrices are generally stored
in column-major format).

Version History
Introduced in R2012b

See Also
Topics
“How Acceleration Modes Work”
“Choosing a Simulation Mode”
“Design Your Model for Effective Acceleration”

 Simulink.BlockDiagram.buildRapidAcceleratorTarget

2-493

Simulink.BlockDiagram.copyContentsToSubsystem
Copy graphical contents from system to empty subsystem

Syntax
Simulink.BlockDiagram.copyContentsToSubsystem(sys,subsys)

Description
Simulink.BlockDiagram.copyContentsToSubsystem(sys,subsys) copies the blocks, lines,
and annotations of the specified system to the specified subsystem. It does not affect nongraphical
information such as configuration sets.

Use this function to convert a referenced model derived from an atomic subsystem into an atomic
subsystem that is equivalent to the original subsystem.

To use this function:

• The specified system must be loaded in memory.
• The specified subsystem must be loaded in memory.
• The specified system must not contain the specified subsystem.
• The specified subsystem must not contain any blocks or lines. Other types of information can exist

in the subsystem and are unaffected by the function. To delete the graphical content of the
destination subsystem, use Simulink.SubSystem.deleteContents.

Examples

Copy Block Diagram of Model to Subsystem

Copy the contents of a referenced model to an empty subsystem.

Open the sldemo_mdlref_basic model.

openExample('sldemo_mdlref_basic')

Add an empty subsystem to the model.

add_block('built-in/Subsystem','sldemo_mdlref_basic/Subsystem')

Load the sldemo_mdlref_counter referenced model that contains the contents to copy.

load_system('sldemo_mdlref_counter')

Copy the graphical contents from the sldemo_mdlref_counter referenced model to the empty
subsystem.

2 Functions

2-494

Simulink.BlockDiagram.copyContentsToSubsystem...
('sldemo_mdlref_counter','sldemo_mdlref_basic/Subsystem')

Input Arguments
sys — System name or handle
numeric scalar | character vector | string scalar

System name or handle, specified as a numeric scalar, character vector, or string scalar.

The system name must not include a path or extension.
Example: 'model1'
Data Types: double | char | string

subsys — Subsystem block path or handle
numeric scalar | character vector | string scalar

Subsystem block path or handle, specified as a numeric scalar, character vector, or string scalar.
Example: 'model2/Subsystem'
Data Types: double | char | string

Version History
Introduced in R2007a

See Also
Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram |
Simulink.SubSystem.deleteContents

Topics
“Nonvirtual Blocks” on page 11-8
“Create Subsystems”

 Simulink.BlockDiagram.copyContentsToSubsystem

2-495

Simulink.BlockDiagram.createSubsystem
Create subsystem containing specified set of blocks

Syntax
Simulink.BlockDiagram.createSubsystem(blocks)
Simulink.BlockDiagram.createSubsystem()
Simulink.BlockDiagram.createSubsystem(___ ,Name,Value)

Description
Simulink.BlockDiagram.createSubsystem(blocks) creates a subsystem and moves the
specified blocks into it. All of the specified blocks must originally reside in the same block diagram.

If any of the blocks have unconnected ports, the function creates and connects Inport and Outport
blocks to them inside the subsystem.

If any of the blocks are input or output port blocks, the function creates Inport and Outport blocks in
the parent system to connect to the corresponding ports on the new Subsystem block.

Simulink.BlockDiagram.createSubsystem() replaces the currently selected blocks with a new
subsystem that contains those blocks.

Simulink.BlockDiagram.createSubsystem(___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in previous syntaxes. For
example, 'Name','MySubsystem' names the new subsystem 'MySubsystem'.

Examples

Create Subsystem from Model

Open or load the example model.

CreateSubsystemModel

Get the block handles for all blocks at the top level of the model by using the
Simulink.findBlocks function.

bh = Simulink.findBlocks('CreateSubsystemModel');

Replace the contents of the model with a subsystem that contains the model contents.

Simulink.BlockDiagram.createSubsystem(bh);

Create Named Subsystem from Model

Open or load the example model.

2 Functions

2-496

CreateSubsystemModel

Get the block handles for all blocks at the top level of the model by using the
Simulink.findBlocks function.

bh = Simulink.findBlocks('CreateSubsystemModel');

Replace the contents of the model with a subsystem named ss1 that contains the model contents.

Simulink.BlockDiagram.createSubsystem(bh,'Name','ss1');

Input Arguments
blocks — Block handles
numeric array

Block handles, specified as a numeric array. To get block handles, use the Simulink.findBlocks or
gcbh functions.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Simulink.BlockDiagram.createSubsystem(blocks, 'Name',
'MySubsystemName')

Name — Name of new subsystem
character vector | string scalar

Name of the new subsystem, specified as the comma-separated pair consisting of 'Name' and a
character vector or string scalar.
Data Types: char | string

MakeNameUnique — Option to make subsystem name unique
'on' (default) | 'off'

Option to make the subsystem name unique, specified as the comma-separated pair consisting of
'MakeNameUnique' and 'on' or 'off'.

If the value that you specify for Name is already used in the diagram:

• 'on' — Uses the next available increment of the name. For example, if Name is set to
'Controller' and the diagram already contains a block named 'Controller', the function
names the new subsystem 'Controller1'.

• 'off' — Returns an error.

Dependencies

To use this parameter, specify a value for the Name argument.

 Simulink.BlockDiagram.createSubsystem

2-497

Data Types: char | string

Version History
Introduced in R2009a

See Also
Simulink.BlockDiagram.copyContentsToSubsystem |
Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram

Topics
“Create Subsystems”
“Simulink Models” on page 11-6

2 Functions

2-498

Simulink.BlockDiagram.deleteContents
Delete graphical contents of system

Syntax
Simulink.BlockDiagram.deleteContents(sys)

Description
Simulink.BlockDiagram.deleteContents(sys) deletes the blocks, lines, and annotations in the
specified system, which must be loaded in memory.

Examples

Delete Graphical Content from Model

Open the f14 model.

open_system('f14')

Delete the graphical content of the model, including all subsystems.

Simulink.BlockDiagram.deleteContents('f14')

Input Arguments
sys — System name or handle
character vector | string scalar | numeric scalar

System name or handle, specified as a character vector, string scalar, or numeric scalar.

A system name must not include a path or extension.
Example: 'mymodel'
Data Types: double | char | string

Tips
To delete the contents of a Subsystem block, use the Simulink.SubSystem.deleteContents
function.

Version History
Introduced in R2007a

See Also
Simulink.BlockDiagram.copyContentsToSubsystem |
Simulink.SubSystem.convertToModelReference |

 Simulink.BlockDiagram.deleteContents

2-499

Simulink.SubSystem.copyContentsToBlockDiagram |
Simulink.SubSystem.deleteContents

Topics
“Modeling”
“Create Subsystems”

2 Functions

2-500

Simulink.BlockDiagram.getAlgebraicLoops
Show algebraic loops in a model

Syntax
Simulink.BlockDiagram.getAlgebraicLoops(model)
[loops,h] = Simulink.BlockDiagram.getAlgebraicLoops(model)

Description
Simulink.BlockDiagram.getAlgebraicLoops(model) returns a list of algebraic loops in a
model as a vector of AlgebraicLoops objects.

The Algebraic Loops viewer provides a tabular list of all algebraic loops in the model. Use the
Algebraic Loops viewer to control the display of algebraic loops in your model.

[loops,h] = Simulink.BlockDiagram.getAlgebraicLoops(model)

Examples

Highlight all algebraic loops in model

Open the ex_sldemo_hydcyl model.

In the Diagnostics pane of Model Configuration Parameters, set Algebraic loop to none or
warning. Setting this parameter to error prevents the model from compiling.

Compile the model without any errors. The model must compile before you can highlight any
algebraic loops.

At the MATLAB command prompt, enter:

mdl = 'ex_sldemo_hydcyl';
load_system(mdl);
Simulink.BlockDiagram.getAlgebraicLoops(bdroot)

 AlgebraicLoop with properties:

 Model: [1×1 Simulink.BlockDiagram]
 Id: [0 1]
 VariableBlockHandles: [198.0001 145.0001]
 BlockHandles: [9×1 double]
 IsArtificial: 0

The resulting output shows that the model has one algebraic loop, which contains three blocks.

Running the getAlgebraicLoops function also opens the Algebraic Loop viewer. Use the Algebraic
loop viewer to highlight specific algebraic loops in your model or all the loops.

 Simulink.BlockDiagram.getAlgebraicLoops

2-501

The selected loops are highlighted in the corresponding model, in.

Input Arguments
model — Model to highlight
string scalar | character vector

Name of the model being tested, specified as a string scalar or character vector. You can also pass the
most recently opened model using bdroot.

Note The model must be loaded into memory using either open_system or load_system.

Data Types: char | string

Output Arguments
loops — Algebraic loops
vector of AlgebraicLoop objects

2 Functions

2-502

Every algebraic loop in the model returned as an AlgebraicLoop object that contains the following
information:

• Model— Simulink.BlockDiagram object representing the model
• Id— Index of the algebraic loop in the model
• VariableBlockHandles: Handles to blocks that have been assigned algebraic variables
• BlockHandles—Handles to all the blocks contained in the algebraic loop
• IsArtificial— Boolean value indicating whether the loop is an artificial algebraic loop.

h — Handle to control UI
matlab.ui.Figure handle

The control UI is a MATLAB figure window. Use the UI handle h to control it programmatically. For
more information, see Figure Properties.

Version History
Introduced before R2006a

See Also
ashow

Topics
“Identify Algebraic Loops in Your Model”
“Remove Algebraic Loops”

 Simulink.BlockDiagram.getAlgebraicLoops

2-503

Simulink.BlockDiagram.expandSubsystem
Replace subsystem with subsystem contents

Syntax
Simulink.BlockDiagram.expandSubsystem(subsys)
Simulink.BlockDiagram.expandSubsystem(subsys,'CreateArea',specifier)

Description
Simulink.BlockDiagram.expandSubsystem(subsys) replaces the specified subsystem with its
contents in the block diagram that contains it. The file that contains the subsystem must be open or
loaded.

You can expand virtual subsystems that are not masked, linked, or commented. For details, see “What
Subsystems Can You Expand?”.

Simulink.BlockDiagram.expandSubsystem(subsys,'CreateArea',specifier) provides
the option of not creating an area around the expanded subsystem contents.

Examples

Expand Subsystem

Replace a subsystem with its contents.

Open the example model, which contains a subsystem that separates functionally related blocks.

open_system('SubsystemExpansionModel')

Expand the subsystem.

Simulink.BlockDiagram.expandSubsystem('SubsystemExpansionModel/Subsystem')

2 Functions

2-504

An area that contains the subsystem contents replaces the Subsystem block.

Expand Subsystem Without Creating Area

Replace a subsystem with its contents without creating an area that surround the contents.

Open the example model, which contains a subsystem that separates functionally related blocks.

open_system('SubsystemExpansionModel')

Expand the subsystem.

Simulink.BlockDiagram.expandSubsystem(...
 'SubsystemExpansionModel/Subsystem','CreateArea','Off')

The subsystem contents replace the Subsystem block.

 Simulink.BlockDiagram.expandSubsystem

2-505

Input Arguments
subsys — Subsystem block path or handle
character vector | string scalar | numeric scalar

Subsystem block path or handle, specified as a character vector, string scalar, or numeric scalar.
Data Types: double | char | string

specifier — Option to create area around contents
'on' (default) | 'off'

Option to create area around contents, specified as 'on' to create the area or 'off' to not create
the area.
Data Types: char | string

Version History
Introduced in R2014a

See Also
Simulink.BlockDiagram.copyContentsToSubsystem |
Simulink.BlockDiagram.createSubsystem | Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram

Topics
“Expand Subsystem Contents”
“Nonvirtual Blocks” on page 11-8

2 Functions

2-506

Simulink.BlockDiagram.getChecksum
Return model checksum

Syntax
[checksum,details] = Simulink.BlockDiagram.getChecksum('model')

Description
[checksum,details] = Simulink.BlockDiagram.getChecksum('model') returns the
checksum of the specified model. Simulink software computes the checksum based on attributes of
the model and the blocks the model contains.

One use of this command is to determine why the Accelerator mode in Simulink software regenerates
code. For an example, see “Determine Why Simulink Accelerator Is Regenerating Code” on page 13-
589.

Note Simulink.BlockDiagram.getChecksum compiles the specified model, if the model is not
already in a compiled state.

This command accepts the argument model, which is the full name or handle of the model for which
you are returning checksum data.

This command returns the following output:

• checksum — Array of four 32-bit integers that represents the model's 128-bit checksum.
• details — Structure of the form

ContentsChecksum: [1x1 struct]
InterfaceChecksum: [1x1 struct]
ContentsChecksumItems: [nx1 struct]
InterfaceChecksumItems: [mx1 struct]

• ContentsChecksum — Structure of the following form that represents a checksum that
provides information about all blocks in the model.

Value: [4x1 uint32]
MarkedUnique: [bool]

• Value — Array of four 32-bit integers that represents the model's 128-bit checksum.
• MarkedUnique — True if any blocks in the model have a property that prevents code reuse.

• InterfaceChecksum — Structure of the following form that represents a checksum that
provides information about the model.

Value: [4x1 uint32]
MarkedUnique: [bool]

• Value — Array of four 32-bit integers that represents the model's 128-bit checksum.
• MarkedUnique — Always true. Present for consistency with ContentsChecksum

structure.

 Simulink.BlockDiagram.getChecksum

2-507

• ContentsChecksumItems and InterfaceChecksumItems — Structure arrays of the
following form that contain information that Simulink software uses to compute the checksum
for ContentsChecksum and InterfaceChecksum, respectively:

Handle: [char array]
Identifier: [char array]
Value: [type]

• Handle — Object for which Simulink software added an item to the checksum. For a block,
the handle is a full block path. For a block port, the handle is the full block path and a
character vector that identifies the port.

• Identifier — Descriptor of the item Simulink software added to the checksum. If the
item is a documented parameter, the identifier is the parameter name.

• Value — Value of the item Simulink software added to the checksum. If the item is a
parameter, Value is the value returned by

get_param(handle, identifier)

Simulink.BlockDiagram.getChecksum returns a checksum that depends on why and how you
compiled the model. This function also compiles the model if it is not in a compiled state. The model
compiles for:

• Simulation— if the simulation mode is Accelerator or you have not installed Simulink Coder
• Code generation— in all other cases

To compile the model before calling Simulink.BlockDiagram.getChecksum, use this command,
replacing modelName with the name of your model:

modelName([],[],[],'compile')

Note The checksum that Simulink.BlockDiagram.getChecksum returns can vary from the
checksum returned if you first compile the model programmatically using the model name
programmatic interface (see “Use Model Name as Programmatic Interface”) before calling
Simulink.BlockDiagram.getChecksum.

Tip
The structural checksum reflects changes to the model that can affect the simulation results,
including:

• Changing the solver type, for example from Variable-step to Fixed-step
• Adding or deleting blocks or connections between blocks
• Changing the values of nontunable block parameters, for example, the Seed parameter of the

Random Number block
• Changing the number of inputs or outputs of blocks, even if the connectivity is vectorized
• Changing the number of states or the initial states in the model
• Selecting a different function in the Trigonometric Function block
• Changing signs used in a Sum block
• Adding a Target Language Compiler (TLC) file to inline an S-function

2 Functions

2-508

Examples of model changes that do not affect the structural checksum include:

• Changing the position of a block
• Changing the position of a line
• Resizing a block
• Adding, removing, or changing a model annotation

Version History
Introduced in R2006b

See Also
Simulink.SubSystem.getChecksum | Simulink.getFileChecksum

 Simulink.BlockDiagram.getChecksum

2-509

Simulink.BlockDiagram.getExecutionOrder
Open Execution Order pane

Syntax
Simulink.BlockDiagram.getExecutionOrder(model)
Simulink.BlockDiagram.getExecutionOrder(model,task)

Description
Simulink.BlockDiagram.getExecutionOrder(model) opens the Execution Order pane for
the specified model model.

The Execution Order pane opens on the right side of the Simulink Editor.

Simulink.BlockDiagram.getExecutionOrder(model,task) highlights the task that
corresponds to the specified task ID number task.

Examples

Get Execution Order

Open the Execution Order pane and highlight the first task, which has a task ID of 0.

2 Functions

2-510

Simulink.BlockDiagram.getExecutionOrder('vdp')

Highlight Task to View Execution Order

Open the Execution Order pane and highlight the task with a task ID of 1.

Simulink.BlockDiagram.getExecutionOrder('vdp',1)

Input Arguments
model — Model name
character vector | string scalar

Model name, specified as a character vector or string scalar.
Data Types: char | string

task — Task ID number
integer

Task ID number, specified as an integer.
Data Types: double

Version History
Introduced in R2022b

See Also
Topics
“Control and Display Execution Order”
“Specify Block Execution Priority and Tag”

 Simulink.BlockDiagram.getExecutionOrder

2-511

Simulink.BlockDiagram.getInitialState
Return initial state data of block diagram

Syntax
x0 = Simulink.BlockDiagram.getInitialState('model')

Description
x0 = Simulink.BlockDiagram.getInitialState('model') returns the initial state data of the
block diagram specified by the input argument model. You can use this initial state data as the initial
state for simulating a model or to provide an initial state condition to the linearization commands. To
specify the initial state for a simulation, use the LoadInitialState model argument or the Data
Import/Export > Initial state configuration parameter.

To specify the format for the initial state data, use the SaveFormat model argument. The default
format is 'Dataset'. Other formats 'Array', 'Structure', and 'StructureWithTime'.
Alternatively, you can set the initial state format using the Data Import/Export > Format
configuration parameter.

• If format is 'Dataset', then the Simulink.BlockDiagram.getInitialState function
returns a Simulink.SimulationData.Dataset object.

• For other format settings, the function returns a structure of the form:

time: 0
signals: [1xn struct]

where n is the number of states contained in the model, including any models referenced by
Model blocks. The signals field is a structure of the form:

values: [1xm double]
dimensions: [1x1 double]
label: [char array]
blockName: [char array]
inReferencedModel: [bool]
sampleTime: [1x2 double]

• values — Numeric array of length m, where m is the number of states in the signal
• dimensions — Length of the values vector
• label — Indication of whether the state is continuous (CSTATE) or discrete. If the state is

discrete:

The name of the discrete state is shown for S-function blocks.

The name of the discrete state is shown for those built-in blocks that assign their own names to
discrete states.

DSTATE is used in all other cases.

• blockName — Full path to block associated with this state

2 Functions

2-512

• inReferencedModel — Indication of whether the state originates in a model referenced by a
Model block (1) or in the top model (0)

• sampleTime — Array containing the sample time and offset of the block that owns the state

Using this function to return the initial state data simplifies specifying initial state values for models
with multiple states. Each state is associated with the full path to its parent block.

Version History
Introduced in R2006b

See Also
linmod

Topics
Initial state
Format

 Simulink.BlockDiagram.getInitialState

2-513

Simulink.BlockDiagram.getSampleTimes
Return all sample times associated with model

Syntax
ts = Simulink.BlockDiagram.getSampleTimes('model')

Description
ts = Simulink.BlockDiagram.getSampleTimes('model') performs an update diagram and
then returns the sample times associated with the block diagram model. The update diagram ensures
that the sample time information returned is up to date. If the model is already in the compiled state
via a call to the model API, then an update diagram is not necessary.

Using this method allows you to access all information in the Sample Time Legend programmatically.

Input Arguments
model

Name or handle of a Simulink model

Output Arguments
ts

The command returns a 1xn array of Simulink.SampleTime objects associated with the model
passed to Simulink.BlockDiagram.getSampleTimes. Here n is the number of sample times
associated with the block diagram. The format of the returns is as follows:

1xn Simulink.SampleTime
Package: Simulink
value: [1x2 double]
Description: [char string]
ColorRGBValue: [1x3 double]
Annotation: [char string]
OwnerBlock: [char string]
ComponentSampleTimes: [1x2 struct]
Methods

• value — A two-element array of doubles that contains the sample time period and offset.
• Description — A character vector or string that describes the sample time type.
• ColorRGBValue — A 1x3 array of doubles that contains the red, green, and blue (RGB) values of

the sample time color.
• Annotation — A character vector or string that represents the annotation of a specific sample

time (e.g., 'D1').
• OwnerBlock — For asynchronous and variable sample times, a character vector or string

containing the full path to the block that controls the sample time. For all other types of sample
times, an empty character vector or string.

2 Functions

2-514

• ComponentSampleTimes — A structure array of elements of the same type as
Simulink.BlockDiagram.getSampleTimes if the sample time is an async union or if the
sample time is hybrid and the component sample times are available.

Version History
Introduced in R2009a

See Also
Simulink.Block.getSampleTimes

 Simulink.BlockDiagram.getSampleTimes

2-515

Simulink.BlockDiagram.propagateConfigSet
Propagate top model configuration reference to referenced models

Syntax
[isPropagated, convertedModels] = Simulink.BlockDiagram.propagateConfigSet(
model)
[isPropagated, convertedModels] = Simulink.BlockDiagram.propagateConfigSet(
model, 'include', refModels)
[isPropagated, convertedModels] = Simulink.BlockDiagram.propagateConfigSet(
model, 'exclude', refModels)
handle = Simulink.BlockDiagram.propagateConfigSet(model, 'gui')

Description
[isPropagated, convertedModels] = Simulink.BlockDiagram.propagateConfigSet(
model) propagates the configuration reference for model to all referenced models. Execute the
function from a writable folder.

[isPropagated, convertedModels] = Simulink.BlockDiagram.propagateConfigSet(
model, 'include', refModels) propagates the configuration reference for model to the models
in the refModels list. Execute the function from a writable folder.

[isPropagated, convertedModels] = Simulink.BlockDiagram.propagateConfigSet(
model, 'exclude', refModels) propagates the configuration reference for model to all
referenced models in the hierarchy except for the models in the refModels list. Execute the function
from a writable folder.

handle = Simulink.BlockDiagram.propagateConfigSet(model, 'gui') opens the
Configuration Reference Propagation to Referenced Models dialog box.

Examples

Propagate a Configuration Reference to All Referenced Models

openExample('simulink/VisualizeModelReferenceHierarchiesExample')
[isPropagated,convertedModels] = ...
Simulink.BlockDiagram.propagateConfigSet('sldemo_mdlref_depgraph')

Propagate a Configuration Reference to Listed Referenced Models

openExample('simulink/VisualizeModelReferenceHierarchiesExample')
[isPropagated,convertedModels] = ...
Simulink.BlockDiagram.propagateConfigSet(...
'sldemo_mdlref_depgraph','include',...
{'sldemo_mdlref_heater','sldemo_mdlref_house'})

2 Functions

2-516

Propagate a Configuration Reference to Referenced Models with Exclusions

openExample('simulink/VisualizeModelReferenceHierarchiesExample')
[isPropagated,convertedModels] = ...
Simulink.BlockDiagram.propagateConfigSet(...
'sldemo_mdlref_depgraph','exclude',...
{'sldemo_mdlref_heater','sldemo_mdlref_house'})

Open the Configuration Reference Propagation to Referenced Models Dialog Box for a
Model

openExample('simulink/VisualizeModelReferenceHierarchiesExample')
Simulink.BlockDiagram.propagateConfigSet(...
'sldemo_mdlref_depgraph','gui')

Input Arguments
model — Top model
character vector | string scalar

Top model with configuration reference to propagate, specified as a character vector or string scalar.
Example: ‘mdl’

refModels — Referenced models
cell array of character vectors | string array

List of referenced models to be included or excluded in propagation, specified as a cell array of
character vectors or string array.
Example: {‘mdl1’,’mdl2’,’mdl3’}

Output Arguments
isPropagated — Success of propagation
false (default) | true

Indication of whether configuration reference propagation is successful, specified as a Boolean.

convertedModels — Converted models
cell array of character vectors

List of converted model names, specified as a cell array of character vectors.

handle — Handle to dialog box
handle

Handle to the Configuration Reference Propagation to Referenced Models dialog box. Returned
when you specify the ‘gui’ argument to the function.

Version History
Introduced in R2012b

 Simulink.BlockDiagram.propagateConfigSet

2-517

See Also
Simulink.BlockDiagram.restoreConfigSet

Topics
“Share a Configuration Across Referenced Models”
“Share a Configuration with Multiple Models”

2 Functions

2-518

Simulink.BlockDiagram.refreshBlocks
Update variants, linked blocks, and model references to reflect changes

Syntax
Simulink.BlockDiagram.refreshBlocks(model)

Description
Simulink.BlockDiagram.refreshBlocks(model) refreshes all variants, linked blocks, and
Model blocks in the specified model.

The Model blocks update only when the Model block version mismatch and Port and parameter
mismatch configuration parameters are set to none or warning. The Model blocks do not update
when either configuration parameter is set to error.

To refresh blocks in referenced models, call this function for each referenced model.

Examples

Refresh Model Blocks Programmatically

You can programmatically refresh all Model blocks in a model with the
Simulink.BlockDiagram.refreshBlocks function.

Open the example model, which contains two Model blocks that are out of date with the model they
reference.

open_system('RefreshModelBlockModel');

Warning: Ports and parameters of Model block 'RefreshModelBlockModel/Model1' do not reflect changes in referenced model 'RefreshModelBlockMdlRef'.

Warning: Number of input ports must match between Model block 'RefreshModelBlockModel/Model1' (1) and referenced model 'RefreshModelBlockMdlRef' (2).

Warning: Ports and parameters of Model block 'RefreshModelBlockModel/Model' do not reflect changes in referenced model 'RefreshModelBlockMdlRef'.

Warning: Number of input ports must match between Model block 'RefreshModelBlockModel/Model' (1) and referenced model 'RefreshModelBlockMdlRef' (2).

 Simulink.BlockDiagram.refreshBlocks

2-519

The top model has the Port and parameter mismatch configuration parameter set to error. The
number of input and output ports in the referenced model has increased from one to two, but each
Model block displays only one input and output port.

To support a bulk refresh of the Model blocks, set the Port and parameter mismatch configuration
parameter to warning or none.

set_param('RefreshModelBlockModel',...
 'ModelReferenceIOMismatchMessage','none')

Then, refresh the Model blocks.

Simulink.BlockDiagram.refreshBlocks('RefreshModelBlockModel');

2 Functions

2-520

Each Model block updates to display two input and output ports, matching the number of input and
output ports in the referenced model.

Input Arguments
model — Name or handle of loaded model
character vector | string scalar | numeric scalar

Name or handle of loaded model, specified as a character vector, string scalar, or numeric scalar.
Example: Simulink.BlockDiagram.refreshBlocks("mymodel")
Example: Simulink.BlockDiagram.refreshBlocks(h), where h is a model handle

Tips

Do not try to manually specify the number of a handle, for example, 5.007, because you usually need
to specify more digits than MATLAB displays. Assign the handle to a variable and use that variable
name.
Data Types: char | string | double

Tips
To refresh a specified Model block even when the Model block version mismatch or Port and
parameter mismatch configuration parameter is set to error, use the
Simulink.ModelReference.refresh function.

Alternative Functionality
In the Simulink Toolstrip, on the Modeling tab, click the Update Model button arrow. Then, select
Refresh Blocks.

Version History
Introduced in R2023a

See Also
Functions
Simulink.ModelReference.refresh

Model Settings
Model block version mismatch | Port and parameter mismatch

Topics
“Model Reference Basics”
“Model Reference Interface and Boundary”

 Simulink.BlockDiagram.refreshBlocks

2-521

Simulink.BlockDiagram.restoreConfigSet
Restore model configuration for converted models

Syntax
[isRestored, restoredModels] = Simulink.BlockDiagram.restoreConfigSet(model)

Description
[isRestored, restoredModels] = Simulink.BlockDiagram.restoreConfigSet(model)
restores the model configuration for all converted models after propagating a configuration reference
from a top model to the referenced models. Execute the function from a writable folder.

Examples

Restore the Model Configuration for Converted Models
openExample('simulink/VisualizeModelReferenceHierarchiesExample')
[isRestored,restoredModels] = ...
Simulink.BlockDiagram.restoreConfigSet('sldemo_mdlref_depgraph');

Input Arguments
model — Top model
character vector | string scalar

Name of top model, specified as a character vector or string scalar.
Example: ‘mdl’

Output Arguments
isRestored — Success of restoration
false (default) | true

Indication of whether configuration reference propagation is successful, specified as a Boolean.

restoredModels — Restored models
cell array of character vectors

List of restored model names, specified as a cell array of character vectors.

Version History
Introduced in R2012b

See Also
Simulink.BlockDiagram.propagateConfigSet

2 Functions

2-522

Topics
“Share a Configuration Across Referenced Models”
“Share a Configuration with Multiple Models”

 Simulink.BlockDiagram.restoreConfigSet

2-523

Simulink.BlockDiagram.loadActiveConfigSet
Package: Simulink.BlockDiagram

Load, associate, and activate configuration set with model

Syntax
Simulink.BlockDiagram.loadActiveConfigSet(model, file)

Description
Simulink.BlockDiagram.loadActiveConfigSet(model, file) loads a configuration set,
attaches it to a model, and makes it the active configuration set for the model.

Examples

Load and Activate a Configuration Set

Load a saved configuration set to a model and activate it.

Open the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys. Save the active configuration set to a file.
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
sldemo_fuelsys
Simulink.BlockDiagram.saveActiveConfigSet('sldemo_fuelsys','fuelsys_config_set.m')

Open the vdp model. Load the saved configuration set to vdp and activate it.

vdp
Simulink.BlockDiagram.loadActiveConfigSet('vdp', 'fuelsys_config_set.m')

Input Arguments
model — Target model
character vector | string scalar

Name or handle of the target model for which you want to use the configuration set, specified as a
character vector or string scalar.
Example: 'my_model'

file — Name of file
character vector | string scalar

Name of the file that contains the configuration set, specified as a character vector or string scalar.
Example: 'configset.m'

2 Functions

2-524

Tips
• If you load a configuration set with the same name as the active configuration set, Simulink

overwrites the active configuration set.
• If you load a configuration set with the same name as an inactive configuration set associated with

the model, Simulink detaches the inactive configuration from the model.
• If you load a configuration set object that contains an invalid custom target, Simulink sets the

System target file (Simulink Coder) parameter to ert.tlc.

Version History
Introduced in R2010b

See Also
Simulink.BlockDiagram.saveActiveConfigSet | Simulink.ConfigSet | attachConfigSet
| setActiveConfigSet

Topics
“Load a Saved Configuration Set”

 Simulink.BlockDiagram.loadActiveConfigSet

2-525

Simulink.BlockDiagram.saveActiveConfigSet
Package: Simulink.BlockDiagram

Save active configuration set of model

Syntax
Simulink.BlockDiagram.saveActiveConfigSet(model, file)

Description
Simulink.BlockDiagram.saveActiveConfigSet(model, file) saves the active configuration
set of a model to an .m file or MAT-file.

Examples

Save a Configuration Set

Save the configuration set from the sldemo_fuelsys model as a ConfigSet object in the file
my_config_set.mat.

Open the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys.
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
sldemo_fuelsys

Save the active configuration set.
Simulink.BlockDiagram.saveActiveConfigSet('sldemo_fuelsys','my_config_set.mat')

Input Arguments
model — Model using configuration set
character vector | string scalar

Name or handle of the model that uses the configuration set that you want to save, specified as a
character vector or string scalar.
Example: 'my_model'

file — Name of file
character vector | string scalar

Name of the file to save the configuration set, specified as a character vector or string scalar. If you
specify an .m extension, the file contains a function that creates a configuration set object. If you
specify a .mat extension, the file contains a configuration set object. If you do not provide a file
extension, the active configuration set is saved to a file with a .m extension. Do not specify filename
to be the same as a model name; otherwise, the software cannot determine which file contains the
configuration set object when loading the file.

2 Functions

2-526

Note If you specify a .mat extension when you save the active configuration set, all of the
parameters are preserved. If you specify a .m extension, the .m file does not include hidden or
disabled parameters.

Example: 'configset.m'

Version History
Introduced in R2010b

See Also
Simulink.BlockDiagram.loadActiveConfigSet | Simulink.ConfigSet

Topics
“Save a Configuration Set”

 Simulink.BlockDiagram.saveActiveConfigSet

2-527

Simulink.BlockDiagram.routeLine
Route existing lines of model

Syntax
Simulink.BlockDiagram.routeLine(lines)
Simulink.BlockDiagram.routeLine('DeferredLines')

Description
Simulink.BlockDiagram.routeLine(lines) takes an array of existing line handles as input and
routes the corresponding lines. Routing existing lines improves line route quality and avoids overlaps
with other lines and obstacles in the model.

To find the line handles in the model you want to route, use the find_system or get_param
function.

Simulink.BlockDiagram.routeLine('DeferredLines') performs all line updates that the
LineUpdate model parameter defers while a script runs. For this command to route lines, all of
these conditions must apply:

• The LineUpdate model parameter is set to 'deferred'.
• The script that contains this command affects line routing before using this command.
• If the script saves models, the script affects line routing after using the save_system function

and before using this command.

Examples

Route Existing Lines of Model

Route existing lines of a model that overlap with other lines and blocks in the model.

Open the model ex_route_lines.

open_system('ex_route_lines');

2 Functions

2-528

The two lines in the top-level system overlap with each other and with a block. To route these lines,
create an array of line handles by using find_system. Then, call
Simulink.BlockDiagram.routeLine with this array as input.

lineHandles = find_system(gcs,'FindAll','On','SearchDepth',1,'Type','Line');
Simulink.BlockDiagram.routeLine(lineHandles);

The updated model has no overlaps.

Route Lines Affected by Script

When the LineUpdate model parameter is set to 'deferred', scripts postpone line routing until
they pause, complete, or run the Simulink.BlockDiagram.routeLine('DeferredLines')
command.

Model ex_route_deferred_lines contains virtual subsystems with numerous signal lines
connecting them.

To see how the Simulink.BlockDiagram.routeline('DeferredLines') command works with
the LineUpdate model parameter, set this parameter to 'deferred'.

set_param(0,'LineUpdate','deferred');

 Simulink.BlockDiagram.routeLine

2-529

Capture Image Before Routing Deferred Lines

Run a MATLAB® script that loads the model, moves blocks within the model, and saves an image of
the model.

load_system('ex_route_deferred_lines');
set_param([gcs '/Subsystem2'],'Position',[765 -370 855 -330]);
set_param([gcs '/Subsystem3'],'Position',[300 215 390 335]);
set_param([gcs '/Subsystem4'],'Position',[270 -135 360 -95]);
print('-s','deferred_lines_unrouted','-dpng');

Because the script saves an image of the model before the deferred lines are routed, lines overlap
other lines and obstacles in the model.

Capture Image After Routing Deferred Lines

Run a MATLAB script that loads the original model, moves blocks within the model, updates affected
line routing, and saves an image of the model.

load_system('ex_route_deferred_lines');
set_param([gcs '/Subsystem2'],'Position',[765 -370 855 -330]);
set_param([gcs '/Subsystem3'],'Position',[300 215 390 335]);
set_param([gcs '/Subsystem4'],'Position',[270 -135 360 -95]);
Simulink.BlockDiagram.routeLine('DeferredLines');
print('-s','deferred_lines_routed','-dpng');

2 Functions

2-530

Adding command Simulink.BlockDiagram.routeline('DeferredLines') before the print
function improves line routing in the saved image.

Input Arguments
lines — Handles of lines to route
numeric array

Handles of lines to route, specified as a numeric array. To find the line handles in your model, use the
find_system or get_param function.
Data Types: double

Limitations
• Line routing can require additional empty space on the Simulink canvas. If the canvas does not

have the required empty space, using Simulink.BlockDiagram.routeLine might not improve
line route quality.

• For large models with many lines to route, Simulink.BlockDiagram.routeLine can take
several minutes to execute.

Version History
Introduced in R2019a

See Also
Simulink.BlockDiagram.arrangeSystem | find_system | get_param

Topics
“Programmatic Modeling Basics”
“Format Block Diagram”

 Simulink.BlockDiagram.routeLine

2-531

“Connect Blocks”

2 Functions

2-532

Simulink.Bus.addElementToPort
Add element to root input bus element port

Syntax
Simulink.Bus.addElementToPort(model,port,element)

Description
Simulink.Bus.addElementToPort(model,port,element) adds the specified element to the
specified root input bus element port in the specified model. This function does not add a block to the
model.

Examples

Add Elements to Bus Element Port

Suppose you want to create a model that receives a bus. The input bus contains a bus named
sinusoidal, a signal named constant, and a bus named nonsinusoidal. The sinusoidal bus
contains signals named sine and chirp. The nonsinusoidal bus contains signals named pulse
and saw.

Open a new model named myModel.

model = new_system("myModel");
open_system(model);

Add an In Bus Element block to the model. Name the port myBusPort, and specify sine as the
element selected by the block. When you specify sine, use dots to indicate the levels of bus
hierarchy.

add_block("simulink/Ports & Subsystems/In Bus Element",...
 "myModel/In Bus Element",...
 PortName="myBusPort",...
 Element="sinusoidal.sine");

When you do not specify an element for the block to select, by default, the block selects an element
named signal1.

Add the remaining elements to the input port that corresponds with the In Bus Element block.

Simulink.Bus.addElementToPort("myModel",...
 "myBusPort",...
 "sinusoidal.chirp");
Simulink.Bus.addElementToPort("myModel",...
 "myBusPort",...
 "constant");
Simulink.Bus.addElementToPort("myModel",...
 "myBusPort",...
 "nonsinusoidal.pulse");

 Simulink.Bus.addElementToPort

2-533

Simulink.Bus.addElementToPort("myModel",...
 "myBusPort",...
 "nonsinusoidal.saw");

Input Arguments
model — Model name
character vector | string scalar

Model name, specified as a character vector or string scalar.
Data Types: char | string

port — Root input bus element port name
character vector | string scalar

Root input bus element port name, specified as a character vector or string scalar.

Limitations

Input bus element ports of subsystems are not supported.
Data Types: char | string

element — New bus element
character vector | string scalar

New bus element, specified as a character vector or string scalar.

For elements of nested buses, use dots to indicate each level of bus hierarchy. For example, to add a
nested bus named sinusoidal with an element named sine, set element to sinusoidal.sine.

To add an element to a bus when a Simulink.Bus object specifies the bus hierarchy, edit the Bus
object.
Data Types: char | string

Alternative Functionality
In the In Bus Element block dialog box, click the Add element button arrow. Then, select Add
element without block.

Version History
Introduced in R2022b

See Also
In Bus Element

Topics
“Simplify Subsystem and Model Interfaces with Bus Element Ports”

2 Functions

2-534

Simulink.Bus.cellToObject
Convert cell array containing bus information to Simulink.Bus objects

Syntax
Simulink.Bus.cellToObject(busCell)
Simulink.Bus.cellToObject(busCell,scope)

Description
Simulink.Bus.cellToObject(busCell) creates a set of Simulink.Bus objects in the MATLAB
base workspace from a cell array of bus information.

Simulink.Bus.cellToObject(busCell,scope) creates a set of Simulink.Bus objects in the
data dictionary specified by scope from a cell array of bus information.

Examples

Create Simulink.Bus Object from Cell Array of Bus Information

This example shows how to create and use a cell array to generate Simulink.Bus objects in the
base workspace.

To define the elements that the Bus object contains, create an array of Simulink.BusElement
objects or a cell array of the property values for the BusElement objects.

When you define the elements in an array of BusElement objects, you must specify the values that
differ from the default.

elementsArray(1) = Simulink.BusElement;

elementsArray(2) = Simulink.BusElement;
elementsArray(2).Name = 'b';
elementsArray(2).Min = -3;
elementsArray(2).Max = 3;
elementsArray(2).Unit = 'm';
elementsArray(2).Description = 'b is distance from the origin.';

When you define the elements in a cell array of property values, you must specify the element name,
dimensions, data type, complexity, and sampling mode. You can also specify the dimensions mode,
minimum, maximum, units, and description.

elementsCellArray = {{'a',1,'double',-1,'real','Sample'}; ...
 {'b',1,'double','real','Sample',...
 'Fixed',-3,3,'m','b is distance from the origin'}};

In this example, elementsArray and elementsCellArray create the same BusElement objects in
the Bus objects.

Create a cell array with two subordinate cell arrays that define Bus objects. For each Bus object,
specify the bus name, header file, description, data scope, alignment, preserve element dimensions,

 Simulink.Bus.cellToObject

2-535

and elements. For the first Bus object, specify the elements using elementsArray. For the second
Bus object, specify the elements using elementsCellArray.

busCells = { ...
 { ...
 'myBusObjArray', ...
 'MyHeader.h', ...
 'My description', ...
 'Exported', ...
 '-1', ...
 '0', ...
 elementsArray,...
 }, ...
 { ...
 'myBusObjCellArray', ...
 'MyHeader.h', ...
 'My description', ...
 'Exported', ...
 '-1', ...
 '0', ...
 elementsCellArray,...
 }, ...
 };

Generate the Bus objects in the base workspace from the cell array of cell arrays.

Simulink.Bus.cellToObject(busCells)

Compare the generated Bus objects in the Type Editor.

typeeditor

The Bus objects are identical other than their names.

Input Arguments
busCell — Simulink.Bus object information
cell array of cell arrays

Bus object information, specified as a cell array of cell arrays. Each subordinate cell array must
contain this Bus object information:

1 Bus name
2 Header file
3 Description
4 Data scope
5 Alignment
6 Preserve Element Dimensions
7 Elements

The elements field is a cell array that contains this information for each of the
Simulink.BusElement objects that the Bus object references:

2 Functions

2-536

The elements field must contain arrays or cell arrays with this information for each of the
Simulink.BusElement objects that the Bus object references:

1 Element name
2 Dimensions
3 Data type
4 Sample time (optional) — If you specify a sample time, specify an inherited sample time (-1). A

noninherited sample time causes an error during model compilation. For more information, see
“Simulink.BusElement objects no longer support the SampleTime property” on page 2-537.

5 Complexity
6 Sampling mode

The elements field arrays or cell arrays can also contain this information:

1 Dimensions mode
2 Minimum
3 Maximum
4 Units
5 Description

Example: Simulink.Bus.cellToObject(busCell);

scope — Data dictionary to contain Simulink.Bus objects
Simulink.data.Dictionary object

Data dictionary, specified as a Simulink.data.Dictionary object. Before you use this argument,
represent the dictionary with a Simulink.data.Dictionary object by using, for example, the
Simulink.data.dictionary.create or Simulink.data.dictionary.open function.

If scope is empty, the function uses the MATLAB base workspace as the source of the Bus objects.
Example: Simulink.Bus.cellToObject(busCell,dataDictionaryObject);

Tips
The inverse function is Simulink.Bus.objectToCell.

Version History
Introduced before R2006a

R2020b: Simulink.BusElement objects no longer support the SampleTime property
Errors starting in R2020b

The SampleTime property of Simulink.BusElement objects is no longer supported.

BusElement objects that specify a sample time cause an error during compile. To remove the sample
time specification from a BusElement object, set its SampleTime to -1.

Simulink.Bus.cellToObject continues to accept cell arrays that specify sample time for bus
elements. Simulink.Bus.objectToCell, Simulink.Bus.save, and

 Simulink.Bus.cellToObject

2-537

Simulink.Bus.createObject continue to return cell arrays or arrays that include the sample time
when it is noninherited. When the sample time is inherited (-1), they omit it. Similarly, the Type
Editor and Model Explorer omit the sample time when it is inherited.

To specify the sample time for an element of a bus, use the SampleTime block parameter of
corresponding blocks. For example, you can use In Bus Element, Out Bus Element, and Signal
Specification blocks to specify sample time.

R2016b: Simulink.BusElement objects will no longer support the SamplingMode property
Not recommended starting in R2016b

In R2016b, the SamplingMode property of Simulink.BusElement objects was removed. Scripts
that use the SamplingMode property of Simulink.BusElement objects continue to work.
Simulink.Bus.cellToObject continues to require the SamplingMode field and
Simulink.Bus.objectToCell continues to include the sampling mode in the output cell arrays.

In a future release, support for the SamplingMode property will be removed.

To specify whether a signal is sample-based or frame-based, define the sampling mode of input
signals at the block level instead of at the signal level.

See Also
Objects
Simulink.Bus | Simulink.BusElement

Functions
Simulink.Bus.objectToCell | Simulink.Bus.createObject | Simulink.Bus.save

Topics
“Specify Bus Properties with Simulink.Bus Object Data Types”
“Programmatically Create Simulink Bus Objects”
“Create and Specify Simulink.Bus Objects”
“Save Simulink.Bus Objects”

2 Functions

2-538

Simulink.Bus.createMATLABStruct
Create MATLAB structures that use the same hierarchy and attributes as buses

Syntax
structs = Simulink.Bus.createMATLABStruct(buses)
structs = Simulink.Bus.createMATLABStruct(buses,values)
structs = Simulink.Bus.createMATLABStruct(buses,values,dims)
structs = Simulink.Bus.createMATLABStruct(buses,values,dims,scope)

Description
structs = Simulink.Bus.createMATLABStruct(buses) creates one or more MATLAB
structures that have the same hierarchy and attributes as the specified buses. The resulting
structures use the ground values of the buses. Use this syntax to create initialization structures for
multiple bus ports.

structs = Simulink.Bus.createMATLABStruct(buses,values) creates one or more
structures that use the specified values.

structs = Simulink.Bus.createMATLABStruct(buses,values,dims) creates one or more
structures that have the specified dimensions. To create a structure for an array of buses, include the
dims argument.

structs = Simulink.Bus.createMATLABStruct(buses,values,dims,scope) creates one or
more structures in the data dictionary specified by scope.

Examples

Create MATLAB Structure from Bus Object

Open and simulate model ex_bus_initial_conditions.

open_system('ex_bus_initial_conditions')
sim('ex_bus_initial_conditions');

 Simulink.Bus.createMATLABStruct

2-539

Create a MATLAB structure using bus object Top, which model ex_bus_initial_conditions
loads.

mStruct = Simulink.Bus.createMATLABStruct('Top');

Set a value for the field of the mStruct structure that corresponds to bus element A1 of bus A.

mStruct.A.A1 = 3;
mStruct.A

ans =

 struct with fields:

 A1: 3
 A2: [5x1 int8]

Simulink sets the other fields in the structure to the ground values of the corresponding bus
elements.

You can use mStruct as the initial condition structure for the Unit Delay block.

Initialize Signal Elements that Use a Data Type Other than Double

Create a MATLAB structure for a bus whose signal elements use a data type other than double. Use
a partial structure to specify initialization values for a subset of the elements. When you create the

2 Functions

2-540

partial structure, match the data types of the fields with the data types of the corresponding
elements.

Open and simulate model ex_bus_initial_conditions.

open_system('ex_bus_initial_conditions')
sim('ex_bus_initial_conditions');

The C1 signal element that the block labeled Constant5 produces uses the data type int16.

Find the port handle for the Bus Creator block port that produces the Top bus signal.

ph = get_param('ex_bus_initial_conditions/TopBus','PortHandles');

Create a partial structure that specifies values for a subset of the elements in the bus signal created
by the TopBus block. To set the value of the C.C1 field, use a typed expression. Match the data type
in the expression with the data type of the signal element in the model (int16).

PartialstructForK = struct('B',3,'C',struct('C1',int16(5)));

Create a full structure by using the port handle (ph) for the TopBus block. Override the ground
values for the C.C1 and B elements.

outPort = ph.Outport;
mStruct = Simulink.Bus.createMATLABStruct(outPort,PartialstructForK);

The field C.C1 in the output structure continues to use the data type int16.

 Simulink.Bus.createMATLABStruct

2-541

Create MATLAB Structure with Specified Dimensions

Open and simulate model ex_bus_initial_conditions.

open_system('ex_bus_initial_conditions')
sim('ex_bus_initial_conditions');

Create a partial structure for a subset of bus elements in the bus created by the TopBus block.

PartialStructForK = struct('A',struct('A1',4),'B',3)

PartialStructForK =

 struct with fields:

 A: [1x1 struct]
 B: 3

Create a MATLAB structure using bus object Top, a partial structure, and dimensions for the
resulting structure.

structFromBus = Simulink.Bus.createMATLABStruct...
 ('Top',PartialStructForK,[2 3])

structFromBus =

2 Functions

2-542

 2x3 struct array with fields:

 A
 B
 C

Create Cell Array of MATLAB Structures

To create initialization structures for multiple bus ports, specify port handles as arguments for
Simulink.Bus.createMATLABStruct. The resulting cell array of structures uses ground values.

Open and simulate model ex_two_outports_create_struct.

open_system('ex_two_outports_create_struct')
sim('ex_two_outports_create_struct');

Find the port handles for the Bus Creator blocks Bus1 and Bus2.

ph_1 = get_param...
 ('ex_two_outports_create_struct/Bus Creator','PortHandles');
ph_2 = get_param...
 ('ex_two_outports_create_struct/Bus Creator1','PortHandles');

Create a MATLAB® structure using an array of port handles.

mStruct = Simulink.Bus.createMATLABStruct([ph_1.Outport ph_2.Outport])

mStruct =

 2x1 cell array

 {1x1 struct}

 Simulink.Bus.createMATLABStruct

2-543

 {1x1 struct}

Create MATLAB Structure from Bus Port and Partial Structure

Create a MATLAB structure based on a port that connects to a bus signal. Use a partial structure to
specify values for a subset of the bus elements in the bus that connects to the port.

Open and simulate model ex_bus_initial_conditions.

open_system('ex_bus_initial_conditions')
sim('ex_bus_initial_conditions');

Find the port handle for the Bus Creator block port that produces the Top bus signal. The Outport
handle is the handle that you need.

ph = get_param('ex_bus_initial_conditions/TopBus','PortHandles')

ph =

 struct with fields:

 Inport: [37.0046 41.0100 439.0044]
 Outport: 440.0042
 Enable: []
 Trigger: []

2 Functions

2-544

 State: []
 LConn: []
 RConn: []
 Ifaction: []
 Reset: []
 Event: []

Create a partial structure for the bus signal created by the TopBus block. You can use a partial
structure to specify values for a subset of bus elements.

PartialstructForK = struct('A',struct('A1',4),'B',3)

PartialstructForK =

 struct with fields:

 A: [1x1 struct]
 B: 3

Bus elements represented by structure fields Top.B and Top.A are at the same level in the bus
hierarchy. You can use this partial structure to override the ground values for the B and A bus signal
elements.

When you create a structure from a bus object or from a bus port, you can use a partial structure as
an optional argument.

Create a MATLAB structure by using the port handle (ph) for the TopBus block. Override the ground
values for the A.A1 and B bus elements.

outPort = ph.Outport;
mStruct = Simulink.Bus.createMATLABStruct(outPort,PartialstructForK)

mStruct =

 struct with fields:

 A: [1x1 struct]
 B: 3
 C: [1x1 struct]

Input Arguments
buses — Source of bus information
Simulink.Bus object name | port handle | cell array of Simulink.Bus object names | array of port
handles

Source of the bus information, specified as a Bus object name, port handle, cell array of Bus object
names, or array of port handles.

• If you use a Bus object name, then the Bus object must be in the MATLAB base workspace or the
data dictionary used by the model. The data type for a Bus object name is char or string.

 Simulink.Bus.createMATLABStruct

2-545

• If you use a port handle, then the model must compile successfully before you use this function.
The data type for a port handle is double.

• For an array of buses, you cannot use a port handle.
• If you use the dims argument, then for the buses argument, use a Bus object or cell array of Bus

objects.

Specifying a cell array of Bus object names or an array of port handles creates multiple structures
with one Simulink.Bus.createMATLABStruct call and provides better performance than using
separate Simulink.Bus.createMATLABStruct calls to create the structures.
Example: struct = Simulink.Bus.createMATLABStruct('BusObject')
Example: structs = Simulink.Bus.createMATLABStruct({'BusObject','BusObject1'})
Example: struct = Simulink.Bus.createMATLABStruct(portHandle)
Example: structs = Simulink.Bus.createMATLABStruct([portHandle,portHandle1])
Data Types: double | char | string | struct | cell

values — Values for subset of elements in resulting structure
[] | partial structure | cell array

Values for a subset of elements in the resulting structure, specified as an empty matrix ([]), partial
structure, or cell array. The cell array must contain a partial structure or empty matrix for each
specified source of bus information.

For information on creating partial structures, see “Create Partial Structures for Initialization”.

To use ground values, use an empty matrix.
Example: struct = Simulink.Bus.createMATLABStruct('BusObject',PartialStruct)
Data Types: struct | cell

dims — Dimensions of resulting structure
scalar | vector | cell array

Dimensions of the resulting structure, specified as a vector.

Each dimension element must be an integer that is greater than or equal to 1. If you specify a partial
structure for the values argument, each dimension element must be greater than or equal to its
corresponding dimension element in the partial structure.
Example: struct = Simulink.Bus.createMATLABStruct('BusObject',PartialStruct,[2
3])

Example: structs = Simulink.Bus.createMATLABStruct({'Bus','Bus1','Bus2'},{[],
[],[]},{1,2,3})

Data Types: double | cell

scope — Data dictionary to contain MATLAB structure
Simulink.data.Dictionary object

Data dictionary, specified as a Simulink.data.Dictionary object. Before you use this argument,
represent the dictionary with a Simulink.data.Dictionary object by using, for example, the
Simulink.data.dictionary.create or Simulink.data.dictionary.open function.

2 Functions

2-546

If scope is empty, the function uses the MATLAB base workspace as the source of the Bus objects.
Example: structs = Simulink.Bus.createMATLABStruct({'Bus','Bus1','Bus2'},{[],
[],[]},{1,1,1},dataDictionaryObject)

Output Arguments
structs — Structures with same signal hierarchy and attributes as buses
MATLAB structure | cell array of MATLAB structures

Structures with the same signal hierarchy and attributes as buses, returned as a MATLAB structure
or a cell array of MATLAB structures.

The structure dimensions depend on the input arguments you specify:

• If you specify only the buses argument, then the dimension is 1.
• If you also specify the values argument, then the dimensions match the dimensions of values.
• If you specify the dims argument, then the dimensions match the dimensions of dims.

Tips
• If you use the Simulink.Bus.createMATLABStruct function repeatedly for the same model

(for example, in a loop in a script), you can improve performance by avoiding multiple model
compilations. For improved speed, put the model in compile before using the function multiple
times. For example, to put the vdp model in compile, use this command:

vdp([],[],[],'compile')

After you create the MATLAB structure, terminate the compile by using this command:

vdp([],[],[],'term')

• You can use the Type Editor to invoke the Simulink.Bus.createMATLABStruct function. In
the Type Editor, select the Bus object for which you want to create a MATLAB structure. Then, in
the toolstrip, click MATLAB Structure.

You can edit the MATLAB structure in the MATLAB Editor and evaluate the code to create or
update the values in this structure.

• You can use the Simulink.Bus.createMATLABStruct function to specify the initial value of the
output of a referenced model.

Version History
Introduced in R2010a

See Also
Blocks
Bus Assignment | Bus Creator | Bus to Vector

Classes
Simulink.Bus | Simulink.BusElement

 Simulink.Bus.createMATLABStruct

2-547

Functions
Simulink.Bus.cellToObject | Simulink.Bus.createObject |
Simulink.Bus.objectToCell | Simulink.SimulationData.createStructOfTimeseries

Topics
“Composite Interface Guidelines”
“Specify Initial Conditions for Bus Elements”

2 Functions

2-548

Simulink.Bus.createObject
Create Simulink.Bus objects from blocks or MATLAB structures

Syntax
busInfo = Simulink.Bus.createObject(model,blocks)
busInfo = Simulink.Bus.createObject(struct)
busInfo = Simulink.Bus.createObject(___ ,file)
busInfo = Simulink.Bus.createObject(___ ,file,format)
busInfo = Simulink.Bus.createObject(struct,file,format,scope)

Description
busInfo = Simulink.Bus.createObject(model,blocks) creates Simulink.Bus objects for
the specified blocks and returns information about the created Bus objects.

If you specify a block that corresponds to a bus hierarchy, this function creates Bus objects for each
bus in the hierarchy.

If the model uses a data dictionary, the Bus objects are created in the data dictionary. Otherwise, they
are created in the base workspace.

busInfo = Simulink.Bus.createObject(struct) creates Bus objects from a structure that
can contain MATLAB timeseries, MATLAB timetable, and
matlab.io.datastore.SimulationDatastore objects or a numeric structure.

If you specify a structure with hierarchy, this function creates Bus objects for each structure in the
hierarchy.

The Bus objects are created in the base workspace.

busInfo = Simulink.Bus.createObject(___ ,file) saves Bus objects in a function that
defines object properties in a cell array of cell arrays, then creates the Bus objects by calling
Simulink.Bus.cellToObject.

Specify any of the input argument combinations in the previous syntaxes followed by the file
argument.

busInfo = Simulink.Bus.createObject(___ ,file,format) saves Bus objects in a function
with the specified format. The function can define object properties using cell arrays or arrays.

busInfo = Simulink.Bus.createObject(struct,file,format,scope) creates the Bus
objects in the data dictionary specified by scope.

Examples

Create Simulink.Bus Object from Bus Creator Block

Open the example model.

 Simulink.Bus.createObject

2-549

open_system('BusObjectCreationModel')

Create a Bus object that corresponds with the bus created by the Bus Creator block.

busInfo = Simulink.Bus.createObject('BusObjectCreationModel',...
 'BusObjectCreationModel/Bus Creator');

Create and Save Simulink.Bus Objects in a Function

Create Bus objects from two Bus Creator blocks and save the Bus object definition in a function.

Open the example model.

open_system('BusObjectCreationModel');

Assign the block handle for the Bus Creator block to a variable with the getSimulinkBlockHandle
function.

bc = getSimulinkBlockHandle('BusObjectCreationModel/Bus Creator');

Alternatively, you can select a Bus Creator block in the model then use the gcbh function to get its
block handle.

2 Functions

2-550

Assign the block handle for the Bus Creator1 block to a variable.

bc1 = getSimulinkBlockHandle('BusObjectCreationModel/Bus Creator1');

To create a Bus object, specify the block handle variables in a vector. To save the Bus object
definition, also specify a file name.

busInfo = Simulink.Bus.createObject('BusObjectCreationModel',...
 [bc bc1], 'BusObjectFunction');

Since these Bus Creator blocks create a bus hierarchy, specifying only the Bus Creator1 block creates
both Bus objects in the Workspace and in the function.

Compare the BusObjectFunction against the function created by this command.

topBusInfo = Simulink.Bus.createObject('BusObjectCreationModel',...
 bc1, 'BusObjectFunctionFromHierarchy');

For a function that is formatted to be easier to read, specify the function format as object.

topBusInfo1 = Simulink.Bus.createObject('BusObjectCreationModel',...
 bc1, 'BusObjectFunctionFormatted','object');

Create Simulink.Bus Objects from MATLAB Structures

When you create a nonvirtual bus with a Constant block, you must specify a MATLAB structure for
Constant value and a Simulink.Bus object as the Output data type.

For this example, create a structure that contains other structures.

bus_struct.A.A1 = 0;
bus_struct.A.A2 = [0 + 0i;0 + 0i;0 + 0i;0 + 0i;0 + 0i];
bus_struct.B = 5;
bus_struct.C.C1 = 0;
bus_struct.C.C2.A1 = 0;
bus_struct.C.C2.A2 = [0 + 0i;0 + 0i;0 + 0i;0 + 0i;0 + 0i];

Create the Bus objects that correspond with the structure.

busInfo = Simulink.Bus.createObject(bus_struct);

The function creates four Bus objects. The Bus object named slBus1 corresponds to the top-level
structure and uses a default Bus object name. The Bus objects named A, C, and C2 correspond to the
nested structures.

To view the Bus objects, open the Type Editor.

typeeditor

Input Arguments
model — Model name or handle
character vector

 Simulink.Bus.createObject

2-551

Model name or handle, specified as a character vector.

The model you specify must compile successfully.

blocks — Blocks associated with buses
character vector | cell array of block path names | vector of block handles

Blocks associated with buses, specified as a character vector, cell array of block path names, or
vector of block handles. For one block, specify the full path name of the block. For multiple blocks,
specify either a cell array of block path names or a vector of block handles.

This function can create Bus objects from these blocks:

• Bus Creator blocks
• Subsystem Inport blocks
• Subsystem Outport blocks

If you specify a block associated with a bus hierarchy, the function also creates Bus objects for all
nested buses in the hierarchy.

struct — Structure of objects or numeric structure
structure of MATLAB timeseries, MATLAB timetable, and
matlab.io.datastore.SimulationDatastore objects | numeric structure

Structure of objects or numeric structure, specified as a structure that can contain MATLAB
timeseries, MATLAB timetable, and matlab.io.datastore.SimulationDatastore objects
or a numeric structure.

file — Name of function being generated
character vector

Name of function being generated, specified as a character vector. The file name must be unique.

format — Format of function being generated
'cell' (default) | 'object'

Format of function being generated, specified as either 'cell' or 'object'. The 'cell' format is
more compact, but the 'object' format is easier to read.

The 'cell' format saves the Bus object definitions in a cell array of cell arrays and creates the Bus
objects by calling Simulink.Bus.cellToObject. Each subordinate cell array represents a Bus
object and contains these properties:

1 Bus name
2 Header file
3 Description
4 Data scope
5 Alignment
6 Preserve Element Dimensions
7 Elements

The elements field is a cell array that contains this information for each of the
Simulink.BusElement objects that the Bus object references:

2 Functions

2-552

1 Element name
2 Dimensions
3 Data type
4 Sample time — The cell array contains this field when the sample time is not inherited. A

noninherited sample time causes an error during model compilation. For more information, see
“Simulink.BusElement objects no longer support the SampleTime property” on page 2-553.

5 Complexity
6 Dimensions mode
7 Minimum
8 Maximum
9 Units
10 Description

The 'object' format saves the Bus object definitions as arrays. The function uses array indexing to
access elements of the array and dot notation to assign property values.

scope — Data dictionary to contain Simulink.Bus objects
Simulink.data.Dictionary object

Data dictionary, specified as a Simulink.data.Dictionary object. Before you use this argument,
represent the dictionary with a Simulink.data.Dictionary object by using, for example, the
Simulink.data.dictionary.create or Simulink.data.dictionary.open function.

If scope is empty, the function uses the MATLAB base workspace as the source of the Bus objects.

Output Arguments
busInfo — Bus object information
structure array

Bus object information, returned as a structure array.

When you specify blocks, each element of the busInfo structure array corresponds to one block
and contains these fields:

• block — Handle of the block
• busName — Name of the Bus object associated with the block

When you specify a struct, the busInfo structure contains these fields:

• block — Empty matrix ([])
• busName — Name of the Bus object that corresponds to the structure

Version History
Introduced before R2006a

R2020b: Simulink.BusElement objects no longer support the SampleTime property
Errors starting in R2020b

 Simulink.Bus.createObject

2-553

The SampleTime property of Simulink.BusElement objects is no longer supported.

BusElement objects that specify a sample time cause an error during compile. To remove the sample
time specification from a BusElement object, set its SampleTime to -1.

Simulink.Bus.cellToObject continues to accept cell arrays that specify sample time for bus
elements. Simulink.Bus.objectToCell, Simulink.Bus.save, and
Simulink.Bus.createObject continue to return cell arrays or arrays that include the sample time
when it is noninherited. When the sample time is inherited (-1), they omit it. Similarly, the Type
Editor and Model Explorer omit the sample time when it is inherited.

To specify the sample time for an element of a bus, use the SampleTime block parameter of
corresponding blocks. For example, you can use In Bus Element, Out Bus Element, and Signal
Specification blocks to specify sample time.

See Also
Tools
Type Editor

Objects
Simulink.Bus | Simulink.BusElement

Functions
Simulink.Bus.cellToObject | Simulink.Bus.createMATLABStruct

Blocks
Bus Creator

Topics
“Specify Bus Properties with Simulink.Bus Object Data Types”
“Programmatically Create Simulink Bus Objects”

2 Functions

2-554

Simulink.Bus.objectToCell
Use Simulink.Bus objects to create cell array containing bus information

Syntax
cells = Simulink.Bus.objectToCell(busNames)
cells = Simulink.Bus.objectToCell(busNames,scope)

Description
cells = Simulink.Bus.objectToCell(busNames) creates a cell array of bus information from
a set of Simulink.Bus objects in the MATLAB base workspace. The cell array contains subordinate
cell arrays that define each Bus object. The order of elements in the output cell array corresponds to
the order of names in the input cell array.

cells = Simulink.Bus.objectToCell(busNames,scope) creates a cell array of bus
information from a set of Bus objects in the data dictionary specified by scope. The cell array
contains subordinate cell arrays that define each Bus object. The order of elements in the output cell
array corresponds to the order of names in the input cell array.

Examples

Create Cell Array Containing Bus Object Information

Use the Simulink.Bus.objectToCell function to create a cell array of information about
Simulink.Bus objects in the base workspace.

Open a model that has two Bus objects defined, CONTROL and MAIN.

open_system('ex_bus_object_tutorial_using_objects')

Create a cell array of information about the CONTROL Bus object.

 Simulink.Bus.objectToCell

2-555

cells = Simulink.Bus.objectToCell({'CONTROL'});
cells{1}

ans=1×7 cell array
 {'CONTROL'} {0x0 char} {0x0 char} {'Auto'} {'-1'} {'0'} {2x1 cell}

Input Arguments
busNames — Names of Simulink.Bus objects
cell array of Bus object names

Bus objects for which to create cell arrays of Bus object information, specified as a cell array. Specify
the Bus object names as character vectors. If busNames is empty, the function converts all Bus
objects in the base workspace or data dictionary.
Example: cells = Simulink.Bus.objectToCell({'busObject'})

scope — Data dictionary that contains Simulink.Bus objects
Simulink.data.Dictionary object

Data dictionary, specified as a Simulink.data.Dictionary object. Before you use this argument,
represent the dictionary with a Simulink.data.Dictionary object by using, for example, the
Simulink.data.dictionary.create or Simulink.data.dictionary.open function.

If scope is empty, the function uses the MATLAB base workspace as the source of the Bus objects.
Example: cells = Simulink.Bus.objectToCell({'busObject'},dataDictionaryObject)

Output Arguments
cells — Bus object information
cell array of cell arrays

Bus object information, specified as a cell array of cell arrays. Each subordinate cell array contains
these Bus object properties:

1 Bus name
2 Header file
3 Description
4 Data scope
5 Alignment
6 Preserve Element Dimensions
7 Elements

The elements field is a cell array that contains this information for each of the
Simulink.BusElement objects that the Bus object references:

1 Bus element name
2 Dimensions
3 Data type

2 Functions

2-556

4 Sample time — The cell array contains this field when the sample time is not inherited. A
noninherited sample time causes an error during model compilation. For more information, see
“Simulink.BusElement objects no longer support the SampleTime property” on page 2-557.

5 Complexity
6 Sampling mode
7 Dimensions mode
8 Minimum
9 Maximum
10 Units
11 Description

Tips
The inverse function is Simulink.Bus.cellToObject.

Version History
Introduced in R2007a

R2020b: Simulink.BusElement objects no longer support the SampleTime property
Errors starting in R2020b

The SampleTime property of Simulink.BusElement objects is no longer supported.

BusElement objects that specify a sample time cause an error during compile. To remove the sample
time specification from a BusElement object, set its SampleTime to -1.

Simulink.Bus.cellToObject continues to accept cell arrays that specify sample time for bus
elements. Simulink.Bus.objectToCell, Simulink.Bus.save, and
Simulink.Bus.createObject continue to return cell arrays or arrays that include the sample time
when it is noninherited. When the sample time is inherited (-1), they omit it. Similarly, the Type
Editor and Model Explorer omit the sample time when it is inherited.

To specify the sample time for an element of a bus, use the SampleTime block parameter of
corresponding blocks. For example, you can use In Bus Element, Out Bus Element, and Signal
Specification blocks to specify sample time.

R2016b: Simulink.BusElement objects will no longer support the SamplingMode property
Not recommended starting in R2016b

In R2016b, the SamplingMode property of Simulink.BusElement objects was removed. Scripts
that use the SamplingMode property of Simulink.BusElement objects continue to work.
Simulink.Bus.cellToObject continues to require the SamplingMode field and
Simulink.Bus.objectToCell continues to include the sampling mode in the output cell arrays.

In a future release, support for the SamplingMode property will be removed.

To specify whether a signal is sample-based or frame-based, define the sampling mode of input
signals at the block level instead of at the signal level.

 Simulink.Bus.objectToCell

2-557

See Also
Classes
Simulink.Bus | Simulink.BusElement

Functions
Simulink.Bus.cellToObject

Topics
“Specify Bus Properties with Simulink.Bus Object Data Types”
“Programmatically Create Simulink Bus Objects”

2 Functions

2-558

Simulink.Bus.save
Save Simulink.Bus objects in function

Syntax
Simulink.Bus.save(fileName)
Simulink.Bus.save(fileName,format)
Simulink.Bus.save(fileName,format,busNames)
Simulink.Bus.save(fileName,format,busNames,scope)

Description
Simulink.Bus.save(fileName) saves all Simulink.Bus objects from the MATLAB base
workspace in a function. The generated function defines object properties in a cell array of cell
arrays, then creates the Bus objects by calling Simulink.Bus.cellToObject.

Simulink.Bus.save(fileName,format) saves the Bus objects in a function with the specified
format. The function can define object properties using cell arrays or arrays.

Simulink.Bus.save(fileName,format,busNames) saves only the specified Bus objects in a
function.

Simulink.Bus.save(fileName,format,busNames,scope) saves the Bus objects from the data
dictionary specified by scope in a function.

Examples

Save a Simulink.Bus Object

Use the Simulink.Bus.save function to save a Bus object.

Create a cell array of Bus object information.

busCell = { ...
 { ...
 'myBusObj', ...
 'MyHeader.h', ...
 'My description', ...
 'Exported', ...
 '-1', ...
 '0', ...
 {{'a',1,'double','real','Sample'}; ...
 {'b',1,'double','real','Sample', ...
 'Fixed',-3,3,'m','b is distance from the origin'}}, ...
 } ...
 { ...
 'myBusObj1', ...
 'MyHeader1.h', ...
 'My description', ...
 'Exported', ...

 Simulink.Bus.save

2-559

 '-1', ...
 '0', ...
 {{'c',1,'double','real','Sample'}; ...
 {'d',1,'double','real','Sample'}}, ...
 } ...
 };

Generate Bus objects in the base workspace from the cell array.

Simulink.Bus.cellToObject(busCell);

Save the Bus objects in a function, using the default format.

Simulink.Bus.save('BusObjectFunctionCellFormat');

For a function that is formatted to be easier to read, specify the function format as 'object'.

Simulink.Bus.save('BusObjectFunctionObjectFormat','object');

To save only one of the Bus objects in a function, specify the Bus object name.

Simulink.Bus.save('BusObjectFunctionSubset','cell',{'myBusObj'});

Input Arguments
fileName — Name of function to generate
character vector

Name of function to generate, specified as a character vector. The file name must be unique.
Example: Simulink.Bus.save('BusObjectFunction');

format — Format of function to generate
'cell' (default) | 'object'

Format of function to generate, specified as either 'cell' or 'object'. The 'cell' format is more
compact, but the 'object' format is easier to read.

The 'cell' format saves the Bus object definitions in a cell array of cell arrays and creates the Bus
objects by calling Simulink.Bus.cellToObject. Each subordinate cell array represents a Bus
object and contains these properties:

1 Bus name
2 Header file
3 Description
4 Data scope
5 Alignment
6 Preserve Element Dimensions
7 Elements

The elements field is a cell array that contains this information for each of the
Simulink.BusElement objects that the Bus object references:

2 Functions

2-560

1 Element name
2 Dimensions
3 Data type
4 Sample time — The cell array contains this field when the sample time is not inherited. A

noninherited sample time causes an error during model compilation. For more information, see
“Simulink.BusElement objects no longer support the SampleTime property” on page 2-561.

5 Complexity
6 Dimensions mode
7 Minimum
8 Maximum
9 Units
10 Description

The 'object' format saves the Bus object definitions as arrays. The function uses array indexing to
access elements of the array and dot notation to assign property values.
Example: Simulink.Bus.save('BusObjectFunction','object');

busNames — Bus objects to save
empty cell array | cell array of bus objects

Bus objects to save, specified as an empty cell array ({}) or a cell array of Bus object names.

When you specify a cell array of Bus object names, only the specified Bus objects are saved.

When you specify an empty cell array, all Bus objects are saved. Use an empty cell array to save all
Bus objects in the data dictionary specified by scope.
Example: Simulink.Bus.save('BusObjectFunction','cell',{'myBusObj'});

scope — Data dictionary that contains Bus objects
Simulink.data.Dictionary object

Data dictionary, specified as a Simulink.data.Dictionary object. Before you use this argument,
represent the dictionary with a Simulink.data.Dictionary object by using, for example, the
Simulink.data.dictionary.create or Simulink.data.dictionary.open function.

If scope is empty, the function uses the MATLAB base workspace as the source of the Bus objects.
Example: Simulink.Bus.save('BusObjectFunction','cell',{},dataDictionaryObject);

Version History
Introduced before R2006a

R2020b: Simulink.BusElement objects no longer support the SampleTime property
Errors starting in R2020b

The SampleTime property of Simulink.BusElement objects is no longer supported.

BusElement objects that specify a sample time cause an error during compile. To remove the sample
time specification from a BusElement object, set its SampleTime to -1.

 Simulink.Bus.save

2-561

Simulink.Bus.cellToObject continues to accept cell arrays that specify sample time for bus
elements. Simulink.Bus.objectToCell, Simulink.Bus.save, and
Simulink.Bus.createObject continue to return cell arrays or arrays that include the sample time
when it is noninherited. When the sample time is inherited (-1), they omit it. Similarly, the Type
Editor and Model Explorer omit the sample time when it is inherited.

To specify the sample time for an element of a bus, use the SampleTime block parameter of
corresponding blocks. For example, you can use In Bus Element, Out Bus Element, and Signal
Specification blocks to specify sample time.

See Also
Tools
Type Editor

Objects
Simulink.Bus | Simulink.BusElement

Functions
Simulink.Bus.cellToObject | Simulink.Bus.createObject

Topics
“Specify Bus Properties with Simulink.Bus Object Data Types”
“Programmatically Create Simulink Bus Objects”

2 Functions

2-562

Simulink.clearIntEnumType
Delete enumeration classes defined by Simulink.defineIntEnumType

Syntax
Simulink.clearIntEnumType(typeName)
Simulink.clearIntEnumType()

Description
Simulink.clearIntEnumType(typeName) deletes a specific enumeration class that is defined by
Simulink.defineIntEnumType. The function generates a warning if the class name is invalid or if
a class cannot be deleted because instances of the class exist.

Simulink.clearIntEnumType() deletes all enumeration classes that are defined by
Simulink.defineIntEnumType. The function generates a warning if a class cannot be deleted
because instances of the class exist.

Examples

Delete a Specific Dynamic Enumerated Data Type

Define an enumeration type and confirm that it has been created.

Simulink.defineIntEnumType('myEnumType', {'e1', 'e2'}, [1 2]);
myResult = Simulink.findIntEnumType('myEnumType')

Delete the enumeration type that you created and confirm that it is no longer there.

Simulink.clearIntEnumType('myEnumType');
myResult = Simulink.findIntEnumType('myEnumType')

Delete All Dynamic Enumerated Data Types

Define two enumeration types and confirm that they have been created.

Simulink.defineIntEnumType('myEnumType1', {'e1', 'e2'}, [1 2]);
Simulink.defineIntEnumType('myEnumType2', {'e3', 'e4'}, [3 4]);
myResult = Simulink.findIntEnumType()

Delete all enumeration types and confirm that no enumeration types exist.

 Simulink.clearIntEnumType

2-563

Simulink.clearIntEnumType();
myResult = Simulink.findIntEnumType()

Input Arguments
typeName — Name of enumeration class
character vector or string

Name of a specific enumeration class that is defined by Simulink.defineIntEnumType, specified
as a character vector or string.
Example: 'myEnumType'
Data Types: char | string

Version History
Introduced in R2018b

See Also
enumeration | Simulink.defineIntEnumType | Simulink.findIntEnumType

2 Functions

2-564

Simulink.createFromTemplate
Create model or project from template

Syntax
Simulink.createFromTemplate(templatename)
h = Simulink.createFromTemplate(templatename)
h = Simulink.createFromTemplate(templatename,Name,Value)

Description
Simulink.createFromTemplate(templatename) creates a model or a project from the template
file specified by templatename. The new project is created in the default project folder.

h = Simulink.createFromTemplate(templatename) creates a model or a project from the
template file and returns h, either a numeric model handle or a currentProject object.

h = Simulink.createFromTemplate(templatename,Name,Value) specifies additional options
as one or more Name, Value pair arguments.

Examples

Create a Model from a Template

Simulink.createFromTemplate('simple_simulation.sltx')

Create a Project from a Template and Get the Handle

Create a project from a template, specify the name and root folder, and return the handle to the new
project (a currentProject object) for manipulating it programmatically.

proj = Simulink.createFromTemplate('code_generation_example.sltx','Name','myProject','Folder','C:\Work\project1')

Input Arguments
templatename — Template file name
character vector

Template file name, specified as a character vector. If the template is not on the MATLAB path,
specify the fully-qualified path to the template file and *.sltx extension.
Example:
Data Types: char

 Simulink.createFromTemplate

2-565

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:

Folder — Project root folder
character vector

Project root folder, if creating a new project, specified as a character vector.
Data Types: char

Name — New model or project name
character vector

New model or project name, specified as a character vector.
Data Types: char

Output Arguments
h — Handle
numeric handle | currentProject

Handle to the new model project, returned either as a numeric model handle or a currentProject
object.

Version History
Introduced in R2016a

See Also
Simulink.exportToTemplate | Simulink.findTemplates |
Simulink.defaultModelTemplate | currentProject

Topics
“Create Template from Model”
“Set Default Template for New Models”
“Using Templates to Create Standard Project Settings”

2 Functions

2-566

Simulink.data.adapters.catalog
List registered file adapters

Syntax
Simulink.data.adapters.catalog

Description
Simulink.data.adapters.catalog displays the list of registered file adapters, which are derived
from the Simulink.data.adapters.BaseMatlabFileAdapter base class. For each registered
adapter, the display provides the class name, display name, supported extensions, and full path of the
adapter.

Examples

List Registered File Adapters

List the registered file adapters available on the MATLAB path.

Simulink.data.adapters.catalog

 Class Name Adapter Name Extensions Full Path
____________ _____________ __________ ______________________
"XMLAdapter" "XML Adapter" "XML" "C:\Work\XMLAdapter.m"

Version History
Introduced in R2022b

See Also
Simulink.data.adapters.registerAdapter |
Simulink.data.adapters.unregisterAdapter |
Simulink.data.adapters.BaseMatlabFileAdapter |
Simulink.data.DataSourceWorkspace | Simulink.data.adapters.AdapterDataTester

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

 Simulink.data.adapters.catalog

2-567

Simulink.data.adapters.registerAdapter
Register custom file adapter

Syntax
Simulink.data.adapters.registerAdapter(adapterClassName)

Description
Simulink.data.adapters.registerAdapter(adapterClassName) registers the custom
external file adapter class adapterClassName, which is derived from the
Simulink.data.adapters.BaseMatlabFileAdapter base class. The adapter registration can be
added to a startup script so that the adapter is available for each MATLAB session.

Examples

Register XML File Adapter

Register the XML file adapter XMLAdapter to make it available during the MATLAB session.

Simulink.data.adapters.registerAdapter('XMLAdapter');

Input Arguments
adapterClassName — File adapter class name
string | character array

File adapter class name, specified as a string or character array.
Example: 'adapterName'
Data Types: char | string

Version History
Introduced in R2022b

See Also
Simulink.data.adapters.catalog | Simulink.data.adapters.unregisterAdapter |
Simulink.data.adapters.BaseMatlabFileAdapter |
Simulink.data.DataSourceWorkspace | Simulink.data.adapters.AdapterDataTester

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

2 Functions

2-568

Simulink.data.adapters.unregisterAdapter
Unregister custom file adapter

Syntax
Simulink.data.adapters.unregisterAdapter(adapterClassName)

Description
Simulink.data.adapters.unregisterAdapter(adapterClassName) unregisters the custom
external file adapter class adapterClassName, which is derived from the
Simulink.data.adapters.BaseMatlabFileAdapter base class.

Examples

Unregister XML File Adapter

Unregister the XML file adapter XMLAdapter.

Simulink.data.adapters.registerAdapter('XMLAdapter');

Input Arguments
adapterClassName — File adapter class name
string | character array

File adapter class name, specified as a string or character array.
Example: 'adapterName'
Data Types: char | string

Version History
Introduced in R2022b

See Also
Simulink.data.adapters.catalog | Simulink.data.adapters.registerAdapter |
Simulink.data.adapters.BaseMatlabFileAdapter |
Simulink.data.DataSourceWorkspace | Simulink.data.adapters.AdapterDataTester

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

 Simulink.data.adapters.unregisterAdapter

2-569

Simulink.data.assigninGlobal
Modify variable values in context of Simulink model

Syntax
Simulink.data.assigninGlobal(modelName,varName,varValue)

Description
Simulink.data.assigninGlobal(modelName,varName,varValue) assigns the value
varValue to the variable or data dictionary entry varName in the context of the Simulink model
modelName. assigninGlobal creates the variable or data dictionary entry if it does not already
exist. The function operates in the Design Data section of the data dictionary that is linked to the
target model or in the MATLAB base workspace if the target model is not linked to any data
dictionary.

If the target model is linked to a data dictionary that references other dictionaries, assigninGlobal
searches for varName in the entire dictionary hierarchy. If assigninGlobal does not find a
matching entry, the function creates an entry in the dictionary that is linked to the target model.

Examples

Modify Variable in Model with or Without Data Dictionary

Create a variable myNewVariable with value 237 in the context of the Simulink model vdp.slx,
which is not linked to any data dictionary. myNewVariable appears as a variable in the MATLAB
base workspace.

Simulink.data.assigninGlobal('vdp','myNewVariable',237)

Create a variable myNewEntry with value true in the context of the model
sldemo_fuelsys_dd_controller.slx, which is linked to the data dictionary
sldemo_fuelsys_dd_controller.sldd. The entry myNewEntry appears in the Design Data
section of the dictionary.

openExample('simulink_automotive/UseDDForFuelContSysExample')
sldemo_fuelsys_dd_controller
Simulink.data.assigninGlobal('sldemo_fuelsys_dd_controller',...
'myNewEntry',true)

Confirm the addition of myNewEntry to the data dictionary
sldemo_fuelsys_dd_controller.sldd by viewing the dictionary in Model Explorer.

2 Functions

2-570

myDictionaryObj = Simulink.data.dictionary.open(...
'sldemo_fuelsys_dd_controller.sldd');
show(myDictionaryObj)

Input Arguments
modelName — Name of target Simulink model
character vector

Name of target Simulink model, specified as a character vector.
Example: 'myTestModel'
Data Types: char

varName — Name of target variable or data dictionary entry
character vector

Name of target variable or data dictionary entry, specified as a character vector.
Example: 'myTargetVariable'
Data Types: char

varValue — Value to assign to variable or data dictionary entry
MATLAB expression

Value to assign to variable or data dictionary entry, specified as a MATLAB expression that returns
any valid data type or data dictionary content.
Example: 27.5
Example: myBaseWorkspaceVariable
Example: Simulink.Parameter

Tips
• assigninGlobal helps you transition Simulink models to using data dictionaries. You can use the

function to assign values to model variables before and after linking a model to a data dictionary.

Version History
Introduced in R2015a

See Also
Simulink.data.evalinGlobal | Simulink.data.existsInGlobal |
Simulink.data.dictionary.open

Topics
“Store Data in Dictionary Programmatically”
“Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139
“What Is a Data Dictionary?”
“Considerations Before Migrating to Data Dictionary”

 Simulink.data.assigninGlobal

2-571

Simulink.data.dictionary.cleanupWorkerCache
Restore defaults after parallel simulation with data dictionary

Syntax
Simulink.data.dictionary.cleanupWorkerCache

Description
Simulink.data.dictionary.cleanupWorkerCache restores default settings after you have
finished parallel simulation of a model that is linked to a data dictionary. Use this function in a spmd
block, after you finish parallel simulation using parfor blocks, to restore default settings that were
altered by the Simulink.data.dictionary.setupWorkerCache function.

During parallel simulation of a model that is linked to a data dictionary, you can allow each worker to
access and modify the data in the dictionary independently of other workers. The function
Simulink.data.dictionary.setupWorkerCache grants each worker a unique dictionary cache
to allow independent access to the data, and the function
Simulink.data.dictionary.cleanupWorkerCache restores cache settings to their default
values.

You must have a Parallel Computing Toolbox license to perform parallel simulation using a parfor
block.

Examples
Sweep Variant Control Using Parallel Simulation

To use parallel simulation to sweep a variant control (a Simulink.Parameter object whose value
influences the variant condition of a Simulink.Variant object) that you store in a data dictionary,
use this code as a template. Change the names and values of the model, data dictionary, and variant
control to match your application.

To sweep block parameter values or the values of workspace variables that you use to set block
parameters, use Simulink.SimulationInput objects instead of the programmatic interface to the
data dictionary. See “Optimize, Estimate, and Sweep Block Parameter Values”.

You must have a Parallel Computing Toolbox license to perform parallel simulation.

% For convenience, define names of model and data dictionary
model = 'mySweepMdl';
dd = 'mySweepDD.sldd';

% Define the sweeping values for the variant control
CtrlValues = [1 2 3 4];

% Grant each worker in the parallel pool an independent data dictionary
% so they can use the data without interference
spmd
 Simulink.data.dictionary.setupWorkerCache

2 Functions

2-572

end

% Determine the number of times to simulate
numberOfSims = length(CtrlValues);

% Prepare a nondistributed array to contain simulation output
simOut = cell(1,numberOfSims);

parfor index = 1:numberOfSims
 % Create objects to interact with dictionary data
 % You must create these objects for every iteration of the parfor-loop
 dictObj = Simulink.data.dictionary.open(dd);
 sectObj = getSection(dictObj,'Design Data');
 entryObj = getEntry(sectObj,'MODE');
 % Suppose MODE is a Simulink.Parameter object stored in the data dictionary

 % Modify the value of MODE
 temp = getValue(entryObj);
 temp.Value = CtrlValues(index);
 setValue(entryObj,temp);

 % Simulate and store simulation output in the nondistributed array
 simOut{index} = sim(model);

 % Each worker must discard all changes to the data dictionary and
 % close the dictionary when finished with an iteration of the parfor-loop
 discardChanges(dictObj);
 close(dictObj);
end

% Restore default settings that were changed by the function
% Simulink.data.dictionary.setupWorkerCache
% Prior to calling cleanupWorkerCache, close the model

spmd
 bdclose(model)
 Simulink.data.dictionary.cleanupWorkerCache
end

Note If data dictionaries are open, you cannot use the command
Simulink.data.dictionary.cleanupWorkerCache. To identify open data dictionaries, use
Simulink.data.dictionary.getOpenDictionaryPaths.

Version History
Introduced in R2015a

See Also
spmd | parfor | Simulink.data.dictionary.setupWorkerCache |
Simulink.data.dictionary.getOpenDictionaryPaths |
Simulink.data.dictionary.closeAll

Topics
“Store Data in Dictionary Programmatically”

 Simulink.data.dictionary.cleanupWorkerCache

2-573

“What Is a Data Dictionary?”
“Run Code on Parallel Pools” (Parallel Computing Toolbox)

2 Functions

2-574

Simulink.data.dictionary.closeAll
Close all connections to all open data dictionaries

Syntax
Simulink.data.dictionary.closeAll
Simulink.data.dictionary.closeAll(dictFileName)
Simulink.data.dictionary.closeAll(___ ,unsavedAction)

Description
Simulink.data.dictionary.closeAll attempts to close all connections to all data dictionaries
that are open. For example, if you create objects, such as Simulink.data.Dictionary, that refer
to a dictionary, that dictionary is open.

Some commands and functions, such as Simulink.data.dictionary.cleanupWorkerCache,
cannot operate when dictionaries are open. It is a best practice to close each connection individually
by using functions and methods such as the close method of a Simulink.data.Dictionary
object. To find dictionaries that are open, use
Simulink.data.dictionary.getOpenDictionaryPaths. However, you can use this function to
close all connections to all dictionaries.

You can also use this function to close dictionaries in a shutdown script that is part of a project.

Simulink.data.dictionary.closeAll(dictFileName) closes all connections to the dictionary
named dictFileName. If you open multiple dictionaries that use this file name (for example, if the
dictionaries have different file paths), the function closes all connections to all of the dictionaries.

You cannot specify dictFileName as a full file path such as 'C:\temp\myDict.sldd'.

Simulink.data.dictionary.closeAll(___ ,unsavedAction) closes all connections to the
target dictionaries by discarding or saving unsaved changes. You can choose whether to save or
discard all changes to all of the target dictionaries.

Examples

Close All Connections to All Open Dictionaries

Discard any unsaved changes. All of the entries in the dictionaries revert to the last saved state.

Simulink.data.dictionary.closeAll('-discard')

Close All Connections to Single Data Dictionary

Open multiple connections to a data dictionary, make a change, and close all of the connections by
discarding the unsaved change.

 Simulink.data.dictionary.closeAll

2-575

At the command prompt, open a data dictionary by creating a Simulink.data.Dictionary object
that refers to the dictionary.

For example, open the “Using a Data Dictionary to Manage the Data for a Fuel Control System” on
page 13-139 example data dictionary.

openExample('simulink_automotive/UseDDForFuelContSysExample'
dictObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd.sldd');

Display the dictionary in the Model Explorer

show(dictObj)

You now have two connections to this dictionary: The Simulink.data.Dictionary object and the
Model Explorer.

Make a change to the dictionary by adding an entry.

dDataSectObj = getSection(dictObj,'Design Data');
addEntry(dDataSectObj,'myEntry',5.2);

The Simulink.data.dictionary.Section object dDataSectObj is a third connection to the
dictionary.

Close the connections to the dictionary. Discard the unsaved change.

Simulink.data.dictionary.closeAll('sldemo_fuelsys_dd.sldd','-discard')

The dictionary no longer appears as a node in the Model Hierarchy pane of the Model Explorer. The
Simulink.data.Dictionary object dictObj is disconnected from the dictionary. You cannot
interact with the dictionary by using the Simulink.data.dictionary.Section object
dDataSectObj.

Clear the objects that referred to the dictionary.

clear dictObj dDataSectObj

Input Arguments
dictFileName — File name of target data dictionary or dictionaries
character vector

File name of target data dictionary or dictionaries, specified as a character vector. Use the file
extension sldd.
Example: 'myDict.sldd'
Data Types: char

unsavedAction — Action for unsaved changes
'-discard' | '-save'

Action for unsaved changes, specified as '-discard' (to discard changes) or '-save' (to save
changes). If you call Simulink.data.dictionary.closeAll without the unsavedAction
argument, Simulink reports an error if the data dictionary has unsaved changes.

2 Functions

2-576

Tips
A data dictionary is open if any of these conditions are true:

• The dictionary appears as a node in the Model Hierarchy pane of the Model Explorer. To close
this connection to the dictionary, right-click the node in Model Explorer and select Close.
Alternatively, use the hide method of a Simulink.data.Dictionary object.

• You created an object of any of these classes that refer to the dictionary:

• Simulink.data.Dictionary
• Simulink.data.dictionary.Section
• Simulink.data.dictionary.Entry

To close these connections to the dictionary, use the close method of the
Simulink.data.Dictionary object or clear the object. Clear the
Simulink.data.dictionary.Section and Simulink.data.dictionary.Entry objects.

• A model that is linked to the dictionary is open. To close this connection to the dictionary, close the
model.

Version History
Introduced in R2016a

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.setupWorkerCache |
Simulink.data.dictionary.cleanupWorkerCache |
Simulink.data.dictionary.getOpenDictionaryPaths

Topics
“Store Data in Dictionary Programmatically”
“Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139

 Simulink.data.dictionary.closeAll

2-577

Simulink.data.dictionary.create
Create new data dictionary and create Simulink.data.Dictionary object

Syntax
dictionaryObj = Simulink.data.dictionary.create(dictionaryFile)

Description
dictionaryObj = Simulink.data.dictionary.create(dictionaryFile) creates a data
dictionary file in your current working folder or in a file path you can specify in dictionaryFile.
The function returns a Simulink.data.Dictionary object representing the new data dictionary.

Examples

Create New Data Dictionary and Data Dictionary Object

Create a data dictionary myNewDictionary.sldd in your current working folder and a
Simulink.data.Dictionary object representing the new data dictionary. Assign the object to the
variable myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.create('myNewDictionary.sldd')

myDictionaryObj =

 Dictionary with properties:

 DataSources: {0x1 cell}
 HasAccessToBaseWorkspace: 0
EnableAccessToBaseWorkspace: 0
 HasUnsavedChanges: 0
 NumberOfEntries: 0

Input Arguments
dictionaryFile — Name of new data dictionary
character vector

Name of new data dictionary, specified as a character vector containing the file name and, optionally,
path of the dictionary to create. If you do not specify a path, Simulink.data.dictionary.create
creates the new data dictionary file in your working MATLAB folder.
Simulink.data.dictionary.create also supports file paths specified relative to your working
folder.
Example: 'myDictionary.sldd'
Example: 'C:\Users\jsmith\myDictionary.sldd'
Example: '..\myOtherDictionary.sldd'
Data Types: char

2 Functions

2-578

Output Arguments
dictionaryObj — Newly created data dictionary
Simulink.data.Dictionary object

Newly created data dictionary, returned as a Simulink.data.Dictionary object.

Alternatives
You can use the Simulink Editor to create a data dictionary and link it to a model. See “Migrate Single
Model to Use Dictionary” for more information.

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.open

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”

 Simulink.data.dictionary.create

2-579

Simulink.data.dictionary.getOpenDictionaryPaths
Return file names and paths of open data dictionaries

Syntax
openDDs = Simulink.data.dictionary.getOpenDictionaryPaths
openDDs = Simulink.data.dictionary.getOpenDictionaryPaths(dictFileName)

Description
openDDs = Simulink.data.dictionary.getOpenDictionaryPaths returns the file names and
paths of all data dictionaries that are open. For example, a data dictionary is open if you create
objects, such as Simulink.data.Dictionary, that refer to the dictionary. If you open two or more
dictionaries that have the same file name but different file paths, this function returns multiple file
paths.

Before executing commands and functions that cannot operate when dictionaries are open, use this
function to identify open dictionaries so that you can close them. For example, when you run parallel
simulations as described in “Sweep Variant Control Using Parallel Simulation”, this function helps
you identify open dictionaries before executing the command
Simulink.data.dictionary.cleanupWorkerCache.

openDDs = Simulink.data.dictionary.getOpenDictionaryPaths(dictFileName) returns
the file paths of data dictionaries that have the file name dictFileName. If you open two or more
dictionaries that have the same file name but different file paths, you can use this syntax to return all
of the file paths.

Examples

Identify and Close All Open Data Dictionaries

Open, identify, and close a data dictionary. After you close the connections to the dictionary, you can
use commands and functions, such as Simulink.data.dictionary.cleanupWorkerCache, that
cannot operate when dictionaries are open.

At the command prompt, open a data dictionary by creating a Simulink.data.Dictionary object
that refers to the dictionary.

For example, open the “Using a Data Dictionary to Manage the Data for a Fuel Control System” on
page 13-139 example data dictionary.

openExample('simulink_automotive/UseDDForFuelContSysExample'
dictObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd.sldd');

Display the dictionary in the Model Explorer

show(dictObj)

Identify all of the dictionaries that are open.

2 Functions

2-580

openDDs = Simulink.data.dictionary.getOpenDictionaryPaths;

The file path of the dictionary that you opened, sldemo_fuelsys_dd.sldd, appears in the cell
array of character vectors openDDs.

Close the connection from the Model Explorer to the dictionary.

hide(dictObj)

The dictionary no longer appears as a node in the Model Hierarchy pane of the Model Explorer.

Close the connection from the Simulink.data.Dictionary object to the dictionary.

close(dictObj)
clear dictObj

Input Arguments
dictFileName — File name of target data dictionary or dictionaries
character vector

File name of target data dictionary or dictionaries, specified as a character vector. Use the file
extension sldd.
Example: 'myDict.sldd'
Data Types: char

Output Arguments
openDDs — File names and paths of open data dictionaries
cell array of character vectors

File names and paths of open data dictionaries, returned as a cell array of character vectors.

Tips
A data dictionary is open if any of these conditions are true:

• The dictionary appears as a node in the Model Hierarchy pane of the Model Explorer. To close
this connection to the dictionary, right-click the node in Model Explorer and select Close.
Alternatively, use the hide method of a Simulink.data.Dictionary object.

• You created an object of any of these classes that refer to the dictionary:

• Simulink.data.Dictionary
• Simulink.data.dictionary.Section
• Simulink.data.dictionary.Entry

To close these connections to the dictionary, use the close method of the
Simulink.data.Dictionary object or clear the object. Clear the
Simulink.data.dictionary.Section and Simulink.data.dictionary.Entry objects.

• A model that is linked to the dictionary is open. To close this connection to the dictionary, close the
model.

 Simulink.data.dictionary.getOpenDictionaryPaths

2-581

Version History
Introduced in R2016a

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.setupWorkerCache |
Simulink.data.dictionary.cleanupWorkerCache | Simulink.data.dictionary.closeAll

Topics
“Store Data in Dictionary Programmatically”
“Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139

2 Functions

2-582

Simulink.data.dictionary.open
Open data dictionary for editing

Syntax
dictionaryObj = Simulink.data.dictionary.open(dictionaryFile)

Description
dictionaryObj = Simulink.data.dictionary.open(dictionaryFile) opens the specified
data dictionary and returns a Simulink.data.Dictionary object representing an existing data
dictionary identified by its file name and, optionally, file path with dictionaryFile.

Make sure any dictionaries referenced by the target dictionary are on the MATLAB path.

Examples

Open Existing Data Dictionary

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.

myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd')

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}
 HasUnsavedChanges: 0
 NumberOfEntries: 4

Input Arguments
dictionaryFile — Target data dictionary
character vector

Target data dictionary, specified as a character vector containing the file name and, optionally, path of
the dictionary. If you do not specify a path, Simulink.data.dictionary.open searches the
MATLAB path for the specified file. Simulink.data.dictionary.open also supports paths
specified relative to the MATLAB working folder.
Example: 'myDictionary_ex_API.sldd'
Example: 'C:\Users\jsmith\myDictionary_ex_API.sldd'
Example: '..\myOtherDictionary.sldd'
Data Types: char

 Simulink.data.dictionary.open

2-583

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.create | show

Topics
“Store Data in Dictionary Programmatically”

2 Functions

2-584

Simulink.data.dictionary.setupWorkerCache
Enable parallel simulation with data dictionary

Syntax
Simulink.data.dictionary.setupWorkerCache

Description
Simulink.data.dictionary.setupWorkerCache prepares the workers in a parallel pool for
simulating a model that is linked to a data dictionary. Use this function in a spmd block, prior to
starting a parfor block, to provide the workers in a parallel pool a way to safely interact with a
single data dictionary.

During parallel simulation of a model that is linked to a data dictionary, you can allow each worker to
access and modify the data in the dictionary independently of other workers.
Simulink.data.dictionary.setupWorkerCache temporarily provides each worker in the pool
with its own data dictionary cache, allowing the workers to use the data in the dictionary without
permanently changing it.

You must have a Parallel Computing Toolbox license to perform parallel simulation using a parfor
block.

Examples
Sweep Variant Control Using Parallel Simulation

To use parallel simulation to sweep a variant control (a Simulink.Parameter object whose value
influences the variant condition of a Simulink.Variant object) that you store in a data dictionary,
use this code as a template. Change the names and values of the model, data dictionary, and variant
control to match your application.

To sweep block parameter values or the values of workspace variables that you use to set block
parameters, use Simulink.SimulationInput objects instead of the programmatic interface to the
data dictionary. See “Optimize, Estimate, and Sweep Block Parameter Values”.

You must have a Parallel Computing Toolbox license to perform parallel simulation.

% For convenience, define names of model and data dictionary
model = 'mySweepMdl';
dd = 'mySweepDD.sldd';

% Define the sweeping values for the variant control
CtrlValues = [1 2 3 4];

% Grant each worker in the parallel pool an independent data dictionary
% so they can use the data without interference
spmd
 Simulink.data.dictionary.setupWorkerCache
end

 Simulink.data.dictionary.setupWorkerCache

2-585

% Determine the number of times to simulate
numberOfSims = length(CtrlValues);

% Prepare a nondistributed array to contain simulation output
simOut = cell(1,numberOfSims);

parfor index = 1:numberOfSims
 % Create objects to interact with dictionary data
 % You must create these objects for every iteration of the parfor-loop
 dictObj = Simulink.data.dictionary.open(dd);
 sectObj = getSection(dictObj,'Design Data');
 entryObj = getEntry(sectObj,'MODE');
 % Suppose MODE is a Simulink.Parameter object stored in the data dictionary

 % Modify the value of MODE
 temp = getValue(entryObj);
 temp.Value = CtrlValues(index);
 setValue(entryObj,temp);

 % Simulate and store simulation output in the nondistributed array
 simOut{index} = sim(model);

 % Each worker must discard all changes to the data dictionary and
 % close the dictionary when finished with an iteration of the parfor-loop
 discardChanges(dictObj);
 close(dictObj);
end

% Restore default settings that were changed by the function
% Simulink.data.dictionary.setupWorkerCache
% Prior to calling cleanupWorkerCache, close the model

spmd
 bdclose(model)
 Simulink.data.dictionary.cleanupWorkerCache
end

Note If data dictionaries are open, you cannot use the command
Simulink.data.dictionary.cleanupWorkerCache. To identify open data dictionaries, use
Simulink.data.dictionary.getOpenDictionaryPaths.

Version History
Introduced in R2015a

See Also
spmd | parfor | Simulink.data.dictionary.cleanupWorkerCache

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”
“Run Code on Parallel Pools” (Parallel Computing Toolbox)

2 Functions

2-586

Simulink.data.evalinGlobal
Evaluate MATLAB expression in context of Simulink model

Syntax
returnValue = Simulink.data.evalinGlobal(modelName,expression)

Description
returnValue = Simulink.data.evalinGlobal(modelName,expression) evaluates the
MATLAB expression expression in the context of the Simulink model modelName and returns the
values returned by expression. evalinGlobal evaluates expression in the Design Data section
of the data dictionary that is linked to the target model or in the MATLAB base workspace if the
target model is not linked to any data dictionary.

Examples

Evaluate MATLAB Expression in Model with or Without Data Dictionary

Evaluate the MATLAB expression myNewVariable = 237; in the context of the model vdp, which is
not linked to any data dictionary. myNewVariable appears as a variable in the MATLAB base
workspace.

Simulink.data.evalinGlobal('vdp','myNewVariable = 237;')

Evaluate the MATLAB expression myNewEntry = true; in the context of the model
sldemo_fuelsys_dd_controller, which is linked to the data dictionary
sldemo_fuelsys_dd_controller.sldd. myNewEntry appears as an entry in the Design Data
section of the dictionary.

openExample('simulink_automotive/UseDDForFuelContSysExample')
sldemo_fuelsys_dd_controller
Simulink.data.evalinGlobal('sldemo_fuelsys_dd_controller',...
'myNewEntry = true;')

Confirm the creation of the entry myNewEntry in the data dictionary
sldemo_fuelsys_dd_controller.sldd by viewing the dictionary in Model Explorer.

openExample('simulink_automotive/UseDDForFuelContSysExample')
sldemo_fuelsys_dd_controller'
myDictionaryObj = Simulink.data.dictionary.open(...
'sldemo_fuelsys_dd_controller.sldd');
show(myDictionaryObj)

Input Arguments
modelName — Name of target Simulink model
character vector

Name of target Simulink model, specified as a character vector.

 Simulink.data.evalinGlobal

2-587

Example: 'myTestModel'
Data Types: char

expression — MATLAB expression to evaluate
character vector

MATLAB expression to evaluate, specified as a character vector.
Example: 'a = 5.3'
Example: 'whos'
Example: 'CurrentSpeed.Value = 290.73'
Data Types: char

Output Arguments
returnValue — Value returned by specified expression
valid entry or variable value

Value returned by the specified MATLAB expression.

Tips
• evalinGlobal helps you transition Simulink models to the use of data dictionaries. You can use

the function to manipulate model variables before and after linking a model to a data dictionary.

Version History
Introduced in R2015a

See Also
evalin | Simulink.data.assigninGlobal | Simulink.data.existsInGlobal

Topics
“Store Data in Dictionary Programmatically”
“Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139

2 Functions

2-588

Simulink.data.existsInGlobal
Check existence of variable in context of Simulink model

Syntax
varExists = Simulink.data.existsInGlobal(modelName,varName)

Description
varExists = Simulink.data.existsInGlobal(modelName,varName) returns an indication of
the existence of a variable or data dictionary entry varName in the context of the Simulink model
modelName. Simulink.data.existsInGlobal searches the Design Data section of the data
dictionary that is linked to the target model or the MATLAB base workspace if the target model is not
linked to any data dictionary.

Examples

Determine Existence of Variable in Model with or Without Data Dictionary

Determine the existence of a variable PressVect in the context of the Simulink model vdp.slx,
which is not linked to any data dictionary.

Simulink.data.existsInGlobal('vdp','PressVect')

ans =

 0

Because vdp.slx is not linked to any data dictionary, existsInGlobal searches only in the
MATLAB base workspace for PressVect.

Determine the existence of a variable PressVect in the context of the Simulink model
sldemo_fuelsys_dd_controller.slx, which is linked to the data dictionary
sldemo_fuelsys_dd_controller.sldd.

Open the “Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139
example model sldemo_fuelsys_dd_controller.

openExample('simulink_automotive/UseDDForFuelContSysExample')
sldemo_fuelsys_dd_controller
Simulink.data.existsInGlobal('sldemo_fuelsys_dd_controller','PressVect')

ans =

 1

 Simulink.data.existsInGlobal

2-589

Because sldemo_fuelsys_dd_controller is linked to the data dictionary
sldemo_fuelsys_dd_controller.sldd, existsInGlobal searches for PressVect only in the
Design Data section of the dictionary.

Input Arguments
modelName — Name of target Simulink model
character vector

Name of target Simulink model, specified as a character vector.
Example: 'myTestModel'
Data Types: char

varName — Name of target variable or data dictionary entry
character vector

Name of target variable or data dictionary entry, specified as a character vector.
Example: 'myTargetVariable'
Data Types: char

Output Arguments
varExists — Indication of existence of target variable or data dictionary entry
1 | 0

Indication of existence of target variable or data dictionary entry, returned as 1 to indicate existence
or 0 to indicate absence.

Tips
• existsInGlobal helps you transition Simulink models to the use of data dictionaries. You can

use the function to find model variables before and after linking a model to a data dictionary.

Alternatives
You can use Model Explorer to search a data dictionary or any workspace for entries or variables.

Version History
Introduced in R2015a

See Also
exist | Simulink.data.assigninGlobal | Simulink.data.evalinGlobal

Topics
“Store Data in Dictionary Programmatically”

2 Functions

2-590

Simulink.data.getEnumTypeInfo
Get information about enumerated data type

Syntax
information = Simulink.data.getEnumTypeInfo(enumTypeName,infoRequest)

Description
information = Simulink.data.getEnumTypeInfo(enumTypeName,infoRequest) returns
information about an enumerated data type enumTypeName.

Use this function only to return information about an enumerated data type. To customize an
enumerated data type, for example, by specifying a default enumeration member or by controlling the
scope of the type definition in generated code, see “Customize Simulink Enumeration”.

Examples

Return Default Value of Enumerated Data Type

Get the default enumeration member of an enumerated data type LEDcolor. Suppose LEDcolor
defines two enumeration members, GREEN and RED, and uses GREEN as the default member.

Simulink.data.getEnumTypeInfo('LEDcolor','DefaultValue')

ans =

 GREEN

Get Scope of Enumerated Data Type Definition in Generated Code

For an enumerated data type LEDcolor, find out if generated code exports or imports the definition
of the type to or from a header file.

Simulink.data.getEnumTypeInfo('LEDcolor','DataScope')
Simulink.data.getEnumTypeInfo('LEDcolor','HeaderFile')

ans =

Auto

ans =

 ''

 Simulink.data.getEnumTypeInfo

2-591

Because DataScope is 'Auto' and HeaderFile is empty, generated code defines the enumerated
data type LEDcolor in the header file model_types.h where model is the name of the model used
to generate code.

Input Arguments
enumTypeName — Name of target enumerated data type
character vector

Name of the target enumerated data type, specified as a character vector.
Example: 'myFirstEnumType'
Data Types: char

infoRequest — Information to return
valid character vector

Information to return, specified as one of the character vector options in the table.

Specified value Information returned Example return
value

'DefaultValue' The default enumeration member, returned as an
instance of the enumerated data type.

enumMember1

'Description' The custom description of this data type, returned
as a character vector. Returns an empty character
vector if a description was not specified for the
type.

'My first enum
type.'

'HeaderFile' The name of the custom header file that defines
the data type in generated code, returned as a
character vector. Returns an empty character
vector if a header file was not specified for the
type.

'myEnumType.h'

'DataScope' Indication whether generated code imports or
exports the definition of the data type. A return
value of 'Auto' indicates generated code defines
the type in the header file model_types.h or
imports the definition from the header file
identified by HeaderFile. A return value of
'Exported' or 'Imported' indicates generated
code exports or imports the definition to or from
the header file identified by HeaderFile.

'Exported'

'StorageType' The integer data type used by generated code to
store the numeric values of the enumeration
members, returned as a character vector. Returns
'int' if you did not specify a storage type for the
enumerated type, in which case generated code
uses the native integer type of the hardware
target.

'int32'

2 Functions

2-592

Specified value Information returned Example return
value

'AddClassNameToEnumNames' Indication whether generated code prefixes the
names of enumeration members with the name of
the data type. Returned as true or false.

true

Version History
Introduced in R2014b

See Also
Simulink.defineIntEnumType

Topics
“Customize Simulink Enumeration”
“Simulink Enumerations”

 Simulink.data.getEnumTypeInfo

2-593

Simulink.data.isSupportedEnumClass
Determine whether an enumeration class is valid for Simulink

Syntax
valid = Simulink.data.isSupportedEnumClass(enumClass)

Description
valid = Simulink.data.isSupportedEnumClass(enumClass) returns true if enumClass is a
valid enumeration class for Simulink.

Examples

Determine if Enumeration Class is Valid

Define an enumeration class of basic colors, then confirm that it is valid.

Simulink.defineIntEnumType('BasicColors', ...
 {'Red', 'Yellow', 'Blue'}, ...
 [0;1;2]);
Simulink.data.isSupportedEnumClass('BasicColors')

ans =

 logical

 1

Perform the same validity check by using the meta.class object as the input.

Simulink.data.isSupportedEnumClass(?BasicColors)

ans =

 logical

 1

Check if Simulink.NumericType is a valid enumeration class by using the meta.class object as
the input.

Simulink.data.isSupportedEnumClass(?Simulink.NumericType)

ans =

 logical

2 Functions

2-594

 0

Input Arguments
enumClass — Enumeration class
character vector | meta.class

Enumeration class, specified as a character vector or as meta.class object.
Example: 'myEnumClass' or ?myEnumClass

Output Arguments
valid — Whether enumeration class is valid
logical

If the input value refers to a valid enumeration class for Simulink, valid is true, otherwise valid is
false.

Version History
Introduced in R2014b

See Also
Simulink.defineIntEnumType | Simulink.data.getEnumTypeInfo |
Simulink.data.isSupportedEnumObject | Simulink.clearIntEnumType |
Simulink.findIntEnumType

Topics
“Simulink Enumerations”

 Simulink.data.isSupportedEnumClass

2-595

Simulink.data.isSupportedEnumObject
Determine whether an enumeration object is valid for Simulink

Syntax
valid = Simulink.data.isSupportedEnumObject(enumObject)

Description
valid = Simulink.data.isSupportedEnumObject(enumObject) returns true if enumObject
is a valid enumeration object for Simulink.

Examples

Determine if Enumeration Object is Valid

Define an enumeration class of basic colors.

Simulink.defineIntEnumType('BasicColors', ...
 {'Red', 'Yellow', 'Blue'}, ...
 [0;1;2]);

Confirm that an instance of the enumeration class is valid.

Simulink.data.isSupportedEnumObject(BasicColors.Yellow)

ans =

 logical

 1

Call the function with input that is not an enumeration object.

Simulink.data.isSupportedEnumObject(5)

ans =

 logical

 0

Input Arguments
enumObject — Enumeration object
enumeration object

Instance of a defined enumeration, specified as an enumeration object.
Example: myEnumObject

2 Functions

2-596

Output Arguments
valid — Whether enumeration class is valid
logical

If the input value refers to a valid enumeration object for Simulink, valid is true, otherwise valid
is false.

Version History
Introduced in R2014b

See Also
Simulink.defineIntEnumType | Simulink.data.getEnumTypeInfo |
Simulink.data.isSupportedEnumClass | Simulink.clearIntEnumType |
Simulink.findIntEnumType

Topics
“Simulink Enumerations”

 Simulink.data.isSupportedEnumObject

2-597

Simulink.defineIntEnumType
Define enumerated data type

Syntax
Simulink.defineIntEnumType(ClassName, CellOfEnums,IntValues)
Simulink.defineIntEnumType(___ ,'Description',ClassDesc)
Simulink.defineIntEnumType(___ ,'DefaultValue',DefValue)
Simulink.defineIntEnumType(___ ,'DataScope',ScopeSelection)
Simulink.defineIntEnumType(___ ,'HeaderFile',FileName)
Simulink.defineIntEnumType(___ ,'AddClassNameToEnumNames',Flag)
Simulink.defineIntEnumType(___ ,'StorageType',DataType)

Description
Simulink.defineIntEnumType(ClassName, CellOfEnums,IntValues) defines an
enumeration named ClassName with enumeration values specified with CellOfEnums and
underlying numeric values specified by IntValues.

Simulink.defineIntEnumType(___ ,'Description',ClassDesc) defines the enumeration
with a description.

Simulink.defineIntEnumType(___ ,'DefaultValue',DefValue) defines a default value for
the enumeration, which is one of the character vectors you specify for CellOfEnums.

Simulink.defineIntEnumType(___ ,'DataScope',ScopeSelection) specifies whether the
data type definition should be imported from, or exported to, a header file during code generation.

Simulink.defineIntEnumType(___ ,'HeaderFile',FileName) specifies the name of a header
file containing the enumeration class definition for use in code generated from a model.

Simulink.defineIntEnumType(___ ,'AddClassNameToEnumNames',Flag) specifies whether
the code generator applies the class name as a prefix to the enumeration values that you specify for
CellOfEnums. For Flag, specify true or false. For example, if you specify true, the code
generator would use BasicColors_Red instead of Red to represent an enumerated value.

Simulink.defineIntEnumType(___ ,'StorageType',DataType) specifies the data type used
to store the enumerations’ underlying integer values in code generated from a model.

Examples

Import Enumeration Class Definition Into Workspace

Assume an external data dictionary includes the following enumeration:

BasicColors.Red(0), BasicColors.Yellow(1), BasicColors.Blue(2)

Import the enumeration class definition into the MATLAB workspace while specifying int16 as the
underlying integer data type for generated code:

2 Functions

2-598

Simulink.defineIntEnumType('BasicColors', ...
 {'Red', 'Yellow', 'Blue'}, ...
 [0;1;2], ...
 'Description', 'Basic colors', ...
 'DefaultValue', 'Blue', ...
 'HeaderFile', 'mybasiccolors.h', ...
 'DataScope', 'Exported', ...
 'AddClassNameToEnumNames', true, ...
 'StorageType', 'int16');

Input Arguments
ClassName — Name of enumerated data type
character vector | string

The name of the enumerated data type, specified as a character vector or string.
Example: 'BasicColors'

CellOfEnums — Enumerations for data type
cell array of character vectors

Enumerations for the data type, specified as a cell array of character vectors.
Example: {'Red', 'Yellow', 'Blue'}

IntValues — Numeric enumeration values
array of numeric values

Numeric enumeration values, specified as an array. For uint32-based enumerations, enumeration
values must be less than or equal to intmax('int32').
Example: [0;1;2]

ClassDesc — Description of enumeration data type
character vector

Description of the enumeration data type, specified as a character vector.
Example: 'Basic colors'

DefValue — Default enumeration value
character vector

The default enumeration value, specified as a character vector. The value is one of the character
vectors specified for CellOfEnums.
Example: 'Blue'

FileName — Header file
character vector

That header file that is to contain the data type definition, specified as a character vector. By default,
the generated #include directive uses the preprocessor delimiter " instead of < and >. To generate
the directive #include <mytypes.h>, specify FileName as '<myTypes.h>'.
Example: 'mybasiccolors.h'

 Simulink.defineIntEnumType

2-599

ScopeSelection — Action for data type definition
'Auto' (default) | 'Exported' | 'Imported'

Action to take for the data type definition during code generation , specified as one of these values:

• 'Auto' — If no value is specified for HeaderFile, export the type definition to model_types.h
where model is the model name. If a value is specified for HeaderFile, import the data type
definition from the specified header file.

• 'Exported' — Export the data type definition to a header file. If no value is specified for
HeaderFile, the header file name defaults to type.h, where type is the data type name.

• 'Imported' — Import the data type definition from a header file. If no value is specified for
HeaderFile, the header file name defaults to type.h, where type is the data type name.

Set the data scope selection to Imported or Exported to avoid potential MISRA C:2012 violations.

Flag — Whether class name is a prefix to enumeration
false or 0 (default) | true or 1

Whether the code generator applies the class name as a prefix to the enumerations, specified as a
numeric or logical 1 (true) or 0 (false).
Example: true

DataType — Data type used to store enumeration values
'int8' | 'int16' | 'int32' | 'uint8' | 'uint16' | 'uint32'

Data type used to store the enumerations' underlying integer values in generated code, specified as a
character vector.
Example: 'int16'

Version History
Introduced in R2010b

See Also
enumeration

Topics
“Import Enumerations Defined Externally to MATLAB”
“Define Simulink Enumerations”

2 Functions

2-600

Simulink.defaultModelTemplate
Set or get default model template

Syntax
Simulink.defaultModelTemplate(templatename)
templatepath = Simulink.defaultModelTemplate

Description
Simulink.defaultModelTemplate(templatename) sets the template file specified by
templatename as the default model template to use for new models. This setting is persistent
between Simulink sessions.

templatepath = Simulink.defaultModelTemplate gets the full path to the current default
model template.

Examples

Set the default model template

Simulink.defaultModelTemplate('simple_simulation.sltx')

Get the default model template

mydefaulttemplate = Simulink.defaultModelTemplate

Clear and restore the default model template

Use set_param to set a root block diagram parameter. This clears the default template so that new
models will inherit this property of the root block diagram, and warns.

set_param(0,'StopTime','99');

Restore the default template.

Simulink.defaultModelTemplate('$restore');

Input Arguments
templatename — Template file name
character vector

Template file name, specified as a character vector. If the template is not on the MATLAB path,
specify the fully-qualified path to the template file and *.sltx extension.

 Simulink.defaultModelTemplate

2-601

Example: \\Home\username\Documents\MATLAB\template.sltx
Data Types: char

Output Arguments
templatepath — Template path
character vector

Template path, specified as a character vector, showing the full path to the current default model
template.

Version History
Introduced in R2016b

See Also
new_system | Simulink.createFromTemplate | Simulink.exportToTemplate |
Simulink.findTemplates

Topics
“Create Template from Model”
“Set Default Template for New Models”
“Using Templates to Create Standard Project Settings”

2 Functions

2-602

Simulink.exportToTemplate
Create template from model or project

Syntax
templatefile = Simulink.exportToTemplate(obj,templatename)
templatefile = Simulink.exportToTemplate(obj,templatename,Name,Value)

Description
templatefile = Simulink.exportToTemplate(obj,templatename) creates a template file
(templatename.sltx) from a model or project specified by obj.

If you have project templates created in R2014a or earlier (.zip files), use
Simulink.exportToTemplate to upgrade them to .sltx files, then you can use them in the start
page.

templatefile = Simulink.exportToTemplate(obj,templatename,Name,Value) specifies
additional template options as one or more Name, Value pair arguments.

Examples

Create a Template from a Model

Open the vdp model and create a template from it.

openExample('vdp.slx');
myvdptemplate = Simulink.exportToTemplate(bdroot,'vdptemplate')

Create a Template from a Model and Specify Description

Open the vdp model and create a template from it, specifying a description.

openExample('vdp.slx');
myvdptemplate = Simulink.exportToTemplate(bdroot,'vdptemplate','Description','Use this template to create a vdp model')

Input Arguments
obj — Model, library, or project
character vector | numeric handle | slproject.ProjectManager

Model, library, or project, specified by name or numeric handle, or a slproject.ProjectManager
object returned by the currentProject function.
Data Types: double | char

templatename — Template file name
character vector

 Simulink.exportToTemplate

2-603

Template file name, specified as a character vector that can optionally include the fully-qualified path
to a template file and *.sltx extension.
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Title,'My Project Template'

Group — Group of template
character vector

Group of template, specified as a character vector. On the Start Page, templates are shown under
group headings.
Example: 'My Templates'
Data Types: char

Author — Author of template
character vector

Author of template, specified as a character vector.
Data Types: char

Description — Description of template
character vector

Description of template, specified as a character vector.
Data Types: char

ThumbnailFile — Thumbnail image file name
character vector

Thumbnail image file name, specified as a character vector.
Data Types: char

Title — Title of model or project template
character vector

Title of template, specified as a character vector. On the Start Page, the templates titles are shown on
the tiles. The title can be different from the file name, and you can use any characters in the title. The
default value is the name of the model or project.
Example: 'My Project Template'
Data Types: char

2 Functions

2-604

Output Arguments
templatefile — Template file
character vector

Template file, returned as templatename.sltx file.

Version History
Introduced in R2016a

See Also
Simulink.createFromTemplate | Simulink.findTemplates |
Simulink.defaultModelTemplate

Topics
“Create Template from Model”
“Set Default Template for New Models”
“Using Templates to Create Standard Project Settings”

 Simulink.exportToTemplate

2-605

Simulink.exportToVersion
Export model, library, or project for use in previous version of Simulink

Syntax
exported_file = Simulink.exportToVersion(modelname,target_filename,version)
exported_file = Simulink.exportToVersion(modelname,target_filename,version,
Name,Value)
exported_project = Simulink.exportToVersion(proj,zipfilename,version)
exported_project = Simulink.exportToVersion(proj,zipfilename,version,
exportReferencedProjects)

Description
exported_file = Simulink.exportToVersion(modelname,target_filename,version)
exports the model or library modelname to a file named target_filename in a format that the
specified previous Simulink version can load.

If the system contains functionality not supported by the specified Simulink software version, the
command removes the functionality and replaces any unsupported blocks with empty masked
subsystem blocks colored yellow. As a result, the converted system may generate different results.

The save_system ExportToVersion option is a legacy option for this functionality that is also
supported.

exported_file = Simulink.exportToVersion(modelname,target_filename,version,
Name,Value) specifies additional options as one or more name-value pair arguments.

exported_project = Simulink.exportToVersion(proj,zipfilename,version) exports
the project proj to a ZIP file zipfilename in a format that the specified previous Simulink version
can load.

exported_project = Simulink.exportToVersion(proj,zipfilename,version,
exportReferencedProjects) exports the top-level project proj and all referenced projects to a
ZIP file zipfilename in a format that the specified previous Simulink version can load.

Examples

Export a Model to a Previous Version

Get the current top-level system and export it.

 Simulink.exportToVersion(bdroot,'mymodel.slx','R2014b');

Export a Model to a Previous Version and Break Links

Get the current top-level system and export it, replacing links to library blocks with copies of the
library blocks in the saved file.

2 Functions

2-606

Simulink.exportToVersion(bdroot,'mymodel.slx','R2014b','BreakUserLinks',true);

Export a Project to a Previous Version

Get the current top-level project and export it.

sldemo_slproject_airframe_references;
proj = currentProject;
Simulink.exportToVersion(proj,'myzipfilename','R2019a');

Export the current top-level project and all referenced projects.

Simulink.exportToVersion(proj,'myzipfilename','R2019a',true);

Input Arguments
modelname — Model to export
character vector | string scalar

Model to export, specified as a character vector or string scalar, without any file extension. The model
must be loaded and unmodified. The target file must not be the same as the model file.
Data Types: char | string

target_filename — Exported file name
character vector | string scalar

Exported file name, specified as a character vector or string scalar. The target file must not be the
same as the model file.
Example: 'mymodel.slx'
Data Types: char | string

proj — Project to export
matlab.project.Project object

Project to export, specified as a matlab.project.Project object. Use currentProject to create
a project object from the currently loaded project.

zipfilename — Exported ZIP file name
character vector | string scalar

ZIP file name containing the exported project, specified as a character vector or string scalar.
Example: 'myzipfile.zip'
Data Types: char | string

version — MATLAB release name
'R2013B' | 'R2014A_MDL' | 'R2016B_SLX' | ...

MATLAB case-insensitive release name, specified as a character vector or string scalar. The MATLAB
release name specifies a previous Simulink version. Simulink.exportToVersion exports the
system to a format that the specified previous Simulink version can load. You can export your models
up to 7 years of previous releases. You cannot export to your current version.

 Simulink.exportToVersion

2-607

You can specify model file format as SLX or MDL using the suffix _MDL or _SLX. If you do not specify
a format, you export your default model file format. You cannot specify the model files format when
exporting a project.
Example: 'R2015B'
Data Types: char | string

exportReferencedProjects — Export referenced projects to a previous Simulink version
false (default) | true | ...

(Optional) Export referenced projects to a previous release, specified as true or false.

If true, Simulink.exportToVersion exports the top-level and all referenced projects to a previous
release, and includes the references in the ZIP file. Extracting the ZIP file creates a copy of the
referenced projects and links them to the top-level project.

If false, Simulink.exportToVersion only exports the top-level project to a previous release.
Simulink.exportToVersion preserves the existing absolute and relative link to the references.
For a working project on extraction, the references must be at the same absolute and relative paths.

The argument is ignored if the project does not have references.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:

AllowPrompt — Allow prompt or message dialog box
false (default) | true | 'on' | 'off'

Allow prompt or message dialog box, specified by a logical value that indicates whether to display any
output prompt or message in a dialog box or only messages at the command line. For example,
prompts to make files writable, or messages about exported versions. If you want to allow prompts,
then set to true. or on.

BreakUserLinks — Break user-defined links
false (default) | true | 'on' | 'off'

Break user-defined links, specified by a logical value that indicates whether the function replaces
links to user-defined library blocks with copies of the library blocks in the saved file.

BreakToolboxLinks — Break all toolbox links
false (default) | true | 'on' | 'off'

Break all toolbox links, specified by a logical value that indicates whether the function replaces links
to built-in MathWorks library blocks with copies of the library blocks in the saved file. The
'BreakToolboxLinks' option affects Simulink library blocks and blocks from any other libraries
supplied with MathWorks toolboxes or blocksets.

2 Functions

2-608

Note The 'BreakToolboxLinks' option can result in compatibility issues when upgrading to
newer versions of Simulink software. For example:

• Any masks on top of library links to Simulink S-functions will not upgrade to the new version of
the S-function.

• Any library links to masked subsystems in a Simulink library will not upgrade to the new
subsystem behavior.

• Any broken links prevent the automatic library forwarding mechanism from upgrading the link.
See “Maintain Compatibility of Library Blocks Using Forwarding Tables”.

If you have saved a model with broken links to built-in libraries, use the Upgrade Advisor to scan
the model for out-of-date blocks and upgrade the Simulink blocks to their current versions.

Output Arguments
exported_file — Exported file
character vector

Path of the exported file, returned in the format that the specified previous Simulink version can load.

exported_project — Exported project in a ZIP file
character vector

Path of the ZIP file containing the exported project, returned in the format that the specified previous
Simulink version can load.

Limitations
Simulink.exportToVersion does not support exporting external test harnesses to previous
releases.

• For models with external test harnesses, Simulink.exportToVersion automatically converts
them to internal test harnesses.

• For projects containing models with external test harnesses, Simulink.exportToVersion
exports the projects and reports the test harnesses as missing files.

Version History
Introduced in R2016a

See Also
save_system

Topics
“Save Models”

 Simulink.exportToVersion

2-609

Simulink.history.clear
Clear the Simulink start page and editor history

Syntax
Simulink.history.clear

Description
Simulink.history.clear clears the list of favorites and the list of recent models and projects in
the Simulink start page and editor.

Examples

Clear All Simulink History

To clear all Simulink history, in the Command Window, type:

Simulink.history.clear()

Version History
Introduced in R2020b

See Also
Topics
“Open Blank Models”

2 Functions

2-610

Simulink.fileGenControl
Specify root folders for files generated by diagram updates and model builds

Syntax
cfg = Simulink.fileGenControl('getConfig')
Simulink.fileGenControl(Action,Name,Value)

Description
cfg = Simulink.fileGenControl('getConfig') returns a handle to an instance of the
Simulink.FileGenConfig object, which contains the current values of these file generation control
parameters:

• CacheFolder – Specifies the root folder for model build artifacts that are used for simulation,
including Simulink® cache files.

• CodeGenFolder – Specifies the root folder for code generation files.
• CodeGenFolderStructure – Controls the folder structure within the code generation folder.

To get or set the parameter values, use the Simulink.FileGenConfig object.

These Simulink preferences determine the initial parameter values for the MATLAB session:

• Simulation cache folder – CacheFolder
• Code generation folder – CodeGenFolder
• Code generation folder structure – CodeGenFolderStructure

Simulink.fileGenControl(Action,Name,Value) performs an action that uses the file
generation control parameters of the current MATLAB session. Specify additional options with one or
more name,value pair arguments.

Examples

Get File Generation Control Parameter Values

To obtain the file generation control parameter values for the current MATLAB session, use
getConfig.

cfg = Simulink.fileGenControl('getConfig');

myCacheFolder = cfg.CacheFolder;
myCodeGenFolder = cfg.CodeGenFolder;
myCodeGenFolderStructure = cfg.CodeGenFolderStructure;

Set File Generation Control Parameters by Using Simulink.FileGenConfig Object

To set the file generation control parameter values for the current MATLAB session, use the
setConfig action. First, set values in an instance of the Simulink.FileGenConfig object. Then,

 Simulink.fileGenControl

2-611

pass the object instance. This example assumes that your system has aNonDefaultCacheFolder
and aNonDefaultCodeGenFolder folders.

% Get the current configuration
cfg = Simulink.fileGenControl('getConfig');

% Change the parameters to non-default locations
% for the cache and code generation folders
cfg.CacheFolder = fullfile('C:','aNonDefaultCacheFolder');
cfg.CodeGenFolder = fullfile('C:','aNonDefaultCodeGenFolder');
cfg.CodeGenFolderStructure = 'TargetEnvironmentSubfolder';

Simulink.fileGenControl('setConfig', 'config', cfg);

Set File Generation Control Parameters Directly

You can set file generation control parameter values for the current MATLAB session without creating
an instance of the Simulink.FileGenConfig object. This example assumes that your system has
aNonDefaultCacheFolder and aNonDefaultCodeGenFolder folders.

myCacheFolder = fullfile('C:','aNonDefaultCacheFolder');
myCodeGenFolder = fullfile('C:','aNonDefaultCodeGenFolder');

Simulink.fileGenControl('set', 'CacheFolder', myCacheFolder, ...
 'CodeGenFolder', myCodeGenFolder, ...
 'CodeGenFolderStructure', ...
 Simulink.filegen.CodeGenFolderStructure.TargetEnvironmentSubfolder);

If you do not want to generate code for different target environments in separate folders, for
'CodeGenFolderStructure', specify the value
Simulink.filegen.CodeGenFolderStructure.ModelSpecific.

Reset File Generation Control Parameters

You can reset the file generation control parameters to values from Simulink preferences.

Simulink.fileGenControl('reset');

Create Simulation Cache and Code Generation Folders

To create file generation folders, use the set action with the 'createDir' option. You can keep
previous file generation folders on the MATLAB path through the 'keepPreviousPath' option.

%
myCacheFolder = fullfile('C:','aNonDefaultCacheFolder');
myCodeGenFolder = fullfile('C:','aNonDefaultCodeGenFolder');

Simulink.fileGenControl('set', ...
 'CacheFolder',myCacheFolder, ...
 'CodeGenFolder',myCodeGenFolder, ...

2 Functions

2-612

 'keepPreviousPath',true, ...
 'createDir',true);

Input Arguments
Action — Specify action
'reset' | 'set' | 'setConfig'

Specify an action that uses the file generation control parameters of the current MATLAB session:

• 'reset' – Reset file generation control parameters to values from Simulink preferences.
• 'set' – Set file generation control parameters for the current MATLAB session by directly

passing values.
• 'setConfig' – Set file generation control parameters for the current MATLAB session by using

an instance of a Simulink.FileGenConfig object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Simulink.fileGenControl(Action, Name, Value);

config — Specify instance of Simulink.FileGenConfig
object handle

Specify the Simulink.FileGenConfig object instance containing file generation control
parameters that you want to set.

Option for setConfig.
Example: Simulink.fileGenControl('setConfig', 'config', cfg);

CacheFolder — Specify simulation cache folder
character vector

Specify a simulation cache folder path value for the CacheFolder parameter.

Option for set.
Example: Simulink.fileGenControl('set', 'CacheFolder', myCacheFolder);

CodeGenFolder — Specify code generation folder
character vector

Specify a code generation folder path value for the CodeGenFolder parameter. You can specify an
absolute path or a path relative to build folders. For example:

• 'C:\Work\mymodelsimcache' and '/mywork/mymodelgencode' specify absolute paths.
• 'mymodelsimcache' is a path relative to the current working folder (pwd). The software

converts a relative path to a fully qualified path at the time the CacheFolder or CodeGenFolder

 Simulink.fileGenControl

2-613

parameter is set. For example, if pwd is '/mywork', the result is '/mywork/
mymodelsimcache'.

• '../test/mymodelgencode' is a path relative to pwd. If pwd is '/mywork', the result is '/
test/mymodelgencode'.

Option for set.
Example: Simulink.fileGenControl('set', 'CodeGenFolder', myCodeGenFolder);

CodeGenFolderStructure — Specify generated code folder structure
Simulink.filegen.CodeGenFolderStructure.ModelSpecific (default) |
Simulink.filegen.CodeGenFolderStructure.TargetEnvironmentSubfolder

Specify the layout of subfolders within the generated code folder:

• Simulink.filegen.CodeGenFolderStructure.ModelSpecific (default) – Place generated
code in subfolders within a model-specific folder.

• Simulink.filegen.CodeGenFolderStructure.TargetEnvironmentSubfolder – If models
are configured for different target environments, place generated code for each model in a
separate subfolder. The name of the subfolder corresponds to the target environment.

Option for set.
Example: Simulink.fileGenControl('set', 'CacheFolder', myCacheFolder, ...
'CodeGenFolder', myCodeGenFolder, ... 'CodeGenFolderStructure', ...
Simulink.filegen.CodeGenFolderStructure.TargetEnvironmentSubfolder);

keepPreviousPath — Keep previous folder paths on MATLAB path
false (default) | true

Specify whether to keep the previous values of CacheFolder and CodeGenFolder on the MATLAB
path:

• true – Keep previous folder path values on MATLAB path.
• false (default) – Remove previous older path values from MATLAB path.

Option for reset, set, or setConfig.
Example: Simulink.fileGenControl('reset', 'keepPreviousPath', true);

createDir — Create folders for file generation
false (default) | true

Specify whether to create folders for file generation if the folders do not exist:

• true – Create folders for file generation.
• false (default) – Do not create folders for file generation.

Option for set or setConfig.
Example: Simulink.fileGenControl('set', 'CacheFolder', myCacheFolder,
'CodeGenFolder', myCodeGenFolder, 'keepPreviousPath', true,
'createDir',true);

2 Functions

2-614

Avoid Naming Conflicts

Using Simulink.fileGenControl to set CacheFolder and CodeGenFolder adds the specified
folders to your MATLAB search path. This function has the same potential for introducing a naming
conflict as using addpath to add folders to the search path. For example, a naming conflict occurs if
the folder that you specify for CacheFolder or CodeGenFolder contains a model file with the same
name as an open model. For more information, see “What Is the MATLAB Search Path?” and “Files
and Folders that MATLAB Accesses”.

To use a nondefault location for the simulation cache folder or code generation folder:

1 Delete any potentially conflicting artifacts that exist in:

• The current working folder, pwd.
• The nondefault simulation cache and code generation folders that you intend to use.

2 Specify the nondefault locations for the simulation cache and code generation folders by using
Simulink.fileGenControl or Simulink preferences.

Output Arguments
cfg — Current values of file generation control parameters
object handle

Instance of a Simulink.FileGenConfig object, which contains the current values of file generation
control parameters.

Version History
Introduced in R2010b

See Also
“Simulation cache folder” on page 7-0 | “Code generation folder” on page 7-0 | “Code
generation folder structure” on page 7-0

Topics
“Manage Build Process Folders” (Simulink Coder)
“Share Simulink Cache Files for Faster Simulation”

 Simulink.fileGenControl

2-615

Simulink.findBlocks
Find blocks in Simulink models

Syntax
bl = Simulink.findBlocks(sys)
bl = Simulink.findBlocks(sys,options)
bl = Simulink.findBlocks(sys,Param1,Value1,...,ParamN,ValueN)
bl = Simulink.findBlocks(sys,Param1,Value1,...,ParamN,ValueN,options)

Description
bl = Simulink.findBlocks(sys) returns handles to all blocks in the model or subsystem sys.

bl = Simulink.findBlocks(sys,options) finds blocks that match the criteria specified by a
Simulink.FindOptions object.

bl = Simulink.findBlocks(sys,Param1,Value1,...,ParamN,ValueN) finds blocks whose
block parameters have the specified values.

bl = Simulink.findBlocks(sys,Param1,Value1,...,ParamN,ValueN,options) finds
blocks whose parameters have the specified values and that match the criteria specified by a
FindOptions object.

Examples

Find Blocks in a Model

Return handles for all blocks in the model vdp.

load_system('vdp');
bl = Simulink.findBlocks('vdp')

bl =

 1.0e+03 *

 9.4450
 9.4460
 9.4470
 9.4480
 9.4490
 9.4500
 9.4510
 9.4520
 9.4530
 9.4540
 9.4550
 9.4560
 9.4570
 9.4580

2 Functions

2-616

Return block names.

bl = getfullname(Simulink.findBlocks('vdp'))

bl =

 14×1 cell array

 {'vdp/Constant' }
 {'vdp/More Info' }
 {'vdp/More Info/Model Info'}
 {'vdp/Mu' }
 {'vdp/Mux' }
 {'vdp/Product' }
 {'vdp/Scope' }
 {'vdp/Square' }
 {'vdp/Sum' }
 {'vdp/Sum1' }
 {'vdp/x1' }
 {'vdp/x2' }
 {'vdp/Out1' }
 {'vdp/Out2' }

Return block handles for the block whose name is Mu.

Simulink.findBlocks('vdp','Name','Mu')

ans =

 9.4480e+03

Input Arguments
sys — Model or subsystem to find blocks in
character vector | string array

Model or subsystem to find blocks in, specified as a character vector or string array.
Example: 'vdp' "f14/Aircraft Dynamics Model"

options — Search constraints
Simulink.FindOptions object

Search constraints, specified as a Simulink.FindOptions object.

Output Arguments
bl — Search results
array of handles

Search results, returned as an array of handles.

Version History
Introduced in R2018a

 Simulink.findBlocks

2-617

See Also
Simulink.FindOptions | Simulink.findBlocksOfType | Simulink.allBlockDiagrams

Topics
“Block-Specific Parameters” on page 6-24

2 Functions

2-618

Simulink.findBlocksOfType
Find specified type of block in Simulink models

Syntax
bl = Simulink.findBlocksOfType(sys,type)
bl = Simulink.findBlocksOfType(sys,type,options)
bl = Simulink.findBlocksOfType(sys,type,Param1,Value1,...,ParamN,ValueN)
bl = Simulink.findBlocksofType(sys,type,Param1,Value1,...,ParamN,ValueN,
options)

Description
bl = Simulink.findBlocksOfType(sys,type) returns handles to all blocks of the specified
type in the model or subsystem sys.

bl = Simulink.findBlocksOfType(sys,type,options) matches the criteria specified by a
FindOptions object.

bl = Simulink.findBlocksOfType(sys,type,Param1,Value1,...,ParamN,ValueN) finds
blocks whose parameters have the specified values.

bl = Simulink.findBlocksofType(sys,type,Param1,Value1,...,ParamN,ValueN,
options) finds blocks whose parameters have the specified values and that match the criteria
specified by a FindOptions object.

Examples

Find Blocks of a Type in Model

Find all blocks of type Gain in the model vdp.

load_system('vdp');
Simulink.findBlocksOfType('vdp','Gain')

ans =

 7.0001

To return block names instead of handles, use getfullname.

getfullname(Simulink.findBlocksOfType('vdp','Gain'))

ans =

 'vdp/Mu'

 Simulink.findBlocksOfType

2-619

Find Blocks of a Type Using Search Options

Load the model sldemo_clutch. Then, create a FindOptions object and use it to constrain the
search of GoTo blocks in the model to the Unlocked system.

openExample('sldemo_clutch');
f = Simulink.FindOptions('SearchDepth',1);
bl = Simulink.findBlocksOfType('sldemo_clutch/Unlocked','Goto',f)

bl =

 166.0001
 167.0001

Input Arguments
sys — Model or subsystem to find blocks in
character vector | string array

Model or subsystem to find blocks in, specified as a character vector or string array.
Example: 'vdp' "f14/Aircraft Dynamics Model"

type — Block type
character vector | string scalar

Block type, specified as a character vector or string scalar. Use get_param with the 'BlockType'
parameter to get the block type.

options — Search constraints
simulink.FindOptions object

Search constraints, specified as a Simulink.FindOptions object.
Example: Simulink.FindOptions('SearchDepth',1)

Output Arguments
bl — Search results
array of handles

Search results, returned as an array of handles.

Version History
Introduced in R2018a

See Also
Simulink.FindOptions | Simulink.findBlocks | Simulink.allBlockDiagrams

Topics
“Block-Specific Parameters” on page 6-24

2 Functions

2-620

Simulink.findIntEnumType
Find enumeration classes defined by Simulink.defineIntEnumType

Syntax
result = Simulink.findIntEnumType(typeName)
result = Simulink.findIntEnumType()

Description
result = Simulink.findIntEnumType(typeName) returns the meta.class object for class
type that is defined by Simulink.defineIntEnumType. Use the returned meta.class object to
query attributes of the enumeration class. If the class does not exist, the function returns an empty
meta.class object.

result = Simulink.findIntEnumType() returns meta.class objects for all enumeration
classes that are defined by Simulink.defineIntEnumType. Use the returned meta.class objects
to query attributes of the enumeration classes.

Examples

Find a Specific Dynamic Enumerated Data Type

Define an enumeration type.

Simulink.defineIntEnumType('myEnumType', {'e1', 'e2'}, [1 2]);

Check for the enumeration type that you have created.

myResult = Simulink.findIntEnumType('myEnumType')

myResult =

 class with properties:

 Name: 'myEnumType'
 Description: ''
 DetailedDescription: ''
 Hidden: 0
 Sealed: 0
 Abstract: 0
 Enumeration: 1
 ConstructOnLoad: 0
 HandleCompatible: 0
 InferiorClasses: {[1×1 meta.class]}
 ContainingPackage: [0×0 meta.package]
 RestrictsSubclassing: 0
 PropertyList: [0×1 meta.property]
 MethodList: [150×1 meta.method]
 EventList: [0×1 meta.event]

 Simulink.findIntEnumType

2-621

 EnumerationMemberList: [2×1 meta.EnumeratedValue]
 SuperclassList: [1×1 meta.class]

Find All Dynamic Enumerated Data Types

Define two enumeration types.

Simulink.defineIntEnumType('myEnumType1', {'e1', 'e2'}, [1 2]);
Simulink.defineIntEnumType('myEnumType2', {'e3', 'e4'}, [3 4]);

Check for the enumeration types that you have created.

myResult = Simulink.findIntEnumType()

Input Arguments
typeName — Name of enumeration class
character vector or string

Name of a specific enumeration class that is defined by Simulink.defineIntEnumType, specified
as a character vector or string.
Example: 'myEnumType'
Data Types: char | string

Output Arguments
result — Search results
array of meta.class objects

Search result, returned as an array of meta.class objects. If there are no enumeration classes, the
array is empty.

Version History
Introduced in R2018b

See Also
enumeration | Simulink.clearIntEnumType | Simulink.defineIntEnumType

2 Functions

2-622

Simulink.findTemplates
Find model or project templates with specified properties

Syntax
filename = Simulink.findTemplates(templatename)
filename = Simulink.findTemplates(templatename,Name,Value)
[filename,info] = Simulink.findTemplates(templatename)

Description
filename = Simulink.findTemplates(templatename) returns the names and TemplateInfo
objects for all matching templates that include templatename.

filename = Simulink.findTemplates(templatename,Name,Value) also specifies additional
template properties as one or more Name, Value pair arguments.

[filename,info] = Simulink.findTemplates(templatename) returns the names and
TemplateInfo objects for all matching templates.

Examples

Find a Particular Template

Get the full path to the default model template.

filename = Simulink.findTemplates('factory_default_model');

Find All Templates With Specified Folders or Authors

Get all templates inside folders called work.

filename = Simulink.findTemplates('work/')

Get all templates for which the Author property includes the character vector Smith.

filename = Simulink.findTemplates('*','Author','Smith')

Find All DSP Templates and Get TemplateInfo Objects

Get the paths to all DSP model templates, and sltemplate.TemplateInfo objects for each of
them.

 Simulink.findTemplates

2-623

[filename,info] = Simulink.findTemplates('dsp*','Type','Model');

Input Arguments
templatename — Template name
character vector

Template name, specified as a character vector containing a portion of a file name, which can contain
the wildcard asterisk character “*”.
Example:
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

You can specify regular expressions for any of the Value character vectors, e.g., including the
wildcard asterisk character “*”.
Example: 'Author','*son'

Type — Model, library, or project
'Model' | 'Library' | 'Project'

Model, library, or project template type, specified as a character vector for model, library, or project.
Example: 'Simscape'
Data Types: char

Title — Title of template
character vector

Title of template, specified as a character vector.
Example: 'Simscape'
Data Types: char

Group — Group of template
character vector

Group of template, specified as a character vector. On the Start Page, templates are shown under
group headings.
Example: 'Simscape'
Data Types: char

Author — Author of template
character vector

Author of template, specified as a character vector.

2 Functions

2-624

Data Types: char

Description — Description of template
character vector

Description of template, specified as a character vector.
Data Types: char

Output Arguments
filename — Template name
character vector | cell array of character vectors

Template names of matching templates, returned as character vectors.

info — Template information
template info objects | array of template info objects

Template information of matching templates, returned as sltemplate.TemplateInfo objects.

Version History
Introduced in R2016a

See Also
Simulink.createFromTemplate | Simulink.exportToTemplate

Topics
“Create Template from Model”
“Using Templates to Create Standard Project Settings”

 Simulink.findTemplates

2-625

Simulink.findVars
Analyze relationship between variables and blocks in models

Syntax
[variables] = Simulink.findVars(context)
[variables] = Simulink.findVars(context,variablefilter)
[variables] = Simulink.findVars(___ ,Name,Value)

Description
[variables] = Simulink.findVars(context) finds and returns variables that are used in the
blocks and models specified by context, including subsystems and referenced models. The function
returns an empty vector if context does not use any variables.

[variables] = Simulink.findVars(context,variablefilter) finds only the variables or
enumerated types that are specified by variablefilter. For example, use this syntax to determine
where a variable is used in a model.

[variables] = Simulink.findVars(___ ,Name,Value) finds variables with additional options
specified by one or more Name,Value pair arguments. For example, you can search for unused
variables. You can also search for enumerated data types that are used in context, in addition to
variables.

Examples

Variables in Use in a Model

Find variables used by MyModel.

variables = Simulink.findVars('MyModel');

Specific Variable in Use in a Model

Find all uses of the base workspace variable k by MyModel. Use the cached results to avoid compiling
MyModel.

variables = Simulink.findVars('MyModel','Name','k',...
'SearchMethod','cached','SourceType','base workspace');

Regular Expression Matching

Find all uses of a variable whose name matches the regular expression ^trans.

2 Functions

2-626

variables = Simulink.findVars('MyModel','Regexp','on',...
'Name','^trans');

Variables Common to Two Models

Given two models, find the variables used by the first model, the second, and both

model1Vars = Simulink.findVars('model1');
model2Vars = Simulink.findVars('model2');
commonVars = intersect(model1vars,model2Vars);

Variables Not Used in a Model

Find the variables that are defined in the model workspace of MyModel but that are not used by the
model.

unusedVars = Simulink.findVars('MyModel','FindUsedVars','off',...
'SourceType','model workspace');

Specific Variable Not Used in a Model

Determine if the base workspace variable k is not used by MyModel.

varObj = Simulink.VariableUsage('k','base workspace');
unusedVar = Simulink.findVars('MyModel',varObj,...
'FindUsedVars','off');

Variables Used by a Block

Find the variables that are used by the block Gain1 in MyModel.

variables = Simulink.findVars('MyModel',...
'Users','MyModel/Gain1');

Variables Used in a Model Reference Hierarchy

Find the variables that are used in a model reference hierarchy. Begin the search with the model
MyNestedModel, and search the entire hierarchy below MyNestedModel.

variables = Simulink.findVars('MyNestedModel','SearchReferencedModels','on');

Variables and Enumerated Types Used in a Model

Find variables and enumerated types that are used in MyModel.

 Simulink.findVars

2-627

varsAndEnumTypes = Simulink.findVars('MyModel','IncludeEnumTypes','on');

Input Arguments
context — Models and blocks to search
character vector | string | cell array of character vectors | string array

Models and blocks to search, specified as a character vector, string, cell array of character vectors, or
a string array. You can specify context in one of the following ways:

• The name of a model. For example, ('vdp') specifies the model vdp.slx.
• The name or path of a block or masked block. For example, ('vdp/Gain1') specifies a block

named Gain1 at the root level of the model vdp.slx.
• A cell array of model or block names.

Data Types: char | cell

variablefilter — Specific variables to find
array of Simulink.VariableUsage objects

Specific variables to find, specified as an array of Simulink.VariableUsage objects. Each
Simulink.VariableUsage object identifies a variable to find.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FindUsedVars','off'

FindUsedVars — Find variables that are used or not used
'on' (default) | 'off'

Flag to find variables that are explicitly used or not used, specified as the comma-separated pair
consisting of 'FindUsedVars' and 'on' or 'off'. If you specify FindUsedVars as 'off', the
function finds variables that are not used in context but that are defined in the workspace specified
by SourceType.
Example: 'FindUsedVars','off'

IncludeEnumTypes — Find enumerated types that are used
'off' (default) | 'on'

Flag to find enumerated data types that are used, specified as the comma-separated pair consisting of
'IncludeEnumTypes' and 'on' or 'off'. The function finds enumerated types that are used
explicitly in context as well as types that define variables that are used in context.

The function does not report details about which blocks or objects are using the enumerated types.

If you specify SourceType as 'base workspace', 'model workspace', or 'mask workspace',
the function does not report enumerated types because those sources cannot define enumerated
types.

2 Functions

2-628

You cannot find unused enumerated types by specifying FindUsedVars as 'off'.
Example: 'IncludeEnumTypes','on'

RegExp — Enable regular expression matching
'off' (default) | 'on'

Flag to enable regular expression matching for input arguments, specified as the comma-separated
pair consisting of 'RegExp' and 'on'. You can match only input arguments that have character
vector values.
Example: 'RegExp','on'

SearchMethod — Compile status
'compiled' (default) | 'cached'

Compile status, specified as the comma-separated pair consisting of 'SearchMethod' and one of
these values:

• 'compiled' — Return up-to-date results by compiling every model in the search context before
search.

• 'cached' — Return quicker results by using results cached during the previous compile.

Example: 'SearchMethod','compiled'

SearchReferencedModels — Enable search in referenced models
'off' (default) | 'on'

Flag to enable search in referenced models, specified as the comma-separated pair consisting of
'SearchReferencedModels' and 'on'.

If a referenced model uses a global variable, such as a variable stored in a data dictionary, the
function returns this global variable when called on the parent model. If SearchReferencedModels
is set to 'on', the Simulink.VariableUsage object returned by the function specifies a block in
the referenced model as the variable user. Otherwise, the object specifies the Model block as the user.
Example: 'SearchReferencedModels','on'

Name — Name of a variable or enumerated type to search for
character vector | string

Name of a variable or enumerated data type to search for, specified as the comma-separated pair
consisting of 'Name' and a character vector or string.
Example: 'Name','trans'
Data Types: char

SourceType — Workspace or source defining the variables or enumerated types
character vector | string

Workspace or source defining the variables, specified as the comma-separated pair of 'SourceType'
and one of these options:

• 'base workspace'
• 'model workspace'

 Simulink.findVars

2-629

• 'mask workspace'
• 'data dictionary'

The function filters results for variables that are defined in the specified source.
Example: 'SourceType','base workspace'

If you search for enumerated data types by specifying 'IncludeEnumTypes' as 'on',
'SourceType' represents the way an enumerated type is defined. You can specify one of these
options:

• 'MATLAB file'
• 'dynamic class'
• 'data dictionary'

The function filters results for enumerated types that are defined in the specified source.
Example: 'SourceType','MATLAB file'

If you do not specify SourceType, the function does not filter results by source.

Users — Name of block to search for variables
character vector | string

Name of specific block to search for variables, specified as the comma-separated pair consisting of
'Users' and a character vector or string.

To search a set of specific blocks, enable regular expression matching by specifying RegExp as 'on'
and use regular expressions in the character vector. For example, you can specify
'Users','MyModel/Gain*' to search all blocks in MyModel whose names begin with Gain.
Example: 'Users','MyModel/Gain1'
Example: 'Users','MyModel/mySubsystem/Gain2'
Example: 'Users','MyModel/Gain*'

Limitations
Simulink.findVars does not work with these constructs:

• MATLAB code in scripts and initialization and callback functions.
• Libraries and blocks in libraries.
• Variables in MATLAB Function blocks, except for input arguments. However,

Simulink.findVars can find enumerated types anywhere they are used in MATLAB Function
blocks.

• Calls directly to MATLAB from a Stateflow block.
• S-functions that use data type variables registered using ssRegisterDataType. To make the

variables searchable, use ssRegisterTypeFromNamedObject instead.
• Variables inside a string.
• Fields in a struct.
• Top models configured for parallel model reference builds. In this case, Simulink.findVars

does not work when called with either of these name-value arguments:

2 Functions

2-630

• 'SearchMethod' specified as 'cached'
• 'SearchReferencedModels' specified as 'on'

Simulink.findVars discovers variable usage in inactive subsystem variants only if you set the
Variant activation time parameter to code compile in the Variant Subsystem block dialog box. If
you do not select this check box, the function does not discover variable usage in inactive variants.

Version History
Introduced in R2010a

See Also
Simulink.VariableUsage | find_system | intersect

Topics
Model Explorer
“Manage Design Data”

 Simulink.findVars

2-631

Simulink.fmuexport.ExportSimulinkProjectToFMU
Export project as Functional Mockup Unit (FMU)

Syntax
Simulink.fmuexport.ExportSimulinkProjectToFMU(project,model,Name,Value)

Description
Simulink.fmuexport.ExportSimulinkProjectToFMU(project,model,Name,Value) exports
a project as a Functional Mockup Unit (FMU) and sets the model as the main interface model.

Examples
Export Model and Set FMU Icon

If the Simulink model EngineGasDynamics.slx exists in the project root/models/ folder, use
the following command to export the FMU from project root:
project = slproject.getCurrentProject;...
Simulink.fmuexport.ExportSimulinkProjectToFMU(project,'models/EngineGasDynamics.slx','-fmuname',fullfile(project.RootFolder,'EngineGasDynamics.fmu'),'-fmuicon',fullfile(project.RootFolder,'Simulink_Logo.png'))

Input Arguments
project — Project to export
scalar (default)

Project to export, specified as a string.
Data Types: string

model — Model that defines main interface
scalar (default)

Model that defines the main interface, specified as a string.
Data Types: string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:

-fmuname — The location and name of the generated FMU relative to the current working
folder
string

2 Functions

2-632

If not specified, FMU is saved to current directory folder with the same name as the main model.
Data Types: string

-description — The description of the generated FMU
string (default)

The information is saved in modelDescription.xml inside FMU.
Data Types: string

-author — The author of the generated FMU
string (default)

The information is saved in modelDescription.xml inside FMU.
Data Types: string

-copyright — The copyright of the generated FMU
string (default)

The information is saved in modelDescription.xml inside FMU.
Data Types: string

-license — The license of the generated FMU
string (default)

The information is saved in modelDescription.xml inside FMU.
Data Types: string

-fmuicon — An icon file for the generated FMU
string (default)

The icon file must be in PNG format. If not specified, generated FMU has no icon file.
Data Types: string

Version History
Introduced in R2018b

See Also
Functions
slproject.create

Topics
“Export a Model as a Tool-Coupling FMU”

 Simulink.fmuexport.ExportSimulinkProjectToFMU

2-633

Simulink.getFileChecksum
Checksum of file

Syntax
checksum = Simulink.getFileChecksum(filename)

Description
checksum = Simulink.getFileChecksum(filename) returns the checksum of the specified file,
using the MD5 checksum algorithm. Use the checksum to see if the file has changed compared to a
previous checksum. You can use checksums as part of an audit trail.

Use Simulink.getFileChecksum to get a checksum for any file. If the file contents do not change
from one checksum to the next, the checksum from Simulink.getFileChecksum stays the same.
Otherwise, the checksum is different with each change to the file contents.

For functional information on a model, use Simulink.BlockDiagram.getChecksum instead.
Simulink.BlockDiagram.getChecksum looks at the functional aspect of the model. If the
functional aspect doesn't change, then Simulink.BlockDiagram.getChecksum returns the same
checksum.

For example, if you moved a block, the file contents are different (measured by
Simulink.getFileChecksum) but the function of the model is unchanged (measured by
Simulink.BlockDiagram.getChecksum).

Examples

Get Checksum of a File

Use fullfile to specify a full path to a file and get the checksum.

filechecksum = Simulink.getFileChecksum(fullfile(matlabroot,'toolbox',...
'matlab','demos','gatlin.mat'));

Input Arguments
filename — File name to get checksum for
file of any type

File name to get checksum for, with file extension and optional full path. Use fullfile to specify a
full path to a file, or use the form 'C:\Work\filename.mat'.
Example: 'lengthofline.m'
Data Types: char

2 Functions

2-634

Output Arguments
checksum — Checksum value
character vector

Checksum value in a 32-character vector.

Version History
Introduced in R2014b

See Also
Simulink.BlockDiagram.getChecksum | Simulink.SubSystem.getChecksum

 Simulink.getFileChecksum

2-635

Simulink.getOutportInheritsInitialValue
Determine if conditional subsystem Outport block inherits initial output value

Syntax
tf = Simulink.getOutportInheritsInitialValue(outblock)

Description
tf = Simulink.getOutportInheritsInitialValue(outblock) evaluates whether outblock
is a conditional subsystem Outport block that inherits its initial output value from an input signal
connected to the conditional subsystem. If so, it returns true. If not, it returns false. The return
value is true under the same circumstances as the badge is displayed next to the Outport block
on the Simulink canvas, as described in “Conditional Subsystem Initial Output Values”.

For the return value to be accurate, update or run the model before calling this function.

The value returned by this function is meaningful only if the model is using simplified initialization
mode. See “Simplified Initialization Mode”. If the model is using classic initialization mode, the return
value is always false.

Examples

Determine If Outport Block Inherits Initial Output Value

The model my_model contains the enabled subsystem EnabledSub1, which contains Outport blocks
Out1 and Out2.

set_param('my_model/EnabledSub1/Out1','InitialOutput','0'); % Explicit initial output value
set_param('my_model','SimulationCommand','Update'); % Update model
inherits = Simulink.getOutportInheritsinitialValue('my_model/EnabledSub1/Out1')

inherits =

 logical

 0

set_param('my_model/EnabledSub1/Out2','InitialOutput','[]'); % Inherit initial output value
set_param('my_model','SimulationCommand','Update'); % Update model
inherits = Simulink.getOutportInheritsinitialValue('my_model/EnabledSub1/Out2')

inherits =

 logical

 1

inherits = Simulink.getOutportInheritsinitialValue({'my_model/EnabledSub1/Out1','my_model/EnabledSub1/Out2'})

2 Functions

2-636

inherits =

 2×1 logical array

 0
 1

Input Arguments
outblock — Identifier of conditional subsystem Outport block
character vector | string scalar | numeric handle

Identifier of conditional subsystem Outport block, specified as a character vector, string scalar, or
numeric handle. Multiple block identifiers may be specified as a vector or a 1-dimensional cell array.
Example: 'my_model/EnabledSub1/Out1'
Data Types: character vector | string scalar | handle | vector | cell array

Output Arguments
tf — Whether block inherits its initial output value
logical

Whether block inherits its initial output value, returned as a logical true or false. If the input value
refers to an Outport block connected to a conditional subsystem and the block inherits its initial
output value from that subsystem's input signal, tf is true. Otherwise, tf is false. If the input
value is a vector or a cell array, tf is a logical column vector.

For the return value to be accurate, update or run the model before calling this function.
Data Types: logical | logical vector

Version History
Introduced in R2021a

See Also
“Conditional Subsystem Initial Output Values” | Outport

 Simulink.getOutportInheritsInitialValue

2-637

Simulink.getSuppressedDiagnostics
Return Simulink.SuppressedDiagnostic objects associated with a block, subsystem, or model

Syntax
suppressed_diagnostics = Simulink.getSuppressedDiagnostics(source)

Description
suppressed_diagnostics = Simulink.getSuppressedDiagnostics(source) returns an
array of Simulink.SuppressedDiagnostic objects that are associated with the specified source.

Examples

Get All Simulink.SuppressedDiagnostic Objects on a Specific Block

To get all suppressed diagnostics associated with a specified block, use getDiagnosticObjects.m,
suppressor_script.m, and the Suppressor_CLI_Demo.slx model. The
getDiagnosticObjects.m function queries the simulation metadata to access diagnostics that
were thrown during simulation. The suppressor_script.m script contains the commands for
suppressing and restoring diagnostics to the Suppressor_CLI_Demo model. Open the model. To
access Simulink.SimulationMetadata class, set the ReturnWorkspaceOutputs parameter
value to 'on'. Simulate the model.

 model = 'Suppressor_CLI_Demo';
 open_system(model);
 set_param(model,'ReturnWorkspaceOutputs','on');
 out = sim(model);

Use the Simulink.suppressDiagnostic function to suppress the parameter precision loss
warning thrown by the Constant block, one.

 Simulink.suppressDiagnostic('Suppressor_CLI_Demo/one',...
 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss');

Get the Simulink.SuppressedDiagnostic objects associated with the block.

 suppressed_diagnostic =
 Simulink.getSuppressedDiagnostics('Suppressor_CLI_Demo/one');

Input Arguments
source — System, block, or model object throwing warning
model | subsystem | block path | block handle

The source of the diagnostic, specified as a model, subsystem, block path, block handle, cell array of
block paths, or cell array of block handles.

To get the block path, use the gcb function.

2 Functions

2-638

To get the block handle, use the getSimulinkBlockHandle function.
Data Types: char | cell

Output Arguments
suppressed_diagnostics — Suppressed diagnostics
array

Suppressed diagnostics, returned as an array of Simulink.SuppressedDiagnostic objects.

Version History
Introduced in R2016b

See Also
Simulink.suppressDiagnostic | Simulink.restoreDiagnostic | restore |
Simulink.SuppressedDiagnostic

Topics
“Suppress Diagnostic Messages Programmatically”

 Simulink.getSuppressedDiagnostics

2-639

Simulink.ID.getHandle
(Not recommended) Get handle of object associated with Simulink Identifier

Note Simulink.ID.getHandle is not recommended. Use alternative functions instead.

• For blocks, use getSimulinkBlockHandle.
• For annotations, use find_system or getCurrentAnnotation.
• For Stateflow® objects, use find.

For more information, see “Compatibility Considerations”.

Syntax
handle = Simulink.ID.getHandle(SID)

Description
handle = Simulink.ID.getHandle(SID) returns the handle of the object for the specified
Simulink Identifier SID.

Examples

Get Handle of Block

Open the model vdp.

vdp

Get the Simulink Identifier (SID) of the Sum block.

SID = Simulink.ID.getSID('vdp/Sum');

Get the handle of the Sum block using the SID.

handle = Simulink.ID.getHandle(SID)

Input Arguments
SID — Simulink Identifier
character vector | string scalar

Simulink Identifier (SID), specified as a character vector or string scalar.

To get the SID for an object, use the Simulink.ID.getSID function.
Example: 'vdp:4'
Data Types: char | string

2 Functions

2-640

Output Arguments
handle — Object handle
numeric scalar

Object handle, returned as a numeric scalar.
Data Types: double

Version History
Introduced in R2009b

R2020a: Not recommended
Not recommended starting in R2020a

Simulink.ID.getHandle is not recommended. Use alternative functions instead.

• For blocks, use the getSimulinkBlockHandle function.
• For annotations, use the find_system or getCurrentAnnotation functions.
• For Stateflow objects, use find.

This table shows some typical usages of Simulink.ID.getHandle and how to update your code.

Handle Type Not Recommended Recommended
Block SID = Simulink.ID.getSID('vdp/Sum');

handle = Simulink.ID.getHandle(SID)
handle = getSimulinkBlockHandle('vdp/Sum')

Annotation object = getCurrentAnnotation;
SID = Simulink.ID.getSID(object)
handle = Simulink.ID.getHandle(SID)

object = getCurrentAnnotation;
handle = object.Handle

Stateflow object chart = find(slroot, '-isa',...
 'Stateflow.Chart','Name','shift_logic');
SID = Simulink.ID.getSID(chart);
Simulink.ID.getHandle(SID)

chart = find(slroot, '-isa',...
 'Stateflow.Chart','Name','shift_logic');

The Stateflow handle is
equivalent to the Stateflow
object.

See Also
getSimulinkBlockHandle | find_system | getCurrentAnnotation | find

 Simulink.ID.getHandle

2-641

Simulink.ID.getSID
(Not recommended) Get Simulink Identifier

Note Simulink.ID.getSID is not recommended. Use handles, paths, or objects instead of
Simulink® Identifiers. For more information, see “Compatibility Considerations”.

Syntax
SID = Simulink.ID.getSID(object)

Description
SID = Simulink.ID.getSID(object) returns the Simulink Identifier (SID) of the selected object
object.

An SID is a unique and unmodifiable designation that Simulink automatically assigns.

The SID format is model_name:sid_number, where:

• model_name is the name of the model that contains the object.
• sid_number is a unique number within the model, assigned by Simulink.

An SID includes additional colons in certain cases, for example, on an instance of a block from a
custom library.

Examples

Get SID of Block

Open the model vdp.

vdp

Get the SID of the Mu block.

SID = Simulink.ID.getSID('vdp/Mu')

Input Arguments
object — Name or handle of object
character vector | string scalar | numeric scalar

Name or handle of object, specified as a character vector, string scalar, or numeric scalar.
Example: 'vdp/Mu'
Data Types: double | char | string

2 Functions

2-642

Output Arguments
SID — Simulink Identifier
string scalar

Simulink Identifier (SID), returned as a string scalar.
Data Types: string

Version History
Introduced in R2009b

R2020a: Not recommended
Not recommended starting in R2020a

Simulink.ID.getSID is not recommended. Use handles, paths, or objects instead of Simulink
Identifiers.

• For blocks, use the find_system or getSimulinkBlockHandle functions.
• For annotations, use the find_system or getCurrentAnnotation functions.
• For Stateflow objects, use the find function.

See Also
find_system | getSimulinkBlockHandle | getCurrentAnnotation | find

 Simulink.ID.getSID

2-643

Simulink.ID.hilite
(Not recommended) Highlight object associated with Simulink Identifier

Note Simulink.ID.hilite is not recommended. Use hilite_system instead. For more
information, see “Compatibility Considerations”.

Syntax
Simulink.ID.hilite(SID)
Simulink.ID.hilite(SID,style)

Description
Simulink.ID.hilite(SID) highlights the object associated with the Simulink Identifier SID.

Simulink.ID.hilite(SID,style) uses the specified highlighting style.

Examples

Highlight Block

Open the model vdp.

vdp

Get the Simulink Identifier of the Mu block.

muSID = Simulink.ID.getSID('vdp/Mu')

Highlight the Mu block.

Simulink.ID.hilite(muSID)

Highlight Block Using a Highlight Style

Open the model vdp.

vdp

Get the Simulink Identifier of the Mu block.

muSID = Simulink.ID.getSID('vdp/Mu')

Highlight the Mu block using the style 'fade'.

2 Functions

2-644

Simulink.ID.hilite(muSID,'fade')

Input Arguments
SID — Simulink Identifier
character vector | string scalar

Simulink Identifier, specified as a character vector or string scalar.

To get the SID for an object, use the Simulink.ID.getSID function.
Example: 'vdp:4'

style — Highlighting style
'find' (default) | character vector | string scalar

Highlighting style, specified as one of these values.

• 'default' — Default color scheme: red outline, yellow fill.
• 'none' — Clears the highlight.

To clear all highlighting, on the Debug tab, in the Trace Signal button group, click the Remove
trace button.

• 'debug' — Uses default color scheme.
• 'different' — Applies red outline, white fill.
• 'error' — Uses default color scheme.
• 'fade' — Applies gray outline, white fill.
• 'find' — Applies dark blue outline, blue fill.
• 'lineTrace' — Applies red outline, blue fill.
• 'unique' — Dark blue outline, white fill.
• 'user1', 'user2', 'user3', 'user4', 'user5' — Applies custom highlight: black outline,

white fill by default (that is, no highlight).

In addition, you can use these color schemes. The first word is the outline and the second is the fill
color.

• 'orangeWhite'
• 'blackWhite'
• 'redWhite'
• 'blueWhite'
• 'greenWhite'

You can customize the appearance of any of the styles. See “Customize a Highlighting Style” on page
2-327.

Version History
Introduced in R2009b

 Simulink.ID.hilite

2-645

R2020a: Not recommended
Not recommended starting in R2020a

Simulink.ID.hilite is not recommended. Use hilite_system instead.

This table shows a typical usage of Simulink.ID.hilite and how to update your code.

Not Recommended Recommended
SID = Simulink.ID.getSID('vdp/Mu');
Simulink.ID.hilite(SID)

hilite_system('vdp/Mu')

See Also
hilite_system | Simulink.ID.getSID

2 Functions

2-646

Simulink.importExternalCTypes
Generate Simulink representations of custom data types defined by C or C++ code

Syntax
importInfo = Simulink.importExternalCTypes(headerFiles)
importInfo = Simulink.importExternalCTypes(modelName)
importInfo = Simulink.importExternalCTypes(___ ,Name,Value)

Description
importInfo = Simulink.importExternalCTypes(headerFiles) parses the C or C++ header
files (.h or .hpp) identified by headerFiles for typedef, struct, and enum type definitions, and
generates Simulink representations of the types. The output, importInfo, identifies the successfully
and unsuccessfully imported types.

You can use the Simulink representations to:

• Reuse your existing algorithmic C code and, through simulation, test its interaction with your
Simulink control algorithm. For an example that shows how to use the Legacy Code Tool, see
“Integrate C Function Whose Arguments Are Pointers to Structures”.

• Generate code (Simulink Coder) that reuses the types and data that your existing code defines.
You can then integrate and compile the generated and existing code into a single application. For
an example, see “Exchange Structured and Enumerated Data Between Generated and External
Code” (Embedded Coder).

• Create and organize data (signals, parameters, and states) in a model by using standard data
types that your organization defines in C code.

• To create structures of signals in Simulink, use nonvirtual buses. See “Group Signals or
Messages into Virtual Buses”.

• To create structures of parameters, use MATLAB structures and Simulink.Parameter
objects. See “Organize Related Block Parameter Definitions in Structures”.

• To create enumerated data, see “Use Enumerated Data in Simulink Models”.
• To match a primitive typedef statement, use a Simulink.AliasType object to set

parameter and signal data types in a model.

By default, the function:

• Imports an enumerated type by generating a script file that derives an enumeration class from
Simulink.IntEnumType, as described in “Define Simulink Enumerations”. If necessary, you can
then edit the class definition to customize it (for example, by implementing the
addClassNameToEnumNames method).

• Imports a structure type by generating a Simulink.Bus object in the base workspace.
• Imports a primitive typedef statement by generating a Simulink.AliasType object in the base

workspace.

 Simulink.importExternalCTypes

2-647

• Interprets generic C data types, such as int or short, according to the word lengths of your host
computer. For example, for most modern machines, int has a 32-bit word length, so the function
represents an int structure field as a bus element that uses the Simulink data type int32.

To override this default behavior, identify your target hardware board by using the
HardwareImplementation pair argument.

For additional information about default behavior, see “Tips” on page 2-661.

importInfo = Simulink.importExternalCTypes(modelName) generates Simulink
representations of custom C data types by analyzing a model that you identify with modelName.
When you use the Simulation Target configuration parameters in a model to identify header files for
inclusion during simulation, use this syntax to import types for the purpose of simulating the model
on your host computer. The function interprets generic C data types according to the word lengths of
your host computer.

When you use this syntax, do not use pair arguments, such as HardwareImplementation, that can
conflict with the configuration parameters of the target model. When you use such pair arguments
with this syntax, the function generates a warning.

importInfo = Simulink.importExternalCTypes(___ ,Name,Value) specifies additional
options using one or more name-value pair arguments. You can use this syntax to:

• Specify the names of types to import by using the Names pair argument.
• Control the way that Simulink stores the imported types, for example, by generating the types in a

Simulink data dictionary. Use the MATFile and DataDictionary pair arguments.
• Control the way that the function interprets generic C data types. Use the

HardwareImplementation pair argument.
• Maintain synchrony between the C-code definitions and the Simulink representations by

attempting to import the updated C-code definitions again. You can choose whether to overwrite
the existing Simulink representations. Use the Overwrite and Verbose pair arguments.

Examples

Import Simple Structure and Enumerated Types

This example shows how to generate Simulink representations of a C structure type (struct) and an
enumerated (enum) data type from a header file.

1 In your current folder, create the file ex_cc_simpleTypes.h.

typedef enum {
 PWR_LOSS = 0, /* Default value */
 OVERSPD,
 PRESS_LOW,
} fault_T;

typedef struct {
 double coeff;
 double init;
} params_T;

2 Generate Simulink representations of the types by calling Simulink.importExternalCTypes.

2 Functions

2-648

Simulink.importExternalCTypes('ex_cc_simpleTypes.h');

The function creates a Simulink.Bus object, params_T, in the base workspace.
3 To inspect the properties of the object, open the Type Editor.

typeeditor

Each bus element uses a name and a data type (double) that match the corresponding structure
field in ex_cc_simpleTypes.h.

4 In your current folder, inspect the generated file, fault_T.m, which defines the enumerated
type fault_T as an enumeration class.

You can use the bus object and the enumeration class to set signal and parameter data types in
Simulink models.

Import Structure Type Whose Fields Use Custom Data Types

This example shows how to generate a Simulink representation of a structure type whose fields use
custom data types (typedef).

Create the file ex_integer_aliases.h in your current folder.

typedef int sint_32;

typedef unsigned short uint_16;

Create the file ex_cc_struct_alias.h in your current folder.

#include "ex_integer_aliases.h"

typedef struct {
 sint_32 accum;
 uint_16 index;
} my_ints_T;

Import the structure type into Simulink as a Simulink.Bus object in the base workspace. Import the
typedef statements as Simulink.AliasType objects.

Simulink.importExternalCTypes('ex_cc_struct_alias.h');

Inspect the data types of the bus elements in the bus object. For example, inspect the DataType
property of the first bus element, which corresponds to the structure field accum.

my_ints_T.Elements(1)

ans =

 BusElement with properties:

 Name: 'accum'
 Complexity: 'real'
 Dimensions: 1
 DataType: 'sint_32'

 Simulink.importExternalCTypes

2-649

 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 SampleTime: -1
 Unit: ''
 Description: ''

The Simulink.importExternalCTypes function uses the generated Simulink.AliasType
objects to set the data types of the bus elements.

Inspect the Simulink.AliasType objects in the base workspace. For example, the object named
sint_32 corresponds to one of the typedef statements in ex_integer_aliases.h.

sint_32

sint_32 =

 AliasType with properties:

 Description: ''
 DataScope: 'Imported'
 HeaderFile: 'ex_integer_aliases.h'
 BaseType: 'int32'

For most host computers (which the function targets by default), the word length of int is 32 bits
and the word length of unsigned short is 16 bits. The function maps int and unsigned short to
the Simulink types int32 and uint16.

If you have Embedded Coder, the code that you generate from the model can use sint_32 and
uint_16 instead of the standard data type names, int32_T and uint16_T.

Store Imported Types in Data Dictionary

This example shows how to store the imported data types in a Simulink data dictionary. A data
dictionary stores data specifications (such as for signals and block parameter values), data types, and
other design data for one or more Simulink models.

In your current folder, create the file ex_cc_simpleTypes.h.

typedef enum {
 PWR_LOSS = 0, /* Default value */
 OVERSPD,
 PRESS_LOW,
} fault_T;

typedef struct {
 double coeff;
 double init;
} params_T;

Create a subfolder called myDictionaries.

2 Functions

2-650

mkdir('myDictionaries')

Generate Simulink representations of the types by calling Simulink.importExternalCTypes.
Permanently store the type definitions by creating a new data dictionary, ex_cc_myTypes.sldd, in
the new subfolder.

Simulink.importExternalCTypes('ex_cc_simpleTypes.h',...
 'DataDictionary','ex_cc_myTypes.sldd',...
 'OutputDir','myDictionaries');

To inspect the contents of the dictionary, set your current folder to myDictionaries and double-
click the dictionary file.

To use the Simulink representations in the dictionary, you must link a model or models to the
dictionary. See “Migrate Models to Use Simulink Data Dictionary”.

Import Only Specified Types

This example shows how to generate Simulink representations only for enumerated and structure
data types that you identify by name.

In your current folder, create the file ex_cc_manySimpleTypes.h. The file defines three structure
types: params_T, signals_T, and states_T.

typedef struct {
 double coeff;
 double init;
} params_T;

typedef struct {
 double flow_rate;
 double steam_press;
} signals_T;

typedef struct {
 double accum;
 double error;
} states_T;

Generate Simulink representations only for params_T and signals_T.

Simulink.importExternalCTypes('ex_cc_manySimpleTypes.h',...
 'Names',{'params_T','signals_T'});

The Simulink.Bus objects, params_T and signals_T, appear in the base workspace.

Import Types for 16-Bit Hardware

By default, Simulink.importExternalCTypes represents an enumerated data type by creating an
enumeration class that derives from the built-in class Simulink.IntEnumType. When you simulate
or generate code from a model that uses the generated class, configuration parameters that you
select for the model (for example, on the Hardware Implementation pane) determine the specific
integer length that Simulink.IntEnumType and the enumeration class employ.

 Simulink.importExternalCTypes

2-651

By default, the function interprets generic, primitive C data types, such as short and int, according
to the word lengths of your host computer. For example, to represent an int structure field, the
function typically applies the 32-bit data type int32 to the corresponding bus element. When you
want to simulate and generate code for hardware other than your host computer, use the
HardwareImplementation pair argument to identify the target hardware and, by extension, the
word lengths of the hardware.

This example shows how to import data types from code that you intend to use on 16-bit hardware.
For this board, int has a 16-bit length, and each item of enumerated data (enum) consumes 16 bits.

In your current folder, create the file ex_cc_intTypes.h.

typedef enum {
 PWR_LOSS = 0, /* Default value */
 OVERSPD,
 PRESS_LOW,
} fault_T;

typedef struct {
 int coeff;
 int init;
} params_T;

The code defines an enumerated data type and a structure type whose fields use the generic C data
type int.

To generate an accurate Simulink representation of the structure type, first open an existing model or
create a new model. For this example, create a new model named ex_hdwImpl_16bit.

In the new model, set Configuration Parameters > Hardware Implementation > Device vendor
to Atmel. Set Device type to AVR.

Alternatively, at the command prompt, use these commands to create and configure the model:

new_system('ex_hdwImpl_16bit','Model');
set_param('ex_hdwImpl_16bit','ProdHWDeviceType','Atmel->AVR')

Generate Simulink representations of the types. To specify the word lengths of the target 16-bit
hardware, extract the model configuration parameters (which include the Hardware
Implementation settings) as a Simulink.ConfigSet object.

configSet = getActiveConfigSet('ex_hdwImpl_16bit');
Simulink.importExternalCTypes('ex_cc_intTypes.h','HardwareImplementation',configSet);

The Simulink.Bus object params_T appears in the base workspace. The bus elements, such as
coeff, use the Simulink data type int16.

params_T.Elements(1)

ans =

 BusElement with properties:

 Name: 'coeff'
 Complexity: 'real'

2 Functions

2-652

 Dimensions: 1
 DataType: 'int16'
 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 Unit: ''
 Description: ''

In your current folder, the file fault_T.m defines the enumeration class fault_T. The class derives
from Simulink.IntEnumType, so you must use model configuration parameters to identify the
target hardware and, by extension, the correct native integer length.

Import Structure Type Whose Fields Use 16-Bit Fixed-Point Data Types

Create the file ex_cc_fixpt_struct.h in your current folder.

typedef struct {

 int coeff; /* Word length 16,
 binary fraction length 7 */

 int init; /* Word length 16,
 binary fraction length 3 */

} params_T;

The file defines a structure type whose fields use fixed-point data types. For example, the structure
stores the field coeff in a signed, 16-bit integer data type. A binary fraction length of 7 relates the
stored integer value to the real-world value.

Suppose that this code operates on 16-bit hardware (such that the generic C data type int has a 16-
bit word length). To generate a Simulink representation of the type, first create a
coder.HardwareImplementation object that identifies the hardware.

hdw = coder.HardwareImplementation;
hdw.ProdHWDeviceType = 'Atmel->AVR';

Generate a Simulink representation of the structure type.

Simulink.importExternalCTypes('ex_cc_fixpt_struct.h',...
 'HardwareImplementation',hdw);

The Simulink.Bus object, params_T, appears in the base workspace. Each bus element, such as
coeff, uses the data type int16.

params_T.Elements(1)

ans =

 BusElement with properties:

 Name: 'coeff'
 Complexity: 'real'

 Simulink.importExternalCTypes

2-653

 Dimensions: 1
 DataType: 'int16'
 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 Unit: ''
 Description: ''

Simulink.importExternalCTypes cannot infer the fixed-point scaling (binary fraction length)
from the C code. You must manually specify the data types of the bus elements. To specify the data
types at the command prompt, use the fixdt function.

params_T.Elements(1).DataType = 'fixdt(1,16,7)';
params_T.Elements(2).DataType = 'fixdt(1,16,3)';

To specify the data types interactively (by using the Data Type Assistant), use the Type Editor.

typeeditor

Manually Synchronize Simulink Representations with C-Code Definitions

This example shows how to maintain the Simulink representations of C data types whose definitions
you modify during the life of a modeling project.

Import Custom C Types

Create the file ex_cc_myTypes_rec.h in your current folder. The file defines a custom structure
type.

typedef struct {
 double flow;
 double pres;
 double tqe;
} sigStructType;

Generate a Simulink.Bus object that represents the type.

Simulink.importExternalCTypes('ex_cc_myTypes_rec.h');

Modify Type Definition in C Code

In ex_cc_myTypes_rec.h, add a field named spd to sigStructType.

In the same file, create a new structure type, stateStructType.

typedef struct {
 double flow;
 double pres;
 double tqe;
 double spd;
} sigStructType;

typedef struct {

2 Functions

2-654

 double err;
 double read;
 double write;
} stateStructType;

Attempt to Import Types Again

Attempt to generate bus objects that represent the types.

importInfo = Simulink.importExternalCTypes('ex_cc_myTypes_rec.h');

The function generates warnings at the command prompt. Instead of relying on the warnings, you can
inspect the output, importInfo, to determine whether the function failed to import any types.

importInfo.failedToImport.Bus

ans =

 1×1 cell array

 {'sigStructType'}

The function did not import sigStructType. The corresponding bus object in the base workspace
still has only three bus elements. To determine the reason that the function did not import
sigStructType, inspect the report field of importInfo.

Import sigStructType again. This time, overwrite the existing bus object.

importInfo = Simulink.importExternalCTypes('ex_cc_myTypes_rec.h',...
 'Names',importInfo.failedToImport.Bus,'Overwrite','on');

When you overwrite existing Simulink representations, any customizations that you made to the
Simulink representations (such as the application of fixed-point data types to bus elements) are
overwritten.

Input Arguments
headerFiles — Names and paths of header files to parse
character vector | cell array of character vectors | string scalar | string array

Names and paths of header files to parse, specified as a character vector, cell array of character
vectors, string, or string array. Include the .h or .hpp file extension.

If you use a hierarchy of included (#include) header files to define your types, when you specify
HeaderFiles, you need to identify only the entry-point files. The function parses the included files as
well as the identified entry-point files. If the included files are not in the same folder as the
corresponding entry-point file, use the IncludeDirs pair argument to identify the additional folders.
Example: 'myHeader.h'
Example: {'thisHeader.hpp','thatHeader.hpp'}
Data Types: char | cell | string

modelName — Name of loaded Simulink model for which to import types
character vector | string scalar

 Simulink.importExternalCTypes

2-655

Name of a loaded Simulink model for which to import types, specified as a character vector or string
scalar. A model is loaded if, for example, you open the model or use the load_system function. When
you use this argument, the function:

• Searches the model configuration parameters for custom header files and parses those header
files for data types to import. Only the configuration parameters on the Simulation Target pane
affect this search.

For example, if in the model you set Configuration Parameters > Simulation Target >
Include headers to #include "myTypes.h", the function parses myTypes.h for types to
import.

• Interprets generic C data types such as int or short according to the word lengths of your host
computer. Do not use the HardwareImplementation pair argument to override this
interpretation.

Example: 'myModel'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
Simulink.importExternalCTypes('myHdr.h','DataDictionary','myDictionary.sldd')

MATFile — Name and path of MAT-file to create for storing generated objects
'' (empty) (default) | character vector | string scalar

Name and, optionally, path of the MAT-file to create for storing generated Simulink.Bus and
Simulink.AliasType objects, specified as a character vector or string. If you do not use MATFile,
by default, the function generates the objects in the base workspace.

The function does not generate enumeration definitions in MAT-files.

If you import some struct types and primitive typedef statements by using MATFile and later
import some of the same types again by using MATFile, the function entirely replaces the old MAT-
file with a new one. The function discards any changes that you made to the contents of the old MAT-
file.

You cannot use the MATFile and DataDictionary pair arguments simultaneously.
Example: 'myMat.mat'
Example: 'myMat'
Example: fullfile('subfolder','myMat')
Data Types: char | string

DataDictionary — Name and path of Simulink data dictionary to use or create for storing
types
'' (default) | character vector | string scalar

2 Functions

2-656

Name and, optionally, path of the Simulink data dictionary to use or create for storing generated
enumerations and objects, specified as a character vector or string. When you use this pair argument,
the function imports enumerated types as Simulink.data.dictionary.EnumTypeDefinition
objects, and stores those objects (as well as Simulink.Bus objects and Simulink.AliasType
objects) in the target dictionary.

For information about data dictionaries, see “What Is a Data Dictionary?”.

You can optionally specify a .sldd extension.

You cannot use the DataDictionary and MATFile pair arguments simultaneously.
Example: 'myDict.sldd'
Example: 'myDict'
Example: fullfile('subfolder','myDict.sldd')
Data Types: char | string

Names — Names of types to import
'' (default) | character vector | cell array of character vectors | string scalar | string array

Names of types to import, specified as a character vector, cell array of character vectors, string, or
string array. By default, if you do not use Names, the function attempts to import all of the custom
types that the identified header files define.

To match multiple type names with a single character vector, use an asterisk (*).
Example: 'myEnumType'
Example: {'myEnumType','myStructType'}
Example: 'my*Type'
Data Types: char | cell | string

Defines — Compiler options to define macros that influence type definitions
'' (default) | character vector | string scalar

Compiler options to define macros that influence C type definitions, specified as a character vector, or
string scalar. For example, a macro influences a type definition if you enclose the definition in an
#ifdef block that checks whether the macro is defined.

Use Defines to specify macro definitions that you otherwise define through compiler options such as
-D.
Example: 'SIGSTRUCT=1'
Example: 'SIGSTRUCT=1 ENUM=1'
Data Types: char | string

UnDefines — Compiler options to delete macros that influence type definitions
'' (default) | character vector | string scalar

Compiler options to delete macros that influence C type definitions, specified as a character vector or
string scalar. For example, a macro influences a type definition if you enclose the definition in an
#ifdef block that checks whether the macro is defined.

 Simulink.importExternalCTypes

2-657

Use UnDefines to specify macro deletions that you otherwise define through compiler options such
as -U.
Example: 'SIGSTRUCT'
Example: 'SIGSTRUCT ENUM'
Data Types: char | string

IncludeDirs — Folders that contain subordinate, included header files
'' (default) | character vector | cell array of character vectors | string scalar | string array

Folders that contain subordinate, included (#include) header files, specified as a character vector,
cell array of character vectors, string, or string array. Use this pair argument to enable the function
to locate and parse additional header files on which the primary header files (which you specify with
the headerFiles argument) depend.

If you use the modelName syntax instead of the headerFiles syntax, in the target model, you can
use the Simulation Target configuration parameters to specify include paths. In that case, you do
not need to use the IncludeDirs pair argument.
Example: 'myHeaders'
Example: fullfile('myProject','myHeaders')
Example:
{fullfile('myProject','myHeaders'),fullfile('myProject','myOtherHeaders')}

Data Types: char | cell | string

OutputDir — Folder for storing generated files
'' (default) | character vector | string scalar

Folder for storing generated files, specified as a character vector or string. The function places
generated files, such as classdef script files and data dictionary files, in this folder.

The folder that you specify must exist before you use the function.
Example: 'myDictionaries'
Example: fullfile('myProject','myDictionaries')
Data Types: char | string

Language — Language to parse header files
'Auto' (default) | 'C' | 'C++'

Parse and import compatible data types from C and C++ header files. If specify header files that
contain C++ features, specify the Language to 'C++' to import compatible C data types.

When data types are imported from a header file with hpp extension, if the Language setting is not
specified or set to 'Auto', 'C++' is selected to parse your header files. C++ classes and C++ struct
types are ignored. Empty structs are not imported.

If you import header files from a loaded model and the Language is not specified or set to 'Auto',
the Language setting is inherited from the model's custom settings. If the imported model already
has a Language setting in Configuration Parameters > Simulation Target, this setting is
overshadowed by imported model's setting.

2 Functions

2-658

HardwareImplementation — Word lengths for interpreting generic, primitive C data types
'' (default) | Simulink.ConfigSet object | coder.HardwareImplementation object

Word lengths for interpreting generic, primitive C data types, specified as a Simulink.ConfigSet
or coder.HardwareImplementation object.

• To use a Simulink.ConfigSet object, you can extract a configuration set from a model by using
functions such as getConfigSet and getActiveConfigSet. This technique enables you to use
the Configuration Parameters dialog box to identify your target hardware (through the Hardware
Implementation configuration parameters).

• To use a coder.HardwareImplementation object (which you create and configure
programmatically), specify properties of the object, such as ProdHWDeviceType, to identify your
target hardware. The object then sets other properties, such as ProdBitPerInt, that reflect the
native integer size of the hardware.

The function inspects the object to determine which Simulink integer data types to employ when
interpreting generic C data types such as int. For example, if you create a
coder.HardwareImplementation object to identify 16-bit hardware and then use the function to
import a structure type whose fields use the C data type int, the function generates a bus object
whose bus elements use the Simulink data type int16. The function uses the production hardware
settings, not the test hardware settings.

For more information about hardware implementation settings for Simulink models, see “Configure
Run-Time Environment Options” (Simulink Coder).

Overwrite — Specification to overwrite existing Simulink representations
'off' (default) | 'on'

Specification to overwrite existing Simulink representations, specified as 'on' or 'off'. If an
imported type already has a representation in Simulink:

• If you specify 'off' or if you do not specify Overwrite, the function does not import the type. In
the output argument, importInfo, the failedToImport field identifies the type.

• If you specify 'on', the function overwrites the existing Simulink representation.

If you use the function to import some types into the base workspace or a data dictionary and later
customize the generated Simulink representations, when you use the function again and set
Overwrite to 'on', the function does not preserve your customizations. These customizations can
include:

• In an enumeration class definition, implementing extra methods or modifying the generated
methods such as getDataScope (see “Customize Simulink Enumeration”).

• Modifying the properties of a generated Simulink.Bus or Simulink.AliasType object (for
example, manually setting the data types of bus elements to a fixed-point data type).

Verbose — Specification to generate messages for successful import operations
'off' (default) | 'on'

Specification to generate messages for successful import operations, specified as 'on' or 'off'.

• If you specify 'off' or if you do not specify Verbose, the function imports types silently.
Messages do not appear in the Command Window unless the function cannot import a type.

 Simulink.importExternalCTypes

2-659

• If you specify 'on', the function generates a message in the Command Window for each operation
during the import process.

Output Arguments
importInfo — Information about types that were imported and not imported
structure

Information about types that were imported and not imported, returned as a structure with these
fields.

report — Descriptions of types that were imported and not imported
character vector

Descriptions of types that were imported and not imported, returned as a character vector. Inspect
the value of this field to determine the reason that the function could not import a type.

failedToImport — Types that were not imported
structure

Types that were not imported, returned as a structure with these fields.

Field Name Field Value Purpose
Bus Cell array of character vectors Names of structure (struct)

types that were not imported.
Enum Cell array of character vectors Names of enumerated types

(enum) that were not imported.
AliasType Cell array of character vectors Names of primitive typedef

statements that were not
imported.

importedTypes — Types that were successfully imported
structure

Types that were successfully imported, returned as a structure with these fields.

Field Name Field Value Purpose
Bus Cell array of character vectors Names of structure (struct)

types that were imported. The
generated Simulink.Bus
objects use these names.

Enum Cell array of character vectors Names of enumerated types
(enum) that were imported. The
generated enumeration classes
or
Simulink.data.dictionary
.EnumTypeDefinition objects
use these names.

2 Functions

2-660

Field Name Field Value Purpose
AliasType Cell array of character vectors Names of primitive typedef

statements that were imported.
The generated
Simulink.AliasType objects
use these names.

Limitations
• The function does not support:

• C data types that do not correspond to a type that Simulink supports. For example, Simulink
does not recognize an equivalent for long double. For information about data types that
Simulink supports, see “Data Types Supported by Simulink”.

• Pointer types, such as a structure that defines a field whose value is a pointer or a typedef
statement whose base type is a pointer type.

• Unions.
• If a structure field represents fixed-point data, or if a typedef statement maps to a fixed-point

base type, the function sets the data type of the corresponding bus element or
Simulink.AliasType object to the relevant Simulink integer type (such as int16). The
importer cannot determine the fixed-point scaling by parsing the C code. After using the function,
you must manually specify the data type of the bus element or the base type of the
Simulink.AliasType object by using the fixdt function.

Tips
• You must configure the Simulation Target configuration parameters for your model to include

(#include) the header file which defines the imported enumeration or structure type in these
cases:

• You use the type in a MATLAB Function block. See “Control Imported Bus and Enumeration
Type Definitions”.

• You use the type in a Stateflow chart. See “Access Custom Code Variables and Functions in
Stateflow Charts” (Stateflow) and “Integrate Custom Structures in Stateflow Charts”
(Stateflow).

• You use the type in a C Function or C Caller block.
• The type is not declared with a typedef statement.

Note To import types that are not named in a typedef statement, ensure the Simulation Target
configuration parameter Import custom code is selected. This parameter is selected by default.

• By default:

• For an imported enumeration, because the Simulink enumeration class derives from
Simulink.IntEnumType, when you simulate or generate code from a model, the enumeration
uses the integer size that is native to your target hardware. You specify the characteristics of
your target hardware by using model configuration parameters such as Production device
vendor and type and Native word size in production hardware.

 Simulink.importExternalCTypes

2-661

• For an imported structure type:

• The function imports a structure field as numerically complex only if the field uses one of
the corresponding Simulink Coder structure types as the data type. For example, if a
structure field in your external code uses the data type cint8_T, the function imports the
field as a bus element (Simulink.BusElement object) whose data type is int8 and whose
Complexity property is set to 'complex'.

• For nested structures, the function generates a bus object for each unique structure type.
• For an imported structure or enumeration type, if your external code uses a typedef

statement to name the type, the name of the generated bus object or Simulink enumeration
class matches the typedef name. If your code does not use a typedef statement to name the
type, the name of the object or class is the tag name of the type, unless that name conflicts
with a type name that is defined in a typedef statement elsewhere in your header files, in
which case the type is not imported into Simulink. If you do not specify a tag name or apply a
typedef name, Simulink generates an arbitrary name for the object or class.

• The function configures the generated Simulink representations as imported for the purposes
of simulation and code generation. For example, for bus objects, the function sets the
DataScope property to 'Imported' and the HeaderFile property to the name of your
external header file. To simulate or generate code from a model that uses one of these Simulink
representations, you must make your header file available to the model.

• When you specify files for Simulink.importExternalCTypes to use or generate, for example,
by using the DataDictionary pair argument:

• If the existing files to use are in your current folder or on the MATLAB path, you do not need to
specify a file path. You can specify the file name by itself.

• To control the folder location of generated files, you can specify paths as well as file names.
You can also use the OutputDir pair argument.

Version History
Introduced in R2017a

See Also
Simulink.AliasType | Simulink.Bus | enumeration

Topics
“Data Types Supported by Simulink”
“Data Types for Buses”
“Use Enumerated Data in Simulink Models”
“Manage Replacement of Simulink Data Types in Generated Code” (Embedded Coder)
“Control Data Types of Signals”
“Exchange Data Between External C/C++ Code and Simulink Model or Generated Code” (Simulink
Coder)

2 Functions

2-662

Simulink.io.getFileTypeDiagnostics
Return structure with NamespaceErrors field for Simulink.io.FileType objects

Syntax
diagnosticStruct = Simulink.io.getFileTypeDiagnostics()

Description
diagnosticStruct = Simulink.io.getFileTypeDiagnostics() returns a structure with field
NamespaceErrors diagnosticStruct for Simulink.io.FileType objects.

Examples

Get Diagnostics for Simulink.io.FileType Objects

Get diagnostics for Simulink.io.FileType objects and return in diagnosticStruct.

diagnosticStruct = Simulink.io.getFileTypeDiagnostics()

diagnosticStruct =

 struct with fields:

 NamespaceErrors: {}

In this example, there are no diagnostics.

Output Arguments
diagnosticStruct — Structure of NamespaceErrors field for Simulink.io.FileType
objects
structure with cell array

Structure of diagnostics for Simulink.io.FileType objects, returned as a structure with a cell
array of NamespaceErrors fields. The first column in the cell array is the name of the name space
plugin. In this example output, the name of the name space plugin is not.here.

diagnosticStruct =

 struct with fields:

 NamespaceErrors: { ‘not.here’ ‘Unknown package name ‘ ’ ‘.’}

Version History
Introduced in R2021a

 Simulink.io.getFileTypeDiagnostics

2-663

See Also
Simulink.io.FileType | Simulink.io.PluggableNamespace

2 Functions

2-664

Simulink.LibraryDictionary.clear
Package: Simulink.LibraryDictionary

Clear library dictionary dependency analysis

Syntax
Simulink.LibraryDictionary.clear

Description
Simulink.LibraryDictionary.clear clears any previous library dependency analysis that has
been performed on a library hierarchy with attached data dictionaries. When you first attach a
dictionary to a library and save that library, Simulink opens and performs this analysis on each library
in the current folder as well as in the folder of that library (if different than the current folder).
Simulink stores the analysis in the user preference folder. Subsequent changes to a library in the
hierarchy results in analysis of only relevant library changes.

Run this function only if you intend to reanalyze the entire library hierarchy.

Examples

Clear Library Dependency Analysis for Library Dictionaries

To perform a full reanalysis of dependencies for a library hierarchy with attached data dictionaries,
clear any previously stored dependency analysis.

Simulink.LibraryDictionary.clear

Version History
Introduced in R2021a

See Also
Simulink.LibraryDictionary.refresh |
Simulink.LibraryDictionary.resetLibraryLinks

Topics
“Attach Data Dictionary to Custom Libraries”
“Create Custom Library”
“Design and Create a Custom Block”

 Simulink.LibraryDictionary.clear

2-665

Simulink.LibraryDictionary.refresh
Package: Simulink.LibraryDictionary

Update library dictionary dependencies

Syntax
Simulink.LibraryDictionary.refresh
Simulink.LibraryDictionary.refresh(libraryDir)
Simulink.LibraryDictionary.refresh(model)

Description
Simulink.LibraryDictionary.refresh performs a library dependency analysis on a library
hierarchy with attached data dictionaries from the current folder. When you first attach a dictionary
to a library and save that library, Simulink opens and performs this analysis on each library in the
specified folder as well as in the folder of that library (if different than the current folder). Simulink
stores the analysis in the user preference folder. Subsequent changes to a library in the hierarchy
result in analysis of only relevant library changes.

Because performing this library dependency analysis can be an expensive operation, call the
Simulink.LibraryDictionary.refresh function only when you have made changes to you
library hierarchy and want to ensure that your library dictionary dependencies are current.

Simulink.LibraryDictionary.refresh(libraryDir) performs a library dependency analysis
on a library hierarchy with attached data dictionaries from the specified library folder.

Simulink.LibraryDictionary.refresh(model) performs a library dependency analysis on a
library hierarchy with attached data dictionaries for the specified model.

Examples

Refresh Library Dependency Analysis from the Current Folder

Perform a library dependency analysis on a library hierarchy with attached data dictionaries from the
current folder.

Simulink.LibraryDictionary.refresh

Refresh Library Dependency Analysis from a Specified Folder

Perform a library dependency analysis on a library hierarchy with attached data dictionaries from a
specified library folder.

Simulink.LibraryDictionary.refresh('C:/Work/myLibraryDir/')

2 Functions

2-666

Refresh Library Dependency Analysis for a Specified Model

Perform a library dependency analysis on a library hierarchy with attached data dictionaries for a
specified model.

Simulink.LibraryDictionary.refresh('myModel.slx')

Input Arguments
libraryDir — Library folder
character vector

Library folder to use for dependency analysis, specified as a character vector.
Example: 'myLibraryDir'
Data Types: char

model — Model
character vector

Model to use for dependency analysis, specified as a character vector.
Example: 'myModel'
Data Types: char

Version History
Introduced in R2021a

See Also
Simulink.LibraryDictionary.clear | Simulink.LibraryDictionary.resetLibraryLinks

Topics
“Attach Data Dictionary to Custom Libraries”
“Create Custom Library”
“Design and Create a Custom Block”

 Simulink.LibraryDictionary.refresh

2-667

Simulink.LibraryDictionary.resetLibraryLinks
Package: Simulink.LibraryDictionary

Clear cached information on library dictionary links

Syntax
Simulink.LibraryDictionary.resetLibraryLinks

Description
Simulink.LibraryDictionary.resetLibraryLinks clears previously cached information on
library dictionary links. Use this function when you are unable to link your library to a library
dictionary due to cache corruption. After calling this function, the ability to link your library to a
library dictionary is restored, but information on previously linked library dictionaries is lost.

Examples

Clear Cached Link Information for Library Dictionaries

To restore the ability to link your library to a library dictionary, remove corrupt cache information.

Simulink.LibraryDictionary.resetLibraryLinks

Version History
Introduced in R2022a

See Also
Simulink.LibraryDictionary.refresh | Simulink.LibraryDictionary.clear

Topics
“Attach Data Dictionary to Custom Libraries”
“Create Custom Library”
“Design and Create a Custom Block”

2 Functions

2-668

addParameterCondition
Creates a mask parameter condition for constraint

Syntax
constraintObj.addParameterCondition(pc)
constraintObj.addParameterCondition(Name=Value)

Description
constraintObj.addParameterCondition(pc) and
constraintObj.addParameterCondition(Name=Value) creates mask parameter conditions on
the constraint using the name-value arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Name — Name of mask parameter
character vector (default)

Name of the masked parameter specified as a string.
Data Types: string

Value — Possible values for mask parameter
cell array (default)

Values for the masked parameter specified as a cell array.
Data Types: cell

Examples
Create an instance of Simulink.Mask.PortConstraint.

consObj = Simulink.Mask.PortConstraint

Add the parameter condition.

consObj.addParameterCondition('Name','p1','Values',{'10','20'})

ans =

 ParameterCondition with properties:

 addParameterCondition

2-669

 Name: 'p1'
 Values: {2×1 cell}

Version History
Introduced in R2022a

See Also
getParameterCondition | removeParameterCondition | removeAllParameterCondition

Topics
“Validate Input and Output Port Signals Using Port Constraints”

2 Functions

2-670

getParameterCondition
Returns parameter condition associated with constraint

Syntax
consObj.getParameterCondition(parameterName)

Description
consObj.getParameterCondition(parameterName) displays the parameter name and its
values.

Input Arguments
parameterName — Name of masked parameter
character vector (default)

Name of the masked parameter specified, as a character vector or string.
Data Types: char | string

Examples
consObj.addParameterCondition('Name','p1','Values',{'10','20'})
consObj.getParameterCondition('p1')

ans =

 ParameterCondition with properties:

 Name: 'p1'
 Values: {2×1 cell}

Version History
Introduced in R2022a

See Also
addParameterCondition | removeParameterCondition | removeAllParameterCondition

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 getParameterCondition

2-671

removeAllParameterConditions
Removes all parameter conditions from constraint

Syntax
consObj.removeAllParameterConditions()

Description
consObj.removeAllParameterConditions() removes all the parameter conditions from the
constraint.

Examples
Add parameter condition.

consObj=amaskObj.getPortConstraint('pc1')
consObj.addParameterCondition('Name','p1','Values',{'10','20'})

Remove parameter condition

consObj.removeAllParameterCondition()
consObj.getParameterCondition('p1')

Version History
Introduced in R2022a

See Also
addParameterCondition | getParameterCondition | removeParameterCondition

Topics
“Validate Input and Output Port Signals Using Port Constraints”

2 Functions

2-672

removeParameterCondition
Removes specified parameter condition on constraint

Syntax
consObj.removeParameterCondition(parameterName)

Description
consObj.removeParameterCondition(parameterName) removes the specified parameter
condition from the constraint.

Input Arguments
parameterName — Name of masked parameter
character vector (default) | string

Name of the masked parameter to be removed from the constraint, specified as a character vector.
Data Types: string

Example
Add parameter condition.

consObj=amaskObj.getPortConstraint('pc1')
consObj.addParameterCondition('Name','p1','Values',{'10','20'})

Remove parameter condition

consObj.removeParameterCondition('p1')
consObj.getParameterCondition('p1')

Parameter condition for parameter name 'p1'
not present in port constraint 'pc1'.

Version History
Introduced in R2022a

See Also
addParameterCondition | getParameterCondition | removeAllParameterCondition

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 removeParameterCondition

2-673

addPortConstraint
Create port constraint on a mask object

Syntax
maskObj.addPortConstraint(pc),
maskObj.addPortConstraint(Name=Value)

Description
maskObj.addPortConstraint(pc), maskObj.addPortConstraint(Name=Value). Creates
port constraint on a mask object by adding options specified as name-value pair arguments.

Input Arguments
pc — Port constraint object
Simulink.Mask.PortConstraint object

Port constraint object, specified as a Simulink.Mask.PorConstraint object.
Data Types: char | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Name — Name of the constraint
string (default) | character vector

Name of the constraint specified as a string.

ParameterConditions — Parameters and its values
cell array (default)
Example: ParameterConditions={ 'Name', 'parameter1', 'Values', {'10','20'}}

sets Parameter Conditions as a Parameter Condition object with a Name of 'parameter1' and Values
of {'10', '20'}.

Rule — Data type, complexity, and dimension associated with the constraint
vector of Simulink.Mask.PortConstraintRule object

Datatype, complexity, and dimension for the constraint, specified as a cell array.

DiagnosticLevel — Type of diagnostic message
error (default) | warning

The type of diagnostic message displayed when validation condition fails specified as error or
warning.

2 Functions

2-674

DiagnosticMessage — Diagnostic message
character vector (default)

The diagnostic message that is displayed when the validation fails, specified as a character vector.

Examples
Create Port Constraint with Mask Object
% Create an instance of Simulink.Mask.ParameterCondition
p1 = Simulink.Mask.ParameterCondition;
p1.Name = 'param1';
p1.Values = {'on'};
p2=Simulink.Mask.ParameterCondition;
p1.Name = 'param2';
p1.Values ={'0','1'};

Create a Simulink.Mask.PortConstraint object, then set its properties using dot notation. Use
p1 and p2 as its Parameter Conditions.

pc = Simulink.Mask.PortConstraint;
pc.Name = 'pc1';
pc.ParameterConditions = ['p1','p2'];
pc.Rule.DataType = {'double','int8'};
pc.Rule.Complexity={'real'};
pc.DiagnosticLevel = 'warning';
pc.DiagnosticMessage = 'Invalid data at port';

Get the mask object maskObj, then add the port constraint to it.

maskObj.addPortConstraint(pc);

Create Port Constraint Directly with Name-Value pair Arguments
%Get mask object
aMaskObj = Simulink.Mask.get('model\subsystem');

%Add a port constraint directly using name-value pair arguments
aMaskObj.addPortConstraint('Name','pc3','ParameterConditions',
 { {'Name','parameter1', 'Values', {'10','20'} },
{'Name', 'parameter2', 'Values', {'10','20'} } },
'Rule', {'DataType', {'double','int32'}, 'Complexity', {'real'} } ,
'DiagnosticLevel', 'error','DiagnosticMessage', 'Invalid Data')

ans =

 PortConstraint with properties:

 Name: 'pc3'
 ParameterConditions: [1×2 Simulink.Mask.ParameterCondition]
 Rule: [1×1 Simulink.Mask.PortConstraintRule]
 DiagnosticLevel: 'error'
 DiagnosticMessage: 'Invalid Data'

%Get the Rule object
pc1.Rule

 addPortConstraint

2-675

ans =

 PortConstraintRule with properties:

 DataType: {2×1 cell}
 Dimension: {0×1 cell}
 Complexity: {'real'}
 FixedPointConstraint: [1×1 Simulink.Mask.FixedPointConstraint]

Version History
Introduced in R2022a

See Also
getPortConstraint | removePortConstraint | removeAllPortConstraints

Topics
“Validate Input and Output Port Signals Using Port Constraints”

2 Functions

2-676

addPortConstraintAssociation
Associate port constraints to port identifiers

Syntax
aMaskObj.addPortConstraintAssociation(name, port identifiers)

Description
aMaskObj.addPortConstraintAssociation(name, port identifiers) associates specified
port constraint to the specified port identifiers. You can associate multiple port identifiers to the same
port constraint.

Input Arguments
Name — Name of port constraint
character vector (default) | string

Name of the port constraint, specified as a string.
Data Types: char | string

portIdentifier — Name of port identifiers
cell array (default)

Name of the port identifiers, specified as a cell array. You can associate same port constraint with
multiple port identifiers.
Data Types: cell

Examples
% Get a mask object
aMaskObj = Simulink.Mask.get(gcb);
aMaskObj.PortIdentifiers;
aMaskObj.addPortConstraintAssociation('pc3',{'pi_1'});

Version History
Introduced in R2022a

See Also
getPortConstraintAssociation | removePortConstraintAssociation |
removeAllPortConstraintAssociation

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 addPortConstraintAssociation

2-677

getPortConstraint
Displays attributes of specified port constraint

Syntax
aMaskObj.getPortConstraint(name)

Description
aMaskObj.getPortConstraint(name) displays the attributes of the specified port constraint.

Input Arguments
name — Name of the port constraint
character vector | string

Name of the port constraint, specified as a string. An error is displayed if the port constraint does not
exit.

Examples

View Port Constraints

• %Get mask object and view port constraints
aMaskObj.getPortConstraint('pc3')

ans =

 PortConstraint with properties:

 Name: 'pc3'
 ParameterConditions: [1×2 Simulink.Mask.ParameterCondition]
 Rule: [1×1 Simulink.Mask.PortConstraintRule]
 DiagnosticLevel: 'error'
 DiagnosticMessage: 'Invalid Data'

Version History
Introduced in R2022a

See Also
addPortConstraint | removePortConstraint | removeAllPortConstraints

Topics
“Validate Input and Output Port Signals Using Port Constraints”

2 Functions

2-678

getPortConstraintAssociation
Displays port identifiers associated with port constraint

Syntax
aMaskObj.getPortConstraintAssociation(name)

Description
aMaskObj.getPortConstraintAssociation(name) returns the port identifiers associated with
port constraint.

Input Arguments
name — Name of port constraint
character vector (default) | string

Name of the port constraint, specified as a string.
Data Types: char | string

Examples
aMaskObj.getPortConstraintAssociation('pc3')

Version History
Introduced in R2022a

See Also
addPortConstraintAssociation | removePortConstraintAssociation |
removeAllPortConstraintAssociation

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 getPortConstraintAssociation

2-679

removeAllPortConstraints
Remove all port constraints on masked block

Syntax
aMaskObj.removeAllPortConstraints()

Description
aMaskObj.removeAllPortConstraints() removes all the port constraints from the masked
block.

Examples
amaskObj=Simulink.Mask.get(model1/subsystem)
amaskObj.removeAllPortConstraints()
amaskObj.getPortConstraint('pc1')

Constraints 'pc1' is not available in the block 'model1/Subsystem'.

Version History
Introduced in R2022a

See Also
addPortConstraint | getPortConstraint | removePortConstraint

Topics
“Validate Input and Output Port Signals Using Port Constraints”

2 Functions

2-680

removePortConstraint
Remove specified port constraint

Syntax
aMaskObj.removePortConstraint(name)

Description
aMaskObj.removePortConstraint(name) removes the specified port constraint from the mask
object.

Input Arguments
Name — Name of the port constraint
character vector (default) | string

Name of the port constraints to be removed from the mask object, specified as a character vector. An
error is displayed if the port constraint does not exist.
Example: aMaskObj.removePortConstraint('pc3');

Example
amaskObj=Simulink.Mask.get(model1/subsystem)
amaskObj.removePortConstraints('pc1')
amaskObj.getPortConstraint('pc1')

Constraints 'pc1' is not available in the block 'model1/Subsystem'.

Version History
Introduced in R2022a

See Also
addPortConstraint | getPortConstraint | removeAllPortConstraints

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 removePortConstraint

2-681

removeRule
Remove all datatype, complexity, and dimension attributes of port constraint rule

Syntax
consObj.removeRule()

Description
consObj.removeRule() clears all the data type, complexity, and dimension attributes of the port
constraint rule. The empty rule object is still available in the port constraint object.

Examples

consObj=Simulink.Mask.PortConstraint;
rule = Simulink.Mask.PortConstraintRule;
pc1.DataType = {'double','int32'};
pc1.complexity = {'real'};
consObj.setRule(rule);
consObj.removeRule();

Version History
Introduced in R2022a

See Also
setRule

Topics
“Validate Input and Output Port Signals Using Port Constraints”

2 Functions

2-682

setRule
Create rules that are validated against data at port

Syntax
consObj.setRule(rule)
consObj.setRule(Name=Value)

Description
consObj.setRule(rule) adds the object of type Simulink.Mask.PortConstraintRule rule to
the object.

consObj.setRule(Name=Value) creates a rule using name-value arguments and adds it to port
constraint object.

Input Arguments
rule — Rule object
Simulink.Mask.PortConstraintRule object (default)

Rule object, specified as a Simulink.Mask.PortConstraintRule object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

DataType — Permitted data types
cell array (default) | string

Permitted data types, specified as a cell array. The allowed values are int, double, fixed point
and so on.

Dimension — Permitted dimension for port signals
cell array of character vector (default) | string

The allowed values in the array are scalar, vector, 2dmatrix, ndmatrix, rowvector, and
colvector.

Complexity — Complexity of port signal
character vector (default) | string

The allowed complexity, specified as a cell array. The allowed values in the array are real and
complex.

FixedPointConstraint — Fixed point constraints of port signal
character vector (default)

Set the Signedness, bias, Wordlength, and Scaling for fixed point data type.

 setRule

2-683

Examples
Set Rules Using ConstraintRule Object

%Get an instance of Simulink.Mask.PortConstraintRule
consObj=Simulink.Mask.PortConstraint;
rule = Simulink.Mask.PortConstraintRule;
pc1.DataType = {'double','int32'};
pc1.complexity = {'real'};
consObj.setRule(rule);

Set Rules as Name-Value Pair Arguments

% Create an instance of Simulink.Mask.PortConstraint to set the rule
constraint.setRule('DataType',{'fixedpoint'},'Dimension',{'scalar'},
'Complexity',{'real'})

ans =

 PortConstraintRule with properties:

 DataType: {'fixedpoint'}
 Dimension: {'scalar'}
 Complexity: {'real'}
 FixedPointConstraint: [1×1 Simulink.Mask.FixedPointConstraint]

rule = constraint.getRule

rule =

 PortConstraintRule with properties:

 DataType: {'fixedpoint'}
 Dimension: {'scalar'}
 Complexity: {'real'}
 FixedPointConstraint: [1×1 Simulink.Mask.FixedPointConstraint]

%Define the properties of FixedPointConstraint
rule.FixedPointConstraint.Scaling = "binary";
rule.FixedPointConstraint.Signedness = "unsigned";
rule.FixedPointConstraint.WordLength = "[8:12]";
rule.FixedPointConstraint

ans =

 FixedPointConstraint with properties:

 Scaling: 'binary'
 Bias: ''
 Signedness: 'unsigned'
 WordLength: '[8:12]'

Version History
Introduced in R2022a

2 Functions

2-684

See Also
removeRule

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 setRule

2-685

addPortIdentifier
Creates a port identifier to identify port in mask

Syntax
maskObj.addPortIdentifier(Name=Value)

Description
maskObj.addPortIdentifier(Name=Value) creates a port identifier to identify a particular port
in the mask object.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Name — Name for the port identifier
empty character vector (default) | string

Name of the port identifier, specified as a character vector. This name uniquely identifies the port
identifier in the mask.
Data Types: char | string

Type — Type of port
input (default) | output

Type of the port, specified as either Input or Output.
Data Types: string

IdentifierType — Type of identifier
index (default) | name

Type of identifier, specified as name or index. Specify name if you want to identify the ports using a
name, otherwise specify index, if you want to identify the ports using a port index.
Data Types: string

Identifier — Port identifier appearing in block
character vector (default)

Port identifier appearing in the block, specified as a character vector. If the IdentifierType is index,
you can specify the identifiers in one of these formats:

• Index: The index to associate the port with the port identifier. For example, '3' associates port '3'
with the port identifier.

2 Functions

2-686

• Lower port index:Upper port index: The lower port index and upper port index to associate all the
ports between the indices with the port identifier. For example, '2:4' associates ports 2, 3, and 4
with the port identifier.

• List of port indices: The ports separated by comma to associate the ports with the port identifier.
For example, 3,5,7. This associates the ports 3, 5, and 7 with the port identifier. Duplicates are not
allowed.

• : The name of the port is specified.

Port name: String: If IdentifierType is name, this parameter is the name of the port.
Data Types: string

Examples
amaskObj.addPortIdentifier('Name','pi1','Type','Input','IdentifierType','index','Identifier','2')

ans =

 PortIdentifier with properties:

 Name: 'pi1'
 Type: 'Input'
 IdentifierType: 'index'
 Identifier: '2'

aMaskObj.addPortIdentifier('Name','pi2','IdentifierType','name','Identifier','common_gain')

ans =

 PortIdentifier with properties:

 Name: 'pi2'
 Type: ''
 IdentifierType: 'name'
 Identifier: 'common_gain'

Version History
Introduced in R2022a

See Also
getPortIdentifier | remove PortIdentifier | removeAllPortIdentifiers

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 addPortIdentifier

2-687

getPortIdentifier
Displays attributes of specified port identifier

Syntax
aMaskObj.getPortIdentifier(portIdentifier)

Description
aMaskObj.getPortIdentifier(portIdentifier) displays the attributes of the specified port
identifier.

Input Arguments
portIdentifier — Name of port identifier
character vector (default) | string

Name of the port identifier, specified as character vector or string.
Data Types: char | string

Examples
aMaskObj.getPortIdentifier('pi1')

ans =

 PortIdentifier with properties:

 Name: 'pi1'
 Type: 'Input'
 IdentifierType: 'index'
 Identifier: '2'

Version History
Introduced in R2022a

See Also
addPortIdentifier | remove PortIdentifier | removeAllPortIdentifiers

Topics
“Validate Input and Output Port Signals Using Port Constraints”

2 Functions

2-688

removeAllPortIdentifiers
Removes all port identifiers from mask object

Syntax
aMaskObj.removeAllPortIdentifiers()

Description
aMaskObj.removeAllPortIdentifiers() removes all the port identifiers from the mask object.

Examples
Add port identifier

amaskObj.addPortIdentifier('Name','pi1','Type','Input','IdentifierType','index','Identifier','2')

Remove port identifiers

amaskObj.removeAllPortIdentifiers();
amaskObj.getPortIdentifier('pi1');

Port Identifier 'pi1' does not exist in the block 'model1/Subsystem'.

Version History
Introduced in R2022a

See Also
addPortIdentifier | getPortIdentifier | remove PortIdentifier

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 removeAllPortIdentifiers

2-689

removePortIdentifier
Removes specified port identifier from mask object

Syntax
aMaskObj.removePortIdentifier(portIdentifier)

Description
aMaskObj.removePortIdentifier(portIdentifier) removes the specified port identifier on
the mask object.

Input Arguments
portIdentifier — Name of port identifier
string

Name of the port identifier to be removed from the mask object, specified as a string or character
vector.
Data Types: char | string

Example
Add port identifier
amaskObj.addPortIdentifier('Name','pi1','Type','Input','IdentifierType','index','Identifier','2')

Remove port identifier

amaskObj.removeAllPortIdentifier('pi1');
amaskObj.getPortIdentifier('pi1');

Port Identifier 'pi1' does not exist in the block 'model1/Subsystem'.

Version History
Introduced in R2022a

See Also
addPortIdentifier | getPortIdentifier | removeAllPortIdentifiers

Topics
“Validate Input and Output Port Signals Using Port Constraints”

2 Functions

2-690

Simulink.MDLInfo.getDescription
Extract SLX, SLXP, or MDL file description without loading file

Syntax
d = Simulink.MDLInfo.getDescription(file)

Description
d = Simulink.MDLInfo.getDescription(file) returns the description of the specified SLX,
SLXP, or MDL file without loading the file.

Examples

Get Model Description

Get the description of the vdp model without loading it or creating a Simulink.MDLInfo object for
it.

d = Simulink.MDLInfo.getDescription('vdp')

d =

 'The van der Pol Equation

 This is a simulation of a nonlinear second order system.'

Input Arguments
file — Name of SLX, SLXP, or MDL file
character vector | string scalar

Name of the SLX, SLXP, or MDL file, specified as a character vector or string scalar.

The file name can include a partial path, complete path, relative path, or no path. When you do not
provide a path, the file extension is optional.

To avoid unexpected results caused by shadowed files that share a name, specify a fully qualified file
name.
Example: Simulink.MDLInfo('vdp')
Example: Simulink.MDLInfo('mymodel.slx')
Example: Simulink.MDLInfo('mydir/mymodel.slx')
Example: Simulink.MDLInfo('C:/mydir/mymodel.slx')
Data Types: char | string

 Simulink.MDLInfo.getDescription

2-691

Version History
Introduced in R2009b

See Also
Simulink.MDLInfo | Simulink.MDLInfo.getMetadata

2 Functions

2-692

Simulink.MDLInfo.getMetadata
Extract SLX, SLXP, or MDL file metadata without loading file

Syntax
m = Simulink.MDLInfo.getMetadata(file)

Description
m = Simulink.MDLInfo.getMetadata(file) returns the metadata structure associated with the
specified SLX, SLXP, or MDL file without loading the file.

The metadata structure contains the names and attributes of arbitrary data associated with the file.
The structure fields can be character vectors, numeric matrices of type double, or more structures.

Examples

Add and Check File Metadata

Create a structure that contains metadata information.

m.TestStatus = 'untested';
m.ExpectedCompletionDate = '01/01/2011';

Create a model, update the 'Metadata' parameter, and save the metadata in the model.

new_system('MDLInfoMetadataModel')
set_param('MDLInfoMetadataModel','Metadata',m)
save_system('MDLInfoMetadataModel')

Check the model for metadata without loading the model or creating a Simulink.MDLInfo object.

Simulink.MDLInfo.getMetadata('MDLInfoMetadataModel')

ans =

 struct with fields:

 TestStatus: 'untested'
 ExpectedCompletionDate: '01/01/2011'

Input Arguments
file — Name of SLX, SLXP, or MDL file
character vector | string scalar

Name of the SLX, SLXP, or MDL file, specified as a character vector or string scalar.

The file name can include a partial path, complete path, relative path, or no path. When you do not
provide a path, the file extension is optional.

 Simulink.MDLInfo.getMetadata

2-693

To avoid unexpected results caused by shadowed files that share a name, specify a fully qualified file
name.
Example: Simulink.MDLInfo('vdp')
Example: Simulink.MDLInfo('mymodel.slx')
Example: Simulink.MDLInfo('mydir/mymodel.slx')
Example: Simulink.MDLInfo('C:/mydir/mymodel.slx')
Data Types: char | string

Tips
To add metadata to an SLX or MDL file, create a metadata structure that contains the information you
require and use the set_param function to attach it to the file. To extract the information without
loading the file, use metadata instead of adding custom data by using the add_param function.

Version History
Introduced in R2009b

See Also
Simulink.MDLInfo | Simulink.MDLInfo.getDescription

2 Functions

2-694

Simulink.ModelAdvisor.getModelAdvisor
Get Model Advisor object for system or subsystem

Syntax
ma = Simulink.ModelAdvisor.getModelAdvisor(system,new)

Description
Use the ma = Simulink.ModelAdvisor.getModelAdvisor(system,new) method to return an
instance of a Simulink.ModelAdvisor class for the model or subsystem that you specify by using
the system input argument.

Input Arguments
system — Model or subsystem name
character vector

Name of model or subsystem for which you obtain the corresponding Simulink.ModelAdvisor
object.
Example: 'sldemo_fuelsys_dd_controller'
Example: 'sldemo_fuelsys_dd_controller/airflow_calc'
Data Types: char

new — New Model Advisor object
character vector

This argument is optional except when changing the Model Advisor working scope from one system
to another without closing the previous session. Alternatively, you can close the previous session
before invoking the getModelAdvisor method.
Data Types: char

Output Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for a model or subsystem that you specify by using a system input
argument.

Version History
Introduced in R2006a

 Simulink.ModelAdvisor.getModelAdvisor

2-695

See Also
Simulink.ModelAdvisor

2 Functions

2-696

Simulink.ModelAdvisor.openConfigUI
Starts Model Advisor Configuration Editor

Syntax
Simulink.ModelAdvisor.openConfigUI(ma)

Description
Use the Simulink.ModelAdvisor.openConfigUI(ma) method to open the Model Advisor
Configuration Editor. Use the Model Advisor Configuration Editor to create custom Model Advisor
configurations.

The Model Advisor Configuration Editor is available with Simulink Check. For more information, see
“Use the Model Advisor Configuration Editor to Customize the Model Advisor” (Simulink Check).

Before starting the Model Advisor Configuration Editor, make sure that the current folder is writable.
If the folder is not writable, you see an error message when you start the Model Advisor
Configuration Editor.

The Model Advisor Configuration Editor uses the slprj folder in the Code generation folder to
store reports and other information. If the slprj folder does not exist in the code generation folder,
the Model Advisor Configuration Editor creates it. For more information, see “Manage Simulation
Targets for Referenced Models”.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to open the Model Advisor Configuration
Editor.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 Simulink.ModelAdvisor.openConfigUI

2-697

Simulink.ModelAdvisor.reportExists
Determine whether Model Advisor report exists for model or subsystem

Syntax
exists = Simulink.ModelAdvisor.reportExists(system)

Description
Use the exists = Simulink.ModelAdvisor.reportExists(system) method to determine
whether a Model Advisor report exists in the slprj/modeladvisor subfolder of the MATLAB
working folder.

Input Arguments
system — Model or subsystem
character vector

Model or subsystem for which you want to determine whether a Model Advisor report exists.

Output Arguments
exists — Boolean value indicating whether Model Advisor report exists
Boolean

Boolean value that indicates whether Model Advisor report exists. A value of 1 indicates that the
report exists. A value of 0 indicates that the report does not exist.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

2 Functions

2-698

Simulink.ModelReference.refresh
Force update to Model block to reflect changes to referenced model

Syntax
Simulink.ModelReference.refresh(modelBlock)

Description
Simulink.ModelReference.refresh(modelBlock) updates the specified Model block,
modelBlock, to reflect changes to the referenced model. The block updates even when the Model
block version mismatch or Port and parameter mismatch configuration parameter is set to
error.

Examples

Force Refresh of Model Block Programmatically

You can programmatically refresh a Model block in a parent model that has the Port and parameter
mismatch configuration parameter set to error.

Open the example model, which contains two Model blocks that are out of date with the model they
reference.

open_system('RefreshModelBlockModel');

Warning: Ports and parameters of Model block 'RefreshModelBlockModel/Model1' do not reflect changes in referenced model 'RefreshModelBlockMdlRef'.

Warning: Number of input ports must match between Model block 'RefreshModelBlockModel/Model1' (1) and referenced model 'RefreshModelBlockMdlRef' (2).

Warning: Ports and parameters of Model block 'RefreshModelBlockModel/Model' do not reflect changes in referenced model 'RefreshModelBlockMdlRef'.

Warning: Number of input ports must match between Model block 'RefreshModelBlockModel/Model' (1) and referenced model 'RefreshModelBlockMdlRef' (2).

 Simulink.ModelReference.refresh

2-699

The top model has the Port and parameter mismatch configuration parameter set to error. The
number of input and output ports in the referenced model has increased from one to two, but each
Model block displays only one input and output port.

Refresh one of the Model blocks.

Simulink.ModelReference.refresh('RefreshModelBlockModel/Model');

The number of ports on the refreshed Model block now matches the number of ports for the
referenced model. The other Model block remains unchanged.

2 Functions

2-700

Input Arguments
modelBlock — Name or handle of Model block
character vector | string scalar | numeric scalar

Name or handle of Model block, specified as a character vector, string scalar, or numeric scalar.
Example: Simulink.ModelReference.refresh('mymodel/Model')
Example: Simulink.BlockDiagram.refreshBlocks(h), where h is a Model block handle

Tips

Do not try to manually specify the number of a handle, for example, 5.007, because you usually need
to specify more digits than MATLAB displays. Assign the handle to a variable and use that variable
name.
Data Types: char | string | double

Tips
To refresh all variants, linked blocks, and Model blocks in a model, use the
Simulink.BlockDiagram.refreshBlocks function. With this function, the Model blocks update
only when the Model block version mismatch and Port and parameter mismatch configuration
parameters are set to none or warning. The Model blocks do not update when either configuration
parameter is set to error.

Alternative Functionality

Select a Model block. In the Simulink Toolstrip, on the Model Block tab, click Refresh .

Version History
Introduced in R2020a

See Also
Functions
Simulink.BlockDiagram.refreshBlocks

Model Settings
Model block version mismatch | Port and parameter mismatch

Topics
“Model Reference Basics”
“Model Reference Interface and Boundary”

 Simulink.ModelReference.refresh

2-701

removeAllPortConstraintAssociation
Removes the associations of all port constraints from mask

Syntax
aMaskObj.removeAllPortConstraintAssociation()

Description
aMaskObj.removeAllPortConstraintAssociation() removes the associations of all the port
constraints from the mask object.

Examples
 aMaskObj.removeAllPortConstraintAssociations;

Version History
Introduced in R2022a

See Also
addPortConstraintAssociation | getPortConstraintAssociation |
removePortConstraintAssociation

Topics
“Validate Input and Output Port Signals Using Port Constraints”

2 Functions

2-702

removePortConstraintAssociation
Remove association between port constraint and port identifiers

Syntax
aMaskObj.removePortConstraintAssociation(portConstraint, portIdentifier)
aMaskObj.removePortConstraintAssociation(portConstraint)

Description
aMaskObj.removePortConstraintAssociation(portConstraint, portIdentifier)
removes the association between the specified port constraint and the port identifier.

aMaskObj.removePortConstraintAssociation(portConstraint) removes all the associated
port identifiers with the port constraint.

Input Arguments
portConstraint — Name of port constraint
character vector (default) | string

Name of the port constraint, specified as a string.
Data Types: char | string

portIdentifier — Port identifier
character vector (default) | string

Name of the port identifier to be removed from the port constraint association is specified as a string.
Data Types: char | string

Examples
%Specify the port constraint and port identifier
aMaskObj.removePortConstraintAssociation('pc3','pi_1');
%Specify port constraint
aMaskObj.removePortConstraintAssociation('pc3');

Version History
Introduced in R2022a

See Also
addPortConstraintAssociation | getPortConstraintAssociation |
removeAllPortConstraintAssociation

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 removePortConstraintAssociation

2-703

Simulink.ProtectedModel.createHarness
Create harness model that provides isolated environment for testing protected model

Syntax
h = Simulink.ProtectedModel.createHarness(pname)
h = Simulink.ProtectedModel.createHarness(pname,hname)

Description
h = Simulink.ProtectedModel.createHarness(pname) creates and opens a harness model
for the specified protected model. The harness model provides an isolated environment for testing the
protected model. The name of the harness model is the name of the protected model followed by
_harness.

h = Simulink.ProtectedModel.createHarness(pname,hname) specifies the name or path of
the harness model.

Examples

Create Harness Model for Protected Model

To test a protected model in an isolated environment, use the provided harness model or create a
harness model for the protected model.

Suppose you receive a protected model named sldemo_mdlref_counter.slxp and do not receive
a harness model for it. Using the same platform that was used to create the protected model, create a
harness model for the protected model.

h = Simulink.ProtectedModel.createHarness('sldemo_mdlref_counter.slxp');

The harness model is set up for simulation of the protected model.

Input Arguments
pname — Name of protected model
character vector | string scalar

Name of protected model, specified as a character vector or string scalar.

You can specify the name with or without the .slxp extension, however, you cannot specify a full
path or partial path. The file must be on the MATLAB path.
Example: Simulink.ProtectedModel.createHarness('model.slxp')
Data Types: char | string

hname — Name of harness model
character vector | string scalar

2 Functions

2-704

Name of harness model being created, specified as a character vector or string scalar.

You can specify the name with or without the .slx extension.

To save the model in a specific location, specify the full path or a partial path for the harness model,
including the name and extension. Otherwise, the harness model is saved in the working directory.
Example: Simulink.ProtectedModel.createHarness('model.slxp','harness.slx')
Data Types: char | string

Output Arguments
h — Harness model
handle

Harness model, returned as a handle.
Data Types: double

Alternative Functionality
If you have a Simulink Coder or HDL Coder license, create a harness model as part of the model
protection process by using one of these options:

• In the Create Protected Model dialog box, set Contents to Protected model (.slxp) and
dependencies in a project, or select Create harness model for protected model.

• Using the Simulink.ModelReference.protect, set 'Project' or 'Harness' to true.

When you create the harness model as part of the model protection process, you have more
information to provide the harness model. Without this information, you might not be able to create a
harness model for the protected model.

Version History
Introduced in R2020b

See Also
Simulink.ModelReference.protect

Topics
“Protect Models to Conceal Contents” (Simulink Coder)
“Reference Protected Models from Third Parties”

 Simulink.ProtectedModel.createHarness

2-705

Simulink.ProtectedModel.getPublisher
Return information about publisher that signed the protected model

Syntax
[publisher,tf] = Simulink.ProtectedModel.getPublisher(protectedModel)

Description
[publisher,tf] = Simulink.ProtectedModel.getPublisher(protectedModel) returns
the name of the publisher that signed protectedModel and whether the certificate is verified by a
trusted certificate authority. To verify the certificate, the corresponding certificate file must be in
your computer's trusted certificate authority store.

Examples

Get Name of Publisher that Signed Protected Model

Get publisher information for the protected model signed_model_name.

Simulink.ProtectedModel.getPublisher('signed_model_name.slxp')

The function returns the name of the publisher that signed the protected model.

Get Publisher and Verification Status of Protected Model

Verify the publisher and status of the protected model signed_model_name.
[publisher, verified] = Simulink.ProtectedModel.getPublisher('signed_model_name.slxp');

The variable publisher represents the name of the publisher that signed the model. verified has
a value of 1 if the signature is verified by a trusted certificate authority.

Input Arguments
protectedModel — Name of signed protected model
character vector | string scalar

Name of the signed protected model, specified as a character vector or a string scalar.
Example: 'my_model.slxp'

Output Arguments
publisher — Name of publisher
character vector | string scalar

2 Functions

2-706

Name of publisher that signed the protected model, returned as a character vector or string scalar. If
the signature is not verified by a trusted certificate authority, publisher returns empty.

tf — True or false result
1 | 0

True or false result, returned as a 1 or 0. tf returns 1 if the signature on the protected model is
verified by a trusted certificate authority.

Version History
Introduced in R2020a

See Also
Topics
“Reference Protected Models from Third Parties”
“Sign a Protected Model” (Simulink Coder)

 Simulink.ProtectedModel.getPublisher

2-707

Simulink.ProtectedModel.suppressSignatureVerific
ation
Suppress digital signature verification of protected models

Syntax
Simulink.ProtectedModel.suppressSignatureVerification(protectedModel)
Simulink.ProtectedModel.suppressSignatureVerification(protectedModel,
suppressionSetting)

Description
Simulink.ProtectedModel.suppressSignatureVerification(protectedModel)
suppresses the error that indicates whether the signature on the model protectedModel is
unverified. Note that this does not suppress the error if the protected model was changed after it was
signed. In this case, you cannot use the protected model.

Simulink.ProtectedModel.suppressSignatureVerification(protectedModel,
suppressionSetting) disables or enables suppression for the model that you specify. To re-enable
signature verification, specify false for the suppressionSetting. To enable signature verification
for all protected models, specify 'All' for the model argument. You cannot suppress verification for
all models at once.

Examples

Suppress Signature Verification for Model

Suppress the verification of the digital signature for a protected model

Disable signature verification for a protected model named myProtectedModel.

Simulink.ProtectedModel.suppressSignatureVerification('myProtectedModel.slxp');

Enable Signature Verification for All Protected Models

Enable the verification of digital signatures on all protected models that you open.

Simulink.ProtectedModel.suppressSignatureVerification('All',false);

If you previously suppressed signature verification for individual protected models, verification is re-
enabled for those models.

Input Arguments
protectedModel — Protected model
character vector | string scalar | 'All'

2 Functions

2-708

Protected model for which you want to suppress digital signature verification, specified as a
character vector or string scalar. To re-enable signature verification for all protected models, specify
'All' for this argument and false for the second argument. You cannot suppress signature
verification for all protected models at once.
Example: 'myProtectedModel.slxp'
Example: 'All'

suppressionSetting — Whether to suppress signature verification
true or 1 (default) | false or 0

Whether to suppress digital signature verification for the specified model, specified as a numeric or
logical 1 (true) or 0 (false).

Version History
Introduced in R2020b

See Also
Topics
“Reference Protected Models from Third Parties”

 Simulink.ProtectedModel.suppressSignatureVerification

2-709

Simulink.ProtectedModel.verifySignature
Verify digital signature on protected model

Syntax
Simulink.ProtectedModel.verifySignature(protectedModel)

Description
Simulink.ProtectedModel.verifySignature(protectedModel) verifies the digital signature
on the protected model. If the signature is not valid, the function returns an error that indicates why
the signature is invalid. A signature is invalid in the following cases:

• The protected model was changed after it was signed.
• The protected model was not signed.
• The protected model was signed with an expired certificate.
• The protected model was self-signed with a certificate issued by the publisher.
• The protected model was signed with a missing or invalid certificate.
• The certificate in your system certificate authority store is missing or invalid.
• The model was signed with an invalid key.

Examples

Verify Digital Signature of Protected Model

Verify the digital signature for the protected model signed_model_name.

Simulink.ProtectedModel.verifySignature('signed_model_name.slxp')

The function returns an error if the signature on the protected model cannot be verified.

Input Arguments
protectedModel — Name of signed protected model
character vector | string scalar

Name of the signed protected model, specified as a character vector or a string scalar.
Example: 'my_model.slxp'

Version History
Introduced in R2020a

2 Functions

2-710

See Also
Topics
“Reference Protected Models from Third Parties”
“Sign a Protected Model” (Simulink Coder)

 Simulink.ProtectedModel.verifySignature

2-711

Simulink.restoreDiagnostic
Restore diagnostic warnings to a specific block, subsystem, or model

Syntax
Simulink.restoreDiagnostic(source)
Simulink.restoreDiagnostic(source, message_id)
Simulink.restoreDiagnostic(diagnostic)
Simulink.restoreDiagnostic(system, 'FindAll', 'on')

Description
Simulink.restoreDiagnostic(source) restores all suppressed diagnostics associated with the
blocks specified by source.

Simulink.restoreDiagnostic(source, message_id) restores all instances of message_id on
the blocks specified by source.

Simulink.restoreDiagnostic(diagnostic) restores the suppressed diagnostics associated
with MSLDiagnostic object diagnostic.

Simulink.restoreDiagnostic(system, 'FindAll', 'on') restores all suppressed
diagnostics associated with the system specified by system.

Examples

Restore All Diagnostics for a Specified Block

To restore all suppressed diagnostics on a specified block, use getDiagnosticObjects.m,
suppressor_script.m, and the Suppressor_CLI_Demo.slx model. The
getDiagnosticObjects.m function queries the simulation metadata to access diagnostics that
were thrown during simulation. The suppressor_script.m script contains the commands for
suppressing and restoring diagnostics to the Suppressor_CLI_Demo model. Open the model. To
access Simulink.SimulationMetadata class, set the ReturnWorkspaceOutputs parameter
value to 'on'. Simulate the model.

Create a cell array of message identifiers. Use the Simulink.suppressDiagnostic function to
suppress these multiple diagnostics from the Constant block, one.

 diags = {'SimulinkFixedPoint:util:fxpParameterPrecisionLoss',...
 'SimulinkFixedPoint:util:fxpParameterUnderflow'};
 Simulink.suppressDiagnostic('Suppressor_CLI_Demo/one', diags);

Remove all suppressions and restore diagnostics to the block.

 Simulink.restoreDiagnostic('Suppressor_CLI_Demo/one');

2 Functions

2-712

Restore a Diagnostic for a Specified Block

To restore a suppressed diagnostic on a specified block, use getDiagnosticObjects.m,
suppressor_script.m, and the Suppressor_CLI_Demo.slx model. The
getDiagnosticObjects.m function queries the simulation metadata to access diagnostics that
were thrown during simulation. The suppressor_script.m script contains the commands for
suppressing and restoring diagnostics to the Suppressor_CLI_Demo model. Open the model. To
access Simulink.SimulationMetadata class, set the ReturnWorkspaceOutputs parameter
value to 'on'. Simulate the model.

 model = 'Suppressor_CLI_Demo';
 open_system(model);
 set_param(model,'ReturnWorkspaceOutputs','on');
 out = sim(model);

Use the Simulink.suppressDiagnostic function to suppress the parameter precision loss
warning thrown by the Constant block, one.

 Simulink.suppressDiagnostic('Suppressor_CLI_Demo/one',...
 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss');

Remove the suppression and restore diagnostics to the block.

Simulink.restoreDiagnostic('Suppressor_CLI_Demo/one',...
 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss');

Restore All Diagnostics for a Specified System

To restore all suppressed diagnostics on a specified subsystem, use getDiagnosticObjects.m,
suppressor_script.m, and the Suppressor_CLI_Demo.slx model. The
getDiagnosticObjects.m function queries the simulation metadata to access diagnostics that
were thrown during simulation. The suppressor_script.m script contains the commands for
suppressing and restoring diagnostics to the Suppressor_CLI_Demo model. Open the model. To
access Simulink.SimulationMetadata class, set the ReturnWorkspaceOutputs parameter
value to 'on'. Simulate the model.

 model = 'Suppressor_CLI_Demo';
 open_system(model);
 set_param(model,'ReturnWorkspaceOutputs','on');
 out = sim(model);

To restore all diagnostics from a system, use 'FindAll', 'on' to search within the system hierarchy.
Specify the system or system handle within which to search.

 Simulink.restoreDiagnostic('Suppressor_CLI_Demo/Convert',...
 'FindAll', 'On');

Restore All Diagnostics for a Specified Model

To restore all suppressed diagnostics on a specified model, use getDiagnosticObjects.m,
suppressor_script.m, and the Suppressor_CLI_Demo.slx model. The
getDiagnosticObjects.m function queries the simulation metadata to access diagnostics that
were thrown during simulation. The suppressor_script.m script contains the commands for

 Simulink.restoreDiagnostic

2-713

suppressing and restoring diagnostics to the Suppressor_CLI_Demo model. Open the model. To
access Simulink.SimulationMetadata class, set the ReturnWorkspaceOutputs parameter
value to 'on'. Simulate the model.

 model = 'Suppressor_CLI_Demo';
 open_system(model);
 set_param(model,'ReturnWorkspaceOutputs','on');
 out = sim(model);

To restore all diagnostics from a model, specify the model name or model handle.

 Simulink.restoreDiagnostic('Suppressor_CLI_Demo','FindAll','on');

Input Arguments
source — Block or model object throwing diagnostic
block path | block handle

The source of the diagnostic, specified as a block path, block handle, cell array of block paths, or cell
array of block handles.

To get the block path, use the gcb function.

To get the block handle, use the getSimulinkBlockHandle function.
Data Types: char | cell

message_id — message identifier of diagnostic
message identifier | cell array of message identifiers

Message identifier of the diagnostic, specified as a character vector or a cell array of character
vectors. You can find the message identifier of warnings and errors thrown during simulation by
accessing the ExecutionInfo property of the Simulink.SimulationMetadata object associated
with a simulation. You can also use the lastwarn function.
Data Types: char | cell

system — Name of subsystem or model
character vector

The subsystem name, subsystem handle, model name, or model handle specified as a character
vector.
Data Types: char

diagnostic — Diagnostic object
MSLDiagnostic object

Diagnostic specified as an MSLDiagnostic object. Access the MSLDiagnostic object through the
ExecutionInfo property of the Simulink.SimulationMetadata object.
Data Types: struct

Version History
Introduced in R2016b

2 Functions

2-714

See Also
Simulink.getSuppressedDiagnostics | Simulink.suppressDiagnostic | restore |
Simulink.SuppressedDiagnostic

Topics
“Suppress Diagnostic Messages Programmatically”

 Simulink.restoreDiagnostic

2-715

Simulink.saveVars
(Not recommended) Save workspace variables and their values in MATLAB code format

Note Simulink.saveVars is not recommended. Use matlab.io.saveVariablesToScript
instead.

Syntax
Simulink.saveVars(filename)
Simulink.saveVars(filename, var1,...,varN)
Simulink.saveVars(filename,'-regexp',RegExps)
Simulink.saveVars(filename, ___ , UpdateOption)
Simulink.saveVars(filename, ___ , Configuration)
Simulink.saveVars(filename, ___ , MatlabVer)
[r1, r2] = Simulink.saveVars(filename, ___)

Description
Simulink.saveVars(filename) saves all variables in the current workspace for which MATLAB
code can be generated to a MATLAB file named filename.m. If MATLAB code cannot be generated
for a variable, the variable is saved into a companion MAT-file named filename.mat, and a warning
is generated. If either file already exists, it is overwritten. The file name cannot match the name of
any variable in the current workspace, and can optionally include the suffix .m. Using
Simulink.saveVars has no effect on the contents of any workspace.

Executing the MATLAB file restores the variables saved in the file to the current workspace. If a
companion MAT-file exists, code in the MATLAB file loads the MAT-file, restoring its variables also.
When both a MATLAB file and a MAT-file exist, do not load the MATLAB file unless the MAT file is
available, or an error will occur. Do not load a MAT-file directly, or incomplete data restoration will
result. No warning occurs if loading a file overwrites any existing variables.

You can edit a MATLAB file that Simulink.saveVars creates. You can insert comments between or
within the MATLAB code sections for saved variables. However, if you later use Simulink.saveVars
to update or append to the file, only comments between MATLAB code sections will be preserved.
Internal comments should therefore be used only in files that you do not expect to change any further.

You must not edit the header section in the MATLAB file, which comprises the first five comment
lines. Simulink does not check that a manually edited MATLAB file is syntactically correct. Do not edit
any MATLAB code in the file. You cannot edit a MAT-file and should never attempt to do so.

Simulink.saveVars(filename, var1,...,varN) saves only the variables specified by
var1,...,varN. You can use the wildcard character * to save all variables that match a pattern. The
* matches one or more characters, including non-alphanumeric characters.

Simulink.saveVars(filename,'-regexp',RegExps) saves only variables whose names match
one of the regular expressions in the comma-separated list of expressions RegExps. See “Regular
Expressions” for more information. A call to the function can specify both VarNames and '-
regexps', RegExps, in that order and comma-separated.

2 Functions

2-716

Simulink.saveVars(filename, ___ , UpdateOption) saves the variables as directed by
UpdateOption.

Simulink.saveVars(filename, ___ , Configuration) saves the variables according to the
specified configuration options.

Simulink.saveVars(filename, ___ , MatlabVer) saves any MAT-file that it creates in the
format required by the MATLAB version specified by MatlabVer.

[r1, r2] = Simulink.saveVars(filename, ___) returns the variables saved in r1 and r2.

Examples

Explore Options for Saving Workspace Variables

Define some base workspace variables, then save them to a MATLAB file using a variety of input
arguments.

Define some base workspace variables then save them to a new MATLAB file myVars.m.

a = 1;
b = 2.5;
c = 'A string';
d = {a,b,c};
Simulink.saveVars('myVars');

Define additional base workspace variables, then append them to the existing file myVars.m without
changing the values previously saved in the file.

K = Simulink.Parameter;
myType = fixdt(1,16,3);
Simulink.saveVars('myVars','-append','K','myType');

Update the variables V1 and V2 with their values in a MATLAB file, or for any whose value cannot be
converted to MATLAB code, in a MAT-file. The file must already exist. Any array with more than 10
elements will be saved to a MAT-file that can be loaded on any version of MATLAB. The return
argument r1 lists the names of any variables saved to a MATLAB file; r2 lists any saved to a MAT-file.

[r1, r2] = Simulink.saveVars('MyFile', 'V1', 'V2', '-update',
'-maxnumel', 10, '-v4');

Specify a 2-D slice for the output of the my3Dtable 3-D array. Specify that the 2-D slice expands
along the first and third dimensions. Review the generated MATLAB code.

my3DTable = zeros(3, 4, 2, 'single');
Simulink.saveVars('mfile.m', 'my3DTable', '-2dslice', 1, 3);

my3DTable = zeros(3, 4, 2, 'single');
my3DTable (:,1,:) = single (...
 [1 13;
 5 17;
 9 21]);
my3DTable (:,2,:) = single(...
 [2 14;
 6 18;

 Simulink.saveVars

2-717

 10 22]);
my3DTable (:,3,:) = single(...
 [3 15;
 7 19;
 11 23]);
my3DTable (:,4,:) = single(...
 [4 16;
 8 20;
 12 24]);

Input Arguments
filename — Name of file to create or update
character vector | string scalar

Name of file that the function creates or updates, specified as a character vector or string scalar. The
file name cannot match the name of any variable in the current workspace. The file name can have
the suffix .m, but the function ignores it.

var1,...,varN — Variables to save
character vector | string scalar

A variable or sequence of comma-separated variables, specified as a character vector or string scalar.
The function saves only the specified variables to the output file. You can use the wildcard character
* to save all variables that match a pattern. The * matches one or more characters, including non-
alphanumeric characters.
Example: Simulink.saveVars('myFile','A*') saves all variables in the workspace whose
names start with A with their values.

RegExps — Regular expression
character vector | string

A regular expression or sequence of comma-separated regular expressions, specified as a character
vector or string. The function saves to the output file only those variables whose names match one of
the expressions. See “Regular Expressions” for more information. A call to the function can specify
both VarNames and '-regexp', RegExps, in that order and comma-separated.
Example: Simulink.saveVars('myFile','-regexp','v*')

UpdateOption — Function action
'-create' (default) | 'update' | '-append'

Keyword that controls the action of the function, specified as one of these values:

• '-create' — Create a new MATLAB file (and MAT-file if needed).
• '-update' — Update the existing MATLAB file (and MAT-file if needed) specified by filename by

changing only the specified variables that already exist in the file or files. The order of the
variables in the file or files is preserved.

• '-append' — Update the existing MATLAB file (and MAT-file if needed) specified by filename
by:

• Updating the specified variables that already exist in the file or files, preserving the existing
order.

2 Functions

2-718

• Appending the specified variables that do not exist in the file or files.

Configuration — Configuration options
'-maxnumel' | '-maxlevels' | '-textwidth' | '-2dslice'

Configuration options for the function, specified as any or all of these values, in any order, separated
by commas if more than one appears:

• '-maxnumel' MaxNum — Limits the number of elements saved for an array to MaxNum, which
must be an integer between 0 and 10000. If an array is larger than that, the whole array appears
in the MAT-file rather than the MATLAB script file, generating a warning. Default: 1000

• '-maxlevels' MaxLevels — Limits the number of levels saved for a structure or cell array to
MaxLevels, which must be an integer between 0 and 200. If a structure or cell array is deeper
than that, the whole entity appears in the MAT-file rather than the MATLAB script file, generating
a warning. Default: 20

• '-textwidth' TextWidth — Sets the text wrap width in the MATLAB script file to TextWidth,
which must be an integer between 32 and 256. Default: 76

• '-2dslice' — Sets two dimensions for 2-D slices that represent n-D (where n is greater than 2)
arrays of char, logic, or numeric data. Using the '-2dslice' option produces more readable
generated code that is consistent with how MATLAB displays n-D array data.

Simulink.saveVars uses the first two dimensions of the n-D array to specify the size of the 2-D
slice, unless you supply two positive integer arguments after the -2dslice option. If you specify
two integer arguments:

• The two integers must be positive.
• The two integers must be less than or equal to the number of dimensions of the n-D array.
• The second integer must be greater than the first.

Note You can use the MATLAB Preferences to change the defaults for the -maxnumel, -maxlevels,
'-2dslice', and -textwidth configuration options. In the Workspace pane, use the options in the
Saving variables as MATLAB script files group.

MatlabVer — MATLAB version
'-v7.3' | '-v7.0' | '-v6' | '-v4'

MATLAB version whose syntax will be used by any MAT-file saved by the function, specified by values
including:

• '-v7.3' — 7.3 or later
• '-v7.0' — 7.0 or later
• '-v6' — Version 6 or later
• '-v4' — Any MATLAB version

Output Arguments
r1 — Variables saved to a MATLAB file
cell array of character vectors

Variables that were saved to a MATLAB file, specified as a cell array of character vectors.

 Simulink.saveVars

2-719

r2 — Variables saved to a MAT- file
cell array of character vectors

Variables that were saved to a MAT-file, specified as a cell array of character vectors.

Limitations
The Simulink.saveVars function:

• Does not preserve shared references.
• Ignores dynamic properties of objects.
• Saves the following to the MAT-file although they could appear in the MATLAB file:

• Simulink.ConfigSet objects with custom target components.
(Use the Simulink.ConfigSet method saveAs instead.)

• Simulink.Timeseries and Simulink.ModelDataLogs objects.

If you save many variables, the generated MATLAB file can contain many lines of code and take a
long time to execute. To avoid the long execution time, consider these alternatives:

• Permanently store variables in a data dictionary instead of using Simulink.saveVars. A data
dictionary also provides more tools for managing variables. See “Determine Where to Store
Variables and Objects for Simulink Models”.

• Save variables in a MAT-file by using the save function.

Tips
• If you do not need to save variables in an easily-understood form, see the save function.
• If you need to save only bus objects, use the Simulink.Bus.save function.
• If you need to save only a configuration set, use the Simulink.ConfigSet.saveAs method.

Version History
Introduced in R2010a

See Also
save | matlab.io.saveVariablesToScript | Simulink.Bus.save | Simulink.ConfigSet |
Simulink.Bus.save

2 Functions

2-720

simulink.schedule.createSchedule
Create a new schedule using provided schedule and ordering

Syntax
outputSchedule = createSchedule(inputSchedule, partitionOrder)
outputSchedule = createSchedule(inputSchedule, partitionOrder,
'IgnoreExtra',true)

Description
outputSchedule = createSchedule(inputSchedule, partitionOrder) creates a new
simulink.schedule.OrderedSchedule object, sch with all the partitions present in the
simulink.schedule.OrderedSchedule object, inputSchedule, according to order specified by
the vector, partitionOrder.

outputSchedule = createSchedule(inputSchedule, partitionOrder,
'IgnoreExtra',true) creates a new simulink.schedule.OrderedSchedule object, sch with
all the partitions present in the simulink.schedule.OrderedSchedule, Schedule, according to
order specified by the parameter, partitionOrder while ignoring any partitions that are not
already present in sch. PartitionOrder must contain all partitions of inputSchedule.

Input Arguments
inputSchedule — A simulink.schedule.Orderedschedule object
object

An existing simulink.schedule.Orderedschedule object copied to create new schedule.

partitionOrder — A vector of partition names
vector

Partition names in the desired order, specified as a vector of strings.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IgnoreExtra', true

IgnoreExtra — Ignore additional partitions
false (default) | true

When specified as true, the createSchedule function ignores any additional partitions in
partitionOrder that are not present in the object, inputSchedule.

 simulink.schedule.createSchedule

2-721

Output Arguments
outputSchedule — New simulink.schedule.Orderedschedule object
object

A new or modified simulink.schedule.Orderedschedule object.

Version History
Introduced in R2020a

See Also
simulink.schedule.OrderedSchedule | Schedule Editor

Topics
“Create Partitions”

2 Functions

2-722

Simulink.sdi.addToRun
Package: Simulink.sdi

Import data into existing run in Simulation Data Inspector using run ID

Syntax
sigIDs = Simulink.sdi.addToRun(runID,'vars',var,var2,...,varn)
sigIDs = Simulink.sdi.addToRun(runID,'namevalue',sourceNames,sigValues)

sigIDs = Simulink.sdi.addToRun(runID,'file',filename)
sigIDs = Simulink.sdi.addToRun(runID,'file',filename,Name=Value)

Description
Import Data from Workspace

sigIDs = Simulink.sdi.addToRun(runID,'vars',var,var2,...,varn) imports data from
one or more variables into the Simulation Data Inspector by adding one or more signals to the run
that corresponds to the specified run ID.

To import data into a new run, use the Simulink.sdi.Run.create function or the
Simulink.sdi.createRun function.

sigIDs = Simulink.sdi.addToRun(runID,'namevalue',sourceNames,sigValues) imports
data from one or more variables into the Simulation Data Inspector by adding one or more signals to
the run that corresponds to the specified run ID. The sourceNames argument specifies values to use
for the data source in the metadata for the signals added to the run.

Import Data from File

sigIDs = Simulink.sdi.addToRun(runID,'file',filename) imports data from a file into the
Simulation Data Inspector by adding one or more signals to the run that corresponds to the specified
run ID. You can use a built-in file reader to import data from a MAT file, CSV file, Microsoft Excel file,
or MDF file.

When you need to import data from a file that the built-in readers do not support, you can write your
own reader using the io.reader class.

sigIDs = Simulink.sdi.addToRun(runID,'file',filename,Name=Value) imports data
from a file into the Simulation Data Inspector by adding one or more signals to the run that
corresponds to the specified run ID according to options specified using one or more name-value
arguments. For example, sheets=["sheet1" "sheet2"] specifies the sheets from which to import
data when importing data from an Excel file.

Examples

 Simulink.sdi.addToRun

2-723

Add Workspace Data to Run

This example shows how to use Simulink.sdi.addToRun to add workspace data to a run in the
Simulation Data Inspector.

Generate Workspace Data

Generate workspace data to add to a simulation run in place of measured data, input data, or any
other data that you want to associate with the simulation.

time = linspace(0, 60, 201);
cos_vals = 2*cos(2*pi/6.8*time);
cos_ts = timeseries(cos_vals, time);
cos_ts.Name = 'cosine';

Simulate Model

Simulate the slexAircraftExample model to create a run containing the simulation outputs.

load_system('slexAircraftExample');
sim('slexAircraftExample','SaveFormat','Dataset');

Add Workspace Data to Simulation Run

Add the workspace data to the run. Then, view the results in the Simulation Data Inspector.

% Get run ID
count = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(count);

% Add data to run
sigIDs = Simulink.sdi.addToRun(runID,'vars',cos_ts);

Simulink.sdi.view

Input Arguments
runID — Run ID for run to which you want to add imported data
scalar

Run ID for run to which you want to add imported data, specified as a scalar.

The Simulation Data Inspector assigns a unique ID to each run when the run is created. You can
access run IDs for runs in the Simulation Data Inspector using the Simulink.sdi.getAllRunIDs
and Simulink.sdi.getRunIDByIndex functions.

var — Data to import
variable

Data to import, specified as a variable. The Simulation Data Inspector supports time-based data in
which sample values are associated with sample times. The Simulation Data Inspector supports all
loading and logging data formats, including timeseries and
Simulink.SimulationData.Dataset.
Example: myData

2 Functions

2-724

sourceNames — Source names for imported data
cell array of character vectors

Source names for imported data, specified as a cell array of character vectors. The source name is
used to set the RootSource, TimeSource, and DataSource properties of the
Simulink.sdi.Signal objects created from the data specified by the sigValues input.

Provide a sourceNames input when you specify 'namevalue' for the second argument.
Example: {'sig1','sig2'}

sigValues — Data to import
cell array of variables

Data to import, specified as a cell array of variables.

Provide a sigValues input when you specify 'namevalue' for the second argument.
Example: {var1,var2}

filename — Name of file with data to import
character vector

Name of file with data to import, specified as a character vector. Provide a filename input when you
specify 'file' for the second argument.

You can create a run from these types of files using file readers built into the Simulation Data
Inspector:

• MAT-file
• CSV file
• Microsoft Excel file that contains data formatted according to “Microsoft Excel Import, Export,

and Logging Format”.
• MDF file with one of these extensions:

• .mdf
• .mf4
• .mf3
• .data
• .dat

When you need to import data from a file that the built-in readers do not support, you can write your
own reader using the io.reader class. You can also write a custom reader to use instead of the
built-in reader for any file extension. For an example, see “Import Data Using a Custom File Reader”.
Example: 'simulation.mat'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: sheets=["sheet1" "sheet2"]

 Simulink.sdi.addToRun

2-725

reader — File reader to use to import data
string | character vector

File reader to use to import data, specified as a string or character vector.

The Simulation Data Inspector prioritizes using a registered custom reader when one is available for
the file. When you do not specify a reader, the Simulation Data Inspector uses the first custom reader
registered for the file. If no custom readers are registered, the data is imported using the built-in
reader.

Specify the reader input when:

• You want to use the built-in reader to import data for a file that is also supported by a custom
reader.

• Multiple registered custom readers support the file.

To determine which readers are available to import your file, use the
io.reader.getSupportedReadersForFile function.
Example: "MyExcelReader"
Example: "built-in"

sheets — Sheets in Excel file from which to import data
string array | cell array of character vectors

Sheets in Excel file from which to import data, specified as a string array or a cell array of character
vectors. By default, the Simulation Data Inspector imports data from all sheets. Use the sheets
name-value argument when you do not want to import data from all sheets in the Excel file.

When the data in the file does not include simulation numbers and source information, the data on
each sheet is imported into a separate run. For more information about formatting data to import
from an Excel file, see “Microsoft Excel Import, Export, and Logging Format”.
Example: ["sheet1" "sheet2"]

model — Model with definitions of user-defined data types
string | character vector

Model with definitions of user-defined data types, specified as a string or character vector.

When you load data from an Excel file that defines signal data types using user-defined data types,
such as enumerations, buses, or aliases, the Simulation Data Inspector needs access to the type
definition to import the data. You can provide access to the type definitions by:

• Loading the associated object into the MATLAB workspace.
• Specifying the model name-value argument to use type definitions saved in the model workspace

or a data dictionary.

For more information on formatting data to import from an Excel file, see “Microsoft Excel Import,
Export, and Logging Format”.
Example: "myModel.slx"

2 Functions

2-726

Output Arguments
sigIDs — Signal IDs for signals created from imported data
scalar | vector

Signal IDs for signals created from imported data, returned as a scalar or a vector.

Version History
Introduced in R2011b

See Also
Simulink.sdi.createRun | Simulink.sdi.createRunOrAddToStreamedRun |
Simulink.sdi.Run | add | Simulink.sdi.copyRun

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.addToRun

2-727

Simulink.sdi.addTrigger
Add trigger to signal to control display updates in the Simulation Data Inspector

Syntax
Simulink.sdi.addTrigger(sig)
Simulink.sdi.addTrigger(sig,Name,Value)

Description
Simulink.sdi.addTrigger(sig) adds a rising-edge trigger using normal mode and auto-level to
the Simulink.sdi.Signal object, sig. The trigger determines when plots in the Simulation Data
Inspector update to display new data for streaming signals.

Simulink.sdi.addTrigger(sig,Name,Value) adds trigger to the specified signal with trigger
settings specified by one or more name-value pair arguments. For example, 'Mode','Normal'
configures normal mode behavior for the trigger. Triggers in the Simulation Data Inspector behave
the same as triggers in the Scope block. For details regarding trigger types and settings, see “Scope
Triggers Panel”.

Examples

Programmatically Configure Triggers in the Simulation Data Inspector

Add a trigger to a signal in the Simulation Data Inspector to specify criteria that determine when to
update plots to display fresh data. Triggers can allow you to capture transient signal behavior and
can help stabilize the display of periodic signals so you can take measurements.

Simulate the Triggers model. Data in the model logs to the Simulation Data Inspector.

open_system('Triggers');
out = sim('Triggers');

Then, add a trigger to the Pulse signal. Configure the trigger as a falling-edge trigger with a
threshold of 0.5.

trigRun = Simulink.sdi.getCurrentSimulationRun('Triggers');
pulseSig = getSignalsByName(trigRun,'Pulse');
Simulink.sdi.addTrigger(pulseSig,'Type','Edge','Level',0.5);

You can verify that the trigger was added and configured correctly by opening the Simulation Data
Inspector using Simulink.sdi.view and clicking the trigger icon next to the Pulse signal to check
the configuration. You can also use the Simulink.sdi.getTrigger function to check which signal
is used to generate trigger events and the trigger configuration.

[sig,trigOpts] = Simulink.sdi.getTrigger;

sig.Name

ans =
'Pulse'

2 Functions

2-728

trigOpts

trigOpts = struct with fields:
 Mode: 'Auto'
 Type: 'Edge'
 Position: 0.5000
 Delay: 0
 SourceChannelComplexity: 'Scalar'
 Polarity: 'Positive'
 AutoLevel: 1
 Level: 0.5000
 UpperLevel: 0
 LowerLevel: 1.2252e-311
 Hysteresis: 0
 MinTime: 0
 MaxTime: Inf
 Timeout: 0
 Holdoff: 0

When you do not want to use a trigger to control when the Simulation Data Inspector updates the
plots with fresh data, you can remove the trigger using the Simulink.sdi.removeTrigger
function.

Simulink.sdi.removeTrigger

You can verify that the trigger was removed in the Simulation Data Inspector UI or using the
Simulink.sdi.getTrigger function. The Simulink.sdi.getTrigger function returns an empty
array of Simulink.sdi.Signal objects when no trigger is configured in the Simulation Data
Inspector.

sig = Simulink.sdi.getTrigger;
size(sig)

ans = 1×2

 0 0

Input Arguments
sig — Signal used to detect trigger events
Simulink.sdi.Signal object

Signal used to detect trigger events, specified as a Simulink.sdi.Signal object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Type','PulseWidth','Polarity','Falling' configures a falling-edge, auto-leveled
trigger in auto mode.

 Simulink.sdi.addTrigger

2-729

Mode — When display updates in response to trigger event
Auto (default) | Normal | Once

When display updates in response to trigger event, specified as the comma-separated pair consisting
of 'Mode' and one of these options:

• Auto — Plots update in response to each trigger event, and the plots update if no trigger event
occurs for the duration of time range displayed.

• Normal — Plots update in response to each trigger event.
• Once — Plots update in response to the first trigger event. You can manually rearm the trigger

using the Simulation Data Inspector.

Example: 'Mode','Normal' configures the trigger to use normal mode.

Position — Where trigger event appears in plot
50 (default) | numeric percentage

Where trigger event appears in plot, specified as the comma-separated pair consisting of
'Position' and a numeric percentage. By default, the trigger event appears in the middle of the
plot, with a position of 0.5, or at the 50% position within the time span.
Example: 'Position',.3 positions the trigger event at the 30% point within the time span.

Type — Type of trigger to add to signal
Edge (default) | PulseWidth | Transition | Runt | Window | Timeout

Type of trigger to add to signal, specified as the comma-separated pair consisting of 'Type' and one
of these options:

• Edge — Trigger when the signal crosses a threshold.
• PulseWidth — Trigger when the signal crosses twice between a low threshold and high threshold

within a specified time.
• Transition — Trigger when the signal crosses a high threshold and a low threshold within a
specified time.

• Runt — Trigger when a signal crosses a low threshold or a high threshold twice within a specified
time.

• Window — Trigger when a signal stays within or outside a range defined by a high threshold and a
low threshold for a specified time.

• Timeout — Trigger when a signal stays above or below a threshold longer than a specified time.

For details regarding options for each type of trigger, see “Scope Triggers Panel”.
Example: 'Type','PulseWidth' configures a pulse width trigger.

Polarity — Direction of signal value change that causes trigger event
valid polarity for trigger type

Direction of signal value change that causes trigger event, specified as the comma-separated pair
consisting of 'Polarity' and a valid polarity for the trigger type.

2 Functions

2-730

Trigger Type Polarity Options
Edge • Rising — Trigger when the signal crosses

the threshold while increasing in value.
• Falling — Trigger when the signal crosses

the threshold while decreasing in value.
• Either — Trigger when the signal crosses

the threshold while increasing or decreasing
in value.

PulseWidth • Positive — Trigger on a rising pulse when
the signal crosses the low threshold for a
second time.

• Negative — Trigger on a falling pulse when
the signal crosses the high threshold for a
second time.

• Either — Trigger on both rising and falling
pulses.

Transition • RiseTime — Trigger when the signal
increases to cross from the low to the high
threshold within the specified time.

• FallTime — Trigger when the signal
decreases to cross from the high threshold to
the low threshold within the specified time.

• Either — Trigger when the signal increases
or decreases to cross the low and high
thresholds within the specified time.

Runt • Positive — Trigger on a rising pulse when
the signal crosses the low threshold for a
second time without crossing the high
threshold.

• Negative — Trigger on a falling pulse when
the signal crosses the high threshold for a
second time without crossing the low
threshold.

• Either — Trigger on rising or falling pulses
that stay within the specified value thresholds.

 Simulink.sdi.addTrigger

2-731

Trigger Type Polarity Options
Window • Inside — Trigger when a signal stays within

the specified value range for a duration
between the MinTime and MaxTime. The
trigger event occurs when the signal exits the
specified value range.

• Outside — Trigger when a signal is outside
the specified value range for a duration
between the MinTime and the MaxTime. The
trigger event occurs when the signal reenters
the specified value range.

• Either — Trigger when the signal is inside or
outside of the specified value range for a
duration between the MinTime and the
MaxTime.

Timeout • Rising — Trigger when the signal remains
above the threshold for longer than the
specified time.

• Falling — Trigger when the signal remains
below the threshold for longer than the
specified time.

• Either — Trigger when the signal remains
either above or below the threshold for longer
than the specified time.

Example: 'Type','Edge','Polarity','Rising' configures a rising-edge trigger.

AutoLevel — Whether to automatically determine trigger levels
true or 1 (default) | false or 0

Whether to automatically determine trigger levels, specified as the comma-separated pair consisting
of 'AutoLevel' and true or false.

When you want to specify thresholds for the trigger, specify 'AutoLevel' as false.
Example: 'AutoLevel',false configures a trigger to use a user-specified level.

Level — Threshold for trigger events
numeric scalar

Threshold for trigger events, specified as the comma-separated pair consisting of 'Level' and a
numeric scalar.

You can only specify the 'Level' name-value pair when you specify the 'Type' name-value pair as
'Edge' or 'Timeout'.
Example: 'Type','Timeout','Level','0.5' configures a timeout trigger with a threshold of
0.5.

Hysteresis — Signal value change required around threshold to cause trigger event
numeric scalar

2 Functions

2-732

Signal value change required around threshold to cause trigger event, specified as the comma-
separated pair consisting of 'Hysteresis' and a numeric scalar. Specifying a hysteresis for the
trigger results in noise rejection for trigger events.

You can only specify the 'Hysteresis' name-value pair when you specify the 'Type' name-value
pair as 'Edge' or 'Timeout'.
Example: 'Type','Timeout','Hysteresis','0.05' configures a timeout trigger that requires
the signal value to change by more than 0.05 around the threshold to cause a trigger event.

UpperLevel — Upper threshold for trigger event
numeric scalar

Upper threshold for trigger event, specified as the comma-separated pair consisting of
'UpperLevel' and a numeric scalar.

You can only specify the 'UpperLevel' name-value pair when you specify the 'Type' name-value
pair as 'PulseWidth', 'Transition', 'Runt', or 'Window'.
Example: 'Type','PulseWidth','UpperLevel','0.9' configures a pulse width trigger with an
upper threshold of 0.9.

LowerLevel — Lower threshold for trigger event
numeric scalar

Lower threshold for trigger event, specified as the comma-separated pair consisting of
'LowerLevel' and a numeric scalar.

You can only specify the 'LowerLevel' name-value pair when you specify the 'Type' name-value
pair as 'PulseWidth', 'Transition', 'Runt', or 'Window'.
Example: 'Type','PulseWidth','LowerLevel','0.1' configures a pulse width trigger with a
lower threshold of 0.1.

MinTime — Lower time limit for trigger event
numeric scalar

Lower time limit for trigger event, specified as the comma-separated pair consisting of 'MinTime'
and a numeric scalar. You can only specify the 'MinTime' name-value pair when you specify the
'Type' name-value pair as 'PulseWidth', 'Transition', 'Runt', or 'Window'. The significance
of the lower time limit depends on the type of trigger.

• 'PulseWidth' — Minimum pulse width for trigger event.
• 'Transition' — Minimum rise or fall time for trigger event.
• 'Runt' — Minimum pulse width for trigger event.
• 'Window' — Minimum time spent within or outside value range for trigger event.

Example: 'Type','PulseWidth','MinTime','0.1' configures a pulse width trigger with a
minimum pulse width of 100ms.

MaxTime — Upper time limit for trigger event
numeric scalar

Upper time limit for trigger event, specified as the comma-separated pair consisting of 'MaxTime'
and a numeric scalar. You can only specify the 'MaxTime' name-value pair when you specify the

 Simulink.sdi.addTrigger

2-733

'Type' name-value pair as 'PulseWidth', 'Transition', 'Runt', or 'Window'. The significance
of the upper time limit depends on the type of trigger.

• 'PulseWidth' — Maximum pulse width for trigger event.
• 'Transition' — Maximum rise or fall time for trigger event.
• 'Runt' — Maximum pulse width for trigger event.
• 'Window' — Maximum time spent within or outside value range for trigger event.

Example: 'Type','PulseWidth','MaxTime','0.5' configures a pulse width trigger with a
maximum pulse width of 500ms.

Timeout — Time threshold for timeout trigger
numeric scalar

Time threshold for timeout trigger, specified as the comma-separated pair consisting of 'Timeout'
and a numeric scalar.

You can only specify the 'Timeout' name-value pair when you specify the 'Type' name-value pair
as 'Timeout'.
Example: 'Type','Timeout','Timeout','0.5' configures a timeout trigger that causes an event
when a signal is above or below the value threshold for longer than 500ms.

Delay — Trigger event offset from trigger position
numeric scalar

Trigger event offset from trigger position, specified as the comma-separated pair consisting of
'Delay' and a numeric scalar.
Example: 'Type','Edge','Delay','0.1' configures an edge trigger where the trigger position
marker is displayed 100ms after the trigger event.

Holdoff — Minimum time between trigger events
numeric scalar

Minimum time between trigger events, specified as the comma-separated pair consisting of
'Holdoff' and a numeric scalar. After a trigger event, the display does not update again for at least
the holdoff time.
Example: 'Type','Edge','Holdoff','1' configures an edge trigger with a holdoff of 1s. After a
trigger event, the display does not update for at least 1s.

Alternative Functionality
You can add a trigger to a signal and configure the trigger options using the Simulation Data
Inspector UI. For details, see “Control Display of Streaming Data Using Triggers”.

Version History
Introduced in R2020b

2 Functions

2-734

See Also
Objects
Simulink.sdi.Signal | Simulink.sdi.Run

Functions
getSignalsByName | getSignalByIndex | Simulink.sdi.getSignal |
Simulink.sdi.getTrigger | Simulink.sdi.removeTrigger

Topics
“Control Display of Streaming Data Using Triggers”
“Inspect and Compare Data Programmatically”
“Scope Triggers Panel”

 Simulink.sdi.addTrigger

2-735

Simulink.sdi.cleanupWorkerResources
Clean up worker repositories

Syntax
Simulink.sdi.cleanupWorkerResources

Description
Simulink.sdi.cleanupWorkerResources removes redundant data from each parallel worker
repository file used by the Simulation Data Inspector. Call this function while worker pools are
running. The Simulation Data Inspector automatically cleans up repository files when you close the
worker pool.

Examples

Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with different input
filter time constants and shows several ways to access the data using the Simulation Data Inspector
programmatic interface.

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox support is
configured to import runs created on local workers automatically. Then, create a vector of filter
parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already have one. In
an spmd code block, load the slexAircraftExample model and select signals to log. To avoid data
concurrency issues using sim in parfor, create a temporary directory for each worker to use during
simulations.

p = gcp;

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

spmd

 % Load system and select signals to log

2 Functions

2-736

 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each simulation, and
modify the value of Ts in the model workspace. Then, run the simulation and build an array of
Simulink.sdi.WorkerRun objects to access the data with the Simulation Data Inspector. After the
parfor loop, use another spmd segment to remove the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you can easily
post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Simulink.sdi.cleanupWorkerResources

2-737

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated with the
WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 3: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the Simulation Data
Inspector API. This example adds a tag indicating the filter time constant value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you want to run on
your worker pool.

Simulink.sdi.cleanupWorkerResources

Version History
Introduced in R2017b

See Also
Simulink.sdi.isPCTSupportEnabled | Simulink.sdi.WorkerRun

2 Functions

2-738

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.cleanupWorkerResources

2-739

Simulink.sdi.clear
Package: Simulink.sdi

Clear all data from the Simulation Data Inspector

Syntax
Simulink.sdi.clear

Description
Simulink.sdi.clear clears all plotted signals and deletes all data from the Simulation Data
Inspector. The Simulink.sdi.clear function does not affect preferences or settings you have
configured in the Simulation Data Inspector. Use the Simulink.sdi.clearPreferences function
to reset the Simulation Data Inspector preferences to their default values. Use the
Simulink.sdi.clearAllSubPlots function to clear all plotted signals without deleting any data
from the Simulation Data Inspector.

Examples

Save a Simulation Data Inspector Session

This example creates, saves, and loads a Simulation Data Inspector session. The example logs data in
the model slexAircraftExample and visualizes the logged data in a Simulation Data Inspector
session. Each time you use the Simulation Data Inspector, you create and modify a session. You can
save the data and associated visualization settings for a session in an MLDATX file using the
Simulink.sdi.save function. When you want to review the data later, you can load the session
using the Simulink.sdi.load function.

Log Data to the Simulation Data Inspector

This example logs data from a simulation of the model slexAircraftExample to the Simulation
Data Inspector. The model is not configured to log data. Load the model and mark the Stick, the
alpha, rad, and the q, rad/sec signals for logging.

load_system('slexAircraftExample')

Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',3,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

For this example, run two simulations of the model. In the first simulation, use the sine wave output
from the Pilot block, and in the second, use the square wave output.

set_param('slexAircraftExample/Pilot','WaveForm','sine')
sim('slexAircraftExample')

set_param('slexAircraftExample/Pilot','WaveForm','square')
sim('slexAircraftExample')

2 Functions

2-740

Visualize the Logged Data

You can use the Simulation Data Inspector programmatic interface to access the logged data from the
simulations. When you access data using the Simulation Data Inspector programmatic interface, you
can use functions to create plots in the Simulation Data Inspector.

To start, access the run IDs for the most recent two runs and then get the corresponding
Simulink.sdi.Run object. The Run objects allow you to access the logged data for the simulations.

runIDs = Simulink.sdi.getAllRunIDs;
sineRunID = runIDs(end-1);
squareRunID = runIDs(end);

sineRun = Simulink.sdi.getRun(sineRunID);
squareRun = Simulink.sdi.getRun(squareRunID);

Suppose you want to analyze the relationship between the input and output for the model. Get the
Simulink.sdi.Signal objects for the input and output signals from the two simulation runs.

sineOut = getSignalByIndex(sineRun,1);
sineIn = getSignalByIndex(sineRun,3);

squareOut = getSignalByIndex(squareRun,1);
squareIn = getSignalByIndex(squareRun,3);

Change the subplot layout in the Simulation Data Inspector to 2-by-1 and plot the signals from the
first simulation run on the top plot and the signals from the second run on the bottom plot.

Simulink.sdi.setSubPlotLayout(2,1)

plotOnSubPlot(sineIn,1,1,true)
plotOnSubPlot(sineOut,1,1,true)

plotOnSubPlot(squareIn,2,1,true)
plotOnSubPlot(squareOut,2,1,true)

Save the Simulation Data Inspector Session

To view the plotted data in the Simulation Data Inspector, enter Simulink.sdi.view in the
command window.

Then, save the Simulation Data Inspector session as an MLDATX file.

Simulink.sdi.save('myData.mldatx')

Load the Simulation Data Inspector Session

To mimic a scenario where you want to return to looking at the same data at a later point, clear the
data from the Simulation Data Inspector and reset the subplot layout to 1-by-1.

Simulink.sdi.clear
Simulink.sdi.setSubPlotLayout(1,1)

Load the session file and resume working with the data. You can open the Simulation Data Inspector
and view the results using the Simulink.sdi.view function.

 Simulink.sdi.clear

2-741

Simulink.sdi.load('myData.mldatx');

Version History
Introduced in R2011b

See Also
Simulink.sdi.clearPreferences | Simulink.sdi.deleteRun |
Simulink.sdi.deleteSignal | Simulink.sdi.clearAllSubPlots

Topics
“Inspect and Compare Data Programmatically”

2 Functions

2-742

Simulink.sdi.clearAllSubPlots
Clear plotted signals from all subplots in the Simulation Data Inspector

Syntax
Simulink.sdi.clearAllSubPlots

Description
Simulink.sdi.clearAllSubPlots clears plotted signals from all subplots in the Simulation Data
Inspector, including any subplots with plotted data that are not visible in the current layout. Clearing
plotted signals using the Simulink.sdi.clearAllSubPlots function does not delete data from
the Simulation Data Inspector. To clear plotted signals and delete data from the Simulation Data
Inspector, use the Simulink.sdi.clear function.

Examples

Clear Plotted Signals from All Subplots

You can programmatically clear plotted signals from all subplots in the Simulation Data Inspector. For
example, clear plotted data at the start of a script that creates plots.

Simulink.sdi.clearAllSubPlots

Plot Signals from Simulation Run

This example demonstrates how to access the Simulink.sdi.Run object for a Simulation Data
Inspector run created by logging signals. From the Simulink.sdi.Run object you can get
Simulink.sdi.Signal objects that contain the logged signal data and metadata. You can use the
Signal objects and the plotOnSubPlot function to plot the data in the Simulation Data Inspector.

Create a Simulation Run and Access the Run Object

The ex_vdp model logs two signals. To create a simulation run containing the logged data, simulate
the model.

sim('ex_vdp');

The Simulation Data Inspector keeps track of runs by assigning a unique numeric run ID to each run
created by simulation, importing data, or opening a session. To access the run object for the
simulation you just performed, use the Simulink.sdi.getAllRunIDs function and take the last
run ID in the returned vector.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

 Simulink.sdi.clearAllSubPlots

2-743

Once you have the run ID for the run, you can use the Simulink.sdi.getRun function to get the
Simulink.sdi.Run object that corresponds to the run. You can use the Run object to check the
metadata associated with the run, including the number of signals in the run.

vdpRun = Simulink.sdi.getRun(runID);

vdpRun.SignalCount

ans = int32
 2

Plot Data Using Signal Objects

Use the getSignalByIndex function to access signals from the Run object, vdpRun.

signal1 = getSignalByIndex(vdpRun,1);
signal2 = getSignalByIndex(vdpRun,2);

Use the Simulink.sdi.setSubPlotLayout function to specify a 2-by-1 layout.

Simulink.sdi.setSubPlotLayout(2,1)

Before plotting the data, use the Simulink.sdi.clearAllSubPlots function to clear any data that
is already plotted.

Simulink.sdi.clearAllSubPlots

Plot one signal on each subplot. To plot signals on the first subplot, you can set the checked property
for the signal. To plot signals on subplots other than the first subplot, use the plotOnSubPlot
function.

signal1.Checked = true;
plotOnSubPlot(signal2,2,1,true);

View the Plotted Data

To view the plots you just created, open the Simulation Data Inspector using the
Simulink.sdi.view function.

2 Functions

2-744

Version History
Introduced in R2019b

See Also
Simulink.sdi.clear | Simulink.sdi.clearPreferences | plotOnSubPlot |
Simulink.sdi.setSubPlotLayout | Simulink.sdi.Signal

Topics
“Create Plots Using the Simulation Data Inspector”

 Simulink.sdi.clearAllSubPlots

2-745

Simulink.sdi.clearPreferences
Restore Simulation Data Inspector preferences to default settings

Syntax
Simulink.sdi.clearPreferences

Description
Simulink.sdi.clearPreferences restores all Simulation Data Inspector preferences to their
default values.

You can configure these preferences in the Simulation Data Inspector programmatically:

• Preferences:

• Run naming rule — Simulink.sdi.setRunNamingRule
• Subplot layout — Simulink.sdi.setSubPlotLayout
• Signal grouping within a run —Simulink.sdi.setTableGrouping

• Time plot settings:

• Border display — Simulink.sdi.setBorderOn
• Grid display — Simulink.sdi.setGridOn
• Data markers display — Simulink.sdi.setMarkersOn
• Tick mark labels display — Simulink.sdi.setTickLabelsDisplay
• Tick mark position — Simulink.sdi.setTicksPosition

• Archive preferences:

• Archive behavior — Simulink.sdi.setAutoArchiveMode
• Archive size limit — Simulink.sdi.setArchiveRunLimit

Examples

Restore All Simulation Data Inspector Preferences to Default Values

You can restore default values to all Simulation Data Inspector preferences programmatically using
the Simulink.sdi.clearPreferences function.

Simulink.sdi.clearPreferences

Modify Run Naming Rule Then Restore Default

This example shows how to use the Simulation Data Inspector API to modify the Simulation Data
Inspector run naming rule, check a run's name, restore default preferences, and check the run
naming rule.

2 Functions

2-746

% Load model
load_system('sldemo_fuelsys')

% Modify run naming rule
Simulink.sdi.setRunNamingRule('<model_name> Run <run_index>')

% Simulate system
sim('sldemo_fuelsys')

% Check run name
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
fuelRun = Simulink.sdi.getRun(runID);
fuelRun.name

ans =
'sldemo_fuelsys Run 1'

% Clear preferences to reset the run naming rule
Simulink.sdi.clearPreferences

% Check run naming rule
Simulink.sdi.getRunNamingRule

ans =
'Run <run_index>: <model_name>'

Version History
Introduced in R2017a

See Also
Simulink.sdi.clear | Simulink.sdi.clearAllSubPlots

Topics
“Configure the Simulation Data Inspector”
“Inspect and Compare Data Programmatically”

 Simulink.sdi.clearPreferences

2-747

Simulink.sdi.close
Package: Simulink.sdi

Close the Simulation Data Inspector

Syntax
Simulink.sdi.close
Simulink.sdi.close('filename')

Description
Simulink.sdi.close closes the Simulation Data Inspector.

Simulink.sdi.close('filename') closes the Simulation Data Inspector and saves the data in
the file, filename.

Examples

Close the Simulation Data Inspector from the Command Line

You can close the Simulation Data Inspector from the MATLAB command line when you have finished
inspecting and analyzing your data.

Simulink.sdi.close

Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the Simulation Data
Inspector.

Create Data for the Run

Create timeseries objects to contain data for a sine signal and a cosine signal. Give each
timeseries object a descriptive name.

time = linspace(0,20,100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Add Data

Use the Simulink.sdi.view function to open the Simulation Data Inspector.

2 Functions

2-748

Simulink.sdi.view

To import data into the Simulation Data Inspector from the workspace, create a Simulink.sdi.Run
object using the Simulink.sdi.Run.create function. Add information about the run to its
metadata using the Name and Description properties of the Run object.

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = 'Sinusoids';
sinusoidsRun.Description = 'Sine and cosine signals with different frequencies';

Use the add function to add the data you created in the workspace to the empty run.

add(sinusoidsRun,'vars',sine_ts,cos_ts);

Plot the Data in the Simulation Data Inspector

Use the getSignalByIndex function to access Simulink.sdi.Signal objects that contain the
signal data. You can use the Simulink.sdi.Signal object properties to specify the line style and
color for the signal and plot it in the Simulation Data Inspector. Specify the LineColor and
LineDashed properties for each signal.

sine_sig = getSignalByIndex(sinusoidsRun,1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';

cos_sig = sinusoidsRun.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.LineDashed = '--';

Use the Simulink.sdi.setSubPlotLayout function to configure a 2-by-1 subplot layout in the
Simulation Data Inspector plotting area. Then use the plotOnSubplot function to plot the sine
signal on the top subplot and the cosine signal on the lower subplot.

Simulink.sdi.setSubPlotLayout(2,1);

plotOnSubPlot(sine_sig,1,1,true);
plotOnSubPlot(cos_sig,2,1,true);

Close the Simulation Data Inspector and Save Your Data

When you have finished inspecting the plotted signal data, you can close the Simulation Data
Inspector and save the session to an MLDATX file.

Simulink.sdi.close('sinusoids.mldatx')

Version History
Introduced in R2013b

See Also
Functions
Simulink.sdi.save | Simulink.sdi.view | Simulink.sdi.clear |
Simulink.sdi.clearPreferences

 Simulink.sdi.close

2-749

Tools
Simulation Data Inspector

Topics
“Inspect and Compare Data Programmatically”
“Save and Share Simulation Data Inspector Data and Views”

2 Functions

2-750

Simulink.sdi.compareRuns
Package: Simulink.sdi

Compare data in two simulation runs

Syntax
diffResult = Simulink.sdi.compareRuns(runID1,runID2)
diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name=Value)

Description
diffResult = Simulink.sdi.compareRuns(runID1,runID2) compares the data in the runs
that correspond to runID1 and runID2 and returns the result in the
Simulink.sdi.DiffRunResult object diffResult. For more information about the comparison
algorithm, see “How the Simulation Data Inspector Compares Data”.

diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name=Value) compares the
simulation runs that correspond to runID1 and runID2 using the options specified by one or more
name-value arguments. For more information about comparison options, see “How the Simulation
Data Inspector Compares Data”.

Examples

Compare Runs with Global Tolerance

You can specify global tolerance values to use when comparing two simulation runs. Global tolerance
values are applied to all signals within the run. This example shows how to specify global tolerance
values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx');

To access the run data to compare, use the Simulink.sdi.getAllRunIDs function to get the run
IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

Use the Simulink.sdi.compareRuns function to compare the runs. Specify a global relative
tolerance value of 0.2 and a global time tolerance value of 0.5.

runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether
signals were within the tolerance values or out of tolerance.

 Simulink.sdi.compareRuns

2-751

runResult.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 3
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

All three signal comparison results fell within the specified global tolerance.

You can save the comparison results to an MLDATX file using the saveResult function.

saveResult(runResult,'InputFilterComparison');

Analyze Simulation Data Using Signal Tolerances

You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

qResult.Status

ans =
 ComparisonSignalStatus enumeration

2 Functions

2-752

 OutOfTolerance

alphaResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that
correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

alphaResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

 Simulink.sdi.compareRuns

2-753

Configure Comparisons to Check Metadata

You can use the Simulink.sdi.compareRuns function to compare signal data and metadata,
including data type and start and stop times. A single comparison may check for mismatches in one
or more pieces of metadata. When you check for mismatches in signal metadata, the Summary
property of the Simulink.sdi.DiffRunResult object may differ from a basic comparison because
the Status property for a Simulink.sdi.DiffSignalResult object can indicate the metadata
mismatch. You can configure comparisons using the Simulink.sdi.compareRuns function for
imported data and for data logged from a simulation.

This example configures a comparison of runs created from workspace data three ways to show how
the Summary of the DiffSignalResult object can provide specific information about signal
mismatches.

Create Workspace Data

The Simulink.sdi.compareRuns function compares time series data. Create data for a sine wave
to use as the baseline signal, using the timeseries format. Give the timeseries the name Wave
Data.

time = 0:0.1:20;
sig1vals = sin(2*pi/5*time);
sig1_ts = timeseries(sig1vals,time);
sig1_ts.Name = 'Wave Data';

Create a second sine wave to compare against the baseline signal. Use a slightly different time vector
and attenuate the signal so the two signals are not identical. Cast the signal data to the single data
type. Also name this timeseries object Wave Data. The Simulation Data Inspector comparison
algorithm will align these signals for comparison using the name.

time2 = 0:0.1:22;
sig2vals = single(0.98*sin(2*pi/5*time2));
sig2_ts = timeseries(sig2vals,time2);
sig2_ts.Name = 'Wave Data';

Create and Compare Runs in the Simulation Data Inspector

The Simulink.sdi.compareRuns function compares data contained in Simulink.sdi.Run
objects. Use the Simulink.sdi.createRun function to create runs in the Simulation Data
Inspector for the data. The Simulink.sdi.createRun function returns the run ID for each created
run.

runID1 = Simulink.sdi.createRun('Baseline Run','vars',sig1_ts);
runID2 = Simulink.sdi.createRun('Compare to Run','vars',sig2_ts);

You can use the Simulink.sdi.compareRuns function to compare the runs. The comparison
algorithm converts the signal data to the double data type and synchronizes the signal data before
computing the difference signal.

basic_DRR = Simulink.sdi.compareRuns(runID1,runID2);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see the
result of the comparison.

2 Functions

2-754

basic_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 1
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

The difference between the signals is out of tolerance.

Compare Runs and Check for Data Type Match

Depending on your system requirements, you may want the data types for signals you compare to
match. You can use the Simulink.sdi.compareRuns function to configure the comparison
algorithm to check for and report data type mismatches.

dataType_DRR = Simulink.sdi.compareRuns(runID1,runID2,'DataType','MustMatch');
dataType_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 1
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

The result of the signal comparison is now DataTypeMismatch because the data for the baseline
signal is double data type, while the data for the signal compared to the baseline is single data
type.

Compare Runs and Check for Start and Stop Time Match

You can use the Simulink.sdi.compareRuns function to configure the comparison algorithm to
check whether the aligned signals have the same start and stop times.

startStop_DRR = Simulink.sdi.compareRuns(runID1,runID2,'StartStop','MustMatch');
startStop_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0

 Simulink.sdi.compareRuns

2-755

 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 1
 Unsupported: 0

The signal comparison result is now StartStopMismatch because the signals created in the
workspace have different stop times.

Compare Runs with Alignment Criteria

When you compare runs using the Simulation Data Inspector, you can specify alignment criteria that
determine how signals are paired with each other for comparison. This example compares data from
simulations of a model of an aircraft longitudinal control system. The simulations used a square wave
input. The first simulation used an input filter time constant of 0.1s and the second simulation used
an input filter time constant of 0.5s.

First, load the simulation data from the session file that contains the data for this example.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains data for four simulations. This example compares data from the first two
runs. Access the run IDs for the first two runs loaded from the session file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Before running the comparison, define how you want the Simulation Data Inspector to align the
signals between the runs. This example aligns signals by their name, then by their block path, and
then by their Simulink identifier.

alignMethods = [Simulink.sdi.AlignType.SignalName
 Simulink.sdi.AlignType.BlockPath
 Simulink.sdi.AlignType.SID];

Compare the simulation data in your two runs, using the alignment criteria you specified. The
comparison uses a small time tolerance to account for the effect of differences in the step size used
by the solver on the transition of the square wave input.

diffResults = Simulink.sdi.compareRuns(runIDTs1,runIDTs2,'align',alignMethods,...
 'timetol',0.005);

You can use the getResultByIndex function to access the comparison results for the aligned
signals in the runs you compared. You can use the Count property of the
Simulink.sdi.DiffRunResult object to set up a for loop to check the Status property for each
Simulink.sdi.DiffSignalResult object.

numComparisons = diffResults.count;

for k = 1:numComparisons
 resultAtIdx = getResultByIndex(diffResults,k);

2 Functions

2-756

 sigID1 = resultAtIdx.signalID1;
 sigID2 = resultAtIdx.signalID2;

 sig1 = Simulink.sdi.getSignal(sigID1);
 sig2 = Simulink.sdi.getSignal(sigID2);

 displayStr = 'Signals %s and %s: %s \n';
 fprintf(displayStr,sig1.Name,sig2.Name,resultAtIdx.Status);
end

Signals q, rad/sec and q, rad/sec: OutOfTolerance
Signals alpha, rad and alpha, rad: OutOfTolerance
Signals Stick and Stick: WithinTolerance

Input Arguments
runID1 — Baseline run identifier
integer

Numeric identifier for the baseline run in the comparison, specified as a run ID that corresponds to a
run in the Simulation Data Inspector. The Simulation Data Inspector assigns run IDs when runs are
created. You can get the run ID for a run by using the ID property of the Simulink.sdi.Run object,
the Simulink.sdi.getAllRunIDs function, or the Simulink.sdi.getRunIDByIndex function.

runID2 — Identifier for run to compare
integer

Numeric identifier for the run to compare, specified as a run ID that corresponds to a run in the
Simulation Data Inspector. The Simulation Data Inspector assigns run IDs when runs are created. You
can get the run ID for a run by using the ID property of the Simulink.sdi.Run object, the
Simulink.sdi.getAllRunIDs function, or the Simulink.sdi.getRunIDByIndex function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: AbsTol=x,Align=alignOpts

Align — Signal alignment options
Simulink.sdi.AlignType scalar | Simulink.sdi.AlignType vector

Signal alignment options, specified as a Simulink.sdi.AlignType scalar or vector. The
Simulink.sdi.AlignType enumeration includes a value for each option available for pairing each
signal in the baseline run with a signal in the comparison run. You can specify one or more alignment
options for the comparison. To use more than one alignment option, specify an array. When you
specify multiple alignment options, the Simulation Data Inspector aligns signals first by the option in
the first element of the array, then by the option in the second element array, and so on. For more
information, see “Signal Alignment”.

 Simulink.sdi.compareRuns

2-757

Value Aligns By
Simulink.sdi.AlignType.BlockPath Path to the source block for the signal
Simulink.sdi.AlignType.SID Automatically assigned Simulink identifier
Simulink.sdi.AlignType.SignalName Signal name
Simulink.sdi.AlignType.DataSource Path of the variable in the MATLAB workspace

Example: [Simulink.sdi.AlignType.SignalName,Simulink.sdi.AlignType.BlockPath]
specifies signal alignment by signal name and then by block path.

AbsTol — Global absolute tolerance for comparison
0 (default) | positive-valued scalar

Global absolute tolerance for comparison, specified as a positive-valued scalar.

Global tolerances apply to all signals in the run comparison. To use a different tolerance value for a
signal in the comparison, specify the tolerance you want to use on the Simulink.sdi.Signal
object in the baseline run and set the OverrideGlobalTol property for that signal to true.

For more information about how tolerances are used in comparisons, see “Tolerance Specification”.
Example: 0.5
Data Types: double

RelTol — Global relative tolerance for comparison
0 (default) | positive-valued scalar

Global relative tolerance for comparison, specified as a positive-valued scalar. The relative tolerance
is expressed as a fractional multiplier. For example, 0.1 specifies a 10 percent tolerance.

Global tolerances apply to all signals in the run comparison. To use a different tolerance value for a
signal in the comparison, specify the tolerance you want to use on the Simulink.sdi.Signal
object in the baseline run and set the OverrideGlobalTol property for that signal to true.

For more information about how tolerances are used in comparisons, see “Tolerance Specification”.
Example: 0.1
Data Types: double

TimeTol — Global time tolerance for comparison
0 (default) | positive-valued scalar

Global time tolerance for comparison, specified as a positive-valued scalar, using units of seconds.

Global tolerances apply to all signals in the run comparison. To use a different tolerance value for a
signal in the comparison, specify the tolerance you want to use on the Simulink.sdi.Signal
object in the baseline run and set the OverrideGlobalTol property for that signal to true.

For more information about tolerances in the Simulation Data Inspector, see “Tolerance
Specification”.
Example: 0.2
Data Types: double

2 Functions

2-758

DataType — Comparison sensitivity to signal data types
"MustMatch"

Comparison sensitivity to signal data types, specified as "MustMatch". Specify
DataType="MustMatch" when you want the comparison to be sensitive to numeric data type
mismatches in compared signals.

When signal data types do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to DataTypeMismatch.

The Simulink.sdi.compareRuns function compares the data types for aligned signals before
synchronizing and comparing the signal data. When you do not specify this name-value argument, the
comparison checks data types only to detect a comparison between string and numeric data. For a
comparison between string and numeric data, results are not computed, and the status for the result
is DataTypeMismatch. For aligned signals that have different numeric data types, the comparison
computes results.

When you configure the comparison to stop on the first mismatch, a data type mismatch stops the
comparison. A stopped comparison may not compute results for all signals.

Time — Comparison sensitivity to signal time vectors
"MustMatch"

Comparison sensitivity to signal time vectors, specified as "MustMatch". Specify
Time="MustMatch" when you want the comparison to be sensitive to mismatches in the time
vectors of compared signals. When you specify this name-value argument, the algorithm compares
the time vectors of aligned signals before synchronizing and comparing the signal data.

When the time vectors for signals do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to TimeMismatch.

Comparisons are not sensitive to differences in signal time vectors unless you specify this name-value
argument. For comparisons that are not sensitive to differences in the time vectors, the comparison
algorithm synchronizes the signals prior to the comparison. For more information about how
synchronization works, see “How the Simulation Data Inspector Compares Data”.

When you specify that time vectors must match and configure the comparison to stop on the first
mismatch, a time vector mismatch stops the comparison. A stopped comparison may not compute
results for all signals.

StartStop — Comparison sensitivity to signal start and stop times
"MustMatch"

Comparison sensitivity to signal start and stop times, specified as "MustMatch". Specify
StartStop="MustMatch" when you want the comparison to be sensitive to mismatches in signal
start and stop times. When you specify this name-value argument, the algorithm compares the start
and stop times for aligned signals before synchronizing and comparing the signal data.

When the start times and stop times do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to StartStopMismatch.

When you specify that start and stop times must match and configure the comparison to stop on the
first mismatch, a start or stop time mismatch stops the comparison. A stopped comparison may not
compute results for all signals.

 Simulink.sdi.compareRuns

2-759

StopOnFirstMismatch — Whether comparison stops on first detected mismatch
"Metadata" | "Any"

Whether comparison stops on first detected mismatch without comparing remaining signals, specified
as "Metadata" or "Any". A stopped comparison may not compute results for all signals, and can
return a mismatched result more quickly.

• "Metadata" — A mismatch in metadata for aligned signals stops the comparison. Metadata
comparisons happen before comparing signal data.

The Simulation Data Inspector always aligns signals and compares signal units. When you
configure the comparison to stop on the first mismatch, an unaligned signal or mismatched units
always stop the comparison. You can specify additional name-value arguments to configure the
comparison to check and stop on the first mismatch for additional metadata, such as signal data
type, start and stop times, and time vectors.

• "Any" — A mismatch in metadata or signal data for aligned signals stops the comparison.

ExpandChannels — Whether to compute comparison results for each channel in
multidimensional signals
true or 1 (default) | false or 0

Whether to compute comparison results for each channel in multidimensional signals, specified as
logical true (1) or false (0).

• true or 1 — Comparison expands multidimensional signals represented as a single signal with
nonscalar sample values to a set of signals with scalar sample values and computes a comparison
result for each signal.

The representation of the multidimensional signal in the Simulation Data Inspector as a single
signal with nonscalar sample values does not change.

• false or 0 — Comparison does not compute results for multidimensional signals represented as a
single signal with nonscalar sample values.

Output Arguments
diffResult — Comparison results
Simulink.sdi.DiffRunResult object

Comparison results, returned as a Simulink.sdi.DiffRunResult object.

Limitations

The Simulation Data Inspector does not support comparing:

• Signals of data types int64 or uint64.
• Variable-size signals.

Version History
Introduced in R2011b

2 Functions

2-760

See Also
Functions
Simulink.sdi.compareSignals | Simulink.sdi.getRunIDByIndex |
Simulink.sdi.getRunCount | getResultByIndex

Objects
Simulink.sdi.DiffRunResult | Simulink.sdi.DiffSignalResult

Topics
“Inspect and Compare Data Programmatically”
“Compare Simulation Data”
“How the Simulation Data Inspector Compares Data”

 Simulink.sdi.compareRuns

2-761

Simulink.sdi.compareSignals
Package: Simulink.sdi

Compare data in two Simulink.sdi.Signal objects

Syntax
diff = Simulink.sdi.compareSignals(sigID1,sigID2)
diff = Simulink.sdi.compareSignals(sigID1,sigID2,Name=Value)

Description
diff = Simulink.sdi.compareSignals(sigID1,sigID2) compares the signals that
correspond to the signal IDs sigID1 and sigID2 and returns the results in a
Simulink.sdi.DiffSignalResult object. For more information on how the comparison results
are computed, see “How the Simulation Data Inspector Compares Data”.

diff = Simulink.sdi.compareSignals(sigID1,sigID2,Name=Value) compares the signals
that correspond to the signal IDs sigID1 and sigID2 using the options specified by one or more
name-value arguments.

Examples

Compare Two Signals in the Same Run

You can use the Simulation Data Inspector programmatic interface to compare signals within a single
run. This example compares the input and output signals of an aircraft longitudinal controller.

First, load the session that contains the data.

Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.Run.getLatest function to access the latest run in the data.

aircraftRun = Simulink.sdi.Run.getLatest;

Then, you can use the Simulink.sdi.getSignalsByName function to access the Stick signal,
which represents the input to the controller, and the alpha, rad signal that represents the output.

stick = getSignalsByName(aircraftRun,'Stick');
alpha = getSignalsByName(aircraftRun,'alpha, rad');

Before you compare the signals, you can specify a tolerance value to use for the comparison.
Comparisons use tolerance values specified for the baseline signal in the comparison, so set an
absolute tolerance value of 0.1 on the Stick signal.

stick.AbsTol = 0.1;

Now, compare the signals using the Simulink.sdi.compareSignals function. The Stick signal is
the baseline, and the alpha, rad signal is the signal to compare against the baseline.

2 Functions

2-762

comparisonResults = Simulink.sdi.compareSignals(stick.ID,alpha.ID);
match = comparisonResults.Status

match =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison result is out of tolerance. You can use the Simulink.sdi.view function to open the
Simulation Data Inspector to view and analyze the comparison results.

Compare Signals from Different Runs

This example shows how to compare signals from different simulation runs using the Simulation Data
Inspector's Simulink.sdi.compareSignals function. When you only have one signal of interest to
compare, using a signal comparison returns the Simulink.sdi.diffSignalResult object with the
comparison data directly.

Generate Simulation Data

Use the slexAircraftExample model to generate simulation runs. Between the runs, change the
time constant of the input filter.

% Load example model
load_system('slexAircraftExample')

% Mark the alpha, rad signal for streaming
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

% Simulate system
out_1 = sim('slexAircraftExample');

% Change input filter time constant
modelWorkspace = get_param('slexAircraftExample','modelworkspace');
assignin(modelWorkspace,'Ts',0.2)

% Simulate again
out_2 = sim('slexAircraftExample');

Get Signal IDs for the Signal Comparison

Create run objects using the run IDs, and then use getSignalIDByIndex to get the signal IDs to
pass to Simulink.sdi.compareSignals.

% Get run data
runIDs = Simulink.sdi.getAllRunIDs;

runID1 = runIDs(end-1);
runID2 = runIDs(end);

run1 = Simulink.sdi.getRun(runID1);
run2 = Simulink.sdi.getRun(runID2);

sigID1 = getSignalIDByIndex(run1,1);
sigID2 = getSignalIDByIndex(run2,1);

 Simulink.sdi.compareSignals

2-763

Compare Signals

Compare the signals, and open the Simulation Data Inspector to view the results.

diffResult = Simulink.sdi.compareSignals(sigID1,sigID2);

Simulink.sdi.view

Input Arguments
sigID1 — Signal ID of baseline signal
integer

Signal ID of baseline signal, specified as an integer. The Simulation Data Inspector assigns a signal ID
to each signal when a run is created. You can get the signal ID for a signal using one of these
functions:

• getAllSignalIDs
• getSignalIDByIndex
• getSignalIDsByName
• Simulink.sdi.createRun

sigID2 — Signal ID of signal to compare
integer

Signal ID of signal to compare, specified as an integer. The Simulation Data Inspector assigns a signal
ID to each signal when a run is created. You can get the signal ID for a signal using one of these
functions:

• getAllSignalIDs
• getSignalIDByIndex
• getSignalIDsByName
• Simulink.sdi.createRun

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: diff = Simulink.sdi.compareSignals(sigID1,sigID2,DataType="MustMatch")

DataType — Comparison sensitivity to signal data types
"MustMatch"

Comparison sensitivity to signal data types, specified as "MustMatch". Specify
DataType="MustMatch" when you want the comparison to be sensitive to numeric data type
mismatches in compared signals.

When signal data types do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to DataTypeMismatch.

2 Functions

2-764

The Simulink.sdi.compareSignals function compares the data types before synchronizing and
comparing the signal data. When you do not specify this name-value argument, the comparison
checks data types only to detect a comparison between string and numeric data. For a comparison
between string and numeric data, results are not computed, and the status for the result is
DataTypeMismatch. For signals that have different numeric data types, the comparison computes
results.

When you configure the comparison to stop on the first mismatch, a data type mismatch stops the
comparison.

Time — Comparison sensitivity to signal time vectors
"MustMatch"

Comparison sensitivity to signal time vectors, specified as "MustMatch". Specify
Time="MustMatch" when you want the comparison to be sensitive to mismatches in the time
vectors of compared signals. When you specify this name-value argument, the algorithm compares
the time vectors before synchronizing and comparing the signal data.

When the time vectors do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to TimeMismatch.

Comparisons are not sensitive to differences in signal time vectors unless you specify this name-value
argument. For comparisons that are not sensitive to differences in the time vectors, the comparison
algorithm synchronizes the signals prior to the comparison. For more information about how
synchronization works, see “How the Simulation Data Inspector Compares Data”.

When you specify that time vectors must match and configure the comparison to stop on the first
mismatch, a time vector mismatch stops the comparison.

StartStop — Comparison sensitivity to signal start and stop times
"MustMatch"

Comparison sensitivity to signal start and stop times, specified as "MustMatch". Specify
StartStop="MustMatch" when you want the comparison to be sensitive to mismatches in signal
start and stop times. When you specify this name-value argument, the algorithm compares the start
and stop times for each signal before synchronizing and comparing the signal data.

When the start times and stop times do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to StartStopMismatch.

When you specify that start and stop times must match and configure the comparison to stop on the
first mismatch, a start or stop time mismatch stops the comparison.

StopOnFirstMismatch — Whether comparison stops on first detected mismatch
"Metadata" | "Any"

Whether comparison stops on first detected mismatch, specified as "Metadata" or "Any". A stopped
comparison may not compute results for all channels when comparing multidimensional signals and
can return a mismatched result more quickly.

• "Metadata" — A mismatch in metadata stops the comparison. Metadata comparisons happen
before signal data comparisons.

The Simulation Data Inspector always compares signal units. When you configure the comparison
to stop on the first mismatch, mismatched units always stop the comparison. You can specify

 Simulink.sdi.compareSignals

2-765

additional name-value arguments to configure the comparison to check and stop on the first
mismatch for additional metadata, such as signal data type, start and stop times, and time vectors.

• "Any" — A mismatch in metadata or signal data stops the comparison.

ExpandChannels — Whether to compute comparison results for each channel in
multidimensional signals
false or 0 (default) | true or 1

Whether to compute comparison results for each channel in multidimensional signals, specified as
logical true (1) or false (0).

• true or 1 — Comparison expands multidimensional signals represented as a single signal with
nonscalar sample values to a set of signals with scalar sample values and computes a comparison
result for each signal.

The representation of the multidimensional signal in the Simulation Data Inspector as a single
signal with nonscalar sample values does not change.

• false or 0 — Comparison does not compute results for multidimensional signals represented as a
single signal with nonscalar sample values.

Output Arguments
diff — Signal comparison result
Simulink.sdi.diffSignalResult | array of Simulink.sdi.diffSignalResult objects

Signal comparison result, returned as a Simulink.sdi.DiffSignalResult object. Complex signal
comparison results are returned as an array of two DiffSignalResult objects. One
DiffSignalResult object contains the real data and the other contains the imaginary data. Check
the Name property of the DiffSignalResult object to determine whether it contains real or
imaginary data.

Limitations
The Simulation Data Inspector does not support comparing:

• Signals of data types int64 or uint64.
• Variable-size signals.

If you perform multiple signal comparisons or run comparisons, only the latest DiffSignalResult
object has visible properties.

Version History
Introduced in R2011b

See Also
Objects
Simulink.sdi.DiffSignalResult | Simulink.sdi.Run

2 Functions

2-766

Functions
Simulink.sdi.compareRuns

Tools
Simulation Data Inspector

Topics
“Inspect and Compare Data Programmatically”
“Compare Simulation Data”
“How the Simulation Data Inspector Compares Data”

 Simulink.sdi.compareSignals

2-767

Simulink.sdi.copyRun
Copy a Simulation Data Inspector run

Syntax
newRunID = Simulink.sdi.copyRun(runID)
[newRunID,runIndex] = Simulink.sdi.copyRun(runID)
[newRunID,runIndex,signalIDs] = Simulink.sdi.copyRun(runID)

Description
newRunID = Simulink.sdi.copyRun(runID) copies the run corresponding to runID and returns
the run ID for the new run. The new run includes all the simulation data and metadata from the
original run. You can modify the copy of the run by adding or deleting signals and metadata while still
retaining the original run.

[newRunID,runIndex] = Simulink.sdi.copyRun(runID) copies the run corresponding to
runID and returns the run ID and index in the Simulation Data Inspector repository for the new run.
The new run includes all the simulation data and metadata from the original run.

[newRunID,runIndex,signalIDs] = Simulink.sdi.copyRun(runID) copies the run
corresponding to runID and returns the signal IDs for the signals in the new run along with its run
ID and index in the Simulation Data Inspector repository. The new run includes all the simulation data
and metadata from the original run.

Examples

Compare a Subset of Signals

This example shows how to use Simulink.sdi.copyRun and Simulink.sdi.deleteSignal to
create a copy of a run that contains a subset of the signals from the original run. You can use the copy
to analyze and run comparisons on a subset of signals while still holding onto the original run that
has all of the signals. For example, the model sldemo_fuelsys is configured to log ten signals. To
compare the system's responses to different types of failures, you don't need to run the comparison
on all of the logged signals. Deleting signals that do not represent the system's response before
running the comparison saves processing time and simplifies the view of the results.

Create Runs

Load the model sldemo_fuelsys and run simulations to create runs in the Simulation Data
Inspector. The first run simulates a failure of the throttle angle sensor, and the second run simulates a
failure of the exhaust gas oxygen sensor.

load_system('sldemo_fuelsys')
modelWorkspace = get_param('sldemo_fuelsys','modelworkspace');
modelWorkspace.assignin('throttle_sw',0)
modelWorkspace.assignin('ego_sw',1)
sim('sldemo_fuelsys')

2 Functions

2-768

modelWorkspace.assignin('throttle_sw',1)
modelWorkspace.assignin('ego_sw',0)
sim('sldemo_fuelsys')

Copy the Run

Use the Simulation Data Inspector's programmatic interface to get Simulink.sdi.Run objects for
the simulations, and then create copies of the runs.

% Get runs
runIDs = Simulink.sdi.getAllRunIDs;

runID1 = runIDs(end-1);
runID2 = runIDs(end);

run1 = Simulink.sdi.getRun(runID1);
run2 = Simulink.sdi.getRun(runID2);

% Create a copy of each run, truncRun
[truncRun1,runIndex1,signalIDs1] = Simulink.sdi.copyRun(runID1);
[truncRun2,runIndex2,signalIDs2] = Simulink.sdi.copyRun(runID2);

Delete Signals in Run Copy

The sldemo_fuelsys model is configured to log the values of the fault switches along with several
signals representing the system's response. When you compare the system's response when a throttle
angle sensor fails to its response when an exhaust gas oxygen sensor fails, comparing the fault switch
states does not provide new information. Therefore, delete the switch signals before running the
comparison to eliminate unnecessary computations.

Simulink.sdi.deleteSignal(signalIDs1(1))
Simulink.sdi.deleteSignal(signalIDs1(3))
Simulink.sdi.deleteSignal(signalIDs1(5))
Simulink.sdi.deleteSignal(signalIDs1(8))

Simulink.sdi.deleteSignal(signalIDs2(1))
Simulink.sdi.deleteSignal(signalIDs2(3))
Simulink.sdi.deleteSignal(signalIDs2(5))
Simulink.sdi.deleteSignal(signalIDs2(8))

Compare Truncated Runs

You can use the truncated runs you created with Simulink.sdi.copyRun and
Simulink.sdi.deleteSignal to perform a comparison of the system's response to different types
of failures. Then, open the Simulation Data Inspector to view the comparison results.

truncRunDiff = Simulink.sdi.compareRuns(truncRun1,truncRun2);

Simulink.sdi.view

Input Arguments
runID — Numeric run identifier
scalar

 Simulink.sdi.copyRun

2-769

Run ID for the run you want to copy. The Simulation Data Inspector assigns run IDs when it creates
runs. You can get the run ID for your run using Simulink.sdi.getAllRunIDs or
Simulink.sdi.getRunIDByIndex.

Output Arguments
newRunID — Run ID for the copy
scalar

Run ID for the copy of the run.

runIndex — Run index for the copy
scalar

Index of the copy in the Simulation Data Inspector repository.

signalIDs — Numeric identifiers for the signals in the copy
matrix

Matrix containing the signal IDs for the copies of signals created in the copy of the run.

Version History
Introduced in R2011b

See Also
Simulink.sdi.deleteSignal | Simulink.sdi.deleteRun | Simulink.sdi.createRun

Topics
“Inspect and Compare Data Programmatically”

2 Functions

2-770

Simulink.sdi.copyRunViewSettings
Copy line style and color for signals from one run to another

Syntax
sigIDs = Simulink.sdi.copyRunViewSettings(run1,run2,plot)

Description
sigIDs = Simulink.sdi.copyRunViewSettings(run1,run2,plot) copies the line style and
color specifications from runID1 to runID2 for matched signals. You can specify run1 and run2 with
their run ID or as a Simulink.sdi.Run object. If plot is specified as true,
Simulink.sdi.copyRunViewSettings also changes signal parameters in both runs so that
aligned signals that are plotted come from the run2. The function returns an array of signal
identifiers for the signals that the Simulation Data Inspector aligned between the two runs. To learn
more about how the Simulation Data Inspector aligns signals between runs, see “How the Simulation
Data Inspector Compares Data”.

Examples

Copy View Settings to Run

Copy view settings from one run to another and create figures using the
Simulink.sdi.CustomSnapshot object.

Simulate Model and Get Run Object

Configure the vdp model to save output data. Run a simulation to create data.

load_system("vdp")
set_param("vdp","SaveFormat","Dataset","SaveOutput","on")
set_param("vdp/Mu","Gain","1");
sim("vdp");

Use the Simulation Data Inspector programmatic interface to access the run data.

runIndex = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(runIndex);
vdpRun = Simulink.sdi.getRun(runID);

Modify Signal View Settings

Use the Simulink.sdi.Run object to access signals in the run. Then, modify the signal view
settings. This example specifies the line color and style for each signal. The view settings for the run
comprise the view settings for each signal and view settings specified for the plot area.

sig1 = getSignalByIndex(vdpRun,1);
sig2 = getSignalByIndex(vdpRun,2);

sig1.LineColor = [0 0 1];

 Simulink.sdi.copyRunViewSettings

2-771

sig1.LineDashed = "-.";

sig2.LineColor = [1 0 0];
sig2.LineDashed = ":";

Capture Snapshot from Simulation Data Inspector

Create a Simulink.sdi.CustomSnapshot object and use the Simulink.sdi.snapshot function
to programmatically capture a snapshot of the contents of the Simulation Data Inspector.

snap = Simulink.sdi.CustomSnapshot;

You can use properties of the Simulink.sdi.CustomSnapshot object to configure the plot settings,
such as the subplot layout and axis limits, and to plot signals. When you use a
Simulink.sdi.CustomSnapshot object to create your figure, these plot settings do not affect the
Simulation Data Inspector.

snap.Rows = 2;
snap.YRange = {[-2.25 2.25],[-3 3]};
plotOnSubPlot(snap,1,1,sig1,true)
plotOnSubPlot(snap,2,1,sig2,true)

Use the Simulink.sdi.snapshot function to generate the figure you specified in the properties of
the Simulink.sdi.CustomSnapshot object.

fig = Simulink.sdi.snapshot("From","custom","To","figure","Settings",snap);

2 Functions

2-772

Copy View Settings to New Simulation Run

Simulate the model again, with a different Mu value. Use the Simulation Data Inspector programmatic
interface to access the simulation data.

set_param("vdp/Mu","Gain","5")
sim("vdp");

runIndex2 = Simulink.sdi.getRunCount;
runID2 = Simulink.sdi.getRunIDByIndex(runIndex2);
run2 = Simulink.sdi.getRun(runID2);

To create a plot of the new output data that looks like the one you created in the previous step, you
can copy the view settings to the run in a single line of code using the
Simulink.sdi.copyRunViewSettings function. This function does not automatically update plot
settings in Simulink.sdi.CustomSnapshot objects, so specify the input that determines whether
the plot updates as false.

sigIDs = Simulink.sdi.copyRunViewSettings(runID,runID2,false);

Capture Snapshot of New Simulation Run

Use the Simulink.sdi.CustomSnapshot object to capture a snapshot of the new simulation run.
First, clear the signals from the subplots. Then, plot the signals from the new run and capture
another snapshot.

clearSignals(snap)
snap.YRange = {[-2.25 2.25],[-8 8]};
plotOnSubPlot(snap,1,1,sigIDs(1),true)
plotOnSubPlot(snap,2,1,sigIDs(2),true)

fig = snapshot(snap,"To","figure");

 Simulink.sdi.copyRunViewSettings

2-773

Input Arguments
run1 — Simulation Data Inspector run ID for source run
scalar | 'Simulink.sdi.Run' object

Run with the view settings you want to copy specified with its run ID or Simulink.sdi.Run object.
The Simulation Data Inspector assigns run IDs when it creates runs. You can get the run ID for your
run using Simulink.sdi.getAllRunIDs or Simulink.sdi.getRunIDByIndex.

run2 — Simulation Data Inspector run ID for destination run
scalar | 'Simulink.sdi.Run' object

Run you want to copy the view settings to, specified with its run ID or Simulink.sdi.Run object.
The Simulation Data Inspector assigns run IDs when it creates runs. You can get the run ID for your
run using Simulink.sdi.getAllRunIDs or Simulink.sdi.getRunIDByIndex.

plot — Specify whether to update plotted signals
true | false

Specifies whether the Simulation Data Inspector changes the plot settings in the runs corresponding
to run1 and run2.

• When plot is true, the Simulation Data Inspector modifies the signal parameters so that the
aligned signals that are plotted come from run2.

2 Functions

2-774

• When plot is false, the Simulation Data Inspector does not change which signals are plotted.

Data Types: logical

Output Arguments
sigIDs — Signal IDs for aligned signals
matrix

Matrix containing the signal IDs for signals in run2 that aligned with signals in run1 and had view
settings modified.

Version History
Introduced in R2016a

See Also
Simulink.sdi.copyRun | Simulink.sdi.Signal | Simulink.sdi.Run |
Simulink.sdi.setMarkersOn | Simulink.sdi.view

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

 Simulink.sdi.copyRunViewSettings

2-775

Simulink.sdi.createRun
Import data into new run in Simulation Data Inspector and return run ID

Syntax
runID = Simulink.sdi.createRun
runID = Simulink.sdi.createRun(runName)

runID = Simulink.sdi.createRun(var)
runID = Simulink.sdi.createRun(runName,'vars',var,var2,...,varn)
runID = Simulink.sdi.createRun(runName,'namevalue',sourceNames,sigValues)

runID = Simulink.sdi.createRun(runName,'file',filename)
runID = Simulink.sdi.createRun(runName,'file',filename,Name=Value)

[runID,runIndex] = Simulink.sdi.createRun(___)
[runID,runIndex,sigIDs] = Simulink.sdi.createRun(___)

Description
Create Empty Run

runID = Simulink.sdi.createRun creates an empty, unnamed run in the Simulation Data
Inspector and returns the run ID for the created run.

You can use the Simulink.sdi.getRun function to access the Simulink.sdi.Run object that
corresponds to the run. Set the properties on the Run object to add metadata to the run. Use the
Simulink.sdi.addToRun function or the add function to add data to the run.

runID = Simulink.sdi.createRun(runName) creates an empty run named runName.

Import Data from Workspace

runID = Simulink.sdi.createRun(var) imports data from the scalar variable var into a new
run in the Simulation Data Inspector. The run is named according to the input variable. For example,
when var is a timeseries object, the run name comes from the Name property on the timeseries
object.

runID = Simulink.sdi.createRun(runName,'vars',var,var2,...,varn) imports data
from one or more variables into a new run in the Simulation Data Inspector named runName.

Use this syntax to import data from multiple variables or from a variable that represents an array of
objects, such as an array of Simulink.SimulationOutput or
Simulink.SimulationData.Dataset objects.

runID = Simulink.sdi.createRun(runName,'namevalue',sourceNames,sigValues)
imports data from one or more variables into a new run in the Simulation Data Inspector named
runName. The cell array sourceNames specifies the names used to set the RootSource,
TimeSource, and DataSource properties for the signals imported from the sigValues cell array.

2 Functions

2-776

Import Data from File

runID = Simulink.sdi.createRun(runName,'file',filename) imports data from a file into
a new run in the Simulation Data Inspector. You can use a built-in file reader to import data from a
MAT file, CSV file, Microsoft Excel file, or an MDF file.

When you need to import data from a file that the built-in readers do not support, you can write your
own reader using the io.reader class.

runID = Simulink.sdi.createRun(runName,'file',filename,Name=Value) imports data
from a file into a new run in the Simulation Data Inspector according to options specified using one or
more name-value arguments. For example, sheets=["sheet1" "sheet2"] specifies the sheets
from which to import data when importing data from an Excel file.

Return Additional Run Information

[runID,runIndex] = Simulink.sdi.createRun(___) returns the run ID and the run index in
the Simulation Data Inspector for the created run.

[runID,runIndex,sigIDs] = Simulink.sdi.createRun(___) returns the run ID, run index
in the Simulation Data Inspector, and the signal IDs for the signals in the created run.

Examples

Create Run in Simulation Data Inspector

You can programmatically import data into the Simulation Data Inspector by creating a run from data
in the base workspace or a file. This example creates data in the workspace and then illustrates
several methods of creating a Simulation Data Inspector run containing the data.

Create Data

Create data in the workspace. The Simulation Data Inspector supports timeseries data in many
formats. This example creates data using the timeseries and
Simulink.SimulationData.Dataset formats and saves the data in a MAT-file.

Create a sine signal and a cosine signal. Store the data for each signal in a timeseries object with a
descriptive name.

time = 0:0.2:20;

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = "Sine, T=5";

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = "Cosine, T=8";

You can use the Dataset format to group related signal data together in a single object. The
Dataset format is the default format for logged data and is supported for loading simulation input
data. Create a Dataset object that contains the sinusoid timeseries data.

 Simulink.sdi.createRun

2-777

sinusoids_ds = Simulink.SimulationData.Dataset;
sinusoids_ds = addElement(sinusoids_ds,cos_ts);
sinusoids_ds = addElement(sinusoids_ds,sine_ts);

Scale each signal by a factor of 2 and create a Dataset object to contain the signal data for the
results.

doubSine = 2*sine_ts;
doubCos = 2*cos_ts;

doubSinusoids_ds = Simulink.SimulationData.Dataset;
doubSinusoids_ds = addElement(doubSinusoids_ds,doubSine);
doubSinusoids_ds = addElement(doubSinusoids_ds,doubCos);

Finally, save the timeseries data to a MAT-file.

save sinusoids.mat sine_ts cos_ts

Open Simulation Data Inspector

To view the runs you create in each section, open the Simulation Data Inspector by entering
Simulink.sdi.view in the MATLAB™ Command Window.

Create Run Using Simulink.sdi.Run Object

You can import your data into a run in the Simulation Data Inspector by creating an empty run and
then adding data to the run from the workspace or a file. Depending on your task, use the
Simulink.sdi.Run.create function or the Simulink.sdi.createRun function to create the
empty run. The Simulink.sdi.Run.create function returns the Simulink.sdi.Run object for
the new run. The Simulink.sdi.createRun function returns the run ID for the new run.

This example creates an empty run using the Simulink.sdi.Run.create function, gives the run a
meaningful name and description, and then adds the sine and cosine timeseries data using the add
function.

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = "Sinusoids";
sinusoidsRun.Description = "Sine and cosine signals of different frequencies";

add(sinusoidsRun,'vars',sine_ts,cos_ts)

This example uses the Simulink.sdi.createRun function to create a new run in the Simulation
Data Inspector called My Waves and then uses the Simulink.sdi.addToRun function to add the
sine and cosine timeseries data to the run.

runID = Simulink.sdi.createRun("My Waves");
signalID = Simulink.sdi.addToRun(runID,'vars',sine_ts,cos_ts);

Create Run from Workspace Variable

You can create a run from a single variable in the workspace. After creating the run, you can add
additional data or create another run to contain your other data. The variable you use to create the
run can be a timeseries object with data that corresponds to only one signal or a Dataset object
that contains several signals.

When you use this syntax to create a run from a single workspace variable, the run takes the same
name as the object used to create it.

2 Functions

2-778

runID = Simulink.sdi.createRun(sine_ts);

The Simulink.sdi.createRun function returns the run ID for the run the function creates. You can
use the Simulink.sdi.getRun function to access the Run object for the run.

sineRun = Simulink.sdi.getRun(runID);
sineRun.Name

ans =
'Sine, T=5'

Create Run from Multiple Workspace Variables

When your data exists in multiple variables in your workspace, you can use the
Simulink.sdi.createRun function with the vars option to import the data from multiple variables
into a single run in the Simulation Data Inspector. You can also use this syntax to create a run for a
single variable that uses a name you specify.

This example creates a run called My Sinusoids that contains data for the sine and cosine
timeseries objects.

runID = Simulink.sdi.createRun("My Sinusoids",'vars',sine_ts,cos_ts);

Create Run and Specify Source Names

You can use the namevalue option of the Simulink.sdi.createRun function to create a run and
specify names for the signals in the run. This syntax can be helpful when you import individual leaf
signals from hierarchical data.

This example creates a run containing the data for both the Dataset objects. Each Dataset object
contains data for more than one signal, so the imported run data has hierarchy. The name-value
syntax in this example specifies a name for the hierarchical node that corresponds to each Dataset
object.

runID = Simulink.sdi.createRun("Waves",'namevalue',{'Sinusoids',...
 'BigSinusoids'},{sinusoids_ds,doubSinusoids_ds});

Create Run from File Data

You can also use the Simulink.sdi.createRun function to import data into the Simulation Data
Inspector from a file. Use the file option to import the data in the sinusoids.mat file.

runID = Simulink.sdi.createRun("Wave Data",'file',"sinusoids.mat");

Create a Simulation Data Inspector Run and Access Signal Data

This example shows how to access signal data when you create a run in the Simulation Data
Inspector.

Generate Data for Run

For this example, create timeseries data for sine and cosine signals.

% Create timeseries workspace data
time = linspace(0, 20, 101);

 Simulink.sdi.createRun

2-779

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Return Signal IDs

You can use the Simulink.sdi.createRun syntax with multiple return arguments to get the signal
IDs more directly instead of accessing the signal IDs through a Simulink.sdi.Run object.

[runID,runIndex,sigIDs] = Simulink.sdi.createRun('Sinusoids','vars',...
 sine_ts,cos_ts);

cosID = sigIDs(2);
cosSig = Simulink.sdi.getSignal(cosID);

Modify Signal Properties and View in the Simulation Data Inspector

You can use the Simulink.sdi.Signal object to view and modify signal properties and to plot
signals in the Simulation Data Inspector.

cosSig.Checked = true;
cosSig.AbsTol = 0.05;
Simulink.sdi.view
cosSig.Name

Input Arguments
runName — Name for run
string | character vector

Name for run in Simulation Data Inspector, specified as a string or a character vector.
Example: 'Baseline Simulation'

var — Data to import
variable

Data to import, specified as a variable. The Simulation Data Inspector supports time-based data in
which sample values are associated with sample times. The Simulation Data Inspector supports all
loading and logging data formats, including timeseries and
Simulink.SimulationData.Dataset.
Example: myData

sourceNames — Source names for imported data
cell array of character vectors

Source names for imported data, specified as a cell array of character vectors. The source name is
used to set the RootSource, TimeSource, and DataSource properties of the
Simulink.sdi.Signal objects created from the data specified by the sigValues input.

Provide a sourceNames input when you specify 'namevalue' for the second argument.

2 Functions

2-780

Example: {'sig1','sig2'}

sigValues — Data to import
cell array of variables

Data to import, specified as a cell array of variables.

Provide a sigValues input when you specify 'namevalue' for the second argument.
Example: {var1,var2}

filename — Name of file with data to import
character vector

Name of file with data to import, specified as a character vector. Provide a filename input when you
specify 'file' for the second argument.

You can create a run from these types of files using file readers built into the Simulation Data
Inspector:

• MAT-file
• CSV file
• Microsoft Excel file that contains data formatted according to “Microsoft Excel Import, Export,

and Logging Format”.
• MDF file with one of these extensions:

• .mdf
• .mf4
• .mf3
• .data
• .dat

When you need to import data from a file that the built-in readers do not support, you can write your
own reader using the io.reader class. You can also write a custom reader to use instead of the
built-in reader for any file extension. For an example, see “Import Data Using a Custom File Reader”.
Example: 'simulation.mat'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: sheets=["sheet1" "sheet2"]

reader — File reader to use to import data
string | character vector

File reader to use to import data, specified as a string or character vector.

The Simulation Data Inspector prioritizes using a registered custom reader when one is available for
the file. When you do not specify a reader, the Simulation Data Inspector uses the first custom reader

 Simulink.sdi.createRun

2-781

registered for the file. If no custom readers are registered, the data is imported using the built-in
reader.

Specify the reader input when:

• You want to use the built-in reader to import data for a file that is also supported by a custom
reader.

• Multiple registered custom readers support the file.

To determine which readers are available to import your file, use the
io.reader.getSupportedReadersForFile function.
Example: "MyExcelReader"
Example: "built-in"

sheets — Sheets in Excel file from which to import data
string array | cell array of character vectors

Sheets in Excel file from which to import data, specified as a string array or a cell array of character
vectors. By default, the Simulation Data Inspector imports data from all sheets. Use the sheets
name-value argument when you do not want to import data from all sheets in the Excel file.

When the data in the file does not include simulation numbers and source information, the data on
each sheet is imported into a separate run. For more information about formatting data to import
from an Excel file, see “Microsoft Excel Import, Export, and Logging Format”.
Example: ["sheet1" "sheet2"]

model — Model with definitions of user-defined data types
string | character vector

Model with definitions of user-defined data types, specified as a string or character vector.

When you load data from an Excel file that defines signal data types using user-defined data types,
such as enumerations, buses, or aliases, the Simulation Data Inspector needs access to the type
definition to import the data. You can provide access to the type definitions by:

• Loading the associated object into the MATLAB workspace.
• Specifying the model name-value argument to use type definitions saved in the model workspace

or a data dictionary.

For more information on formatting data to import from an Excel file, see “Microsoft Excel Import,
Export, and Logging Format”.
Example: "myModel.slx"

Output Arguments
runID — Run ID for run that contains imported data
scalar

Run ID for run that contains imported data, returned as a scalar.

runIndex — Run index in Simulation Data Inspector for run that contains imported data
scalar

2 Functions

2-782

Run index in Simulation Data Inspector for run that contains imported data, returned as a scalar.

sigIDs — Signal IDs for signals created from imported data
scalar | vector

Signal IDs for signals created from imported data, returned as a scalar or a vector.

Version History
Introduced in R2011b

See Also
Objects
Simulink.sdi.Run

Functions
Simulink.sdi.getRun | Simulink.sdi.addToRun |
Simulink.sdi.createRunOrAddToStreamedRun | io.reader.getRegisteredFileReaders |
io.reader.getSupportedReadersForFile | Simulink.sdi.Run.create

Classes
io.reader

Topics
“Inspect and Compare Data Programmatically”
“Microsoft Excel Import, Export, and Logging Format”
“View Data in the Simulation Data Inspector”
“Import Data Using a Custom File Reader”

 Simulink.sdi.createRun

2-783

Simulink.sdi.createRunOrAddToStreamedRun
Package: Simulink.sdi

Create a single run for all simulation outputs

Syntax
runID = Simulink.sdi.createRunOrAddToStreamedRun(mdl,runName,varSources,
varValues)

Description
runID = Simulink.sdi.createRunOrAddToStreamedRun(mdl,runName,varSources,
varValues) creates a run with the data varValues if no run exists in the Simulation Data Inspector
repository for the model mdl. If one or more runs for the model mdl exist in the Simulation Data
Inspector repository, the function adds varValues to the most recent run associated with mdl. The
run is named according to runName, and the sources for the data in varValues are named according
to varSources.

Examples

Add Signals to a Run

This example shows how to use Simulink.sdi.createRunOrAddToStreamedRun to add data to an
existing run for a model. In this example, you add data logged using the Structure with Time
format to a run that contains logged signal data.

Simulate the Model

Open the slexAircraftExample model and mark the output of the Pilot block for logging. The
logged signal data uses the Dataset format and streams to the Simulation Data Inspector during
simulation. The model is configured to log outputs, states, and time as well as signals. Simulate the
model and return a single output in the workspace with all the logged data. Use the Structure
with Time format for logged states and outputs.

load_system('slexAircraftExample')

Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,1)

out = sim('slexAircraftExample','ReturnWorkspaceOutputs','on',...
 'SaveFormat','StructureWithTime');

Add Logged States Data to Run

The Simulation Data Inspector automatically created a run for the logged signal data. Add the logged
states and outputs data to the existing run using
Simulink.sdi.createRunOrAddToStreamedRun.

Simulink.sdi.createRunOrAddToStreamedRun('slexAircraftExample','Run 1',...
 {'out'},{out});

2 Functions

2-784

Open the Simulation Data Inspector to View Results

Use the Simulink.sdi.view function to open the Simulation Data Inspector and view the results.

Using Simulink.sdi.createRunOrAddToStreamedRun avoids redundancy in the data shown in
the Simulation Data Inspector. When you use the Simulink.sdi.createRun function to import the
output and states data, the Simulation Data Inspector creates a second run. When you use the
Simulink.sdi.addToRun function to add the logged states and output data to the run, the
Simulation Data Inspector imports a duplicate of the Pilot block output signal. Using
Simulink.sdi.createRunOrAddToStreamedRun, you can include all simulation data in a single
run without duplicating any signals.

Input Arguments
mdl — Name of model that created simulation data
character vector

Name of the model the simulation data is from, specified as a character vector.
Example: 'my_model'

runName — Name for the run
character vector

Name for the new or augmented run. If Simulink.sdi.createRunOrAddToStreamedRun adds
data to an existing run, the run is renamed according to runName.
Example: 'Run 1'

varSources — Names to use for the sources of data
cell array of character vectors

Names for the sources of the data in varValues.
Example: {'sig1','sig2'}

varValues — Data to add to run
cell array

Cell array of data to incorporate into the run. Simulink.sdi.createRunOrAddToStreamedRun
supports data in all logging and loading formats, including timeseries and
Simulink.SimulationData.Dataset.
Example: {sig1,sig2}

Output Arguments
runID — Run identifier
scalar

Run identifier for the new or augmented run.

Version History
Introduced in R2017a

 Simulink.sdi.createRunOrAddToStreamedRun

2-785

See Also
Simulink.sdi.addToRun | Simulink.sdi.createRun | Simulink.sdi.Run |
Simulink.sdi.getAllRunIDs | Simulink.sdi.getRun | Simulink.sdi.getRunCount |
Simulink.sdi.isValidRunID | Simulink.sdi.view

Topics
“Inspect and Compare Data Programmatically”
“View Data in the Simulation Data Inspector”

2 Functions

2-786

Simulink.sdi.deleteRun
Package: Simulink.sdi

Delete a run from the Simulation Data Inspector repository

Syntax
Simulink.sdi.deleteRun(runID)

Description
Simulink.sdi.deleteRun(runID) deletes the run corresponding to runID. When you delete a
run, the indices of all runs following the deleted run change to account for the change in the run
count. Deleting a run does not change any run IDs.

Examples

Delete a Run

You can delete a run from the Simulation Data Inspector repository to free up memory space or to
declutter your workspace from data you do not need.

% Load and simulate sldemo_fuelsys model
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

% Get the run ID for the run
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Delete the run
Simulink.sdi.deleteRun(runID)

Input Arguments
runID — Run identifier
scalar

Run ID for the run you want to delete. You can get the run ID for a run using
Simulink.sdi.getAllRunIDs or Simulink.sdi.getRunIDByIndex.

Version History
Introduced in R2011b

See Also
Simulink.sdi.clear | Simulink.sdi.copyRun | Simulink.sdi.deleteSignal |
Simulink.sdi.getRunIDByIndex | Simulink.sdi.getAllRunIDs |
Simulink.sdi.setArchiveRunLimit | Simulink.sdi.getArchiveRunLimit

 Simulink.sdi.deleteRun

2-787

Topics
“Inspect and Compare Data Programmatically”

2 Functions

2-788

Simulink.sdi.deleteSignal
Package: Simulink.sdi

Delete signal in the Simulation Data Inspector

Syntax
Simulink.sdi.deleteSignal(sigID)

Description
Simulink.sdi.deleteSignal(sigID) deletes the specified signal or signals from the Simulation
Data Inspector.

Examples

Compare a Subset of Signals

This example shows how to use Simulink.sdi.copyRun and Simulink.sdi.deleteSignal to
create a copy of a run that contains a subset of the signals from the original run. You can use the copy
to analyze and run comparisons on a subset of signals while still holding onto the original run that
has all of the signals. For example, the model sldemo_fuelsys is configured to log ten signals. To
compare the system's responses to different types of failures, you don't need to run the comparison
on all of the logged signals. Deleting signals that do not represent the system's response before
running the comparison saves processing time and simplifies the view of the results.

Create Runs

Load the model sldemo_fuelsys and run simulations to create runs in the Simulation Data
Inspector. The first run simulates a failure of the throttle angle sensor, and the second run simulates a
failure of the exhaust gas oxygen sensor.

load_system('sldemo_fuelsys')
modelWorkspace = get_param('sldemo_fuelsys','modelworkspace');
modelWorkspace.assignin('throttle_sw',0)
modelWorkspace.assignin('ego_sw',1)
sim('sldemo_fuelsys')

modelWorkspace.assignin('throttle_sw',1)
modelWorkspace.assignin('ego_sw',0)
sim('sldemo_fuelsys')

Copy the Run

Use the Simulation Data Inspector's programmatic interface to get Simulink.sdi.Run objects for
the simulations, and then create copies of the runs.

% Get runs
runIDs = Simulink.sdi.getAllRunIDs;

 Simulink.sdi.deleteSignal

2-789

runID1 = runIDs(end-1);
runID2 = runIDs(end);

run1 = Simulink.sdi.getRun(runID1);
run2 = Simulink.sdi.getRun(runID2);

% Create a copy of each run, truncRun
[truncRun1,runIndex1,signalIDs1] = Simulink.sdi.copyRun(runID1);
[truncRun2,runIndex2,signalIDs2] = Simulink.sdi.copyRun(runID2);

Delete Signals in Run Copy

The sldemo_fuelsys model is configured to log the values of the fault switches along with several
signals representing the system's response. When you compare the system's response when a throttle
angle sensor fails to its response when an exhaust gas oxygen sensor fails, comparing the fault switch
states does not provide new information. Therefore, delete the switch signals before running the
comparison to eliminate unnecessary computations.

Simulink.sdi.deleteSignal(signalIDs1(1))
Simulink.sdi.deleteSignal(signalIDs1(3))
Simulink.sdi.deleteSignal(signalIDs1(5))
Simulink.sdi.deleteSignal(signalIDs1(8))

Simulink.sdi.deleteSignal(signalIDs2(1))
Simulink.sdi.deleteSignal(signalIDs2(3))
Simulink.sdi.deleteSignal(signalIDs2(5))
Simulink.sdi.deleteSignal(signalIDs2(8))

Compare Truncated Runs

You can use the truncated runs you created with Simulink.sdi.copyRun and
Simulink.sdi.deleteSignal to perform a comparison of the system's response to different types
of failures. Then, open the Simulation Data Inspector to view the comparison results.

truncRunDiff = Simulink.sdi.compareRuns(truncRun1,truncRun2);

Simulink.sdi.view

Input Arguments
sigID — Signal or signals to delete
scalar | vector

Signal to delete, specified as a scalar signal ID or vector of signal IDs. The Simulation Data Inspector
assigns a unique numeric signal ID to each signal when a run is created for logged or imported data.

You can get the signal ID for a signal using one of these functions:

• getAllSignalIDs
• getSignalIDByIndex
• getSignalIDsByName
• Simulink.sdi.createRun

2 Functions

2-790

Version History
Introduced in R2016a

See Also
Objects
Simulink.sdi.Signal | Simulink.sdi.Run

Functions
Simulink.sdi.copyRun | Simulink.sdi.createRun

Topics
“Configure the Simulation Data Inspector”
“Inspect and Compare Data Programmatically”

 Simulink.sdi.deleteSignal

2-791

Simulink.sdi.DiffRunResult.getLatest
Access results from most recent comparison

Syntax
diffRes = Simulink.sdi.DiffRunResult.getLatest

Description
diffRes = Simulink.sdi.DiffRunResult.getLatest returns the
Simulink.sdi.DiffRunResult object diffRes for the most recent comparison performed using
the Simulation Data Inspector UI or programmatic interface.

Tip When you compare data using the Simulation Data Inspector UI, results are not returned in the
workspace. You can use the Simulink.sdi.DiffRunResult.getLatest function to access results
for comparisons performed using the Simulation Data Inspector UI. When you compare data using
the Simulink.sdi.compareRuns or Simulink.sdi.compareSignals functions, the function
returns the data in a Simulink.sdi.DiffRunResult object or a
Simulink.sdi.DiffSignalResult object.

Examples

Access Results for a UI Comparison

Use the Simulink.sdi.DiffRunResult.getLatest function to access the results of the most
recent comparison to save or process further. For more information about how to compare data using
the Simulation Data Inspector UI, see “Compare Simulation Data”.

compResults = Simulink.sdi.DiffRunResult.getLatest;

Retrieve Comparison Results in a Workspace Variable

You can use the Simulink.sdi.getCurrentComparison function or the
Simulink.sdi.DiffRunResult.getResult function to retrieve the results for the most recent
comparison if you accidentally delete the returned results from the workspace using the clear
function.

If you delete the contents of the Simulation Data Inspector using the Simulink.sdi.clear
function, you cannot recover the results.

Compare Simulation Data

This example creates runs to compare by running two simulations of the model ex_vdp with different
values for Mu.

load_system('ex_vdp')

2 Functions

2-792

set_param('ex_vdp/Mu','Gain','2');
out1 = sim('ex_vdp');

set_param('ex_vdp/Mu','Gain','5');
out2 = sim('ex_vdp');

Use the Simulink.sdi.getAllRunIDs function to access the run IDs for the runs created from the
simulations. Then use the Simulink.sdi.compareRuns function to compare the data.

IDs = Simulink.sdi.getAllRunIDs;
runID1 = IDs(end-1);
runID2 = IDs(end);

diffRun = Simulink.sdi.compareRuns(runID1,runID2);

Suppose you clear the workspace and lose the diffRun variable with the comparison results.

clear diffRun

Retrieve Comparison Data in the Workspace

Use the Simulink.sdi.getCurrentComparison function to recover the comparison results.

diffRun = Simulink.sdi.getCurrentComparison

diffRun =
 DiffRunResult with properties:

 MatlabVersion: '9.14.0.2206163 (R2023a)'
 RunID1: 362
 RunID2: 383
 BaselineRunName: 'Run 1: ex_vdp'
 CompareToRunName: 'Run 2: ex_vdp'
 Count: 2
 DateCreated: 04-Mar-2023 02:12:43
 GlobalTolerance: [1x1 struct]
 Summary: [1x1 struct]
 Options: {'Units' 'MustMatch'}
 Status: Completed
 StopReason: []

You could also use the Simulink.sdi.DiffRunResult.getLatest function to recover the results.

clear diffRun

diffRun = Simulink.sdi.DiffRunResult.getLatest

diffRun =
 DiffRunResult with properties:

 MatlabVersion: '9.14.0.2206163 (R2023a)'
 RunID1: 362
 RunID2: 383
 BaselineRunName: 'Run 1: ex_vdp'
 CompareToRunName: 'Run 2: ex_vdp'
 Count: 2
 DateCreated: 04-Mar-2023 02:12:43
 GlobalTolerance: [1x1 struct]

 Simulink.sdi.DiffRunResult.getLatest

2-793

 Summary: [1x1 struct]
 Options: {'Units' 'MustMatch'}
 Status: Completed
 StopReason: []

Output Arguments
diffRes — Results of most recent comparison
Simulink.sdi.DiffRunResult object

Results of the most recent comparison, returned as a Simulink.sdi.DiffRunResult object.

Version History
Introduced in R2020a

See Also
Simulink.sdi.DiffRunResult | Simulink.sdi.DiffSignalResult |
Simulink.sdi.compareRuns

Topics
“Compare Simulation Data”

2 Functions

2-794

Simulink.sdi.enablePCTSupport
Control when to import data from parallel simulations into the Simulation Data Inspector

Syntax
Simulink.sdi.enablePCTSupport(mode)

Description
Simulink.sdi.enablePCTSupport(mode) configures data import into the Simulation Data
Inspector from parallel workers according to the mode specified by mode. You can configure the
Simulation Data Inspector to import only data from local workers, or data from local and remote
workers. You can also set the mode to manual, which allows you to manually import runs into the
Simulation Data Inspector using the Simulink.sdi.sendWorkerRunToClient function. By
default, the Simulation Data Inspector is configured for the manual import mode.

Examples

Enable Automatic Data Import for All Parallel Workers

Configure Simulation Data Inspector parallel worker support to import the output automatically from
both local and remote workers.

Simulink.sdi.enablePCTSupport('all')

Disable Automatic Data Import from Parallel Workers

To prevent the output from Parallel Computing Toolbox workers from automatically importing into the
Simulation Data Inspector, specify the manual support mode.

Simulink.sdi.enablePCTSupport('manual')

Manually Send Runs from Parallel Workers to the Simulation Data Inspector

This example shows how to use Simulink.sdi.sendWorkerRunToClient to send runs created
using parallel workers manually to the Simulation Data Inspector.

Setup

This example runs several simulations of the vdp model, varying the value of the gain, Mu. To set up
for the parallel simulation, define a vector of Mu values and configure the Simulation Data Inspector
for manual Parallel Computing Toolbox support.

% Enable manual Parallel Computing Toolbox support
Simulink.sdi.enablePCTSupport('manual');

 Simulink.sdi.enablePCTSupport

2-795

% Choose several Mu values
MuVals = [1 2 3 4];

Initialize Parallel Workers

Use parpool (Parallel Computing Toolbox) to start a pool of four parallel workers. This example calls
parpool inside an if statement so you only create a parallel pool if you don't already have one. You
can use spmd (Parallel Computing Toolbox) to run initialization code common to all workers. For
example, load the vdp model and select signals to log to runs that we can send to the Simulation Data
Inspector on the client MATLAB. To avoid data concurrency issues when simulating with sim in
parfor, create a temporary directory on each worker. After the simulations complete, another spmd
block deletes the temporary directories.

p = gcp('nocreate');

if isempty(p)

 parpool(4);

end

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

spmd

 % Load system and select signals to log
 load_system('vdp')
 Simulink.sdi.markSignalForStreaming('vdp/x1',1,'on')
 Simulink.sdi.markSignalForStreaming('vdp/x2',1,'on')

 % Create temporary directory for simulation on worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations with parfor

To stream data from parallel workers to the Simulation Data Inspector, you have to run parallel
simulations using parfor (Parallel Computing Toolbox). Each worker runs a vdp simulation with a
different value of Mu. Simulink cannot access the contents of the parfor loop, so the variable MuVal
is defined in the worker's workspace, where the vdp model can see it, using assignin.

parfor (index = 1:4)

 % Set value of Mu in the worker's base workspace
 assignin('base','MuVal',MuVals(index));

 % Modify the value of Mu in the model and simulate
 set_param('vdp/Mu','Gain','MuVal')
 sim('vdp')

2 Functions

2-796

Access Data and Send Run to Client MATLAB

You can use the Simulation Data Inspector programmatic interface on the worker the same way you
would in the client MATLAB. This example creates a Simulink.sdi.Run object and attaches the
value of Mu used in the simulation with the Tag property.

 % Attach metadata to the run
 IDs = Simulink.sdi.getAllRunIDs;
 lastIndex = length(IDs);
 runID = Simulink.sdi.getRunIDByIndex(lastIndex);
 parRun = Simulink.sdi.getRun(runID);
 parRun.Tag = strcat('Mu = ',num2str(MuVals(index)));

 % Send the run to the Simulation Data Inspector on the client MATLAB
 Simulink.sdi.sendWorkerRunToClient

end

Close Temporary Directories and View Runs in the Simulation Data Inspector

Use another spmd section to delete the temporary directories created on the workers once the
simulations complete. In each simulation, Simulink.sdi.sendWorkerRunToClient imported runs
from all the workers into the Simulation Data Inspector. You can view the data and check the run
properties to see the value of Mu used during simulation.

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Simulink.sdi.view

Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with different input
filter time constants and shows several ways to access the data using the Simulation Data Inspector
programmatic interface.

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox support is
configured to import runs created on local workers automatically. Then, create a vector of filter
parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

 Simulink.sdi.enablePCTSupport

2-797

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already have one. In
an spmd code block, load the slexAircraftExample model and select signals to log. To avoid data
concurrency issues using sim in parfor, create a temporary directory for each worker to use during
simulations.

p = gcp;

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each simulation, and
modify the value of Ts in the model workspace. Then, run the simulation and build an array of
Simulink.sdi.WorkerRun objects to access the data with the Simulation Data Inspector. After the
parfor loop, use another spmd segment to remove the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

2 Functions

2-798

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you can easily
post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated with the
WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 3: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the Simulation Data
Inspector API. This example adds a tag indicating the filter time constant value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

 Simulink.sdi.enablePCTSupport

2-799

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you want to run on
your worker pool.

Simulink.sdi.cleanupWorkerResources

Input Arguments
mode — Parallel worker data import mode
'manual' (default) | 'local' | 'all'

Simulation Data Inspector data import mode for data logged on parallel workers, specified as one of
these options:

• 'manual' — Do not automatically import runs created on parallel workers. You can manually
import runs created on parallel workers using the Simulink.sdi.sendWorkerRunToClient
function.

• 'local' — Automatically import runs created on local workers.
• 'all' — Automatically import runs created on local and remote workers.

Data Types: char | string

Alternative Functionality
You can modify the parallel computing support mode in the Simulation Data Inspector by selecting
Preferences > Parallel.

Version History
Introduced in R2017b

2 Functions

2-800

R2020a: 'none' input is no longer supported
Errors starting in R2020a

Starting in R2020a, the Simulink.sdi.enablePCTSupport function no longer supports the
'none' input option. To disable automatic import of data logged on parallel workers into the
Simulation Data Inspector, use the 'manual' option.

R2020a: Logical inputs are ignored
Behavior changed in R2020a

Starting in R2020a, the Simulink.sdi.enablePCTSupport function ignores logical inputs. In
scripts that specify a logical input for the Simulink.sdi.enablePCTSupport function, replace a 0
or false input with the 'manual' input option and a 1 or true input with the 'all' option to
achieve equivalent behavior.

R2018a: Input values have changed
Behavior changed in R2018a

Starting in R2018a, the Simulink.sdi.enablePCTSupport input values changed to:

• 'local'
• 'none'
• 'all'
• 'manual'

In R2017b, the Simulink.sdi.enablePCTSupport function accepted a logical input to enable or
disable Simulation Data Inspector support for data logged in parallel simulations.

• true or 1 enables support for automatically importing data from all parallel workers into the
Simulation Data Inspector.

In R2018a, use the 'all' option for the same behavior. You can also use the new 'local' input
when you want to automatically import data only from local workers.

• false or 0 disables all support for importing data logged on parallel workers.

In R2018a, use the 'none' option for the same behavior. You can also use the new 'manual'
option when you want to analyze data on the worker to determine whether you want to import
individual runs into the Simulation Data Inspector from a parallel worker.

See Also
Simulink.sdi.isPCTSupportEnabled | Simulink.sdi.WorkerRun |
Simulink.sdi.sendWorkerRunToClient

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.enablePCTSupport

2-801

Simulink.sdi.exportRun
Export Simulation Data Inspector run data to the workspace or a file

Syntax
dataset = Simulink.sdi.exportRun(runID)
Simulink.sdi.exportRun(runID,Name,Value)

Description
dataset = Simulink.sdi.exportRun(runID) creates a
Simulink.SimulationData.Dataset object in the base workspace with the data in the Simulation
Data Inspector run identified by runID.

Simulink.sdi.exportRun(runID,Name,Value) exports the data in the run corresponding to
runID to the base workspace or a file according to the options specified by one or more name-value
pair arguments. You can export data for one or more runs to a MAT, MLDATX, or Microsoft Excel file.
To export data for multiple runs to a file, you can specify the runIDs input as a vector of run IDs.

Examples

Export Run Data

This example shows how to export data from a run in the Simulation Data Inspector to a
Simulink.SimulationData.Dataset object in the base workspace that you can use to further
process your data. The method you choose to export your run depends on the processing you do in
your script. If you have a run object for the run, you can use the export method to create a
Simulink.SimulationData.Dataset object with the run data in the base workspace. If you do not
have a run object, use the Simulink.sdi.exportRun function to export the run to the workspace.

Export Run Using Simulink.sdi.exportRun

Use the Simulink.sdi.export function to export run data to the workspace or a file when your
workflow does not include creating a run object.

To create a run of simulation data, open the vdp model, mark signals for logging, and run a
simulation.

load_system('vdp')

SignalHandles = get_param('vdp', 'Lines');

Simulink.sdi.markSignalForStreaming(SignalHandles(5).Handle, 'on')
Simulink.sdi.markSignalForStreaming(SignalHandles(6).Handle, 'on')

out = sim('vdp');

Use the Simulink.sdi.getAllRunIDs function to access the most recently created run.

2 Functions

2-802

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

Use the Simulink.sdi.exportRun function to export the run data to a Dataset object in the
workspace.

simDataset = Simulink.sdi.exportRun(runID);

Export Run Using the export Function

When your task involves creating a Run object, you can use the export function to create a
Simulink.SimulationData.Dataset object in the base workspace to further process the run
data. For example, suppose you need to access Run objects for simulation runs with signal data you
want to compare using the Simulink.sdi.compareSignals function.

Load a model and mark signals for logging. Then simulate the model to create run data.

load_system('vdp')

SignalHandles = get_param('vdp', 'Lines');

Simulink.sdi.markSignalForStreaming(SignalHandles(5).Handle, 'on')
Simulink.sdi.markSignalForStreaming(SignalHandles(6).Handle, 'on')

sim('vdp');

Use the Simulink.sdi.getAllRunIDs function to access the run ID for the most recently created
run. Then, use the Simulink.sdi.getRun function to access the Run object corresponding to the
run.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
vdpRun = Simulink.sdi.getRun(runID);

Use the export function to export the run data to a Dataset object in the workspace.

simDataset = export(vdpRun);

Input Arguments
runID — Run identifier
scalar | vector

Run identifier for the run you want to export to the workspace or a file. When you export data to a
file, you can export more than one run by specifying the runID input as a vector of Simulation Data
Inspector run IDs.

The Simulation Data Inspector assigns a unique run ID to each run. You can get the run ID for one or
more runs using Simulink.sdi.getAllRunIDs and Simulink.sdi.getRunIDByIndex.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

 Simulink.sdi.exportRun

2-803

Example: 'to','file'

to — Where to export data
'variable' (default) | 'file'

Where to export data, specified as the comma-separated pair consisting of 'to' and 'variable' or
'file'.

When you export data to a file, you must also specify a file name using the 'filename' name-value
pair argument. You can specify a file name with a .mat, .mldatx, or .xlsx extension.

When you export a run to a MAT-file, the data is saved in a Simulink.SimulationData.Dataset
object. When you export more than one run to a MAT-file using the Simulink.sdi.exportRun
function, the data is saved in a Dataset object, where each element is a Dataset object that
contains the data for one exported run.

Data exported to a Microsoft Excel file is saved using the format described in “Microsoft Excel
Import, Export, and Logging Format”.

When you export data to a Microsoft Excel file, you can specify additional options using the
'overwrite', 'metadata', and 'sharetimecolumn' name-value pairs.
Example: 'to','file'

filename — Name of file to contain exported data
string | character array

Name of the file to contain the exported data, specified as the comma-separated pair consisting of
'filename' and a string or character array. Include a .mat, .mldatx, or .xlsx extension in the file
name to specify whether to export the data to a MAT-file, MLDATX file, or a Microsoft Excel file. When
you do not specify an extension with a file name, the data exports to a MAT-file.

Use the 'filename' name-value pair argument when you specify the 'to' name-value pair
argument with the value 'file'.

When you export data to a Microsoft Excel file, you can specify additional options using the
'overwrite', 'metadata', and 'sharetimecolumn' name-value pair arguments.
Example: 'filename',"mySpreadsheet.xlsx"

overwrite — Data to overwrite in existing Microsoft Excel file
'file' (default) | 'sheetsonly'

Data to overwrite in existing Microsoft Excel file, specified as the comma-separated pair consisting of
'overwrite' and 'file' or 'sheetsonly'.

• 'file' — Overwrite the entire file with the exported data.
• 'sheetsonly' — Only overwrite sheets of the Microsoft Excel file with data that corresponds to

the exported data.

When you export data to an existing MAT-file or MLDATX file, the exported data overwrites the entire
file.
Example: 'overwrite','sheetsonly'

2 Functions

2-804

metadata — Metadata to include in exported Microsoft Excel file
[] (default) | string array

Metadata to include in the exported Microsoft Excel file, specified as the comma-separated pair
consisting of 'metadata' and a string array. By default, the export operation does not include any
metadata. You can export this metadata to the Microsoft Excel file:

• dataType — Signal data type
• units — Signal units
• blockPath — Path to the source block for logged signals
• interp — Signal interpolation method
• portIndex — Index of the port on the source block for logged signals

You can specify the desired metadata in any order you choose in the string array. The order of the
metadata in the string array does not affect the format in the exported file, which always matches the
description in “Microsoft Excel Import, Export, and Logging Format”.
Example: 'metadata',["units","dataType"]

sharetimecolumn — Whether signals share time columns in exported Microsoft Excel file
'on' (default) | 'off'

Whether signals that have identical time data share time columns in the exported Microsoft Excel file,
specified as the comma-separated pair consisting of 'sharetimecolumn' and 'on' or 'off'. By
default, signals with the same time data share a time column in the exported file. When you specify
the value as 'off', each signal in the exported file has its own time column.
Example: 'sharetimecolumn','off'

Output Arguments
dataset — Dataset containing run data
Simulink.SimulationData.Dataset

Simulink.SimulationData.Dataset object containing the data from the run identified by runID.

Version History
Introduced in R2017a

See Also
Simulink.SimulationData.Dataset | Simulink.sdi.Run | Simulink.sdi.getAllRunIDs |
Simulink.sdi.getRunIDByIndex | Simulink.sdi.save

Topics
“Inspect and Compare Data Programmatically”
“Save and Share Simulation Data Inspector Data and Views”

 Simulink.sdi.exportRun

2-805

Simulink.sdi.getAllRunIDs
Package: Simulink.sdi

Get all Simulation Data Inspector run identifiers

Syntax
runIDs = Simulink.sdi.getAllRunIDs

Description
runIDs = Simulink.sdi.getAllRunIDs returns a matrix of the run identifiers for all runs in the
Simulation Data Inspector repository.

Examples

Get Simulation Data Inspector Run IDs

Many tasks performed using the Simulation Data Inspector programmatic interface start with
obtaining the run ID for a simulation run. This example illustrates several methods to get the run ID
for a run. You can use the run ID to access the Simulink.sdi.Run object that contains the run data
and metadata and perform run comparisons using the Simulink.sdi.compareRuns function.

Create a Run

The model sldemo_fuelsys is already configured for logging. When you simulate the model, the
Simulation Data Inspector automatically creates a run and assigns it a run ID.

load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

Get Run ID Using Simulink.sdi.getAllRunIDs

The Simulink.sdi.getAllRunIDs function returns an array of all run IDs for the runs in the
Simulation Data Inspector repository, in order, with the most recently created run at the end.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

Get Run ID Using Simulink.sdi.getRunIDByIndex

You can also use the Simulink.sdi.getRunCount and Simulink.sdi.getRunIDByIndex
functions to get the run ID for a run. This method is useful if you also want to use count as a
counting variable to index through the runs in the Simulation Data Inspector repository.

count = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(count);

Get Run ID from a Simulink.sdi.Run Object

You can also get the run ID from the Simulink.sdi.Run object that corresponds to the run. This
example uses the Simulink.sdi.getCurrentSimulationRun function to get the Run object that

2 Functions

2-806

corresponds to the most recent simulation of the sldemo_fuelsys model. You can also use the
Simulink.sdi.Run.getLatest function to access the most recently created Run object.

fuelsysRun = Simulink.sdi.getCurrentSimulationRun('sldemo_fuelsys');
runID = fuelsysRun.ID;

Output Arguments
runIDs — Matrix of Simulation Data Inspector run IDs
matrix

Matrix of run IDs in the Simulation Data Inspector repository.

Version History
Introduced in R2017a

See Also
Simulink.sdi.getRun | Simulink.sdi.Run | Simulink.sdi.compareRuns |
Simulink.sdi.copyRun | Simulink.sdi.copyRunViewSettings | Simulink.sdi.deleteRun
| Simulink.sdi.exportRun | Simulink.sdi.getRunCount | Simulink.sdi.isValidRunID

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.getAllRunIDs

2-807

Simulink.sdi.getAppendRunToTop
Get order in which Simulation Data Inspector appends run in work area or archive

Syntax
ord = Simulink.sdi.getAppendRunToTop

Description
ord = Simulink.sdi.getAppendRunToTop returns a logical value that indicates whether the
Simulation Data Inspector appends a new run above or below prior runs in the archive or work area.

• 1 — New runs are placed above prior runs in the work area or archive.
• 0 — New runs are placed below prior runs in the work area or archive.

Whether the Simulink.sdi.getAppendRunToTop function gets the order of simulations in the
archive or the work area is determined by the Automatically archive setting:

• When Automatically archive is enabled, the setting applies to runs in the archive.
• When Automatically archive is disabled, the setting applies to runs in the work area.

By default, new runs are placed below prior runs in the archive. For more information about
configuring the archive behavior, see Simulink.sdi.setAutoArchiveMode.

Examples

Change Order and Location of Runs

First, determine the order that runs are currently stored in the archive.

ord = Simulink.sdi.getAppendRunToTop

ord = logical
 0

By default, runs moved into the archive are placed below runs already in the archive. To have runs
placed above the runs already in the archive, change the value of the
Simulink.sdi.setAppendRunToTop function.

Simulink.sdi.setAppendRunToTop(true)

You can restore the original placement of runs as they move to the archive by passing ord back to the
set function.

Simulink.sdi.setAppendRunToTop(ord)

2 Functions

2-808

Output Arguments
ord — Whether Simulation Data Inspector appends new runs to top of work area or archive
true or 1 | false or 0

Whether Simulation Data Inspector appends new runs to top of work area or archive, returned as
logical 1 (true) or 0 (false).

Version History
Introduced in R2022b

See Also
Simulink.sdi.setAppendRunToTop | Simulink.sdi.getAutoArchiveMode |
Simulink.sdi.setAutoArchiveMode

Topics
“Configure the Simulation Data Inspector”

 Simulink.sdi.getAppendRunToTop

2-809

Simulink.sdi.getArchiveRunLimit
Get limit for number of runs to retain in Simulation Data Inspector archive

Syntax
limit = Simulink.sdi.getArchiveRunLimit

Description
limit = Simulink.sdi.getArchiveRunLimit returns the limit on the number of runs the
Simulation Data Inspector retains in the archive. A return of -1 indicates no limit on the number of
runs.

When you run multiple simulations in a single MATLAB session, the Simulation Data Inspector retains
results from each simulation so you can analyze the results together. Use the Simulation Data
Inspector archive to manage the number of runs the Simulation Data Inspector retains and to visually
manage runs in the user interface.

Tip To automatically limit the number of runs, configure the Simulation Data Inspector to
automatically move prior runs into the archive using the Simulink.sdi.setAutoArchiveMode
function and specify the archive run limit.

For information about how to control the amount of data logged from simulation, see “Limit the Size
of Logged Data”.

Examples

Stop Retaining Data in Simulation Data Inspector

You can configure the Simulation Data Inspector to retain only the logged data for your current
simulation. In iterative design and debugging workflows, this configuration helps prevent the
accumulation of unwanted logged data on disk.

First, check the configuration of the Simulation Data Inspector archive. Save the archive preference
values to restore your preferences after you finish designing or debugging.

limit = Simulink.sdi.getArchiveRunLimit;
mode = Simulink.sdi.getAutoArchiveMode;

Configure the Simulation Data Inspector to automatically move runs into the archive. Then, set the
archive run limit to 0.

Simulink.sdi.setAutoArchiveMode(true)
Simulink.sdi.setArchiveRunLimit(0)

When you simulate your model, the Simulation Data Inspector deletes the previous run and updates
the view to show signals from the current simulation.

2 Functions

2-810

When you finish designing or debugging your model, you can restore the Simulation Data Inspector
archive to the previous configuration.

Simulink.sdi.setArchiveRunLimit(limit)
Simulink.sdi.setAutoArchiveMode(mode)

Output Arguments
limit — Maximum number of runs to store in Simulation Data Inspector archive
numeric scalar

Maximum number of runs to store in Simulation Data Inspector archive, returned as a numeric scalar.
A value of -1 indicates no limit on the number of runs to retain in the archive.

Version History
Introduced in R2018b

See Also
Simulink.sdi.setArchiveRunLimit | Simulink.sdi.setAutoArchiveMode |
Simulink.sdi.getAutoArchiveMode

Topics
“Limit the Size of Logged Data”
“Configure the Simulation Data Inspector”

 Simulink.sdi.getArchiveRunLimit

2-811

Simulink.sdi.getAutoArchiveMode
Get Simulation Data Inspector run management mode

Syntax
archive = Simulink.sdi.getAutoArchiveMode

Description
archive = Simulink.sdi.getAutoArchiveMode returns a logical value that indicates whether
the Simulation Data Inspector automatically manages runs using the archive.

• 1 — When you start a new simulation, the Simulation Data Inspector automatically moves the
prior simulation run into the archive. In the user interface, the run moves into the collapsible
Archive pane, and plots update to show data from the current simulation.

• 0 — The Simulation Data Inspector does not manage runs automatically with the archive or
update plots.

Examples

Stop Retaining Data in Simulation Data Inspector

You can configure the Simulation Data Inspector to retain only the logged data for your current
simulation. In iterative design and debugging workflows, this configuration helps prevent the
accumulation of unwanted logged data on disk.

First, check the configuration of the Simulation Data Inspector archive. Save the archive preference
values to restore your preferences after you finish designing or debugging.

limit = Simulink.sdi.getArchiveRunLimit;
mode = Simulink.sdi.getAutoArchiveMode;

Configure the Simulation Data Inspector to automatically move runs into the archive. Then, set the
archive run limit to 0.

Simulink.sdi.setAutoArchiveMode(true)
Simulink.sdi.setArchiveRunLimit(0)

When you simulate your model, the Simulation Data Inspector deletes the previous run and updates
the view to show signals from the current simulation.

When you finish designing or debugging your model, you can restore the Simulation Data Inspector
archive to the previous configuration.

Simulink.sdi.setArchiveRunLimit(limit)
Simulink.sdi.setAutoArchiveMode(mode)

2 Functions

2-812

Output Arguments
archive — Whether Simulation Data Inspector automatically manages runs using archive
true or 1 | false or 0

Whether Simulation Data Inspector automatically manages runs using archive, returned as logical 1
(true) or 0 (false).

Version History
Introduced in R2018b

See Also
Simulink.sdi.setAutoArchiveMode | Simulink.sdi.setArchiveRunLimit |
Simulink.sdi.getArchiveRunLimit

Topics
“Limit the Size of Logged Data”
“Configure the Simulation Data Inspector”

 Simulink.sdi.getAutoArchiveMode

2-813

Simulink.sdi.getBorderOn
Get border display setting for time plots

Syntax
border = Simulink.sdi.getBorderOn

Description
border = Simulink.sdi.getBorderOn returns the current setting for whether borders are
displayed on time plots in the Simulation Data Inspector. The return value corresponds to the value of
the Show border setting on the Time Plot section of the Visualization Settings in the Simulation
Data Inspector. The setting applies to all time plots in the layout. By default, the Simulation Data
Inspector displays the border on time plots.

Examples

Configure Time Plot Border Display

You can use the Simulink.sdi.setBorderOn function to show or hide the border on time plots in
the Simulation Data Inspector. By default, the Simulation Data Inspector shows the border on time
plots.

This example starts by showing how to use the Simulink.sdi.getBorderOn function to determine
whether the border is currently displayed. Subsequent sections show the code to hide and show the
border. To show the result, the example generates an image using the Simulink.sdi.snapshot
function with settings specified by a Simulink.sdi.CustomSnapshot object.

snapSettings = Simulink.sdi.CustomSnapshot;
snapSettings.Width = 300;
snapSettings.Height = 300;

Get Current Border Display Setting

Before modifying the border display setting for time plots, you can save the current setting to a
variable in the workspace in case you want to restore the preference later.

border = Simulink.sdi.getBorderOn;

Hide the Border on Time Plots

Simulink.sdi.setBorderOn(false)
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-814

Show the Border on Time Plots

Simulink.sdi.setBorderOn(true)
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.getBorderOn

2-815

Output Arguments
border — Border display setting for time plots
true or 1 | false or 0

Border display setting for time plots in the Simulation Data Inspector, returned as true (1) or false
(0).

• true or 1 — Border displayed for time plots.
• false or 0 — Border hidden for time plots.

Version History
Introduced in R2019b

See Also
Simulink.sdi.setBorderOn | Simulink.sdi.getGridOn | Simulink.sdi.getMarkersOn |
Simulink.sdi.getTickLabelsDisplay | Simulink.sdi.getTicksPosition |
Simulink.sdi.saveView | Simulink.sdi.save

Topics
“Create Plots Using the Simulation Data Inspector”

2 Functions

2-816

Simulink.sdi.getCurrentComparison
Access results from most recent comparison

Syntax
diffRes = Simulink.sdi.getCurrentComparison

Description
diffRes = Simulink.sdi.getCurrentComparison returns the
Simulink.sdi.DiffRunResult object diffRes for the most recent comparison performed using
the Simulation Data Inspector UI or programmatic interface.

Tip When you compare data using the Simulation Data Inspector UI, results are not returned in the
workspace. You can use the Simulink.sdi.getCurrentComparison function to access results for
comparisons performed using the Simulation Data Inspector UI. When you compare data using the
Simulink.sdi.compareRuns or Simulink.sdi.compareSignals functions, the function returns
the data in a Simulink.sdi.DiffRunResult object or a Simulink.sdi.DiffSignalResult
object.

Examples

Access Results for a UI Comparison

Use the Simulink.sdi.getCurrentComparison function to access the results of the most recent
comparison to save or process further. For more information about how to compare data using the
Simulation Data Inspector UI, see “Compare Simulation Data”.

compResults = Simulink.sdi.getCurrentComparison;

Retrieve Comparison Results in a Workspace Variable

You can use the Simulink.sdi.getCurrentComparison function or the
Simulink.sdi.DiffRunResult.getResult function to retrieve the results for the most recent
comparison if you accidentally delete the returned results from the workspace using the clear
function.

If you delete the contents of the Simulation Data Inspector using the Simulink.sdi.clear
function, you cannot recover the results.

Compare Simulation Data

This example creates runs to compare by running two simulations of the model ex_vdp with different
values for Mu.

load_system('ex_vdp')

 Simulink.sdi.getCurrentComparison

2-817

set_param('ex_vdp/Mu','Gain','2');
out1 = sim('ex_vdp');

set_param('ex_vdp/Mu','Gain','5');
out2 = sim('ex_vdp');

Use the Simulink.sdi.getAllRunIDs function to access the run IDs for the runs created from the
simulations. Then use the Simulink.sdi.compareRuns function to compare the data.

IDs = Simulink.sdi.getAllRunIDs;
runID1 = IDs(end-1);
runID2 = IDs(end);

diffRun = Simulink.sdi.compareRuns(runID1,runID2);

Suppose you clear the workspace and lose the diffRun variable with the comparison results.

clear diffRun

Retrieve Comparison Data in the Workspace

Use the Simulink.sdi.getCurrentComparison function to recover the comparison results.

diffRun = Simulink.sdi.getCurrentComparison

diffRun =
 DiffRunResult with properties:

 MatlabVersion: '9.14.0.2206163 (R2023a)'
 RunID1: 362
 RunID2: 383
 BaselineRunName: 'Run 1: ex_vdp'
 CompareToRunName: 'Run 2: ex_vdp'
 Count: 2
 DateCreated: 04-Mar-2023 02:12:43
 GlobalTolerance: [1x1 struct]
 Summary: [1x1 struct]
 Options: {'Units' 'MustMatch'}
 Status: Completed
 StopReason: []

You could also use the Simulink.sdi.DiffRunResult.getLatest function to recover the results.

clear diffRun

diffRun = Simulink.sdi.DiffRunResult.getLatest

diffRun =
 DiffRunResult with properties:

 MatlabVersion: '9.14.0.2206163 (R2023a)'
 RunID1: 362
 RunID2: 383
 BaselineRunName: 'Run 1: ex_vdp'
 CompareToRunName: 'Run 2: ex_vdp'
 Count: 2
 DateCreated: 04-Mar-2023 02:12:43
 GlobalTolerance: [1x1 struct]

2 Functions

2-818

 Summary: [1x1 struct]
 Options: {'Units' 'MustMatch'}
 Status: Completed
 StopReason: []

Output Arguments
diffRes — Results of most recent comparison
Simulink.sdi.DiffRunResult object

Results of the most recent comparison, returned as a Simulink.sdi.DiffRunResult object.

Version History
Introduced in R2020a

See Also
Simulink.sdi.DiffRunResult | Simulink.sdi.DiffSignalResult |
Simulink.sdi.compareRuns

Topics
“Compare Simulation Data”

 Simulink.sdi.getCurrentComparison

2-819

Simulink.sdi.getCurrentSimulationRun
Access data for in-progress or most recently completed simulation

Syntax
runObj = Simulink.sdi.getCurrentSimulationRun(mdl)

Description
runObj = Simulink.sdi.getCurrentSimulationRun(mdl) returns the Simulink.sdi.Run
object that corresponds to the in-progress or most recently completed simulation of the model
specified by mdl. If you delete the Run object that corresponds to the most recently completed
simulation, the Simulink.sdi.getCurrentSimulationRun function returns empty.

Examples

Access Simulation Data Inspector Runs

Many tasks performed using the Simulation Data Inspector programmatic interface start by accessing
the Simulink.sdi.Run object that corresponds to the logged or imported data you want to analyze.
For example, you can use the Run object to access the Simulink.sdi.Signal objects that
correspond to individual signals in the run.

This example shows how to access Run objects by using the Simulink.sdi.Run.getLatest
function, the Simulink.sdi.getCurrentSimulationRun function, or the
Simulink.sdi.getRun function.

Create a Run

The model sldemo_fuelsys is already configured for logging. When you simulate the model, the
Simulation Data Inspector automatically creates a run and assigns it a run ID.

load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

Get Run Object Using Simulink.sdi.Run.getLatest

In this example, the run created when you simulated the model is the most recently created run in
the Simulation Data Inspector. When you want to access the most recently created run, use the
Simulink.sdi.Run.getLatest function.

fuelsysRun = Simulink.sdi.Run.getLatest;

Get Run Object Using Simulink.sdi.getCurrentSimulationRun

The run you want to access may not be the most recently created run in the Simulation Data
Inspector. If the run corresponds to the most recent simulation of a model, you can use the
Simulink.sdi.getCurrentSimulationRun function to access the Run object. You can also use
the Simulink.sdi.getCurrentSimulationRun function to access data for an in-progress

2 Functions

2-820

simulation when the simulation streams data to the Simulation Data Inspector. This function can be
useful when you are working with multiple models.

In this example, the run created when you simulated the model is the current simulation run for the
sldemo_fuelsys model.

fuelsysRun = Simulink.sdi.getCurrentSimulationRun('sldemo_fuelsys');

Get Run Object from a Run ID

When your task also requires the run ID, you can use the Simulink.sdi.getRun function to get the
corresponding Simulink.sdi.Run object that contains the run data and metadata.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
fuelsysRun = Simulink.sdi.getRun(runID);

Input Arguments
mdl — Model name
string | character vector

Name of the model that created the simulation data you want to access, specified as a string or
character array.
Example: 'vdp'
Data Types: char | string

Output Arguments
runObj — Simulink.sdi.Run object for the in-progress or most recently completed
simulation
Simulink.sdi.Run object

Simulink.sdi.Run object that corresponds to the in-progress or most recently completed
simulation.

Tips
• You can use the Simulink.sdi.getCurrentSimulationRun function to access logged data in a

StopFcn model callback function. Workspace variable data is not available when the StopFcn
callback executes, but the Run object is available because data streams to the Simulation Data
Inspector.

• You can use the Simulink.sdi.getCurrentSimulationRun function to analyze run data on
parallel workers to determine whether to send the run data to the Simulation Data Inspector.

Version History
Introduced in R2020a

 Simulink.sdi.getCurrentSimulationRun

2-821

See Also
Simulink.sdi.getAllRunIDs | Simulink.sdi.Run | Simulink.sdi.getRun |
Simulink.sdi.getRunCount | Simulink.sdi.getRunIDByIndex |
Simulink.sdi.Run.getLatest

Topics
“Inspect and Compare Data Programmatically”

2 Functions

2-822

Simulink.sdi.getCursorPositions
Get position for active cursors in the Simulation Data Inspector

Syntax
t1 = Simulink.sdi.getCursorPositions
t1 = Simulink.sdi.getCursorPositions(view)
[t1,t2] = Simulink.sdi.getCursorPositions
[t1,t2] = Simulink.sdi.getCursorPositions(view)

Description
t1 = Simulink.sdi.getCursorPositions returns the value of the leftmost active cursor in the
Inspect pane of the Simulation Data Inspector. Assign the return to a single output when one cursor
is active.

t1 = Simulink.sdi.getCursorPositions(view) returns the value of the leftmost active cursor
in the Inspect or Compare pane of the Simulation Data Inspector according to view. Assign the
return to a single output when one cursor is active.

[t1,t2] = Simulink.sdi.getCursorPositions returns the positions of the active cursors in
the Inspect pane of the Simulation Data Inspector.

[t1,t2] = Simulink.sdi.getCursorPositions(view) returns the positions of the active
cursors in the Inspect or Compare pane of the Simulation Data Inspector according to view.

Examples

Programmatically Interact with Cursors in the Simulation Data Inspector

You can use the Simulation Data Inspector programmatic interface to specify the position of cursors
on time plots or sparklines and to access the time that corresponds to the current cursor position.

Open the session file vdp_mu.mldatx to add plot data in the Simulation Data Inspector. The session
file contains data for a 20-second simulation of a model of the Van Der Pol equation, with signals x1
and x2 plotted on separate subplots in a 2-by-1 subplot layout.

open vdp_mu.mldatx;

Use the Simulink.sdi.setNumCursors function to add one cursor to the plot.

Simulink.sdi.setNumCursors(1);

Suppose you want to know the signal values 5 seconds into the simulation. Use the
Simulink.sdi.setCursorPositions function to move the cursor to t=5s and read the signal
values off from the cursor on each subplot. The asterisk next to the value in the cursor label indicates
that the value is interpolated because the simulation did not include a calculation for a simulation
time of exactly 5s.

Simulink.sdi.setCursorPositions('left',5);

 Simulink.sdi.getCursorPositions

2-823

Suppose you want to calculate the time between two peaks in the x2 signal. Add a second cursor

using the Simulink.sdi.setNumCursors function or by using Show/hide data cursors in the
Simulation Data Inspector.

numCursors = Simulink.sdi.getNumCursors;
if(numCursors < 2)
 Simulink.sdi.setNumCursors(2);
end

Drag the cursors so the left cursor is positioned at the first peak in the x2 signal and the right cursor
is positioned at the second peak. Alternatively, you can run this code that positions the cursors for
you.

Simulink.sdi.setCursorPositions('left',5.921998549931304,...
 'right',12.378442136906246);

2 Functions

2-824

The Simulation Data Inspector displays the difference between the two cursors in seconds. However,
the cursor position and difference values are both rounded. Use the
Simulink.sdi.getCursorPositions function to programmatically retrieve the exact time values
that correspond to the cursor positions. Then, compute the difference between the times.

[t1,t2] = Simulink.sdi.getCursorPositions;
T = t2 - t1

T = 6.4564

Input Arguments
view — Plot area on which to return cursor positions
'inspect' (default) | 'compare'

Plot area for which to return cursor positions, specified as 'inspect' or 'compare'.
Example: [t1,t2] = Simulink.sdi.getCursorPositions('compare') returns the positions
of two cursors on the Compare pane of the Simulation Data Inspector.
Data Types: char | string

 Simulink.sdi.getCursorPositions

2-825

Output Arguments
t1 — Left cursor position
scalar

Left cursor position, returned as a scalar. When no cursors are active in the plot area specified by
view, the value for t1 is returned as NaN.

Cursor identities are relative, not absolute. If the left cursor moves to the right of the right cursor, the
left cursor becomes the right cursor and vice versa.

t2 — Right cursor position
scalar

Right cursor position, returned as a scalar. When fewer than two cursors are active in the plot area
specified by view, the value for t1 is returned as NaN.

Cursor identities are relative, not absolute. If the left cursor moves to the right of the right cursor, the
left cursor becomes the right cursor and vice versa.

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.getNumCursors | Simulink.sdi.setCursorPositions

Topics
“Inspect Simulation Data”
“Create Plots Using the Simulation Data Inspector”

2 Functions

2-826

Simulink.sdi.getDeleteRunsOnLowSpace
Get configured behavior when size of logged data approaches configured limits

Syntax
deleteRuns = Simulink.sdi.getDeleteRunsOnLowSpace

Description
deleteRuns = Simulink.sdi.getDeleteRunsOnLowSpace returns the configured behavior for
when the size of logged data approaches a configured size limit or free disk space requirement. When
deleteRuns is true, logged data from prior simulations is deleted first to free space for continued
logging in the current simulation. If deleting prior simulation data does not free enough disk space to
continue logging through the end of the current simulation, recording data is disabled. When
deleteRuns is false, recording data from the current simulation is disabled and no logged data
from prior simulations is deleted.

Examples

Get Configured Logging Size Limits

You can limit the size of logged data by specifying a maximum size for the data or a minimum amount
of disk space to leave empty. This example uses several functions to get the current configuration of
logging size limits.

Use the Simulink.sdi.getRequiredFreeSpace function to get the configured minimum free disk
space requirement. The returned value uses units of GB.

minDiskSpace = Simulink.sdi.getRequiredFreeSpace;

Use the Simulink.sdi.getMaxDiskUsage function to get the configured maximum size for data
logged to disk. The returned value uses units of GB.

maxSize = Simulink.sdi.getMaxDiskUsage;

Use the Simulink.sdi.getDeleteRunsOnLowSpace function to get the configured behavior when
approaching the logging limits. When deleteRuns is true, data from prior simulations is deleted first
to free disk space for continued logging in the current simulation. If deleting runs does not free up
enough space, recording logged data is disabled for the current simulation. When deleteRuns is
false, recording logged data is disabled for the current simulation and data from prior simulations is
retained.

deleteRuns = Simulink.sdi.getDeleteRunsOnLowSpace;

Output Arguments
deleteRuns — Behavior when logged data size approaches configured limits
1 | 0

 Simulink.sdi.getDeleteRunsOnLowSpace

2-827

Behavior when logged data size approaches configured limits, returned as 1 (true) or 0 (false).

• true — First delete data logged from prior simulations. If deleting prior simulation data does not
free enough space, disable recording data.

• false — Disable recording data for current simulation. Do not delete prior simulation data.

When recording is disabled due to configured disk space requirements or logged data size limits, you
need to enable recording again to log data in subsequent simulations. You can configure the record
mode in the Simulation Data Inspector preferences or by using the Simulink.sdi.setRecordData
function.

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.setDeleteRunsOnLowSpace | Simulink.sdi.setMaxDiskUsage |
Simulink.sdi.getMaxDiskUsage | Simulink.sdi.setRequiredFreeSpace |
Simulink.sdi.getRequiredFreeSpace | Simulink.sdi.setRecordData |
Simulink.sdi.getRecordData

Topics
“Limit the Size of Logged Data”
“Configure the Simulation Data Inspector”

2 Functions

2-828

Simulink.sdi.getGridOn
Package: Simulink.sdi

Determine grid configuration for time plots

Syntax
grid = Simulink.sdi.getGridOn

Description
grid = Simulink.sdi.getGridOn returns the grid configuration for time plots in the Simulation
Data Inspector. By default, the Simulation Data Inspector shows horizontal and vertical grid lines.

Examples

Configure Grid for Time Plots in the Simulation Data Inspector

You can use Simulink.sdi.setGridOn to configure the appearance of the grid for time plots in the
Simulation Data Inspector. By default, the Simulation Data Inspector shows horizontal and vertical
grid lines.

This example starts by showing how to use Simulink.sdi.getGridOn to access the current grid
configuration. The subsequent sections show the code for each configuration option for time plot grid
in the Simulation Data Inspector. To see the result, the example uses a
Simulink.sdi.CustomSnapshot object to specify settings for the output of the
SImulink.sdi.snapshot function.

snapSettings = Simulink.sdi.CustomSnapshot;
snapSettings.Width = 300;
snapSettings.Height = 300;

Get Initial Grid Setting

Before modifying the grid display preferences, you can save the current configuration to a variable in
the workspace in case you want to restore the preferences later.

gridInit = Simulink.sdi.getGridOn;

Configure Horizontal Grid Lines

Show only horizontal grid lines in the Simulation Data Inspector.

Simulink.sdi.setGridOn('horizontal')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.getGridOn

2-829

Configure Vertical Grid Lines

Show only vertical grid lines in the Simulation Data Inspector.

Simulink.sdi.setGridOn('vertical')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-830

Configure No Grid Lines

Show no grid lines in the Simulation Data Inspector.

Simulink.sdi.setGridOn('off')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.getGridOn

2-831

Configure Horizontal and Vertical Grid Lines

Show horizontal and vertical grid lines in the Simulation Data Inspector.

Simulink.sdi.setGridOn('on')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-832

Output Arguments
grid — Time plot grid configuration
'on' (default) | 'horizontal' | 'vertical' | 'off'

Grid configuration for time plots in the Simulation Data Inspector.

• 'on' — Horizontal and vertical grid lines are shown on time plots in the Simulation Data
Inspector.

• 'horizontal' — Only horizontal grid lines are shown on time plots in the Simulation Data
Inspector.

• 'vertical' — Only vertical grid lines are shown on time plots in the Simulation Data Inspector.
• 'off' — No grid lines are shown on time plots in the Simulation Data Inspector.

Version History
Introduced in R2019a

R2019b: Simulink.sdi.getGridOn return values have changed
Behavior changed in R2019b

Starting in R2019b, the Simulink.sdi.getGridOn return values changed to:

• 'on'
• 'horizontal'

 Simulink.sdi.getGridOn

2-833

• 'vertical'
• 'off'

In R2019a, the Simulink.sdi.getGridOn returned a logical value:

• true or 1 — Horizontal and vertical grid lines are shown on time plots in the Simulation Data
Inspector.

• false or 0 — Horizontal and vertical grid lines are hidden on time plots in the Simulation Data
Inspector.

Starting in R2019b, the 'on' return value is equivalent to the true or 1 return, and the 'off'
return value is equivalent to the false or 0 return.

See Also
Simulink.sdi.setGridOn | Simulink.sdi.getBorderOn | Simulink.sdi.getMarkersOn |
Simulink.sdi.getTicksPosition | Simulink.sdi.getTickLabelsDisplay |
Simulink.sdi.clearPreferences | Simulink.sdi.saveView | Simulink.sdi.save

Topics
“Create Plots Using the Simulation Data Inspector”
“View Data in the Simulation Data Inspector”

2 Functions

2-834

Simulink.sdi.getMarkersOn
Package: Simulink.sdi

Determine if data markers are shown in the Simulation Data Inspector

Syntax
markersOn = Simulink.sdi.getMarkersOn

Description
markersOn = Simulink.sdi.getMarkersOn returns a logical value indicating whether data
markers are displayed on plots in the Simulation Data Inspector.

Examples

Store Marker State

You can check and store the value of the Show markers setting in the Simulation Data Inspector
from the command window or in a script.

markersOn = Simulink.sdi.getMarkersOn;

Output Arguments
markersOn — Logical indication of marker state
false or 0 (default) | true or 1

Logical indication of whether markers are displayed on plots in the Simulation Data Inspector.

• true or 1 indicates that markers are displayed.
• false or 0 indicates that markers are not displayed.

Version History
Introduced in R2017b

See Also
Simulink.sdi.setMarkersOn | Simulink.sdi.getBorderOn | Simulink.sdi.getGridOn |
Simulink.sdi.getTicksPosition | Simulink.sdi.getTickLabelsDisplay |
Simulink.sdi.clearPreferences | Simulink.sdi.saveView | Simulink.sdi.save

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.getMarkersOn

2-835

Simulink.sdi.getMaxDiskUsage
Get configured maximum size for data logged to disk

Syntax
maxSize = Simulink.sdi.getMaxDiskUsage

Description
maxSize = Simulink.sdi.getMaxDiskUsage returns the maximum size configured for data
logged to disk, in units of GB.

Examples

Get Configured Logging Size Limits

You can limit the size of logged data by specifying a maximum size for the data or a minimum amount
of disk space to leave empty. This example uses several functions to get the current configuration of
logging size limits.

Use the Simulink.sdi.getRequiredFreeSpace function to get the configured minimum free disk
space requirement. The returned value uses units of GB.

minDiskSpace = Simulink.sdi.getRequiredFreeSpace;

Use the Simulink.sdi.getMaxDiskUsage function to get the configured maximum size for data
logged to disk. The returned value uses units of GB.

maxSize = Simulink.sdi.getMaxDiskUsage;

Use the Simulink.sdi.getDeleteRunsOnLowSpace function to get the configured behavior when
approaching the logging limits. When deleteRuns is true, data from prior simulations is deleted first
to free disk space for continued logging in the current simulation. If deleting runs does not free up
enough space, recording logged data is disabled for the current simulation. When deleteRuns is
false, recording logged data is disabled for the current simulation and data from prior simulations is
retained.

deleteRuns = Simulink.sdi.getDeleteRunsOnLowSpace;

Output Arguments
maxSize — Maximum size configured for data logged to disk
scalar

Maximum size configured for data logged to disk, returned as a scalar, in units of GB.

2 Functions

2-836

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.setMaxDiskUsage | Simulink.sdi.setRequiredFreeSpace |
Simulink.sdi.getRequiredFreeSpace | Simulink.sdi.setDeleteRunsOnLowSpace |
Simulink.sdi.getDeleteRunsOnLowSpace | Simulink.sdi.setRecordData |
Simulink.sdi.getRecordData

Topics
“Limit the Size of Logged Data”
“Configure the Simulation Data Inspector”

 Simulink.sdi.getMaxDiskUsage

2-837

Simulink.sdi.getNumCursors
Check number of cursors active in the Simulation Data Inspector

Syntax
num = Simulink.sdi.getNumCursors
num = Simulink.sdi.getNumCursors(view)

Description
num = Simulink.sdi.getNumCursors returns the number of active cursors in the Inspect pane
of the Simulation Data Inspector.

num = Simulink.sdi.getNumCursors(view) returns the number of active cursors in the
Inspect or Compare pane of the Simulation Data Inspector, as specified by view.

Examples

Programmatically Interact with Cursors in the Simulation Data Inspector

You can use the Simulation Data Inspector programmatic interface to specify the position of cursors
on time plots or sparklines and to access the time that corresponds to the current cursor position.

Open the session file vdp_mu.mldatx to add plot data in the Simulation Data Inspector. The session
file contains data for a 20-second simulation of a model of the Van Der Pol equation, with signals x1
and x2 plotted on separate subplots in a 2-by-1 subplot layout.

open vdp_mu.mldatx;

Use the Simulink.sdi.setNumCursors function to add one cursor to the plot.

Simulink.sdi.setNumCursors(1);

Suppose you want to know the signal values 5 seconds into the simulation. Use the
Simulink.sdi.setCursorPositions function to move the cursor to t=5s and read the signal
values off from the cursor on each subplot. The asterisk next to the value in the cursor label indicates
that the value is interpolated because the simulation did not include a calculation for a simulation
time of exactly 5s.

Simulink.sdi.setCursorPositions('left',5);

2 Functions

2-838

Suppose you want to calculate the time between two peaks in the x2 signal. Add a second cursor

using the Simulink.sdi.setNumCursors function or by using Show/hide data cursors in the
Simulation Data Inspector.

numCursors = Simulink.sdi.getNumCursors;
if(numCursors < 2)
 Simulink.sdi.setNumCursors(2);
end

Drag the cursors so the left cursor is positioned at the first peak in the x2 signal and the right cursor
is positioned at the second peak. Alternatively, you can run this code that positions the cursors for
you.

Simulink.sdi.setCursorPositions('left',5.921998549931304,...
 'right',12.378442136906246);

 Simulink.sdi.getNumCursors

2-839

The Simulation Data Inspector displays the difference between the two cursors in seconds. However,
the cursor position and difference values are both rounded. Use the
Simulink.sdi.getCursorPositions function to programmatically retrieve the exact time values
that correspond to the cursor positions. Then, compute the difference between the times.

[t1,t2] = Simulink.sdi.getCursorPositions;
T = t2 - t1

T = 6.4564

Input Arguments
view — Plot area for which to return number of active cursors
'inspect' (default) | 'compare'

Plot area for which to return number of active cursors, specified as 'inspect' or 'compare'.
Data Types: char | string

2 Functions

2-840

Output Arguments
num — Number of active cursors
0 | 1 | 2

Number of active cursors, returned as 0, 1, or 2.

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.getCursorPositions | Simulink.sdi.setNumCursors

Topics
“Inspect Simulation Data”
“Create Plots Using the Simulation Data Inspector”

 Simulink.sdi.getNumCursors

2-841

Simulink.sdi.getPosition
Get position and size of Simulation Data Inspector

Syntax
pos = Simulink.sdi.getPosition

Description
pos = Simulink.sdi.getPosition returns a four-element vector in the form [left bottom
width height] indicating the position and size of the Simulation Data Inspector window. If the
Simulation Data Inspector is not open, Simulink.sdi.getPosition returns [0 0 0 0].

Examples

Change Position of Simulation Data Inspector

This example shows you how to change the position and size of the Simulation Data Inspector
window. First, open the Simulation Data Inspector.

Simulink.sdi.view

Set the Simulation Data Inspector window to be:

• 800 pixels wide
• 500 pixels high
• 200 pixels from the left edge of your primary display
• 60 pixels from the bottom of your primary display

pos = [200 60 800 500];
Simulink.sdi.setPosition(pos)

Alternatively, you can move and resize the Simulation Data Inspector manually. To use this placement
in future simulations, retrieve the position vector using the function Simulink.sdi.getPosition.

newPos = Simulink.sdi.getPosition

newPos = 1×4

 200 60 800 500

Output Arguments
pos — Position and size of Simulation Data Inspector
[left bottom width height]

2 Functions

2-842

Position and size of the Simulation Data Inspector window, specified as a four-element vector in the
form [left bottom width height]. All measurements have units of pixels.

Element Description
left Distance from the left edge of the primary display

to the inner-left edge of the window. This value
can be negative on systems that have more than
one monitor.

bottom Distance from the bottom edge of the primary
display to the inner-bottom edge of the window.
This value can be negative on systems that have
more than one monitor.

width Distance between the right and left inner edges
of the window.

height Distance between the top and bottom inner edges
of the window.

Version History
Introduced in R2022b

See Also
Simulink.sdi.setPosition | Simulink.sdi.view | Simulink.sdi.close

Topics
“Create Plots Using the Simulation Data Inspector”

 Simulink.sdi.getPosition

2-843

Simulink.sdi.getRecordData
Check record mode for logging

Syntax
record = Simulink.sdi.getRecordData

Description
record = Simulink.sdi.getRecordData returns the currently configured value for the Record
mode in the Simulation Data Inspector preferences. When record is true or 1, logged data is
available to view during simulation and is recorded to the Simulation Data Inspector and workspace
for analysis after simulation. When record is false or 0, logged data is not recorded and is only
available to view during simulation.

Examples

Check Record Mode for Logging

You can use the Simulink.sdi.getRecordData function to check the configuration before starting
a simulation to ensure you record data you want to save.

record = Simulink.sdi.getRecordData

record =

 logical

 1

The Record mode setting is restored to View and record data at the start of each MATLAB session.

Output Arguments
record — Record mode
1 | 0

Record mode, returned as 1 (true) or 0 (false).

• 1 — Logged data is stored on disk and available in the workspace and Simulation Data Inspector
after simulation.

• 0 — Logged data is not stored on disk and is only available to view during simulation. After
simulation, no logged data is available in the Simulation Data Inspector or workspace. For more
information, see “View Data Only During Simulation”.

Version History
Introduced in R2021a

2 Functions

2-844

See Also
Functions
Simulink.sdi.setRecordData

Topics
“Configure the Simulation Data Inspector”
“Specify Signal Values to Log”

 Simulink.sdi.getRecordData

2-845

Simulink.sdi.getRequiredFreeSpace
Get configured minimum disk space requirement for logging

Syntax
minDiskSpace = Simulink.sdi.getRequiredFreeSpace

Description
minDiskSpace = Simulink.sdi.getRequiredFreeSpace returns the minimum free disk space
requirement configured for logging, in units of GB.

Examples

Get Configured Logging Size Limits

You can limit the size of logged data by specifying a maximum size for the data or a minimum amount
of disk space to leave empty. This example uses several functions to get the current configuration of
logging size limits.

Use the Simulink.sdi.getRequiredFreeSpace function to get the configured minimum free disk
space requirement. The returned value uses units of GB.

minDiskSpace = Simulink.sdi.getRequiredFreeSpace;

Use the Simulink.sdi.getMaxDiskUsage function to get the configured maximum size for data
logged to disk. The returned value uses units of GB.

maxSize = Simulink.sdi.getMaxDiskUsage;

Use the Simulink.sdi.getDeleteRunsOnLowSpace function to get the configured behavior when
approaching the logging limits. When deleteRuns is true, data from prior simulations is deleted first
to free disk space for continued logging in the current simulation. If deleting runs does not free up
enough space, recording logged data is disabled for the current simulation. When deleteRuns is
false, recording logged data is disabled for the current simulation and data from prior simulations is
retained.

deleteRuns = Simulink.sdi.getDeleteRunsOnLowSpace;

Output Arguments
minDiskSpace — Minimum free disk space requirement for logging
scalar

Minimum free disk space requirement for logging, returned as a scalar, in units of GB.

2 Functions

2-846

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.setRequiredFreeSpace | Simulink.sdi.setMaxDiskUsage |
Simulink.sdi.getMaxDiskUsage | Simulink.sdi.setDeleteRunsOnLowSpace |
Simulink.sdi.getDeleteRunsOnLowSpace | Simulink.sdi.setRecordData |
Simulink.sdi.getRecordData

Topics
“Limit the Size of Logged Data”
“Configure the Simulation Data Inspector”

 Simulink.sdi.getRequiredFreeSpace

2-847

Simulink.sdi.getRun
Package: Simulink.sdi

Access data for a Simulation Data Inspector run

Syntax
run = Simulink.sdi.getRun(runID)

Description
run = Simulink.sdi.getRun(runID) returns a Simulink.sdi.Run object that provides access
to the data in the run corresponding to the runID. The Simulation Data Inspector assigns run IDs
when it creates a run. You can get the run ID for your run using Simulink.sdi.getAllRunIDs or
Simulink.sdi.getRunIDByIndex.

Examples

Access Simulation Data Inspector Runs

Many tasks performed using the Simulation Data Inspector programmatic interface start by accessing
the Simulink.sdi.Run object that corresponds to the logged or imported data you want to analyze.
For example, you can use the Run object to access the Simulink.sdi.Signal objects that
correspond to individual signals in the run.

This example shows how to access Run objects by using the Simulink.sdi.Run.getLatest
function, the Simulink.sdi.getCurrentSimulationRun function, or the
Simulink.sdi.getRun function.

Create a Run

The model sldemo_fuelsys is already configured for logging. When you simulate the model, the
Simulation Data Inspector automatically creates a run and assigns it a run ID.

load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

Get Run Object Using Simulink.sdi.Run.getLatest

In this example, the run created when you simulated the model is the most recently created run in
the Simulation Data Inspector. When you want to access the most recently created run, use the
Simulink.sdi.Run.getLatest function.

fuelsysRun = Simulink.sdi.Run.getLatest;

Get Run Object Using Simulink.sdi.getCurrentSimulationRun

The run you want to access may not be the most recently created run in the Simulation Data
Inspector. If the run corresponds to the most recent simulation of a model, you can use the
Simulink.sdi.getCurrentSimulationRun function to access the Run object. You can also use

2 Functions

2-848

the Simulink.sdi.getCurrentSimulationRun function to access data for an in-progress
simulation when the simulation streams data to the Simulation Data Inspector. This function can be
useful when you are working with multiple models.

In this example, the run created when you simulated the model is the current simulation run for the
sldemo_fuelsys model.

fuelsysRun = Simulink.sdi.getCurrentSimulationRun('sldemo_fuelsys');

Get Run Object from a Run ID

When your task also requires the run ID, you can use the Simulink.sdi.getRun function to get the
corresponding Simulink.sdi.Run object that contains the run data and metadata.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
fuelsysRun = Simulink.sdi.getRun(runID);

Plot Signals from Simulation Run

This example demonstrates how to access the Simulink.sdi.Run object for a Simulation Data
Inspector run created by logging signals. From the Simulink.sdi.Run object you can get
Simulink.sdi.Signal objects that contain the logged signal data and metadata. You can use the
Signal objects and the plotOnSubPlot function to plot the data in the Simulation Data Inspector.

Create a Simulation Run and Access the Run Object

The ex_vdp model logs two signals. To create a simulation run containing the logged data, simulate
the model.

sim('ex_vdp');

The Simulation Data Inspector keeps track of runs by assigning a unique numeric run ID to each run
created by simulation, importing data, or opening a session. To access the run object for the
simulation you just performed, use the Simulink.sdi.getAllRunIDs function and take the last
run ID in the returned vector.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

Once you have the run ID for the run, you can use the Simulink.sdi.getRun function to get the
Simulink.sdi.Run object that corresponds to the run. You can use the Run object to check the
metadata associated with the run, including the number of signals in the run.

vdpRun = Simulink.sdi.getRun(runID);

vdpRun.SignalCount

ans = int32
 2

Plot Data Using Signal Objects

Use the getSignalByIndex function to access signals from the Run object, vdpRun.

signal1 = getSignalByIndex(vdpRun,1);
signal2 = getSignalByIndex(vdpRun,2);

 Simulink.sdi.getRun

2-849

Use the Simulink.sdi.setSubPlotLayout function to specify a 2-by-1 layout.

Simulink.sdi.setSubPlotLayout(2,1)

Before plotting the data, use the Simulink.sdi.clearAllSubPlots function to clear any data that
is already plotted.

Simulink.sdi.clearAllSubPlots

Plot one signal on each subplot. To plot signals on the first subplot, you can set the checked property
for the signal. To plot signals on subplots other than the first subplot, use the plotOnSubPlot
function.

signal1.Checked = true;
plotOnSubPlot(signal2,2,1,true);

View the Plotted Data

To view the plots you just created, open the Simulation Data Inspector using the
Simulink.sdi.view function.

Input Arguments
runID — Numeric run identifier
scalar

2 Functions

2-850

Run ID for the run you want a Simulink.sdi.Run object for. The Simulation Data Inspector assigns
run IDs when it creates runs. You can get the run ID for a run using Simulink.sdi.getAllRunIDs
or Simulink.sdi.getRunIDByIndex.

Output Arguments
run — Simulink.sdi.Run object
'Simulink.sdi.Run'

Simulink.sdi.Run object for the run corresponding to the run ID.

Version History
Introduced in R2011b

See Also
Simulink.sdi.getCurrentSimulationRun | Simulink.sdi.Run.getLatest |
Simulink.sdi.Run | Simulink.sdi.getAllRunIDs | Simulink.sdi.getRunIDByIndex |
Simulink.sdi.createRun

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.getRun

2-851

Simulink.sdi.getRunCount
Package: Simulink.sdi

Get number of runs in Simulation Data Inspector repository

Syntax
count = Simulink.sdi.getRunCount

Description
count = Simulink.sdi.getRunCount returns the number of runs in the Simulation Data
Inspector repository. You can use the run count to loop over all runs in the Simulation Data Inspector
repository to modify run or signal properties. For example, you could add an absolute tolerance to a
signal in every run.

Examples

Apply a Tolerance to a Signal in Multiple Runs

You can use the Simulation Data Inspector programmatic interface to modify a parameter for the
same signal in multiple runs. This example adds an absolute tolerance of 0.1 to a signal in all four
runs of data.

First, clear the workspace and load the Simulation Data Inspector session with the data. The session
includes logged data from four simulations of a Simulink® model of a longitudinal controller for an
aircraft.

Simulink.sdi.clear
Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.getRunCount function to get the number of runs in the Simulation Data
Inspector. You can use this number as the index for a for loop that operates on each run.

count = Simulink.sdi.getRunCount;

Then, use a for loop to assign the absolute tolerance of 0.1 to the first signal in each run.

for a = 1:count
 runID = Simulink.sdi.getRunIDByIndex(a);
 aircraftRun = Simulink.sdi.getRun(runID);
 sig = getSignalByIndex(aircraftRun,1);
 sig.AbsTol = 0.1;
end

Output Arguments
count — Number of runs
scalar

2 Functions

2-852

Number of runs in the Simulation Data Inspector repository.

Version History
Introduced in R2011b

See Also
Simulink.sdi.getRunIDByIndex | Simulink.sdi.getAllRunIDs | Simulink.sdi.getRun |
Simulink.sdi.Run | Simulink.sdi.Signal

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.getRunCount

2-853

Simulink.sdi.getRunIDByIndex
Package: Simulink.sdi

Use Simulation Data Inspector run index to get run ID

Syntax
runID = Simulink.sdi.getRunIDByIndex(index)

Description
runID = Simulink.sdi.getRunIDByIndex(index) returns the run ID for the run with the
specified index in the Simulation Data Inspector repository.

Examples

Get Simulation Data Inspector Run IDs

Many tasks performed using the Simulation Data Inspector programmatic interface start with
obtaining the run ID for a simulation run. This example illustrates several methods to get the run ID
for a run. You can use the run ID to access the Simulink.sdi.Run object that contains the run data
and metadata and perform run comparisons using the Simulink.sdi.compareRuns function.

Create a Run

The model sldemo_fuelsys is already configured for logging. When you simulate the model, the
Simulation Data Inspector automatically creates a run and assigns it a run ID.

load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

Get Run ID Using Simulink.sdi.getAllRunIDs

The Simulink.sdi.getAllRunIDs function returns an array of all run IDs for the runs in the
Simulation Data Inspector repository, in order, with the most recently created run at the end.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

Get Run ID Using Simulink.sdi.getRunIDByIndex

You can also use the Simulink.sdi.getRunCount and Simulink.sdi.getRunIDByIndex
functions to get the run ID for a run. This method is useful if you also want to use count as a
counting variable to index through the runs in the Simulation Data Inspector repository.

count = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(count);

Get Run ID from a Simulink.sdi.Run Object

You can also get the run ID from the Simulink.sdi.Run object that corresponds to the run. This
example uses the Simulink.sdi.getCurrentSimulationRun function to get the Run object that

2 Functions

2-854

corresponds to the most recent simulation of the sldemo_fuelsys model. You can also use the
Simulink.sdi.Run.getLatest function to access the most recently created Run object.

fuelsysRun = Simulink.sdi.getCurrentSimulationRun('sldemo_fuelsys');
runID = fuelsysRun.ID;

Input Arguments
index — Run index in Simulation Data Inspector
integer

Positive, whole number index of the run in the Simulation Data Inspector repository.
Example: 3

Output Arguments
runID — Numeric run identifier
scalar

Numeric run identification assigned by the Simulation Data Inspector.

Version History
Introduced in R2011b

See Also
Simulink.sdi.getRun | Simulink.sdi.compareRuns | Simulink.sdi.Run |
Simulink.sdi.copyRun | Simulink.sdi.deleteRun | Simulink.sdi.getRunCount |
Simulink.sdi.isValidRunID

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.getRunIDByIndex

2-855

Simulink.sdi.getRunNamingRule
Package: Simulink.sdi

Get the Simulation Data Inspector rule for naming runs

Syntax
namingRule = Simulink.sdi.getRunNamingRule

Description
namingRule = Simulink.sdi.getRunNamingRule returns the run naming rule as a character
vector. The run naming rule can contain one or more tokens that update for each run, for example,
<run_index>. The run naming rule applies to runs automatically created through simulating a
model in Simulink.

Examples

Modify Run Naming Rule Then Restore Default

This example shows how to use the Simulation Data Inspector API to modify the Simulation Data
Inspector run naming rule, check a run's name, restore default preferences, and check the run
naming rule.

% Load model
load_system('sldemo_fuelsys')

% Modify run naming rule
Simulink.sdi.setRunNamingRule('<model_name> Run <run_index>')

% Simulate system
sim('sldemo_fuelsys')

% Check run name
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
fuelRun = Simulink.sdi.getRun(runID);
fuelRun.name

ans =
'sldemo_fuelsys Run 1'

% Clear preferences to reset the run naming rule
Simulink.sdi.clearPreferences

% Check run naming rule
Simulink.sdi.getRunNamingRule

ans =
'Run <run_index>: <model_name>'

2 Functions

2-856

Output Arguments
namingRule — Naming rule for Simulation Data Inspector runs
character vector

Character vector that specifies the naming rule the Simulation Data Inspector uses to name the runs
automatically created through simulating a Simulink model. The run naming rule can contain any of
the following tokens that represent information pulled for each run:

• <run_index> – Run's index in the Simulation Data Inspector repository.
• <model_name> – Name of the model simulated to create the run.
• <time_stamp> – Start time for the simulation that created the run.
• <sim_mode> – Simulation mode used for the simulation that created the run.

Alternatives
You can view the run naming rule using the Simulation Data Inspector UI. You can find the New Run
options under the Simulation Data Inspector Preferences menu.

Version History
Introduced in R2015a

See Also
Simulink.sdi.setRunNamingRule | Simulink.sdi.resetRunNamingRule |
Simulink.sdi.Run | Simulink.sdi.clearPreferences

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.getRunNamingRule

2-857

Simulink.sdi.getSignal
Package: Simulink.sdi

Get Simulink.sdi.Signal object for a signal

Syntax
signalObj = Simulink.sdi.getSignal(sigID)

Description
signalObj = Simulink.sdi.getSignal(sigID) returns a Simulink.sdi.Signal object for
the signal in the Simulation Data Inspector that corresponds to the signal ID, sigID.

Examples

Create a Simulation Data Inspector Run and Access Signal Data

This example shows how to access signal data when you create a run in the Simulation Data
Inspector.

Generate Data for Run

For this example, create timeseries data for sine and cosine signals.

% Create timeseries workspace data
time = linspace(0, 20, 101);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Return Signal IDs

You can use the Simulink.sdi.createRun syntax with multiple return arguments to get the signal
IDs more directly instead of accessing the signal IDs through a Simulink.sdi.Run object.

[runID,runIndex,sigIDs] = Simulink.sdi.createRun('Sinusoids','vars',...
 sine_ts,cos_ts);

cosID = sigIDs(2);
cosSig = Simulink.sdi.getSignal(cosID);

Modify Signal Properties and View in the Simulation Data Inspector

You can use the Simulink.sdi.Signal object to view and modify signal properties and to plot
signals in the Simulation Data Inspector.

2 Functions

2-858

cosSig.Checked = true;
cosSig.AbsTol = 0.05;
Simulink.sdi.view
cosSig.Name

Input Arguments
sigID — Signal ID
scalar

Unique, numeric signal identifier, specified as an integer. The Simulation Data Inspector assigns a
signal ID to each signal when a run is created. You can get the signal ID for a signal using one of
these functions:

• getAllSignalIDs
• getSignalIDByIndex
• getSignalIDsByName
• Simulink.sdi.createRun

Output Arguments
signalObj — Simulink.sdi.Signal object
Simulink.sdi.Signal object

Signal that corresponds to the signal ID, sigID, returned as a Simulink.sdi.Signal object.

Version History
Introduced in R2011b

See Also
Objects
Simulink.sdi.Signal | Simulink.sdi.Run

Functions
getSignalIDByIndex | Simulink.sdi.createRun

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.getSignal

2-859

Simulink.sdi.getSignalInputProcessingMode
Get value of Input Processing signal property

Syntax
inputMode = Simulink.sdi.getSignalInputProcessingMode(blkPath,port)
inputMode = Simulink.sdi.getSignalInputProcessingMode(h)

Description
inputMode = Simulink.sdi.getSignalInputProcessingMode(blkPath,port) returns the
value of the Input Processing property for the signal produced by the specified block and port. The
Input Processing property specifies whether to log the signal as sample-based or frame-based.

inputMode = Simulink.sdi.getSignalInputProcessingMode(h) returns the value of the
Input Processing property for the signal that corresponds to the specified line handle, h.

Examples

Check Signal Input Processing Setting Using Block Path

Check the value of the Input Processing property for the output signal of the Gain block Mu in the
model vdp using the block path and the index of the output port that produces the signal.

open_system('vdp')
MuInputProc = Simulink.sdi.getSignalInputProcessingMode('vdp/Mu',1);

Check Signal Input Processing Setting Using Line Handle

Check the value of the Input Processing property for the output signal of the Gain block Mu in the
model vdp using the line handle for the signal.

open_system('vdp')
MuLineHandles = get_param('vdp/Mu','LineHandles');
MuOutputHandle = MuLineHandles.Outport;
MuInputProc = Simulink.sdi.getSignalInputProcessingMode(MuOutputHandle);

Input Arguments
blkPath — Block path for block that produces signal
string | character vector

Block path for the block that produces the signal, specified as a string or a character vector.
Example: "vdp/Mu"

port — Index of block output port that produces signal
scalar

2 Functions

2-860

Index of block output port that produces signal, specified as a numeric scalar.
Example: 1

h — Signal
line handle

Signal, specified as a line handle. To get the line handle for a signal, use the get_param function
with the 'LineHandles' option. For example, to access the line handle for the output of the Mu
block in the model vdp, use:

MuLineHandles = get_param('vdp/Mu','LineHandles');
MuOutputLineHandle = MuLineHandles.Outport;

Output Arguments
inputMode — Input processing used for signal
'sample' | 'frame'

Input processing used for signal, returned as 'sample' or 'frame'.

Signal Input Processing setting.

• 'sample' — Each element in a sample is treated as a channel.
• frame — Each column in a sample is treated as a channel.

Version History
Introduced in R2020a

See Also
get_param | Simulink.sdi.markSignalForStreaming |
Simulink.sdi.setSignalInputProcessingMode

Topics
“Analyze Multidimensional Signal Data”

 Simulink.sdi.getSignalInputProcessingMode

2-861

Simulink.sdi.getStorageLocation
Get path to custom storage location for data logged to disk

Syntax
storagePath = Simulink.sdi.getStorageLocation

Description
storagePath = Simulink.sdi.getStorageLocation returns the configured custom location to
store data logged to disk. When data logs to the temporary directory on your computer, the
Simulink.sdi.getStorageLocation function returns an empty character array.

Note The location returned by the Simulink.sdi.getStorageLocation function applies for data
logged to the workspace and Simulation Data Inspector and is not the location of the file created for
data logged to a file.

Examples

Check Custom Storage Location

By default, data logged to the workspace and the Simulation Data Inspector is stored in the
temporary directory on your computer. You may want to change the location of logged data when you
need to log large amounts of data and a secondary drive provides more storage capacity. When you
specify a custom storage location for logged data, you can use the
Simulink.sdi.getStorageLocation function to access the path to the temporary file that
contains the logged data.

storagePath = Simulink.sdi.getStorageLocation;

storagePath =

 'C:\Users\username\LoggedData'

Output Arguments
storagePath — Location of data logged to disk
character vector

Location of data logged to disk, returned as a character vector. An empty character vector indicates
that the data is logged to the temporary directory on your computer.

Version History
Introduced in R2021a

2 Functions

2-862

See Also
Functions
Simulink.sdi.setStorageLocation | Simulink.sdi.setStorageMode |
Simulink.sdi.getStorageMode

Topics
“Configure the Simulation Data Inspector”

 Simulink.sdi.getStorageLocation

2-863

Simulink.sdi.getStorageMode
Check if logging is configured to log data to disk or memory

Syntax
storageMode = Simulink.sdi.getStorageMode

Description
storageMode = Simulink.sdi.getStorageMode returns the configured logging storage mode
as 'disk' or 'memory'. By default, data logged to the workspace and the Simulation Data Inspector
is logged to disk.

Examples

Check Whether Data Logs to Disk or Memory

You can configure whether data logged in simulation logs to memory or to disk. By default, data is
logged to disk and brought into memory on demand. If your machine has more RAM than disk space,
you may want to log data to memory instead.

Use the Simulink.sdi.getStorageMode function to check whether logging is configured to store
logged data on disk or in memory.

storageMode = Simulink.sdi.getStorageMode

storageMode =

 'disk'

Output Arguments
storageMode — Where logged simulation data is stored on your machine
'disk' | 'memory'

Where logged simulation data is stored on your machine, returned as 'disk' or 'memory'.

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.setStorageMode | Simulink.sdi.setStorageLocation |
Simulink.sdi.getStorageLocation

2 Functions

2-864

Topics
“Configure the Simulation Data Inspector”

 Simulink.sdi.getStorageMode

2-865

Simulink.sdi.getSubplotLimits
Get t- and y-axis limits for time plot in the Simulation Data Inspector

Syntax
[tMin,tMax,yMin,yMax] = Simulink.sdi.getSubplotLimits(r,c)

Description
[tMin,tMax,yMin,yMax] = Simulink.sdi.getSubplotLimits(r,c) returns the t- and y-axis
limits for the subplot at the specified location in the Simulation Data Inspector subplot layout.

Examples

Copy y-Axis Range from One Subplot to Another

You can use the Simulink.sdi.getSubplotLimits and Simulink.sdi.setSubplotLimits
functions to copy the axis limits from one subplot to another. For example, you can specify the same
y-axis limits for two subplots that display the same signal from simulations that used different values
of a model parameter. This example copies the y-axis settings from one subplot to another to analyze
the effect of changing the value of Mu in the model vdp.

Create the data in the Simulation Data Inspector by simulating the model vdp twice. The first time,
specify the value of Mu as 1. For the second simulation, set the value of Mu to 2. The model logs data
for the signals x1 and x2.

open_system("vdp");
set_param("vdp/Mu","Gain","1")
sim("vdp");

set_param("vdp/Mu","Gain","2")
sim("vdp");

Open the Simulation Data Inspector.

Simulink.sdi.view

Create plots in the Simulation Data Inspector to show the results from each simulation. Configure a
2x2 subplot layout so you can plot one signal on each plot, side by side.

Simulink.sdi.setSubPlotLayout(2,2)

Get the Simulink.sdi.Signal objects that correspond to each signal from each run, and plot one
signal on each subplot. Plot the signals from the first simulation on the subplots in the first column
and the signals from the second simulation on the subplots in the second column.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end-1);
runID2 = runIDs(end);

2 Functions

2-866

runMu1 = Simulink.sdi.getRun(runID1);
runMu2 = Simulink.sdi.getRun(runID2);

sig1 = getSignalByIndex(runMu1,1);
sig2 = getSignalByIndex(runMu1,2);
sig3 = getSignalByIndex(runMu2,1);
sig4 = getSignalByIndex(runMu2,2);

plotOnSubPlot(sig1,1,1,true);
plotOnSubPlot(sig2,2,1,true);
plotOnSubPlot(sig3,1,2,true);
plotOnSubPlot(sig4,2,2,true);

The signals in the first column of plots look similar to those in the second column. However, the y-axis
limits for the plots of the x2 signal are different.

 Simulink.sdi.getSubplotLimits

2-867

Use the Simulink.sdi.getSubplotLimits function to copy the limits used for the subplot with
the x2 signal from the second simulation.

[~,~,ymin,ymax] = Simulink.sdi.getSubplotLimits(2,2);

Use the Simulink.sdi.setSubplotLimits function to apply the same y-axis limits to the subplot
with the x2 signal from the first run.

Simulink.sdi.setSubplotLimits(2,1,'yRange',[ymin,ymax]);

With the updated y-axis limits, the difference in the x2 signal is more apparent.

2 Functions

2-868

Input Arguments
r — Subplot row index
integer

Subplot row index, specified as an integer between 1 and 8, inclusive. Use the r and c inputs
together to specify the location of the subplot for which you want the axis limits.
Example: [~,~,yMin,yMax] = Simulink.sdi.setSubplotLimits(2,2) returns y-axis limits
for the time plot in the second row of the second column of the subplot layout in the Simulation Data
Inspector.

c — Subplot column index
integer

Subplot column index, specified as an integer value between 1 and 8, inclusive. Use the r and c
inputs together to specify the location of the subplot for which you want the axis limits.
Example: [~,~,yMin,yMax] = Simulink.sdi.setSubplotLimits(2,2) returns the y-axis
limits for the time plot in the second row of the second column of the subplot layout in the Simulation
Data Inspector.

Output Arguments
tMin — t-axis minimum
double

t-axis minimum, returned as a double and the first element in a 1-by-4 vector of the form
[tMin,tMax,yMin,yMax].

tMax — t-axis maximum
double

t-axis maximum, returned as a double and the second element in a 1-by-4 vector of the form
[tMin,tMax,yMin,yMax].

yMin — y-axis minimum
double

y-axis minimum, returned as a double and the third element in a 1-by-4 vector of the form
[tMin,tMax,yMin,yMax].

yMax — y-axis maximum
double

y-axis maximum, returned as a double and the last element in a 1-by-4 vector of the form
[tMin,tMax,yMin,yMax].

Version History
Introduced in R2021a

 Simulink.sdi.getSubplotLimits

2-869

See Also
Functions
Simulink.sdi.setSubplotLimits | Simulink.sdi.setSubPlotLayout |
Simulink.sdi.getBorderOn | Simulink.sdi.getGridOn | Simulink.sdi.getMarkersOn |
Simulink.sdi.getTickLabelsDisplay | Simulink.sdi.getTicksPosition

Objects
Simulink.sdi.Run | Simulink.sdi.Signal

Topics
“Create Plots Using the Simulation Data Inspector”
“Inspect Simulation Data”

2 Functions

2-870

Simulink.sdi.getTickLabelsDisplay
Get tick mark label setting for time plots

Syntax
tickLabels = Simulink.sdi.getTickLabelsDisplay

Description
tickLabels = Simulink.sdi.getTickLabelsDisplay returns the current setting for displayed
tick mark labels on time plots in the Simulation Data Inspector. The return value corresponds to the
value of the Tick labels setting on the Time Plot section of the Visualization Settings in the
Simulation Data Inspector. The setting applies to all time plots in the layout. By default, the
Simulation Data Inspector displays tick mark labels for both axes on time plots.

Examples

Configure Tick Mark Label Visibility for Time Plots

You can use the Simulink.sdi.setTickLabelsDisplay function to configure the visibility of tick
mark labels for the t- and y-axes on time plots in the Simulation Data Inspector. By default, the
Simulation Data Inspector displays tick marks for both axes.

This example starts by showing how to use the Simulink.sdi.getTickLabelsDisplay function to
access the current tick mark label visibility. Subsequent sections show the code to specify each
available option for tick mark label visibility on time plots in the Simulation Data Inspector. To see the
result of each configuration, the example generates an image using the Simulink.sdi.snapshot
function with settings specified by a Simulink.sdi.CustomSnapshot object.

snapSettings = Simulink.sdi.CustomSnapshot;
snapSettings.Width = 300;
snapSettings.Height = 300;

Get Current Tick Mark Label Visibility

Before modifying the visibility of the tick mark labels on time plots, you can save the current
configuration to a variable in the workspace in case you want to restore the preference later.

initTickLabels = Simulink.sdi.getTickLabelsDisplay;

Show Only t-Axis Tick Mark Labels

Show the tick mark labels for the t-Axis.

Simulink.sdi.setTickLabelsDisplay('t-axis')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.getTickLabelsDisplay

2-871

Show Only y-Axis Tick Mark Labels

Show the tick mark labels for the y-axis.

Simulink.sdi.setTickLabelsDisplay('y-axis')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-872

Hide Tick Mark Labels

You can hide the tick mark labels for both axes.

Simulink.sdi.setTickLabelsDisplay('none')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.getTickLabelsDisplay

2-873

Show All Tick Mark Labels

By default, the Simulation Data Inspector shows tick mark labels for both axes on time plots.

Simulink.sdi.setTickLabelsDisplay('all')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-874

Output Arguments
tickLabels — Time plot axes that display tick mark labels
'all' | 't-axis' | 'y-axis' | 'none'

Time plot axes that display tick mark labels in the Simulation Data Inspector, returned as one of these
options:

• 'all' — Tick mark labels displayed for both time plot axes.
• 't-axis' — Tick mark labels displayed only on the t-axis for time plots.
• 'y-axis' — Tick mark labels displayed only on the y-axis for time plots.
• 'none' — No tick mark labels displayed on time plots.

Version History
Introduced in R2019b

See Also
Simulink.sdi.setTickLabelsDisplay | Simulink.sdi.getBorderOn |
Simulink.sdi.getGridOn | Simulink.sdi.getMarkersOn |
Simulink.sdi.getTicksPosition | Simulink.sdi.clearPreferences |
Simulink.sdi.saveView | Simulink.sdi.save

 Simulink.sdi.getTickLabelsDisplay

2-875

Topics
“Create Plots Using the Simulation Data Inspector”

2 Functions

2-876

Simulink.sdi.getTicksPosition
Get tick mark position setting for time plots

Syntax
ticksPos = Simulink.sdi.getTicksPosition

Description
ticksPos = Simulink.sdi.getTicksPosition returns the current setting for the position of
tick marks on time plots in the Simulation Data Inspector. The return value corresponds to the value
of the Ticks setting on the Time Plot section of the Visualization Settings in the Simulation Data
Inspector. The setting applies to all time plots in the layout. By default, the Simulation Data Inspector
displays tick marks on the outside of the plot area for time plots.

Examples

Configure Position for Tick Marks on Time Plots

You can use Simulink.sdi.setTicksPosition function to specify the position for tick marks on
time plots in the Simulation Data Inspector. By default, the Simulation Data Inspector displays tick
marks outside of the plot area for time plots.

This example starts by showing how to use the Simulink.sdi.getTicksPosition function to
access the current position of tick marks. Subsequent sections show the code to specify each
configuration option for the position of tick marks on time plots in the Simulation Data Inspector. To
see the result, the example generates an image using Simulink.sdi.snapshot with settings
specified by a Simulink.sdi.CustomSnapshot object.

snapSettings = Simulink.sdi.CustomSnapshot;
snapSettings.Width = 300;
snapSettings.Height = 300;

Get Current Tick Mark Position

Before modifying the position of tick marks on time plots, you can save the current configuration to a
variable in the workspace in case you want to restore the preference later.

initTickPos = Simulink.sdi.getTicksPosition;

Position Tick Marks Inside Plot Area

Position the tick marks inside the plot area to increase the amount of space used by the plot area.

Simulink.sdi.setTicksPosition('inside')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.getTicksPosition

2-877

Hide Tick Marks on Time Plots

You can hide the tick marks for time plots in the Simulation Data Inspector. Hiding the tick marks
expands the plot area.

Simulink.sdi.setTicksPosition('none')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-878

Position Tick Marks Outside Plot Area

By default, the Simulation Data Inspector displays tick marks outside of the plot area for time plots.

Simulink.sdi.setTicksPosition('outside')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.getTicksPosition

2-879

Output Arguments
ticksPos — Current setting for tick mark position on time plots
'outside' | 'inside' | 'none'

Current setting for the position of tick marks on time plots in the Simulation Data Inspector, returned
as 'inside' or 'outside'.

Version History
Introduced in R2019b

See Also
Simulink.sdi.setTicksPosition | Simulink.sdi.getBorderOn |
Simulink.sdi.getTickLabelsDisplay | Simulink.sdi.getGridOn |
Simulink.sdi.getMarkersOn | Simulink.sdi.clearPreferences |
Simulink.sdi.saveView | Simulink.sdi.save

Topics
“Create Plots Using the Simulation Data Inspector”

2 Functions

2-880

Simulink.sdi.getTrigger
Get signal and trigger options for trigger configured in the Simulation Data Inspector

Syntax
sig = Simulink.sdi.getTrigger
[sig,opts] = Simulink.sdi.getTrigger

Description
sig = Simulink.sdi.getTrigger returns the Simulink.sdi.Signal object for the signal used
to trigger display updates in the Simulation Data Inspector.

[sig,opts] = Simulink.sdi.getTrigger returns the trigger options configured for the trigger
in the Simulation Data Inspector.

Examples

Programmatically Configure Triggers in the Simulation Data Inspector

Add a trigger to a signal in the Simulation Data Inspector to specify criteria that determine when to
update plots to display fresh data. Triggers can allow you to capture transient signal behavior and
can help stabilize the display of periodic signals so you can take measurements.

Simulate the Triggers model. Data in the model logs to the Simulation Data Inspector.

open_system('Triggers');
out = sim('Triggers');

Then, add a trigger to the Pulse signal. Configure the trigger as a falling-edge trigger with a
threshold of 0.5.

trigRun = Simulink.sdi.getCurrentSimulationRun('Triggers');
pulseSig = getSignalsByName(trigRun,'Pulse');
Simulink.sdi.addTrigger(pulseSig,'Type','Edge','Level',0.5);

You can verify that the trigger was added and configured correctly by opening the Simulation Data
Inspector using Simulink.sdi.view and clicking the trigger icon next to the Pulse signal to check
the configuration. You can also use the Simulink.sdi.getTrigger function to check which signal
is used to generate trigger events and the trigger configuration.

[sig,trigOpts] = Simulink.sdi.getTrigger;

sig.Name

ans =
'Pulse'

trigOpts

trigOpts = struct with fields:
 Mode: 'Auto'

 Simulink.sdi.getTrigger

2-881

 Type: 'Edge'
 Position: 0.5000
 Delay: 0
 SourceChannelComplexity: 'Scalar'
 Polarity: 'Positive'
 AutoLevel: 1
 Level: 0.5000
 UpperLevel: 0
 LowerLevel: 1.2252e-311
 Hysteresis: 0
 MinTime: 0
 MaxTime: Inf
 Timeout: 0
 Holdoff: 0

When you do not want to use a trigger to control when the Simulation Data Inspector updates the
plots with fresh data, you can remove the trigger using the Simulink.sdi.removeTrigger
function.

Simulink.sdi.removeTrigger

You can verify that the trigger was removed in the Simulation Data Inspector UI or using the
Simulink.sdi.getTrigger function. The Simulink.sdi.getTrigger function returns an empty
array of Simulink.sdi.Signal objects when no trigger is configured in the Simulation Data
Inspector.

sig = Simulink.sdi.getTrigger;
size(sig)

ans = 1×2

 0 0

Output Arguments
sig — Signal used to trigger display updates in the Simulation Data Inspector
Simulink.sdi.Signal object

Signal used to trigger display updates in the Simulation Data Inspector, returned as a
Simulink.sdi.Signal object.

opts — Configuration of trigger in the Simulation Data Inspector
structure

Configuration of trigger in the Simulation Data Inspector, returned as a structure that contains these
fields:

• Mode
• Type
• Position
• Delay

2 Functions

2-882

• SourceChannelComplexity
• Polarity
• AutoLevel
• Level
• UpperLevel
• LowerLevel
• Hysteresis
• MinTime
• MaxTime
• Timeout
• Holdoff

For details on trigger configuration, see “Scope Triggers Panel” and Simulink.sdi.addTrigger.

Version History
Introduced in R2020b

See Also
Objects
Simulink.sdi.Signal | Simulink.sdi.Run

Functions
getSignalByIndex | getSignalsByName | Simulink.sdi.getSignal |
Simulink.sdi.addTrigger | Simulink.sdi.removeTrigger

Topics
“Control Display of Streaming Data Using Triggers”
“Inspect and Compare Data Programmatically”
“Scope Triggers Panel”

 Simulink.sdi.getTrigger

2-883

Simulink.sdi.getUnitSystem
Get current unit system configured in Simulation Data Inspector preferences

Syntax
unitSystem = Simulink.sdi.getUnitSystem
[unitSystem,overrideUnits] = Simulink.sdi.getUnitSystem

Description
unitSystem = Simulink.sdi.getUnitSystem returns the unit system configured in the
Simulation Data Inspector preferences. For more information about unit preferences, see “Signal
Display Units”. To specify unit preferences for the Simulation Data Inspector, use the
Simulink.sdi.setUnitSystem function.

[unitSystem,overrideUnits] = Simulink.sdi.getUnitSystem returns the unit system and
override units configured in the Simulation Data Inspector preferences.

Examples

Configure Unit Preferences in the Simulation Data Inspector

To specify a system of units to use for plotting signals in the Simulation Data Inspector, use the
Simulink.sdi.setUnitSystem function. When you choose to display signals using the SI or US
Customary unit system, the Simulation Data Inspector automatically changes the Display Units
property for logged or imported signals that use units that are not part of the specified unit system.
The signal data stored on disk does not change. Signals also have a Stored Units property, and the
Simulation Data Inspector converts the data to plot the signal when the Stored Units and Display
Units differ.

Specify a Sytem of Units

By default, the Simulation Data Inspector displays signals using the units assigned to the signal
during simulation or in the imported data. To facilitate analyzing multiple signals and data sets
together, you can specify a system of units as a preference. The Simulation Data Inspector
automatically updates the Display Units for logged or imported signals that use units that are invalid
in the specified unit system. For example, a signal logged in a model using units of ft could be
updated to use units of m when the system of units is specified as SI.

Use the Simulink.sdi.setUnitSystem function to configure the Simulation Data Inspector to
display signals using units in the US Customary unit system.

Simulink.sdi.setUnitSystem('USCustomary');

Specify Override Units

When you want all signals that represent the same type of measurement to use the same Display
Units, you can also specify override units. For example, to plot all signals that represent length using
units of ft, specify ft as an override unit.

2 Functions

2-884

Simulink.sdi.setUnitSystem('USCustomary','Overrides',"ft");

Check Unit Configuration

Use the Simulink.sdi.getUnitSystem function to check the current unit preferences configured
in the Simulation Data Inspector.

[unitSystem,overrideUnits] = Simulink.sdi.getUnitSystem

unitSystem =
'USCustomary'

overrideUnits =
"ft"

Output Arguments
unitSystem — System of units used to define signal display units
character vector

System of units used to define signal display units, returned as a character vector.

overrideUnits — Units to override signal display units
string | string array

Units to override signal display units, returned as a string or string array. The Simulation Data
Inspector displays all signals that represent a measurement type using specified override units. For
example, if override units of in are specified, the Simulation Data Inspector displays all signals that
represent length using units of in.

Version History
Introduced in R2020b

See Also
Objects
Simulink.sdi.Signal

Functions
convertUnits | Simulink.sdi.clearPreferences | Simulink.sdi.setUnitSystem

Topics
“Configure the Simulation Data Inspector”
“Modify Signal Properties in the Simulation Data Inspector”

 Simulink.sdi.getUnitSystem

2-885

Simulink.sdi.isPCTSupportEnabled
Determine status and mode for Parallel Computing Toolbox support

Syntax
[enabled,mode] = Simulink.sdi.isPCTSupportEnabled

Description
[enabled,mode] = Simulink.sdi.isPCTSupportEnabled returns enabled, a logical
indication of whether support for the Parallel Computing Toolbox is enabled, and mode, the mode of
support enabled.

Examples

Check Status of Parallel Worker Support

Before running code that depends on whether automatic import of runs created by parallel workers is
enabled, you can use the Simulink.sdi.isPCTSupportEnabled function to check the support
status. The default behavior for the Simulation Data Inspector enables parallel worker support in
local mode. In local mode, only runs created on local workers automatically import into the
Simulation Data Inspector.

[enabled, mode] = Simulink.sdi.isPCTSupportEnabled

enabled =

 logical

 1

mode =

 'local'

Output Arguments
enabled — Logical indicator of parallel worker support
logical

Logical indication of parallel worker support.

• 1 indicates that support for parallel workers is enabled.
• 0 indicates that support for parallel workers is not enabled.

mode — Parallel worker support mode
local (default)

2 Functions

2-886

Mode of Parallel Computing Toolbox support.

• 'local' — Runs generated on local workers automatically import to the Simulation Data
Inspector.

• 'none' — Parallel worker support is disabled.
• 'all' — Runs created from local and remote workers automatically import to the Simulation

Data Inspector.
• 'manual' — Support for manual import of runs created by parallel workers using the

Simulink.sdi.sendWorkerRunToClient function.

Version History
Introduced in R2017b

See Also
Simulink.sdi.enablePCTSupport | Simulink.sdi.WorkerRun |
Simulink.sdi.sendWorkerRunToClient

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.isPCTSupportEnabled

2-887

Simulink.sdi.isValidRunID
Package: Simulink.sdi

Determine whether a run ID is valid

Syntax
valid = Simulink.sdi.isValidRunID(runID)

Description
valid = Simulink.sdi.isValidRunID(runID) returns true if runID corresponds to a run in
the Simulation Data Inspector repository.

Examples

Check Run ID Validity

This example shows how to check whether a run ID is valid. You can use
Simulink.sdi.isValidRunID to ensure you have valid data throughout your script.

Create a Simulation Run

Simulate the model sldemo_fuelsys to create a run in the Simulation Data Inspector, and use
Simulink.sdi.getAllRunIDs to get its run ID.

% Simulate model
load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

% Get run ID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

Check Run ID Validity

Check to verify that the Simulation Data Inspector has a run corresponding to the run ID.

Simulink.sdi.isValidRunID(runID)

ans = logical
 1

Delete the Run and Check Validity

You can delete runs to clear out memory space or clean up the Simulation Data Inspector UI. When
you delete a run, the run ID for that run becomes invalid.

Simulink.sdi.deleteRun(runID)

Simulink.sdi.isValidRunID(runID)

2 Functions

2-888

ans = logical
 0

Input Arguments
runID — Simulation Data Inspector run identifier
scalar

Unique numeric identification for the run. The Simulation Data Inspector assigns run IDs when it
creates runs. You can get the run ID for your run using Simulink.sdi.getAllRunIDs or
Simulink.sdi.getRunIDByIndex.

Output Arguments
valid — Run validity indicator
logical

Run validity indicator. When valid is true, the runID is valid. When valid is false, the runID is
invalid.

Version History
Introduced in R2011b

See Also
Simulink.sdi.getAllRunIDs | Simulink.sdi.getRunIDByIndex |
Simulink.sdi.createRun | Simulink.sdi.deleteRun | Simulink.sdi.compareRuns

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.isValidRunID

2-889

Simulink.sdi.load
Package: Simulink.sdi

Load a Simulation Data Inspector session or view

Syntax
valid = Simulink.sdi.load(fileName)

Description
valid = Simulink.sdi.load(fileName) loads the data and visualization settings in the
Simulation Data Inspector session file or MAT file specified by fileName and returns 1 when
fileName is a valid session file or a MAT file that contains data the Simulation Data Inspector
supports.

Simulation Data Inspector views are also saved as MLDATX files. To load a view file, use the
Simulink.sdi.loadView function.

Examples

Save a Simulation Data Inspector Session

This example creates, saves, and loads a Simulation Data Inspector session. The example logs data in
the model slexAircraftExample and visualizes the logged data in a Simulation Data Inspector
session. Each time you use the Simulation Data Inspector, you create and modify a session. You can
save the data and associated visualization settings for a session in an MLDATX file using the
Simulink.sdi.save function. When you want to review the data later, you can load the session
using the Simulink.sdi.load function.

Log Data to the Simulation Data Inspector

This example logs data from a simulation of the model slexAircraftExample to the Simulation
Data Inspector. The model is not configured to log data. Load the model and mark the Stick, the
alpha, rad, and the q, rad/sec signals for logging.

load_system('slexAircraftExample')

Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',3,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

For this example, run two simulations of the model. In the first simulation, use the sine wave output
from the Pilot block, and in the second, use the square wave output.

set_param('slexAircraftExample/Pilot','WaveForm','sine')
sim('slexAircraftExample')

set_param('slexAircraftExample/Pilot','WaveForm','square')
sim('slexAircraftExample')

2 Functions

2-890

Visualize the Logged Data

You can use the Simulation Data Inspector programmatic interface to access the logged data from the
simulations. When you access data using the Simulation Data Inspector programmatic interface, you
can use functions to create plots in the Simulation Data Inspector.

To start, access the run IDs for the most recent two runs and then get the corresponding
Simulink.sdi.Run object. The Run objects allow you to access the logged data for the simulations.

runIDs = Simulink.sdi.getAllRunIDs;
sineRunID = runIDs(end-1);
squareRunID = runIDs(end);

sineRun = Simulink.sdi.getRun(sineRunID);
squareRun = Simulink.sdi.getRun(squareRunID);

Suppose you want to analyze the relationship between the input and output for the model. Get the
Simulink.sdi.Signal objects for the input and output signals from the two simulation runs.

sineOut = getSignalByIndex(sineRun,1);
sineIn = getSignalByIndex(sineRun,3);

squareOut = getSignalByIndex(squareRun,1);
squareIn = getSignalByIndex(squareRun,3);

Change the subplot layout in the Simulation Data Inspector to 2-by-1 and plot the signals from the
first simulation run on the top plot and the signals from the second run on the bottom plot.

Simulink.sdi.setSubPlotLayout(2,1)

plotOnSubPlot(sineIn,1,1,true)
plotOnSubPlot(sineOut,1,1,true)

plotOnSubPlot(squareIn,2,1,true)
plotOnSubPlot(squareOut,2,1,true)

Save the Simulation Data Inspector Session

To view the plotted data in the Simulation Data Inspector, enter Simulink.sdi.view in the
command window.

Then, save the Simulation Data Inspector session as an MLDATX file.

Simulink.sdi.save('myData.mldatx')

Load the Simulation Data Inspector Session

To mimic a scenario where you want to return to looking at the same data at a later point, clear the
data from the Simulation Data Inspector and reset the subplot layout to 1-by-1.

Simulink.sdi.clear
Simulink.sdi.setSubPlotLayout(1,1)

Load the session file and resume working with the data. You can open the Simulation Data Inspector
and view the results using the Simulink.sdi.view function.

 Simulink.sdi.load

2-891

Simulink.sdi.load('myData.mldatx');

Input Arguments
fileName — Name of session file or MAT file
string | character vector

Name of the session file or MAT file to load, specified as a strong or character vector. You must
specify the file extension to load data from an MLDATX file.
Example: 'myData.mldatx'
Example: 'myData.mat'

Output Arguments
valid — File validity indicator
logical

File validity indicator, returned as 1 (true) or 0 (false). A return value of 0 indicates that the
Simulation Data Inspector did not load the session file or did not import data from the MAT file.

Version History
Introduced in R2011b

See Also
Simulink.sdi.save | Simulink.sdi.close | Simulink.sdi.saveView |
Simulink.sdi.loadView

Topics
“Inspect and Compare Data Programmatically”
“View Data in the Simulation Data Inspector”

2 Functions

2-892

Simulink.sdi.loadView
Load a view file to visualize data in the Simulation Data Inspector

Syntax
Simulink.sdi.loadView(filename)

Description
Simulink.sdi.loadView(filename) applies the visualization information in the view file,
filename, to the data in the Simulation Data Inspector.

A view contains information about the layout and plots in the graphical viewing area as well as
properties of plotted signals. When you load a view, the Simulation Data Inspector uses the properties
and preferences in the file to display data currently in the Simulation Data Inspector. Signals in the
Simulation Data Inspector that align with the signals in the view are plotted in the graphical viewing
area. Use a view to apply a consistent set of visualization settings to multiple sets of similar data.

The view file includes the following information:

• Subplot layout and visualization type
• Settings for each visualization type in the layout
• Signal selection mode
• Replay controls visibility
• Metadata displayed in the work area
• Settings for signal grouping in the work area
• Plotted signals and the line style and color for each plotted signal

A view file does not contain data. To load a session file that contains data and visualization
information, use the Simulink.sdi.load function.

Examples

Save and Use a View

This example visualizes the output from the ex_vdp model, saves the configuration as a view, and
then uses the view to visualize the output from another simulation of the same model.

To generate data to plot in the Simulation Data Inspector, simulate the model.

open_system('ex_vdp')
set_param('ex_vdp/Mu','Gain','1')
sim('ex_vdp');

Programmatically Configure and Save a View

The ex_vdp model is configured to log two signals, x1 and x2. Plot each signal on a subplot in a 2-
by-1 layout.

 Simulink.sdi.loadView

2-893

Simulink.sdi.setSubPlotLayout(2,1)

To plot one signal on each subplot, first access the Simulink.sdi.Run object for the simulation.

runIDs = Simulink.sdi.getAllRunIDs;
ex_vdpRunID = runIDs(end);
ex_vdpRun = Simulink.sdi.getRun(ex_vdpRunID);

Then, you can access the data for each signal in a Simulink.sdi.Signal object and use the
plotOnSubPlot function to specify where to plot each signal.

x1 = getSignalByIndex(ex_vdpRun,1);
x2 = getSignalByIndex(ex_vdpRun,2);

plotOnSubPlot(x1,1,1,true)
plotOnSubPlot(x2,2,1,true)

To view the result in the Simulation Data Inspector, enter Simulink.sdi.view in the command
window.

Then, save the view.

Simulink.sdi.saveView('ex_vdpView.mldatx')

2 Functions

2-894

Use the View

To mimic a situation where the Simulation Data Inspector is configured differently and contains data
from another simulation, this example clears data from the Simulation Data Inspector, loads a view
that represents the default visualization configuration, and runs another simulation of the ex_vdp
model.

Simulink.sdi.clear
Simulink.sdi.loadView('default.mldatx');
set_param('ex_vdp/Mu','Gain','2')
sim('ex_vdp');

Use the Simulink.sdi.loadView function to apply the saved view from the previous simulation.

Simulink.sdi.loadView('ex_vdpView.mldatx')

You can open the Simulation Data Inspector to view the results using the Simulink.sdi.view
function. The saved view includes information regarding the axes limits. When you use a view to
apply visualization settings, you may need to adjust axes limits or zoom levels to fit data from a
modified simulation.

Input Arguments
filename — Name of the view file
string | character vector

 Simulink.sdi.loadView

2-895

Name of the view file, specified as a string or character vector. You can specify filename as only the
file name when the file is on the MATLAB path, or you can specify a full path to the file.
Example: 'myView.mldatx'
Data Types: char | string

Version History
Introduced in R2019b

See Also
Simulink.sdi.setBorderOn | Simulink.sdi.setGridOn | Simulink.sdi.setMarkersOn |
Simulink.sdi.setSubPlotLayout | Simulink.sdi.setTableGrouping |
Simulink.sdi.setTickLabelsDisplay | Simulink.sdi.setTicksPosition |
Simulink.sdi.copyRunViewSettings | Simulink.sdi.saveView

Topics
“Save and Share Simulation Data Inspector Data and Views”

2 Functions

2-896

Simulink.sdi.markSignalForStreaming
Package: Simulink.sdi

Turn logging on or off for a signal

Syntax
Simulink.sdi.markSignalForStreaming(block,portIndex,log)
Simulink.sdi.markSignalForStreaming(portHandle,log)
Simulink.sdi.markSignalForStreaming(lineHandle,log)

Description
Simulink.sdi.markSignalForStreaming(block,portIndex,log) marks the signal on the
specified portIndex of the specified block for logging when you specify log as 'on'. To stop
logging a signal, specify log as 'off'.

Simulink.sdi.markSignalForStreaming(portHandle,log) marks the signal on the port
specified by portHandle for logging when you specify log as 'on'. To stop logging a signal, specify
log as 'off'.

Simulink.sdi.markSignalForStreaming(lineHandle,log) marks the signal with the
specified lineHandle for logging when you specify log as 'on'. To stop logging a signal, specify
log as 'off'.

Examples

Mark Signals for Logging with Port Handles

This example shows how to mark signals for logging using port handles.

Load Model and Mark Signals for Streaming

User get_param to get the port handles for the blocks with your signals of interest. Then, use the
handle to mark the desired signals for logging.

load_system('vdp')

% Get port handles
x1_handles = get_param('vdp/x1','PortHandles');
x1 = x1_handles.Outport(1);
x2_handles = get_param('vdp/x2','PortHandles');
x2 = x2_handles.Outport(1);

% Mark signals for streaming
Simulink.sdi.markSignalForStreaming(x1,'on');
Simulink.sdi.markSignalForStreaming(x2,'on');

Simulate Model and View Signals in the Simulation Data Inspector

Simulate the model and then open the Simulation Data Inspector to view the logged signals.

 Simulink.sdi.markSignalForStreaming

2-897

sim('vdp');

Simulink.sdi.view

Mark Signals for Logging Using Line Handles

Load the model slexAircraftExample. and use get_param to get handles for the signals in the
model. Then, use the line handles to mark signals of interest for logging.

load_system('slexAircraftExample')

Use the get_param function to get the line handles for the signals in the model.

lines = get_param('slexAircraftExample','Lines');

Use the Simulink.sdi.markSignalForStreaming function to mark two of the signals for logging
using the line handles.

sig1handle = lines(1).Handle;
sig2handle = lines(2).Handle;

Simulink.sdi.markSignalForStreaming(sig1handle,'on')
Simulink.sdi.markSignalForStreaming(sig2handle,'on')

Simulate the model then open the Simulation Data Inspector to view the logged signal data.

out = sim('slexAircraftExample');

Simulink.sdi.view

Input Arguments
block — Source block path or handle
character vector

Block path for the block with the desired signal connected to one of its outports.
Example: 'slexAircraftExample/Pilot'

portIndex — Source block output port index
integer

Index of the port connected to the signal you want to mark for streaming.
Example: 1

log — Logging state
'on' | 'off'

Logging state desired for signal.

• 'on' –– Turn logging on for a signal.
• 'off' –– Turn logging off for a signal.

2 Functions

2-898

portHandle — Source block output port handle
handle

Port handle for the source block's output port that connects to the signal.
Example: x1_handles.Outport(1)

lineHandle — Signal line handle
handle

Line handle for the signal.
Example: lines(1).Handle

Version History
Introduced in R2015b

See Also
Simulink.HMI.InstrumentedSignals | Simulink.sdi.createRunOrAddToStreamedRun |
Simulink.sdi.getAllRunIDs | Simulink.sdi.getRunIDByIndex

Topics
“Inspect and Compare Data Programmatically”
“View Data in the Simulation Data Inspector”

 Simulink.sdi.markSignalForStreaming

2-899

Simulink.sdi.registerCursorCallback
Register callback for cursor movements in the Simulation Data Inspector

Syntax
callbackID = Simulink.sdi.registerCursorCallback(func)
callbackID = Simulink.sdi.registerCursorCallback(func,view)

Description
callbackID = Simulink.sdi.registerCursorCallback(func) registers the callback function
associated with the function handle func with the Simulation Data Inspector. The Simulation Data
Inspector executes the callback when you move a cursor or change the number of cursors displayed
on the Inspect pane.

callbackID = Simulink.sdi.registerCursorCallback(func,view) registers the callback
function associated with the function handle func with the Simulation Data Inspector. The Simulation
Data Inspector executes the callback when you move a cursor or change the number of cursors
displayed on the pane specified by view.

Examples

Use Simulation Data Inspector Cursor Callback in App Designer App

You can use a Simulation Data Inspector cursor callback function to send cursor position data to an
app you build using the App Designer. This example shows how to add a property to the app to store
the callback ID and where to register and unregister the cursor callback. For an example of an App
Designer app that uses a cursor callback, see “Synchronize Cursors in the Simulation Data Inspector
with an App Designer App”.

Add a callbackID property to the app object.

properties (Access = private)
 callbackID
end

Define the behavior of the cursor callback function.

methods (Access = public)
 function myCursorCallback(app,~,~)
 if isvalid(app)
 ...
 end
 end
end

Register the cursor callback in the app startupFcn. This example registers the same callback on the
Inspect pane and the Compare pane.

function startupFcn(app)
 app.callbackID = Simulink.sdi.registerCursorCallback(...

2 Functions

2-900

 @(t1,t2)myCursorCallback(app,t1,t2));
 app.callbackID(2) = Simulink.sdi.registerCursorCallback(...
 @(t1,t2)myCursorCallback(app,t1,t2),'compare');
 ...
end

Unregister the cursor callback in the app UIFigureCloseRequest function.

function myAppUIFigureCloseRequest(app, event)
 Simulink.sdi.unregisterCursorCallback(app.callbackID(1));
 Simulink.sdi.unregisterCursorCallback(app.callbackID(2));

end

Input Arguments
func — Cursor callback to register
function handle

Cursor callback to register, specified as a function handle. The function that corresponds to the
function handle must accept two input arguments, t1 and t2, that correspond to the left and right
cursor positions. When no cursors are displayed, t1 and t2 are NaN. When only one cursor is
displayed, t2 is NaN.
Example: id = Simulink.sdi.registerCursorCallback(@(t1,t2)myFunc(t1,t2))
registers the function myFunc as the callback for cursor events on the Inspect pane of the
Simulation Data Inspector.
Data Types: function_handle

view — Cursor event source
'inspect' (default) | 'compare'

Cursor event source, specified as 'inspect' or 'compare'.

• 'inspect' — Register callback for cursor events on the Inspect pane.
• 'compare' — Register callback for cursor events on the Compare pane.

The registered cursor callback executes for each cursor event. Cursor events occur when you move
cursors or change the number of visible cursors.
Data Types: char | string

Output Arguments
callbackID — Registered callback ID
scalar

Registered callback ID, returned as a scalar. Use the callback ID to unregister the callback.

Version History
Introduced in R2021a

 Simulink.sdi.registerCursorCallback

2-901

See Also
Functions
Simulink.sdi.unregisterCursorCallback | Simulink.sdi.setCursorPositions |
Simulink.sdi.getCursorPositions | Simulink.sdi.setNumCursors |
Simulink.sdi.getNumCursors

Topics
“Synchronize Cursors in the Simulation Data Inspector with an App Designer App”

2 Functions

2-902

Simulink.sdi.removeTrigger
Remove trigger from signal in the Simulation Data Inspector

Syntax
Simulink.sdi.removeTrigger

Description
Simulink.sdi.removeTrigger removes the trigger from a signal in the Simulation Data Inspector.
If a trigger exists in the Simulation Data Inspector, adding a trigger to a different signal also removes
the existing trigger.

Examples

Programmatically Configure Triggers in the Simulation Data Inspector

Add a trigger to a signal in the Simulation Data Inspector to specify criteria that determine when to
update plots to display fresh data. Triggers can allow you to capture transient signal behavior and
can help stabilize the display of periodic signals so you can take measurements.

Simulate the Triggers model. Data in the model logs to the Simulation Data Inspector.

open_system('Triggers');
out = sim('Triggers');

Then, add a trigger to the Pulse signal. Configure the trigger as a falling-edge trigger with a
threshold of 0.5.

trigRun = Simulink.sdi.getCurrentSimulationRun('Triggers');
pulseSig = getSignalsByName(trigRun,'Pulse');
Simulink.sdi.addTrigger(pulseSig,'Type','Edge','Level',0.5);

You can verify that the trigger was added and configured correctly by opening the Simulation Data
Inspector using Simulink.sdi.view and clicking the trigger icon next to the Pulse signal to check
the configuration. You can also use the Simulink.sdi.getTrigger function to check which signal
is used to generate trigger events and the trigger configuration.

[sig,trigOpts] = Simulink.sdi.getTrigger;

sig.Name

ans =
'Pulse'

trigOpts

trigOpts = struct with fields:
 Mode: 'Auto'
 Type: 'Edge'
 Position: 0.5000

 Simulink.sdi.removeTrigger

2-903

 Delay: 0
 SourceChannelComplexity: 'Scalar'
 Polarity: 'Positive'
 AutoLevel: 1
 Level: 0.5000
 UpperLevel: 0
 LowerLevel: 1.2252e-311
 Hysteresis: 0
 MinTime: 0
 MaxTime: Inf
 Timeout: 0
 Holdoff: 0

When you do not want to use a trigger to control when the Simulation Data Inspector updates the
plots with fresh data, you can remove the trigger using the Simulink.sdi.removeTrigger
function.

Simulink.sdi.removeTrigger

You can verify that the trigger was removed in the Simulation Data Inspector UI or using the
Simulink.sdi.getTrigger function. The Simulink.sdi.getTrigger function returns an empty
array of Simulink.sdi.Signal objects when no trigger is configured in the Simulation Data
Inspector.

sig = Simulink.sdi.getTrigger;
size(sig)

ans = 1×2

 0 0

Alternative Functionality
To remove a trigger from a signal using the Simulation Data Inspector UI, click the trigger symbol
next to the signal, then click Remove.

2 Functions

2-904

Version History
Introduced in R2020b

See Also
Functions
Simulink.sdi.getTrigger | Simulink.sdi.addTrigger

Topics
“Control Display of Streaming Data Using Triggers”
“Inspect and Compare Data Programmatically”

 Simulink.sdi.removeTrigger

2-905

Simulink.sdi.report
Package: Simulink.sdi

Generate a Simulation Data Inspector report

Syntax
Simulink.sdi.report
Simulink.sdi.report(Name,Value)

Description
Simulink.sdi.report creates a report that contains plot snapshots and metadata for signals
plotted in the Inspect pane of the Simulation Data Inspector.

Simulink.sdi.report(Name,Value) creates a report as specified by one or more Name,Value
pair arguments. Using this syntax, you can create a report of data plotted in the Inspect pane or a
report of comparison results. You can specify details for each report.

Examples

Create a Report for Plotted Signals

Create a report that contains information about and plots of the signals plotted in the Inspect pane
of the Simulation Data Inspector. By default, the report contains the metadata displayed for signals in
the table on the Inspect pane. This example shows how to specify which metadata to include in the
report.

Load the Session File

This example populates the Simulation Data Inspector with data and plotted signals by loading a
saved session file. A session file contains the signal data as well as information about plotted signals
and plot layout. Load the session file.

Simulink.sdi.load('ex_sldemo_absbrake_slp_Ww.mldatx');

2 Functions

2-906

Create a Report for Plotted Signals

The report includes plots and metadata for the plotted signals. By default, the report includes the
metadata that corresponds to the columns displayed in the signals table on the Inspect pane. You can
include more data in the report by displaying more columns in the Inspect pane. You can also specify
the information you want in the report programmatically using the 'ColumnsToReport' name-value
pair and the enumeration class Simulink.sdi.SignalMetaData.

signalMetadata = [Simulink.sdi.SignalMetaData.Run, ...
 Simulink.sdi.SignalMetaData.Line, ...
 Simulink.sdi.SignalMetaData.BlockName, ...
 Simulink.sdi.SignalMetaData.SignalName];

Simulink.sdi.report('ReportType','Inspect', 'ReportOutputFile', ...
 'absbrake_slp_report.html', 'ColumnsToReport', signalMetadata);

The report shows tables of the metadata for plotted signals, organized by run, above a snapshot of
the plot.

Create a Report for Comparison Results

Use the Simulink.sdi.report function to create a report of comparison results. The report is web-
based and interactive, and you can switch between the interactive view and a printable view.

 Simulink.sdi.report

2-907

Load Comparison Results

This example loads previously computed comparison results that were saved in an MLDATX file using
the saveResult function. The data came from two simulations of the slexAircraftExample model
that used different time constant values for the input filter.

Simulink.sdi.load('slexAircraftExampleTsComparison.mldatx');

Create Comparison Report

Create a report that contains the comparison results using the Simulink.sdi.report function. You
can specify a title and author for the report that display in the report header.

Simulink.sdi.report('ReportType','Compare', 'ReportTitle',...
 'Compare: Ts = 0.1 vs Ts = 1','ReportAuthor', 'Jane Smith');

The report opens in the system browser once it is generated. Select signals to see the results
displayed in the plot and the metadata for the signals in the Properties pane. The report HTML file is
in the sdireports folder in the working directory.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ReportType','Compare','ShortenBlockPath',true

ReportType — Type of report to create
'Inspect' (default) | 'Compare'

Type of report to create, specified as the comma-separated pair consisting of 'ReportType' and
'Inspect' or 'Compare'.

• 'Inspect' –– Create a report that contains plot snapshots and metadata for signals plotted in the
Inspect pane of the Simulation Data Inspector.

• 'Compare' –– Create a report that summarizes comparison results. The comparison report is
interactive and includes plot snapshots of comparison results as well as metadata for the
compared signals.

Example: 'ReportType','Compare'

ReportTitle — Report title displayed in header for comparison report
'Compare: <Baseline Run> vs. <Compare To Run>' (default) | character vector

Report title displayed in header for comparison report, specified as the comma-separated pair
consisting of 'ReportTitle' and a character vector.

You can only specify a report title for a comparison report.
Example: 'ReportTitle','Trial 1 vs. Trial 2'

2 Functions

2-908

ReportAuthor — Report author displayed in header for comparison report
'<username>' (default) | character vector

Report author displayed in header for comparison report, specified as the comma-separated pair
consisting of 'ReportAuthor' and a character vector.

You can only specify a report author for a comparison report.
Example: 'ReportAuthor','John Smith'

ReportOutputFolder — Folder where report is saved
'<current working folder>/sdireports' (default) | path

Folder where report is saved, specified as the comma-separated pair consisting of
'ReportOutputFolder' and a character vector.
Example: 'ReportOutputFolder','C:\Users\user1\Desktop'

ReportOutputFile — Report file name
'SDI_report.html' (default) | character vector

Report file name, specified as the comma-separated pair consisting of 'ReportOutputFile' and a
character vector.
Example: 'ReportOutputFile','MyReport.html'

PreventOverwritingFile — Whether to prevent overwriting report files
true (default) | false

Whether to prevent overwriting report files, specified as the comma-separated pair consisting of
'PreventOverwritingFile' and true or false.

• true enables file overwrite protection.
• false disables file overwrite protection.

File overwrite protection prevents the Simulation Data Inspector from overwriting an existing file by
appending the file name with a number that increments each time you generate a report. When you
disable file overwrite protection, the Simulation Data Inspector overwrites the existing report file
unless you specify a unique file name.
Example: 'PreventOverwritingFile',false

ColumnsToReport — Signal metadata to include in report for plotted signals
array

Signal metadata to include in the report of signals plotted in the Inspect pane of the Simulation Data
Inspector, specified as the comma-separated pair consisting of 'ColumnsToReport' and an array. By
default, the Inspect report includes the block path, name, line style and color, and data source
parameters for each plotted signal.

Note The ColumnsToReport input does not affect comparison reports. The comparison report
always includes all signal metadata, and the summary at the top of the comparison report always
includes the signal name, absolute tolerance, relative tolerance, maximum difference, and result for
each signal comparison.

 Simulink.sdi.report

2-909

Specify metadata to include as an array, using the enumeration class
Simulink.sdi.SignalMetaData. For example, to include the name of the simulation run and
signal name:

signal_metadata = [Simulink.sdi.SignalMetaData.Run,...
 Simulink.sdi.SignalMetaData.SignalName];

Then, specify ColumnsToReport as signal_metadata in the name-value pair:

Simulink.sdi.report('ColumnsToReport',signal_metadata)

The table summarizes the metadata available for Inspect report.

Column Value Description
SignalName (default) Signal name
Line (default) Signal line style and color
SID Automatically assigned Simulink identifier
Units Signal measurement units
SigDataType Signal data type
SigSampleTime Method used to sample the signal
Model Name of the model that generated the signal
BlockName Name of the source block for the signal
BlockPath Path to the source block for the signal
Port Index of the signal on the output port of its block
Dimensions Dimensions of the matrix containing the signal
Channel Index of signal within matrix
Run Name of the simulation run containing the signal
AbsTol Absolute tolerance for the signal
RelTol Relative tolerance for the signal
OverrideGlobalTol Property that specifies whether signal tolerances

take priority over global tolerances
TimeTol Time tolerance for the signal
InterpMethod Interpolation method
SyncMethod Synchronization method used to coordinate signals

for comparison
TimeSeriesRoot Name of the variable associated with the signal for

signals imported from the MATLAB workspace
TimeSource Name of the array containing the time data for

signals imported from the MATLAB workspace
DataSource Name of the array containing the signal data for

signals imported from the MATLAB workspace

Example: 'ColumnsToReport',metadata

ShortenBlockPath — Whether to shorten block path in report
true (default) | false

2 Functions

2-910

Whether to shorten block path in report, specified as the comma-separated pair consisting of
'ShortenBlockPath' and true or false.

• true –– Use the shortened block path in the report.
• false –– Include the full block path in the report.

Example: 'ShortenBlockPath',false

LaunchReport — Whether to open report when created
true (default) | false

Whether to open the report when it is created, specified as the comma-separated pair consisting of
'LaunchReport' and true or false.

• true –– Open the report when it is created.
• false –– Do not open the report automatically.

Example: 'LaunchReport',false

SignalsToReport — Signals to include in comparison report
'ReportOnlyMismatchedSignals' (default) | 'ReportAllSignals'

Signals to include in a comparison report, specified as the comma-separated pair consisting of
'SignalsToReport' and 'ReportOnlyMismatchedSignals' or 'ReportAllSignals'.

• ReportOnlyMismatchedSignals –– Include only signals with out of tolerance comparison
results.

• ReportAllSignals –– Include all signals.

Example: 'SignalsToReport','ReportAllSignals'

Version History
Introduced in R2011b

R2020b: ReportStyle input ignored
Behavior changed in R2020b

Starting in R2020b, the ReportStyle name-value pair input is ignored.

In R2020a, you could use the Simulink.sdi.report function to create two separate types of
comparison report, and you could use the ReportStyle name-value pair to indicate the type of
report to create.

From R2020b, the Simulation Data Inspector only produces one comparison report. You can switch
between the interactive and printable view within the report.

See Also
Simulink.sdi.createRun | Simulink.sdi.compareSignals | Simulink.sdi.compareRuns |
Simulink.sdi.Signal

Topics
“Create Interactive Comparison Reports”

 Simulink.sdi.report

2-911

“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”
“Save and Share Simulation Data Inspector Data and Views”

2 Functions

2-912

Simulink.sdi.resetRunNamingRule
Package: Simulink.sdi

Revert the Simulation Data Inspector run naming rule to default

Syntax
Simulink.sdi.resetRunNamingRule

Description
Simulink.sdi.resetRunNamingRule resets the run naming rule the Simulation Data Inspector
uses to assign a name to runs created through simulating a Simulink model to its default 'Run
<run_index>: <model_name>'.

Examples

Modify then Reset Run Naming Rule

This example shows how to use the Simulation Data Inspector API to modify the Simulation Data
Inspector run naming rule, check a run's name, reset the run naming rule to its default, and check
the run naming rule.

% Load model
load_system('sldemo_fuelsys')

% Modify run naming rule
Simulink.sdi.setRunNamingRule('<model_name> Run <run_index>')

% Simulate system
sim('sldemo_fuelsys')

% Check run name
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
run = Simulink.sdi.getRun(runID);
run.name

ans =
'sldemo_fuelsys Run 1'

% Reset the run naming rule
Simulink.sdi.resetRunNamingRule

% Check run naming rule
Simulink.sdi.getRunNamingRule

ans =
'Run <run_index>: <model_name>'

 Simulink.sdi.resetRunNamingRule

2-913

Alternatives
You can reset the run naming rule to its default using the Simulation Data Inspector UI. Use the
Restore Defaults button on the New Run tab under Simulation Data Inspector Preferences.

Simulink.sdi.clearPreferences restores the run naming rule, along with all other Simulation
Data Inspector preferences.

Version History
Introduced in R2015a

See Also
Simulink.sdi.clearPreferences | Simulink.sdi.setRunNamingRule |
Simulink.sdi.getRunNamingRule

Topics
“Configure the Simulation Data Inspector”
“Inspect and Compare Data Programmatically”

2 Functions

2-914

Simulink.sdi.Run.create
Import data into new run in Simulation Data Inspector and return Simulink.sdi.Run object

Syntax
runObj = Simulink.sdi.Run.create
runObj = Simulink.sdi.Run.create(runName)

runObj = Simulink.sdi.Run.create(var)
runObj = Simulink.sdi.Run.create(runName,'vars',var,var2,...,varn)
runObj = Simulink.sdi.Run.create(runName,'namevalue',sourceNames,sigValues)

runObj = Simulink.sdi.Run.create(runName,'file',filename)
runObj = Simulink.sdi.Run.create(runName,'file',filename,Name=Value)

Description
Create Empty Run

runObj = Simulink.sdi.Run.create creates the empty Simulink.sdi.Run object, runObj.
You can add signals to the Run object using the add function or the Simulink.sdi.addToRun
function.

runObj = Simulink.sdi.Run.create(runName) creates an empty run named runName.
Import Data from Workspace

runObj = Simulink.sdi.Run.create(var) imports data from the scalar variable var into a new
run in the Simulation Data Inspector. The run is named according to the input variable. For example,
when var is a timeseries object, the run name comes from the Name property on the timeseries
object.

runObj = Simulink.sdi.Run.create(runName,'vars',var,var2,...,varn) imports data
from one or more variables into a new run in the Simulation Data Inspector named runName.

Use this syntax to import data from multiple variables or from a variable that represents an array of
objects, such as an array of Simulink.SimulationOutput or
Simulink.SimulationData.Dataset objects.

runObj = Simulink.sdi.Run.create(runName,'namevalue',sourceNames,sigValues)
imports data from one or more variables into a new run in the Simulation Data Inspector named
runName. The cell array sourceNames specifies the names used to set the RootSource,
TimeSource, and DataSource properties for the signals imported from the sigValues cell array.
Import Data from File

runObj = Simulink.sdi.Run.create(runName,'file',filename) imports data from a file
into a new run in the Simulation Data Inspector named runName. You can use a built-in file reader to
import data from a MAT file, CSV file, Microsoft Excel file, or an MDF file.

When you need to import data from a file that the built-in readers do not support, you can write your
own reader using the io.reader class.

 Simulink.sdi.Run.create

2-915

runObj = Simulink.sdi.Run.create(runName,'file',filename,Name=Value) imports
data from a file into a new run in the Simulation Data Inspector according to options specified using
one or more name-value arguments. For example, sheets=["sheet1" "sheet2"] specifies the
sheets from which to import data when importing data from an Excel file.

Examples

Create Run in Simulation Data Inspector

You can programmatically import data into the Simulation Data Inspector by creating a run from data
in the base workspace or a file. This example creates data in the workspace and then illustrates
several methods of creating a Simulation Data Inspector run containing the data.

Create Data

Create data in the workspace. The Simulation Data Inspector supports timeseries data in many
formats. This example creates data using the timeseries and
Simulink.SimulationData.Dataset formats and saves the data in a MAT-file.

Create a sine signal and a cosine signal. Store the data for each signal in a timeseries object with a
descriptive name.

time = 0:0.2:20;

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = "Sine, T=5";

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = "Cosine, T=8";

You can use the Dataset format to group related signal data together in a single object. The
Dataset format is the default format for logged data and is supported for loading simulation input
data. Create a Dataset object that contains the sinusoid timeseries data.

sinusoids_ds = Simulink.SimulationData.Dataset;
sinusoids_ds = addElement(sinusoids_ds,cos_ts);
sinusoids_ds = addElement(sinusoids_ds,sine_ts);

Scale each signal by a factor of 2 and create a Dataset object to contain the signal data for the
results.

doubSine = 2*sine_ts;
doubCos = 2*cos_ts;

doubSinusoids_ds = Simulink.SimulationData.Dataset;
doubSinusoids_ds = addElement(doubSinusoids_ds,doubSine);
doubSinusoids_ds = addElement(doubSinusoids_ds,doubCos);

Finally, save the timeseries data to a MAT-file.

save sinusoids.mat sine_ts cos_ts

2 Functions

2-916

Open Simulation Data Inspector

To view the runs you create in each section, open the Simulation Data Inspector by entering
Simulink.sdi.view in the MATLAB™ Command Window.

Create Run Using Simulink.sdi.Run Object

You can import your data into a run in the Simulation Data Inspector by creating an empty run and
then adding data to the run from the workspace or a file. Depending on your task, use the
Simulink.sdi.Run.create function or the Simulink.sdi.createRun function to create the
empty run. The Simulink.sdi.Run.create function returns the Simulink.sdi.Run object for
the new run. The Simulink.sdi.createRun function returns the run ID for the new run.

This example creates an empty run using the Simulink.sdi.Run.create function, gives the run a
meaningful name and description, and then adds the sine and cosine timeseries data using the add
function.

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = "Sinusoids";
sinusoidsRun.Description = "Sine and cosine signals of different frequencies";

add(sinusoidsRun,'vars',sine_ts,cos_ts)

This example uses the Simulink.sdi.createRun function to create a new run in the Simulation
Data Inspector called My Waves and then uses the Simulink.sdi.addToRun function to add the
sine and cosine timeseries data to the run.

runID = Simulink.sdi.createRun("My Waves");
signalID = Simulink.sdi.addToRun(runID,'vars',sine_ts,cos_ts);

Create Run from Workspace Variable

You can create a run from a single variable in the workspace. After creating the run, you can add
additional data or create another run to contain your other data. The variable you use to create the
run can be a timeseries object with data that corresponds to only one signal or a Dataset object
that contains several signals.

When you use this syntax to create a run from a single workspace variable, the run takes the same
name as the object used to create it.

runID = Simulink.sdi.createRun(sine_ts);

The Simulink.sdi.createRun function returns the run ID for the run the function creates. You can
use the Simulink.sdi.getRun function to access the Run object for the run.

sineRun = Simulink.sdi.getRun(runID);
sineRun.Name

ans =
'Sine, T=5'

Create Run from Multiple Workspace Variables

When your data exists in multiple variables in your workspace, you can use the
Simulink.sdi.createRun function with the vars option to import the data from multiple variables
into a single run in the Simulation Data Inspector. You can also use this syntax to create a run for a
single variable that uses a name you specify.

 Simulink.sdi.Run.create

2-917

This example creates a run called My Sinusoids that contains data for the sine and cosine
timeseries objects.

runID = Simulink.sdi.createRun("My Sinusoids",'vars',sine_ts,cos_ts);

Create Run and Specify Source Names

You can use the namevalue option of the Simulink.sdi.createRun function to create a run and
specify names for the signals in the run. This syntax can be helpful when you import individual leaf
signals from hierarchical data.

This example creates a run containing the data for both the Dataset objects. Each Dataset object
contains data for more than one signal, so the imported run data has hierarchy. The name-value
syntax in this example specifies a name for the hierarchical node that corresponds to each Dataset
object.

runID = Simulink.sdi.createRun("Waves",'namevalue',{'Sinusoids',...
 'BigSinusoids'},{sinusoids_ds,doubSinusoids_ds});

Create Run from File Data

You can also use the Simulink.sdi.createRun function to import data into the Simulation Data
Inspector from a file. Use the file option to import the data in the sinusoids.mat file.

runID = Simulink.sdi.createRun("Wave Data",'file',"sinusoids.mat");

Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the Simulation Data
Inspector.

Create Data for the Run

Create timeseries objects to contain data for a sine signal and a cosine signal. Give each
timeseries object a descriptive name.

time = linspace(0,20,100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Add Data

Use the Simulink.sdi.view function to open the Simulation Data Inspector.

Simulink.sdi.view

To import data into the Simulation Data Inspector from the workspace, create a Simulink.sdi.Run
object using the Simulink.sdi.Run.create function. Add information about the run to its
metadata using the Name and Description properties of the Run object.

2 Functions

2-918

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = 'Sinusoids';
sinusoidsRun.Description = 'Sine and cosine signals with different frequencies';

Use the add function to add the data you created in the workspace to the empty run.

add(sinusoidsRun,'vars',sine_ts,cos_ts);

Plot the Data in the Simulation Data Inspector

Use the getSignalByIndex function to access Simulink.sdi.Signal objects that contain the
signal data. You can use the Simulink.sdi.Signal object properties to specify the line style and
color for the signal and plot it in the Simulation Data Inspector. Specify the LineColor and
LineDashed properties for each signal.

sine_sig = getSignalByIndex(sinusoidsRun,1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';

cos_sig = sinusoidsRun.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.LineDashed = '--';

Use the Simulink.sdi.setSubPlotLayout function to configure a 2-by-1 subplot layout in the
Simulation Data Inspector plotting area. Then use the plotOnSubplot function to plot the sine
signal on the top subplot and the cosine signal on the lower subplot.

Simulink.sdi.setSubPlotLayout(2,1);

plotOnSubPlot(sine_sig,1,1,true);
plotOnSubPlot(cos_sig,2,1,true);

Close the Simulation Data Inspector and Save Your Data

When you have finished inspecting the plotted signal data, you can close the Simulation Data
Inspector and save the session to an MLDATX file.

Simulink.sdi.close('sinusoids.mldatx')

Input Arguments
runName — Name for run
string | character vector

Name for run in Simulation Data Inspector, specified as a string or a character vector.
Example: 'Baseline Simulation'

var — Data to import
variable

Data to import, specified as a variable. The Simulation Data Inspector supports time-based data in
which sample values are associated with sample times. The Simulation Data Inspector supports all
loading and logging data formats, including timeseries and
Simulink.SimulationData.Dataset.
Example: myData

 Simulink.sdi.Run.create

2-919

sourceNames — Source names for imported data
cell array of character vectors

Source names for imported data, specified as a cell array of character vectors. The source name is
used to set the RootSource, TimeSource, and DataSource properties of the
Simulink.sdi.Signal objects created from the data specified by the sigValues input.

Provide a sourceNames input when you specify 'namevalue' for the second argument.
Example: {'sig1','sig2'}

sigValues — Data to import
cell array of variables

Data to import, specified as a cell array of variables.

Provide a sigValues input when you specify 'namevalue' for the second argument.
Example: {var1,var2}

filename — Name of file with data to import
character vector

Name of file with data to import, specified as a character vector. Provide a filename input when you
specify 'file' for the second argument.

You can create a run from these types of files using file readers built into the Simulation Data
Inspector:

• MAT-file
• CSV file
• Microsoft Excel file that contains data formatted according to “Microsoft Excel Import, Export,

and Logging Format”.
• MDF file with one of these extensions:

• .mdf
• .mf4
• .mf3
• .data
• .dat

When you need to import data from a file that the built-in readers do not support, you can write your
own reader using the io.reader class. You can also write a custom reader to use instead of the
built-in reader for any file extension. For an example, see “Import Data Using a Custom File Reader”.
Example: 'simulation.mat'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: sheets=["sheet1" "sheet2"]

2 Functions

2-920

reader — File reader to use to import data
string | character vector

File reader to use to import data, specified as a string or character vector.

The Simulation Data Inspector prioritizes using a registered custom reader when one is available for
the file. When you do not specify a reader, the Simulation Data Inspector uses the first custom reader
registered for the file. If no custom readers are registered, the data is imported using the built-in
reader.

Specify the reader input when:

• You want to use the built-in reader to import data for a file that is also supported by a custom
reader.

• Multiple registered custom readers support the file.

To determine which readers are available to import your file, use the
io.reader.getSupportedReadersForFile function.
Example: "MyExcelReader"
Example: "built-in"

sheets — Sheets in Excel file from which to import data
string array | cell array of character vectors

Sheets in Excel file from which to import data, specified as a string array or a cell array of character
vectors. By default, the Simulation Data Inspector imports data from all sheets. Use the sheets
name-value argument when you do not want to import data from all sheets in the Excel file.

When the data in the file does not include simulation numbers and source information, the data on
each sheet is imported into a separate run. For more information about formatting data to import
from an Excel file, see “Microsoft Excel Import, Export, and Logging Format”.
Example: ["sheet1" "sheet2"]

model — Model with definitions of user-defined data types
string | character vector

Model with definitions of user-defined data types, specified as a string or character vector.

When you load data from an Excel file that defines signal data types using user-defined data types,
such as enumerations, buses, or aliases, the Simulation Data Inspector needs access to the type
definition to import the data. You can provide access to the type definitions by:

• Loading the associated object into the MATLAB workspace.
• Specifying the model name-value argument to use type definitions saved in the model workspace

or a data dictionary.

For more information on formatting data to import from an Excel file, see “Microsoft Excel Import,
Export, and Logging Format”.
Example: "myModel.slx"

 Simulink.sdi.Run.create

2-921

Output Arguments
runObj — Imported data
Simulink.sdi.Run object

Imported data, returned as a Simulink.sdi.Run object. When you create an empty Run object,
import data into the run using the add function or the Simulink.sdi.addToRun function.

Version History
Introduced in R2017b

See Also
Objects
Simulink.sdi.Run

Functions
Simulink.sdi.createRun | Simulink.sdi.createRunOrAddToStreamedRun | add |
io.reader.getRegisteredFileReaders | io.reader.getSupportedReadersForFile

Tools
Simulation Data Inspector

Classes
io.reader

Topics
“Inspect and Compare Data Programmatically”
“Microsoft Excel Import, Export, and Logging Format”
“View Data in the Simulation Data Inspector”
“Import Data Using a Custom File Reader”

2 Functions

2-922

Simulink.sdi.Run.getLatest
Get the most recently created Simulation Data Inspector run

Syntax
runObj = Simulink.sdi.Run.getLatest

Description
runObj = Simulink.sdi.Run.getLatest returns the most recently created run in the Simulation
Data Inspector repository. A run is created when you simulate a model that logs data or when you
import data into the Simulation Data Inspector.

Examples

Access Simulation Data Inspector Runs

Many tasks performed using the Simulation Data Inspector programmatic interface start by accessing
the Simulink.sdi.Run object that corresponds to the logged or imported data you want to analyze.
For example, you can use the Run object to access the Simulink.sdi.Signal objects that
correspond to individual signals in the run.

This example shows how to access Run objects by using the Simulink.sdi.Run.getLatest
function, the Simulink.sdi.getCurrentSimulationRun function, or the
Simulink.sdi.getRun function.

Create a Run

The model sldemo_fuelsys is already configured for logging. When you simulate the model, the
Simulation Data Inspector automatically creates a run and assigns it a run ID.

load_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

Get Run Object Using Simulink.sdi.Run.getLatest

In this example, the run created when you simulated the model is the most recently created run in
the Simulation Data Inspector. When you want to access the most recently created run, use the
Simulink.sdi.Run.getLatest function.

fuelsysRun = Simulink.sdi.Run.getLatest;

Get Run Object Using Simulink.sdi.getCurrentSimulationRun

The run you want to access may not be the most recently created run in the Simulation Data
Inspector. If the run corresponds to the most recent simulation of a model, you can use the
Simulink.sdi.getCurrentSimulationRun function to access the Run object. You can also use
the Simulink.sdi.getCurrentSimulationRun function to access data for an in-progress
simulation when the simulation streams data to the Simulation Data Inspector. This function can be
useful when you are working with multiple models.

 Simulink.sdi.Run.getLatest

2-923

In this example, the run created when you simulated the model is the current simulation run for the
sldemo_fuelsys model.

fuelsysRun = Simulink.sdi.getCurrentSimulationRun('sldemo_fuelsys');

Get Run Object from a Run ID

When your task also requires the run ID, you can use the Simulink.sdi.getRun function to get the
corresponding Simulink.sdi.Run object that contains the run data and metadata.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
fuelsysRun = Simulink.sdi.getRun(runID);

Output Arguments
runObj — Simulink.sdi.Run object
Simulink.sdi.Run object

Simulink.sdi.Run object for the most recently created run in the Simulation Data Inspector.

Version History
Introduced in R2020a

See Also
Simulink.sdi.Run | Simulink.sdi.getCurrentSimulationRun | Simulink.sdi.getRun |
Simulink.sdi.getRunCount | Simulink.sdi.getRunIDByIndex |
Simulink.sdi.getAllRunIDs

Topics
“Inspect and Compare Data Programmatically”

2 Functions

2-924

Simulink.sdi.save
Package: Simulink.sdi

Save Simulation Data Inspector session

Syntax
Simulink.sdi.save(fileName)

Description
Simulink.sdi.save(fileName) saves all runs, signals, and visualization settings as a Simulation
Data Inspector session in the file fileName.

A session file includes data as well as visualization information. Use the Simulink.sdi.load
function to open a session file in the Simulation Data Inspector. When the session file opens, you can
choose to add the data to existing data in the Simulation Data Inspector or clear the existing data.

You can also save only the visualization information to apply to other sets of data. Save visualization
information for reuse in a view file using the Simulink.sdi.saveView function.

Examples

Save a Simulation Data Inspector Session

This example creates, saves, and loads a Simulation Data Inspector session. The example logs data in
the model slexAircraftExample and visualizes the logged data in a Simulation Data Inspector
session. Each time you use the Simulation Data Inspector, you create and modify a session. You can
save the data and associated visualization settings for a session in an MLDATX file using the
Simulink.sdi.save function. When you want to review the data later, you can load the session
using the Simulink.sdi.load function.

Log Data to the Simulation Data Inspector

This example logs data from a simulation of the model slexAircraftExample to the Simulation
Data Inspector. The model is not configured to log data. Load the model and mark the Stick, the
alpha, rad, and the q, rad/sec signals for logging.

load_system('slexAircraftExample')

Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',3,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

For this example, run two simulations of the model. In the first simulation, use the sine wave output
from the Pilot block, and in the second, use the square wave output.

set_param('slexAircraftExample/Pilot','WaveForm','sine')
sim('slexAircraftExample')

 Simulink.sdi.save

2-925

set_param('slexAircraftExample/Pilot','WaveForm','square')
sim('slexAircraftExample')

Visualize the Logged Data

You can use the Simulation Data Inspector programmatic interface to access the logged data from the
simulations. When you access data using the Simulation Data Inspector programmatic interface, you
can use functions to create plots in the Simulation Data Inspector.

To start, access the run IDs for the most recent two runs and then get the corresponding
Simulink.sdi.Run object. The Run objects allow you to access the logged data for the simulations.

runIDs = Simulink.sdi.getAllRunIDs;
sineRunID = runIDs(end-1);
squareRunID = runIDs(end);

sineRun = Simulink.sdi.getRun(sineRunID);
squareRun = Simulink.sdi.getRun(squareRunID);

Suppose you want to analyze the relationship between the input and output for the model. Get the
Simulink.sdi.Signal objects for the input and output signals from the two simulation runs.

sineOut = getSignalByIndex(sineRun,1);
sineIn = getSignalByIndex(sineRun,3);

squareOut = getSignalByIndex(squareRun,1);
squareIn = getSignalByIndex(squareRun,3);

Change the subplot layout in the Simulation Data Inspector to 2-by-1 and plot the signals from the
first simulation run on the top plot and the signals from the second run on the bottom plot.

Simulink.sdi.setSubPlotLayout(2,1)

plotOnSubPlot(sineIn,1,1,true)
plotOnSubPlot(sineOut,1,1,true)

plotOnSubPlot(squareIn,2,1,true)
plotOnSubPlot(squareOut,2,1,true)

Save the Simulation Data Inspector Session

To view the plotted data in the Simulation Data Inspector, enter Simulink.sdi.view in the
command window.

Then, save the Simulation Data Inspector session as an MLDATX file.

Simulink.sdi.save('myData.mldatx')

Load the Simulation Data Inspector Session

To mimic a scenario where you want to return to looking at the same data at a later point, clear the
data from the Simulation Data Inspector and reset the subplot layout to 1-by-1.

Simulink.sdi.clear
Simulink.sdi.setSubPlotLayout(1,1)

Load the session file and resume working with the data. You can open the Simulation Data Inspector
and view the results using the Simulink.sdi.view function.

2 Functions

2-926

Simulink.sdi.load('myData.mldatx');

Input Arguments
fileName — File name
character vector

Name for the session file.
Example: 'myData.mldatx'

Version History
Introduced in R2011b

See Also
Simulink.sdi.close | Simulink.sdi.load | Simulink.sdi.saveView

Topics
“Inspect and Compare Data Programmatically”
“Save and Share Simulation Data Inspector Data and Views”

 Simulink.sdi.save

2-927

Simulink.sdi.saveView
Save visualization settings to apply to other data

Syntax
Simulink.sdi.saveView(filename)

Description
Simulink.sdi.saveView(filename) saves the current view in the Simulation Data Inspector to
the file, filename.

A view contains information about the layout and plots in the graphical viewing area as well as
properties of plotted signals. When you load a view, the Simulation Data Inspector uses the properties
and preferences in the file to display data currently in the Simulation Data Inspector. Signals in the
Simulation Data Inspector that align with the signals in the view are plotted in the graphical viewing
area. Use a view to apply a consistent set of visualization settings to multiple sets of similar data.

The view file saves the following information:

• Subplot layout and visualization type
• Settings for each visualization type in the layout
• Signal selection mode
• Replay controls visibility
• Metadata displayed in the work area
• Settings for signal grouping in the work area
• Plotted signals and the line style and color for each plotted signal

A view file does not contain data. To save run data, export the data or save a session using the
Simulink.sdi.save function.

Examples

Save and Use a View

This example visualizes the output from the ex_vdp model, saves the configuration as a view, and
then uses the view to visualize the output from another simulation of the same model.

To generate data to plot in the Simulation Data Inspector, simulate the model.

open_system('ex_vdp')
set_param('ex_vdp/Mu','Gain','1')
sim('ex_vdp');

Programmatically Configure and Save a View

The ex_vdp model is configured to log two signals, x1 and x2. Plot each signal on a subplot in a 2-
by-1 layout.

2 Functions

2-928

Simulink.sdi.setSubPlotLayout(2,1)

To plot one signal on each subplot, first access the Simulink.sdi.Run object for the simulation.

runIDs = Simulink.sdi.getAllRunIDs;
ex_vdpRunID = runIDs(end);
ex_vdpRun = Simulink.sdi.getRun(ex_vdpRunID);

Then, you can access the data for each signal in a Simulink.sdi.Signal object and use the
plotOnSubPlot function to specify where to plot each signal.

x1 = getSignalByIndex(ex_vdpRun,1);
x2 = getSignalByIndex(ex_vdpRun,2);

plotOnSubPlot(x1,1,1,true)
plotOnSubPlot(x2,2,1,true)

To view the result in the Simulation Data Inspector, enter Simulink.sdi.view in the command
window.

Then, save the view.

Simulink.sdi.saveView('ex_vdpView.mldatx')

 Simulink.sdi.saveView

2-929

Use the View

To mimic a situation where the Simulation Data Inspector is configured differently and contains data
from another simulation, this example clears data from the Simulation Data Inspector, loads a view
that represents the default visualization configuration, and runs another simulation of the ex_vdp
model.

Simulink.sdi.clear
Simulink.sdi.loadView('default.mldatx');
set_param('ex_vdp/Mu','Gain','2')
sim('ex_vdp');

Use the Simulink.sdi.loadView function to apply the saved view from the previous simulation.

Simulink.sdi.loadView('ex_vdpView.mldatx')

You can open the Simulation Data Inspector to view the results using the Simulink.sdi.view
function. The saved view includes information regarding the axes limits. When you use a view to
apply visualization settings, you may need to adjust axes limits or zoom levels to fit data from a
modified simulation.

Input Arguments
filename — Name of view file
string | character array

2 Functions

2-930

Name of the view file, specified as a string or character array.
Example: 'myView.mldatx'
Data Types: char | string

Version History
Introduced in R2020a

See Also
Simulink.sdi.loadView | Simulink.sdi.setBorderOn | Simulink.sdi.setGridOn |
Simulink.sdi.setMarkersOn | Simulink.sdi.setSubPlotLayout |
Simulink.sdi.setTableGrouping | Simulink.sdi.setTickLabelsDisplay |
Simulink.sdi.setTicksPosition | Simulink.sdi.copyRunViewSettings

Topics
“Save and Share Simulation Data Inspector Data and Views”

 Simulink.sdi.saveView

2-931

Simulink.sdi.sendWorkerRunToClient
Package: Simulink.sdi

Send run created on parallel workers to the Simulation Data Inspector

Syntax
Simulink.sdi.sendWorkerRunToClient
Simulink.sdi.sendWorkerRunToClient(run)

Description
Simulink.sdi.sendWorkerRunToClient sends the run most recently generated by the worker to
the client MATLAB and imports the run to the Simulation Data Inspector.

Simulink.sdi.sendWorkerRunToClient(run) sends the run corresponding to run to the client
MATLAB and imports the run to the Simulation Data Inspector.

Examples

Manually Send Runs from Parallel Workers to the Simulation Data Inspector

This example shows how to use Simulink.sdi.sendWorkerRunToClient to send runs created
using parallel workers manually to the Simulation Data Inspector.

Setup

This example runs several simulations of the vdp model, varying the value of the gain, Mu. To set up
for the parallel simulation, define a vector of Mu values and configure the Simulation Data Inspector
for manual Parallel Computing Toolbox support.

% Enable manual Parallel Computing Toolbox support
Simulink.sdi.enablePCTSupport('manual');

% Choose several Mu values
MuVals = [1 2 3 4];

Initialize Parallel Workers

Use parpool (Parallel Computing Toolbox) to start a pool of four parallel workers. This example calls
parpool inside an if statement so you only create a parallel pool if you don't already have one. You
can use spmd (Parallel Computing Toolbox) to run initialization code common to all workers. For
example, load the vdp model and select signals to log to runs that we can send to the Simulation Data
Inspector on the client MATLAB. To avoid data concurrency issues when simulating with sim in
parfor, create a temporary directory on each worker. After the simulations complete, another spmd
block deletes the temporary directories.

p = gcp('nocreate');

if isempty(p)

2 Functions

2-932

 parpool(4);

end

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

spmd

 % Load system and select signals to log
 load_system('vdp')
 Simulink.sdi.markSignalForStreaming('vdp/x1',1,'on')
 Simulink.sdi.markSignalForStreaming('vdp/x2',1,'on')

 % Create temporary directory for simulation on worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations with parfor

To stream data from parallel workers to the Simulation Data Inspector, you have to run parallel
simulations using parfor (Parallel Computing Toolbox). Each worker runs a vdp simulation with a
different value of Mu. Simulink cannot access the contents of the parfor loop, so the variable MuVal
is defined in the worker's workspace, where the vdp model can see it, using assignin.

parfor (index = 1:4)

 % Set value of Mu in the worker's base workspace
 assignin('base','MuVal',MuVals(index));

 % Modify the value of Mu in the model and simulate
 set_param('vdp/Mu','Gain','MuVal')
 sim('vdp')

Access Data and Send Run to Client MATLAB

You can use the Simulation Data Inspector programmatic interface on the worker the same way you
would in the client MATLAB. This example creates a Simulink.sdi.Run object and attaches the
value of Mu used in the simulation with the Tag property.

 % Attach metadata to the run
 IDs = Simulink.sdi.getAllRunIDs;
 lastIndex = length(IDs);
 runID = Simulink.sdi.getRunIDByIndex(lastIndex);
 parRun = Simulink.sdi.getRun(runID);
 parRun.Tag = strcat('Mu = ',num2str(MuVals(index)));

 % Send the run to the Simulation Data Inspector on the client MATLAB
 Simulink.sdi.sendWorkerRunToClient

end

 Simulink.sdi.sendWorkerRunToClient

2-933

Close Temporary Directories and View Runs in the Simulation Data Inspector

Use another spmd section to delete the temporary directories created on the workers once the
simulations complete. In each simulation, Simulink.sdi.sendWorkerRunToClient imported runs
from all the workers into the Simulation Data Inspector. You can view the data and check the run
properties to see the value of Mu used during simulation.

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Simulink.sdi.view

Input Arguments
run — Run ID or Simulink.sdi.Run object
runID | Simulink.sdi.Run object

Run ID or Simulink.sdi.Run object corresponding to the run you want to import into the
Simulation Data Inspector.

Version History
Introduced in R2018a

See Also
Simulink.sdi.enablePCTSupport | Simulink.sdi.WorkerRun |
Simulink.sdi.cleanupWorkerResources | Simulink.sdi.isPCTSupportEnabled

Topics
“Inspect and Compare Data Programmatically”

2 Functions

2-934

Simulink.sdi.setAppendRunToTop
Specify order in which Simulation Data Inspector appends new run in work area or archive

Syntax
Simulink.sdi.setAppendRunToTop(ord)

Description
Simulink.sdi.setAppendRunToTop(ord) configures the order in which the Simulation Data
Inspector appends new runs in the work area or archive.

• 1 — New runs are added to the top of the archive or work area.
• 0 — New runs are added to the bottom of the archive or work area.

Whether the Simulink.sdi.getAppendRunToTop function sets the order of simulations in the
archive or the work area is determined by the Automatically archive setting:

• When Automatically archive is enabled, the setting applies to runs in the archive.
• When Automatically archive is disabled, the setting applies to runs in the work area.

By default, new runs are placed below prior runs in the archive. For more information about
configuring the archive behavior, see Simulink.sdi.setAutoArchiveMode.

Examples

Change Order and Location of Runs

First, determine the order that runs are currently stored in the archive.

ord = Simulink.sdi.getAppendRunToTop

ord = logical
 0

By default, runs moved into the archive are placed below runs already in the archive. To have runs
placed above the runs already in the archive, change the value of the
Simulink.sdi.setAppendRunToTop function.

Simulink.sdi.setAppendRunToTop(true)

You can restore the original placement of runs as they move to the archive by passing ord back to the
set function.

Simulink.sdi.setAppendRunToTop(ord)

 Simulink.sdi.setAppendRunToTop

2-935

Input Arguments
ord — Whether Simulation Data Inspector appends new run to top of work area or archive
false or 0 (default) | true or 1

Whether Simulation Data Inspector appends new run to top of work area or archive, specified by
true (1) or false (0).
Data Types: logical

Version History
Introduced in R2022b

See Also
Simulink.sdi.getAppendRunToTop | Simulink.sdi.getAutoArchiveMode |
Simulink.sdi.setAutoArchiveMode

Topics
“Configure the Simulation Data Inspector”

2 Functions

2-936

Simulink.sdi.setArchiveRunLimit
Specify number of runs to retain in Simulation Data Inspector archive

Syntax
Simulink.sdi.setArchiveRunLimit(limit)

Description
Simulink.sdi.setArchiveRunLimit(limit) sets the limit limit for the number of runs to
retain in the Simulation Data Inspector archive. When the number of runs in the archive reaches the
specified limit, the Simulation Data Inspector deletes runs from the archive on a first-in, first-out
basis.

Tip To automatically limit the number of runs, configure the Simulation Data Inspector to
automatically move prior runs into the archive using the Simulink.sdi.setAutoArchiveMode
function and specify the archive run limit.

For information about how to control the amount of data logged from simulation, see “Limit the Size
of Logged Data”.

Examples

Limit Number of Runs Retained in Simulation Data Inspector

Configure the Simulation Data Inspector to automatically move prior simulation runs into the archive.

Simulink.sdi.setAutoArchiveMode(true)

Specify the number of runs to retain in the Simulation Data Inspector by setting the archive run limit.
For example, specify the archive run limit as 5 to only retain five prior runs in addition to the current
run.

Simulink.sdi.setArchiveRunLimit(5)

The Simulation Data Inspector automatically moves prior runs into the archive. Once the archive
contains five runs, the Simulation Data Inspector deletes run data from the archive on a first-in, first-
out basis.

Stop Retaining Data in Simulation Data Inspector

You can configure the Simulation Data Inspector to retain only the logged data for your current
simulation. In iterative design and debugging workflows, this configuration helps prevent the
accumulation of unwanted logged data on disk.

 Simulink.sdi.setArchiveRunLimit

2-937

First, check the configuration of the Simulation Data Inspector archive. Save the archive preference
values to restore your preferences after you finish designing or debugging.

limit = Simulink.sdi.getArchiveRunLimit;
mode = Simulink.sdi.getAutoArchiveMode;

Configure the Simulation Data Inspector to automatically move runs into the archive. Then, set the
archive run limit to 0.

Simulink.sdi.setAutoArchiveMode(true)
Simulink.sdi.setArchiveRunLimit(0)

When you simulate your model, the Simulation Data Inspector deletes the previous run and updates
the view to show signals from the current simulation.

When you finish designing or debugging your model, you can restore the Simulation Data Inspector
archive to the previous configuration.

Simulink.sdi.setArchiveRunLimit(limit)
Simulink.sdi.setAutoArchiveMode(mode)

Input Arguments
limit — Maximum number of runs to store in Simulation Data Inspector archive
numeric scalar

Maximum number of runs to store in Simulation Data Inspector archive, specified as a whole numeric
scalar. To configure no limit, specify -1.

Tips

To retain simulation results for only the current run, configure the Simulation Data Inspector to
automatically archive simulation runs, and specify the archive run limit as 0.

Simulink.sdi.setAutoArchiveMode(true)
Simulink.sdi.setArchiveRunLimit(0)

Version History
Introduced in R2018b

See Also
Simulink.sdi.setAutoArchiveMode | Simulink.sdi.getArchiveRunLimit |
Simulink.sdi.getAutoArchiveMode

Topics
“Limit the Size of Logged Data”
“Configure the Simulation Data Inspector”

2 Functions

2-938

Simulink.sdi.setAutoArchiveMode
Specify how Simulation Data Inspector manages simulation runs

Syntax
Simulink.sdi.setAutoArchiveMode(archive)

Description
Simulink.sdi.setAutoArchiveMode(archive) configures the Simulation Data Inspector to
manage simulation runs according to archive.

When you run multiple simulations in a single MATLAB session, the Simulation Data Inspector retains
results from each simulation so you can analyze the results together. Use the Simulation Data
Inspector archive to manage the number of runs the Simulation Data Inspector retains and to visually
manage runs in the user interface.

With automatic archiving enabled, when you start a simulation, the Simulation Data Inspector moves
the prior run into the archive. In the user interface, prior runs automatically move into the collapsible
Archive pane, and plots automatically update to show data from the current simulation.

With automatic archiving disabled, the Simulation Data Inspector does not move runs to the archive
or automatically update plots.

Tip When you enable automatic archiving and specify an archive run limit, the Simulation Data
Inspector automatically manages the number of runs it retains. Once the number of runs reaches the
specified limit, the Simulation Data Inspector deletes runs from the archive on a first-in, first-out
basis.

For more information about how to control the amount of data logged from simulation, see “Limit the
Size of Logged Data”.

Examples

Limit Number of Runs Retained in Simulation Data Inspector

Configure the Simulation Data Inspector to automatically move prior simulation runs into the archive.

Simulink.sdi.setAutoArchiveMode(true)

Specify the number of runs to retain in the Simulation Data Inspector by setting the archive run limit.
For example, specify the archive run limit as 5 to only retain five prior runs in addition to the current
run.

Simulink.sdi.setArchiveRunLimit(5)

The Simulation Data Inspector automatically moves prior runs into the archive. Once the archive
contains five runs, the Simulation Data Inspector deletes run data from the archive on a first-in, first-
out basis.

 Simulink.sdi.setAutoArchiveMode

2-939

Stop Retaining Data in Simulation Data Inspector

You can configure the Simulation Data Inspector to retain only the logged data for your current
simulation. In iterative design and debugging workflows, this configuration helps prevent the
accumulation of unwanted logged data on disk.

First, check the configuration of the Simulation Data Inspector archive. Save the archive preference
values to restore your preferences after you finish designing or debugging.

limit = Simulink.sdi.getArchiveRunLimit;
mode = Simulink.sdi.getAutoArchiveMode;

Configure the Simulation Data Inspector to automatically move runs into the archive. Then, set the
archive run limit to 0.

Simulink.sdi.setAutoArchiveMode(true)
Simulink.sdi.setArchiveRunLimit(0)

When you simulate your model, the Simulation Data Inspector deletes the previous run and updates
the view to show signals from the current simulation.

When you finish designing or debugging your model, you can restore the Simulation Data Inspector
archive to the previous configuration.

Simulink.sdi.setArchiveRunLimit(limit)
Simulink.sdi.setAutoArchiveMode(mode)

Input Arguments
archive — Whether Simulation Data Inspector manages runs using archive
true or 1 (default) | false or 0

Whether Simulation Data Inspector manages runs using archive, specified as logical true (1) or
false (0).
Data Types: logical

Version History
Introduced in R2018b

See Also
Simulink.sdi.getAutoArchiveMode | Simulink.sdi.setArchiveRunLimit |
Simulink.sdi.getArchiveRunLimit

Topics
“Limit the Size of Logged Data”
“Configure the Simulation Data Inspector”

2 Functions

2-940

Simulink.sdi.setBorderOn
Display or hide border on time plots

Syntax
Simulink.sdi.setBorderOn(border)

Description
Simulink.sdi.setBorderOn(border) displays or hides the border on time plots in the Simulation
Data Inspector according to the logical input, border. The function sets the value of the Show
border setting on the Time Plot section of the Visualization Settings in the Simulation Data
Inspector. The setting applies to all time plots in the layout. By default, the Simulation Data Inspector
shows the border on time plots.

Examples

Configure Time Plot Border Display

You can use the Simulink.sdi.setBorderOn function to show or hide the border on time plots in
the Simulation Data Inspector. By default, the Simulation Data Inspector shows the border on time
plots.

This example starts by showing how to use the Simulink.sdi.getBorderOn function to determine
whether the border is currently displayed. Subsequent sections show the code to hide and show the
border. To show the result, the example generates an image using the Simulink.sdi.snapshot
function with settings specified by a Simulink.sdi.CustomSnapshot object.

snapSettings = Simulink.sdi.CustomSnapshot;
snapSettings.Width = 300;
snapSettings.Height = 300;

Get Current Border Display Setting

Before modifying the border display setting for time plots, you can save the current setting to a
variable in the workspace in case you want to restore the preference later.

border = Simulink.sdi.getBorderOn;

Hide the Border on Time Plots

Simulink.sdi.setBorderOn(false)
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.setBorderOn

2-941

Show the Border on Time Plots

Simulink.sdi.setBorderOn(true)
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-942

Input Arguments
border — Whether border is visible on time plots
true or 1 (default) | false or 0

Whether the border is visible on time plots in the Simulation Data Inspector, specified as true (1) or
false (0).

• true or 1 — Display border for time plots.
• false or 0 — Hide border for time plots.

Version History
Introduced in R2019b

See Also
Simulink.sdi.getBorderOn | Simulink.sdi.setGridOn | Simulink.sdi.setMarkersOn |
Simulink.sdi.setSubPlotLayout | Simulink.sdi.setTickLabelsDisplay |
Simulink.sdi.setTicksPosition | Simulink.sdi.saveView | Simulink.sdi.save

Topics
“Create Plots Using the Simulation Data Inspector”

 Simulink.sdi.setBorderOn

2-943

Simulink.sdi.setCursorOptions
Configure shading options for cursors in the Simulation Data Inspector

Syntax
Simulink.sdi.setCursorOptions(Name,Value)

Description
Simulink.sdi.setCursorOptions(Name,Value) configures shading options for cursors in the
Simulation Data Inspector according to one or more name-value pair arguments. For example,
'ShadeArea','InBetween' configures the Simulation Data Inspector to apply shading to the area
between two cursors. You can specify name-value pair arguments to configure the area to shade, the
color and opacity of the shaded region, and whether signal data is emphasized in the shaded region.

Examples

Configure Shading Options for Cursors in the Simulation Data inspector

You can configure shading options for cursors to draw attention to a region of interest in a time plot.
You can choose to emphasize or de-emphasize the signal data in the shaded region, and you can
specify the shading color and opacity. By default, the Simulation Data Inspector shades areas gray
with an opacity of 0.7 to de-emphasize signal data and shades areas light blue with an opacity of 0.7
when signal data is emphasized.

Suppose you want to highlight a signal transition by shading the area where the transition occurs a
light yellow. Configure the cursors to highlight the area between the cursors a light yellow color.

Simulink.sdi.setCursorOptions('Emphasize',true,...
 'ShadeArea','InBetween','ShadeColor',[1 1 0.6]);

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ShadeArea','Lead','ShadeOpacity',0.5 configures cursors to shade the area that
leads the left-most cursor with an opacity of 0.5.

Type — Where to apply cursor options
'Inspect' (default) | 'Compare'

2 Functions

2-944

Where to apply cursor options, specified as the name-value pair consisting of 'Type' and
'Inspect' or 'Compare'. You can configure independent cursor options for the Inspect and
Compare panes in the Simulation Data Inspector.
Example: 'Type','Compare' configures cursor options for the Compare pane.

Emphasize — Whether signal data is emphasized in the shaded region
true or 1 (default) | false or 0

Whether signal data is emphasized in shaded region, specified as the name-value pair consisting of
'Emphasize' and true or false. When emphasized, the signal data is plotted on top of the cursor
shading.
Example: 'Emphasize',false configures cursor options to plot signal data under shaded region.

ShadeArea — Area to shade relative to cursors
'lead' (default) | 'lag' | 'leadandlag' | 'inbetween' | 'none'

Area to shade relative to cursors, specified as the name-value pair consisting of 'ShadeArea' and
one of these options:

• 'lead' — Shade the plot area that leads the left-most cursor.
• 'lag' — Shade the plot area that lags the right-most cursor.
• 'leadandlag' — Shade the plot area outside of the cursors, when two cursors are displayed.
• 'inbetween' — Shade the plot area between the cursors, when two cursors are displayed.
• 'none' — Do not shade any plot area.

Example: 'ShadeArea','none' configures cursor options to not shade any region relative to the
cursors.

ShadeColor — Color of the shaded area
[r g b] vector

Color of the shaded area, specified as the name-value pair consisting of 'ShadeColor' and an r g
b vector with values between 0 and 1.
Example: 'ShadeColor',[0 0 1] configures the color of the shaded area as blue.

ShadeOpacity — Opacity of the shaded area
percentage value between 0 and 1

Opacity of the shaded area, specified as the name-value pair consisting of 'ShadeOpacity' and a
percentage value between 0 and 1.
Example: 'ShadeOpacity',0.5 configures the opacity of the shaded area as 0.5.

Version History
Introduced in R2020a

See Also
Functions
Simulink.sdi.snapshot | Simulink.sdi.setSubPlotLayout

 Simulink.sdi.setCursorOptions

2-945

Topics
“Create Plots Using the Simulation Data Inspector”

2 Functions

2-946

Simulink.sdi.setCursorPositions
Specify active cursor positions in the Simulation Data Inspector

Syntax
Simulink.sdi.setCursorPositions(Name,Value)

Description
Simulink.sdi.setCursorPositions(Name,Value) configures the position for active cursors in
the Simulation Data Inspector as specified by one or more name-value pair arguments.

Examples

Programmatically Interact with Cursors in the Simulation Data Inspector

You can use the Simulation Data Inspector programmatic interface to specify the position of cursors
on time plots or sparklines and to access the time that corresponds to the current cursor position.

Open the session file vdp_mu.mldatx to add plot data in the Simulation Data Inspector. The session
file contains data for a 20-second simulation of a model of the Van Der Pol equation, with signals x1
and x2 plotted on separate subplots in a 2-by-1 subplot layout.

open vdp_mu.mldatx;

Use the Simulink.sdi.setNumCursors function to add one cursor to the plot.

Simulink.sdi.setNumCursors(1);

Suppose you want to know the signal values 5 seconds into the simulation. Use the
Simulink.sdi.setCursorPositions function to move the cursor to t=5s and read the signal
values off from the cursor on each subplot. The asterisk next to the value in the cursor label indicates
that the value is interpolated because the simulation did not include a calculation for a simulation
time of exactly 5s.

Simulink.sdi.setCursorPositions('left',5);

 Simulink.sdi.setCursorPositions

2-947

Suppose you want to calculate the time between two peaks in the x2 signal. Add a second cursor

using the Simulink.sdi.setNumCursors function or by using Show/hide data cursors in the
Simulation Data Inspector.

numCursors = Simulink.sdi.getNumCursors;
if(numCursors < 2)
 Simulink.sdi.setNumCursors(2);
end

Drag the cursors so the left cursor is positioned at the first peak in the x2 signal and the right cursor
is positioned at the second peak. Alternatively, you can run this code that positions the cursors for
you.

Simulink.sdi.setCursorPositions('left',5.921998549931304,...
 'right',12.378442136906246);

2 Functions

2-948

The Simulation Data Inspector displays the difference between the two cursors in seconds. However,
the cursor position and difference values are both rounded. Use the
Simulink.sdi.getCursorPositions function to programmatically retrieve the exact time values
that correspond to the cursor positions. Then, compute the difference between the times.

[t1,t2] = Simulink.sdi.getCursorPositions;
T = t2 - t1

T = 6.4564

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Simulink.sdi.setCursorPositions('right',10,'view','compare') moves the
right cursor on the Compare pane to 10s.

 Simulink.sdi.setCursorPositions

2-949

left — Left cursor position
scalar

Left cursor position, specified as a finite scalar using units of s. Use the 'left' name-value pair
argument to specify the position for a single active cursor.

Cursor identities are relative, not absolute. If you specify a value for the left cursor that moves it to
the right of the right cursor, the left cursor becomes the right cursor and vice versa.
Example: Simulink.sdi.setCursorPositions('left',0.5) moves the left cursor to 500ms.
Data Types: double

right — Right cursor position
scalar

Right cursor position, specified as a finite scalar using units of s.

Cursor identities are relative, not absolute. If you specify a value for the left cursor that moves it to
the right of the right cursor, the left cursor becomes the right cursor and vice versa.
Example: Simulink.sdi.setCursorPositions('right',10) moves the right cursor to 10s.

Tips

Use the 'left' name-value pair argument to specify the position for a single active cursor.
Data Types: double

view — Plot area on which to move cursors
'inspect' (default) | 'compare'

Plot area on which to move cursors, specified as 'inspect' or 'compare'.
Example: Simulink.sdi.setCursorPositions('right',10,'view','compare') moves the
right cursor on the Compare pane to 10s.
Data Types: char | string

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.setCursorOptions | Simulink.sdi.getCursorPositions |
Simulink.sdi.setNumCursors

Topics
“Inspect Simulation Data”
“Create Plots Using the Simulation Data Inspector”

2 Functions

2-950

Simulink.sdi.setDeleteRunsOnLowSpace
Specify behavior when logged data size approaches configured limits

Syntax
Simulink.sdi.setDeleteRunsOnLowSpace(deleteRuns)

Description
Simulink.sdi.setDeleteRunsOnLowSpace(deleteRuns) configures the action to take when the
size of logged data approaches the configured maximum size or minimum free disk space
requirement. When deleteRuns is true, logged data from prior simulations is deleted first to free
space for continued logging in the current simulation. If deleting prior simulation data does not free
enough disk space to continue logging through the end of the current simulation, recording data is
disabled. When deleteRuns is false, recording data from the current simulation is disabled and no
logged data from prior simulations is deleted.

Examples

Configure Logged Data Size Limits

Logging data from simulation can produce large amounts of data that may fill up disk space. To
mitigate issues related to filing disk space, you can specify a minimum disk space requirement, a
maximum size for logged data, or both. To ensure the logged data does not exceed the specified
maximum size or use enough disk space to violate the disk space requirement, prior run data may be
deleted and recording logged data may be disabled. You can specify whether to prioritize continuing
to log data in the current simulation or retaining prior simulation data.

Use the Simulink.sdi.setRequiredFreeSpace function to configure logging to leave at least 1
GB of disk space empty.

Simulink.sdi.setRequiredFreeSpace(1);

Use the Simulink.sdi.setMaxDiskUsage function to specify a maximum logged data size of 100
GB.

Simulink.sdi.setMaxDiskUsage(100);

When you configure logging size limits, you can also specify what to do when the logging limits are
approached. You can choose whether to prioritize retaining data from prior runs or data in the
current run.

By default, current simulation data is prioritized. If the size of logged data approaches configured
limits, data from prior simulations is deleted. If deleting run data does not free enough space,
recording logged data is disabled and no more data from the current simulation is saved. When you
choose to prioritize logged data from prior simulations instead, recording is disabled as soon as the
size of logged data approaches configured limits. You see a warning when run data is deleted and
when recording is disabled.

 Simulink.sdi.setDeleteRunsOnLowSpace

2-951

Use the Simulink.sdi.setDeleteRunsOnLowSpace function to configure logging to prioritize
retaining prior run data.

Simulink.sdi.setDeleteRunsOnLowSpace(false);

If recording is disabled due to the size of logged data, you need to enable recording again to save
data from future simulations. Use the Simulink.sdi.setRecordData function to enable recording.

Simulink.sdi.setRecordData(true);

Input Arguments
deleteRuns — Behavior when logged data size approaches configured limits
true or 1 (default) | false or 0

Behavior when logged data size approaches configured limits, specified as numeric or logical 1
(true) or 0 (false).

• true — First delete data logged from prior simulations. If deleting prior simulation data does not
free enough space, disable recording data.

• false — Disable recording data for current simulation. Do not delete prior simulation data.

When recording is disabled due to configured disk space requirements or logged data size limits, you
need to enable recording again to log data in subsequent simulations. You can configure the record
mode in the Simulation Data Inspector preferences or using the Simulink.sdi.setRecordData
function.
Data Types: logical

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.getDeleteRunsOnLowSpace | Simulink.sdi.setMaxDiskUsage |
Simulink.sdi.getMaxDiskUsage | Simulink.sdi.setRequiredFreeSpace |
Simulink.sdi.getRequiredFreeSpace | Simulink.sdi.setRecordData |
Simulink.sdi.getRecordData

Topics
“Limit the Size of Logged Data”
“Configure the Simulation Data Inspector”

2 Functions

2-952

Simulink.sdi.setGridOn
Package: Simulink.sdi

Configure grid lines for time plots in the Simulation Data Inspector

Syntax
Simulink.sdi.setGridOn(grid)

Description
Simulink.sdi.setGridOn(grid) configures the grid lines for time plots in the Simulation Data
Inspector according to the input, grid. The function configures the Horizontal and Vertical options
on the Time Plot section of the Visualization Settings in the Simulation Data Inspector. The
settings apply to the session and configure the grids for all time plots. By default, the Simulation Data
Inspector shows horizontal and vertical grid lines.

Examples

Configure Grid for Time Plots in the Simulation Data Inspector

You can use Simulink.sdi.setGridOn to configure the appearance of the grid for time plots in the
Simulation Data Inspector. By default, the Simulation Data Inspector shows horizontal and vertical
grid lines.

This example starts by showing how to use Simulink.sdi.getGridOn to access the current grid
configuration. The subsequent sections show the code for each configuration option for time plot grid
in the Simulation Data Inspector. To see the result, the example uses a
Simulink.sdi.CustomSnapshot object to specify settings for the output of the
SImulink.sdi.snapshot function.

snapSettings = Simulink.sdi.CustomSnapshot;
snapSettings.Width = 300;
snapSettings.Height = 300;

Get Initial Grid Setting

Before modifying the grid display preferences, you can save the current configuration to a variable in
the workspace in case you want to restore the preferences later.

gridInit = Simulink.sdi.getGridOn;

Configure Horizontal Grid Lines

Show only horizontal grid lines in the Simulation Data Inspector.

Simulink.sdi.setGridOn('horizontal')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.setGridOn

2-953

Configure Vertical Grid Lines

Show only vertical grid lines in the Simulation Data Inspector.

Simulink.sdi.setGridOn('vertical')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-954

Configure No Grid Lines

Show no grid lines in the Simulation Data Inspector.

Simulink.sdi.setGridOn('off')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.setGridOn

2-955

Configure Horizontal and Vertical Grid Lines

Show horizontal and vertical grid lines in the Simulation Data Inspector.

Simulink.sdi.setGridOn('on')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-956

Input Arguments
grid — Visible grid lines
'on' (default) | 'horizontal' | 'vertical' | 'off'

Grid lines to show on time plots in the Simulation Data Inspector, specified as one of these options:

• 'on' — Horizontal and vertical grid lines
• 'horizontal' — Only horizontal grid lines
• 'vertical' — Only vertical grid lines
• 'off' — No grid lines

Version History
Introduced in R2019a

R2019b: Specifying the input as a logical value is not recommended

Starting in R2019b, the Simulink.sdi.setGridOn input values changed to:

• 'on'
• 'horizontal'
• 'vertical'

 Simulink.sdi.setGridOn

2-957

• 'off'

In R2019a, the Simulink.sdi.setGridOn accepted a logical input to show or hide the grid on time
plots in the Simulation Data Inspector:

• true or 1 shows horizontal and vertical grid lines on time plots in the Simulation Data Inspector.
• false or 0 hides horizontal and vertical grid lines on time plots in the Simulation Data Inspector.

Starting in R2019b, use the 'on' input value for the same behavior as the true or 1 input, and use
the 'off' input value for the same behavior as the false or 0 input.

See Also
Simulink.sdi.getGridOn | Simulink.sdi.setBorderOn | Simulink.sdi.setMarkersOn |
Simulink.sdi.setSubPlotLayout | Simulink.sdi.setTicksPosition |
Simulink.sdi.setTickLabelsDisplay | Simulink.sdi.clearPreferences |
Simulink.sdi.saveView | Simulink.sdi.save

Topics
“Create Plots Using the Simulation Data Inspector”
“View Data in the Simulation Data Inspector”

2 Functions

2-958

Simulink.sdi.setMarkersOn
Package: Simulink.sdi

Show or hide markers for plotted signals

Syntax
Simulink.sdi.setMarkersOn(value)

Description
Simulink.sdi.setMarkersOn(value) shows or hides markers on signals plotted in the
Simulation Data Inspector according to the logical input, value. The function configures the Show
markers setting in the Simulation Data Inspector. The setting applies to the session and shows or
hides markers for all signals plotted in the Simulation Data Inspector. By default, markers are hidden
in the Simulation Data Inspector.

Examples

Display Markers in the Simulation Data Inspector

Simulink.sdi.setMarkersOn(true);

Input Arguments
value — Logical input
false or 0 (default) | true or 1

Logical specification of whether markers are shown on plots in the Simulation Data Inspector.

• true or 1 shows markers on plots in the Simulation Data Inspector.
• false or 0 does not show markers on plots in the Simulation Data Inspector.

Data Types: logical

Version History
Introduced in R2017b

See Also
Simulink.sdi.getMarkersOn | Simulink.sdi.setBorderOn |
Simulink.sdi.setSubPlotLayout | Simulink.sdi.setGridOn |
Simulink.sdi.setTicksPosition | Simulink.sdi.setTickLabelsDisplay |
Simulink.sdi.clearPreferences | Simulink.sdi.saveView | Simulink.sdi.save

 Simulink.sdi.setMarkersOn

2-959

Topics
“Inspect and Compare Data Programmatically”

2 Functions

2-960

Simulink.sdi.setMaxDiskUsage
Specify maximum size for data logged to disk

Syntax
Simulink.sdi.setMaxDiskUsage(maxSize)

Description
Simulink.sdi.setMaxDiskUsage(maxSize) configures logging to use no more than the
maximum amount of disk space specified by maxSize, in units of GB.

When you configure a maximum size for logged data, you can also configure the behavior when
logged data approaches the maximum size using the Simulink.sdi.setDeleteRunsOnLowSpace
function. For more information, see “Specify a Minimum Disk Space Requirement or Maximum Size
for Logged Data”.

Examples

Configure Logged Data Size Limits

Logging data from simulation can produce large amounts of data that may fill up disk space. To
mitigate issues related to filing disk space, you can specify a minimum disk space requirement, a
maximum size for logged data, or both. To ensure the logged data does not exceed the specified
maximum size or use enough disk space to violate the disk space requirement, prior run data may be
deleted and recording logged data may be disabled. You can specify whether to prioritize continuing
to log data in the current simulation or retaining prior simulation data.

Use the Simulink.sdi.setRequiredFreeSpace function to configure logging to leave at least 1
GB of disk space empty.

Simulink.sdi.setRequiredFreeSpace(1);

Use the Simulink.sdi.setMaxDiskUsage function to specify a maximum logged data size of 100
GB.

Simulink.sdi.setMaxDiskUsage(100);

When you configure logging size limits, you can also specify what to do when the logging limits are
approached. You can choose whether to prioritize retaining data from prior runs or data in the
current run.

By default, current simulation data is prioritized. If the size of logged data approaches configured
limits, data from prior simulations is deleted. If deleting run data does not free enough space,
recording logged data is disabled and no more data from the current simulation is saved. When you
choose to prioritize logged data from prior simulations instead, recording is disabled as soon as the
size of logged data approaches configured limits. You see a warning when run data is deleted and
when recording is disabled.

 Simulink.sdi.setMaxDiskUsage

2-961

Use the Simulink.sdi.setDeleteRunsOnLowSpace function to configure logging to prioritize
retaining prior run data.

Simulink.sdi.setDeleteRunsOnLowSpace(false);

If recording is disabled due to the size of logged data, you need to enable recording again to save
data from future simulations. Use the Simulink.sdi.setRecordData function to enable recording.

Simulink.sdi.setRecordData(true);

Input Arguments
maxSize — Maximum size for data logged to disk
0 (default) | scalar

Maximum size for data logged to disk, specified as a scalar, in units of GB. To configure no limit on
the size of logged data, specify 0.
Example: Simulink.sdi.setMaxDiskUsage(500) configures logging to use no more than 500 GB
of disk space.

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.getMaxDiskUsage | Simulink.sdi.setRequiredFreeSpace |
Simulink.sdi.getRequiredFreeSpace | Simulink.sdi.setDeleteRunsOnLowSpace |
Simulink.sdi.getDeleteRunsOnLowSpace | Simulink.sdi.setRecordData |
Simulink.sdi.getRecordData

Topics
“Limit the Size of Logged Data”
“Configure the Simulation Data Inspector”

2 Functions

2-962

Simulink.sdi.setNumCursors
Configure number of cursors active in Simulation Data Inspector

Syntax
Simulink.sdi.setNumCursors(num)
Simulink.sdi.setNumCursors(num,view)

Description
Simulink.sdi.setNumCursors(num) configures the Simulation Data Inspector to display the
number of cursors specified by num in the Inspect pane plots.

Simulink.sdi.setNumCursors(num,view) configures the Simulation Data Inspector to display
the number of cursors specified by num in the Inspect or Compare plot area, as specified by view.

Examples

Programmatically Interact with Cursors in the Simulation Data Inspector

You can use the Simulation Data Inspector programmatic interface to specify the position of cursors
on time plots or sparklines and to access the time that corresponds to the current cursor position.

Open the session file vdp_mu.mldatx to add plot data in the Simulation Data Inspector. The session
file contains data for a 20-second simulation of a model of the Van Der Pol equation, with signals x1
and x2 plotted on separate subplots in a 2-by-1 subplot layout.

open vdp_mu.mldatx;

Use the Simulink.sdi.setNumCursors function to add one cursor to the plot.

Simulink.sdi.setNumCursors(1);

Suppose you want to know the signal values 5 seconds into the simulation. Use the
Simulink.sdi.setCursorPositions function to move the cursor to t=5s and read the signal
values off from the cursor on each subplot. The asterisk next to the value in the cursor label indicates
that the value is interpolated because the simulation did not include a calculation for a simulation
time of exactly 5s.

Simulink.sdi.setCursorPositions('left',5);

 Simulink.sdi.setNumCursors

2-963

Suppose you want to calculate the time between two peaks in the x2 signal. Add a second cursor

using the Simulink.sdi.setNumCursors function or by using Show/hide data cursors in the
Simulation Data Inspector.

numCursors = Simulink.sdi.getNumCursors;
if(numCursors < 2)
 Simulink.sdi.setNumCursors(2);
end

Drag the cursors so the left cursor is positioned at the first peak in the x2 signal and the right cursor
is positioned at the second peak. Alternatively, you can run this code that positions the cursors for
you.

Simulink.sdi.setCursorPositions('left',5.921998549931304,...
 'right',12.378442136906246);

2 Functions

2-964

The Simulation Data Inspector displays the difference between the two cursors in seconds. However,
the cursor position and difference values are both rounded. Use the
Simulink.sdi.getCursorPositions function to programmatically retrieve the exact time values
that correspond to the cursor positions. Then, compute the difference between the times.

[t1,t2] = Simulink.sdi.getCursorPositions;
T = t2 - t1

T = 6.4564

Input Arguments
num — Number of cursors to display
0 | 1 | 2

Number of cursors to display, specified as 0, 1, or 2.

view — Plot area in which to display cursors
'inspect' (default) | 'compare'

Plot area in which to display cursors, specified as 'inspect' or 'compare'.

 Simulink.sdi.setNumCursors

2-965

Data Types: char | string

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.setCursorOptions | Simulink.sdi.getNumCursors |
Simulink.sdi.setCursorPositions

Topics
“Inspect Simulation Data”
“Create Plots Using the Simulation Data Inspector”

2 Functions

2-966

Simulink.sdi.setPosition
Set position and size of Simulation Data Inspector

Syntax
Simulink.sdi.setPosition(pos)

Description
Simulink.sdi.setPosition(pos) sets the position and size of the Simulation Data Inspector
window based on the values in the vector, pos. The Simulation Data Inspector must be open before
changing the position or size of the window.

Examples

Change Position of Simulation Data Inspector

This example shows you how to change the position and size of the Simulation Data Inspector
window. First, open the Simulation Data Inspector.

Simulink.sdi.view

Set the Simulation Data Inspector window to be:

• 800 pixels wide
• 500 pixels high
• 200 pixels from the left edge of your primary display
• 60 pixels from the bottom of your primary display

pos = [200 60 800 500];
Simulink.sdi.setPosition(pos)

Alternatively, you can move and resize the Simulation Data Inspector manually. To use this placement
in future simulations, retrieve the position vector using the function Simulink.sdi.getPosition.

newPos = Simulink.sdi.getPosition

newPos = 1×4

 200 60 800 500

Input Arguments
pos — Position and size of Simulation Data Inspector
numeric array (default)

 Simulink.sdi.setPosition

2-967

Position and size of the Simulation Data Inspector window, specified as a four-element vector in the
form [left bottom width height]. All measurements have units of pixels.

Element Description
left Distance from the left edge of the primary display

to the inner-left edge of the window. This value
can be negative on systems that have more than
one monitor.

bottom Distance from the bottom edge of the primary
display to the inner-bottom edge of the window.
This value can be negative on systems that have
more than one monitor.

width Distance between the right and left inner edges
of the window.

height Distance between the top and bottom inner edges
of the window.

Version History
Introduced in R2022b

See Also
Simulink.sdi.getPosition | Simulink.sdi.view | Simulink.sdi.close

Topics
“Create Plots Using the Simulation Data Inspector”

2 Functions

2-968

Simulink.sdi.setRecordData
Specify record mode for logging

Syntax
Simulink.sdi.setRecordData(record)

Description
Simulink.sdi.setRecordData(record) configures the logging Record mode according to the
value of record. When record is true, logged data is available to view during simulation and for
analysis after simulation. When record is false, data is only available for viewing during simulation
and is not available after simulation in the workspace or the Simulation Data Inspector.

Examples

Configure Logging to View Data Only During Simulation

In certain scenarios, you may want to only view logged data during simulation and not save any data
to disk. For example, when using the Simulation Data Inspector to visualize data streaming from
hardware, you may only want to view the data live and not record it. Use the
Simulink.sdi.setRecordData function to configure the Record mode setting in the Simulation
Data Inspector programmatically. To view data only during simulation, specify the input as false.

Simulink.sdi.setRecordData(false)

When you want to record logged data on disk so that it is available for analysis after simulation, call
the Simulink.sdi.setRecordData function with true as the input.

Simulink.sdi.setRecordData(true)

The Record mode setting is restored to View and record data at the start of each MATLAB session.

Input Arguments
record — Record mode
trueor 1 (default) | false or 0

Record mode, specified as numeric or logical 1 (true) or 0 (false).

• true — Logged data is stored on disk and available in the workspace and the Simulation Data
Inspector after simulation.

• false — Logged data is not stored on disk and is only available to view during simulation. After
simulation, no logged data is available in the Simulation Data Inspector or workspace.

Specifying record as false can affect other applications. For more information, see “View Data
Only During Simulation”.
Data Types: logical

 Simulink.sdi.setRecordData

2-969

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.getRecordData

Topics
“Configure the Simulation Data Inspector”
“Specify Signal Values to Log”

2 Functions

2-970

Simulink.sdi.setRequiredFreeSpace
Specify minimum disk space to leave free when logging data

Syntax
Simulink.sdi.setRequiredFreeSpace(minDiskSpace)

Description
Simulink.sdi.setRequiredFreeSpace(minDiskSpace) configures logging to leave at least the
number of GB specified by minDiskSpace free when logging data.

When you configure a minimum amount of disk space to leave free, you can also configure the
behavior when the free disk space limit is approached using the
Simulink.sdi.setDeleteRunsOnLowSpace function. For more information, see “Specify a
Minimum Disk Space Requirement or Maximum Size for Logged Data”.

Examples

Configure Logged Data Size Limits

Logging data from simulation can produce large amounts of data that may fill up disk space. To
mitigate issues related to filing disk space, you can specify a minimum disk space requirement, a
maximum size for logged data, or both. To ensure the logged data does not exceed the specified
maximum size or use enough disk space to violate the disk space requirement, prior run data may be
deleted and recording logged data may be disabled. You can specify whether to prioritize continuing
to log data in the current simulation or retaining prior simulation data.

Use the Simulink.sdi.setRequiredFreeSpace function to configure logging to leave at least 1
GB of disk space empty.

Simulink.sdi.setRequiredFreeSpace(1);

Use the Simulink.sdi.setMaxDiskUsage function to specify a maximum logged data size of 100
GB.

Simulink.sdi.setMaxDiskUsage(100);

When you configure logging size limits, you can also specify what to do when the logging limits are
approached. You can choose whether to prioritize retaining data from prior runs or data in the
current run.

By default, current simulation data is prioritized. If the size of logged data approaches configured
limits, data from prior simulations is deleted. If deleting run data does not free enough space,
recording logged data is disabled and no more data from the current simulation is saved. When you
choose to prioritize logged data from prior simulations instead, recording is disabled as soon as the
size of logged data approaches configured limits. You see a warning when run data is deleted and
when recording is disabled.

 Simulink.sdi.setRequiredFreeSpace

2-971

Use the Simulink.sdi.setDeleteRunsOnLowSpace function to configure logging to prioritize
retaining prior run data.

Simulink.sdi.setDeleteRunsOnLowSpace(false);

If recording is disabled due to the size of logged data, you need to enable recording again to save
data from future simulations. Use the Simulink.sdi.setRecordData function to enable recording.

Simulink.sdi.setRecordData(true);

Input Arguments
minDiskSpace — Minimum amount of free disk space required
0.1 (default) | scalar

Minimum amount of free disk space required, specified as a scalar, in units of GB. The minimum disk
space requirement is a way to limit the size of logged data. The When low on disk space setting
specifies what happens when the minimum disk space requirement is approached. For more
information, see “Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data”.
Example: Simulink.sdi.setRequiredFreeSpace(0.5) configures logging to leave at least half a
gigabyte of free disk space.

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.getRequiredFreeSpace | Simulink.sdi.setMaxDiskUsage |
Simulink.sdi.getMaxDiskUsage | Simulink.sdi.setDeleteRunsOnLowSpace |
Simulink.sdi.getDeleteRunsOnLowSpace | Simulink.sdi.setRecordData |
Simulink.sdi.getRecordData

Topics
“Limit the Size of Logged Data”
“Configure the Simulation Data Inspector”

2 Functions

2-972

Simulink.sdi.setRunNamingRule
Package: Simulink.sdi

Specify the Simulation Data Inspector run naming rule

Syntax
Simulink.sdi.setRunNamingRule('rule')

Description
Simulink.sdi.setRunNamingRule('rule') sets the Simulation Data Inspector rule for naming
runs created by simulating a Simulink model.

Examples

Modify Run Naming Rule Then Restore Default

This example shows how to use the Simulation Data Inspector API to modify the Simulation Data
Inspector run naming rule, check a run's name, restore default preferences, and check the run
naming rule.

% Load model
load_system('sldemo_fuelsys')

% Modify run naming rule
Simulink.sdi.setRunNamingRule('<model_name> Run <run_index>')

% Simulate system
sim('sldemo_fuelsys')

% Check run name
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
fuelRun = Simulink.sdi.getRun(runID);
fuelRun.name

ans =
'sldemo_fuelsys Run 1'

% Clear preferences to reset the run naming rule
Simulink.sdi.clearPreferences

% Check run naming rule
Simulink.sdi.getRunNamingRule

ans =
'Run <run_index>: <model_name>'

 Simulink.sdi.setRunNamingRule

2-973

Input Arguments
'rule' — Simulation Data Inspector run naming rule
'Run <run_index>: <model_name> (default) | character vector

Simulation Data Inspector run naming rule for runs created by simulating a Simulink model. The
character vector specifying the run naming rule can include plain text and any of the following tokens
that represent data pulled from each run:

• <run_index> – Run's index in the Simulation Data Inspector repository.
• <model_name> – Name of the model simulated to create the run.
• <time_stamp> – Start time for the simulation that created the run.
• <sim_mode> – Simulation mode used for the simulation that created the run.

Example: '<time_stamp> Simulation <run_index>: <model_name>'
Example: '<model_name> - <run_index>'

Alternatives
You can modify the run naming rule using the Simulation Data Inspector UI in the Preferences
menu. You can rename a run by modifying the Name property of its Simulink.sdi.Run object.

Version History
Introduced in R2011b

See Also
Simulink.sdi.getRunNamingRule | Simulink.sdi.resetRunNamingRule |
Simulink.sdi.clearPreferences | Simulink.sdi.Run

Topics
“Configure the Simulation Data Inspector”
“Inspect and Compare Data Programmatically”

2 Functions

2-974

Simulink.sdi.setSignalInputProcessingMode
Specify value for Input Processing signal property

Syntax
Simulink.sdi.setSignalInputProcessingMode(blkPath,port,mode)
Simulink.sdi.setSignalInputProcessingMode(h,mode)

Description
Simulink.sdi.setSignalInputProcessingMode(blkPath,port,mode) specifies mode as the
value of the Input Processing property for the signal at the specified block path and port. You can
only specify the Input Processing property for logged signals.

The Input Processing setting affects the format of the logged data and how the Simulation Data
Inspector and dashboard blocks display the signal. You can configure a signal for frame-based or
sample-based input processing.

Simulink.sdi.setSignalInputProcessingMode(h,mode) specifies mode as the value of the
Input Processing property for the signal that corresponds to the line handle, h.

Examples

Programmatically Specify Input Processing Setting to Log a Frame-Based Signal

Many signal processing applications process data using frames, rather than individual signal values.
A frame consists of signal values for several sample times. To process signals as frame-based in your
model, specify frame-based processing in the blocks. To log and visualize frame-based signals, set the
Input Processing setting to Columns as channels (frame based) in the Instrumentation
Properties for the signal.

This example uses a model from the DSP System Toolbox™ to show how to programmatically specify
the Input Processing setting for signals in a model using the
Simulink.sdi.setSignalInputProcessingMode function. The model uses frame-based signals
and demonstrates single sideband (SSB) modulation.

 Simulink.sdi.setSignalInputProcessingMode

2-975

Configure Signal Logging

Open or load the model ssbdemo_frame. This example illustrates a scripting workflow and only
loads the model.

load_system('ssbdemo_frame');

The model includes visualization blocks and does not use signal logging. Mark the signals that
represent the upper sideband and lower sideband for logging.

upperSB_block = 'ssbdemo_frame/Up';
lowerSB_block = 'ssbdemo_frame/Down';

Simulink.sdi.markSignalForStreaming(upperSB_block,1,'on')
Simulink.sdi.markSignalForStreaming(lowerSB_block,1,'on')

If you simulate the model as-is, the signals would be logged as though they were sample-based, so
each element in a sample would be treated as a separate channel. To log the signals as frame-based,
specify the Input Processing setting for the signal as frame using the
Simulink.sdi.setSignalInputProcessingMode function.

Simulink.sdi.setSignalInputProcessingMode(upperSB_block,1,'frame');
Simulink.sdi.setSignalInputProcessingMode(lowerSB_block,1,'frame');

After configuring the upper and lower sideband signals for logging and as frame-based, the data logs
to the workspace and the Simulation Data Inspector in a frame-based format, so each column in a
sample is treated as a channel in the signal. You can view and analyze the data in the Simulation Data
Inspector or using its programmatic interface.

Input Arguments
blkPath — Block path for block that produces signal
string | character array

Block path for the block that produces the signal, specified as a string or character array.

2 Functions

2-976

Example: "vdp/Mu"

port — Number of block output port connected to signal
scalar

Block output port number for the port that produces the signal, specified as a scalar.
Example: 1

mode — Signal input processing setting
"sample" (default) | "frame"

Input Processing property value for the signal, returned as "signal" or "frame".

• sample — Sample-based input processing, where each element in a sample is treated as a
channel.

• frame — Frame-based input processing, where each column in a sample is treated as a channel.

h — Signal line handle
line handle

Line handle for the signal. You can get the line handle for a signal using the get_param function with
the 'LineHandles' option. For example, to access the line handle for the output of the Mu block in
the model vdp:

MuLineHandles = get_param('vdp/Mu','LineHandles');
MuOutputLineHandle = MuLineHandles.Outport;

Example: MuOutputLineHandle

Version History
Introduced in R2020a

See Also
get_param | Simulink.sdi.markSignalForStreaming |
Simulink.sdi.getSignalInputProcessingMode

 Simulink.sdi.setSignalInputProcessingMode

2-977

Simulink.sdi.setStorageLocation
Specify location for logged data on disk

Syntax
Simulink.sdi.setStorageLocation(storagePath)

Description
Simulink.sdi.setStorageLocation(storagePath) configures storagePath as the location
for simulation data logged to disk. By default, data is logged to the temporary directory on your
computer.

Note Logging data to a network location can degrade performance.

Note The Simulink.sdi.setStorageLocation function configures the location of data logged to
the workspace and Simulation Data Inspector when you log data to disk. The
Simulink.sdi.setStorageLocation function does not configure the location of data logged to a
file.

Examples

Specify Location of Logged Data

By default, data logged to the workspace and Simulation Data Inspector is stored in the temporary
directory on your computer. You may want to change the location of logged data when you need to log
large amounts of data and a secondary drive provides more storage capacity.

Use the Simulink.sdi.setStorageLocation function to specify the location for the file that holds
data logged to disk.

Simulink.sdi.setStorageLocation('C:/Users/username/LoggedData');

Input Arguments
storagePath — Location of data logged to disk
character vector | string

Location of data logged to disk, specified as a character vector or string. By default, data logs to the
temporary directory on your computer.

You may want to change the location of logged data when you need to log large amounts and a
network location provides more storage capacity than your local machine. However, logging data to a
network location can degrade performance.
Example: 'C:/Users/username/LoggedData'

2 Functions

2-978

Data Types: char | string

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.getStorageLocation | Simulink.sdi.setStorageMode |
Simulink.sdi.getStorageMode

Topics
“Configure the Simulation Data Inspector”

 Simulink.sdi.setStorageLocation

2-979

Simulink.sdi.setStorageMode
Specify whether to log data to disk or memory

Syntax
Simulink.sdi.setStorageMode(storageMode)

Description
Simulink.sdi.setStorageMode(storageMode) configures logging to log data to disk or to
memory according to storageMode. By default, data logged to the workspace and the Simulation
Data Inspector is logged to disk.

Note When you change the logging storage mode, data from prior simulations is deleted. You cannot
change the logging storage mode while a simulation is running.

Examples

Log Simulation Data to Memory

You can configure whether data logged in simulation logs to memory or to disk. By default, data is
logged to disk and brought into memory on demand. If your machine has more RAM than disk space,
you may want to log data to memory instead.

Use the Simulink.sdi.setStorageMode function to configure logging to log data to memory.

Simulink.sdi.setStorageMode("memory");

Input Arguments
storageMode — Where logged simulation data is stored on your machine
'disk' (default) | 'memory'

Where logged simulation data is stored on your machine, specified as 'disk' or 'memory'. By
default, data logged to the workspace and the Simulation Data Inspector is logged to disk.

When you change the storage mode to log data to memory:

• Data logged from prior simulations is deleted.
• Configuring limits on the size of logged data is not supported.

You cannot change the storage mode while a simulation is running.

When you configure a parallel worker to log to memory, sending logged data to the client is not
supported.

Logging data to memory is not supported for rapid accelerator simulations or models deployed using
Simulink Compiler.

2 Functions

2-980

Data Types: char | string

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.getStorageMode | Simulink.sdi.setStorageLocation |
Simulink.sdi.getStorageLocation

Topics
“Configure the Simulation Data Inspector”

 Simulink.sdi.setStorageMode

2-981

Simulink.sdi.setSubPlotLayout
Package: Simulink.sdi

Set subplot layout in the Simulation Data Inspector

Syntax
Simulink.sdi.setSubPlotLayout(r,c)

Description
Simulink.sdi.setSubPlotLayout(r,c) sets the grid layout of plots in the Simulation Data
Inspector using the specified number of rows, r, and columns, c.

Examples

Change Subplot Layout

% Change subplot layout to 4 rows and 2 columns
Simulink.sdi.setSubPlotLayout(4,2);

Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the Simulation Data
Inspector.

Create Data for the Run

Create timeseries objects to contain data for a sine signal and a cosine signal. Give each
timeseries object a descriptive name.

time = linspace(0,20,100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Add Data

Use the Simulink.sdi.view function to open the Simulation Data Inspector.

Simulink.sdi.view

2 Functions

2-982

To import data into the Simulation Data Inspector from the workspace, create a Simulink.sdi.Run
object using the Simulink.sdi.Run.create function. Add information about the run to its
metadata using the Name and Description properties of the Run object.

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = 'Sinusoids';
sinusoidsRun.Description = 'Sine and cosine signals with different frequencies';

Use the add function to add the data you created in the workspace to the empty run.

add(sinusoidsRun,'vars',sine_ts,cos_ts);

Plot the Data in the Simulation Data Inspector

Use the getSignalByIndex function to access Simulink.sdi.Signal objects that contain the
signal data. You can use the Simulink.sdi.Signal object properties to specify the line style and
color for the signal and plot it in the Simulation Data Inspector. Specify the LineColor and
LineDashed properties for each signal.

sine_sig = getSignalByIndex(sinusoidsRun,1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';

cos_sig = sinusoidsRun.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.LineDashed = '--';

Use the Simulink.sdi.setSubPlotLayout function to configure a 2-by-1 subplot layout in the
Simulation Data Inspector plotting area. Then use the plotOnSubplot function to plot the sine
signal on the top subplot and the cosine signal on the lower subplot.

Simulink.sdi.setSubPlotLayout(2,1);

plotOnSubPlot(sine_sig,1,1,true);
plotOnSubPlot(cos_sig,2,1,true);

Close the Simulation Data Inspector and Save Your Data

When you have finished inspecting the plotted signal data, you can close the Simulation Data
Inspector and save the session to an MLDATX file.

Simulink.sdi.close('sinusoids.mldatx')

Input Arguments
r — Number of rows
integer

Number of rows in the subplot grid layout, specified as a whole number between 1 and 8, inclusive.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char

c — Number of columns
integer

 Simulink.sdi.setSubPlotLayout

2-983

Number of columns in the subplot grid layout, specified as a whole number between 1 and 8,
inclusive.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char

Version History
Introduced in R2016a

See Also
Functions
Simulink.sdi.clearAllSubPlots | Simulink.sdi.clearPreferences |
Simulink.sdi.setBorderOn | Simulink.sdi.setMarkersOn |
Simulink.sdi.setTicksPosition | Simulink.sdi.setTickLabelsDisplay |
Simulink.sdi.setGridOn | plotOnSubPlot | Simulink.sdi.saveView | Simulink.sdi.save

Tools
Simulation Data Inspector

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

2 Functions

2-984

Simulink.sdi.setSubplotLimits
Specify subplot limits for time plots in the Simulation Data Inspector

Syntax
Simulink.sdi.setSubplotLimits(r,c,Name,Value)

Description
Simulink.sdi.setSubplotLimits(r,c,Name,Value) configures the time and y-axis limits for
the subplot at the location specified by r and c according to the values specified by one or more
name-value pair arguments. You can specify any combination of a t-axis minimum, t-axis maximum, y-
axis minimum, and y-axis maximum using name-value pair arguments.

Note Limits for the t-axis apply to all linked time plots in the Simulation Data Inspector. For more
information, see “Linked Subplots”.

Examples

Copy y-Axis Range from One Subplot to Another

You can use the Simulink.sdi.getSubplotLimits and Simulink.sdi.setSubplotLimits
functions to copy the axis limits from one subplot to another. For example, you can specify the same
y-axis limits for two subplots that display the same signal from simulations that used different values
of a model parameter. This example copies the y-axis settings from one subplot to another to analyze
the effect of changing the value of Mu in the model vdp.

Create the data in the Simulation Data Inspector by simulating the model vdp twice. The first time,
specify the value of Mu as 1. For the second simulation, set the value of Mu to 2. The model logs data
for the signals x1 and x2.

open_system("vdp");
set_param("vdp/Mu","Gain","1")
sim("vdp");

set_param("vdp/Mu","Gain","2")
sim("vdp");

Open the Simulation Data Inspector.

Simulink.sdi.view

Create plots in the Simulation Data Inspector to show the results from each simulation. Configure a
2x2 subplot layout so you can plot one signal on each plot, side by side.

Simulink.sdi.setSubPlotLayout(2,2)

 Simulink.sdi.setSubplotLimits

2-985

Get the Simulink.sdi.Signal objects that correspond to each signal from each run, and plot one
signal on each subplot. Plot the signals from the first simulation on the subplots in the first column
and the signals from the second simulation on the subplots in the second column.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end-1);
runID2 = runIDs(end);

runMu1 = Simulink.sdi.getRun(runID1);
runMu2 = Simulink.sdi.getRun(runID2);

sig1 = getSignalByIndex(runMu1,1);
sig2 = getSignalByIndex(runMu1,2);
sig3 = getSignalByIndex(runMu2,1);
sig4 = getSignalByIndex(runMu2,2);

plotOnSubPlot(sig1,1,1,true);
plotOnSubPlot(sig2,2,1,true);
plotOnSubPlot(sig3,1,2,true);
plotOnSubPlot(sig4,2,2,true);

The signals in the first column of plots look similar to those in the second column. However, the y-axis
limits for the plots of the x2 signal are different.

2 Functions

2-986

Use the Simulink.sdi.getSubplotLimits function to copy the limits used for the subplot with
the x2 signal from the second simulation.

[~,~,ymin,ymax] = Simulink.sdi.getSubplotLimits(2,2);

Use the Simulink.sdi.setSubplotLimits function to apply the same y-axis limits to the subplot
with the x2 signal from the first run.

Simulink.sdi.setSubplotLimits(2,1,'yRange',[ymin,ymax]);

With the updated y-axis limits, the difference in the x2 signal is more apparent.

 Simulink.sdi.setSubplotLimits

2-987

Input Arguments
r — Subplot row index
integer

Subplot row index, specified as an integer between 1 and 8, inclusive. Use the r and c inputs
together to specify the location of the subplot for which you want to specify axis limits.
Example: Simulink.sdi.setSubplotLimits(2,2,'yrange',[0,3]) configures y-axis limits for
the time plot in the second row of the second column of the subplot layout in the Simulation Data
Inspector.

2 Functions

2-988

c — Subplot column index
integer

Subplot column index, specified as an integer value between 1 and 8, inclusive. Use the r and c
inputs together to specify the location of the subplot for which you want to specify axis limits.
Example: Simulink.sdi.setSubplotLimits(2,2,'yrange',[0,3]) configures y-axis limits for
the time plot in the second row of the second column of the subplot layout in the Simulation Data
Inspector.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Simulink.sdi.setSubplotLimits(2,2,'ymin',0,'ymax',3) configures y-axis limits
for the time plot in the second row of the second column of the subplot layout in the Simulation Data
Inspector.

View — Simulation Data Inspector view
'Inspect' (default) | 'Compare'

Simulation Data Inspector view, specified as 'Inspect' or 'Compare'. Specify the view with the
subplot for which you want to specify limits. When you omit the 'View' argument, the limits are
applied to the specified subplot in the inspect view.
Example: Simulink.sdi.setSubplotLimits(2,1,'View','Compare','yRange',[-2,2])
configures y-axis limits for the difference plot in the compare view of the Simulation Data Inspector.
Data Types: char | string

tMin — t-axis minimum
scalar

t-axis minimum, specified as a scalar.

You can specify limits for the t-axis using the tMin and tMax name-value arguments, using the
tRange argument, or using the AllRange argument. When you specify the tMin name-value pair
argument, do not specify the tRange or AllRange arguments.
Data Types: double

tMax — t-axis maximum
scalar

t-axis maximum, specified as a scalar.

You can specify limits for the t-axis using the tMin and tMax name-value arguments, the tRange
argument, or the AllRange argument. When you specify the tMax name-value argument, do not
specify the tRange or AllRange arguments.
Data Types: double

yMin — y-axis minimum
scalar

 Simulink.sdi.setSubplotLimits

2-989

y-axis minimum, specified as a scalar.

You can specify limits for the y-axis using the yMin and yMax name-value arguments, the yRange
argument, or the AllRange argument. When you specify the yMin name-value argument, do not
specify the yRange or AllRange arguments.
Data Types: double

yMax — y-axis maximum
scalar

y-axis maximum, specified as a scalar.

You can specify limits for the y-axis using the yMin and yMax name-value arguments, the yRange
argument, or the AllRange argument. When you specify the yMax name-value argument, do not
specify the yRange or AllRange arguments.
Data Types: double

tRange — t-axis range
1-by-2 vector

t-axis range, specified as a 1-by-2 vector that contains scalar numeric values.

You can specify limits for the t-axis using the tMin and tMax name-value arguments, the tRange
argument, or the AllRange argument. When you specify the tRange name-value argument, do not
specify the tMin, tMax, or AllRange arguments.
Example: Simulink.sdi.setSubplotLimits(1,1,'tRange',[-1,20]) configures the t-axis
range for the subplot in the first row and first column of the Simulation Data Inspector subplot layout.
Data Types: double

yRange — y-axis range
1-by-2 vector

y-axis range, specified as a 1-by-2 vector that contains scalar numeric values.

You can specify limits for the y-axis using the yMin and yMax name-value arguments, the yRange
argument, or the AllRange argument. When you specify the yRange name-value argument, do not
specify the yMin, yMax, or AllRange arguments.
Example: Simulink.sdi.setSubplotLimits(1,1,'yRange',[-5,5]) configures the y-axis
range for the subplot in the first row and first column of the Simulation Data Inspector subplot layout.
Data Types: double

AllRange — Ranges for t-axis and y-axis
1-by-4 vector

Ranges for t-axis and y-axis, specified as a 1-by-4 vector that contains scalar numeric values. The
values specified in the vector are mapped to the t- and y-axis limits in this order:
[tMin,tMax,yMin,yMax].

When you specify the AllRange name-value argument, do not specify the tMin, tMax, yMin, yMax,
tRange, or yRange arguments.

2 Functions

2-990

Example: Simulink.sdi.setSubplotLimits(1,1,'AllRange',[-1,20,-5,5]) configures the
t-axis range and y-axis range for the subplot in the first row and first column of the Simulation Data
Inspector subplot layout.
Data Types: double

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.setSubPlotLayout | plotOnSubPlot | Simulink.sdi.setBorderOn |
Simulink.sdi.setGridOn | Simulink.sdi.setMarkersOn |
Simulink.sdi.setTickLabelsDisplay | Simulink.sdi.setTicksPosition

Objects
Simulink.sdi.Run | Simulink.sdi.Signal

Topics
“Create Plots Using the Simulation Data Inspector”
“Inspect Simulation Data”

 Simulink.sdi.setSubplotLimits

2-991

Simulink.sdi.setTableGrouping
Change signal grouping hierarchy in Inspect pane

Syntax
Simulink.sdi.setTableGrouping
Simulink.sdi.setTableGrouping(group,group1,...,groupN)

Description
Simulink.sdi.setTableGrouping removes grouping for signals in the Simulation Data Inspector.

Simulink.sdi.setTableGrouping(group,group1,...,groupN) groups signals in the
Simulation Data Inspector according to one or more specified options. Signal grouping is the same on
the Inspect and Compare panes. You can group signals by any combination of domain, physical
system hierarchy, data hierarchy, and model hierarchy.

Examples

Group Data by Model Hierarchy Then by Data Hierarchy

To help organize and find signals in the Simulation Data Inspector, you can group the signals. For
example, you could group signals according to their location within a model hierarchy and then by
data hierarchy.

Simulink.sdi.setTableGrouping('Subsystems','DataHierarchy');

Input Arguments
group — Signal grouping
'Domain' | 'DataHierarchy' | 'Subsystems' | 'PhysmodHierarchy'

Signal grouping, specified as one or more of these values:

• Domain — Group signals by domain.
• DataHierarchy — Group signals according to data hierarchy, such as the hierarchy for a bus.
• SubSystems — Group signals according to their location within the model hierarchy.
• PhysmodHierarchy — Group signals according to the Simscape hierarchy. This option is only

available when you have a Simscape license.

You can specify up to three grouping options unless you have a Simscape license, in which case you
can specify up to four.

By default, the Simulation Data Inspector groups signals by domain, then by physical system
hierarchy (if you have a Simscape license), and then by data hierarchy.

2 Functions

2-992

Version History
Introduced in R2016a

See Also
Simulink.sdi.view | Simulink.sdi.clearPreferences | Simulink.sdi.saveView |
Simulink.sdi.save

Topics
“Configure the Simulation Data Inspector”
“Inspect and Compare Data Programmatically”

 Simulink.sdi.setTableGrouping

2-993

Simulink.sdi.setTickLabelsDisplay
Configure tick label visibility for time plot axes

Syntax
Simulink.sdi.setTickLabelsDisplay(label)

Description
Simulink.sdi.setTickLabelsDisplay(label) displays labels for the tick marks on axes of time
plots in the Simulation Data Inspector according to the input, label. The function sets the value of
the Tick labels setting on the Time Plot section of the Visualization Settings in the Simulation
Data Inspector. The setting applies to all time plots in the layout. By default, the Simulation Data
Inspector displays tick mark labels for both axes.

Examples

Configure Tick Mark Label Visibility for Time Plots

You can use the Simulink.sdi.setTickLabelsDisplay function to configure the visibility of tick
mark labels for the t- and y-axes on time plots in the Simulation Data Inspector. By default, the
Simulation Data Inspector displays tick marks for both axes.

This example starts by showing how to use the Simulink.sdi.getTickLabelsDisplay function to
access the current tick mark label visibility. Subsequent sections show the code to specify each
available option for tick mark label visibility on time plots in the Simulation Data Inspector. To see the
result of each configuration, the example generates an image using the Simulink.sdi.snapshot
function with settings specified by a Simulink.sdi.CustomSnapshot object.

snapSettings = Simulink.sdi.CustomSnapshot;
snapSettings.Width = 300;
snapSettings.Height = 300;

Get Current Tick Mark Label Visibility

Before modifying the visibility of the tick mark labels on time plots, you can save the current
configuration to a variable in the workspace in case you want to restore the preference later.

initTickLabels = Simulink.sdi.getTickLabelsDisplay;

Show Only t-Axis Tick Mark Labels

Show the tick mark labels for the t-Axis.

Simulink.sdi.setTickLabelsDisplay('t-axis')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-994

Show Only y-Axis Tick Mark Labels

Show the tick mark labels for the y-axis.

Simulink.sdi.setTickLabelsDisplay('y-axis')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.setTickLabelsDisplay

2-995

Hide Tick Mark Labels

You can hide the tick mark labels for both axes.

Simulink.sdi.setTickLabelsDisplay('none')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-996

Show All Tick Mark Labels

By default, the Simulation Data Inspector shows tick mark labels for both axes on time plots.

Simulink.sdi.setTickLabelsDisplay('all')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.setTickLabelsDisplay

2-997

Input Arguments
label — Tick mark labels to display
'all' (default) | 't-axis' | 'y-axis' | 'none'

Tick mark labels to display on time plots in the Simulation Data Inspector, specified as one of these
options:

• 'all' — Display tick mark labels for both time plot axes.
• 't-axis' — Display tick mark labels only on the t-axis for time plots.
• 'y-axis' — Display tick mark labels only on the y-axis for time plots.
• 'none' — Do not display tick mark labels.

Version History
Introduced in R2019b

See Also
Simulink.sdi.getTickLabelsDisplay | Simulink.sdi.setBorderOn |
Simulink.sdi.setGridOn | Simulink.sdi.setMarkersOn |
Simulink.sdi.setSubPlotLayout | Simulink.sdi.setTicksPosition |
Simulink.sdi.clearPreferences | Simulink.sdi.save | Simulink.sdi.saveView

2 Functions

2-998

Topics
“Create Plots Using the Simulation Data Inspector”

 Simulink.sdi.setTickLabelsDisplay

2-999

Simulink.sdi.setTicksPosition
Configure position for tick marks on time plots in the Simulation Data Inspector

Syntax
Simulink.sdi.setTicksPosition(position)

Description
Simulink.sdi.setTicksPosition(position) sets the location of tick marks on time plots in the
Simulation Data Inspector according to the input, position. The function configures the Ticks
setting on the Time Plot section of the Visualization Settings in the Simulation Data Inspector. The
setting applies to all time plots in the layout. By default, the Simulation Data Inspector displays tick
marks on the outside of the plot area.

Examples

Configure Position for Tick Marks on Time Plots

You can use Simulink.sdi.setTicksPosition function to specify the position for tick marks on
time plots in the Simulation Data Inspector. By default, the Simulation Data Inspector displays tick
marks outside of the plot area for time plots.

This example starts by showing how to use the Simulink.sdi.getTicksPosition function to
access the current position of tick marks. Subsequent sections show the code to specify each
configuration option for the position of tick marks on time plots in the Simulation Data Inspector. To
see the result, the example generates an image using Simulink.sdi.snapshot with settings
specified by a Simulink.sdi.CustomSnapshot object.

snapSettings = Simulink.sdi.CustomSnapshot;
snapSettings.Width = 300;
snapSettings.Height = 300;

Get Current Tick Mark Position

Before modifying the position of tick marks on time plots, you can save the current configuration to a
variable in the workspace in case you want to restore the preference later.

initTickPos = Simulink.sdi.getTicksPosition;

Position Tick Marks Inside Plot Area

Position the tick marks inside the plot area to increase the amount of space used by the plot area.

Simulink.sdi.setTicksPosition('inside')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-1000

Hide Tick Marks on Time Plots

You can hide the tick marks for time plots in the Simulation Data Inspector. Hiding the tick marks
expands the plot area.

Simulink.sdi.setTicksPosition('none')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

 Simulink.sdi.setTicksPosition

2-1001

Position Tick Marks Outside Plot Area

By default, the Simulation Data Inspector displays tick marks outside of the plot area for time plots.

Simulink.sdi.setTicksPosition('outside')
Simulink.sdi.snapshot('from','custom','settings',snapSettings);

2 Functions

2-1002

Input Arguments
position — Position of tick marks on time plots
'outside' (default) | 'inside' | 'none'

Position of tick marks on time plots in the Simulation Data Inspector, specified as 'inside' or
'outside'.

Tip Move tick marks to the inside of time plots to increase the space available for the plot area.

Example: 'inside'

Version History
Introduced in R2019b

See Also
Simulink.sdi.getTicksPosition | Simulink.sdi.setBorderOn |
Simulink.sdi.setTickLabelsDisplay | Simulink.sdi.setGridOn |
Simulink.sdi.setMarkersOn | Simulink.sdi.setSubPlotLayout |
Simulink.sdi.clearPreferences | Simulink.sdi.save | Simulink.sdi.saveView

Topics
“Create Plots Using the Simulation Data Inspector”

 Simulink.sdi.setTicksPosition

2-1003

Simulink.sdi.setUnitSystem
Specify system of units to define signal display units in the Simulation Data Inspector

Syntax
Simulink.sdi.setUnitSystem(unitSystem)
Simulink.sdi.setUnitSystem(unitSystem,"Overrides",overrideUnits)

Description
Simulink.sdi.setUnitSystem(unitSystem) configures the Simulation Data Inspector to use
the specified unit system to define the display units for logged and imported signals.

The Simulation Data Inspector plots signals using the display units. The display units for a signal may
differ from the stored units, which indicate units for the data as stored on disk. When you specify a
system of units in the Simulation Data Inspector preferences, the Simulation Data Inspector
automatically adjusts the display units for logged or imported signals that use units that are not valid
in the specified system.

Simulink.sdi.setUnitSystem(unitSystem,"Overrides",overrideUnits) configures the
Simulation Data Inspector to use the specified override units. Specify override units when you want a
type of measurement, such as length, to use consistent units, such as m or ft, across all signals in the
Simulation Data Inspector.

Examples

Configure Unit Preferences in the Simulation Data Inspector

To specify a system of units to use for plotting signals in the Simulation Data Inspector, use the
Simulink.sdi.setUnitSystem function. When you choose to display signals using the SI or US
Customary unit system, the Simulation Data Inspector automatically changes the Display Units
property for logged or imported signals that use units that are not part of the specified unit system.
The signal data stored on disk does not change. Signals also have a Stored Units property, and the
Simulation Data Inspector converts the data to plot the signal when the Stored Units and Display
Units differ.

Specify a Sytem of Units

By default, the Simulation Data Inspector displays signals using the units assigned to the signal
during simulation or in the imported data. To facilitate analyzing multiple signals and data sets
together, you can specify a system of units as a preference. The Simulation Data Inspector
automatically updates the Display Units for logged or imported signals that use units that are invalid
in the specified unit system. For example, a signal logged in a model using units of ft could be
updated to use units of m when the system of units is specified as SI.

Use the Simulink.sdi.setUnitSystem function to configure the Simulation Data Inspector to
display signals using units in the US Customary unit system.

Simulink.sdi.setUnitSystem('USCustomary');

2 Functions

2-1004

Specify Override Units

When you want all signals that represent the same type of measurement to use the same Display
Units, you can also specify override units. For example, to plot all signals that represent length using
units of ft, specify ft as an override unit.

Simulink.sdi.setUnitSystem('USCustomary','Overrides',"ft");

Check Unit Configuration

Use the Simulink.sdi.getUnitSystem function to check the current unit preferences configured
in the Simulation Data Inspector.

[unitSystem,overrideUnits] = Simulink.sdi.getUnitSystem

unitSystem =
'USCustomary'

overrideUnits =
"ft"

Input Arguments
unitSystem — System of units used to define signal display units
'Default' (default) | 'SI' | 'USCustomary'

System of units used to define signal display units, specified as 'Default', 'SI', or
'USCustomary'.

• Default — Use signal stored units.
• SI — Use units from the SI unit system for signal display units.
• USCustomary — Use units from the US Customary unit system for signal display units.

overrideUnits — Units to override signal display units
string | string array

Units to override signal display units, specified as a string or string array. Specify override units when
you want all signals that represent the same measurement type to use consistent units. For example,
specify override units of ft to display all signals that represent length measurements using units of
ft.
Example: "Overrides",["in","lb"]
Data Types: string

Version History
Introduced in R2020b

See Also
Objects
Simulink.sdi.Signal

 Simulink.sdi.setUnitSystem

2-1005

Functions
convertUnits | Simulink.sdi.clearPreferences | Simulink.sdi.getUnitSystem

Topics
“Configure the Simulation Data Inspector”
“Modify Signal Properties in the Simulation Data Inspector”

2 Functions

2-1006

Simulink.sdi.snapshot
Package: Simulink.sdi

Capture contents of Simulation Data Inspector plots

Syntax
fig = Simulink.sdi.snapshot
[fig,image] = Simulink.sdi.snapshot
Simulink.sdi.snapshot(Name,Value)
Simulink.sdi.snapshot(Name,Value)
Simulink.sdi.snapshot(Name,Value)

Description
fig = Simulink.sdi.snapshot creates a figure of the plotting area in the open Simulation Data
Inspector session with the figure handle fig.

[fig,image] = Simulink.sdi.snapshot creates a figure of the plotting area in the open
Simulation Data Inspector session with the figure handle fig and returns the image data in the array,
image.

Simulink.sdi.snapshot(Name,Value) captures an image of the Simulation Data Inspector plots
according to the options specified by name-value pairs.

fig = Simulink.sdi.snapshot(Name,Value) captures an image of the Simulation Data
Inspector plots according to the options specified by name-value pairs. This syntax returns the figure
handle, fig, if a figure is created.

[fig, image] = Simulink.sdi.snapshot(Name,Value) captures an image of the Simulation Data
Inspector plots according to the options specified by name-value pairs. This syntax returns the figure
handle, fig, and an array of image data, image, when appropriate for the specified options.

Examples

Copy View Settings to Run

Copy view settings from one run to another and create figures using the
Simulink.sdi.CustomSnapshot object.

Simulate Model and Get Run Object

Configure the vdp model to save output data. Run a simulation to create data.

load_system("vdp")
set_param("vdp","SaveFormat","Dataset","SaveOutput","on")
set_param("vdp/Mu","Gain","1");
sim("vdp");

Use the Simulation Data Inspector programmatic interface to access the run data.

 Simulink.sdi.snapshot

2-1007

runIndex = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(runIndex);
vdpRun = Simulink.sdi.getRun(runID);

Modify Signal View Settings

Use the Simulink.sdi.Run object to access signals in the run. Then, modify the signal view
settings. This example specifies the line color and style for each signal. The view settings for the run
comprise the view settings for each signal and view settings specified for the plot area.

sig1 = getSignalByIndex(vdpRun,1);
sig2 = getSignalByIndex(vdpRun,2);

sig1.LineColor = [0 0 1];
sig1.LineDashed = "-.";

sig2.LineColor = [1 0 0];
sig2.LineDashed = ":";

Capture Snapshot from Simulation Data Inspector

Create a Simulink.sdi.CustomSnapshot object and use the Simulink.sdi.snapshot function
to programmatically capture a snapshot of the contents of the Simulation Data Inspector.

snap = Simulink.sdi.CustomSnapshot;

You can use properties of the Simulink.sdi.CustomSnapshot object to configure the plot settings,
such as the subplot layout and axis limits, and to plot signals. When you use a
Simulink.sdi.CustomSnapshot object to create your figure, these plot settings do not affect the
Simulation Data Inspector.

snap.Rows = 2;
snap.YRange = {[-2.25 2.25],[-3 3]};
plotOnSubPlot(snap,1,1,sig1,true)
plotOnSubPlot(snap,2,1,sig2,true)

Use the Simulink.sdi.snapshot function to generate the figure you specified in the properties of
the Simulink.sdi.CustomSnapshot object.

fig = Simulink.sdi.snapshot("From","custom","To","figure","Settings",snap);

2 Functions

2-1008

Copy View Settings to New Simulation Run

Simulate the model again, with a different Mu value. Use the Simulation Data Inspector programmatic
interface to access the simulation data.

set_param("vdp/Mu","Gain","5")
sim("vdp");

runIndex2 = Simulink.sdi.getRunCount;
runID2 = Simulink.sdi.getRunIDByIndex(runIndex2);
run2 = Simulink.sdi.getRun(runID2);

To create a plot of the new output data that looks like the one you created in the previous step, you
can copy the view settings to the run in a single line of code using the
Simulink.sdi.copyRunViewSettings function. This function does not automatically update plot
settings in Simulink.sdi.CustomSnapshot objects, so specify the input that determines whether
the plot updates as false.

sigIDs = Simulink.sdi.copyRunViewSettings(runID,runID2,false);

Capture Snapshot of New Simulation Run

Use the Simulink.sdi.CustomSnapshot object to capture a snapshot of the new simulation run.
First, clear the signals from the subplots. Then, plot the signals from the new run and capture
another snapshot.

clearSignals(snap)
snap.YRange = {[-2.25 2.25],[-8 8]};

 Simulink.sdi.snapshot

2-1009

plotOnSubPlot(snap,1,1,sigIDs(1),true)
plotOnSubPlot(snap,2,1,sigIDs(2),true)

fig = snapshot(snap,"To","figure");

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'to','figure','props',{'Name','My Data'}

from — Content to include in the snapshot
'opened' (default) | 'active' | 'comparison' | 'custom'

Content to include in the snapshot.

• 'opened' — Include all subplots in the graphical viewing area of the open Simulation Data
Inspector session.

2 Functions

2-1010

• 'active' — Include only the active (selected) subplot in the open Simulation Data Inspector
session.

• 'comparison' — Include the comparison plots for the selected comparison run or signal in the
open Simulation Data Inspector session.

• 'custom' — Include contents specified by the settings name-value pair
Simulink.sdi.CustomSnapshot object. You can use the 'from','custom' option to create a
snapshot without opening the Simulation Data Inspector or affecting your open Simulation Data
Inspector session. Include a settings name-value pair when you specify 'from','custom'.

Example: 'from','comparison'
Data Types: char | string

To — Type of snapshot to create
"image" (default) | "figure" | "file" | "clipboard"

Type of snapshot to create, specified as:

• "image" — Create a figure and return the figure handle and an array of image data. When you
specify "To","image", the fig and image outputs both have value.

• "figure" — Create a figure and return the figure handle. When you specify "To","figure", the
fig output has value, and the image output is empty.

• "file" — Save to a PNG file with the name specified by the Filename name-value argument. If
you do not specify a Filename name-value argument, the file is named plots.png. When you
specify "To","file", the fig and image outputs are both empty.

• "clipboard" — Copy the plots to your system clipboard. From the clipboard, you can paste the
image into another program, such as Microsoft Word. When you specify "To","clipboard", the
fig and image outputs are both empty.

Example: "To","file"
Data Types: char | string

Filename — Name for image file
"plots.png" (default) | character array | string

Name for image file to store the snapshot when you specify "To","file", specified as a character
array or string.
Example: "Filename","MyImage.png"
Data Types: char | string

Props — Figure properties
cell array

Figure properties, specified as a cell array. To customize your figure, you can include settings for the
figure properties described in Figure Properties.
Example: "Props",{"Name","MyData","NumberTitle","off"}
Data Types: char | string

settings — Custom snapshot settings
Simulink.sdi.CustomSnapshot

 Simulink.sdi.snapshot

2-1011

Simulink.sdi.CustomSnapshot object specifying custom snapshot settings. You can use the
settings name-value pair to specify the dimensions of the image in pixels, subplot layout, and limits
for the x- and y-axes.
Example: 'settings',customSnap
Data Types: char | string

Output Arguments
fig — Figure handle
figure handle

Figure handle, specified as a figure handle. When a figure is not created with your specified options,
the fig output is empty.

image — Image data
array

Image data, returned as an array. The image output has value when you use
Simulink.sdi.snapshot without any input arguments or without a To name-value argument and
when you specify 'To','image'.

Version History
Introduced in R2018a

See Also
Simulink.sdi.setSubPlotLayout | Simulink.sdi.Signal |
Simulink.sdi.CustomSnapshot | Simulink.sdi.setMarkersOn |
Simulink.sdi.clearPreferences | Simulink.sdi.clear | Simulink.sdi.view

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

2 Functions

2-1012

Simulink.sdi.unregisterCursorCallback
Unregister cursor callback function

Syntax
Simulink.sdi.unregisterCursorCallback(callbackID)

Description
Simulink.sdi.unregisterCursorCallback(callbackID) unregisters the cursor callback
function that corresponds to callbackID.

Examples

Use Simulation Data Inspector Cursor Callback in App Designer App

You can use a Simulation Data Inspector cursor callback function to send cursor position data to an
app you build using the App Designer. This example shows how to add a property to the app to store
the callback ID and where to register and unregister the cursor callback. For an example of an App
Designer app that uses a cursor callback, see “Synchronize Cursors in the Simulation Data Inspector
with an App Designer App”.

Add a callbackID property to the app object.

properties (Access = private)
 callbackID
end

Define the behavior of the cursor callback function.

methods (Access = public)
 function myCursorCallback(app,~,~)
 if isvalid(app)
 ...
 end
 end
end

Register the cursor callback in the app startupFcn. This example registers the same callback on the
Inspect pane and the Compare pane.

function startupFcn(app)
 app.callbackID = Simulink.sdi.registerCursorCallback(...
 @(t1,t2)myCursorCallback(app,t1,t2));
 app.callbackID(2) = Simulink.sdi.registerCursorCallback(...
 @(t1,t2)myCursorCallback(app,t1,t2),'compare');
 ...
end

Unregister the cursor callback in the app UIFigureCloseRequest function.

 Simulink.sdi.unregisterCursorCallback

2-1013

function myAppUIFigureCloseRequest(app, event)
 Simulink.sdi.unregisterCursorCallback(app.callbackID(1));
 Simulink.sdi.unregisterCursorCallback(app.callbackID(2));

end

Input Arguments
callbackID — Registered callback ID
scalar

Registered callback ID, specified as a scalar. The callback ID is returned when you register the
callback using the Simulink.sdi.registerCursorCallback function.

Version History
Introduced in R2021a

See Also
Functions
Simulink.sdi.registerCursorCallback | Simulink.sdi.setCursorPositions |
Simulink.sdi.getCursorPositions | Simulink.sdi.setNumCursors |
Simulink.sdi.getNumCursors

Topics
“Synchronize Cursors in the Simulation Data Inspector with an App Designer App”

2 Functions

2-1014

Simulink.sdi.view
Package: Simulink.sdi

Open the Simulation Data Inspector

Syntax
Simulink.sdi.view

Description
Simulink.sdi.view opens the Simulation Data Inspector. You can write a script to plot your
data and customize the Simulation Data Inspector properties and then use Simulink.sdi.view to
see the results.

Examples

Open the Simulation Data Inspector from the Command Line

You can open the Simulation Data Inspector from the MATLAB command line to visualize, inspect,
and analyze your data.

Simulink.sdi.view

Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the Simulation Data
Inspector.

Create Data for the Run

Create timeseries objects to contain data for a sine signal and a cosine signal. Give each
timeseries object a descriptive name.

time = linspace(0,20,100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Add Data

Use the Simulink.sdi.view function to open the Simulation Data Inspector.

Simulink.sdi.view

 Simulink.sdi.view

2-1015

To import data into the Simulation Data Inspector from the workspace, create a Simulink.sdi.Run
object using the Simulink.sdi.Run.create function. Add information about the run to its
metadata using the Name and Description properties of the Run object.

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = 'Sinusoids';
sinusoidsRun.Description = 'Sine and cosine signals with different frequencies';

Use the add function to add the data you created in the workspace to the empty run.

add(sinusoidsRun,'vars',sine_ts,cos_ts);

Plot the Data in the Simulation Data Inspector

Use the getSignalByIndex function to access Simulink.sdi.Signal objects that contain the
signal data. You can use the Simulink.sdi.Signal object properties to specify the line style and
color for the signal and plot it in the Simulation Data Inspector. Specify the LineColor and
LineDashed properties for each signal.

sine_sig = getSignalByIndex(sinusoidsRun,1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';

cos_sig = sinusoidsRun.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.LineDashed = '--';

Use the Simulink.sdi.setSubPlotLayout function to configure a 2-by-1 subplot layout in the
Simulation Data Inspector plotting area. Then use the plotOnSubplot function to plot the sine
signal on the top subplot and the cosine signal on the lower subplot.

Simulink.sdi.setSubPlotLayout(2,1);

plotOnSubPlot(sine_sig,1,1,true);
plotOnSubPlot(cos_sig,2,1,true);

Close the Simulation Data Inspector and Save Your Data

When you have finished inspecting the plotted signal data, you can close the Simulation Data
Inspector and save the session to an MLDATX file.

Simulink.sdi.close('sinusoids.mldatx')

Alternatives
You can open the Simulation Data Inspector from the Simulink Editor toolbar with the Simulation

Data Inspector button .

Version History
Introduced in R2011b

2 Functions

2-1016

See Also
Functions
Simulink.sdi.close | Simulink.sdi.clear | Simulink.sdi.clearPreferences |
Simulink.sdi.setSubPlotLayout

Tools
Simulation Data Inspector

Topics
“Inspect and Compare Data Programmatically”
“View Data in the Simulation Data Inspector”

 Simulink.sdi.view

2-1017

Simulink.SFunctionBuilder.add
Add input, output, parameter, library item, or state to S-Function Builder block

Syntax
Simulink.SFunctionBuilder.add(blk,elem)
Simulink.SFunctionBuilder.add(blk,elem,Name=Value)

Description
Simulink.SFunctionBuilder.add(blk,elem) adds the element elem with default options to the
S-Function Builder block blk. Use the Simulink.SFunctionBuilder.add function to add:

• Input ports
• Output ports
• Parameters
• Library items
• Discrete states
• Continuous states

Simulink.SFunctionBuilder.add(blk,elem,Name=Value) adds the element elem with
options specified using one or more name-value arguments to the S-Function Builder block blk. For
example, to specify the data type for a port as double, set DataType to double.

The options you can specify depend on the type of element you add.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

elem — Type of element to add
'Input' | 'Output' | 'Parameter' | 'LibraryItem' | 'DiscreteState' |
'ContinuousState'

Type of element to add, specified as one of these options:

• 'Input'
• 'Output'

2 Functions

2-1018

• 'Parameter'
• 'LibraryItem'
• 'DiscreteState'
• 'ContinuousState'

Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Name="in1",DataType="single" specifies options to configure an input port with the
name in1 and data type single.

Name — Port or parameter name
string | character vector

Port or parameter name, specified as a string or a character vector. By default:

• Input ports are named u0, u1, … un.
• Output ports are named y0, y1, … ,yn.
• Parameters are named p0, p1, … , pn.

Specify the Name name-value argument only when you add an input port, an output port, or a
parameter.
Example: Name="inputSignal"
Data Types: char | string

DataType — Port or parameter data type
'double' (default) | 'single' | 'boolean' | 'int8' | 'int16' | 'int32' | 'uint8' | 'uint16'
| 'uint32' | 'Fixdt:binary(a,b,c)' | 'Fixdt:slope and bias(a,b,c,d)' | 'Bus:
<object name>'

Port or parameter data type, specified as one of these options:

• 'double'
• 'single'
• 'boolean'
• 'int8'
• 'int16'
• 'int32'
• 'uint8'
• 'uint16'
• 'uint32'
• 'Fixdt:binary(a,b,c)'

 Simulink.SFunctionBuilder.add

2-1019

• 'Fixdt:slope and bias(a,b,c,d)'
• 'Bus: <object name>'

Parameters do not support fixed-point or bus data types.

Specify the DataType name-value argument only when you add an input port, an output port, or a
parameter.
Example: DataType="single"
Data Types: char | string

Complexity — Port or parameter complexity
'real' (default) | 'complex'

Port or parameter complexity, specified as 'real' or 'complex'.

Specify the Complexity name-value argument only when you add an input port, an output port, or a
parameter.
Example: Complexity="complex"
Data Types: char | string

Dimensions — Input or output port dimensions
'[1,1]' (default) | string | character vector

Input or output port dimensions, specified as a string or a character vector that defines the port
dimensions as a scalar or vector.

Specify the Dimensions name-value argument only when you add an input or output port.
Example: Dimensions="2"
Example: Dimensions="[1,2]"
Data Types: char | string

Value — Parameter value
1 (default) | string | character vector

Parameter value, specified as a string or a character vector that defines the value of the parameter.

Specify the Value name-value argument only when you add a parameter.
Example: Value="2" specifies the parameter value as 2.
Example: Value="[1 2]" specifies the parameter value as [1 2].
Data Types: char | string

LibraryItemTag — Tag for library item
'SRC_PATH' (default) | 'LIB_PATH' | 'INC_PATH' | 'ENV_PATH' | 'ENTRY'

Tag for library item, specified as one of these options:

• 'SRC_PATH' — Object or library path
• 'LIB_PATH' — Include search path for header files and source files

2 Functions

2-1020

• 'INC_PATH' — Search path for object files and source files
• 'ENV_PATH' — Environment variable
• 'ENTRY' — Object, source, or library file name or preprocessor directive, such as -DDEBUG

When you add a library item to an S-Function Builder block, use the LibraryItemTag and
LibraryItemValue name-value arguments together to define the library item.

Specify the LibraryItemTag name-value argument only when you add a library item.
Example: LibraryItemTag="LIB_PATH",LibraryItemValue="$MATLABROOT\customobjs"
Data Types: char | string

LibraryItemValue — Library item value
string | character vector

Library item value, specified as a string or a character vector. The value you specify depends on the
tag for the library item you add.

When you add a library item to an S-Function Builder block, use the LibraryItemTag and
LibraryItemValue name-value arguments together to define the library item.
Example: LibraryItemTag="LIB_PATH",LibraryItemValue="$MATLABROOT\customobjs"
Data Types: char | string

InitialCondition — Initial condition for state
'0' (default) | string | character vector

Initial condition for state, specified as a string or a character vector that defines the initial value for
the state.

Specify the InitialCondition name-value argument only when you add a discrete or continuous
state.
Example: InitialCondition="1" specifies the initial condition for the added state as 1.
Data Types: char | string

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.delete

Topics
“Build S-Functions Automatically Using S-Function Builder”

 Simulink.SFunctionBuilder.add

2-1021

Simulink.SFunctionBuilder.build
Build S-function and generate MEX file for S-Function Builder block

Syntax
Simulink.SFunctionBuilder.build(blk)

Description
Simulink.SFunctionBuilder.build(blk) builds the S-function and generates the MEX file for
the S-Function Builder block blk.

To build the S-function without generating the MEX file, use the
Simulink.SFunctionBuilder.generateCodeOnly function.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.generateCodeOnly

Topics
“Build S-Functions Automatically Using S-Function Builder”

2 Functions

2-1022

Simulink.SFunctionBuilder.delete
Remove input, output, parameter, library item, or state from S-Function Builder block

Syntax
Simulink.SFunctionBuilder.delete(blk,elem,Name=name)
Simulink.SFunctionBuilder.delete(blk,elem,Index=ind)

Description
Simulink.SFunctionBuilder.delete(blk,elem,Name=name) deletes the item item with the
specified name name from the S-Function Builder block blk. Use this syntax to delete input ports,
output ports, and parameters.

Simulink.SFunctionBuilder.delete(blk,elem,Index=ind) deletes the item item at the
specified index ind from the S-Function Builder block blk. Use this syntax to delete library items,
discrete states, and continuous states.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

elem — Type of element to delete
'Input' | 'Output' | 'Parameter' | 'LibraryItem' | 'DiscreteState' |
'ContinuousState'

Type of element to delete, specified as one of these options:

• 'Input'
• 'Output'
• 'Parameter'
• 'LibraryItem'
• 'DiscreteState'
• 'ContinuousState'

Tips

The way to specify which element to delete depends on the type of element you want to delete.

 Simulink.SFunctionBuilder.delete

2-1023

• To specify which input port, output port, or parameter to delete, specify the Name name-value
argument.

• To specify which library item, discrete state, or continuous state to delete, specify the Index
name-value argument.

Data Types: char | string

name — Name of input port, output port, or parameter to delete
string | character vector

Name of input port, output port, or parameter to delete, specified as a string or a character vector.
Example: Name="in1"
Data Types: char | string

ind — Index of library item, discrete state, or continuous state to delete
scalar

Index of library item, discrete state, or continuous state to delete, specified as a scalar.
Example: Index=1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.add

Topics
“Build S-Functions Automatically Using S-Function Builder”

2 Functions

2-1024

Simulink.SFunctionBuilder.generateCodeOnly
Build S-function without generating MEX file for S-Function Builder block

Syntax
Simulink.SFunctionBuilder.generateCodeOnly(blk)

Description
Simulink.SFunctionBuilder.generateCodeOnly(blk) builds the S-function for the specified
S-Function Builder block blk without generating the MEX file.

To build the S-function and generate the MEX file, use the Simulink.SFunctionBuilder.build
function.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.build

Topics
“Build S-Functions Automatically Using S-Function Builder”

 Simulink.SFunctionBuilder.generateCodeOnly

2-1025

Simulink.SFunctionBuilder.getBuildOptions
Get build options for S-Function Builder block

Syntax
buildOpts = Simulink.SFunctionBuilder.getBuildOptions(blk)

Description
buildOpts = Simulink.SFunctionBuilder.getBuildOptions(blk) returns a structure with
fields that indicate which build options are enabled for the S-Function Builder block blk.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

Output Arguments
buildOpts — Build options for S-Function Builder block
structure

Build options for S-Function Builder block, returned as a structure that contains these fields:

• ShowCompileSteps — Option to log build steps
• CreateDebuggableMEX — Option to include debugging information in MEX file
• GenerateWrapperTLC — Option to generate TLC file
• EnableSupportForCoverage — Option to build S-function that supports model coverage
• EnableSupportForDesignVerifier — Option to build S-function that supports Simulink

Design Verifier

The value of each field is a logical indication of whether that build option is enabled.

Version History
Introduced in R2022a

2 Functions

2-1026

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.build | Simulink.SFunctionBuilder.generateCodeOnly |
Simulink.SFunctionBuilder.setBuildOptions

Topics
“Build S-Functions Automatically Using S-Function Builder”

 Simulink.SFunctionBuilder.getBuildOptions

2-1027

Simulink.SFunctionBuilder.getSettings
Get settings for S-Function Builder block

Syntax
sFunSettings = Simulink.SFunctionBuilder.getSettings(blk)

Description
sFunSettings = Simulink.SFunctionBuilder.getSettings(blk) returns a structure with
fields that indicate the value for each setting for the S-Function Builder block blk.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.
Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

Output Arguments
sFunSettings — S-Function Builder block settings
structure

S-Function Builder block settings, returned as a structure that contains these fields:

• NumberDiscreteStates — Number of discrete states
• DiscreteStatesIC — Initial conditions for discrete states
• NumberContinuousStates — Number of continuous states
• ContinuousStatesIC — Initial conditions for continuous states
• ArrayLayout — Array layout for code
• SampleMode — Sample mode for S-function
• SampleTime — Sample time for S-function
• NumberOfPWorks — Number of PWorks pointers for S-function
• UseSimStruct — Whether wrapper has access to SimStruct
• DirectFeedthrough — Whether S-function has direct feedthrough

Version History
Introduced in R2022a

2 Functions

2-1028

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.setSettings |
Simulink.SFunctionBuilder.getBuildOptions |
Simulink.SFunctionBuilder.getSFunctionName |
Simulink.SFunctionBuilder.getTargetLanguage

Topics
“Build S-Functions Automatically Using S-Function Builder”

 Simulink.SFunctionBuilder.getSettings

2-1029

Simulink.SFunctionBuilder.getSFunctionName
Get name of S-function generated by S-Function Builder block

Syntax
SFunName = Simulink.SFunctionBuilder.getSFunctionName(blk)

Description
SFunName = Simulink.SFunctionBuilder.getSFunctionName(blk) returns the name for the
S-function generated by the S-Function Builder block blk. The S-function name is used as a prefix for
all wrapper functions built by the S-Function Builder block.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

Output Arguments
SFunName — S-function name
empty (default) | string | character vector

S-function name, returned as a string or a character vector.
Data Types: char | string

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.setSFunctionName

2 Functions

2-1030

Topics
“Build S-Functions Automatically Using S-Function Builder”

 Simulink.SFunctionBuilder.getSFunctionName

2-1031

Simulink.SFunctionBuilder.getTargetLanguage
Get language for S-function generated using S-Function Builder block

Syntax
lang = Simulink.SFunctionBuilder.getTargetLanguage(blk)

Description
lang = Simulink.SFunctionBuilder.getTargetLanguage(blk) returns the target language
for the S-function built by the S-Function Builder block blk.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.
Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

Output Arguments
lang — S-function language
'inherit' | 'cpp' | 'c'

S-function language, returned as one of these values:

• 'inherit' — Language inherited from the Language model configuration parameter .
• 'cpp' — C++
• 'c' — C

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.setTargetLanguage |
Simulink.SFunctionBuilder.getUserCode

2 Functions

2-1032

Topics
“Build S-Functions Automatically Using S-Function Builder”

 Simulink.SFunctionBuilder.getTargetLanguage

2-1033

Simulink.SFunctionBuilder.getUserCode
Get code for method of S-function generated using S-Function Builder block

Syntax
userCode = Simulink.SFunctionBuilder.getUserCode(blk,methodType)

Description
userCode = Simulink.SFunctionBuilder.getUserCode(blk,methodType) returns the user
code userCode specified for the method indicated by methodType of the S-Function Builder block
blk.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

methodType — S-function method code to get
'includes' | 'externs' | 'start' | 'output' | 'update' | 'derivatives' | 'terminate'

S-function method code to get, specified as one of these options:

• 'includes' — Return S-function include statements.
• 'externs' — Return global variable declarations for S-function.
• 'start' — Return code defined for start method of S-function.
• 'output' — Return code defined for output method.
• 'update' — Return code defined for update method.
• 'derivatives' — Return code defined for derivatives method.
• 'terminate' — Return code defined for terminate method.

Data Types: char

Output Arguments
userCode — Code for specified method of S-function
character vector

Code for specified method of S-function, returned as a character vector.

2 Functions

2-1034

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.setUserCode | Simulink.SFunctionBuilder.list |
Simulink.SFunctionBuilder.add

Topics
“Build S-Functions Automatically Using S-Function Builder”

 Simulink.SFunctionBuilder.getUserCode

2-1035

Simulink.SFunctionBuilder.list
List inputs, outputs, parameters, library items, and states for S-Function Builder block

Syntax
elemList = Simulink.SFunctionBuilder.list(blk,elem)
elemList = Simulink.SFunctionBuilder.list(blk,elem,Format=listFormat)

Description
elemList = Simulink.SFunctionBuilder.list(blk,elem) returns a structure that lists the
items of type elem configured for the S-Function Builder block blk. Use the
Simulink.SFunctionBuilder.list function to list configurations for:

• Input ports
• Output ports
• Parameters
• Library items
• States

elemList = Simulink.SFunctionBuilder.list(blk,elem,Format=listFormat) returns a
list of the items of type elem configured for the S-Function Builder block blk using the format
listFormat. You can return the list as a structure or a table.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

elem — Type of element to list
'Input' | 'Output' | 'Parameter' | 'LibraryItem' | 'States'

Type of element to list, specified as one of these options:

• 'Input' — Input ports
• 'Output' — Output ports
• 'Parameter' — Parameters
• 'LibraryItem' — Library items
• 'States' — States

2 Functions

2-1036

Data Types: char | string

listFormat — Format of list to return
'Structure' (default) | 'Table'

Format of list to return, specified as 'Structure' or 'Table'. When you do not specify the Format
name-value argument, the Simulink.SFunctionBuilder.list function returns a structure.

• 'Structure' — Return the list of elements configured for the S-Function Builder block as a
structure. The fields in the structure depend on the type of element you specify.

• 'Table' — Return the list of elements configured for the S-Function Builder block as a MATLAB
table. The columns in the table depend on the type of element you specify.

Data Types: char | string

Output Arguments
elemList — List of elements configured for S-Function Builder block
structure | MATLAB table

List of elements configured for S-Function Builder block, returned as a structure or a MATLAB
table.

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.add | Simulink.SFunctionBuilder.update |
Simulink.SFunctionBuilder.getSettings |
Simulink.SFunctionBuilder.getSFunctionName |
Simulink.SFunctionBuilder.getBuildOptions |
Simulink.SFunctionBuilder.getTargetLanguage

Topics
“Build S-Functions Automatically Using S-Function Builder”

 Simulink.SFunctionBuilder.list

2-1037

Simulink.SFunctionBuilder.setBuildOptions
Set build options for S-Function Builder block

Syntax
Simulink.SFunctionBuilder.setBuildOptions(blk,Name=Value)

Description
Simulink.SFunctionBuilder.setBuildOptions(blk,Name=Value) sets build options
specified using one or more name-value arguments for the S-Function Builder block blk. For
example, to include debugging information in the generated MEX file, specify
CreateDebuggableMEX as true.

To configure S-function settings such as access to the SimStruct, sample mode, and sample time, use
the Simulink.SFunctionBuilder.setSettings function.

To specify the language for the S-function, use the
Simulink.SFunctionBuilder.setTargetLanguage function.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: CreateDebuggableMEX=true

ShowCompileSteps — Option to log build steps
0 or false (default) | 1 or true

Option to log build steps, specified as logical 1 (true) or 0 (false).
Example: ShowCompileSteps=true
Data Types: logical

2 Functions

2-1038

CreateDebuggableMEX — Option to include debugging information in generated MEX file
0 or false (default) | 1 or true

Option to include debugging information in generated MEX file, specified as logical 1 (true) or 0
(false).
Example: CreateDebuggableMEX=true
Data Types: logical

GenerateWrapperTLC — Option to generate TLC file
1 or true (default) | 0 or false

Option to generate TLC file, specified as logical 1 (true) or 0 (false).
Example: GenerateWrapperTLC=false
Data Types: logical

EnableSupportForCoverage — Option to build S-function that supports model coverage
0 or false (default) | 1 or true

Option to build S-function that supports model coverage, specified as logical 1 (true) or 0 (false).
Example: EnableSupportForCoverage=true
Data Types: logical

EnableSupportForDesignVerifier — Option to build S-function that supports Simulink
Design Verifier
0 or false (default) | 1 or true

Option to build S-function that supports Simulink Design Verifier, specified as logical 1 (true) or 0
(false).
Example: EnableSupportForDesignVerifier=true
Data Types: logical

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.build | Simulink.SFunctionBuilder.generateCodeOnly |
Simulink.SFunctionBuilder.setSettings |
Simulink.SFunctionBuilder.getBuildOptions

Topics
“Build S-Functions Automatically Using S-Function Builder”

 Simulink.SFunctionBuilder.setBuildOptions

2-1039

Simulink.SFunctionBuilder.setSettings
Set settings for S-Function Builder block

Syntax
Simulink.SFunctionBuilder.setSettings(blk,Name=Value)

Description
Simulink.SFunctionBuilder.setSettings(blk,Name=Value) sets the settings specified using
one or more name-value arguments for the S-Function Builder block blk. Use the
Simulink.SFunctionBuilder.setSettings function to configure:

• The array layout for your code
• The sample mode for the S-function
• The sample time for the S-function
• The number of pointers used in the S-function code
• Whether to make the SimStruct available to the S-Function Builder wrapper functions
• Support for direct feedthrough.

To configure the build options for the S-Function Builder block, use the
Simulink.SFunctionBuilder.setBuildOptions function.

To specify a name for the S-function, use the Simulink.SFunctionBuilder.setSFunctionName
function.

To specify the language for the S-function, use the
Simulink.SFunctionBuilder.setTargetLanguage function.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.
Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

2 Functions

2-1040

Example:

ArrayLayout — Array layout for code
'Column' (default) | 'Row'

Array layout for code, specified as 'Column' or 'Row'.
Example: ArrayLayout="Row"
Data Types: char | string

SampleMode — Sample mode for S-function
'Inherited' (default) | 'Continuous' | 'Discrete'

Sample mode for S-function, specified as 'Inherited', 'Continuous', or 'Discrete'. The
sample mode for the block determines when the block computes a new output value.

• 'Inherited' — The S-Function Builder block inherits sample time from the block connected to
the input port.

• 'Continuous' — The S-Function Builder block computes a new output value for every simulation
time step.

• 'Discrete' — The S-Function Builder block computes a new output value at a fixed sample time
you specify.

Example: SampleMode="Continuous"
Data Types: char | string

SampleTime — Discrete sample time for S-function
'Inherited' (default) | scalar | string | character vector

Discrete sample time for S-function, specified as a scalar, a string, or a character vector. By default,
the sample time for an S-Function Builder block is 'Inherited' because the default sample mode is
'Inherited'.

Specify the SampleTime name-value argument only when the SampleMode is set to Discrete.
Example: SampleMode="Discrete",SampleTime=0.2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

NumberOfPWorks — Number of pointers used in S-function
0 (default) | scalar | string | character vector

Number of pointers used in S-function, specified as a scalar, a string, or a character vector.

S-functions that use PWorks do not support model operating points.
Example: NumberOfPWorks=3
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

UseSimStruct — Option to enable access to SimStruct in wrapper functions
0 or false (default) | 1 or true

 Simulink.SFunctionBuilder.setSettings

2-1041

Option to enable access to SimStruct in wrapper functions, specified as logical 0 (false) or 1 (true).
When you enable access to the SimStruct, you can use SimStruct macros and functions in the code
you write for the Outputs_wrapper, Derivatives_wrapper, and Update_wrapper functions.
Example: UseSimStruct=true
Data Types: logical

DirectFeedthrough — Whether S-function has direct feedthrough
1 or true (default) | 0 or false

Whether S-function has direct feedthrough, specified as logical 1 (true) or 0 (false).

The direct feedthrough flag for the S-function affects block execution order and is used to detect
algebraic loops.

For more information, see “S-Function Concepts”.
Example: DirectFeedthrough=false
Data Types: logical

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.setSFunctionName |
Simulink.SFunctionBuilder.setBuildOptions |
Simulink.SFunctionBuilder.setTargetLanguage

Topics
“Build S-Functions Automatically Using S-Function Builder”

2 Functions

2-1042

Simulink.SFunctionBuilder.setSFunctionName
Set name of S-function for S-Function Builder block

Syntax
Simulink.SFunctionBuilder.setSFunctionName(blk,SFunName)

Description
Simulink.SFunctionBuilder.setSFunctionName(blk,SFunName) sets the name of the S-
function built by the S-Function Builder block blk to the name specified by SFunName. The S-
function name is used as a prefix for all wrapper functions built by the S-Function Builder block.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

SFunName — S-function name
empty (default) | string | character vector

S-function name, specified as a string or a character vector.
Example: "mySFunction"
Data Types: char | string

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.setSettings |
Simulink.SFunctionBuilder.setBuildOptions

 Simulink.SFunctionBuilder.setSFunctionName

2-1043

Topics
“Build S-Functions Automatically Using S-Function Builder”

2 Functions

2-1044

Simulink.SFunctionBuilder.setTargetLanguage
Set language for S-function generated using S-Function Builder block

Syntax
Simulink.SFunctionBuilder.setTargetLanguage(blk,lang)

Description
Simulink.SFunctionBuilder.setTargetLanguage(blk,lang) sets the target language for the
S-function generated by the S-Function Builder block blk to the specified language lang.

To specify build options such as whether the MEX file includes debugging information, use the
Simulink.SFunctionBuilder.setBuildOptions function.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

lang — S-function language
'inherited' (default) | 'cpp' | 'c'

S-function language, specified as one of these options:

• 'inherited' — Language inherited from the Language model configuration parameter
• 'cpp' — C++
• 'c' — C

Data Types: char | string

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

 Simulink.SFunctionBuilder.setTargetLanguage

2-1045

Functions
Simulink.SFunctionBuilder.setSFunctionName |
Simulink.SFunctionBuilder.setBuildOptions |
Simulink.SFunctionBuilder.setSettings

Topics
“Build S-Functions Automatically Using S-Function Builder”

2 Functions

2-1046

Simulink.SFunctionBuilder.setUserCode
Set code for methods of S-function generated using S-Function Builder block

Syntax
Simulink.SFunctionBuilder.setUserCode(blk,methodType,userCode)

Description
Simulink.SFunctionBuilder.setUserCode(blk,methodType,userCode) specifies the code
userCode as part of the S-function for the S-Function Builder block blk. Use this function to specify
include statements, global variables, and code for the S-function methods.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

methodType — S-function method for which to specify code
'include' | 'externs' | 'start' | 'output' | 'update' | 'derivatives' | 'terminate'

S-function method for which to specify code, specified as one of these options:

• 'include' — Include statement
• 'externs' — Global variable declaration
• 'start' — Start method

Use the start method to allocate memory at the start of the simulation. Reference the allocated
memory throughout the S-function code using PWorks.

• 'output' — Output method

The output method computes the block output values for each simulation time step.
• 'update' — Update method

The update method computes the value of discrete states for the next simulation time step. Only
define the update method when the S-function has discrete states.

• 'derivatives' — Derivatives method

The derivatives method computes the value of state derivatives. Only define the derivatives
method when the S-function has continuous states.

 Simulink.SFunctionBuilder.setUserCode

2-1047

• 'terminate' — Terminate method

Use the terminate method to deallocate memory at the end of simulation.

Example: Simulink.SFunctionBuilder.setUserCode(blk,"output","*y0 =
"myCFunction(*u0);")

Tips

• To specify include paths and library paths, add one or more library items using the
Simulink.SFunctionBuilder.add function.

• To configure the number of PWorks, use the Simulink.SFunctionBuilder.setSettings
function.

• To add discrete or continuous states, use the Simulink.SFunctionBuilder.add function.

Data Types: char | string

userCode — Code for S-function method
string | character vector

Code for S-function method, specified as a string or a character vector that defines C or C++ code for
part of the S-function.
Example: Simulink.SFunctionBuilder.setUserCode(blk,"output","*y0 =
"myCFunction(*u0);")

Tips

To specify the target language for the S-function, use the
Simulink.SFunctionBuilder.setTargetLanguage function.
Data Types: char | string

Version History
Introduced in R2022a

See Also
Blocks
S-Function Builder

Functions
Simulink.SFunctionBuilder.add | Simulink.SFunctionBuilder.setTargetLanguage |
Simulink.SFunctionBuilder.setSettings

Topics
“Build S-Functions Automatically Using S-Function Builder”

2 Functions

2-1048

Simulink.SFunctionBuilder.update
Update attributes for input port, output port, or parameter of S-Function Builder block

Syntax
Simulink.SFunctionBuilder.update(blk,elem,Name=elemName,FieldToUpdate=
field,NewValue=newVal)

Description
Simulink.SFunctionBuilder.update(blk,elem,Name=elemName,FieldToUpdate=
field,NewValue=newVal) updates the value of the specified property for an input port, output
port, or parameter of the S-Function Builder block blk.

To add a new input port, output port, or parameter to an S-Function Builder block, use the
Simulink.SFunctionBuilder.add function.

Input Arguments
blk — S-Function Builder block
block handle | string | character vector

S-Function Builder block, specified as a block handle or as a string or a character vector that defines
the block path.

Tips

• To get the block handle for a block in your model, use the getSimulinkBlockHandle function.
• To get the block handle for the most recently selected or added block, use the gcbh function.

elem — Type of element to update
'Input' | 'Output' | 'Parameter'

Type of element to update, specified as one of these options:

• 'Input' — Update property for input port on S-Function Builder block.
• 'Output' — Update property for output port on S-Function Builder block.
• 'Parameter' — Update property for parameter of S-Function Builder block.

Data Types: char | string

elemName — Name of input port, output port, or parameter to update
string | character vector

Name of input port, output port, or parameter to update, specified as a string or a character vector.
Data Types: char | string

field — Property of input port, output port, or parameter to update
'Name' | 'DataType' | 'Complexity' | 'Dimensions' | 'Value'

 Simulink.SFunctionBuilder.update

2-1049

Property of input port, output port, or parameter to update, specified as one of these options:

• 'Name' — Update input port, output port, or parameter name.
• 'DataType' — Update input port, output port, or parameter data type.
• 'Complexity' — Update input port, output port, or parameter complexity.
• 'Dimensions' — Update input port or output port dimensions.

Do not specify FieldToUpdate='Dimensions' when you specify the second input argument as
'Parameter'.

• 'Value' — Update parameter value.

Do not specify FieldToUpdate='Value' when you specify the second input argument as
'Input' or 'Output'.

Data Types: char | string

newVal — New value for property of input port, output port, or parameter
string | character vector

New value for property of input port, output port, or parameter, specified as a string or a character
vector that contains the new value. The values you can specify depend on the property you want to
update.

Property to Update Valid Values
Name Valid port name
Data type 'double'

'single'

'boolean'

'int8'

'int16'

'int32'

'uint8'

'uint16'

'uint32'

'Fixdt:binary(a,b,c)'

'Fixdt:slope and bias(a,b,c,d)'

'Bus: <object name>'
Complexity 'real'

'complex'
Port dimensions scalar or vector

2 Functions

2-1050

Property to Update Valid Values
Parameter value Valid value for specified parameter

Data Types: char | string

Version History
Introduced in R2022a

 Simulink.SFunctionBuilder.update

2-1051

Simulink.SimulationData.createStructOfTimeseries
Create structure of timeseries data to load as simulation input for bus

Syntax
tsStruct = Simulink.SimulationData.createStructOfTimeseries(busObj,
tsStructIn)
tsStruct = Simulink.SimulationData.createStructOfTimeseries(busObj,
tsCellArray)
tsStructArray = Simulink.SimulationData.createStructOfTimeseries(busObj,
tsCellArray,dims)
tsStruct = Simulink.SimulationData.createStructOfTimeseries(tsArray)

Description
tsStruct = Simulink.SimulationData.createStructOfTimeseries(busObj,
tsStructIn) creates a structure with attributes that match those specified by the Simulink.Bus
object, busObj, and data specified by the structure of timeseries objects, tsStructIn.

When the names in the input structure do not match the names specified by the bus object, the
function renames the fields in the output structure to match the bus object specification. When other
attributes such as data type and complexity do not match, the function returns an error.

You can use this syntax to create a simulation input that fully or partially specifies the data for a bus.
You can also use this syntax to rename the structure elements to match the names in the
Simulink.Bus object.

tsStruct = Simulink.SimulationData.createStructOfTimeseries(busObj,
tsCellArray) creates a structure of timeseries objects with attributes that match those specified
by the Simulink.Bus object, busObj, and data specified by the cell array of timeseries objects,
tsCellArray.

When the names in the input structure do not match the names specified by the bus object, the
function renames the fields in the output structure to match the bus object specification. When other
attributes such as data type and complexity do not match, the function returns an error.

You can use this syntax to create simulation input that fully or partially specifies the data for a bus
using a flat list of timeseries objects. The function maps the timeseries objects to the hierarchy
specified by the Simulink.Bus object using a depth-first search.

tsStructArray = Simulink.SimulationData.createStructOfTimeseries(busObj,
tsCellArray,dims) creates an array of timeseries structures where the attributes of each
structure match those defined by the Simulink.Bus object, busObj with the data specified by the
cell array of timeseries objects, tsCellArray. The input dims specifies the dimensions of the
array.

tsStruct = Simulink.SimulationData.createStructOfTimeseries(tsArray) creates a
structure of timeseries objects from the bus data stored in the Simulink.TsArray object,
tsArray. In versions before R2016a, signal logging creates Simulink.TsArray objects to store

2 Functions

2-1052

logged bus data. Use this syntax when you want to use bus data logged in a release before R2016a
using ModelDataLogs format as simulation input.

Examples

Use Logged Bus Data as Simulation Input

You can use the Simulink.Simulationdata.createStructOfTimeseries function to create
structures of timeseries objects to use as simulation input for bus signals. This example shows you
how to create a structure of timeseries to load into a model using timeseries data logged from a
different simulation.

Create a Structure of Timeseries

Open the ex_log_structtimeseries model.

open_system('ex_log_structtimeseries')

The model uses Constant blocks and Bus Creator blocks to build two buses, bus1 and bus2, with
signals a, b, c, and d. The model uses signal logging to log the bus data. Create bus data by
simulating the model.

out = sim('ex_log_structtimeseries');

View the data in the logging variable logsout. Signal logging creates a
Simulink.SimulationData.Dataset object with Simulink.SimulationData.Signal objects
as elements.

logsout = out.logsout

logsout =

 Simulink.SimulationData.createStructOfTimeseries

2-1053

Simulink.SimulationData.Dataset 'logsout' with 2 elements

 Name BlockPath
 ____ ____________________________________
 1 [1x1 Signal] bus1 ex_log_structtimeseries/Bus Creator
 2 [1x1 Signal] bus2 ex_log_structtimeseries/Bus Creator1

 - Use braces { } to access, modify, or add elements using index.

You can use the get function to select the Simulink.SimulationData.Signal object for bus2.
The bus data is in the Values property of the Simulink.SimulationData.Signal object. The
data representing bus2 is logged in a structure containing timeseries objects named c and d.

logsout.get(2).Values

ans =

 struct with fields:

 c: [1x1 timeseries]
 d: [1x1 timeseries]

Loading Model Configuration

Open the ex_load_structtimeseries model, which uses the logged simulation data as input.

open_system('ex_load_structtimeseries')

The model uses the InBus Inport block to load input bus data. A Bus Selector block chooses signals
from the bus to display on Display blocks.

Double-click the InBus block and check its Data type on the Signal Attributes tab of the dialog.
The data type is specified by a Simulink.Bus object called bus.

2 Functions

2-1054

Close the dialog and open the Model Explorer. On the Callbacks tab, you can see the model uses its
PreLoadFcn to define the Simulink.Bus object that defines the data type for the Inport block.

Open the Configuration Parameters and view the specification for the Input parameter on the Data
Import/Export pane. The model uses the variable inputBus for its Input.

Create Simulation Input from the Structure of timeseries Data

To load the data logged for bus1, you only need to assign the structure data to the Input variable for
the model.

inputBus = logsout.get(1).Values

inputBus =

 struct with fields:

 a: [1x1 timeseries]
 b: [1x1 timeseries]

When you simulate the model, the Display blocks show the values 1 and 2 logged in bus1 and loaded
into the model.

To load the data logged for bus2, you need to use the Simulink.Bus object that defines the Inport
block data type and Simulink.SimulationData.createStructOfTimeseries to create a
structure of timeseries with names specified by the Simulink.Bus object.

inputBus = Simulink.SimulationData.createStructOfTimeseries('bus',...
 logsout.get(2).Values)

inputBus =

 struct with fields:

 a: [1x1 timeseries]
 b: [1x1 timeseries]

When you simulate the model, the Display blocks show the values 3 and 4 logged in bus2 and loaded
into the model.

Partially Specify Simulation Input for a Bus

This example shows how to use the Simulink.SimulationData.createStructOfTimeseries
function to create partially specified simulation input for a bus. This example logs data from
ex_log_structtimeseries and then loads that data into ex_load_structtimeseries.

Create timeseries Data

First, open and simulate the ex_log_structtimeseries model. The model logs two bus signals,
bus1 and bus2, created using Constant blocks and Bus Creator blocks. Access the logsout
Dataset in the Simulink.SimulationOutput object, out.

 Simulink.SimulationData.createStructOfTimeseries

2-1055

open_system('ex_log_structtimeseries')
out = sim('ex_log_structtimeseries');

logsout = out.logsout;

You can use a structure of timeseries data or a cell array of timeseries data to partially specify
simulation input for a bus.

Partially Specify Bus Data with a Structure of timeseries Data

Open the model ex_load_structtimeseries that will load some of the data you logged in the
previous section.

open_system('ex_load_structtimeseries')

Use the get function to access the structure of timeseries data logged for bus1.

bus1 = logsout.get(1).Values;

Then, replace the b data with [].

bus1.b = [];

The ex_load_structtimeseries model uses the variable inputBus as its Input. The
Simulink.Bus object, bus, that defines the data type for the Inport block is defined in the
PreLoadFcn callback for the ex_load_structtimeseries model. Because the signal names in

2 Functions

2-1056

bus1 match the Simulink.Bus object specification for the Inport block in the
ex_load_structtimeseries model, you can use the logged structure without modification. To load
the data for bus1, assign bus1 to the variable inputBus.

inputBus = bus1;

Simulate the model. The Display blocks show the logged value 1 for a and 0 for b. The simulation
uses ground values when you do not specify data for the signal.

loadOut = sim('ex_load_structtimeseries');

Now, load the data logged for bus2. The signal names in bus2 do not match the Simulink.Bus
object specification for the Inport block in the ex_load_structtimeseries model. Modify the data
in the structure to partially specify input data for the bus. Then, use the
Simulink.SimulationData.createStructOfTimeseries function to change the names in the
structure to match the bus specification.

bus2 = logsout.get(2).Values;
bus2.d = [];
inputBus = bus2;
inputBus = Simulink.SimulationData.createStructOfTimeseries('bus',inputBus);

Simulate the model. The Display blocks show the logged value 3 for a and 0 for b.

loadOut = sim('ex_load_structtimeseries');

Partially Specify Bus Data with a Cell Array of Timeseries Data

When you have timeseries data, you can use
Simulink.SimulationData.createStructOfTimeseries to partially specify simulation input
for a bus using a cell array of the timeseries data. Load the timeseries data for signal d in bus2
as part of a partial bus specification for the Inport block in the ex_load_structtimeseries model.
The PreLoadFcn callback for the ex_load_structtimeseries model defines the Simulink.Bus
object, bus, that defines the data type for the Inport block.

d = logsout.get(2).Values.d;

inputBus = Simulink.SimulationData.createStructOfTimeseries('bus',...
 {d,[]});

Simulate the model. The Display block for signal a in the ex_load_structtimeseries model
shows the data logged in signal d from the ex_log_structtimeseries model. The Display block
for signal b shows 0.

loadOut = sim('ex_load_structtimeseries');

Load Simulation Input Data for an Array of Buses

This example shows how to use the Simulink.SimulationData.createStructOfTimeseries
function to generate simulation input for an array of buses. You create timeseries data by
simulating one model. Then, you create an input structure using the logged data to load into an array
of buses in another model.

 Simulink.SimulationData.createStructOfTimeseries

2-1057

Create timeseries Data

To start, open the ex_log_structtimeseries model.

open_system('ex_log_structtimeseries')

The model creates two buses, bus1 and bus2, using Constant blocks and Bus Creator blocks. The
signals are named a, b, c, and d. Create logged bus data by simulating the model.

out = sim('ex_log_structtimeseries');

The output out contains a Simulink.SimulationData.Dataset object, logsout, with the logged
data. You can access the bus1 and bus2 signals using the get function. The data for each signal is in
the Simulink.SimulationData.Signal object Values parameter. You can access the bus
elements using a dot followed by the signal name. bus1 is the first signal in the Dataset object and
contains signals a and b. bus2 contains signals c and d.

logsout = out.logsout;

a = logsout.get(1).Values.a;
b = logsout.get(1).Values.b;
c = logsout.get(2).Values.c;
d = logsout.get(2).Values.d;

Loading Model Configuration

Open the model ex_structtimeseries_aob, which uses an array of buses as input.

open_system('ex_load_structtimeseries_aob')

2 Functions

2-1058

The model uses the InAoB Inport block to load simulation input. Selector blocks select a bus from the
array of buses, and Bus Selector blocks select signals to show in the Display blocks.

Double-click the InAoB block and look at the Signal Attributes pane of the dialog. The Data type
for the block is set to Bus with the type defined by the Simulink.Bus object, bus. The Port
dimensions parameter is set to [2 1].

You can see the definition for the Simulink.Bus object, bus, in the Callbacks tab in the Model
Explorer. This model uses the PreLoadFcn to define the bus object.

Open the Model Configuration Parameters and look at the Input parameter. The model uses the
variable inputAoB as input.

Create Array of Buses Simulation Input

Use Simulink.SimulationData.createStructOfTimeseries and the data logged in the first
section to create a structure to load as simulation input for the array of buses. Specify the dimensions
as [2 1] to match the dimensions of the InAoB block.

inputAoB = Simulink.SimulationData.createStructOfTimeseries('bus',...
 {a,b,c,d},[2 1]);

When you simulate the model, the Display blocks show the data for signals a, b, c, and d logged from
the ex_log_structtimeseries model. The array of buses contains two buses with signals a and b.
Simulink.SimulationData.createStructOfTimeseries renamed signals c and d to match the
Simulink.Bus specification used by the array of buses.

inputAoB(2)

ans =

 struct with fields:

 a: [1x1 timeseries]
 b: [1x1 timeseries]

Simulate the model. The display blocks show the logged values.

 Simulink.SimulationData.createStructOfTimeseries

2-1059

aob_out = sim('ex_load_structtimeseries_aob');

Create a Structure of timeseries Objects from a Simulink.TsArray Object

In releases before R2016a, when you log simulation data using ModelDataLogs format, bus data is
stored as a Simulink.TSArray object. You cannot log data using ModelDataLogs format using a
release after R2016a. In this example, the logged data, logsout, was logged in ModelDataLogs
format using a release before R2016a. The variable logsout contains data for a single bus, bus1.

logsout

logsout =

Simulink.ModelDataLogs (log_modeldatalogs):
 Name Elements Simulink Class

 bus1 2 TsArray

To load the logged data as simulation input for a bus, create a structure of timeseries objects from
the data in bus1.

struct_of_ts = ...
Simulink.SimulationData.createStructOfTimeseries(logsout.bus1)

struct_of_ts =

 const1_sig: [1x1 timeseries]
 const2_sig: [1x1 timeseries]

Input Arguments
busObj — Name of Simulink.Bus object
character vector

Name of the Simulink.Bus object that specifies the attributes for the data in the output structure of
timeseries objects. When you want to load the structure of timeseries objects as simulation
input for a bus, the busObj is the bus that defines the data type for the root-level Inport block.

Simulink.SimulationData.createStructOfTimeseries validates the input timeseries
attributes including data type and complexity against the Simulink.Bus object specification. When
element names do not match between the Simulink.Bus specification and the input timeseries
data, Simulink.SimulationData.createStructOfTimeseries renames the timeseries data
to match the bus specification. When other attributes do not match, the function returns an error.
Example: 'MyInputBus'

tsStructIn — Structure of timeseries objects
structure of timeseries data

Structure of timeseries data for use in creating the output structure of timeseries objects
according to the Simulink.Bus object. The structure must have the same hierarchy as the
Simulink.Bus object.

To partially specify data for a bus, use [] in the place of the bus element you want to use ground
values.

2 Functions

2-1060

tsCellArray — Cell array of timeseries objects
cell array of timeseries objects

Cell array of timeseries objects specifying the data for the output structure of timeseries
objects.

To partially specify data for a bus, use [] in the place of the bus element you want to use ground
values.

The Simulink.SimulationData.createStructOfTimeseries function maps the timeseries
elements of the cell array to the hierarchy specified by the Simulink.Bus object using a depth-first
search.
Example: {ts1,ts2,ts3}
Example: {ts1,[],ts3}

Dependencies

When you specify the dims argument, the number of cells in the cell array must match the number of
individual signal elements in the Simulink.Bus object multiplied by the product of the specified
dimensions.

dims — Dimensions for output array
vector

Dimensions for the array of timeseries structures, specified as a vector.

When you specify the dimensions as a scalar, n, the function creates a 1-by-n array.
Example: [2,1]

Dependencies

When you specify the dims argument, the number of cells in the cell array must match the number of
individual signal elements in the Simulink.Bus object multiplied by the product of the specified
dimensions.
Data Types: double

tsArray — Simulink.TsArray object
Simulink.TsArray

Simulink.TsArray object.

In versions prior to R2016a, signal logging creates Simulink.TsArray objects to store logged bus
data. Use this syntax when you want to use data logged using ModelDataLogs format in a version
before R2016a to create simulation input for a bus.
Example: myTsArrayObj

Output Arguments
tsStruct — Structure of timeseries objects
struct

 Simulink.SimulationData.createStructOfTimeseries

2-1061

Structure of timeseries objects with attributes specified by the Simulink.TsArray or
Simulink.Bus input. You can load the structure of timeseries objects as simulation input for a
bus.

tsStructArray — Array of timeseries structures
array

Array of structures of timeseries objects with dimensions specified by the dims input.

Version History
Introduced in R2013a

See Also
Simulink.Bus | Simulink.TsArray | timeseries

Topics
“Load Data to Root-Level Input Ports”
“Load Bus Data to Root-Level Input Ports”

2 Functions

2-1062

Simulink.SimulationData.DatasetRef.getDatasetVa
riableNames
List names of variables in MAT file that contain Simulink.SimulationData.Dataset objects

Syntax
dsNames = Simulink.SimulationData.DatasetRef.getDatasetVariableNames(
filename)

Description
dsNames = Simulink.SimulationData.DatasetRef.getDatasetVariableNames(
filename) returns the names of variables in the MAT file filename that contain
Simulink.SimulationData.Dataset objects.

When you want to get the names of variables that contain Dataset objects, the
Simulink.SimulationData.DatasetRef.getDatasetVariableNames function runs faster than
the who or whos functions.

Using the name of the MAT file and the name of a variable that contains a Dataset object, you can
create a Simulink.SimulationData.DatasetRef object that references the data in the MAT file
without loading the entire Dataset object into memory.

Examples

Stream Simulation Input Data Using DatasetRef Object

When your simulation input data is stored as a Simulink.SimulationData.Dataset object in a
file that is too large to load into memory, you can create a
Simulink.SimulationData.DatasetRef object to stream input data into your model during
simulation. The DatasetRef object references the data in the Dataset object in the file and
incrementally loads the data during simulation.

To create a DatasetRef object, you need the name of the file and the name of the variable in the file
that contains the Dataset object. You can use the
Simulink.SimulationData.DatasetRef.getDatasetVariableNames function to see the
names of all variables in a file that contain Dataset objects without loading the file into memory.

Get the names of variables in the file aircraftData.mat that contain Dataset objects.

datasetNames = Simulink.SimulationData.DatasetRef.getDatasetVariableNames("aircraftData.mat")

datasetNames = 1x3 cell
 {'logsout'} {'xout'} {'yout'}

Create a reference to the data in the Dataset object logsout.

logsoutDSR = Simulink.SimulationData.DatasetRef("aircraftData.mat","logsout");

 Simulink.SimulationData.DatasetRef.getDatasetVariableNames

2-1063

To stream the data stored in the Dataset object logsout as input for simulation, specify the value
for the Input parameter as logsoutDSR. Loading data from a DatasetRef object works the same as
loading data from a Dataset object except that the data is incrementally loaded into memory.

Input Arguments
filename — Name of MAT file
string | character vector

Name of MAT file, specified as a string or a character vector.
Example: "myMATFile.mat"
Data Types: char | string

Output Arguments
dsNames — Names of variables that contain Dataset objects
cell array of character vectors

Names of variables that contain Dataset objects, returned as a cell array of character vectors.

Version History
Introduced in R2016a

See Also
Simulink.SimulationData.DatasetRef | Simulink.SimulationData.Dataset

Topics
“Load Big Data for Simulations”
“Stream Data from a MAT-File as Input for a Parallel Simulation”

2 Functions

2-1064

Simulink.SimulationData.forEachTimeseries
Apply function to data contained in set of timeseries objects

Syntax
res = Simulink.SimulationData.forEachTimeseries(func,tsData)

Description
res = Simulink.SimulationData.forEachTimeseries(func,tsData) applies the function
func to each timeseries object in tsData. You can use this function to postprocess data logged
from a bus or array of buses.

Examples

Find Minimum Values for Signals in Bus

Open the model NonvirtualBusCreationModel. The model groups the output signals from a Chirp
block and a Sine block into a bus that is nested in another bus. The second bus also contains the
output signal from a Step block.

Mark the bus TopBus for logging.

Simulink.sdi.markSignalForStreaming("NonvirtualBusCreationModel/Bus Creator1",1,true);

Simulate the model.

out = sim("NonvirtualBusCreationModel");

 Simulink.SimulationData.forEachTimeseries

2-1065

The Simulink.SimulationOutput object contains simulation metadata and all simulation data
logged to the workspace.

out

out =
 Simulink.SimulationOutput:

 logsout: [1x1 Simulink.SimulationData.Dataset]
 tout: [53x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

The variable logsout contains the data logged for the bus.

logsout = out.logsout

logsout =
Simulink.SimulationData.Dataset 'logsout' with 1 element

 Name BlockPath
 ______ _______________________________________
 1 [1x1 Signal] TopBus NonvirtualBusCreationModel/Bus Creator1

 - Use braces { } to access, modify, or add elements using index.

Access the signal that contains the data logged for the bus TopBus. The signal values are stored in
the Values property for the Simulink.SimulationData.Signal object.

topBusSig = getElement(logsout,1)

topBusSig =
 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'TopBus'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'
 PortIndex: 1
 Values: [1x1 struct]

 Methods, Superclasses

Access the structure that contains the values for the signals in the bus. The structure hierarchy and
field names match the hierarchy and signal names for the bus. The data for each signal in the bus is
stored as a timeseries object.

topBusData = topBusSig.Values

topBusData = struct with fields:
 NestedBus: [1x1 struct]
 Step: [1x1 timeseries]

2 Functions

2-1066

Use the Simulink.SimulationData.forEachTimeseries function to find the minimum value for
each signal in the bus. The minimum values are returned as a structure with the same fields and
hierarchy as the input data.

topBusSigMins = Simulink.SimulationData.forEachTimeseries(@min,topBusData)

topBusSigMins = struct with fields:
 NestedBus: [1x1 struct]
 Step: 0

Check the minimum value for the output signal from the Chirp block.

chirpMin = topBusSigMins.NestedBus.Chirp

chirpMin = -0.9972

Input Arguments
func — Function to apply to data
function handle

Function to apply to data, specified as a function handle. For more information, see “Create Function
Handle”.

The function that you specify must take at least one input argument and return a scalar. You can
specify a handle for a built-in function, a function you create, or an anonymous function.

For example, you can use the built-in min function to compute the minimum value in each
timeseries object.

res = Simulink.SimulationData.forEachTimeseries(@min,tsData);

When the function takes more than one input argument, only the argument for the timeseries
object can change for each computation. The rest of the arguments must use the same values for
each timeseries object.

For example, to apply the resample function to each timeseries object, specify the function as an
anonymous function. Here, the variable tsData represents the timeseries objects. The other
arguments for the resample function are passed as parameter values. The
Simulink.SimulationData.forEachTimeseries function passes the timeseres data you
specify in the second input argument to the anonymous function as the value for tsData.

res = Simulink.SimulationData.forEachTimeseries(@(tsData) resample(tsData,[2.5 3]),tsData);

Data Types: function_handle

tsData — Data to process
scalar timeseries object | array of timeseries | structure of timeseries objects | array of
structures of timeseries objects

Data to process, specified as one of these values:

• Scalar timeseries object

 Simulink.SimulationData.forEachTimeseries

2-1067

• Array of timeseries objects
• Structure of timeseries objects
• Array of structures of timeseries objects

Output Arguments
res — Results of processing data
scalar timeseries object | array of timeseries | structure of timeseries objects | array of
structures of timeseries objects

Results of processing data, returned as one of these values:

• Scalar timeseries object
• Array of timeseries objects
• Structure of timeseries objects
• Array of structures of timeseries objects

Results are returned in the same form as the input data.

Version History
Introduced in R2016b

See Also
Objects
timeseries | Simulink.SimulationOutput | Simulink.SimulationData.Dataset |
Simulink.SimulationData.Signal

Topics
“Create Function Handle”

2 Functions

2-1068

Simulink.SimulationData.ModelLoggingInfo.create
FromModel
Package: Simulink.SimulationData

Create Simulink.SimulationData.ModelLoggingInfo object for top model with override
settings for each logged signal in model

Syntax
mdlInfo = Simulink.SimulationData.ModelLoggingInfo.createFromModel(mdl)
mdlInfo = Simulink.SimulationData.ModelLoggingInfo.createFromModel(mdl,
Name,Value)

Description
mdlInfo = Simulink.SimulationData.ModelLoggingInfo.createFromModel(mdl) creates
a model logging override object for the model mdl that includes logged signals for these kinds of
systems:

• Libraries
• Masked subsystems
• Referenced models
• Active variants

mdlInfo = Simulink.SimulationData.ModelLoggingInfo.createFromModel(mdl,
Name,Value) creates a Simulink.SimulationData.ModelLoggingInfo object for the model
mdl with optional settings.

Examples

Create Model Logging Override Object with Logged Signals

You can create a model logging override object for the model sldemo_mdlref_bus and
automatically add each logged signal in the model to that object. The model sldemo_mdlref_bus
has four signals marked for logging.

mdl = 'sldemo_mdlref_bus';
open_system(mdl)
mdlInfo = Simulink.SimulationData.ModelLoggingInfo.createFromModel(mdl)

mdlInfo =
 ModelLoggingInfo with properties:

 Model: 'sldemo_mdlref_bus'
 LoggingMode: 'OverrideSignals'
 LogAsSpecifiedByModels: {}
 Signals: [1x4 Simulink.SimulationData.SignalLoggingInfo]

 Simulink.SimulationData.ModelLoggingInfo.createFromModel

2-1069

The LoggingMode property is set to 'OverrideSignals', which configures the model logging
override object to log only the signals specified in the Signals property.

Apply the model override object settings. The software saves the settings when you save the model.

set_param(mdl,'DataLoggingOverride',mdlInfo);

Specify How To Handle Variants

You can use the options in the
Simulink.SimulationData.ModelLoggingInfo.createFromModel function to specify how
model components like variants and model references should be handled. For example, use the
Variants name-value argument to create a model logging override object that includes logged
signals in all variants of the model sldemo_variant_subsystems.

By default, the sldemo_variant_subsystems model does not log any signals.

mdl = 'sldemo_variant_subsystems';
open_system(mdl)

Start by configuring the output signals from the Linear Controller and Nonlinear Controller
subsystems for logging.

phLin = get_param("sldemo_variant_subsystems/Controller/Linear Controller",...
 "PortHandles");
set_param(phLin.Outport(1),'DataLogging','on');
phNonlin = get_param("sldemo_variant_subsystems/Controller/Nonlinear Controller",...
 "PortHandles");
set_param(phNonlin.Outport(1),'DataLogging','on');

Use the Simulink.SimulationData.ModelLoggingInfo.createFromModel function to create a
model logging override object that includes the signals logged in all variant subsystems of the
sldemo_variant_subsystems model.

mdlInfo = Simulink.SimulationData.ModelLoggingInfo.createFromModel(...
mdl, 'Variants', 'AllVariants')

mdlInfo =
 ModelLoggingInfo with properties:

 Model: 'sldemo_variant_subsystems'
 LoggingMode: 'OverrideSignals'
 LogAsSpecifiedByModels: {}
 Signals: [1x2 Simulink.SimulationData.SignalLoggingInfo]

Input Arguments
mdl — Name of top model
character vector

Name of top model for which to create a Simulink.SimulationData.ModelLoggingInfo object,
specified as a character vector.

2 Functions

2-1070

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: mdlInfo =
Simulink.SimulationData.ModelLoggingInfo.createFromModel(mdl, Variants =
'AllVariants')

If you select more than one option, then the created
Simulink.SimulationData.ModelLoggingInfo object includes signals that fit the combinations
of the specified options. For example, if you set FollowLinks to on and RefModels to off, then the
model signal logging override object does not include signals from library links that exist inside of
referenced models.

FollowLinks — Option to follow links into library blocks
'on' (default) | 'off'

Option to follow links into library blocks, specified as 'on' or 'off'.

• 'on' — Include logged signals from inside of libraries.
• 'off' — Skip all libraries.

LookUnderMasks — Option to include logged signals from masked systems
'all' (default) | 'none' | 'graphical' | 'functional'

Option to include logged signals from masked systems, specified as 'all', 'none', 'graphical',
or 'functional'.

• 'all' — Include logged signals from all masked subsystems.
• 'none' — Skip all masked subsystems.
• 'graphical' — Include logged signals from masked subsystems that do not have a workspace or

dialog box.
• 'functional' — Include logged signals from masked subsystems that do not have a dialog box.

Variants — Option to include subsystem and model variants
'ActiveVariants' (default) | 'AllVariants'

Option to include subsystem and model variants, specified as 'ActiveVariants' or
'AllVariants'.

• 'ActiveVariants' — Include logged signals from only active subsystem and model variants.
• 'AllVariants' — Include logged signals from all subsystem and model variants.

RefModels — Option to include logged signals from referenced models
'on' (default) | 'off'

Option to include logged signals from referenced models. specified as 'on' or 'off'.

• 'on' — Include logged signals from referenced models.

 Simulink.SimulationData.ModelLoggingInfo.createFromModel

2-1071

• 'off' — Skip all referenced models.

Version History
Introduced in R2012b

See Also
Objects
Simulink.SimulationData.ModelLoggingInfo |
Simulink.SimulationData.SignalLoggingInfo

Functions
findSignal | setLogAsSpecifiedInModel | getLogAsSpecifiedInModel |
verifySignalAndModelPaths

Topics
“Override Signal Logging Settings from MATLAB”
“Save Signal Data Using Signal Logging”

2 Functions

2-1072

Simulink.SubSystem.convertToModelReference
Convert subsystem to model reference

Syntax
Simulink.SubSystem.convertToModelReference(gcb,'UseConversionAdvisor',true)

[tf,h] = Simulink.SubSystem.convertToModelReference(subsys,model)
[tf,h] = Simulink.SubSystem.convertToModelReference(subsys,model,Name,Value)

Description
Simulink.SubSystem.convertToModelReference(gcb,'UseConversionAdvisor',true)
opens the Model Reference Conversion Advisor for the selected Subsystem block.

[tf,h] = Simulink.SubSystem.convertToModelReference(subsys,model) converts the
specified subsystems to referenced models.

For each subsystem that the function converts, it:

• Creates a model.
• Copies the contents of the subsystem into the new model.
• Updates any root-level input and output blocks and the configuration parameters of the model to

match the compiled attributes of the original subsystem.
• Copies the contents of the model workspace of the original model to the new model.

Before you use this function, load the model containing the subsystem.

[tf,h] = Simulink.SubSystem.convertToModelReference(subsys,model,Name,Value)
specifies options using one or more name-value arguments.

Examples

Open the Model Reference Conversion Advisor

Open the f14 model.

open_system('f14');

In the f14 model, select the Controller subsystem output signal and click Log Signals.

In the Simulink Editor, select the Controller subsystem. Open the Model Reference Conversion
Advisor from the command window.
Simulink.SubSystem.convertToModelReference(gcb,'UseConversionAdvisor',true);

Perform the conversion using the advisor.

 Simulink.SubSystem.convertToModelReference

2-1073

Programmatically Convert Subsystem to Referenced Model

Convert the Bus Counter subsystem to a referenced model named bus_counter_ref_model.

open_system('sldemo_mdlref_conversion');
Simulink.SubSystem.convertToModelReference(...
 'sldemo_mdlref_conversion/Bus Counter', ...
 'bus_counter_ref_model', ...
 'AutoFix',true,...
 'ReplaceSubsystem',true,...
 'CheckSimulationResults',true);

Successfully converted Subsystem block to Model block.

Convert Multiple Subsystems to Referenced Models

Convert the two subsystems with one command.

open_system('f14');
set_param(gcs,'SaveOutput','on','SaveFormat','Dataset');
set_param(gcs,'SignalResolutionControl','UseLocalSettings');
Simulink.SubSystem.convertToModelReference(...
{'f14/Controller','f14/Aircraft Dynamics Model'},...
{'controller_ref_model','aircraft_dynamics_ref_model'},...
'ReplaceSubsystem',true,...

2 Functions

2-1074

'AutoFix',true,...
'CheckSimulationResults',true)

Input Arguments
subsys — Subsystem names or handles
numeric array | character vector | cell array of character vectors | string array

Subsystem names or handles, specified as a numeric array, character vector, cell array of character
vectors, or string array.

For information on which subsystems you can convert, see “Conditionally Execute Referenced
Models”.
Data Types: double | char | string

model — Referenced model names
character vector | cell array of character vectors | string array

Referenced model names, specified as a character vector, cell array of character vectors, or string
array. Each model name must be 59 characters or less.

If you specify multiple subsystems to convert, specify the same number of referenced model names.
Each model name corresponds to the specified subsystem, in the same order.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Simulink.SubSystem.convertToModelReference...
(engineSubsys,engineModelRef,'ReplaceSubsystem',true)

Conversion

AutoFix — Option to fix all conversion issues that can be fixed automatically
false (default) | true

Option to fix all conversion issues that can be fixed automatically, specified as true or false.

If you set AutoFix to true, the function fixes all conversion issues that it can fix. For issues that the
function cannot fix, the conversion process generates error messages that you address by modifying
the model.

Note If you set Force to true, then the function does not automatically fix conversion issues.

Data Types: logical

Force — Option to complete conversion even with errors
false (default) | true

 Simulink.SubSystem.convertToModelReference

2-1075

Option to complete conversion even with errors, specified as true or false.

If true, the function returns conversion errors as warnings and continues with the conversion
without fixing the errors, even if you set AutoFix to true. The Force option allows you to use the
function to do the initial steps of the conversion and then complete the conversion process yourself.
Data Types: logical

DataFileName — Name of file for storing conversion data
character vector

Name of file for storing conversion data, specified as a character vector. You can specify an absolute
or relative path.

You can save the conversion data in a MAT file (default) or a MATLAB file. If you use a .m file
extension, the function serializes all variables to a MATLAB file.

By default, the function uses a file name consisting of the model name plus
_conversion_data.mat.
Data Types: char

Model Interface

CreateWrapperSubsystem — Option to insert wrapper subsystem to preserve model layout
false (default) | true

Option to insert wrapper subsystem to preserve model layout, specified as true or false.

When you convert a subsystem to a referenced model, you can have the conversion process insert a
wrapper subsystem to preserve the layout of the parent model. The subsystem wrapper contains the
Model block from the conversion.

The conversion creates a wrapper subsystem automatically if the conversion modifies the Model
block interface by adding ports.
Data Types: logical

CreateBusObjectsForAllBuses — Option to create bus objects for interface definition
false (default) | true

Option to create bus objects for interface definition, specified as true or false.

Models require a defined interface, unlike subsystems. To define an interface that contains virtual
buses, the new model must use either of these options:

• In Bus Element and Out Bus Element blocks
• Inport and Outport blocks that specify Simulink.Bus objects

By default, the conversion does not create Bus objects. Instead, the conversion uses In Bus Element
and Out Bus Element blocks to support virtual buses at the model interface, and the new model
contains the original subsystem.

When you set this parameter to true, the conversion creates Bus objects for all virtual buses
connected to Inport and Outport blocks that do not specify Bus objects. The conversion keeps the
Inport and Outport blocks at the model interface, and they specify the new Bus objects.

2 Functions

2-1076

Data Types: logical

CopyCodeMappings — Option to copy code mappings from parent model to new model
false (default) | true

Option to copy code mappings from parent model to the new model, specified as true or false.

If true, the function copies the existing code mapping configurations from the parent model to the
new referenced model.

If false, the function does not copy the existing code mapping configurations from the parent model
to the new model.
Data Types: logical

Model Implementation

ReplaceSubsystem — Option to replace Subsystem blocks with Model blocks
false (default) | true

Option to replace Subsystem blocks with Model blocks, specified as true or false.

If you set the value to true, consider making a backup of the original model before you convert the
subsystems. If you want to undo the conversion, having a backup makes it easier to restore the
model.

If you set ReplaceSubsystem to true, the conversion action depends on whether you use the
automatic fix options.

• If you use the automatic fixes, then the conversion replaces the Subsystem block with a Model
block unless the automatic fixes change the input or output ports. If the ports change, then the
conversion includes the contents of the subsystem in a Model block that is inserted in the
Subsystem block.

• If you do not use the automatic fixes, then the conversion replaces the Subsystem block with a
Model block.

Data Types: logical

SimulationModes — Simulation mode for Model blocks
'Normal' (default) | 'Accelerator'

Simulation mode for Model blocks, specified as 'Normal' or 'Accelerator'. The simulation mode
setting applies to the Model blocks that reference the models that the conversion creates.
Data Types: char | string

BuildTarget — Model reference targets to generate
'Sim' | 'Coder'

Model reference targets to generate, specified as 'Sim' or 'Coder'.

• 'Sim' — Model reference simulation target
• 'Coder' — Code generation target

Data Types: char

 Simulink.SubSystem.convertToModelReference

2-1077

Simulation Results Comparison

CheckSimulationResults — Option to check simulation results before and after conversion
false (default) | true

Option to check simulation results before and after conversion, specified as true or false.

Before performing the conversion:

• Enable signal logging for the subsystem output signals of interest in the model.
• Set CheckSimulationResults to true.
• Set AbsoluteTolerance.
• Set RelativeTolerance.
• Set SimulationModes to the simulation mode used by the original model.

If the difference between simulation results exceeds the tolerance level, the function displays a
message.
Data Types: logical

AbsoluteTolerance — Absolute signal tolerance for comparison
1e-06 (default) | numeric scalar

Absolute signal tolerance for comparison, specified as a numeric scalar.

Use this option only if you set CheckSimulationResults to true.
Data Types: double

RelativeTolerance — Relative signal tolerance for comparison
1e-06 (default) | numeric scalar

Relative signal tolerance for comparison, specified as a numeric scalar.

Use this option only if you set CheckSimulationResults to true.
Data Types: double

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as 1 or 0 of data type logical.

A value of 1 indicates a successful conversion.

If you set Force to true, the function returns a value of 1 if the conversion completes. However, the
simulation results can differ from the simulation results for the model before conversion.

h — Handles of created Model blocks
numeric array

Handles of the created Model blocks, returned as a numeric array.
Data Types: double

2 Functions

2-1078

Tips
• You cannot convert a parent subsystem and a child of that subsystem at the same time.
• Specifying multiple subsystems to convert with one command can save time compared to

converting each subsystem separately. The multiple subsystem conversion process compiles the
model once.

• If you specify multiple subsystems to convert, the conversion process attempts to convert each
subsystem. Successfully converted subsystems produce referenced models, even if the
conversions of other subsystems fail.

• If you specify multiple subsystems, consider:

• In the input arguments, setting 'Autofix', 'ReplaceSubsystem', and
'CheckSimulationResults' to true.

• In the model, setting a short simulation time.
• A data dictionary saves bus objects that it creates as part of the conversion process when both of

these conditions exist:

• The top model uses a data dictionary.
• All changes to the top model are saved.

• To maintain the behavior of a masked subsystem, perform these additional tasks:

• For masked callbacks, icons, ports, and documentation, create a backup copy of the masked
subsystem before converting it to a referenced model. After conversion, copy the content from
the Mask Editor of the backup masked subsystem to the Mask Editor of the new Model block.

• Replace mask parameters with model arguments (see “Parameterize Instances of a Reusable
Referenced Model”).

Note Referenced models do not support the functionality that you can achieve with mask
initialization code to create masked parameters.

Version History
Introduced in R2006a

R2019a: 'BuildTarget' argument value 'RTW' is not recommended
Not recommended starting in R2019a

In R2019a, an argument value used with the Simulink.SubSystem.convertToModelReference
function was updated. The legacy argument value is supported for backward compatibility.

To take advantage of the updated 'BuildTarget' argument value, use 'Coder' instead of 'RTW'.

R2020b: Copy code mappings from parent model to referenced model

Starting in R2020b, you can copy code mappings from the parent model to the newly created
referenced model. To copy the code mappings, use the
Simulink.SubSystem.convertToModelReference function with the CopyCodeMappings
argument specified as true.

 Simulink.SubSystem.convertToModelReference

2-1079

R2023a: Copy service interface code mappings from parent model to referenced model

Service interface code mappings were introduced in R2022b. Starting in R2023a, you can copy
service interface code mappings from the parent model to the newly created referenced model. To
copy the mappings, use the Simulink.SubSystem.convertToModelReference function with the
CopyCodeMappings argument specified as true. To learn more about service interface mappings,
see “C Service Interfaces” (Embedded Coder). To learn more about code mapping configurations, see
“Define Service Interfaces, Storage Classes, Memory Sections, and Function Templates for Software
Architecture” (Embedded Coder).

See Also
Simulink.BlockDiagram.copyContentsToSubsystem | Simulink.Bus.save |
Simulink.SubSystem.copyContentsToBlockDiagram

Topics
“Convert Subsystems to Referenced Models”
“Convert Subsystem to Referenced Model and Generate Code” (Simulink Coder)

2 Functions

2-1080

Simulink.SubSystem.copyContentsToBlockDiagram
Copy graphical contents from subsystem to empty system

Syntax
Simulink.SubSystem.copyContentsToBlockDiagram(subsys,sys)

Description
Simulink.SubSystem.copyContentsToBlockDiagram(subsys,sys) copies the blocks, lines,
and annotations of the specified subsystem to the top-level block diagram of the specified system. It
does not affect nongraphical information such as configuration sets.

To use this function:

• The specified system must be loaded in memory.
• The specified subsystem must be loaded in memory.
• The specified system must not contain any blocks or lines. Other types of information can exist in

the system and are unaffected by the function. To delete the graphical content of the system, use
Simulink.BlockDiagram.deleteContents.

Examples

Copy Subsystem Contents to Model

Copy the graphical contents of a subsystem to a new model.

Open the f14 model.

open_system('f14');

Create an empty model named f14Controller.

model = new_system('f14Controller');
open_system(model)

Copy the graphical contents from the f14/Controller subsystem to the empty f14Controller
model.

Simulink.SubSystem.copyContentsToBlockDiagram('f14/Controller', model)

Input Arguments
subsys — Subsystem block path or handle
character vector | string scalar | numeric scalar

Subsystem block path or handle, specified as a character vector, string scalar, or numeric scalar.
Example: 'model1/Subsystem'

 Simulink.SubSystem.copyContentsToBlockDiagram

2-1081

Data Types: double | char | string

sys — System name or handle
character vector | string scalar | numeric scalar

System name or handle, specified as a character vector, string scalar, or numeric scalar.

A system name must not include a path or extension.
Example: 'model2'
Data Types: double | char | string

Tips
To flatten a model hierarchy by replacing a subsystem with its contents, use the
Simulink.BlockDiagram.expandSubsystem function.

Version History
Introduced in R2007a

See Also
Simulink.BlockDiagram.copyContentsToSubsystem |
Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference | Simulink.SubSystem.deleteContents

Topics
“Create Subsystems”
“Expand Subsystem Contents”

2 Functions

2-1082

Simulink.SubSystem.deleteContents
Delete contents of subsystem

Syntax
Simulink.SubSystem.deleteContents(subsys)

Description
Simulink.SubSystem.deleteContents(subsys) deletes the blocks, lines, and annotations in the
specified subsystem, which must be loaded in memory.

Examples

Delete Subsystem Contents

Open the f14 model.

open_system('f14')

Delete the graphical contents from the f14/Controller subsystem.

Simulink.SubSystem.deleteContents('f14/Controller')

Input Arguments
subsys — Subsystem block path or handle
character vector | string scalar | numeric scalar

Subsystem block path or handle, specified as a character vector, string scalar, or numeric scalar.
Data Types: double | char | string

Version History
Introduced in R2007a

See Also
Simulink.BlockDiagram.copyContentsToSubsystem |
Simulink.BlockDiagram.deleteContents |
Simulink.SubSystem.convertToModelReference |
Simulink.SubSystem.copyContentsToBlockDiagram

Topics
“Create Subsystems”

 Simulink.SubSystem.deleteContents

2-1083

Simulink.SubSystem.getChecksum
Return checksum of nonvirtual subsystem

Syntax
[checksum,details] = Simulink.SubSystem.getChecksum(subsys)

Description
[checksum,details] = Simulink.SubSystem.getChecksum(subsys) returns the checksum
of the specified nonvirtual subsystem. Simulink computes the checksum based on the subsystem
parameter settings and the blocks the subsystem contains. Virtual subsystems do not have
checksums.

One use of this command is to determine why code generated for a subsystem is not being reused.

Note Simulink.SubSystem.getChecksum compiles the model that contains the specified
subsystem, if the model is not already in a compiled state. If you need to get the checksum for
multiple subsystems and want to avoid multiple compiles, use the command , model([], [], [],
'compile') to place the model in a compiled state before using
Simulink.SubSystem.getChecksum.

This command accepts the argument subsys, which is the full name or handle of the nonvirtual
subsystem block for which you are returning checksum data.

Examples

Run getChecksum on Model

Run the function Simulink.SubSystem.getChecksum on the model rtwdemo_ssreuse. In the
MATLAB editor window, both output structures are displayed. In the workspace pane, double-click on
either of the structures to view its contents.

Load the model rtwdemo_ssreuse.

rtwdemo_ssreuse

Select subsystem SS1 and execute the follow line of code in the MATLAB editor to get the full name
and path to the subsystem SS1:

path_ss1 = gcb

Run the function getChecksum on the subsystem with the following command:

[chksum1, chksum1_details] = Simulink.SubSystem.getChecksum(path_ss1)

The output structures chksum1 and chksum1_details will store the output of the getChecksum
function call.

2 Functions

2-1084

chksum1 =

 struct with fields:

 Value: [4×1 uint32]
 MarkedUnique: 0

chksum1_details =

 struct with fields:

 ContentsChecksum: [1×1 struct]
 InterfaceChecksum: [1×1 struct]
 ContentsChecksumItems: [359×1 struct]
 InterfaceChecksumItems: [60×1 struct]

Input Arguments
subsys — Name or handle of nonvirtual subsystem
character vector

Input the full name of the nonvirtual subsystem for which you want to calculate the checksum.
Data Types: char

Output Arguments
checksum — A structure that stores the value of the checksum and indicates whether
subsys contains unique block or subsystem properties which prevent generated code reuse
structure

Checksum information, returned as a structure with the fields:

Value – 4x1 uint32 – Array of four 32-bit integers that represents the subsystem's 128-bit
checksum

MarkedUnique – bool – True if the subsystem or the blocks it contains have properties that would
prevent the code generated for the subsystem from being reused; otherwise, false

details — A structure that stores checksum data on model contents and the interface
structure

Checksum information, returned as a structure with the fields:

ContentsChecksum – structure – A structure of the same form as checksum, representing a
checksum that provides information about all blocks in the system.

InterfaceChecksum – structure – A structure of the same form aschecksum, representing a
checksum that provides information about the subsystem's block parameters and connections

ContentsChecksumItems — Structure array that Simulink uses to compute the checksum
for ContentsChecksum
structure

Structure array returned with the following fields:

 Simulink.SubSystem.getChecksum

2-1085

Handle – char array Object for which Simulink added an item to the checksum. For a block, the
handle is a full block path. For a block port, the handle is the full block path and a character vector
that identifies the port.

Identifier – char array – Descriptor of the item Simulink added to the checksum. If the item is a
documented parameter, the identifier is the parameter name

Value – type – Value of the item Simulink added to the checksum. If the item is a parameter, Value
is the value returned by get_param(handle, identifier).

InterfaceChecksumItems — Structure array that Simulink uses to compute the checksum
for InterfaceChecksum
structure

Structure array returned with the following fields:

Handle – char array Object for which Simulink added an item to the checksum. For a block, the
handle is a full block path. For a block port, the handle is the full block path and a character vector
that identifies the port.

Identifier – char array – Descriptor of the item Simulink added to the checksum. If the item is a
documented parameter, the identifier is the parameter name

Value – type – Value of the item Simulink added to the checksum. If the item is a parameter, Value
is the value returned by get_param(handle, identifier).

Version History
Introduced in R2006b

See Also
Simulink.BlockDiagram.getChecksum

2 Functions

2-1086

convertAllSubsystemReferenceBlocksToSubsystem
Converts all subsystem reference blocks to regular Subsystem blocks

Syntax
Simulink.SubsystemReference.convertAllSubsystemReferenceBlocksToSubsystem(
path)

Description
Simulink.SubsystemReference.convertAllSubsystemReferenceBlocksToSubsystem(
path) converts all subsystem reference blocks inside a given block diagram to regular Subsystem
blocks.

Input Arguments
path — Path of the block diagram
string

The path of the block diagram specified as string. You can also specify handle as input argument

Examples
>> Simulink.SubsystemReference.convertAllSubsystemReferenceBlocksToSubsystem('mdl1')

Version History
Introduced in R2022a

See Also
Simulink.SubsystemReference

 convertAllSubsystemReferenceBlocksToSubsystem

2-1087

convertSubsystemReferenceBlockToSubsystem
Converts a subsystem reference block to a regular Subsystem block

Syntax
Simulink.SubsystemReference.convertSubsystemReferenceBlockToSubsystem(path)

Description
Simulink.SubsystemReference.convertSubsystemReferenceBlockToSubsystem(path)
converts subsystem reference block to regular Subsystem block for a given block

Input Arguments
path — Path of the subsystem reference block
(default) |

The path of the subsystem reference block that needs to be converted to Subsystem is specified. You
can also specify the handle of the subsystem reference block.

Examples
 >> Simulink.SubsystemReference.convertSubsystemReferenceBlockToSubsystem('mdl1/Subsystem Reference')

Version History
Introduced in R2022a

See Also
Simulink.SubsystemReference

2 Functions

2-1088

convertSubsystemToSubsystemReference
Converts a Subsystem block to subsystem reference

Syntax
Simulink.SubsystemReference.convertSubsystemToSubsystemReference(path, name)

Description
Simulink.SubsystemReference.convertSubsystemToSubsystemReference(path, name)
converts a Subsystem block to subsystem reference. The converted subsystem reference block takes
the name given in name. It returns true, if the conversion is successful. False otherwise.

Input Arguments
path — Path of the subsystem
string

The path of the Subsystem that must be converted to subsystem reference is specified as string. You
can also specify the handle of the Subsystem.

name — Name for the converted subsystem
string

Name for the converted subsystem is specified as string.

Examples
Simulink.SubsystemReference.convertSubsystemToSubsystemReference('mdl1/Subsystem2','ssref4')

ans =

 logical

 1

Version History
Introduced in R2022a

See Also
Simulink.SubsystemReference

 convertSubsystemToSubsystemReference

2-1089

Simulink.SubsystemReference.generateSignatures
Package: Simulink.SubsystemReference

Generate unit test signatures of subsystem file

Syntax
Simulink.SubsystemReference.generateSignatures(name)
Simulink.SubsystemReference.generateSignatures(name,testHarness)
Simulink.SubsystemReference.generateSignatures(name,
{testHarness1,...,testHarnessN})

Description
Simulink.SubsystemReference.generateSignatures(name) generates signatures of the unit
tests of the subsystem file name.

Simulink.SubsystemReference.generateSignatures(name,testHarness) generates the
signature of the unit test testHarness of the subsystem file name.

Simulink.SubsystemReference.generateSignatures(name,
{testHarness1,...,testHarnessN}) generates the signatures of the unit tests
testHarness1,...,testHarnessN of the subsystem file name.

Examples

Generate All Unit Test Signatures

Generate the signatures of all the unit tests of the subsystem file.

Simulink.SubsystemReference.generateSignatures('slexReusableSS')

Generate Specific Unit Test Signatures

Generate the signatures of specified unit tests of the subsystem file.

Simulink.SubsystemReference.generateSignatures('slexReusableSS',{'ssref1_double','ssref1_int32'})

Input Arguments
name — Name of subsystem file
string | character vector

Name of the subsystem file, specified as a string or character vector. You can also specify the handle
of the subsystem file.
Example: 'slexReusableSS'

2 Functions

2-1090

Data Types: char | string

testHarness — Name of unit test
string | character vector

Name of the unit test, specified as a string or character vector.
Example: 'ssref1_double'
Data Types: char | string

{testHarness1,...,testHarnessN} — Names of unit tests
cell array

Names of the unit tests, specified as a cell array.
Example: {'ssref1_double','ssref1_int32'}
Data Types: cell

Version History
Introduced in R2023a

See Also
Simulink.SubsystemReference.getUnitTestNames |
Simulink.SubsystemReference.removeSignatures |
Simulink.SubsystemReference.showSignatureDiffDialogForUnitTests

Topics
“Validate Subsystem Reference Use and Build Model Using Component Codes”

 Simulink.SubsystemReference.generateSignatures

2-1091

getActiveInstances
Returns all the active instances of subsystem references

Syntax
Simulink.SubsystemReference.getActiveInstances(path)

Description
Simulink.SubsystemReference.getActiveInstances(path) returns all the active instances
of subsystem reference blocks which point to the subsystem file.

Input Arguments
path — Path of the subsystem reference file
string

The path of the subsystem reference file that is being referred in other Subsystem blocks. You can
also specify the handle of the subsystem reference.

Output Arguments
path — Path of the active instances

An array consisting of the path of all the active instances is returned.

Examples

Get all active instances of the subsystem
Simulink.SubsystemReference.getActiveInstances('mdl2/Subsystem Reference')

ans =

 4×1 cell array

 {'ssref1' }
 {'mdl1/Subsystem1' }
 {'mdl2/Subsystem Reference' }
 {'mdl1/Subsystem/Subsystem Reference'}

Version History
Introduced in R2022a

2 Functions

2-1092

See Also
Simulink.SubsystemReference

 getActiveInstances

2-1093

getAllDirtyInstances
Returns child Subsystem block diagrams that are referred in the given block diagram and are also
being edited

Syntax
Simulink.SubsystemReference.getAllDirtyInstances(path)

Description
Simulink.SubsystemReference.getAllDirtyInstances(path) returns all the child
Subsystem block diagrams that are referred in the given block diagram and are also being edited.

Input Arguments
path — Path of the block diagram
string

The path of the block diagram specified as string. You can also specify the handle of the block
diagram.

Output Arguments
block name — List of subsystem block diagrams that are being edited and referred in the
given block diagram

It returns list of subsystem block diagrams that are being edited and referred in the given block
diagram. It is not necessary that the subsystem block diagram is being edited directly. It might be
edited through an instance.

Examples
Simulink.SubsystemReference.getAllDirtyInstances('mdl1')

ans =

 'ssref1'

Version History
Introduced in R2022a

See Also
Simulink.SubsystemReference

2 Functions

2-1094

getAllInstances
Returns all subsystem reference blocks inside a block diagram

Syntax
Simulink.SubsystemReference.getAllInstances(path)

Description
Simulink.SubsystemReference.getAllInstances(path) returns all subsystem reference
blocks inside a block diagram.

Input Arguments
path — System or model name
(default) | string

The path of the system or model name specified as string. You can also specify the handle of the
system or model name.

Output Arguments
path — Path of all the subsystem reference blocks

It return an array consisting of the path of all the subsystem reference blocks that is inside a block
diagram.

Examples
>> Simulink.SubsystemReference.getAllInstances('mdl1')

ans =

 2×1 cell array

 {'mdl1/Subsystem1' }
 {'mdl1/Subsystem/Subsystem Reference'}

Version History
Introduced in R2022a

See Also
Simulink.SubsystemReference

 getAllInstances

2-1095

getAllReferencedSubsystemBlockDiagrams
Returns all the child Subsystem block diagrams for a given block diagram

Syntax
Simulink.SubsystemReference.getAllReferencedSubsystemBlockDiagrams(path)

Description
Simulink.SubsystemReference.getAllReferencedSubsystemBlockDiagrams(path)
returns all the child Subsystem block diagrams for a given block diagram.

Input Arguments
path — Path of the system or block diagram
character vector (default) | string

The path of the system or block diagram is specified as string. You can also specify the handle of the
system or block diagram.

Output Arguments
block name — Name of the block
character vector (default)

An array consisting of the name of the child blocks is returned. The output doesn't contain duplicates.
So, if a subsystem-block diagram is referred twice, it appears only once in the output. The type of the
output(name or handle) is same as the type of the input

Examples
>> Simulink.SubsystemReference.
getAllReferencedSubsystemBlockDiagrams('mdl2')

ans =

 2×1 cell array

 {'ssref1'}
 {'ssref2'}

Version History
Introduced in R2022a

2 Functions

2-1096

See Also
Simulink.SubsystemReference

 getAllReferencedSubsystemBlockDiagrams

2-1097

getNearestParentSubsystemReferenceBlock
Returns the nearest parent subsystem reference for a block

Syntax
Simulink.SubsystemReference.getNearestParentSubsystemReferenceBlock(path)

Description
Simulink.SubsystemReference.getNearestParentSubsystemReferenceBlock(path)
returns the nearest parent subsystem reference for a block.

Input Arguments
path — Path of the block for which the nearest parent must be returned
string

The path of the block for which the nearest parent must be returned. You can also specify the handle
of the block.

Output Arguments
path — Path of the nearest parent

The path of the nearest parent subsystem reference for the given block is returned. If the given block
is not inside any subsystem reference block, the output will be empty

Examples
Simulink.SubsystemReference.getNearestParentSubsystemReferenceBlock(gcb)

ans =

 'mdl1/Subsystem/Subsystem Reference'

Version History
Introduced in R2022a

See Also
Simulink.SubsystemReference

2 Functions

2-1098

getSystemOwningTheLock
Returns the system that has acquired the lock for editing

Syntax
Simulink.SubsystemReference.getSystemOwningTheLock(path)

Description
Simulink.SubsystemReference.getSystemOwningTheLock(path) For a given system, it
returns the system that has acquired the lock for editing.

Input Arguments
path — Path of the subsystem reference
(default) |

The path of the subsystem reference specified as a string. You can also specify the handle of the
subsystem reference.

Output Arguments
path — Path of the system owning the lock

The path of the system owning the lock for the given subsystem reference is returned. Output will be
empty if no instance is editing.

Examples
Simulink.SubsystemReference.getSystemOwningTheLock('mdl2/Subsystem Reference')

ans =

 'mdl1/Subsystem1'

Version History
Introduced in R2022a

See Also
Simulink.SubsystemReference

 getSystemOwningTheLock

2-1099

Simulink.SubsystemReference.getUnitTestNames
Package: Simulink.SubsystemReference

Return names of unit tests of subsystem file

Syntax
unitTests = Simulink.SubsystemReference.getUnitTestNames(name)

Description
unitTests = Simulink.SubsystemReference.getUnitTestNames(name) returns the names
of the test harnesses that are selected as unit tests of the subsystem file name.

Examples

Get Unit Test Names
unitTests = Simulink.SubsystemReference.getUnitTestNames('slexReusableSS')

unitTests =

 1×2 cell array

 {'ssref1_double'} {'ssref1_int32'}

Input Arguments
name — Name of subsystem file
string | character vector

Name of the subsystem file, specified as a string or character vector. You can also specify the handle
of the subsystem file.
Example: 'slexReusableSS'
Data Types: char | string

Output Arguments
unitTests — Names of unit tests
cell array

Names of unit tests of the subsystem file, specified as a cell array.
Data Types: cell

Version History
Introduced in R2023a

2 Functions

2-1100

See Also
Simulink.SubsystemReference.generateSignatures |
Simulink.SubsystemReference.removeSignatures |
Simulink.SubsystemReference.showSignatureDiffDialogForUnitTests

Topics
“Validate Subsystem Reference Use and Build Model Using Component Codes”

 Simulink.SubsystemReference.getUnitTestNames

2-1101

isSystemLocked
Checks if the system is locked due to an edit or update to the subsystem reference

Syntax
Simulink.SubsystemReference.isSystemLocked(path)

Description
Simulink.SubsystemReference.isSystemLocked(path) returns true, if the system is locked
because of an edit or update to the subsystem reference. It returns false, otherwise.

Input Arguments
path — Path of the system
string

The path of the subsystem reference is specified as string. You can also specify the handle of the
system.

Examples
Simulink.SubsystemReference.isSystemLocked('mdl2/Subsystem Reference')

ans =

 logical

 1

Version History
Introduced in R2022a

See Also
Simulink.SubsystemReference

2 Functions

2-1102

Simulink.SubsystemReference.removeSignatures
Package: Simulink.SubsystemReference

Remove previously generated unit test signatures of subsystem file

Syntax
Simulink.SubsystemReference.removeSignatures(name)
Simulink.SubsystemReference.removeSignatures(name,testHarness)
Simulink.SubsystemReference.removeSignatures(name,
{testHarness1,...,testHarnessN})

Description
Simulink.SubsystemReference.removeSignatures(name) removes all of the previously
generated unit test signatures from the subsystem file name.

Simulink.SubsystemReference.removeSignatures(name,testHarness) removes the
signature of the unit test testHarness from the subsystem file name.

Simulink.SubsystemReference.removeSignatures(name,
{testHarness1,...,testHarnessN}) removes the signatures of the unit tests
testHarness1,...,testHarnessN from the subsystem file name.

Examples

Remove All Unit Test Signatures

Remove the signatures of all the unit tests from the subsystem file.

Simulink.SubsystemReference.removeSignatures('slexReusableSS')

Remove Specific Unit Test Signatures

Remove the signatures of the specified unit tests from the subsystem file.

Simulink.SubsystemReference.removeSignatures('slexReusableSS',{'ssref1_double','ssref1_int32'})

Input Arguments
name — Name of subsystem file
string | character vector

Name of the subsystem file, specified as a string or character vector. You can also specify the handle
of the subsystem file.
Example: 'slexReusableSS'

 Simulink.SubsystemReference.removeSignatures

2-1103

Data Types: char | string

testHarness — Name of unit test
string | character vector

Name of the unit test, specified as a string or character vector.
Example: 'ssref1_double'
Data Types: char | string

{testHarness1,...,testHarnessN} — Names of unit tests
cell array

Names of the unit tests, specified as a cell array.
Example: {'ssref1_double','ssref1_int32'}
Data Types: cell

Version History
Introduced in R2023a

See Also
Simulink.SubsystemReference.getUnitTestNames |
Simulink.SubsystemReference.generateSignatures |
Simulink.SubsystemReference.showSignatureDiffDialogForUnitTests

Topics
“Validate Subsystem Reference Use and Build Model Using Component Codes”

2 Functions

2-1104

Simulink.SubsystemReference.showSignatureDiffD
ialogForSS
Package: Simulink.SubsystemReference

Open dialog to show difference in signatures of two subsystem blocks

Syntax
Simulink.SubsystemReference.showSignatureDiffDialogForSS(subBlock1,subBlock2,
CodeGenOrSimulation)

Description
Simulink.SubsystemReference.showSignatureDiffDialogForSS(subBlock1,subBlock2,
CodeGenOrSimulation) opens a dialog to show the difference in the signatures of the subsystem
blocks subBlock1 and subBlock2. CodeGenOrSimulation specifies whether the signatures are
generated to simulate or build a model.

Examples

Show Signature Difference Dialog

Consider two subsystem blocks Speed Control-1 and Speed Control-2 with signatures
generated in the context of code generation. Use the command to open a dialog to see the difference
in their signatures.

Simulink.SubsystemReference.showSignatureDiffDialogForSS('Speed Control-1','Speed Control-2',1)

Input Arguments
subBlock1 — Subsystem block
string | character vector

Subsystem block in a model, specified as a string or character vector.
Example: Speed Control-1
Data Types: char | string

subBlock2 — Subsystem block
string | character vector

Subsystem block in a model, specified as a string or character vector.
Example: Speed Control-2
Data Types: char | string

CodeGenOrSimulation — Option to specify use of signatures
boolean

 Simulink.SubsystemReference.showSignatureDiffDialogForSS

2-1105

Option to specify the use of signatures of the subsystem blocks in a model, specified as 0 or 1.

• 0 — Use signatures to simulate a model.
• 1 — Use signatures to generate code for a model.

Example: 1
Data Types: logical

Version History
Introduced in R2023a

See Also
Simulink.SubsystemReference.showSignatureDiffDialogForUnitTests |
Simulink.SubSystem.copyContentsToBlockDiagram

Topics
“Convert Subsystems to Referenced Models”
“Convert Subsystem to Referenced Model and Generate Code” (Simulink Coder)

2 Functions

2-1106

Simulink.SubsystemReference.showSignatureDiffD
ialogForUnitTests
Package: Simulink.SubsystemReference

Open dialog to show difference in signatures of subsystem reference instance with unit test
signatures

Syntax
Simulink.SubsystemReference.showSignatureDiffDialogForUnitTests(
ssrefInstance)

Description
Simulink.SubsystemReference.showSignatureDiffDialogForUnitTests(
ssrefInstance) opens a dialog to show the difference in signatures of the subsystem reference
instance ssrefInstance with the captured unit test signatures of the subsystem reference block in
the test harnesses.

Examples

Show Signature Difference Dialog

Consider a subsystem file slexReusableSS with two unit tests ssref1_double and
ssref1_int32. The signature of an instance of slexReusableSS,
slexModelUsingReusableSS/sr3 does not match any of the unit test signatures. Use the
command to open a dialog to see the difference in signatures.

Simulink.SubsystemReference.showSignatureDiffDialogForUnitTests('slexModelUsingReusableSS/sr3')

Input Arguments
ssrefInstance — Instance of subsystem file in model
string | character vector

Instance of the subsystem file in a model, specified as a string or character vector.
Example: slexModelUsingReusableSS/sr3
Data Types: char | string

Version History
Introduced in R2023a

 Simulink.SubsystemReference.showSignatureDiffDialogForUnitTests

2-1107

See Also
Simulink.SubsystemReference.getUnitTestNames |
Simulink.SubsystemReference.generateSignatures |
Simulink.SubsystemReference.removeSignatures

Topics
“Validate Subsystem Reference Use and Build Model Using Component Codes”

2 Functions

2-1108

Simulink.suppressDiagnostic
Suppress a diagnostic from a specific block

Syntax
Simulink.suppressDiagnostic(source, message_id)
Simulink.suppressDiagnostic(diagnostic)

Description
Simulink.suppressDiagnostic(source, message_id) suppresses all instances of diagnostics
represented by message_id thrown by the blocks specified by source.

Simulink.suppressDiagnostic(diagnostic) suppresses the diagnostics associated with
MSLDiagnostic object diagnostic.

Examples

Suppress a Warning Thrown By a Block

To suppress a warning thrown by a block, use getDiagnosticObjects.m, suppressor_script.m,
and the Suppressor_CLI_Demo.slx model. The getDiagnosticObjects.m function queries the
simulation metadata to access diagnostics that were thrown during simulation. The
suppressor_script.m script contains the commands for suppressing and restoring diagnostics to
the Suppressor_CLI_Demo model. Open the model. To access Simulink.SimulationMetadata
class, set the ReturnWorkspaceOutputs parameter value to 'on'. Simulate the model.

 model = 'Suppressor_CLI_Demo';
 open_system(model);
 set_param(model,'ReturnWorkspaceOutputs','on');
 out = sim(model);

Use the Simulink.suppressDiagnostic function to suppress the parameter precision loss
warning thrown by the Constant block, one.

 Simulink.suppressDiagnostic('Suppressor_CLI_Demo/one',...
 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss');

Input Arguments
source — Block or model object throwing the diagnostic
block path | block handle

The source of the diagnostic, specified as a block path, block handle, cell array of block paths, or cell
array of block handles.

To get the block path, use the gcb function.

To get the block handle, use the getSimulinkBlockHandle function.

 Simulink.suppressDiagnostic

2-1109

Data Types: char | cell

message_id — message identifier of diagnostic
message identifier | cell array of message identifiers

Message identifier of the diagnostic, specified as a character vector or a cell array of character
vectors. You can find the message identifier of diagnostics thrown during simulation by accessing the
ExecutionInfo property of the Simulink.SimulationMetadata object associated with a
simulation. You can also use the lastwarn function.
Data Types: char | cell

diagnostic — Diagnostic object
MSLDiagnostic object

Diagnostic specified as an MSLDiagnostic object. Access the MSLDiagnostic object through the
ExecutionInfo property of the Simulink.SimulationMetadata object.
Data Types: struct

See Also
Simulink.getSuppressedDiagnostics | Simulink.restoreDiagnostic | restore |
Simulink.SuppressedDiagnostic

Topics
“Suppress Diagnostic Messages Programmatically”

2 Functions

2-1110

addChoice
Package: Simulink

Add choices to variant parameter object

Syntax
P = addChoice(P,Choices{Condition,Value})

Description
P = addChoice(P,Choices{Condition,Value}) adds a new variant choice to the variant
parameter object P. A variant choice consists of a variant condition and a value specified as
Condition and Value, respectively. You can add multiple choices to p by specifying condition-value
pairs in a cell array. No two values of a variant variable can be associated with the same variant
condition.

Note Adding a value to an existing variant condition results in an error.

Examples

Add Variant Choice

Create a Simulink.VariantVariable object.

P = Simulink.VariantVariable;

Add a variant choice to the object.

P = addChoice(P, {'V==1', 3.5});

Add Multiple Variant Choices

Create a Simulink.VariantVariable object.

P = Simulink.VariantVariable;

Add multiple variant choices to the object.

P = addChoice(P, {'V==1', 3.5, 'V==2', 8.3});

Input Arguments
P — Variant parameter object
Simulink.VariantVariable object

 addChoice

2-1111

Variant parameter object created using Simulink.VariantVariable, specified as a
Simulink.VariantVariable object. The choices that you specify using addChoice are added to
this object.

Condition,Value — Variant condition and associated value
cell array

Variant condition and associated value, specified as a cell array. A variant condition is a control
expression that determines the active value of the variant parameter object. During simulation, when
a variant condition evaluates to true, the value associated with the condition becomes active. When
a variant condition evaluates to false, the value associated the condition becomes inactive. You can
add multiple values of the object by specifying condition-value pairs in a cell array.

You can specify the variant condition as boolean MATLAB expressions that contain one or more
operands and operators. See “Types of Variant Control Variables (Operands) in Variant Parameters”
and “Types of Operators in Variant Parameters”.

You can specify values of numeric, enumerated, or Simulink.Parameter type. See, “Numeric
Variant Control Values for Rapid Prototyping of Variant Parameters”, “Improve Code Readability of
Variant Parameters Using Enumerated Types”, and “Reuse Variant Parameter Values from
Handwritten Code Using Simulink.Parameter Variables”.
Example: {'V==2',5}
Data Types: struct

Version History
Introduced in R2021a

See Also
setChoice | getChoice | removeChoice | Simulink.VariantVariable

Topics
“Change Active Values and Activation Time of Variant Parameters”

2 Functions

2-1112

getChoice
Package: Simulink

Return choices of variant parameter object

Syntax
choices = getChoice(P)
choices = getChoice(P,Condition)

Description
choices = getChoice(P) returns all the choices of variant parameter p in a cell array.

choices = getChoice(P,Condition) returns the value associated with the variant condition
Condition. You can specify multiple conditions of variant parameter p in a cell array.

Examples

Get All Variant Choices

Create a Simulink.VariantVariable object.

p = Simulink.VariantVariable('Choices',{'V==1',8,'V==2',9})

Get all variant choices of the object.

choices = getChoice(p)

Get Specific Variant Choices

Create a Simulink.VariantVariable object.

p = Simulink.VariantVariable('Choices',{'V==1',8,'V==2',9})

Get the value associated with variant condition V==1.

choice = getChoice(p, 'V==2')

Input Arguments
P — Variant parameter object
Simulink.VariantVariable object

Variant parameter object created using Simulink.VariantVariable, specified as a
Simulink.VariantVariable object.

 getChoice

2-1113

Condition — Variant control expression
string

Variant control expression corresponding to the value to be returned, specified as a string. You can
get multiple choices of the object by specifying conditions in a cell array.
Example: 'V==2'
Data Types: char

Version History
Introduced in R2021a

See Also
addChoice | setChoice | removeChoice | Simulink.VariantVariable

Topics
“Change Active Values and Activation Time of Variant Parameters”

2 Functions

2-1114

removeChoice
Package: Simulink

Remove choices from variant parameter object

Syntax
P = removeChoice(P,Condition)

Description
P = removeChoice(P,Condition) removes the condition-value pair from variant variable P
corresponding to condition Condition. You can remove multiple choices from P by specifying
conditions in a cell array. Specifying variant conditions that do not exist results in an error.

Examples

Remove Variant Choice

Create a Simulink.VariantVariable object.

P = Simulink.VariantVariable('Choices',{'V==1',8,'V==2',9,'V==3',20})

Remove the variant choice associated with condition V==2.

P = removeChoice(P,'V==2');

Remove Multiple Variant Choices

Create a Simulink.VariantVariable object.

P = Simulink.VariantVariable('Choices',{'V==1',8,'V==2',9,'V==3',20})

Remove variant choices associated with conditions V==2 and V==3.

P = removeChoice(P, {'V==2','V==3'});

Input Arguments
P — Variant parameter object
Simulink.VariantVariable object

Variant parameter object created using Simulink.VariantVariable, specified as an
Simulink.VariantVariable object. The choices that you specify using removeChoice are
removed from this object.

Condition — Variant control expression
string

 removeChoice

2-1115

Variant control expression corresponding to the value to be removed, specified as a string. You can
remove multiple choices from the object by specifying conditions in a cell array.
Example: 'V==2'
Data Types: char

Version History
Introduced in R2021a

See Also
addChoice | setChoice | getChoice | Simulink.VariantVariable

Topics
“Change Active Values and Activation Time of Variant Parameters”

2 Functions

2-1116

setChoice
Package: Simulink

Modify existing choices of variant parameter object

Syntax
P = setChoice(P,Choices{Condition,Value})

Description
P = setChoice(P,Choices{Condition,Value}) replaces the value associated with the variant
condition Condition by the new value Value. You can modify multiple values of variant variable P
by specifying condition-value pairs in a cell array. If the choice corresponding to the specified
condition already exists, the associated value is overridden. Otherwise, a new choice is added.

Examples

Modify Variant Choice

Create a Simulink.VariantVariable object.

P = Simulink.VariantVariable('Choices',{'V==1',8,'V==2',9})

Modify a variant choice associated with the variant condition V==1.

P = setChoice(P, {'V==1', 3.5});

Modify Multiple Variant Choices

Create a Simulink.VariantVariable object.

P = Simulink.VariantVariable('Choices',{'V==1',8,'V==2',9,'V==3',12})

Modify variant choices associated with variant conditions V==1 and V==3.

P = setChoice(P, {'V==1', 3.5,'V==3',20});

Input Arguments
P — Variant parameter object
Simulink.VariantVariable object

Variant parameter object created using Simulink.VariantVariable, specified as a
Simulink.VariantVariable object. This object is updated with the new values that you specify
using setChoice.

 setChoice

2-1117

Condition,Value — Variant condition and associated value
cell array

Variant condition and its associated value, specified as a cell array. Simulink replaces the existing
value of the specified variant condition with the new value. You can modify multiple values of the
object by specifying condition-value pairs in a cell array.

You can specify the variant condition as boolean MATLAB expressions that contain one or more
operands and operators. See “Types of Variant Control Variables (Operands) in Variant Parameters”
and “Types of Operators in Variant Parameters”.
Example: {'V==2',5}
Data Types: struct

Version History
Introduced in R2021a

See Also
addChoice | getChoice | removeChoice | Simulink.VariantVariable

Topics
“Change Active Values and Activation Time of Variant Parameters”

2 Functions

2-1118

slblocksearchdb.trainfrommodel
Train suggestion engine to improve quick insert results based on one model

Syntax
slblocksearchdb.trainfrommodel(model)

Description
slblocksearchdb.trainfrommodel(model) improves quick insert search results based on a
single model.

Examples

Use a Single Model for Training

Train the suggestion engine to use a model to improve results. Assume 'MyModels' is in the current
folder. This code uses a relative path.

slblocksearchdb.trainfrommodel('MyModels/model.slx')

Input Arguments
model — Model for training the suggestion engine
model path

Model to train the suggestion engine, specified as a character vector or string scalar of the full model
path or relative path. Include the .slx or .mdl extension
Example: 'H:/MyModels/model.slx' 'mymodel.slx'

Version History
Introduced in R2018a

See Also
slblocksearchdb.untrainall | slblocksearchdb.trainfrommodelsindir |
slblocksearchdb.untrainmodel | slblocksearchdb.untrainmodelsindir

Topics
“Improve Quick Block Insert Results”

 slblocksearchdb.trainfrommodel

2-1119

slblocksearchdb.trainfrommodelsindir
Train suggestion engine to improve quick insert results based on models in a folder

Syntax
slblocksearchdb.trainfrommodelsindir(folder)
slblocksearchdb.trainfrommodelsindir(folder,'exclude',exclusions)

Description
slblocksearchdb.trainfrommodelsindir(folder) improves search results based on the
models in folder, recursively.

slblocksearchdb.trainfrommodelsindir(folder,'exclude',exclusions) excludes the
specified models from updating the suggestion engine.

Examples

Train Suggestion Engine and Exclude Folders and Models

Create the cell array exPath for a folder you want to exclude and a model you want to exclude. To
train the suggestion engine, use the cell array in the slblocksearchdb.trainfrommodelsindir
command.

exPath = {'MyModels/testmodels' 'MyModels/myvdp.slx'}
slblocksearchdb.trainfrommodelsindir('MyModels','exclude',exPath)

The command uses the models in the folder 'MyModels' with the exclusions you specified.

Input Arguments
folder — Folder whose models to use for training
folder path

Folder whose models to use for training the suggestion engine, specified as an absolute or relative
path character vector or string scalar.
Example: 'H:/MyModels/trainingmodels' 'MyModels'

exclusions — Models to exclude from training models
cell array of character vectors | string array

Models to exclude from training the suggestion engine, specified as a cell array of character vectors
or a string array. Specify folders or models to exclude as a full or relative path. Model names must
include the file extension .slx or .mdl.
Example: {'H:/MyModels/trainingmodels' 'MyModels/trainingmodels2' 'MyModels/
myvdp.slx'}

2 Functions

2-1120

Version History
Introduced in R2018a

See Also
slblocksearchdb.untrainall | slblocksearchdb.untrainmodel |
slblocksearchdb.untrainmodelsindir | slblocksearchdb.trainfrommodel

Topics
“Improve Quick Block Insert Results”

 slblocksearchdb.trainfrommodelsindir

2-1121

slblocksearchdb.untrainall
Remove the effects of all added models from the suggestion engine

Syntax
slblocksearchdb.untrainall

Description
slblocksearchdb.untrainall removes the models added to the suggestion engine to improve
quick insert results. Use this function when you want to return the database to the default state.

Examples

Add Models and Remove All

Add some models to the suggestion engine.

slblocksearchdb.trainfrommodelsindir('MyModels')
slblocksearchdb.trainfrommodel('C:/users/TrainingModels/mymodel.slx')

Remove all added models from the suggestion engine.

slblocksearchdb.untrainall

Version History
Introduced in R2018a

See Also
slblocksearchdb.untrainmodelsindir | slblocksearchdb.untrainmodel |
slblocksearchdb.trainfrommodelsindir | slblocksearchdb.trainfrommodel

Topics
“Improve Quick Block Insert Results”

2 Functions

2-1122

slblocksearchdb.untrainmodel
Remove the effect of a model from the suggestion engine

Syntax
slblocksearchdb.untrainmodel('model')

Description
slblocksearchdb.untrainmodel('model') removes the effects of a single model from the
suggestion engine.

Examples

Remove a Model from the Suggestion Engine

Train the suggestion engine to use a model to improve results.

slblocksearchdb.trainfrommodel('MyModels/model.slx')

Remove the model from the suggestion engine.

slblocksearchdb.untrainmodel('MyModels/model.slx')

Input Arguments
model — Model to remove from the suggestion engine
model path

Model whose effects to remove from the suggestion engine, specified as the full or relative path
character vector or string scalar. Include the .slx or .mdl extension.
Example: 'H:/MyModels/model.slx'

Version History
Introduced in R2018a

See Also
slblocksearchdb.trainfrommodel | slblocksearchdb.trainfrommodelsindir |
slblocksearchdb.untrainall | slblocksearchdb.untrainmodelsindir

Topics
“Improve Quick Block Insert Results”

 slblocksearchdb.untrainmodel

2-1123

slblocksearchdb.untrainmodelsindir
Remove the effects of models from the suggestion engine

Syntax
slblocksearchdb.untrainmodelsindir(folder)
slblocksearchdb.untrainmodelsindir(folder,'exclude',exclusions)

Description
slblocksearchdb.untrainmodelsindir(folder) removes models in folder from the
suggestion engine, recursively.

slblocksearchdb.untrainmodelsindir(folder,'exclude',exclusions) excludes the
specified models from updating the suggestion engine.

Examples

Remove the Effects of Models from Suggestion Engine

Create the cell array exPath for a folder and a model whose effects you do not want to remove from
the suggestion engine. Then use the cell array in the slblocksearchdb.untrainmodelsindir
command.

exPath = {'MyModels/subfolder' 'MyModels/myvdp.slx'}
slblocksearchdb.untrainmodelsindir('MyModels','exclude',exPath)

The command removes the models in the folder 'MyModels' with the exclusions you specified.

Input Arguments
folder — Folder whose models to remove from the suggestion engine
folder path

Folder whose models to remove from the suggestion engine, specified as an absolute or relative path
character vector or string scalar.
Example: 'H:/MyModels/trainingmodels' 'MyModels'

exclusions — Folders and models to exclude from removing
cell array of character vectors | string array

Folders or models to exclude from removing from the suggestion engine, specified as a cell array of
character vectors or a string array. Specify the folders or models to exclude as a full or relative path.
For models, include the .slx or .mdl extension.
Example: {'H:/MyModels/trainingmodels' 'MyModels/trainingmodels2' 'MyModels/
myvdp.slx'}

2 Functions

2-1124

Version History
Introduced in R2018a

See Also
slblocksearchdb.trainfrommodel | slblocksearchdb.untrainmodel |
slblocksearchdb.trainfrommodelsindir | slblocksearchdb.untrainall

Topics
“Improve Quick Block Insert Results”

 slblocksearchdb.untrainmodelsindir

2-1125

slbuild
Build standalone executable file or model reference target for model

Syntax
slbuild(model)
slbuild(model,buildSpec)
slbuild(model,Name,Value)
blockHandle = slbuild(subsystem)
blockHandle = slbuild(subsystem,'Mode','ExportFunctionCalls')
blockHandle = slbuild(subsystem,Name,Value)

Description
slbuild(model) builds a standalone Simulink Coder binary executable file from the specified
model, using the current configuration parameter settings. If the model is not loaded, slbuild loads
the model before starting the build process.

slbuild(model,buildSpec) builds a standalone Simulink Coder binary executable file from the
model according to the specified code generation action.

slbuild(model,Name,Value) builds a standalone Simulink Coder binary executable file from the
model as specified by one or more name-value arguments.

blockHandle = slbuild(subsystem) generates subsystem code and builds a Simulink Coder
binary executable file by using the current configuration parameter settings of your model. If the
selected system target file creates an S-Function block, the function returns a non-empty block
handle to an autogenerated S-Function wrapper. Before you run the command, you must open or load
the parent model.

blockHandle = slbuild(subsystem,'Mode','ExportFunctionCalls') generates code from
the subsystem that includes function calls that you can export to external application code. This
command requires Embedded Coder. If the Create block configuration parameter is set to SIL, the
function returns the handle to a Model block in SIL mode. You can then use the Model block for
numerical equivalence testing.

blockHandle = slbuild(subsystem,Name,Value) generates subsystem code and builds a
Simulink Coder binary executable file as specified by one or more name-value arguments.

Examples

Generate Code and Build Executable File for Model

Generate C code for model rtwdemo_rtwintro.

slbuild('rtwdemo_rtwintro')
% Same operation as ...
% slbuild('rtwdemo_rtwintro','StandaloneCoderTarget')

2 Functions

2-1126

For the generic real-time (GRT) target, the coder generates these code files and places them in
folders rtwdemo_rtwintro_grt_rtw and slprj/grt/_sharedutils.

Model Files Shared Files Interface Files Other Files
rtwdemo_rtwintro.c

rtwdemo_rtwintro.h

rtwdemo_rtwintro_pri
vate.h

rtwdemo_rtwintrotype
s.h

rtwtypes.h

multiword_types.h

builtin_typeid_types
.h

rtmodel.h none

If the following model configuration parameters settings apply, the coder generates additional results.

Parameter Setting Results
Code Generation > Generate code
only pane is cleared

Executable file rtwdemo_rtwintro.exe

Code Generation > Report > Create
code generation report is selected

Report appears, providing information and links to
generated code files, subsystem and code interface reports,
entry-point functions, inports, outports, interface
parameters, and data stores

Build Multiple Top Models

This example shows how to use slbuild to generate executable code for two models,
sldemo_mdlref_depgraph and rtwdemo_counter. sldemo_mdlref_depgraph is a top model
that references models. The example also shows how to build the referenced models in parallel.

Create a local folder.

if exist(fullfile('.','myTempFolder'),'dir')
 rmdir('myTempFolder','s')
end
mkdir myTempFolder
cd myTempFolder

Copy sldemo_mdlref_depgraph, which references models, to the local folder.

src_dir = fullfile(matlabroot, ...
 'toolbox', ...
 'simulink', ...
 'simdemos', ...
 'simfeatures', ...
 'modelreference');
copyfile(fullfile(src_dir, ...
 'sldemo_mdlref_depgraph.slx'), ...
 '.');

Enable parallel building of models referenced by sldemo_mdlref_depgraph.

 slbuild

2-1127

load_system('sldemo_mdlref_depgraph')
set_param('sldemo_mdlref_depgraph', ...
'EnableParallelModelReferenceBuilds', 'on');

Initialize MATLAB workers for parallel building of referenced models.

set_param('sldemo_mdlref_depgraph', ...
 'ParallelModelReferenceMATLABWorkerInit', ...
 'Copy Base Workspace');

Build the models.

slbuild({'sldemo_mdlref_depgraph', 'rtwdemo_counter'})

In myTempFolder, the build process creates standalone executable files,
sldemo_mdlref_depgraph.exe and rtwdemo_counter.exe.

For each model, in the Command Window, the build process displays a build summary.

Force Top Model Build

Generate code and build an executable file for the model TopModelCode, which refers to model
ReferenceModelCode, regardless of model checksums and parameter settings.
openExample('simulinkcoder/FilePackagingModelsCodeAndDataExample',...
 'supportingFile','TopModelCode');

2 Functions

2-1128

slbuild('TopModelCode','StandaloneCoderTarget',...
 'ForceTopModelBuild',true)

Generate Code and Build Executable File for Subsystem

Generate C code for subsystem Amplifier in model rtwdemo_rtwintro.

rtwdemo_rtwintro
slbuild('rtwdemo_rtwintro/Amplifier')

The code generator produces code files in the Amplifier_grt_rtw and slprj/grt/
_sharedutils folders.

In your current working folder, the build process creates an executable file (Amplifier.exe).

Build Subsystem for Exporting Code to External Application

To export function calls to external application code, build an executable file from a function-call
subsystem.

rtwdemo_exporting_functions
set_param('rtwdemo_exporting_functions','GenCodeOnly','off');
slbuild('rtwdemo_exporting_functions/rtwdemo_subsystem','Mode','ExportFunctionCalls')

The executable file rtwdemo_subsystem.exe appears in your working folder.

Create Model Block for SIL Testing

From a function-call subsystem, create a Model block that you can use to test the code generated
from a model.

Open subsystem rtwdemo_subsystem in model rtwdemo_exporting_functions.

Set the Code Generation > Verification > Advanced parameters > Create block configuration
parameter to SIL.

Create the Model block.

mysilblockhandle = slbuild('rtwdemo_exporting_functions/rtwdemo_subsystem',...
'Mode','ExportFunctionCalls')

The code generator produces the Model block in a temporary model. The Model block is configured
as follows:

• Model name is set to the name of a new model that contains the content of the original
subsystem.

• Simulation mode is set to Software-in-the-loop (SIL).

 slbuild

2-1129

You can add the block to an environment or test harness model that supplies test vectors or stimulus
input. You can then run simulations that perform SIL tests and verify that the Model block produces
the same result as the original subsystem.

Input Arguments
model — Specifies model for the build process
handle | character vector | cell array of handles or character vectors

If you specify the model name as a handle or character vector, the build process creates a standalone
executable file or model reference target.

If you specify multiple models through a cell array of handles or character vectors, the build process
applies buildSpec to each model in the cell array.
Example: gcs

subsystem — Subsystem name
handle | character vector | cell array of handles or character vectors

Name of subsystem from which you want to generate code or build an executable file, specified as a
handle or character vector representing the subsystem name or the full block path.

You can specify multiple subsystems through a cell array of handles or character vectors
Example: 'rtwdemo_exporting_functions/rtwdemo_subsystem'

buildSpec — Specifies the code generation action for the build process
'StandaloneCoderTarget' (default) | 'ModelReferenceSimTarget' |
'ModelReferenceCoderTarget' | 'CleanTopModel'

buildSpec directs the code generator to perform the selected build action for the model and the
build process:

• Honors the setting of the Rebuild parameter on the Model Referencing pane of the
Configuration Parameters dialog box.

• Requires a Simulink Coder license only if you build a model reference Simulink Coder target, not
if you build a model reference simulation target only.

The buildSpec argument must be one of the following.

buildSpec Value Build Action
'StandaloneCoderTa
rget'

Builds a standalone Simulink Coder binary executable file for the specified
model, using the current model configuration settings. It also builds model
reference coder targets for the referenced models.

If the specified model is not loaded, slbuild loads it before initiating the
build process.

'ModelReferenceSim
Target'

Builds a model reference simulation target (does not require a Simulink
Coder license).

'ModelReferenceCod
erTarget'

Builds a model reference Simulink Coder target.

2 Functions

2-1130

buildSpec Value Build Action
'CleanTopModel' Cleans the model build area enough to trigger regeneration of the top

model code at the next build.

Example: 'ModelReferenceSimTarget'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'UpdateThisModelReferenceTarget','Force'

UpdateThisModelReferenceTarget — Conditional rebuild option for model reference build
'Force' | 'IfOutOfDateOrStructuralChange' | 'IfOutOfDate'

Conditional rebuild option for the model reference build, specified as the comma-separated pair
consisting of 'UpdateThisModelReferenceTarget' and 'Force',
'IfOutOfDateOrStructuralChange', or 'IfOutOfDate'.

This option applies only to the specified model, not to any models referenced by the specified model.

'UpdateThisModelRefere
nceTarget' Value

Equivalent Rebuild
Option

Rebuild Action

'Force' Always Unconditionally rebuilds the model.
'IfOutOfDateOrStructu
ralChange'

If changes detected Rebuilds the model if the build process
detects any changes.

'IfOutOfDate' If changes in known
dependencies detected

Rebuilds the model if the build process
detects any changes in known
dependencies of this model.

For more information on the different rebuild options, see Rebuild.
Example: 'UpdateThisModelReferenceTarget','Force'
Dependencies

To use this option, set buildSpec to 'ModelReferenceSimTarget' or
'ModelReferenceCoderTarget'.
Data Types: char | string

ForceTopModelBuild — Force top model of model hierarchy to build
false (default) | true

Option to force the top model of the model hierarchy to build, specified as the comma-separated pair
consisting of 'ForceTopModelBuild' and true or false.

Setting the value to true directs the code generator to generate code and build an executable file for
the top model of the model hierarchy, regardless of model checksums and parameter settings.
Example: 'ForceTopModelBuild',true

 slbuild

2-1131

Dependencies

To use this option, set buildSpec to 'StandaloneCoderTarget'.
Data Types: logical

GenerateCodeOnly — Generate code only
false | true

If you do not specify a value, the Generate code only (GenCodeOnly) option on the Code
Generation pane controls build process behavior.

If you specify a value, the argument overrides the Generate code only (GenCodeOnly) option on the
Code Generation pane:

• true –– Generate code only.
• false –– Generate code and build executable file.

Mode — Export function calls (for subsystem builds only)
'ExportFunctionCalls' | 'Normal'

• 'ExportFunctionCalls' –– If you have Embedded Coder, generates code from subsystem that
includes function calls that you can export to external application code.

• 'Normal' –– Does not export function calls.

ExportFunctionFileName — Function name
character vector

Name the exported function for the specified subsystem.
Example:
slbuild(subsystem,'Mode','ExportFunctionCalls','ExportFunctionFileName',
fcnname)

OpenBuildStatusAutomatically — Display build information
false (default) | true

Option to display the build information, specified as the comma-separated pair consisting of
'OpenBuildStatusAutomatically' and true or false.

To display build information in the Build Status window, specify true. The default is false. For more
information about using the status window, see “Monitor Parallel Building of Referenced Models”
(Simulink Coder).

The Build Status window supports parallel builds of referenced model hierarchies. Do not use the
Build Status window for serial builds.
Dependencies

To use this option, set buildSpec to 'StandaloneCoderTarget'.
Data Types: logical

ObfuscateCode — Generate obfuscated C code
false (default) | true

Specify whether to generate obfuscated C code:

2 Functions

2-1132

• true –– Generate obfuscated C code that you can share with third parties with reduced likelihood
of compromising intellectual property.

• false –– Generated C code is not obfuscated.

IncludeModelReferenceSimulationTargets — Build model reference simulation targets
false (default) | true

Option to build model reference simulation targets, specified as the comma-separated pair consisting
of 'IncludeModelReferenceSimulationTargets' and true or false.

Dependencies

To use this option, set buildSpec to 'StandaloneCoderTarget'.
Data Types: logical

Output Arguments
blockHandle — Block handle
handle

Block handle to an autogenerated S-Function wrapper block or Model block.

Version History
Introduced before R2006a

R2020b: slbuild does not generate model reference simulation targets by default
Behavior changed in R2020b

Starting in R2020b, the slbuild function does not generate model reference simulation targets by
default. Excluding the model reference simulation targets allows for faster code generation for model
hierarchies.

You can generate both the simulation and code generation targets with the default buildSpec value
('StandaloneCoderTarget') by setting IncludeModelReferenceSimulationTargets to true.

When you specify 'ModelReferenceCoderTarget' for the buildSpec argument, slbuild no
longer builds a model reference simulation target. It builds only a model reference Simulink Coder
target.

R2020b: 'ModelReferenceCoderTargetOnly' is not recommended
Not recommended starting in R2020b

Starting in R2020b, the buildSpec argument values 'ModelReferenceCoderTarget' and
'ModelReferenceCoderTargetOnly' have the same behavior.
'ModelReferenceCoderTargetOnly' is not recommended. Use
'ModelReferenceCoderTarget' instead.

There are no plans to remove 'ModelReferenceCoderTargetOnly'.

R2019a: 'StandaloneRTWTarget', 'ModelReferenceRTWTarget', and
'ModelReferenceRTWTargetOnly' are not recommended
Not recommended starting in R2019a

 slbuild

2-1133

In R2019a, these buildSpec argument values received new names for clarity:

• 'StandaloneRTWTarget' — Use 'StandaloneCoderTarget' instead.
• 'ModelReferenceRTWTarget' — Use 'ModelReferenceCoderTarget' instead.
• 'ModelReferenceRTWTargetOnly' — Use 'ModelReferenceCoderTargetOnly' instead.

There are no plans to remove the legacy buildSpec argument values.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To build referenced models in parallel, in the top model, select the configuration parameter check box
Enable parallel model reference builds. For more information, see “Reduce Build Time for
Referenced Models by Using Parallel Builds” (Simulink Coder).

In Parallel Computing Toolbox commands, for example, a parfor or spmd loop, do not invoke
rtwbuild, rtwrebuild, or slbuild commands that build models that are configured for parallel
builds.

See Also
codebuild | rtwrebuild

Topics
“Manage Simulation Targets for Referenced Models”
“What Is Acceleration?”
“Perform Acceleration”
“Share Simulink Cache Files for Faster Simulation”
“Build and Run a Program” (Simulink Coder)
“Approaches for Building Code Generated from Simulink Models” (Simulink Coder)
“Control Regeneration of Top Model Code” (Simulink Coder)
“Generate Component Source Code for Export to External Code Base” (Embedded Coder)
“Test Generated Code with SIL and PIL Simulations” (Embedded Coder)

2 Functions

2-1134

slCharacterEncoding
Specify encoding to use in code generated from Simulink models

Syntax
slCharacterEncoding(encoding)
encoding = slCharacterEncoding()

Description
slCharacterEncoding(encoding) specifies the character set used in the code generated from
Simulink models. The character set encoding affects the comments in the generated code.

encoding = slCharacterEncoding() returns the current Simulink character set encoding.

Examples

Specify Encoding for ASCII Characters

Suppose that you generate code for an embedded target and the compiler you use requires that the
source code contain only ASCII characters.

Use this command:

slCharacterEncoding('US-ASCII')

Specify Encoding for Non-ASCII Characters

Suppose that you have a model that contains non-ASCII characters (multilingual characters, special
symbols) and you want these annotations to be easily readable in your generated code.

If your compiler supports UTF-8, on Windows, use this command:

slCharacterEncoding('UTF-8')

UTF-8 is the default encoding on Linux® and Mac.

Specify Encoding for Non-English Locale

Suppose that your model contains Japanese text but your machine is configured for an English-
language locale. You want to generate code with 'Shift_JIS' encoded text so that your team
members who use 'Shift_JIS' as their locale-specific encoding can see the Japanese text in the
generated code.

Use this command:

 slCharacterEncoding

2-1135

slCharacterEncoding('Shift_JIS')

Input Arguments
encoding — Character encoding to use for the generated code
'US-ASCII' | 'UTF-8' | other supported encodings

Set the character encoding to a supported encoding value.

Version History
Introduced before R2006a

See Also
Topics
“Open Model with Different Character Encoding”

2 Functions

2-1136

slConvertCustomMenus
Convert custom toolbar menu into toolstrip tab

Syntax
slConvertCustomMenus
slConvertCustomMenus(Name=Value)

Description
slConvertCustomMenus converts a custom Simulink toolbar menu into a toolstrip tab that is stored
in a toolstrip component called custom in the current folder. The new tab has the title Custom and
contains a single section with the same name as the top level of the toolbar menu. The section is
populated with the converted toolbar menu items:

• Action schemas and toggle schemas are converted into push buttons.
• Container schemas are converted into drop-down buttons.

The toolbar menu is not automatically deleted during the conversion. To remove it, delete or comment
out the corresponding addCustomMenuFcn call in the sl_customization.m file, save the file, and
rebuild the toolstrip by entering sl_refresh_customizations in the MATLAB Command Window.

If a toolstrip component called custom already exists in the current folder, a prompt will appear in
the Command Window asking you for permission to overwrite the component.

When the conversion is complete, the new tab can be edited like any other custom toolstrip tab. You
can adjust the layout of the tab, its labels, and its functionality. See “Create Custom Simulink
Toolstrip Tabs” for details.

slConvertCustomMenus(Name=Value) converts a custom Simulink toolbar menu into a toolstrip
tab that is stored in a toolstrip component whose name and resource location can be specified by
name-value arguments.

Permission to overwrite an existing toolstrip component of the same name and at the same location as
the one that the conversion creates can be specified via name-value argument as well. If you do not
specify this argument and such a component exists, a prompt will appear in the Command Window
asking you for permission to overwrite the component.

Examples

Convert Toolbar Menu into Toolstrip Tab

Start with the custom Simulink toolbar menu defined by this sl_customization.m file.

function sl_customization(cm)
 cm.addCustomMenuFcn('Simulink:ToolsMenu', @toolsMenu);
end

%% Tool Menu customization

 slConvertCustomMenus

2-1137

function schemas = toolsMenu()
 schemas = {
 @toolsMenu1, ...
 @toolsMenu2, ...
 @toolsMenu3
 };
end

function schema = toolsMenu1(cbinfo)
 schema = sl_action_schema;
 schema.tag = 'toolsMenu1';
 schema.label = 'Tools Menu 1';
 schema.callback = @toolsMenu1CB;
end

function schema = toolsMenu2(cbinfo)
 schema = sl_action_schema;
 schema.tag = 'toolsMenu2';
 schema.label = 'Tools Menu 2';
 schema.callback = @toolsMenu2CB;
end

function schema = toolsMenu3(cbinfo)
 schema = sl_container_schema;
 schema.tag = 'toolsMenu3';
 schema.label = 'Tools Menu 3';
 schema.childrenFcns = {
 @toolsMenu31, ...
 @toolsMenu32
 };
end

function schema = toolsMenu31(cbinfo)
 schema = sl_action_schema;
 schema.tag = 'toolsMenu31';
 schema.label = 'Tools Menu 31';
 schema.callback = @toolsMenu31CB;
end

function schema = toolsMenu32(cbinfo)
 schema = sl_action_schema;
 schema.tag = 'toolsMenu32';
 schema.label = 'Tools Menu 32';
 schema.callback = @toolsMenu32CB;
end

function toolsMenu1CB(cbinfo)
 disp('Executing toolsMenu1');
end

function toolsMenu2CB(cbinfo)
 disp('Executing toolsMenu2');
end

function toolsMenu31CB(cbinfo)
 disp('Executing toolsMenu31');
end

2 Functions

2-1138

function toolsMenu32CB(cbinfo)
 disp('Executing toolsMenu32');
end

To see the toolbar menu, open Simulink.

If this menu is converted in its current state, the conversion of its callback functions will fail because
they are saved in the sl_customization.m file. To enable the conversion of the callback functions
for Tools Menu 2 and Tools Menu 3, save them in separate function files: toolsMenu2CB.m,
toolsMenu31CB.m, and toolsMenu32CB.m.

For comparison, leave the callback function for Tools Menu 1 in the sl_customization.m file.

Convert the toolbar menu into a toolstrip tab. In the Command Window, enter this:

slConvertCustomMenus;

Delete the custom toolbar menu by commenting out the addCustomMenuFcn call in the
sl_customization.m file, and then saving the file.

function sl_customization(cm)
 %cm.addCustomMenuFcn('Simulink:ToolsMenu', @toolsMenu);
end

To see the results of the menu conversion, open a blank model in Simulink.

Rebuild the toolstrip by entering the sl_refresh_customizations command in the Command
Window.

Open and view the Custom tab.

 slConvertCustomMenus

2-1139

The tab has a single section titled Tools because that is the title of the top level of the toolbar menu
from which the tab was created.

The action schemas Tools Menu 1 and Tools Menu 2 from the toolbar menu are converted into
push buttons of the same names in the tab.

The container schema Tools Menu 3 in the toolbar menu has a pop-up list, and is converted into a
drop-down button.

Click on the Tools Menu 1 push button. The diagnostic viewer shows an error message, stating that
the callback of the Tools Menu 1 action schema failed to convert. This is because the callback
function of that schema is saved in the sl_customization.m file.

Click on the Tools Menu 2, Tools Menu 31, and Tools Menu 32 buttons. The callbacks execute
without error because the callback functions for these buttons are saved in separate function files.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: slConvertCustomMenus(CompName="Name",CompFolder="Folder")

CompName — Name of toolstrip component
"custom" (default) | string | character vector

Name of toolstrip component, specified as a string or character vector.
Data Types: char | string

CompFolder — File path of toolstrip component
pwd (default) | string | character vector

File path of toolstrip component, specified as a string or character vector.
Data Types: char | string

2 Functions

2-1140

Replace — Permission to overwrite
true or 1 | false or 0

Permission to overwrite an existing toolstrip component of the same name and at the same location as
the one that the conversion creates, specified as a numeric or logical 1 (true) or 0 (false).
Data Types: logical

Limitations
• When converting a custom toolbar menu into a toolstrip tab, any functionality that custom tabs do

not support is ignored. However, you can edit the generated tab. For more information, see
“Create Custom Simulink Toolstrip Tabs”.

• If a toolstrip component with the name specified by CompName already exists in the CompFolder
location at the time of conversion, a prompt will appear in the Command Window asking you for
permission to overwrite the component. If a component of another name already exists in the
CompFolder location, the menu cannot be converted.

• The conversion of a schema callback fails if its function handle points to a function local to the
sl_customization.m file. Move all callback functions into separate function files.

Tips
To delete custom tab elements that are the result of a conversion, you can do one of the following:

• Call slDestroyToolstripComponent.
• Delete the resources folder located at CompFolder and call slReloadToolstripConfig.
• Delete the JSON files of the tab in the resources folder located at CompFolder and call

slReloadToolstripConfig.

Version History
Introduced in R2022a

See Also
slCreateToolstripTab | slDestroyToolstripComponent | sl_refresh_customizations

Topics
“Add Items to Model Editor Menus”
“Create Custom Simulink Toolstrip Tabs”

 slConvertCustomMenus

2-1141

slCreateToolstripComponent
Create custom Simulink Toolstrip component

Syntax
slCreateToolstripComponent(component)
slCreateToolstripComponent(component,Name=Value)

Description
slCreateToolstripComponent(component) creates a resources folder for a custom Simulink
Toolstrip component in the current folder and adds the current folder to the MATLAB path.

slCreateToolstripComponent(component,Name=Value) sets properties using name-value
arguments. For example, slCreateToolstripComponent("custom",Location="B:\path
\customtab") creates the resources folder for a component named custom in the B:\path
\customtab directory and adds B:\path\customtab to the MATLAB path.

Examples

Create Simulink Toolstrip Component

A Simulink Toolstrip component contains the definition for one or more custom tabs. Before you
create a custom tab, you must create the component that will contain it.

To work with the Simulink Toolstrip, start Simulink. For example, in the MATLAB Command Window,
enter:

start_simulink

Create a custom Simulink Toolstrip component by using the slCreateToolstripComponent
function. For example, name the component custom.

slCreateToolstripComponent("custom");

This command creates a resources folder in your current folder and adds your current folder to the
MATLAB path. The resources folder contains two folders and one JSON file.

• icons folder — Location of icons used by custom tab elements
• json folder — Location of JSON files that define custom tabs
• sl_toolstrip_plugins.json — JSON file that must not be edited

Create Temporary Simulink Toolstrip Component

By default, Simulink Toolstrip components persist across sessions. You can create a temporary
Simulink Toolstrip component that persists only during the current session.

2 Functions

2-1142

Create a temporary custom Simulink Toolstrip component by using the
slCreateToolstripComponent function. For example, name the component temp.

slCreateToolstripComponent("temp",Persist=false);

This command creates a resources folder in your current folder and adds your current folder to the
MATLAB path. The resources folder contains two folders and one JSON file.

• icons folder — Location of icons used by custom tab elements
• json folder — Location of JSON files that define custom tabs
• sl_toolstrip_plugins.json — JSON file that must not be edited

When you open a new MATLAB session, the temp component is not loaded.

Input Arguments
component — Component name
character vector | string scalar

Component name, specified as a character vector or string scalar.

The component name appears in the sl_toolstrip_plugins.json file as the value for the Name
property. Do not edit this file.
Example: slCreateToolstripComponent("custom")
Data Types: char | string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: slCreateToolstripComponent("custom",Location="B:\path
\customtab",Persist=false)

Location — Storage location for component files
current folder (default) | character vector | string scalar

Storage location for component files, specified as a character vector or string scalar. The function
adds the storage location to the MATLAB path.

By default, the function generates the component files in a resources folder in the current folder.
Example: slCreateToolstripComponent("custom",Location="B:\path\customtab")
Data Types: char | string

Persist — Option to load component for new MATLAB sessions
true or 1 (default) | false or 0

Option to load component for new MATLAB sessions, specified as a numeric or logical 1 (true) or 0
(false).
Example: slCreateToolstripComponent("custom",Persist=false)

 slCreateToolstripComponent

2-1143

Data Types: double | logical

Version History
Introduced in R2021b

See Also
slCreateToolstripTab | slDestroyToolstripComponent | slLoadedToolstripComponents
| slPersistToolstripComponent

Topics
“Create Custom Simulink Toolstrip Tabs”
“Add Prepopulated Custom Tab to Simulink Toolstrip”

2 Functions

2-1144

slCreateToolstripTab
Create custom tab for Simulink Toolstrip

Syntax
slCreateToolstripTab(tab,component)
slCreateToolstripTab(tab,component,Name=Value)

Description
slCreateToolstripTab(tab,component) creates a blank custom tab in the specified Simulink
Toolstrip component, opens the JSON file that defines the custom tab, and reloads the toolstrip
configuration.

slCreateToolstripTab(tab,component,Name=Value) sets properties using name-value
arguments. For example, slCreateToolstripTab('toolsTab',"custom",Title="Tools")
creates a Tools tab.

Examples

Create Untitled Custom Tab in Simulink Toolstrip

A Simulink Toolstrip component contains the definition for one or more custom tabs. Before you
create a custom tab, you must create the component to contain it.

To work with the Simulink Toolstrip, start Simulink. For example, in the MATLAB Command Window,
enter:

start_simulink

Create a custom Simulink Toolstrip component by using the slCreateToolstripComponent
function. For example, name the component custom.

slCreateToolstripComponent("custom");

This command creates a resources folder in your current folder and adds your current folder to the
MATLAB path. The resources folder contains two folders and one JSON file.

• icons folder — Location of icons used by custom tab elements
• json folder — Location of JSON files that define custom tabs
• sl_toolstrip_plugins.json — JSON file that must not be edited

Create an untitled custom tab with the slCreateToolstripTab function.

For example, create the tab customTab in the custom component.

slCreateToolstripTab("customTab","custom");

The function creates a JSON file in the json folder that contains information about the tab. For
example:

 slCreateToolstripTab

2-1145

{
 "version": "1.0",
 "entries": [
 {
 "type": "Tab",
 "id": "customTab",
 "title": ""
 }
]
}

Open a model. For example, open the vdp model.

vdp

The Simulink Toolstrip displays a blank tab without a title.

Create Titled Custom Tab in Simulink Toolstrip

A Simulink Toolstrip component contains the definition for one or more custom tabs. Before you
create a custom tab, you must create the component to contain it.

To work with the Simulink Toolstrip, start Simulink. For example, in the MATLAB Command Window,
enter:

start_simulink

Create a custom Simulink Toolstrip component by using the slCreateToolstripComponent
function. For example, name the component custom.

slCreateToolstripComponent("custom");

This command creates a resources folder in your current folder and adds your current folder to the
MATLAB path. The resources folder contains two folders and one JSON file.

• icons folder — Location of icons used by custom tab elements
• json folder — Location of JSON files that define custom tabs
• sl_toolstrip_plugins.json — JSON file that must not be edited

Create a custom tab with the slCreateToolstripTab function.

For example, create the tab customTab in the custom component, and title the tab CUSTOM TAB.

slCreateToolstripTab("customTab","custom",Title="CUSTOM TAB");

The function creates a JSON file named customTab.json in the json folder that defines the tab.

2 Functions

2-1146

Open a model. For example, open the vdp model.

vdp

The Simulink Toolstrip displays a blank tab titled CUSTOM TAB.

Input Arguments
tab — Tab ID
character vector | string scalar

Tab ID, specified as a character vector or string scalar.

The tab ID appears in the JSON file that defines the tab as the value for the id property in the JSON
object where "type": "Tab".
Data Types: char | string

component — Component name
character vector | string scalar

Component name, specified as a character vector or string scalar.

The component name appears in the sl_toolstrip_plugins.json file as the value for the Name
property. Do not edit this file.
Data Types: char | string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: slCreateToolstripTab('customTab',"custom",Title="Custom Tab")

Title — Tab title
"" (default) | character vector | string scalar

Tab title, specified as a character vector or string scalar.

Tab titles use all uppercase letters even when you specify a title with lowercase letters.

The tab title appears in the JSON file that defines the tab as the value for the title property of the
JSON object where "type": "Tab".
Data Types: char | string

 slCreateToolstripTab

2-1147

FileName — Name of file that defines tab
<tabname>.json (default) | character vector | string scalar

Name of file that defines the tab, specified as a character vector or string scalar.
Data Types: char | string

Version History
Introduced in R2021b

See Also
slCreateToolstripComponent | slToolstripDeveloperMode | slReloadToolstripConfig

Topics
“Create Custom Simulink Toolstrip Tabs”
“Add Prepopulated Custom Tab to Simulink Toolstrip”

2 Functions

2-1148

sldebug
Start simulation debugging session for Simulink model

Syntax
sldebug(mdl)

Description
sldebug(mdl) starts a programmatic simulation debugging session for the model specified by mdl.
The simulation starts and pauses just before the initialization phase.

When you start a programmatic simulation debugging session, the MATLAB command prompt
becomes the sldebug command prompt. Instead of >>, you see (sldebug @0): >>. To control the
debugging session, enter commands in the MATLAB Command Window, at the sldebug command
prompt, using the Simulink debugging programmatic interface.

During a programmatic simulation debugging session, you can use the debugging functions to:

• Set model, signal, and block breakpoints
• Run the simulation one block method at a time
• Run the simulation one time step at a time
• Continue the simulation to the next breakpoint
• Examine simulation data

To end a programmatic simulation debugging session, use the stop function.

Examples

Start and Stop Debug Simulation

Start and then stop a simulation debugging session for the model vdp.

Open the model vdp.

openExample("simulink_general/VanDerPolOscillatorExample",...
 supportingFile="vdp.slx")

Use the sldebug function to start the simulation debugging session for the model.

sldebug("vdp")

%--%
[TM = 0] simulate(vdp)

The MATLAB command prompt changes from >> to (sldebug @0): >> to indicate that a debug
simulation is in progress and that the Simulink debugging programmatic interface is available.

Use the step command to step the simulation to the start of the next major time step.

 sldebug

2-1149

step top

%--%
[TM = 0] vdp.Outputs.Major

You can continue using the step command to progress the simulation and observe the results in the
Scope block.

Use the stop function to stop the debug simulation.

stop

%--%
% Simulation stopped

Input Arguments
mdl — Name of model to debug
string | character vector

Name of model to debug, specified as a string or a character vector.
Example: sldebug("vdp") starts a simulation debugging session for the model vdp.
Data Types: char | string

Tips
As an alternative to programmatic debugging, you can debug and analyze models in the Simulink
Editor using similar functionality available in the Simulink Toolstrip. Using the Debug tab, you can:

• Add breakpoints that pause simulation within a time step
• Step from one major time step to the next
• Step from one block output method to the next
• Step into and out of atomic subsystems, model references, and Stateflow charts
• Add port value labels to display block output values for major time steps
• View the execution order
• Annotate the block diagram with sample time information

To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

When you start a simulation debugging session interactively, the simulation pauses just before
executing the first block output method.

Version History
Introduced in R2006a

2 Functions

2-1150

See Also
step | stop | break | disp | probe

Topics
“Simulink Debugging Programmatic Interface”

 sldebug

2-1151

slDestroyToolstripComponent
Destroy Simulink Toolstrip component

Syntax
slDestroyToolstripComponent(component)
slDestroyToolstripComponent(component,RemoveFromPath)

Description
slDestroyToolstripComponent(component) destroys the specified Simulink Toolstrip
component, removes the component directory from the MATLAB path, and deletes the resource
subdirectory that the component directory contains.

slDestroyToolstripComponent(component,RemoveFromPath) destroys the specified Simulink
Toolstrip component and deletes the resource subdirectory that the component directory contains.
When RemoveFromPath is set to true, the command also removes the component directory from the
MATLAB path. When RemoveFromPath is set to false, the command does not remove the
component directory from the MATLAB path.

Examples

Delete Custom Simulink Toolstrip Component

Suppose you have a Simulink Toolstrip component that you no longer need named custom.

Delete the component named custom. In the MATLAB Command Window, enter:

slDestroyToolstripComponent("custom")

Input Arguments
component — Component name
character vector | string scalar

Component name, specified as a character vector or string scalar.

The component name appears in the sl_toolstrip_plugins.json file as the value for the "Name"
property. Do not edit this file.
Example: slDestroyToolstripComponent("custom")
Data Types: char | string

RemoveFromPath — Option to remove component resource directory from path
true or 1 (default) | false or 0

Option to remove component resource directory from path, specified as a numeric or logical 1
(true) or 0 (false).

2 Functions

2-1152

Example: slDestroyToolstripComponent("custom",RemoveFromPath=false)
Data Types: logical

Version History
Introduced in R2021b

See Also
slCreateToolstripComponent | slLoadedToolstripComponents

Topics
“Create Custom Simulink Toolstrip Tabs”
“Add Prepopulated Custom Tab to Simulink Toolstrip”

 slDestroyToolstripComponent

2-1153

sldiagnostics
Display diagnostic information about Simulink system

Syntax
sldiagnostics('sys')
[txtRpt, sRpt] = sldiagnostics('sys')
[txtRpt, sRpt] = sldiagnostics('sys', options)
[txtRpt, sRpt] = sldiagnostics('sys', 'CompileStats')
[txtRpt, sRpt] = sldiagnostics('sys', 'RTWBuildStats')

Description
sldiagnostics('sys') displays the following diagnostic information associated with the model or
subsystem specified by sys:

• Number of each type of block
• Number of each type of Stateflow object
• Number of states, outputs, inputs, and sample times of the root model.
• Names of libraries referenced and instances of the referenced blocks
• Time and additional memory used for each compilation phase of the root model

If the model specified by sys is not loaded, then sldiagnostics loads the model before performing
the analysis.

The command sldiagnostics('sys', options) displays only the diagnostic information
associated with the specific operations listed as options character vectors. The table below
summarizes the options available and their corresponding valid input and output.

With sldiagnostics, you can input the name of a model or the path to a subsystem. For some
analysis options, sldiagnostics can analyze only a root model. If you provide an incompatible input
for one of these analyses, then sldiagnostics issues a warning. Finally, if you input a Simulink
Library, then sldiagnostics cannot perform options that require a model compilation (Update
Diagram). Instead, sldiagnostics issues a warning.

During the analysis, sldiagnostics will follow library links but will not follow or analyze Model
References. See find_mdlrefs for more information on finding all Model blocks and referenced
models in a specified model.

Option Valid Inputs Output
CountBlocks root model, library, or

subsystem
Lists all unique blocks in the system and the
number of occurrences of each. This includes
blocks that are nested in masked subsystems
or hidden blocks.

CountSF root model, library, or
subsystem

Lists all unique Stateflow objects in the
system and the number of occurrences of
each.

2 Functions

2-1154

Option Valid Inputs Output
Sizes root model Lists the number of states, outputs, inputs,

and sample times, as well as a flag indicating
direct feedthrough, used in the root model.

Libs root model, library, or
subsystem

Lists all unique libraries referenced in the
root model, as well as the names and
numbers of the library blocks.

CompileStats root model Lists the time and additional memory used
for each compilation phase of the root model.
This information helps users troubleshoot
model compilation speed and memory issues.

RTWBuildStats root model Lists the same information as the
CompileStats diagnostic. When issued with
the second output argument sRpt, it
captures the same statistics included in
CompileStats and also the Simulink Coder
build statistics.

You must explicitly specify this option,
because it is not part of the default analysis.

All not applicable Performs all diagnostics.

Note Running the CompileStats diagnostic before simulating a model for the first time will show
greater memory usage. However, subsequent runs of the CompileStats diagnostic on the model will
require less memory usage.

[txtRpt, sRpt] = sldiagnostics('sys') returns the diagnostic information as a textual
report txtRpt and a structure array sRpt, which contains the following fields that correspond to the
diagnostic options:

• blocks
• stateflow
• sizes
• links
• compilestats

[txtRpt, sRpt] = sldiagnostics('sys', options) returns only the specified options. If
your chosen options specify just one type of analysis, then sRpt contains the results of only that
analysis.

[txtRpt, sRpt] = sldiagnostics('sys', 'CompileStats') returns information on time
and memory usage in txtRpt and sRpt.

[txtRpt, sRpt] = sldiagnostics('sys', 'RTWBuildStats') includes Simulink Coder build
statistics in addition to the information reported for CompileStats in the sRpt output.

• txtRpt contains the formatted textual output of time spent in each of the phases in Simulink and
Simulink Coder (if you specified RTWBuildStats), for example:

 sldiagnostics

2-1155

Compile Statistics For: rtwdemo_counter
 Cstat1: 0.00 seconds Model compilation pre-start
 Cstat2: 0.00 seconds Stateflow compile pre-start notification
 Cstat3: 0.10 seconds Post pre-comp-start engine event
 Cstat4: 10.00 seconds Stateflow compile start notification
 Cstat5: 0.00 seconds Model compilation startup completed

• sRpt is a MATLAB structure containing time and memory usage for each of the phases, for
example:

sRpt =
Model: 'myModel1'
Statistics: [1x134 struct]

The size of the sRpt.Statistics array indicates the number of compile and build phases
executed during the operation. Examine the Statistics fields:

sRpt.Statistics(1) =
Description: 'Phase1'
CPUTime: 7.2490
WallClockTime 4.0092
ProcessMemUsage: 26.2148
ProcessMemUsagePeak: 28.6680
ProcessVMSize: 15.9531

CPUTime and WallClockTime show the elapsed time for the phase in seconds.
ProcessMemUsage, ProcessMemUsagePeak and ProcessVMSize show the memory
consumption during execution of the phase in MB.

Examine these key metrics to understand the performance:

• WallClockTime—The real-time elapsed in each phase in seconds. Sum the WallClockTime in
each phase to get the total time taken to perform the operation:

ElapsedTime = sum([statRpt.Statistics(:).WallClockTime]);

• ProcessMemUsage—The amount of memory consumed in each phase. Sum the
ProcessMemUsage across all the phases to get the memory consumption during the entire
operation:

TotalMemory = sum([statRpt.Statistics(:).ProcessMemUsage]);

• ProcessMemUsagePeak—The maximum amount of allocated memory in each phase. Get the
maximum of this metric across all the phases to find the peak memory allocation during the
operation:

PeakMemory = max([statRpt.Statistics(:).ProcessMemUsagePeak]);

Note Memory statistics are available only on the Microsoft Windows platform.

Examples
The following command counts and lists each type of block used in the sldemo_bounce model that
comes with Simulink software.

openExample('simulink_general/sldemo_bounceExample')
sldiagnostics('sldemo_bounce', 'CountBlocks')

2 Functions

2-1156

The following command counts and lists both the unique blocks and Stateflow objects used in the
sf_boiler model that comes with Stateflow software; the textual report returned is captured as
myReport.
openExample('stateflow/BangBangControlUsingTemporalLogicExample')
myReport = sldiagnostics('sf_boiler', 'CountBlocks', 'CountSF')

The following commands open the f14 model that comes with Simulink software, and counts the
number of blocks used in the Controller subsystem.

openExample('simulink_aerospace/AircraftLongitudinalFlightControlExample')
sldiagnostics('f14/Controller', 'CountBlocks')

The following command runs the Sizes and CompileStats diagnostics on the f14 model, capturing
the results as both a textual report and structure array.
[txtRpt, sRpt] = sldiagnostics('f14', 'Sizes', 'CompileStats')

Version History
Introduced in R2006a

See Also
find_system | get_param

 sldiagnostics

2-1157

sldiagviewer.createStage
Create a stage to display diagnostic messages

Syntax
myStage = sldiagviewer.createStage(StageName)
myStage = sldiagviewer.createStage(__,'ModelName', Value)

Description
myStage = sldiagviewer.createStage(StageName) creates a stage with the given stage name
in the model specified. In the Diagnostic Viewer, errors, warnings, and information messages are
displayed in groups based on the operation, such as model load, simulation, and build. These groups
are called stages. When you create a stage object, Simulink initializes the stage. When you close the
stage object, Simulink ends the stage. If you delete a parent stage object, the corresponding parent
and its child stage close in the Diagnostic Viewer.

myStage = sldiagviewer.createStage(__,'ModelName', Value) is a required name-value
pair that specifies the model in which the diagnostics is run.

Examples

Create Stage and Display Diagnostic Messages

Use the createStage function to create a stage to display diagnostic messages in the Diagnostic
Viewer.

% Create a Stage to display all the messages

myStage = sldiagviewer.createStage('Analysis','ModelName','vdp');

myStage =
 Stage with no properties.

Input Arguments
StageName — Name of stage
character vector

Name of the stage, specified as a character vector.
Example: 'Analysis'
Data Types: string

Value — Name of model
character vector

2 Functions

2-1158

Name of model, specified as a comma-separated pair consisting of 'ModelName' and a character
vector or string.
Example: 'vdp'

Output Arguments
myStage — Handle to created stage
stage object

Handle to the created stage, returned as a stage object.

Version History
Introduced in R2014a

See Also
Topics
“View Diagnostics”
“Customize Diagnostic Messages”
“Report Diagnostic Messages Programmatically”

 sldiagviewer.createStage

2-1159

sldiagviewer.diary
Log simulation warnings and errors and build information to file

Syntax
sldiagviewer.diary
sldiagviewer.diary(filename)
sldiagviewer.diary(toggle)
sldiagviewer.diary(filename,'UTF-8')

Description
sldiagviewer.diary intercepts build information, warnings, and errors transmitted to the
Diagnostic Viewer and logs them to a text file diary.txt in the current folder.

sldiagviewer.diary(filename) toggles the logging state of the text file specified by filename.

sldiagviewer.diary(toggle) turns logging to the log file on or off. The setting applies to the last
file name you specified for logging or to diary.txt if you did not specify a file name.

sldiagviewer.diary(filename,'UTF-8') specifies the character encoding for the log file
filename.

Examples

Log Build Information and Simulation Warnings and Errors

Start logging build information and simulation warnings and errors to diary.txt.

sldiagviewer.diary
open_system('vdp')
slbuild('vdp')

Open diary.txt to view logs.

Starting build procedure for model: vdp
Build procedure for model: 'vdp' aborted due to an error.
...

Log to Specific File

Set up logging to a file.

sldiagviewer.diary('C:\MyLogs\log1.txt')

2 Functions

2-1160

Toggle File Logging State

Switch the logging state of a file.

sldiagviewer.diary('C:\MyLogs\log1.txt') % Start logging
open_system('vdp')
slbuild('vdp')

sldiagviewer.diary('off') % Switch off logging

openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
open_system('sldemo_fuelsys')
slbuild('sldemo_fuelsys')

sldiagviewer.diary('on') % Resume logging

Specify Log File Name and Character Encoding

Set the file name to log to and the character encoding to use.

sldiagviewer.diary('C:\MyLogs\log1.txt','UTF-8')

Input Arguments
toggle — Logging state
'off' | 'on'

Logging state, specified as 'on' or 'off'.
Example: sldiagviewer.diary('on')

filename — Name of file to log data to
character vector

Name of file to log data to, specified as a character vector.
Example: sldiagviewer.diary('C:\Simulations\mySimulationDiary.txt')

Version History
Introduced in R2014a

See Also
Topics
“View Diagnostics”
“Customize Diagnostic Messages”

 sldiagviewer.diary

2-1161

sldiagviewer.reportError
Report error messages in Diagnostic Viewer

Syntax
output = sldiagviewer.reportError(Message)
myStage = sldiagviewer.reportError(__,'Component', Value)

Description
output = sldiagviewer.reportError(Message) reports the message as an error.

myStage = sldiagviewer.reportError(__,'Component', Value) specifies the name of the
component. For example, Stateflow or Model Advisor.

Examples

Report an Error Message

Create a stage and use the reportError function to report an error message in the Diagnostic
Viewer for the specified model.

vdp

% Create a stage
my_stage = sldiagviewer.createStage('StageName', 'ModelName', 'vdp');
%% write some code inside try, which will throw an error
try
 i = p;
catch error
end
sldiagviewer.reportError(error);

output =
 1ogical
 1

2 Functions

2-1162

The diagnostic window opens up for the model vdp. It shows the StageName and the error message

in red.

Input Arguments
Message — Message to be displayed
MSLException object | MException object | string

This message is displayed as an error in the Diagnostic Viewer.
Example: 'This is a custom error message.'

Value — Component name
character vector | string

The name of the component specified as the comma-separated pair consisting of 'Component' and a
character vector or string.
Example: Stateflow

Output Arguments
output — shows the success or failure of the operation
logical

Shows whether the message was displayed successfully.

Version History
Introduced in R2014a

See Also
Topics
“View Diagnostics”
“Customize Diagnostic Messages”
“Report Diagnostic Messages Programmatically”

 sldiagviewer.reportError

2-1163

sldiagviewer.reportInfo
Report information messages in Diagnostic Viewer

Syntax
output = sldiagviewer.reportInfo(Message)
myStage = sldiagviewer.reportInfo(__,'Component' Value)

Description
output = sldiagviewer.reportInfo(Message) reports the message as information.

myStage = sldiagviewer.reportInfo(__,'Component' Value) specifies the name of the
component.

Examples

Report an Information Message

Create a stage and use the reportInfo function to report a message as information in the
Diagnostic Viewer for the specified model.

% Create a Stage to display all the messages

my_stage = sldiagviewer.createStage('Analysis', 'ModelName', 'vdp');

% Report a custom info message to Diagnostic Viewer

sldiagviewer.reportInfo('Information message.','Component','Stateflow');

output =
 1ogical
 1

Input Arguments
Message — Message to be displayed
MSLException object | MException object | string

This message is displayed in the Diagnostic Viewer as an information.
Example: 'This is a custom information message.'

Value — Component name
character vector | string

The name of the component specified as the comma-separated pair consisting of 'Component' and a
character vector or string.
Example: Stateflow

2 Functions

2-1164

Output Arguments
output — shows the success or failure of the operation
logical

Shows whether the message was displayed successfully.

Version History
Introduced in R2014a

See Also
Topics
“View Diagnostics”
“Customize Diagnostic Messages”
“Report Diagnostic Messages Programmatically”

 sldiagviewer.reportInfo

2-1165

sldiagviewer.reportWarning
Report warning messages in Diagnostic Viewer

Syntax
output = sldiagviewer.reportWarning(Message)
myStage = sldiagviewer.reportWarning(__,'Component', Value)

Description
output = sldiagviewer.reportWarning(Message) reports a message as warning in the
diagnostic Viewer.

myStage = sldiagviewer.reportWarning(__,'Component', Value) specifies the name of
the component. For example, Model Advisor or Stateflow.

Examples

Report a Warning in Diagnostic Viewer

Create a stage and use the reportWarning function to report a warning message in the Diagnostic
Viewer for the specified model.

vdp

% Create a stage
my_stage = sldiagviewer.createStage('StageName', 'ModelName', 'vdp');
%% write some code inside try, which will throw an error
try
 i = p;
catch error
end
sldiagviewer.reportWarning(error);

output =
 1ogical
 1

The diagnostic window opens up for the model vdp. It shows the StageName and the warning
message in yellow.

2 Functions

2-1166

Input Arguments
Message — Message to display
MSLException object | MException object | string

This message is displayed as a warning in the Diagnostic Viewer.
Example: 'This is a custom warning message.'

Value — Component name
character vector | string

The name of the component specified as the comma-separated pair consisting of 'Component' and a
character vector or string.
Example: Stateflow

Output Arguments
output — shows the success or failure of the operation
logical

Shows whether the message was displayed successfully.

Version History
Introduced in R2014a

See Also
Topics
“View Diagnostics”
“Customize Diagnostic Messages”
“Report Diagnostic Messages Programmatically”

 sldiagviewer.reportWarning

2-1167

sldiagviewer.reportSimulationMetadataDiagnostic
s
Display errors and warnings in Simulink.SimulationOutput object using Diagnostic Viewer

Syntax
sldiagviewer.reportSimulationMetadataDiagnostics(simOut)

Description
sldiagviewer.reportSimulationMetadataDiagnostics(simOut) displays errors and
warnings saved in the Simulink.SimulationOutput object simOut using the Diagnostic Viewer.

Examples

Display Errors in Diagnostic Viewer

You can use the sldiagviewer.reportSimulationMetadataDiagnostics function to display
error and warning messages captured in a Simulink.SimulationOutput object using the
Diagnostic Viewer.

Open the model ex_sldemo_bounce.

model = "ex_sldemo_bounce";
open_system(model)

Introduce an error into the model by specifying the Value parameter for the block Initial
Velocity as the undefined variable z.

set_param("ex_sldemo_bounce/Initial Velocity","Value","z");

Create a Simulink.SimulationInput object to configure the simulation.

simIn = Simulink.SimulationInput(model);

Simulate the model. When you specify the StopOnError option as off, errors and warnings that
occur during simulation are captured in the SimulationOutput object are not reported in the
Command Window or script and do not interrupt the process of the script.

simOut = sim(simIn,"StopOnError","off","ShowProgress","off");

Warning: One or more simulations completed with errors. For more information, inspect the SimulationOutput objects at these indices:
[1]

Use the sldiagviewer.reportSimulationMetadataDiagnostics function to display the
warning and error messages from the simulation in the Diagnostic Viewer.

sldiagviewer.reportSimulationMetadataDiagnostics(simOut)

2 Functions

2-1168

Input Arguments
simOut — Simulation output that contains errors and warnings
Simulink.SimulationOutputobject

Simulation output that contains errors and warnings, specified as a Simulink.SimulationOutput
object.

Version History
Introduced in R2020b

See Also
Simulink.SimulationOutput

Topics
“View Diagnostics”
“Customize Diagnostic Messages”
“Report Diagnostic Messages Programmatically”

 sldiagviewer.reportSimulationMetadataDiagnostics

2-1169

sldiscmdl
Discretize model that contains continuous blocks

Syntax
sldiscmdl('model_name',sample_time)
sldiscmdl('model_name',sample_time,method)
sldiscmdl('model_name',sample_time,options)
sldiscmdl('model_name',sample_time,method,freq)
sldiscmdl('model_name',sample_time,method,options)
sldiscmdl('model_name',sample_time,method,freq,options)
[old_blks,new_blks] = sldiscmdl('model_name',sample_time,method,freq,options)

Description
sldiscmdl('model_name',sample_time) discretizes the model named 'model_name' using the
specified sample_time. The model does not need to be open, and the units for sample_time are
simulation seconds.

sldiscmdl('model_name',sample_time,method) discretizes the model using sample_time
and the transform method specified by method.

sldiscmdl('model_name',sample_time,options) discretizes the model using sample_time
and criteria specified by the options cell array. This array consists of four elements: {target,
replace_with, put_into, prompt}.

sldiscmdl('model_name',sample_time,method,freq) discretizes the model using
sample_time, method, and the critical frequency specified by freq. The units for freq are Hz.
When you specify freq, method must be 'prewarp'.

sldiscmdl('model_name',sample_time,method,options) discretizes the model using
sample_time, method, and options.

sldiscmdl('model_name',sample_time,method,freq,options) discretizes the model using
sample_time, method, freq, and options. When you specify freq, method must be 'prewarp'.

[old_blks,new_blks] = sldiscmdl('model_name',sample_time,method,freq,options)
discretizes the model using sample_time, method, freq, and options. When you specify freq,
method must be 'prewarp'. The function also returns two cell arrays that contain full path names of
the original, continuous blocks and the new, discretized blocks.

Input Arguments
model_name

Name of the model to discretize.

sample_time

Sample-time specification for the model:

2 Functions

2-1170

Scalar value Sample time with zero offset, such as 1
Two-element vector Sample time with nonzero offset, such as [1

0.1]

method

Method of converting blocks from continuous to discrete mode:

'zoh' (default) Zero-order hold on the inputs
'foh' First-order hold on the inputs
'tustin' Bilinear (Tustin) approximation
'prewarp' Tustin approximation with frequency prewarping
'matched' Matched pole-zero method

For single-input, single-output (SISO) systems
only

freq

Critical frequency in Hz. This input applies only when the method input is 'prewarp'.

options

Cell array {target, replace_with, put_into, prompt}, where each element can take the
following values:

target 'all' (default) Discretize all continuous blocks
'selected' Discretize only selected blocks in the

model
'full_blk_path' Discretize specified block

replace_with 'parammask' (default) Create discrete blocks whose parameters
derive from the corresponding continuous
blocks

'hardcoded' Create discrete blocks with hard-coded
parameters placed directly into each block
dialog box

put_into 'copy' (default) Create discretization in a copy of the
original model

'variant' Create discretization candidate in a
variant subsystem

'current' Apply discretization to the current model
'untitled' Create discretization in a new untitled

window
prompt 'on' (default) Show discretization information at the

command prompt
'off' Do not show discretization information at

the command prompt

 sldiscmdl

2-1171

Examples
Discretize all continuous blocks in the slexAircraftExample model using a 1-second sample time:

openExample('slexAircraftExample');
sldiscmdl('slexAircraftExample',1);

Discretize the Aircraft Dynamics Model subsystem in the slexAircraftExample model using
a 1-second sample time, a 0.1-second offset, and a first-order hold transform method:

sldiscmdl('slexAircraftExample',[1 0.1],'foh',...
{'slexAircraftExample/Aircraft Dynamics Model',...
'parammask','copy','on'});

Discretize the Aircraft Dynamics Model subsystem in the slexAircraftExample model and
retrieve the full path name of the second discretized block:

[old_blks,new_blks] = sldiscmdl('slexAircraftExample',[1 0.1],...
'foh',{'slexAircraftExample/Aircraft Dynamics Model','parammask',...
'copy','on'});
% Get full path name of the second discretized block
new_blks{2}

Discretize all continuous blocks in the slexAircraftExample model using a 1-second sample time:

openExample('slexAircraftExample');
[old_blk,new_blk] = sldiscmdl('f14',1,'zoh',...
{'f14/Aircraft Dynamics Model',...
'parammask','variant','on'})

--discretizing 'f14/Aircraft Dynamics Model' and putting results into a variant subsystem

old_blk =

 1x1 cell array

 {'f14/Aircraft Dynamics Model'}

new_blk =

 1x1 cell array

 {'f14/Aircraft↵Dynamics↵Model'}

Version History
Introduced before R2006a

See Also
slmdldiscui

Topics
“Aircraft Longitudinal Flight Control” on page 13-241
“Discretize a Model with the sldiscmdl Function”

2 Functions

2-1172

slEditToolstripAction
Open file that defines custom Simulink Toolstrip action

Syntax
slEditToolstripAction(action)

Description
slEditToolstripAction(action) opens the file that defines the specified custom toolstrip
action.

Examples

Edit Custom Toolstrip Action

Suppose you have many JSON files that define actions for a custom tab in a toolstrip component
named custom.

To open the file that defines a custom action, such as myAction, use the slEditToolstripAction
function.

slEditToolstripAction("custom:myAction")

Input Arguments
action — Fully qualified action name
character vector | string scalar

Fully qualified action name, specified as a character vector or string scalar. The fully qualified name
is the name of the toolstrip component followed by a colon and the full path to the action within the
toolstrip component.

When an action is defined at the top level of a toolstrip component, the fully qualified action name
consists of these parts:

1 Name of the toolstrip component followed by a colon
2 Action ID

When an action is defined in the JSON object for a control, the action does not use an action ID. The
fully qualified action name consists of these parts:

1 Name of the toolstrip component followed by a colon
2 Tab ID followed by a forward slash
3 Section ID or index followed by a forward slash
4 Column ID or index followed by a forward slash

 slEditToolstripAction

2-1173

5 Control ID or index

Example: slEditToolstripAction("custom:myAction") opens the file that defines myAction
for the custom toolstrip component.
Example: slEditToolstripAction("custom:customTab/2/1/3") opens the file that defines the
action for the third control in the first column of the second section on the tab named customTab in
the custom toolstrip component.
Data Types: char | string

Version History
Introduced in R2021b

See Also
slCreateToolstripComponent | slReloadToolstripConfig | slEditToolstripCommand |
slEditToolstripIcon | slEditToolstripWidget

Topics
“Create Custom Simulink Toolstrip Tabs”
“Add Prepopulated Custom Tab to Simulink Toolstrip”

2 Functions

2-1174

slEditToolstripCommand
Open file that defines custom Simulink Toolstrip command

Syntax
slEditToolstripCommand(action)

Description
slEditToolstripCommand(action) opens the file that defines the custom Simulink Toolstrip
command.

For scripts, the file that defines the action also defines the command. When you set commandType to
Script, the command property directly specifies the script. When you set the command property to
the name of a script on the MATLAB path, the function opens the JSON file, not the referenced
MATLAB script.

Examples

Edit Custom Toolstrip Command

Suppose you have many files that define commands for a custom tab in a toolstrip component named
custom.

To open the file that defines a command for an action, such as myAction, use the
slEditToolstripCommand function.

slEditToolstripCommand("custom:myAction");

Input Arguments
action — Fully qualified action name
character vector | string scalar

Fully qualified action name, specified as a character vector or string scalar. The fully qualified name
is the name of the toolstrip component followed by a colon and the full path to the action within the
toolstrip component.

When an action is defined at the top level of a toolstrip component, the fully qualified action name
consists of these parts:

1 Name of the toolstrip component followed by a colon
2 Action ID

When an action is defined in the JSON object for a control, the action does not use an action ID. The
fully qualified action name consists of these parts:

1 Name of the toolstrip component followed by a colon

 slEditToolstripCommand

2-1175

2 Tab ID followed by a forward slash
3 Section ID or index followed by a forward slash
4 Column ID or index followed by a forward slash
5 Control ID or index

Example: slEditToolstripCommand("custom:myAction") opens the file that defines myAction
for the custom toolstrip component.
Example: slEditToolstripCommand("custom:customTab/2/1/3") opens the file that defines
the command for the third control in the first column of the second section on the tab named
customTab in the custom toolstrip component.
Data Types: char | string

Version History
Introduced in R2021b

See Also
slCreateToolstripComponent | slReloadToolstripConfig | slEditToolstripAction |
slEditToolstripIcon | slEditToolstripWidget

Topics
“Create Custom Simulink Toolstrip Tabs”
“Add Prepopulated Custom Tab to Simulink Toolstrip”

2 Functions

2-1176

slEditToolstripIcon
Open file that defines custom Simulink Toolstrip icon

Syntax
slEditToolstripIcon(icon)

Description
slEditToolstripIcon(icon) opens the file that defines the specified custom toolstrip icon.

Examples

Edit Custom Toolstrip Icon

Suppose you have many JSON files that define icons for a custom tab in a toolstrip component named
custom.

To open the file that defines a custom icon, such as myIcon, use the slEditToolstripIcon
function.

slEditToolstripIcon("custom:myIcon");

Input Arguments
icon — Fully qualified icon name
character vector | string scalar

Fully qualified icon name, specified as a character vector or string scalar. The fully qualified name is
the name of the toolstrip component followed by a colon and the full path to the icon within the
toolstrip component.

When an icon is defined at the top level of a toolstrip component, the fully qualified icon name
consists of these parts:

1 Name of the toolstrip component followed by a colon
2 Icon ID

When an icon is defined in the JSON object for a top-level action, the fully qualified icon name
consists of these parts:

1 Name of the toolstrip component followed by a colon
2 Action ID

When an icon is defined in the JSON object for a nested action, the fully qualified icon name consists
of these parts:

1 Name of the toolstrip component followed by a colon

 slEditToolstripIcon

2-1177

2 Tab ID followed by a forward slash
3 Section ID or index followed by a forward slash
4 Column ID or index followed by a forward slash
5 Control ID or index

Example: slEditToolstripIcon("custom:myIcon") opens the file that defines myIcon for the
custom toolstrip component.
Example: slEditToolstripIcon("custom:customTab/2/1/3") opens the file that defines the
icon for the third control in the first column of the second section on the tab named customTab in
the custom toolstrip component.
Data Types: char | string

Version History
Introduced in R2021b

See Also
slCreateToolstripComponent | slReloadToolstripConfig | slEditToolstripAction |
slEditToolstripCommand | slEditToolstripWidget

Topics
“Create Custom Simulink Toolstrip Tabs”
“Add Prepopulated Custom Tab to Simulink Toolstrip”

2 Functions

2-1178

slEditToolstripWidget
Open file that defines custom Simulink Toolstrip tab, section, column, or control

Syntax
slEditToolstripWidget(widget)

Description
slEditToolstripWidget(widget) opens the file that defines the specified custom toolstrip
widget, which can be a custom tab, section, column, or control.

Examples

Edit Custom Toolstrip Widget

Suppose you have multiple JSON files that define custom tabs in a toolstrip component named
custom.

To open the file that defines a custom tab named customTab, use the slEditToolstripWidget
function.

slEditToolstripWidget("custom:customTab")

Input Arguments
widget — Fully qualified widget name
character vector | string scalar

Fully qualified widget name, specified as a character vector or string scalar. The fully qualified name
is the name of the toolstrip component followed by a colon and the full path to the widget within the
toolstrip component. When the widget has a parent JSON object, the fully qualified name includes the
ID or index of each JSON object above the widget.
Example: slEditToolstripWidget("custom:customTab") opens the file that defines the tab
named customTab in the custom toolstrip component.
Example: slEditToolstripWidget("custom:customTab/2") opens the file that defines the
second section on the tab named customTab in the custom toolstrip component.
Example: slEditToolstripWidget("custom:customTab/2/1") opens the file that defines the
first column of the second section on the tab named customTab in the custom toolstrip component.
Example: slEditToolstripWidget("custom:customTab/2/1/3") opens the file that defines the
third control in the first column of the second section on the tab named customTab in the custom
toolstrip component.
Data Types: char | string

 slEditToolstripWidget

2-1179

Version History
Introduced in R2021b

See Also
slCreateToolstripComponent | slReloadToolstripConfig | slEditToolstripAction |
slEditToolstripCommand | slEditToolstripIcon

Topics
“Create Custom Simulink Toolstrip Tabs”
“Add Prepopulated Custom Tab to Simulink Toolstrip”

2 Functions

2-1180

slExportFavoriteCommands
Export favorite commands from Simulink quick access toolbar

Syntax
slExportFavoriteCommands(file)

Description
slExportFavoriteCommands(file) exports the contents of the Simulink Favorite Commands
gallery to the specified file.

Examples

Export Simulink Favorite Commands

Suppose you create a set of favorite commands in the Simulink Favorite Commands gallery that you
want to share with team members. You can export the contents of your Simulink Favorite
Commands gallery to a file.

For example, export the gallery contents to a file named slFavorites.mat in the B:\path\
directory.

In the MATLAB Command Window, enter:

slExportFavoriteCommands('B:\path\slFavorites.mat');

Input Arguments
file — File name or path
character vector | string scalar

File name or path, specified as a character vector or string scalar.
Example: slExportFavoriteCommands('B:\path\slFavorites.mat')
Data Types: char | string

Version History
Introduced in R2021b

See Also
slImportFavoriteCommands | slResetFavoriteCommands

Topics
“Access Frequently Used Features and Commands in Simulink”

 slExportFavoriteCommands

2-1181

slexpr
Generate expression to use in value of parameter object

Syntax
expressionOut = slexpr(expressionIn)

Description
expressionOut = slexpr(expressionIn) converts the MATLAB-syntax expression
expressionIn to an object, expressionOut, that you can use to set the Value property of a
parameter object (such as Simulink.Parameter). When you use multiple parameter objects to set
block parameter values, you can use the expression to model mathematical relationships between the
objects. For more information, see “Set Variable Value by Using a Mathematical Expression”.

Examples

Model Relationship Between Mass, Length, and Moment of Inertia of Metronome

In the base workspace, create three Simulink.Parameter objects that represent the mass, length,
and moment of inertia of a pointlike metronome.

m = Simulink.Parameter;
r = Simulink.Parameter;
J = Simulink.Parameter;

Set the mass to 0.1 kg and the length to 1.0 m.

m.Value = 0.1;
r.Value = 1.0;

Set the value of the moment of inertia to the mass times the square of the length.

J.Value = slexpr('m*r^2');

Simulink preserves the expression, m*r^2. If you change the value of the mass or the length,
Simulink recalculates the value of the moment of inertia.

Input Arguments
expressionIn — Target expression
string | character vector

Target expression, specified as a string or character vector.
Example: "myParam + myOtherParam"
Data Types: char | string

2 Functions

2-1182

Output Arguments
expressionOut — Simulink representation of expression
Simulink.data.Expression object

Simulink representation of the target expression, returned as a Simulink.data.Expression
object. A Simulink.data.Expression object has no use outside the Value property of a
parameter object.

Version History
Introduced in R2018a

See Also
Simulink.Parameter

Topics
“Share and Reuse Block Parameter Values by Creating Variables”
“Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder)

 slexpr

2-1183

slImportFavoriteCommands
Import favorite commands to Simulink quick access toolbar

Syntax
backup = slImportFavoriteCommands(file)
backup = slImportFavoriteCommands(file,'overwrite')

Description
backup = slImportFavoriteCommands(file) imports favorite commands and categories from
the specified file to the Simulink Favorite Commands gallery. The specified file must be
generated by exporting the contents of a Simulink Favorite Commands gallery using
slExportFavoriteCommands.

backup = slImportFavoriteCommands(file,'overwrite') overwrites the contents of the
Simulink Favorite Commands gallery with the contents of the specified file. The specified file
must be generated by exporting the contents of a Simulink Favorite Commands gallery using
slExportFavoriteCommands.

Examples

Import Simulink Favorite Commands

Suppose a team member shares a file that contains favorite commands you want to use in Simulink,
and you want to merge the file contents with the contents of your Simulink Favorite Commands
gallery.

In the MATLAB Command Window, enter this command:

slImportFavoriteCommands('B:\path\slFavorites.mat');

Overwrite Simulink Favorite Commands

Suppose a team member shares a file that contains favorite commands you want to use in Simulink,
and you want to overwrite the contents of your Simulink Favorite Commands gallery with the file
contents.

In the MATLAB Command Window, enter this command:

slImportFavoriteCommands('B:\path\slFavorites.mat','overwrite');

Input Arguments
file — File name or path
character vector | string scalar

2 Functions

2-1184

File name or path, specified as a character vector or string scalar.
Example: slImportFavoriteCommands('B:\path\slFavorites.mat')
Data Types: char | string

Output Arguments
backup — Backup of previous state
character vector

Path to backup of previous state, returned as a character vector.

To restore the previous state, you can pass the returned value as the input to the function and
overwrite the current state.

Version History
Introduced in R2021b

See Also
slExportFavoriteCommands | slResetFavoriteCommands

Topics
“Access Frequently Used Features and Commands in Simulink”

 slImportFavoriteCommands

2-1185

slIsFileChangedOnDisk
Determine whether model has changed since it was loaded

Syntax
tf = slIsFileChangedOnDisk(sys)

Description
tf = slIsFileChangedOnDisk(sys) returns whether the file that contains block diagram sys
has changed on disk since the block diagram was loaded.

Examples

Return Error When File Has Changed

To ensure that code is not generated for a model whose file has changed on disk since it was loaded,
include the following in the 'entry' section of the STF_make_rtw_hook.m file.
if (slIsFileChangedOnDisk(sys))
 error('File has changed on disk since it was loaded. Aborting code generation.');
end

For more information, see “Customize Build Process with STF_make_rtw_hook File” (Simulink Coder).

Input Arguments
sys — System name
character vector | string scalar

System name, specified as a character vector or string scalar.
Data Types: char | string

Output Arguments
tf — True or false result
1 | 0

True or false result, returned as a 1 or 0 of data type logical.

• 1 (true) — File that contains block diagram sys has changed on disk since the block diagram was
loaded.

• 0 (false) — File that contains block diagram sys has not changed on disk since the block
diagram was loaded.

Version History
Introduced in R2007b

2 Functions

2-1186

See Also
Topics
“Customize Build Process with STF_make_rtw_hook File” (Simulink Coder)
“Model File Change Notification”

 slIsFileChangedOnDisk

2-1187

slLibraryBrowser
Open, load, and close Simulink Library Browser, create and get handle of Library Browser object

Syntax
slLibraryBrowser
libraryhandle = slLibraryBrowser
slLibraryBrowser('open')
slLibraryBrowser('noshow')
slLibraryBrowser('close')

Description
slLibraryBrowser opens the Simulink Library Browser in standalone mode. For more information
on standalone mode, see Library Browser in Standalone Mode.

Note

• If you want to load the Simulink block library, use load_system simulink instead.
• If you want to start Simulink without opening any windows, use the faster start_simulink

instead.

libraryhandle = slLibraryBrowser creates the Library Browser object
LibraryBrowser.LBStandalone and returns the object handle. When you have the object handle,
you can use the object properties and functions to display, hide, size, position, and refresh the Library
Browser in standalone mode. For more information, see Library Browser in Standalone Mode,
LibraryBrowser.LBStandalone, show, hide, getPosition, setPosition, and refresh.

When you use slLibraryBrowser to get the object handle:

• If the Library Browser is open in standalone mode, the Library Browser window moves in front of
all other Simulink windows.

• If the Library Browser is not open in standalone mode, the Library Browser opens in standalone
mode.

Note You can also use LibraryBrowser.LibraryBrowser2 to create and get the handle of the
Library Browser object. LibraryBrowser.LibraryBrowser2 does not open a Library Browser in
standalone mode or move the Library Browser in front of other Simulink windows.

slLibraryBrowser('open') opens the Library Browser in standalone mode.

slLibraryBrowser('noshow') loads the Library Browser in memory without making it
visible. Use this to make future calls to slLibraryBrowser('open') faster.

slLibraryBrowser('close') closes the Library Browser in standalone mode.

2 Functions

2-1188

Examples

Open and Close Library Browser in Standalone Mode

slLibraryBrowser
slLibraryBrowser('close')

Load Library Browser and Get Handle

libraryhandle = slLibraryBrowser('noshow')

Limitations
The slLibraryBrowser function does not act on a docked Library Browser. To use the
slLibraryBrowser function, open the Library Browser in standalone mode by clicking the Launch

standalone library browser button .

Version History
Introduced in R2016a

R2016b: LibraryBrowser.LBStandalone object replaces
LibraryBrowser.LibraryBrowser2 object
Behavior changed in R2016b

In previous releases, these two commands returned a LibraryBrowser.LibraryBrowser2 object:

lb = slLibraryBrowser
lb = LibraryBrowser.LibraryBrowser2

Starting in R2016b, each command returns a LibraryBrowser.LBStandalone object. The
functions to access Library Browser operations such as show and refresh support
LibraryBrowser.LBStandalone objects.

See Also
Functions
LibraryBrowser.LibraryBrowser2 | simulink | start_simulink

Tools
Library Browser

Objects
LibraryBrowser.LBStandalone

Topics
“Add Blocks to Models Using Library Browser”

 slLibraryBrowser

2-1189

slLoadedToolstripComponents
Find loaded custom Simulink Toolstrip components

Syntax
components = slLoadedToolstripComponents

Description
components = slLoadedToolstripComponents returns the name, path, and persistence of
loaded custom Simulink Toolstrip components.

Examples

Remove Custom Tab by Finding Loaded Custom Simulink Toolstrip Components

Suppose you have a custom tab that you want to remove from the Simulink Toolstrip.

Find the loaded custom Simulink Toolstrip components. In the MATLAB Command Window, enter:

components = slLoadedToolstripComponents

components =

 1×2 struct array with fields:

 name
 path
 persisted

The function finds two loaded components.

Get information about the first component.

components(1)

ans =

 struct with fields:

 name: 'tools'
 path: 'B:\path\components\tools'
 persisted: 0

The function returns the name (tools), path (B:\path\components\tools), and persistence (0) of
the component. This component does not persist across MATLAB sessions.

Get information about the second component.

components(2)

2 Functions

2-1190

ans =

 struct with fields:

 name: 'custom'
 path: 'B:\path\customtab'
 persisted: 1

The function returns the name (custom), path (B:\path\customtab), and persistence (1) of the
component. This component persists across MATLAB sessions.

Inspect the JSON files in the B:\path\customtab\resources\json folder of the second
component to determine whether the second component defines the custom tab you want to remove.
Also check whether the component defines custom tabs that you want to keep.

Remove the custom tab by performing one of these actions:

• Remove the parent folder of the resources folder from the MATLAB path.
• Stop the custom Simulink Toolstrip component from persisting across MATLAB sessions by using

the slPersistToolstripComponent function.
• Rename the resources folder to prevent it from being found.
• Edit the JSON file that defines the custom tab.
• Destroy the custom Simulink Toolstrip component using the slDestroyToolstripComponent

function.

Then, reload the toolstrip configuration.

slReloadToolstripConfig;

Output Arguments
components — Name, path, and persistence of loaded components
structure array

Name, path, and persistence of loaded components, returned as a structure array.

Version History
Introduced in R2021b

See Also
slCreateToolstripComponent | slDestroyToolstripComponent |
slPersistToolstripComponent

Topics
“Create Custom Simulink Toolstrip Tabs”
“Add Prepopulated Custom Tab to Simulink Toolstrip”

 slLoadedToolstripComponents

2-1191

slmdldiscui
Open Model Discretizer GUI

Syntax
slmdldiscui
slmdldiscui('model')

Description
slmdldiscui opens the Model Discretizer. A model does not need to be open.

slmdldiscui('model') opens the Model Discretizer for the model or library called 'name'.

To use the Model Discretizer, you must have a Control System Toolbox license, version 5.2 or later.

Examples
Open the Model Discretizer for the slexAircraftExample model:

openExample('slexAircraftExample');
slmdldiscui('slexAircraftExample')

Open the Model Discretizer for the discretizing library:

slmdldiscui('discretizing')

Version History
Introduced before R2006a

See Also
sldiscmdl

Topics
“Aircraft Longitudinal Flight Control” on page 13-241
“Discretize a Model with the Model Discretizer”

2 Functions

2-1192

slPersistToolstripComponent
Specify whether custom Simulink Toolstrip component persists across MATLAB sessions

Syntax
slPersistToolstripComponent(component,persistence)

Description
slPersistToolstripComponent(component,persistence) specifies whether to add the path
for the specified custom Simulink Toolstrip component to the list of paths to restore for each MATLAB
session.

Examples

Remember Custom Simulink Toolstrip Component Across Sessions

Suppose you create a custom tab that you want to remain in the Simulink Toolstrip the next time you
open Simulink.

Specify that the component persists in future MATLAB sessions. For example, specify that a
component named custom persists across sessions. In the MATLAB Command Window, enter:

slPersistToolstripComponent("custom",true);

Input Arguments
component — Name of component to persist across sessions
character vector | string scalar

Name of component to persist across sessions, specified as a character vector or string scalar.
Data Types: char | string

persistence — Option for component to persist across sessions
true | false

Option for component to persist across sessions, specified as true or false.
Data Types: logical

Version History
Introduced in R2021b

See Also
slCreateToolstripComponent | slDestroyToolstripComponent |
slLoadedToolstripComponents

 slPersistToolstripComponent

2-1193

Topics
“Create Custom Simulink Toolstrip Tabs”
“Add Prepopulated Custom Tab to Simulink Toolstrip”

2 Functions

2-1194

slprofreport
(Not recommended) Regenerate profiler report from data, ProfileData, saved from previous run

Syntax
slprofreport(model_nameProfileData)

Description
When you run a model with the profiler enabled, the simulation generates the data and saves it in the
variable, model_nameProfileData. slprofreport(model_nameProfileData) generates a
profiler report based on the data in model_nameProfileData, saved from the model run.

Input Arguments
ProfileData

Variable containing profiler data from a model run. The variable name consists of the model name
and ProfileData, for example, vdpProfileData.

Default: None

Examples

Regenerate Simulink Profiler Results

Regenerate the Profiler report for model vdp

In the MATLAB Command Window, start the vdp model.

In the Simulink editor window, run vdp model with Simulink Profiler enabled.

Simulink stores the data to the variable vdpProfileData.

To review the report, in the MATLAB Command Window

slprofreport(vdpProfileData)

The Simulink Profiler Report window is displayed.

Version History
Introduced in R2012a

R2020a: slprofreport is not recommended
Not recommended starting in R2020a

 slprofreport

2-1195

Starting in R2020a, the slprofreport function is no longer recommended to load saved Simulink
Profiler reports. The reports are saved to a MAT file and can be directly loaded into the current
workspace.

For profiling reports saved before R2019b, you can use the slprofreport function to load the
report.

See Also
Topics
“Save Profiler Results”
“How Profiler Captures Performance Data”

2 Functions

2-1196

slproject.create
(Not recommended) Create blank project

Note slproject.create is not recommended. Use matlab.project.createProject instead.
For more information, see “Compatibility Considerations”.

Syntax
proj = slproject.create
proj = slproject.create(path)
proj = slproject.create(name)

Description
proj = slproject.create creates and opens a project using the blank project template from the
Simulink start page, and returns a project object. Use the project object to manipulate the currently
open project at the command line. The new project is created in the default project folder. To change
the default folder for new projects, on the MATLAB Home tab, click Preferences. In the Preferences
dialog box, on the MATLAB Project pane, set the Default folder.

proj = slproject.create(path) creates the project at the location specified by path.

proj = slproject.create(name) creates the project in the default folder, with the name
specified by name.

Examples

Create a Blank Project in the Default Folder
slproject.create

You can control the default folder for new projects using the project preferences.

Create a Blank Project in a Specified Folder
proj = slproject.create('C:\work\myprojectname');

Create a Named Blank Project in the Default Folder
proj = slproject.create('myprojectname');

Input Arguments
path — Path for the new project location
character vector

 slproject.create

2-1197

Path for the new project location, specified as a character vector. If you do not specify the path,
slproject.create creates the project in the default location. You can change the default location
in the project preferences.
Example: C:\work\projectname
Data Types: char

name — Name for the new project
character vector

Name for the new project, specified as a character vector.
Example: myproject
Data Types: char

Output Arguments
proj — Project
project object

Project, returned as a project object. Use the project object to manipulate the currently open project
at the command line.

Properties of proj output argument.

Project Property Description
Name Project name
Information Information about the project such as the

description, source control integration, repository
location, and whether it is a top-level project.

Dependencies Dependencies between project files in a MATLAB
digraph object.

Shortcuts Shortcut files in the project.
ProjectPath Folders that the project puts on the MATLAB

path.
ProjectReferences Folders that contain referenced projects.

Contains read-only project objects for referenced
projects.

Categories Categories of project labels.
Files Paths and names of project files.
RootFolder Full path to project root folder.

Version History
Introduced in R2017a

R2019a: Simulink project API is not recommended
Not recommended starting in R2019a

2 Functions

2-1198

Starting in R2019a, instead of simulinkproject and related functions, use the currentProject
or openProject functions in MATLAB. The Simulink project API will continue to be supported, but,
after R2019a, new features will be available only if you use the new MATLAB project API. There are
no plans to remove the Simulink project API at this time.

You can continue to use simulinkproject and related functions listed in
methods(simulinkproject). New functions added after R2019a, such as runChecks and
listImpactedFiles, do not work with simulinkproject. Use currentProject instead.

The new MATLAB project API is part of the R2019a functionality enabling you to use projects in
MATLAB, with or without Simulink. You can now share projects with users who do not have Simulink.

See Also
matlab.project.createProject | Simulink.createFromTemplate | addFile | addPath |
addFolderIncludingChildFiles | addReference | addShortcut

Topics
“Create and Reference a Project Programmatically” on page 13-505
“Automate Project Tasks Using Scripts”

 slproject.create

2-1199

slproject.getCurrentProject
(To be removed) Manipulate current project at command line

Note slproject.getCurrentProject will be removed in a future release. Use currentProject
instead.

Syntax
proj = slproject.getCurrentProject

Description
proj = slproject.getCurrentProject gets the current project open in the Project Tool and
returns a project object proj that you can use to manipulate the project programmatically. If no
project is open, then you see an error.

Note slproject.getCurrentProject is replaced by slproject.getCurrentProjects.

Examples

Get Airframe Example Project

Open the Airframe project and use slproject.getCurrentProject to get a project object to
manipulate the project at the command line.

sldemo_slproject_airframe
proj = slproject.getCurrentProject

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'
 Categories: [1x1 slproject.Category]
 Shortcuts: [1x8 slproject.Shortcut]
 ProjectPath: [1x7 slproject.PathFolder]
 ProjectReferences: [1x0 slproject.ProjectReference]
 Files: [1x30 slproject.ProjectFile]
 RootFolder: 'C:\Work\Simulink\Projects\slexamples\airframe'

Output Arguments
proj — Project
project object

Project, returned as a project object. Use the project object to manipulate the currently open project
at the command line.

2 Functions

2-1200

Version History
Introduced in R2013a

See Also
Functions
currentProject | simulinkproject | slproject.getCurrentProjects |
slproject.loadProject

 slproject.getCurrentProject

2-1201

slproject.getCurrentProjects
(Not recommended) List all top-level projects

Note slproject.getCurrentProjects is not recommended. Use
matlab.project.rootProject instead. For more information, see “Compatibility Considerations”.

Syntax
projects = slproject.getCurrentProjects

Description
projects = slproject.getCurrentProjects returns a list of all open top-level projects.
Currently only one or zero top-level projects can be loaded. Returns an object array of 1 or 0
ProjectManager objects projects that you can use to manipulate the project programmatically.
Use slproject.getCurrentProjects for project automation scripts.

If you execute slproject.getCurrentProjects inside a project shortcut, it returns only the
project that the shortcut belongs to. If the shortcut belongs to a referenced project, it returns the
referenced project.

Examples

Get Airframe Example Project

Open the Airframe project and use slproject.getCurrentProjects to get a project object to
manipulate the project at the command line.

sldemo_slproject_airframe
proj = slproject.getCurrentProjects

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'
 Categories: [1x1 slproject.Category]
 Shortcuts: [1x8 slproject.Shortcut]
 ProjectPath: [1x7 slproject.PathFolder]
 ProjectReferences: [1x0 slproject.ProjectReference]
 Files: [1x30 slproject.ProjectFile]
 RootFolder: 'C:\Work\Simulink\Projects\airframe'

Find Project Commands

Open the airframe project and create a project object.

2 Functions

2-1202

sldemo_slproject_airframe
proj = slproject.getCurrentProject

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'
 Categories: [1x1 slproject.Category]
 Shortcuts: [1x8 slproject.Shortcut]
 ProjectPath: [1x7 slproject.PathFolder]
 ProjectReferences: [1x0 slproject.ProjectReference]
 Files: [1x30 slproject.ProjectFile]
 RootFolder: 'C:\Work\Simulink\Projects\airframe'

Find out what you can do with your project.

methods(proj)

Methods for class slproject.ProjectManager:

addFile findCategory
addFolderIncludingChildFiles findFile
close isLoaded
createCategory listModifiedFiles
export refreshSourceControl

reload
removeCategory
removeFile

Examine Project Properties

After you get a project object, you can examine project properties.

Open the airframe project and create a project object.

sldemo_slproject_airframe
proj = slproject.getCurrentProjects;

Examine the project files.

files = proj.Files

files =

 1x30 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Examine the labels of the eighth file.

proj.Files(8).Labels

 slproject.getCurrentProjects

2-1203

ans =

 Label with properties:

File: 'C:\Work\airframe\data\system_model.sldd'
 Data: []
 DataType: 'none'
 Name: 'Design'
 CategoryName: 'Classification'

Get a particular file.

myfile = findFile(proj, 'models/AnalogControl.slx')

myfile =

 ProjectFile with properties:

 Path: 'C:\Temp\airframe\models\AnalogControl.slx'
 Labels: [1x1 slproject.Label]
 Revision: '2'
SourceControlStatus: Unmodified

Find out what you can do with the file.

methods(myfile)

Methods for class slproject.ProjectFile:

addLabel
removeLabel
findLabel

Output Arguments
projects — Projects
object array of 1 or 0 ProjectManager objects

Projects, returned as an object array of 1 or 0 ProjectManager objects. Use the project object to
manipulate the currently open project at the command line.

Properties of ProjectManager objects in output argument.

Project Property Description
Name Project name
Categories Categories of project labels
Shortcuts Shortcut files in project
ProjectPath Folders that the project puts on the MATLAB

path
ProjectReferences Folders that contain referenced projects
Files Paths and names of project files
RootFolder Full path to project root folder

2 Functions

2-1204

Tips
Alternatively, you can use simulinkproject to get a project object, but simulinkproject also
opens and gives focus to the Project Tool. Use simulinkproject to open projects and explore
projects interactively. Use slproject.getCurrentProjects for project automation scripts.

Version History
Introduced in R2016a

R2019a: Simulink project API is not recommended
Not recommended starting in R2019a

Starting in R2019a, instead of simulinkproject and related functions, use the currentProject
or openProject functions in MATLAB. The Simulink project API will continue to be supported, but,
after R2019a, new features will be available only if you use the new MATLAB project API. There are
no plans to remove the Simulink project API at this time.

You can continue to use simulinkproject and related functions listed in
methods(simulinkproject). New functions added after R2019a, such as runChecks and
listImpactedFiles, do not work with simulinkproject. Use currentProject instead.

The new MATLAB project API is part of the R2019a functionality enabling you to use projects in
MATLAB, with or without Simulink. You can now share projects with users who do not have Simulink.

See Also
Functions
matlab.project.rootProject | simulinkproject | slproject.loadProject |
slproject.getCurrentProject

 slproject.getCurrentProjects

2-1205

slproject.loadProject
(Not recommended) Load project

Note simulinkproject is not recommended. Use currentProject or openProject instead. For
more information, see “Compatibility Considerations”.

Syntax
slproject.loadProject(projectPath);
proj = slproject.loadProject(projectPath)

Description
slproject.loadProject(projectPath); loads the project specified by the .prj file or folder
projectPath in the Project Tool, and closes any currently open project.

proj = slproject.loadProject(projectPath) loads the project and returns a project object
proj for manipulating the project. Use slproject.loadProject for project automation scripts.

Examples

Load Project

Load a project from a folder called 'C:/projects/project1/'. Replace this path with the location
of your project.

proj = slproject.loadProject('C:/projects/project1/')

Get Airframe Example Project

Open the Airframe project and use slproject.getCurrentProjects to get a project object to
manipulate the project at the command line.

sldemo_slproject_airframe
proj = slproject.getCurrentProjects

proj =

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'
 Categories: [1x1 slproject.Category]
 Shortcuts: [1x8 slproject.Shortcut]
 ProjectPath: [1x7 slproject.PathFolder]
 ProjectReferences: [1x0 slproject.ProjectReference]

2 Functions

2-1206

 Files: [1x30 slproject.ProjectFile]
 RootFolder: 'C:\Work\Simulink\Projects\airframe'

Find Project Commands

Get the Airframe project.

sldemo_slproject_airframe
proj = slproject.getCurrentProjects;

Find project commands.

methods(proj)

Methods for class slproject.ProjectManager:

addFile findCategory
addFolderIncludingChildFiles findFile
close isLoaded
createCategory listModifiedFiles
export refreshSourceControl

reload
removeCategory
removeFile

Examine Project Properties

After you get a project object, you can examine project properties.

Get the airframe project.

sldemo_slproject_airframe
proj = slproject.getCurrentProjects;

Examine the project files.

files = proj.Files

files =

 1x30 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Examine the labels of the 13th file.

proj.Files(13).Labels

ans =

 slproject.loadProject

2-1207

 Label with properties:

File: 'C:\Temp\airframe\models\AnalogControl.slx'
 Data: []
 DataType: 'none'
 Name: 'Design'
 CategoryName: 'Classification'

Get a particular file by name.

myfile = findFile(proj, 'models/AnalogControl.slx')

myfile =

 ProjectFile with properties:

 Path: 'C:\Temp\airframe\models\AnalogControl.slx'
 Labels: [1x1 slproject.Label]
 Revision: '2'
SourceControlStatus: Unmodified

Find out what you can do with the file.

methods(myfile)

Methods for class slproject.ProjectFile:

addLabel
removeLabel
findLabel

Input Arguments
projectPath — Full path to project file or folder
character vector

Full path to project .prj file or the path to the project root folder, specified as a character vector.
Example: 'C:/projects/project1/myProject.prj'
Example: 'C:/projects/project1/'

Output Arguments
proj — Project
project object

Project, returned as a project object. Use the project object to manipulate and explore the project at
the command line.

Properties of proj output argument.

Project Property Description
Name Project name
Categories Categories of project labels

2 Functions

2-1208

Project Property Description
Shortcuts Shortcut files in project
ProjectPath Folders that the project puts on the MATLAB

path
ProjectReferences Folders that contain referenced projects
Files Paths and names of project files
RootFolder Full path to project root folder

Version History
Introduced in R2013a

R2019a: Simulink project API is not recommended
Not recommended starting in R2019a

Starting in R2019a, instead of simulinkproject and related functions, use the currentProject
or openProject functions in MATLAB. The Simulink project API will continue to be supported, but,
after R2019a, new features will be available only if you use the new MATLAB project API. There are
no plans to remove the Simulink project API at this time.

You can continue to use simulinkproject and related functions listed in
methods(simulinkproject). New functions added after R2019a, such as runChecks and
listImpactedFiles, do not work with simulinkproject. Use currentProject instead.

The new MATLAB project API is part of the R2019a functionality enabling you to use projects in
MATLAB, with or without Simulink. You can now share projects with users who do not have Simulink.

See Also
Functions
simulinkproject | slproject.getCurrentProjects

Topics
“What Are Projects?”

 slproject.loadProject

2-1209

sl_refresh_customizations
Refresh customizations in the current MATLAB session

Syntax
sl_refresh_customizations

Description
sl_refresh_customizations:

• Runs all sl_customization.m files on the MATLAB path and in the current folder
• Rebuilds the Simulink Toolstrip
• Rebuilds all Simulink Editor menus
• Rebuilds the Simulink Library Browser menus and toolbars
• Clears the Library Browser cache and refreshes the Library Browser
• Reloads the Viewers and Generators Manager data

Examples

Refresh Library Browser and Toolstrip Tab

Use the sl_refresh_customizations command to show the changes that an
sl_customization.m file makes to the order of the libraries in the Simulink Library Browser and
the changes that a modified JSON file makes to the Simulink Toolstrip. Start by changing the order of
the libraries in the Library Browser. By default, the libraries are listed in ascending order of priority,
and libraries that have the same priority are in alphabetical order. The Simulink library has a sort
priority of -1. All other libraries have a sort priority of 0. The Simulink library is the first library
listed in the browser because it has the highest priority.

Open a blank model in Simulink.

Open the Simulink Library Browser. The first library listed in the browser is the Simulink library.

Create an sl_customization.m file that gives the Simulink Extras library a priority of -2. This
priority is higher than that of the Simulink library.

function sl_customization(cm)
 cm.LibraryBrowserCustomizer.applyOrder({'Simulink Extras',-2});
end

Save the sl_customization.m file to the MATLAB path.

Check the Simulink Library Browser. The order of the libraries is unchanged.

2 Functions

2-1210

Now, modify the toolstrip. Create an empty custom toolstrip tab by entering this in the MATLAB
Command Window.

slCreateToolstripComponent("custom");
slCreateToolstripTab("customTab","custom",Title="CUSTOM TAB");

In the customTab.json file that is generated, change the title of the tab from CUSTOM TAB to NEW
NAME.

{
 "version": "1.0",
 "entries":
 [
 {
 "type": "Tab",
 "id": "customTab",
 "title": "NEW TAB"
 }
]
}

Save the customTab.json file.

Check the title of the custom tab. Even though the title in the customTab.json file is now NEW
NAME, the title displayed in the toolstrip is still CUSTOM TAB.

To see your changes implemented on the Library Browser and toolstrip, rebuild both with this single
command.

sl_refresh_customizations

Check the Library Browser. The order of the libraries has changed: the Simulink Extras library is
above the Simulink library.

 sl_refresh_customizations

2-1211

Check the toolstrip. The name of the custom tab has changed from CUSTOM TAB to NEW TAB.

Tips
If you only need to refresh the Library browser displayed in the current MATLAB session, you can
also do so using the refresh command.

If you only need to refresh the toolstrip displayed in the current MATLAB session, you can also do so
using the slReloadToolstripConfig command.

Version History
Introduced in R2022a

See Also
refresh | slReloadToolstripConfig

Topics
“Disable a Button on a Dialog Box”
“Convert Toolbar Menu into Toolstrip Tab” on page 2-1137
“Reorder Libraries”
“Register Customizations with Simulink”

2 Functions

2-1212

slReloadToolstripConfig
Reload Simulink Toolstrip configuration

Syntax
slReloadToolstripConfig

Description
slReloadToolstripConfig reloads the Simulink Toolstrip configuration. Use this function after
you make changes to the JSON files that define custom tabs.

Examples

Reload Simulink Toolstrip

After you modify a JSON file that defines a custom tab, use the slReloadToolstripConfig
function to reload the toolstrip configuration with your changes.

In the MATLAB Command Window, enter:

slReloadToolstripConfig;

The function searches the MATLAB path for resources folders that contain a valid
sl_toolstrip_plugins.json file.

To temporarily modify the toolstrip configuration, perform one of these actions before you call this
function:

• Add folders that contain resources folders to the MATLAB path.
• Remove folders that contain resources folders from the MATLAB path.

If the custom tab does not appear:

• Debug and correct errors in the JSON code.
• Add the folder that contains the corresponding resources folder to the MATLAB path.

Version History
Introduced in R2021b

See Also
slCreateToolstripComponent | slCreateToolstripTab | sl_refresh_customizations |
slToolstripDeveloperMode

Topics
“Create Custom Simulink Toolstrip Tabs”

 slReloadToolstripConfig

2-1213

“Add Prepopulated Custom Tab to Simulink Toolstrip”

2 Functions

2-1214

slResetFavoriteCommands
Reset Simulink Favorite Commands gallery

Syntax
backup = slResetFavoriteCommands

Description
backup = slResetFavoriteCommands resets the Simulink Favorite Commands gallery and
saves a backup of the previous state of the gallery.

Examples

Reset Simulink Favorite Commands Gallery

Suppose you want to delete all the commands and custom categories in the Simulink Favorite
Commands gallery.

In the MATLAB Command Window, enter:

slResetFavoriteCommands;

Output Arguments
backup — Backup of previous state
character vector

Backup of previous state, returned as a character vector.

To restore the previous state, you can pass the returned value as the input to the
slImportFavoriteCommands function and overwrite the current state.

Version History
Introduced in R2021b

See Also
slImportFavoriteCommands | slExportFavoriteCommands

Topics
“Access Frequently Used Features and Commands in Simulink”

 slResetFavoriteCommands

2-1215

slsim.allowedModelChanges
Determine changes you can make to model based on simulation status

Syntax
changeLevel = slsim.allowedModelChanges(mdl)

Description
changeLevel = slsim.allowedModelChanges(mdl) returns a string, changeLevel, that
indicates the types of changes you can make to the model mdl based on the simulation status of the
model.

Use this function to control the execution of code that modifies a model and runs during simulation,
including model, block, and simulation callback functions. You can also use this function to check
which changes are allowed in iterative simulation workflows that use fast restart.

Examples

Check Which Changes Are Allowed for Model

Open and simulate the model sldemo_autotrans.

mdl = "sldemo_autotrans";
open_system(mdl)
out = sim(mdl,"ReturnWorkspaceOutputs","on");

Use the slsim.allowedModelChanges function to check which kinds of changes you can make to
the model. Use the get_param function to check the simulation status.

changeLevel = slsim.allowedModelChanges(mdl)

changeLevel =
'any'

simStatus = get_param(mdl,"SimulationStatus")

simStatus =
'stopped'

Because the model does not have fast restart enabled, the model does not stay compiled between
simulations, and you can make any change to the model between simulations, including structural
changes.

Suppose you want to run a set of simulations for each input scenario in the file the Signal Editor
block loads. Enable fast restart so that you only need to compile the model once in that set of
simulations.

set_param(mdl,"FastRestart","on")

Simulate the model again.

2 Functions

2-1216

out = sim(mdl);

Check which changes are allowed and the simulation status. Because the model has fast restart
enabled, the model remains compiled after the simulation finishes, and you cannot make structural
changes to the model. You can change only run-to-run and runtime tunable parameters.

changeLevel = slsim.allowedModelChanges(mdl)

changeLevel =
'runtorun'

simStatus = get_param(mdl,"SimulationStatus")

simStatus =
'compiled'

Disable fast restart for the model.

set_param(mdl,"FastRestart","off")

Check which changes are allowed and the simulation status.

changeLevel = slsim.allowedModelChanges(mdl)

changeLevel =
'any'

simStatus = get_param(mdl,"SimulationStatus")

simStatus =
'stopped'

Input Arguments
mdl — Name of model to be modified
string | character vector

Name of model to be modified, specified as a string or a character vector.
Example: "vdp"
Data Types: char | string

Output Arguments
changeLevel — Changes allowed for simulation status of model
"any" | "runtorun" | "runtime" | "none"

Changes allowed for simulation status of model, returned as one of these options:

• "any" — All types of changes are allowed, including structural changes and tuning run-to-run and
runtime tunable parameters.

• "runtorun" — Only changes to run-to-run and runtime tunable parameters are allowed.
Structural changes to the model are not allowed.

• "runtime" — Only changes to runtime tunable parameters are allowed. Structural changes and
changes to run-to-run tunable parameters are not allowed.

 slsim.allowedModelChanges

2-1217

• "none" — No changes to the model are allowed.

Version History
Introduced in R2022b

See Also
set_param

Topics
“Tune and Experiment with Block Parameter Values”
“Run Simulations Programmatically”
“Model Callbacks”
“Block Callbacks”
“Initialize Mask”

2 Functions

2-1218

slToolstripDeveloperMode
Enable developer mode for Simulink Toolstrip

Syntax
tf = slToolstripDeveloperMode(status)

Description
tf = slToolstripDeveloperMode(status) enables a developer mode that lets you get action
and icon names for controls, such as push buttons, in the Simulink Toolstrip. You can use the action
name to add a control that performs the same action to a custom tab. For an example, see “Specify
Built-In Simulink Actions”. You can use the icon name to add a control that has the same icon to a
custom tab. For an example, see “Define Custom Actions”.

To activate developer mode, set status to 'on'. Then, click anywhere on the Simulink Toolstrip.

If you click away from the Simulink Toolstrip, developer mode is temporarily deactivated. To
reactivate developer mode, click anywhere on the Simulink Toolstrip.

When developer mode is active, to display the action and icon names in the MATLAB Command
Window, pause on the control in the Simulink Toolstrip and press Ctrl. On a Mac, press command
(⌘) instead of Ctrl.

Examples

Enable Simulink Toolstrip Developer Mode

In the MATLAB Command Window, enable developer mode for the Simulink Toolstrip.

slToolstripDeveloperMode('on')

ans =

 logical

 0

The function enables developer mode for the Simulink Toolstrip. The returned value indicates that
developer mode was not enabled before you entered this command.

To activate developer mode, click anywhere on the Simulink Toolstrip.

On the Simulink Toolstrip, pause your pointer on a control. For example, pause on the Library
Browser button.

Press Ctrl. The output in the MATLAB Command Window shows the shows the action and icon names
for the button.

 slToolstripDeveloperMode

2-1219

Action: showLibraryBrowserELBAction
Icon: libraryBrowser

Input Arguments
status — Desired status of developer mode
on/off logical value

Desired status of developer mode, specified as specified as 'on' or 'off', or as numeric or logical 1
(true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus,
you can use the value of this property as a logical value. The value is stored as an on/off logical value
of type matlab.lang.OnOffSwitchState.

By default, developer mode for the Simulink Toolstrip is disabled. Enable developer mode when you
want to get the action and icon names of items in the Simulink Toolstrip.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char

Output Arguments
tf — Previous status of developer mode
1 | 0

Previous status of developer mode, returned as a 1 or 0 of data type logical.

Version History
Introduced in R2021b

See Also
slCreateToolstripComponent | slCreateToolstripTab | slReloadToolstripConfig |
sl_refresh_customizations

Topics
“Create Custom Simulink Toolstrip Tabs”
“Disable Simulink Toolstrip and Context Menu Actions”

2 Functions

2-1220

slxcinfo
Query contents of Simulink cache files

Syntax
info = slxcinfo(filename)

Description
info = slxcinfo(filename) creates a MATLAB table that lists the contents of the specified
Simulink cache file. The table information includes the corresponding Simulink model name, MATLAB
release, platform, and target type.

Examples

Query Contents of Simulink Cache File

Suppose you have a Simulink cache file named model.slxc. To return a table that lists the artifacts
in the Simulink cache file, you would enter:

info = slxcinfo('model.slxc')

info =

 7×4 table

 Model Release Platform Target
 _______ ________ ________ __________________________________

 "model" "R2020a" "all" "Variable usage information"
 "model" "R2020a" "win64" "Rapid accelerator target"
 "model" "R2020a" "win64" "Accelerator target"
 "model" "R2020b" "all" "Variable usage information"
 "model" "R2020b" "win64" "Rapid accelerator target"
 "model" "R2020b" "win64" "Accelerator target"
 "model" "R2020b" "win64" "grt | Top model | Model specific"

Input Arguments
filename — Name or path of Simulink cache file
character vector | string scalar

Name or path of the Simulink cache file, including the .slxc extension, specified as a character
vector or string scalar.
Example: slxcinfo('model.slxc')
Data Types: char | string

Output Arguments
info — Simulink cache file contents
MATLAB table

 slxcinfo

2-1221

Simulink cache file contents, returned as a MATLAB table.

Alternative Functionality
In the Current Folder browser, double-click the Simulink cache file to open the Simulink cache report.

Version History
Introduced in R2020b

See Also
slxcunpack

Topics
“Share Simulink Cache Files for Faster Simulation”
“Simulink Cache Files for Incremental Code Generation” (Simulink Coder)

2 Functions

2-1222

slxcunpack
Unpack simulation and code generation targets from Simulink cache file

Syntax
info = slxcunpack(filename)
info = slxcunpack(filename,Name,Value)

Description
info = slxcunpack(filename) unpacks the simulation and code generation artifacts from the
specified Simulink cache file for the current platform and MATLAB release. Code generation artifacts
must apply to the current system target file and folder configuration.

When using this function, consider these limitations:

• Do not use this function during model callbacks, model updates, simulation, or code generation.
This function loads the model associated with the Simulink cache file.

• Do not use this function as part of asynchronous functions, such as parfor and parfeval.
• The contents of the Simulink cache file might be out of date. Simulation and code generation can

update the artifacts on disk and in the Simulink cache file.

info = slxcunpack(filename,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Unpack Artifacts from Simulink Cache File

Suppose you have this setup:

• R2020b MATLAB release
• 64-bit Windows operating system
• grt.tlc system target file — For more information, see System target file.
• Model specific code generation folder structure — For more information, see Code

generation folder structure.

And you have two Simulink cache files:

• topmodel.slxc is a Simulink cache file for the top model in a model hierarchy.
• refmodel.slxc is a Simulink cache file for the only referenced model in the model hierarchy.

To unpack the simulation and code generation artifacts that correspond to your setup from the
Simulink cache file, you would enter:

info = slxcunpack('topmodel.slxc')

info =

 slxcunpack

2-1223

 5×4 table

 Model Release Platform Target
 __________ ________ ________ __

 "topmodel" "R2020b" "win64" "Rapid accelerator target"
 "topmodel" "R2020b" "win64" "Accelerator target"
 "topmodel" "R2020b" "win64" "grt | Top model | Model specific"
 "refmodel" "R2020b" "win64" "Model reference simulation target"
 "refmodel" "R2020b" "win64" "grt | Model reference | Model specific"

The returned table lists the artifacts that the function unpacks into the Simulation cache folder and
Code generation folder.

Unpack Only Simulation Artifacts from Simulink Cache File

Suppose you have this setup:

• R2020b MATLAB release
• 64-bit Windows operating system

And you have two Simulink cache files:

• topmodel.slxc is a Simulink cache file for the top model in a model hierarchy.
• refmodel.slxc is a Simulink cache file for the only referenced model in the model hierarchy.

To unpack the simulation artifacts that correspond to your setup from the Simulink cache file and
display status messages, you would enter:

info = slxcunpack('topmodel.slxc','Target','Simulation','Verbose',true)

Rapid accelerator target for 'topmodel': Unpacked.
Accelerator target for 'topmodel': Unpacked.
Model reference simulation target for 'refmodel': Unpacked.

info =

 3×4 table

 Model Release Platform Target
 __________ ________ ________ ___________________________________

 "topmodel" "R2020b" "win64" "Rapid accelerator target"
 "topmodel" "R2020b" "win64" "Accelerator target"
 "refmodel" "R2020b" "win64" "Model reference simulation target"

The returned table lists the artifacts that the function unpacks into the Simulation cache folder.

Input Arguments
filename — Name of Simulink cache file
character vector | string scalar

Name of the Simulink cache file, including the .slxc extension, specified as a character vector or
string scalar.

Note The Simulink cache file must be in the Simulation cache folder, which, by default, is the
current working folder (pwd).

2 Functions

2-1224

Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: slxcunpack('model.slxc','Target','Simulation')

Target — Type of target to unpack
'All' (default) | 'Simulation' | 'CodeGeneration'

Type of target to unpack, specified as the comma-separated pair consisting of 'Target' and 'All',
'Simulation', or 'CodeGeneration'. If 'All', the function unpacks both simulation and code
generation targets.

The unpacked simulation targets can be accelerator targets, rapid accelerator targets, and model
reference simulation targets.
Data Types: char | string

UnpackReferencedModels — Option to unpack referenced model targets
true (default) | false

Option to unpack referenced model targets, specified as the comma-separated pair consisting of
'UnpackReferencedModels' and true or false. If true, the function also unpacks the Simulink
cache files that correspond to referenced models.
Data Types: logical

Verbose — Option to display status messages
false (default) | true

Option to display status messages, specified as the comma-separated pair consisting of 'Verbose'
and true or false.
Data Types: logical

Output Arguments
info — Unpacked Simulink cache file contents
MATLAB table

Unpacked Simulink cache file contents, returned as a MATLAB table.

Version History
Introduced in R2020b

 slxcunpack

2-1225

See Also
Functions
slxcinfo

Model Settings
Simulation cache folder | Code generation folder | Code generation folder structure | System
target file

Topics
“Share Simulink Cache Files for Faster Simulation”
“Simulink Cache Files for Incremental Code Generation” (Simulink Coder)

2 Functions

2-1226

solverprofiler.profileModel
Examine model for performance analysis using the Solver Profiler programmatic interface

Syntax
res = solverprofiler.profileModel(model)
res = solverprofiler.profileModel(model, Name,Value)

Description
res = solverprofiler.profileModel(model) runs the Solver Profiler on the specified model
and stores the results in res.

res = solverprofiler.profileModel(model, Name,Value)specifies the Solver Profiler
parameters using one or more Name, Value arguments.

Examples

Examine a Model with Default Settings

Examine the model f14 using the default settings.

model = 'f14';
res = solverprofiler.profileModel(model);

Inspect the summary of the results.

res.summary

 struct with fields:

 solver: 'ode45'
 tStart: 0
 tStop: 60
 absTol: 1.0000e-06
 relTol: 1.0000e-04
 hMax: 0.1000
 hAverage: 0.0444
 steps: 1352
 profileTime: 0.9974
 zcNumber: 0
 resetNumber: 600
 jacobianNumber: 0
 exceptionNumber: 195

Open the results in the Solver Profiler to visualize them. This step is equivalent to enabling OpenSP
when calling the function.

solverprofiler.exploreResult(res)

 solverprofiler.profileModel

2-1227

Configure Solver Profiler and Examine a Model

Examine the model ssc_actuator_custom_pneumatic with a fully specified configuration.

model = 'ssc_actuator_custom_pneumatic';
res = solverprofiler.profileModel(model, ...
 'SaveStates' , 'On', ...
 'SaveZCSignals', 'On',...
 'SaveSimscapeStates' , 'On', ...
 'SaveJacobian' , 'On', ...
 'StartTime' , 5, ...
 'StopTime' , 50, ...
 'BufferSize', 10000,...
 'TimeOut', 5,...
 'OpenSP', 'On',...
 'DataFullFile', fullfile(pwd, 'ssc_profiling_result.mat'));

Input Arguments
model — Name of model to profile
string | character vector

Name of model to profile, specified as a string or a character vector.
Example: h = solverprofiler.profileModel('vdp')

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'StartTime',0,'StopTime',10,'SaveStates','On'

SaveStates — Save model states to file
off (default) | on

By default, the profiler does not save the states of the model. Enabling this parameter configures the
profiler to save the states to a MAT-file.
Example: 'SaveStates','On'

SaveSimscapeStates — Save Simscape states to file
off (default) | on

Enable this parameter to save Simscape states to a MAT-file.
Example: 'SaveSimscapeStates', 'On'

SaveJacobian — Save model Jacobian
off (default) | on

Option to log the solver Jacobian matrices to memory. This option is useful for simulations that use
implicit solvers. For a comparison of solvers, see “Compare Solvers”.
Example: 'SaveJacobian', 'On'

2 Functions

2-1228

SaveZCSignals — Save zero-crossing signal to MAT file
off (default) | on

Option to save the zero-crossing signal to a MAT file, specified as either 'off' or 'on'.
Example: 'SaveZCSignals', 'On'

StartTime — Profiler start time
model start time (default) | scalar

Time, in seconds, of the simulation that the profiler starts analyzing the model. This is not the same
as the start time of the simulation.
Example: 'StartTime',5

StopTime — Profiler stop time
model stop time (default) | scalar

Time, in seconds, of the simulation to which the profiler should profile the model. By default, the
analysis continues until the end of the simulation. Changing this parameter does not change the stop
time of the model which you specify in the Model Configuration Parameters.

A value less than the configured stop time of the model stops the profiling and simulation at
StopTime.
Example: 'StopTime',30

BufferSize — Memory impact of logging
50000 (default) | positive scalar

Maximum number of events that are logged. If the number of logged events reaches this value and
memory is available, increase BufferSize. If memory is limited, consider lowering the value.
Example: 'BufferSize',60000

TimeOut — Maximum time to wait for solver to resume
positive scalar

Time, in seconds, to wait before the profiler stops running. This option is useful in situations where
the simulation is unable to proceed. The profiler waits for the specified time and quits if no progress
has been made.
Example: 'TimeOut', 10

OpenSP — Open the Solver Profiler dialog box
off (default) | on

Option to open the Solver Profiler dialog box after profiling has completed.
Example: 'OpenSP','On'

DataFullFile — Path and name of saved results
character vector of full file path

By default, the profiling results are saved in a MAT-file named
model_@_dd_Month_yyyy_hh_mm_ss.mat in the current working folder. You can specify a different
file name by which to save the results in the current working folder. To save the file in a different
location, specify the full path of the file, including the file name.

 solverprofiler.profileModel

2-1229

Example: 'DataFullFile','C:\Users\myusername\Documents\profiled
\vdp_results.mat'

Output Arguments
res — High-level summary of profiling results
structure

Profiling results, returned as a structure with the fields:

file — Full path and name of saved results
character vector

Path and name of the MAT-file where the results of the profiling operation are stored as MAT file. By
default, they are stored in the current working folder with a file name having the pattern:
model_@_dd_Month_yyyy_hh_mm_ss.mat. To store them in a different location or by a different
name, specify DataFullFile when calling solverprofiler.profileModel.

summary — Summary of profiling results
structure

A high-level summary of the results of the profiling operation, returned as a structure. The summary
provides an overview of the performance of the simulation and health of the model.

The summary structure contains these fields.

Field Purpose Values Description
solver Solver used by

simulation
any of the solvers
supported by Solver
Profiler

Solver used by the simulation as configured
in the Configuration Parameters for the
model. For a list of all the solvers, see
Solver. The Solver Profiler does not support
models without any continuous states.

tStart Start time of
simulation

scalar Start time, in seconds, for the simulation of
the model during the profiling operation.

tStop Stop time of
simulation

scalar Stop time, in seconds, of the simulation
during the profiling operation. If StopTime
is set to be earlier than the configured Stop
Time of the model, the simulation stops at
StopTime.

absTol Absolute tolerance of
the solver

positive scalar Absolute tolerance of the solver as
specified in the configuration settings for
the model. For more information, see
Absolute tolerance

relTol Relative tolerance of
the solver

positive scalar Relative tolerance of the solver as specified
in the configuration settings of the model.
For more information, see Relative
tolerance

hMax Maximum step size positive scalar Largest time step that the solver can take.
See Max step size.

2 Functions

2-1230

Field Purpose Values Description
hAverag
e

Average step size positive scalar Average size of the time step taken by the
solver.

steps Total steps taken positive scalar Total number of time steps taken by the
solver.

profile
Time

Time to profile positive scalar Time, in seconds, taken by the Solver
Profiler to examine the model.

zcNumbe
r

Total number of zero
crossings

nonnegative scalar Number of times zero crossings occur
during the simulation of the model. The
detection of these zero crossings incurs
computational cost and can slow down the
simulation. For information on zero-
crossing detection, see “Zero-Crossing
Detection”.

resetNu
mber

Number of solver
resets

nonnegative scalar Number of times the solver has to reset its
parameters.

jacobia
nNumber

Number of Jacobian
updates

nonnegative scalar Number of times the solver Jacobian matrix
is updated during a simulation. For more
information, see “Explicit Versus Implicit
Continuous Solvers”.

excepti
onNumbe
r

Number of solver
exceptions

nonnegative scalar Total number of solver exceptions
encountered during a simulation. These
exceptions are events where the solver is
unable to solve the model states to the
specified accuracy. As a result, the solver
runs adjusted trials which increase
computational cost.

Data Types: struct

Version History
Introduced in R2017b

See Also
“Examine Model Dynamics Using Solver Profiler”

Topics
“Solver Selection Criteria”
“Choose a Solver”

 solverprofiler.profileModel

2-1231

start_simulink
Start Simulink without opening any windows

Syntax
start_simulink

Description
start_simulink starts Simulink without opening any models, the Start Page, or the Simulink
Library Browser. Use this in startup scripts to start Simulink without any other window taking the
focus away from the MATLAB Desktop. For example, use start_simulink in the MATLAB
startup.m file, when starting MATLAB with the -r command line option, or in project startup
scripts. Opening a model for the first time in a MATLAB session is much quicker after running
start_simulink.

If you want to open the Simulink Start Page to create or open models, use the simulink function
instead.

If you want to open the Library Browser, use slLibraryBrowser.

Examples

Start Simulink When Starting MATLAB

Use the -r command line option to start Simulink when starting MATLAB, without opening any
windows.

On Windows, in the operating system prompt, enter:

"matlabroot\bin\win64\matlab.exe" -r start_simulink

Alternatively, create a desktop shortcut. Right-click the desktop and select New > Shortcut.

On Linux and Mac, enter:

matlab -r start_simulink

Version History
Introduced in R2015b

See Also
simulink | slLibraryBrowser | openProject

Topics
“Automate Startup Tasks”

2 Functions

2-1232

stringtype
Create string data type

Syntax
string = stringtype(maximum_length)
stringtype(maximum_length)

Description
string = stringtype(maximum_length) creates a Simulink string data type with a maximum
length. Alternatively, you can also create string data types using the String Constant, String
Concatenate, and Compose String blocks.

stringtype(maximum_length) creates a Simulink string data type with a maximum length that
you can type directly on the MATLAB command line or in the Output data type parameter of the
String Constant, String Concatenate, or Compose String block.

Tip Specifying stringtype(0) creates a string data type with no maximum length. This syntax is
the same as specifying string for Simulink block data types.

Examples

Create a String Data Type of Maximum Length 10

Create a string data type of maximum length 10.

h=stringtype(10)

h =

 StringType with properties:

 MaximumLength: 10
 Description: ''
 DataScope: 'Auto'
 HeaderFile: ''

Input Arguments
maximum_length — Maximum length
scalar

Maximum length of string data type, specified as a scalar, from 1 to 32766. This value can be an
integer, MATLAB variable, or MATLAB expression.
Data Types: double

 stringtype

2-1233

Output Arguments
string — String data type object
scalar

String object, specified as a scalar.

Version History
Introduced in R2018a

See Also
ASCII to String | Compose String | Scan String | String Compare | String Concatenate | String
Constant | String Find | String Length | String to Double | String to Single | String To Enum | String
To ASCII | Substring | To String

Topics
“Simulink Strings”

2 Functions

2-1234

trim
Find trim point of dynamic system

Syntax
[x,u,y,dx] = trim('sys')
[x,u,y,dx] = trim('sys',x0,u0,y0)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx)
[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options)
[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options,t)

Description

Note trim provides only basic trimming functionality. For full trimming functionality, use Simulink
Control Design software. For more information, see “Compute Steady-State Operating Points”
(Simulink Control Design).

A trim point, also known as an equilibrium point, is a point in the parameter space of a dynamic
system at which the system is in a steady state. For example, a trim point of an aircraft is a setting of
its controls that causes the aircraft to fly straight and level. Mathematically, a trim point is a point
where the system's state derivatives equal zero. trim starts from an initial point and searches, using
a sequential quadratic programming algorithm, until it finds the nearest trim point. You must supply
the initial point implicitly or explicitly. If trim cannot find a trim point, it returns the point
encountered in its search where the state derivatives are closest to zero in a min-max sense; that is, it
returns the point that minimizes the maximum deviation from zero of the derivatives. trim can find
trim points that meet specific input, output, or state conditions, and it can find points where a system
is changing in a specified manner, that is, points where the system's state derivatives equal specific
nonzero values.

[x,u,y,dx] = trim('sys') finds the equilibrium point of the model 'sys', nearest to the system's
initial state, x0. Specifically, trim finds the equilibrium point that minimizes the maximum absolute
value of [x-x0,u,y]. If trim cannot find an equilibrium point near the system's initial state, it
returns the point at which the system is nearest to equilibrium. Specifically, it returns the point that
minimizes abs(dx) where dx represents the derivative of the system. You can obtain x0 using this
command.

[sizes,x0,xstr] = sys([],[],[],0)

[x,u,y,dx] = trim('sys',x0,u0,y0) finds the trim point nearest to x0, u0, y0, that is, the
point that minimizes the maximum value of

abs([x-x0; u-u0; y-y0])

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy) finds the trim point closest to x0, u0, y0 that
satisfies a specified set of state, input, and/or output conditions. The integer vectors ix, iu, and iy
select the values in x0, u0, and y0 that must be satisfied. If trim cannot find an equilibrium point
that satisfies the specified set of conditions exactly, it returns the nearest point that satisfies the
conditions, namely,

 trim

2-1235

abs([x(ix)-x0(ix); u(iu)-u0(iu); y(iy)-y0(iy)])

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx) finds specific nonequilibrium
points, that is, points at which the system's state derivatives have some specified nonzero value.
Here, dx0 specifies the state derivative values at the search's starting point and idx selects the
values in dx0 that the search must satisfy exactly.

[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options) specifies an
array of optimization parameters that trim passes to the optimization function that it uses to find
trim points. The optimization function, in turn, uses this array to control the optimization process and
to return information about the process. trim returns the options array at the end of the search
process. By exposing the underlying optimization process in this way, trim allows you to monitor and
fine-tune the search for trim points.

The following table describes how each element affects the search for a trim point. Array elements 1,
2, 3, 4, and 10 are particularly useful for finding trim points.

No. Default Description
1 0 Specifies display options. 0 specifies no display; 1 specifies tabular

output; -1 suppresses warning messages.
2 10–4 Precision the computed trim point must attain to terminate the

search.
3 10–4 Precision the trim search goal function must attain to terminate the

search.
4 10–6 Precision the state derivatives must attain to terminate the search.
5 N/A Not used.
6 N/A Not used.
7 N/A Used internally.
8 N/A Returns the value of the trim search goal function (λ in goal

attainment).
9 N/A Not used.
10 N/A Returns the number of iterations used to find a trim point.
11 N/A Returns the number of function gradient evaluations.
12 0 Not used.
13 0 Number of equality constraints.
14 100*(Number of

variables)
Maximum number of function evaluations to use to find a trim point.

15 N/A Not used.
16 10–8 Used internally.
17 0.1 Used internally.
18 N/A Returns the step length.

[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options,t) sets the
time to t if the system is dependent on time.

2 Functions

2-1236

Note If you fix any of the state, input or output values, trim uses the unspecified free variables to
derive the solution that satisfies these constraints.

Examples
Finding Steady-State Points

The Simulink trim function uses a model to determine steady-state points of a dynamic system that
satisfy input, output, and state conditions that you specify. Consider, for example, this model, called
ex_lmod.

You can use the trim function to find the values of the input and the states that set both outputs to 1.
First, make initial guesses for the state variables (x) and input values (u), then set the desired value
for the output (y).

x = [0; 0; 0];
u = 0;
y = [1; 1];

Use index variables to indicate which variables are fixed and which can vary.

ix = []; % Don't fix any of the states
iu = []; % Don't fix the input
iy = [1;2]; % Fix both output 1 and output 2

Invoking trim returns the solution. Your results might differ because of roundoff error.

[x,u,y,dx] = trim('lmod',x,u,y,ix,iu,iy)

x =
 0.0000
 1.0000
 1.0000
u =
 2
y =
 1.0000
 1.0000
dx =
 1.0e-015 *
 -0.2220
 -0.0227
 0.3331

 trim

2-1237

Note that there might be no solution to equilibrium point problems. If that is the case, trim returns a
solution that minimizes the maximum deviation from the desired result after first trying to set the
derivatives to zero. For a description of the trim syntax, see trim.

Finding Equilibrium Points

Consider a linear state-space system modeled using a State-Space block

ẋ = Ax + Bu
y = Cx + Du

The A, B, C, and D matrices to enter at the command line or in the block parameters dialog are:.

A = [-0.09 -0.01; 1 0];
B = [0 -7; 0 -2];
C = [0 2; 1 -5];
D = [-3 0; 1 0];

Example 1

To find an equilibrium point in this model called sys, use:

[x,u,y,dx,options] = trim('sys')
x =
 0
 0
u =
 0
 0
y =
 0
 0
dx =
 0
 0

The number of iterations taken is:

options(10)
ans =
 7

Example 2

To find an equilibrium point near x = [1;1], u = [1;1], enter

x0 = [1;1];
u0 = [1;1];
[x,u,y,dx,options] = trim('sys', x0, u0);
x =
 1.0e-13 *
 -0.5160
 -0.5169
u =
 0.3333
 0.0000
y =
 -1.0000

2 Functions

2-1238

 0.3333
dx =
 1.0e-12 *
 0.1979
 0.0035

The number of iterations taken is

options(10)
ans =
 25

Example 3

To find an equilibrium point with the outputs fixed to 1, use:

y = [1;1];
iy = [1;2];
[x,u,y,dx] = trim('sys', [], [], y, [], [], iy)
x =
 0.0009
 -0.3075
u =
 -0.5383
 0.0004
y =
 1.0000
 1.0000
dx =
 1.0e-15 *
 -0.0170
 0.1483

Example 4

To find an equilibrium point with the outputs fixed to 1 and the derivatives set to 0 and 1, use

y = [1;1];
iy = [1;2];
dx = [0;1];
idx = [1;2];
[x,u,y,dx,options] = trim('sys',[],[],y,[],[],iy,dx,idx)
x =
 0.9752
 -0.0827
u =
 -0.3884
 -0.0124
y =
 1.0000
 1.0000
dx =
 0.0000
 1.0000

The number of iterations taken is

 trim

2-1239

options(10)
ans =
 13

Limitations
The trim point found by trim starting from any given initial point is only a local value. Other, more
suitable trim points may exist. Thus, if you want to find the most suitable trim point for a particular
application, it is important to try a number of initial guesses for x, u, and y.

Algorithms
trim uses a sequential quadratic programming algorithm to find trim points. See “Sequential
Quadratic Programming (SQP)” (Optimization Toolbox) for a description of this algorithm.

Version History
Introduced before R2006a

See Also
findop

Topics
“Compute Steady-State Operating Points” (Simulink Control Design)

2 Functions

2-1240

tunablevars2parameterobjects
Create Simulink parameter objects from tunable parameters

Syntax
tunablevars2parameterobjects ('modelName')
tunablevars2parameterobjects ('modelName', class)

Description
tunablevars2parameterobjects ('modelName') creates Simulink.Parameter objects in the
base workspace for the variables listed in the specified model's Tunable Parameters dialog, then
deletes the source information from the dialog. To preserve the information, save the resulting
Simulink parameter objects into a MAT-file.

If a tunable variable is already defined as a numeric variable in the base workspace, the variable will
be replaced by a parameter object and the original variable will be copied to the object's Value
property.

If a tunable variable is already defined as a Simulink parameter object, the object will not be modified
but the information for the variable will still be deleted from the Tunable Parameters dialog.

If a tunable variable is defined as any other class of variable, the variable will not be modified and the
information for the variable will not be deleted from the Tunable Parameters dialog.

tunablevars2parameterobjects ('modelName', class) creates objects of the specified class
rather than Simulink.Parameter objects.

Input Arguments
modelName

Model name or handle

class

Parameter class to use for creating objects

Default: Simulink.Parameter

Version History
Introduced in R2007b

See Also
Simulink.Parameter

 tunablevars2parameterobjects

2-1241

Topics
“Tunable Parameters”

2 Functions

2-1242

Upgrade Advisor
Improve and upgrade models to the current release

Description
Use the Upgrade Advisor to improve and upgrade your models to the current release.

The Upgrade Advisor helps you:

• Identify models that no longer work because of behavior changes or improvements in Simulink.
• Identify models that you can enhance by using newly released features and settings in Simulink.
• Transition to new technologies and upgrade a model hierarchy by performing automatic upgrades

or providing instructions for manual fixes.

For more information about using Upgrade Advisor with your models, see “Consult the Upgrade
Advisor”.

 Upgrade Advisor

2-1243

Open the Upgrade Advisor
• Simulink Editor: On the Modeling tab, select Model Advisor > Upgrade Advisor.
• MATLAB Command Window:

upgradeadvisor("modelname")
• Model Advisor: In the Model Advisor, click Upgrade Advisor.

Examples

Programmatically Open Upgrade Advisor

1 Open the Upgrade Advisor for the vdp example model.

openExample("vdp.slx");
upgradeadvisor("vdp")

2 Open the Upgrade Advisor for the currently selected model.

upgradeadvisor(bdroot)

Programmatically Analyze and Upgrade Model

This example shows how to analyze and upgrade your model, and then apply automatic fixes when
they are available.

1. Load your model and create an upgrader object.

load_system("sldemo_mdlref_depgraph.slx");
upgrader = upgradeadvisor("sldemo_mdlref_depgraph.slx")

upgrader =
 Upgrader with properties:

 ChecksToSkip: {}
 SkipLibraries: 0
 SkipBlocksets: 1
 OneLevelOnly: 0
 ShowReport: 1
 VerboseLogging: 0
 RootModel: 'sldemo_mdlref_depgraph'
 ReportFile: ''

Run "upgrade" on this Upgrader object to analyze and automatically upgrade your models.

2. Analyze the model for recommended upgrades, following library links and model references.

analyze(upgrader);

(1/-) Analyzing Model "sldemo_mdlref_depgraph"
Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.
(2/14) Analyzing Model "sldemo_mdlref_heat2cost"

2 Functions

2-1244

(3/14) Analyzing Model "sldemo_mdlref_house"
(4/14) Analyzing Model "sldemo_mdlref_F2C"
(5/14) Analyzing Model "sldemo_mdlref_outdoor_temp"
(6/14) Analyzing Model "sldemo_mdlref_thermostat"
(7/14) Analyzing Model "sldemo_mdlref_heater"
(8/14) Analyzing Model "sldemo_mdlref_heat2cost" using compile time information
(9/14) Analyzing Model "sldemo_mdlref_house" using compile time information
(10/14) Analyzing Model "sldemo_mdlref_F2C" using compile time information
(11/14) Analyzing Model "sldemo_mdlref_outdoor_temp" using compile time information
Starting serial model reference simulation build.
Successfully updated the model reference simulation target for: sldemo_mdlref_F2C

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
sldemo_mdlref_F2C Code generated and compiled. sldemo_mdlref_F2C_msf.mexw64 does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 39.996s
Starting serial model reference code generation build.
Checking status of model reference code generation target for model 'sldemo_mdlref_F2C' used in 'sldemo_mdlref_outdoor_temp'.
Model reference code generation target (sldemo_mdlref_F2C.c) for model sldemo_mdlref_F2C is out of date because sldemo_mdlref_F2C.c does not exist.
Updating model reference code generation target for: sldemo_mdlref_F2C
Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_F2C
Invoking Target Language Compiler on sldemo_mdlref_F2C.rtw
Using System Target File: B:\matlab\rtw\c\grt\grt.tlc
Loading TLC function libraries
.......
Initial pass through model to cache user defined code
.
Caching model source code
......................................
Writing header file sldemo_mdlref_F2C_types.h
Writing header file sldemo_mdlref_F2C.h
.
Writing header file rtwtypes.h
Writing header file multiword_types.h
Writing source file sldemo_mdlref_F2C.c
Writing header file sldemo_mdlref_F2C_private.h
TLC code generation complete (took 4.723s).
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_F2C\sldemo_mdlref_F2C.mk' ...
Building 'sldemo_mdlref_F2C_rtwlib': nmake -f sldemo_mdlref_F2C.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_F2C>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_F2C>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_F2C>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_F2C>if "all" == "" (nmake -f sldemo_mdlref_F2C.mk all) else (nmake -f sldemo_mdlref_F2C.mk all)

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0

 Upgrade Advisor

2-1245

Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=1 -DALLOCATIONFCN=0 -DMAT_FILE=0 -DONESTEPFCN=0 -DTERMFCN=1 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=1 -DMODEL=sldemo_mdlref_F2C -DNUMST=2 -DNCSTATES=0 -DHAVESTDIO -DRT -DUSE_RTMODEL @sldemo_mdlref_F2C_comp.rsp -Fo"sldemo_mdlref_F2C.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_F2C\sldemo_mdlref_F2C.c"
sldemo_mdlref_F2C.c
Creating static library ".\sldemo_mdlref_F2C_rtwlib.lib" ...
 lib /nologo -out:.\sldemo_mdlref_F2C_rtwlib.lib @sldemo_mdlref_F2C.rsp
Created: .\sldemo_mdlref_F2C_rtwlib.lib
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_F2C>exit /B 0
Successfully updated the model reference code generation target for: sldemo_mdlref_F2C
Simulink cache artifacts for 'sldemo_mdlref_F2C' were created in 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\sldemo_mdlref_F2C.slxc'.

Build Summary

Code generation targets built:

Model Action Rebuild Reason
==
sldemo_mdlref_F2C Code generated and compiled. sldemo_mdlref_F2C.c does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 16.459s

Starting serial model reference simulation build.
Model reference simulation target for sldemo_mdlref_F2C is up to date.

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: 0h 0m 2.5537s
(12/14) Analyzing Model "sldemo_mdlref_thermostat" using compile time information
(13/14) Analyzing Model "sldemo_mdlref_heater" using compile time information
Starting serial model reference simulation build.
Successfully updated the model reference simulation target for: sldemo_mdlref_thermostat

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
sldemo_mdlref_thermostat Code generated and compiled. sldemo_mdlref_thermostat_msf.mexw64 does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 13.976s
Starting serial model reference code generation build.
Checking status of model reference code generation target for model 'sldemo_mdlref_F2C' used in 'sldemo_mdlref_heater'.
Checking for structural changes in sldemo_mdlref_F2C because the model reference rebuild option is set to 'If any changes detected'. Structural changes cause the model reference code generation target to be rebuilt.
Checking for structural changes in model reference code generation target for: sldemo_mdlref_F2C
Generating code and artifacts to 'Model specific' folder structure
Code for the model reference code generation target for model sldemo_mdlref_F2C is up to date because no functional changes were found in referenced model.
Model reference code generation target for sldemo_mdlref_F2C is up to date.
Checking status of model reference code generation target for model 'sldemo_mdlref_thermostat' used in 'sldemo_mdlref_heater'.
Model reference code generation target (sldemo_mdlref_thermostat.c) for model sldemo_mdlref_thermostat is out of date because sldemo_mdlref_thermostat.c does not exist.
Updating model reference code generation target for: sldemo_mdlref_thermostat
Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_thermostat

2 Functions

2-1246

Invoking Target Language Compiler on sldemo_mdlref_thermostat.rtw
Using System Target File: B:\matlab\rtw\c\grt\grt.tlc
Loading TLC function libraries
.......
Initial pass through model to cache user defined code
.
Caching model source code
.......................................
Writing header file sldemo_mdlref_thermostat_types.h
Writing header file sldemo_mdlref_thermostat.h
Writing source file sldemo_mdlref_thermostat.c
Writing header file sldemo_mdlref_thermostat_private.h
TLC code generation complete (took 3.668s).
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_thermostat\sldemo_mdlref_thermostat.mk' ...
Building 'sldemo_mdlref_thermostat_rtwlib': nmake -f sldemo_mdlref_thermostat.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_thermostat>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_thermostat>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_thermostat>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_thermostat>if "all" == "" (nmake -f sldemo_mdlref_thermostat.mk all) else (nmake -f sldemo_mdlref_thermostat.mk all)

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=1 -DALLOCATIONFCN=0 -DMAT_FILE=0 -DONESTEPFCN=0 -DTERMFCN=1 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=1 -DMODEL=sldemo_mdlref_thermostat -DNUMST=2 -DNCSTATES=0 -DHAVESTDIO -DRT -DUSE_RTMODEL @sldemo_mdlref_thermostat_comp.rsp -Fo"sldemo_mdlref_thermostat.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_thermostat\sldemo_mdlref_thermostat.c"
sldemo_mdlref_thermostat.c
Creating static library ".\sldemo_mdlref_thermostat_rtwlib.lib" ...
 lib /nologo -out:.\sldemo_mdlref_thermostat_rtwlib.lib @sldemo_mdlref_thermostat.rsp
Created: .\sldemo_mdlref_thermostat_rtwlib.lib
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_thermostat>exit /B 0
Successfully updated the model reference code generation target for: sldemo_mdlref_thermostat
Simulink cache artifacts for 'sldemo_mdlref_thermostat' were created in 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\sldemo_mdlref_thermostat.slxc'.

Build Summary

Code generation targets built:

Model Action Rebuild Reason
==
sldemo_mdlref_thermostat Code generated and compiled. sldemo_mdlref_thermostat.c does not exist.

1 of 2 models built (1 models already up to date)
Build duration: 0h 0m 11.473s

Starting serial model reference simulation build.
Model reference simulation target for sldemo_mdlref_thermostat is up to date.

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: 0h 0m 1.9096s

 Upgrade Advisor

2-1247

(14/14) Analyzing Model "sldemo_mdlref_depgraph" using compile time information
Starting serial model reference simulation build.
Model reference simulation target for sldemo_mdlref_F2C is up to date.
Model reference simulation target for sldemo_mdlref_thermostat is up to date.
Successfully updated the model reference simulation target for: sldemo_mdlref_heat2cost
Successfully updated the model reference simulation target for: sldemo_mdlref_house
Successfully updated the model reference simulation target for: sldemo_mdlref_outdoor_temp

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
sldemo_mdlref_heat2cost Code generated and compiled. sldemo_mdlref_heat2cost_msf.mexw64 does not exist.
sldemo_mdlref_house Code generated and compiled. sldemo_mdlref_house_msf.mexw64 does not exist.
sldemo_mdlref_outdoor_temp Code generated and compiled. sldemo_mdlref_outdoor_temp_msf.mexw64 does not exist.

3 of 5 models built (2 models already up to date)
Build duration: 0h 0m 36.279s
Starting serial model reference code generation build.
Checking status of model reference code generation target for model 'sldemo_mdlref_F2C' used in 'sldemo_mdlref_depgraph:sldemo_mdlref_heater'.
Model reference code generation target for sldemo_mdlref_F2C is up to date.
Checking status of model reference code generation target for model 'sldemo_mdlref_thermostat' used in 'sldemo_mdlref_depgraph:sldemo_mdlref_heater'.
Model reference code generation target for sldemo_mdlref_thermostat is up to date.
Checking status of model reference code generation target for model 'sldemo_mdlref_heat2cost' used in 'sldemo_mdlref_depgraph'.
Model reference code generation target (sldemo_mdlref_heat2cost.c) for model sldemo_mdlref_heat2cost is out of date because sldemo_mdlref_heat2cost.c does not exist.
Updating model reference code generation target for: sldemo_mdlref_heat2cost
Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heat2cost
Invoking Target Language Compiler on sldemo_mdlref_heat2cost.rtw
Using System Target File: B:\matlab\rtw\c\grt\grt.tlc
Loading TLC function libraries
.......
Initial pass through model to cache user defined code
.
Caching model source code
..
Writing header file sldemo_mdlref_heat2cost_types.h
Writing header file sldemo_mdlref_heat2cost.h
.
Writing source file sldemo_mdlref_heat2cost.c
Writing header file sldemo_mdlref_heat2cost_private.h
TLC code generation complete (took 3.898s).
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heat2cost\sldemo_mdlref_heat2cost.mk' ...
Building 'sldemo_mdlref_heat2cost_rtwlib': nmake -f sldemo_mdlref_heat2cost.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heat2cost>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heat2cost>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heat2cost>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heat2cost>if "all" == "" (nmake -f sldemo_mdlref_heat2cost.mk all) else (nmake -f sldemo_mdlref_heat2cost.mk all)

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0

2 Functions

2-1248

Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=1 -DALLOCATIONFCN=0 -DMAT_FILE=0 -DONESTEPFCN=0 -DTERMFCN=1 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DMODEL=sldemo_mdlref_heat2cost -DNUMST=1 -DNCSTATES=1 -DHAVESTDIO -DRT -DUSE_RTMODEL @sldemo_mdlref_heat2cost_comp.rsp -Fo"sldemo_mdlref_heat2cost.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heat2cost\sldemo_mdlref_heat2cost.c"
sldemo_mdlref_heat2cost.c
Creating static library ".\sldemo_mdlref_heat2cost_rtwlib.lib" ...
 lib /nologo -out:.\sldemo_mdlref_heat2cost_rtwlib.lib @sldemo_mdlref_heat2cost.rsp
Created: .\sldemo_mdlref_heat2cost_rtwlib.lib
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heat2cost>exit /B 0
Successfully updated the model reference code generation target for: sldemo_mdlref_heat2cost
Checking status of model reference code generation target for model 'sldemo_mdlref_house' used in 'sldemo_mdlref_depgraph'.
Model reference code generation target (sldemo_mdlref_house.c) for model sldemo_mdlref_house is out of date because sldemo_mdlref_house.c does not exist.
Updating model reference code generation target for: sldemo_mdlref_house
Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_house
Invoking Target Language Compiler on sldemo_mdlref_house.rtw
Using System Target File: B:\matlab\rtw\c\grt\grt.tlc
Loading TLC function libraries
.......
Initial pass through model to cache user defined code
.
Caching model source code
...
Writing header file sldemo_mdlref_house_types.h
Writing header file sldemo_mdlref_house.h
.
Writing source file sldemo_mdlref_house.c
Writing header file sldemo_mdlref_house_private.h
TLC code generation complete (took 4.055s).
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_house\sldemo_mdlref_house.mk' ...
Building 'sldemo_mdlref_house_rtwlib': nmake -f sldemo_mdlref_house.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_house>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_house>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_house>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_house>if "all" == "" (nmake -f sldemo_mdlref_house.mk all) else (nmake -f sldemo_mdlref_house.mk all)

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=1 -DALLOCATIONFCN=0 -DMAT_FILE=0 -DONESTEPFCN=0 -DTERMFCN=1 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DMODEL=sldemo_mdlref_house -DNUMST=1 -DNCSTATES=1 -DHAVESTDIO -DRT -DUSE_RTMODEL @sldemo_mdlref_house_comp.rsp -Fo"sldemo_mdlref_house.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_house\sldemo_mdlref_house.c"
sldemo_mdlref_house.c
Creating static library ".\sldemo_mdlref_house_rtwlib.lib" ...
 lib /nologo -out:.\sldemo_mdlref_house_rtwlib.lib @sldemo_mdlref_house.rsp
Created: .\sldemo_mdlref_house_rtwlib.lib
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_house>exit /B 0
Successfully updated the model reference code generation target for: sldemo_mdlref_house
Checking status of model reference code generation target for model 'sldemo_mdlref_heater' used in 'sldemo_mdlref_depgraph'.
Model reference code generation target (sldemo_mdlref_heater.c) for model sldemo_mdlref_heater is out of date because sldemo_mdlref_heater.c does not exist.
Updating model reference code generation target for: sldemo_mdlref_heater

 Upgrade Advisor

2-1249

Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heater
Invoking Target Language Compiler on sldemo_mdlref_heater.rtw
Using System Target File: B:\matlab\rtw\c\grt\grt.tlc
Loading TLC function libraries
.......
Initial pass through model to cache user defined code
.
Caching model source code
...
Writing header file sldemo_mdlref_heater_types.h
Writing header file sldemo_mdlref_heater.h
Writing source file sldemo_mdlref_heater.c
Writing header file sldemo_mdlref_heater_private.h
.
TLC code generation complete (took 3.66s).
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heater\sldemo_mdlref_heater.mk' ...
Building 'sldemo_mdlref_heater_rtwlib': nmake -f sldemo_mdlref_heater.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heater>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heater>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heater>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heater>if "all" == "" (nmake -f sldemo_mdlref_heater.mk all) else (nmake -f sldemo_mdlref_heater.mk all)

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=1 -DALLOCATIONFCN=0 -DMAT_FILE=0 -DONESTEPFCN=0 -DTERMFCN=1 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=1 -DMODEL=sldemo_mdlref_heater -DNUMST=2 -DNCSTATES=0 -DHAVESTDIO -DRT -DUSE_RTMODEL @sldemo_mdlref_heater_comp.rsp -Fo"sldemo_mdlref_heater.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heater\sldemo_mdlref_heater.c"
sldemo_mdlref_heater.c
Creating static library ".\sldemo_mdlref_heater_rtwlib.lib" ...
 lib /nologo -out:.\sldemo_mdlref_heater_rtwlib.lib @sldemo_mdlref_heater.rsp
Created: .\sldemo_mdlref_heater_rtwlib.lib
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_heater>exit /B 0
Successfully updated the model reference code generation target for: sldemo_mdlref_heater
Checking status of model reference code generation target for model 'sldemo_mdlref_outdoor_temp' used in 'sldemo_mdlref_depgraph'.
Model reference code generation target (sldemo_mdlref_outdoor_temp.c) for model sldemo_mdlref_outdoor_temp is out of date because sldemo_mdlref_outdoor_temp.c does not exist.
Updating model reference code generation target for: sldemo_mdlref_outdoor_temp
Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_outdoor_temp
Invoking Target Language Compiler on sldemo_mdlref_outdoor_temp.rtw
Using System Target File: B:\matlab\rtw\c\grt\grt.tlc
Loading TLC function libraries
.......
Initial pass through model to cache user defined code
.
Caching model source code
..
Writing header file sldemo_mdlref_outdoor_temp_types.h
.
Writing header file sldemo_mdlref_outdoor_temp.h
Writing header file model_reference_types.h

2 Functions

2-1250

Writing source file sldemo_mdlref_outdoor_temp.c
Writing header file sldemo_mdlref_outdoor_temp_private.h
TLC code generation complete (took 3.952s).
Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_outdoor_temp\sldemo_mdlref_outdoor_temp.mk' ...
Building 'sldemo_mdlref_outdoor_temp_rtwlib': nmake -f sldemo_mdlref_outdoor_temp.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_outdoor_temp>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_outdoor_temp>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_outdoor_temp>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_outdoor_temp>if "all" == "" (nmake -f sldemo_mdlref_outdoor_temp.mk all) else (nmake -f sldemo_mdlref_outdoor_temp.mk all)

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=1 -DALLOCATIONFCN=0 -DMAT_FILE=0 -DONESTEPFCN=0 -DTERMFCN=1 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=1 -DMODEL=sldemo_mdlref_outdoor_temp -DNUMST=2 -DNCSTATES=0 -DHAVESTDIO -DRT -DUSE_RTMODEL @sldemo_mdlref_outdoor_temp_comp.rsp -Fo"sldemo_mdlref_outdoor_temp.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_outdoor_temp\sldemo_mdlref_outdoor_temp.c"
sldemo_mdlref_outdoor_temp.c
Creating static library ".\sldemo_mdlref_outdoor_temp_rtwlib.lib" ...
 lib /nologo -out:.\sldemo_mdlref_outdoor_temp_rtwlib.lib @sldemo_mdlref_outdoor_temp.rsp
Created: .\sldemo_mdlref_outdoor_temp_rtwlib.lib
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\slprj\grt\sldemo_mdlref_outdoor_temp>exit /B 0
Successfully updated the model reference code generation target for: sldemo_mdlref_outdoor_temp
Simulink cache artifacts for 'sldemo_mdlref_heat2cost' were created in 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\sldemo_mdlref_heat2cost.slxc'.
Simulink cache artifacts for 'sldemo_mdlref_house' were created in 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\sldemo_mdlref_house.slxc'.
Simulink cache artifacts for 'sldemo_mdlref_heater' were created in 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\sldemo_mdlref_heater.slxc'.
Simulink cache artifacts for 'sldemo_mdlref_outdoor_temp' were created in 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex10270988\sldemo_mdlref_outdoor_temp.slxc'.

Build Summary

Code generation targets built:

Model Action Rebuild Reason
==
sldemo_mdlref_heat2cost Code generated and compiled. sldemo_mdlref_heat2cost.c does not exist.
sldemo_mdlref_house Code generated and compiled. sldemo_mdlref_house.c does not exist.
sldemo_mdlref_heater Code generated and compiled. sldemo_mdlref_heater.c does not exist.
sldemo_mdlref_outdoor_temp Code generated and compiled. sldemo_mdlref_outdoor_temp.c does not exist.

4 of 6 models built (2 models already up to date)
Build duration: 0h 0m 40.114s

Starting serial model reference simulation build.
Model reference simulation target for sldemo_mdlref_F2C is up to date.
Model reference simulation target for sldemo_mdlref_thermostat is up to date.
Model reference simulation target for sldemo_mdlref_heat2cost is up to date.
Model reference simulation target for sldemo_mdlref_house is up to date.
Model reference simulation target for sldemo_mdlref_outdoor_temp is up to date.

Build Summary

0 of 5 models built (5 models already up to date)
Build duration: 0h 0m 0.98152s

 Upgrade Advisor

2-1251

3. Specify an output to find the location of the report.

reportLocation = upgrader.ReportFile;

4. Configure options before you analyze or upgrade your model.

• To skip a check, in the Upgrade Advisor, right-click the check, select Send Check ID to
Workspace, and set the ChecksToSkip property.

upgrader.ChecksToSkip = {"mathworks.design.CSStoVSSConvert"};

• To analyze or upgrade the current model without analyzing library links, model references, or test
harnesses that are saved as external models, enable the OneLevelOnly property.

upgrader.OneLevelOnly = true;

• To analyze or upgrade the current model and model references but not library links, enable the
SkipLibraries property.

upgrader.SkipLibraries = true;

• To analyze and upgrade the current models and files in blocksets or toolboxes, set the disable the
SkipBlocksets property. By default, the Upgrade Advisor does not upgrade files in blocksets or
toolboxes. The Upgrade Advisor detects blocksets from the output of the ver function and the
existence of the Contents file.

upgrader.SkipBlocksets = false;

• To turn off showing the report after you analyze or upgrade your model, disable the ShowReport
property.

upgrader.ShowReport = false;

5. Upgrade the model and apply automatic fixes when they are available.

upgrade(upgrader);

(1/2) Upgrading Model "sldemo_mdlref_depgraph"
(2/2) Upgrading Model "sldemo_mdlref_depgraph" using compile time information
Starting serial model reference simulation build.
Model reference simulation target for sldemo_mdlref_F2C is up to date.
Model reference simulation target for sldemo_mdlref_thermostat is up to date.
Model reference simulation target for sldemo_mdlref_heat2cost is up to date.
Model reference simulation target for sldemo_mdlref_house is up to date.
Model reference simulation target for sldemo_mdlref_outdoor_temp is up to date.

Build Summary

0 of 5 models built (5 models already up to date)
Build duration: 0h 0m 0.90115s
Starting serial model reference code generation build.
Checking status of model reference code generation target for model 'sldemo_mdlref_F2C' used in 'sldemo_mdlref_depgraph:sldemo_mdlref_heater'.
Model reference code generation target for sldemo_mdlref_F2C is up to date.
Checking status of model reference code generation target for model 'sldemo_mdlref_thermostat' used in 'sldemo_mdlref_depgraph:sldemo_mdlref_heater'.
Model reference code generation target for sldemo_mdlref_thermostat is up to date.
Checking status of model reference code generation target for model 'sldemo_mdlref_heat2cost' used in 'sldemo_mdlref_depgraph'.
Model reference code generation target for sldemo_mdlref_heat2cost is up to date.
Checking status of model reference code generation target for model 'sldemo_mdlref_house' used in 'sldemo_mdlref_depgraph'.
Model reference code generation target for sldemo_mdlref_house is up to date.

2 Functions

2-1252

Checking status of model reference code generation target for model 'sldemo_mdlref_heater' used in 'sldemo_mdlref_depgraph'.
Model reference code generation target for sldemo_mdlref_heater is up to date.
Checking status of model reference code generation target for model 'sldemo_mdlref_outdoor_temp' used in 'sldemo_mdlref_depgraph'.
Model reference code generation target for sldemo_mdlref_outdoor_temp is up to date.

Build Summary

0 of 6 models built (6 models already up to date)
Build duration: 0h 0m 1.0417s

Starting serial model reference simulation build.
Model reference simulation target for sldemo_mdlref_F2C is up to date.
Model reference simulation target for sldemo_mdlref_thermostat is up to date.
Model reference simulation target for sldemo_mdlref_heat2cost is up to date.
Model reference simulation target for sldemo_mdlref_house is up to date.
Model reference simulation target for sldemo_mdlref_outdoor_temp is up to date.

Build Summary

0 of 5 models built (5 models already up to date)
Build duration: 0h 0m 0.83877s

The Upgrade Advisor displays the list of found issues and automatic fixes.

The Upgrade Advisor saves fixes to the model files.

• “Consult the Upgrade Advisor”
• “Run Model Advisor Checks”
• “Upgrade Simulink Models Using a Project” on page 13-500

Programmatic Use
upgradeadvisor("modelname") opens the Upgrade Advisor for the model specified by
modelname. This command loads the model if necessary, but does not open it in the Simulink Editor.
Use the Upgrade Advisor to upgrade and improve models with features in the current release.

upgrader = upgradeadvisor("modelname") returns an object that you can use to analyze and
upgrade a hierarchy of models programmatically. If you specify an output, then the Upgrade Advisor
does not open. You can use the analyze and upgrade object functions with the upgrader object
that the upgradeadvisor function returns.

• To programmatically analyze a model for recommended upgrades, create an upgrader object and
use the analyze object function.

• To programmatically analyze and upgrade a model, create an upgrader object and use the
upgrade object function.

• For information about how to configure options before you analyze or upgrade your model, see
“Programmatically Analyze and Upgrade Model” on page 2-1244.

Tips
For an example that shows how to upgrade your entire project, see “Upgrade Simulink Models Using
a Project” on page 13-500.

 Upgrade Advisor

2-1253

Version History
Introduced in R2012b

See Also
modeladvisor

Topics
“Consult the Upgrade Advisor”
“Run Model Advisor Checks”
“Upgrade Simulink Models Using a Project” on page 13-500

2 Functions

2-1254

view_mdlrefs
Analyze and visualize model referencing dependencies without library dependencies

Syntax
view_mdlrefs(sys)

Description
view_mdlrefs opens the Dependency Analyzer with library dependencies omitted. To open a
specific configuration of the Dependency Analyzer, use depview with programmatic options. The
Dependency Analyzer provides the same options regardless of how you open it.

view_mdlrefs(sys) opens the Dependency Analyzer. It displays a graph of model referencing
dependencies for the specified model. The nodes in the graph represent Simulink models. The
directed lines indicate model dependencies.

Examples

Open Dependency Analyzer without Library Dependencies

Open the Dependency Analyzer for the sldemo_mdlref_depgraph model.

view_mdlrefs('sldemo_mdlref_depgraph');

Input Arguments
sys — Model name or path
character vector

 view_mdlrefs

2-1255

The full name or path of a model, specified as a character vector.
Data Types: char

Version History
Introduced before R2006a

See Also
Blocks
Model

Functions
depview | find_mdlrefs

Topics
“Model Reference Basics”
“Analyze Model Dependencies”

2 Functions

2-1256

addCrossPortConstraint
Create cross-port constraint among ports of the same masked block

Syntax
maskObj.addCrossPortConstraint(
crossPortConsObj),maskObj.addCrossPortConstraint(Name=Value)

Description
maskObj.addCrossPortConstraint(
crossPortConsObj),maskObj.addCrossPortConstraint(Name=Value) creates cross-port
constraint with additional options specified by one or more Name,Value pair arguments.

Input Arguments
crossPortConsObj — Cross-port constraint object
Simulink.Mask.CrossPorConstraint object (default)

Cross-port constraint object, specified as a Simulink.Mask.CrossPortConstraint object.
Data Types: char | string | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
maskObj.addCrossPortConstraint(Name='CheckDimensions',Rule='SameDimension'...
,ParameterConditions={'Name','checkCrossPortDimension','Values',{'on'}},...
Associations={'Input_1','Input_2'},DiagnosticLevel='error',...
DiagnosticMessage="The inputs to the masked block must be of same
dimensions")

Name — Name of constraint
character vector (default)

Name of cross-port constraint, specified as a character vector.
Data Types: char | string

Rule — Rule for constraint
Same Dimension (default) | Same Datatype

Rule for the cross-port constraint, specified as a character vector.
Data Types: char | string

 addCrossPortConstraint

2-1257

ParameterConditions — Parameter conditions for cross-port constraint
Simulink.Mask.ParameterCondition object (default)

Mask parameter conditions, specified as an object of Simulink.Mask.ParameterCondition.
Data Types: char | string

Associations — Associate port identifiers to the cross-port constraints
cell array (default)

Associate port identifiers with cross-port constraints, specified as a cell array. Separate identifiers
with commas.
Data Types: cell

DiagnosticLevel — Type of diagnostic message
error (default) | warning

Type of diagnostic message displayed when validation condition fails, specified as error or warning.
Data Types: char | string

DiagnosticMessage — Diagnostic message
error (default) | warning

Diagnostic message to display when validation fails, specified as character vector.
Data Types: char | string

Examples

Add Cross Port Constraint

This example shows how to create cross port constraint programmatically using cross port constraint
object and name=value pair arguments.

Create Cross Port Constraint Using Name=Value Pair
new_system('crossportconstraint');
add_block('built-in/subsystem','crossportconstraint/subsystem');
save_system;
open_system('crossportconstraint');
% Create mask
maskObj= Simulink.Mask.create(gcb);
% Add a mask parameter to create parameter condition
maskObj.addParameter(Name='checkCrossPortDimension',Type='edit');
% Create port identifiers to associate it to the cross port constraint
maskObj.addPortIdentifier(Name='Input_1',Type='Input',IdentifierType='index',Identifier='1');
maskObj.addPortIdentifier(Name='Input_2',IdentifierType='name',Identifier='Input_2');
maskObj.addPortIdentifier(Name='Output_1',Type='Output',IdentifierType='index',Identifier='1');
% Create cross port constraint
maskObj.addCrossPortConstraint(Name='CheckDimensions',Rule='SameDimension'...
 ,ParameterConditions={'Name','checkCrossPortDimension','Values',{'on'}},...
 Associations={'Input_1','Input_2'},DiagnosticLevel='error',...
 DiagnosticMessage="The inputs to the masked block must be of same dimensions")

ans =
 CrossPortConstraint with properties:

2 Functions

2-1258

 Name: 'CheckDimensions'
 Rule: 'SameDimension'
 ParameterConditions: [1x1 Simulink.Mask.ParameterCondition]
 Associations: {2x1 cell}
 DiagnosticLevel: 'error'
 DiagnosticMessage: 'The inputs to the masked block must be of same dimensions'

Create Cross Parameter Constraint Using Object of Simulink.Mask.CrossPortConstraint

% Create an instance of Simulink.Mask.CrossPortConstraint
crossPortConst = Simulink.Mask.CrossPortConstraint;
% Set the properties of the object using dot notation
crossPortConst.Name = 'CheckDatatype';
crossPortConst.Rule = 'SameDataType';
crossPortConst.Associations = {'Input_1','Input_2','Output_1'};
crossPortConst.DiagnosticLevel = 'error';
crossPortConst.DiagnosticMessage = 'The Input_1 and Output_1 should have same DataType';
maskObj.addCrossPortConstraint(crossPortConst)

ans =
 CrossPortConstraint with properties:

 Name: 'CheckDatatype'
 Rule: 'SameDataType'
 ParameterConditions: [0x0 Simulink.Mask.ParameterCondition]
 Associations: {3x1 cell}
 DiagnosticLevel: 'error'
 DiagnosticMessage: 'The Input_1 and Output_1 should have same DataType'

save_system;

Version History
Introduced in R2023a

See Also
Simulink.Mask.CrossPortConstraint | getCrossPortConstraint |
removeCrossPortConstraint | removeAllCrossPortConstraints

Topics
“Validate Port Signals Among Ports of the Same Masked Block”

 addCrossPortConstraint

2-1259

getCrossPortConstraint
Display attributes of cross-port constraint

Syntax
amaskobj.getCrossPortConstraint(name)

Description
amaskobj.getCrossPortConstraint(name) displays the attributes of a cross-port constraint.

Input Arguments
name — Name of cross-port constraint
character vector (default)

Name of cross-port constraint, specified as a character vector. If the cross-port constraint does not
exist, the software returns an error.
Data Types: char | string

Examples

View Cross-Port Constraint

View the attributes of a cross-port constraints of a mask object.

%Get mask object and view cross port constraints
amaskobj.getCrossPortConstraint('CheckDatatype')

ans =

 CrossPortConstraint with properties:

 Name: 'CheckDatatype'
 Rule: 'SameDataType'
 ParameterConditions: [0×0 Simulink.Mask.ParameterCondition]
 Associations: {3×1 cell}
 DiagnosticLevel: 'error'
 DiagnosticMessage: 'The Input_1 and Output_1 should have same DataType'

Version History
Introduced in R2023a

See Also
Simulink.Mask.CrossPortConstraint | addCrossPortConstraint |
removeCrossPortConstraint | removeAllCrossPortConstraints

2 Functions

2-1260

Topics
“Validate Port Signals Among Ports of the Same Masked Block”

 getCrossPortConstraint

2-1261

removeCrossPortConstraint
Remove cross-port constraint

Syntax
maskobj.removeCrossPortConstraint(Name)

Description
maskobj.removeCrossPortConstraint(Name) removes cross-port constraint from the mask
object.

Input Arguments
Name — Name of cross-port constraint
character vector (default)

Name of cross-port constraints removed from the mask object, specified as a character vector. If the
port constraint does not exist, the software returns an error.
Data Types: char | string

Examples

Remove Cross Port Constraint

amaskobj = Simulink.Mask.get('mymodel/Subsystem');
amaskobj.removeCrossPortConstraint('CheckDatatype');

Constraints 'CheckDatatype' is not available in the block 'mymodel/Subsystem'.

Version History
Introduced in R2023a

See Also
Simulink.Mask.CrossPortConstraint | addCrossPortConstraint |
removeAllCrossPortConstraints | getCrossPortConstraint

Topics
“Validate Port Signals Among Ports of the Same Masked Block”

2 Functions

2-1262

removeAllCrossPortConstraints
Remove all cross-port constraints from mask object

Syntax
maskobj.removeAllCrossPortConstraints()

Description
maskobj.removeAllCrossPortConstraints() removes all cross-port constraints from the mask
object.

Examples

Remove All Cross Port Constraints

amaskobj = Simulink.Mask.get('mymodel/Subsystem');
amaskobj.removeAllCrossPortConstraints();
amaskobj.getCrossPortConstraint('CheckDimensions');

Constraints 'CheckDimensions' is not available in the block 'mymodel/Subsystem'.

Version History
Introduced in R2023a

See Also
Simulink.Mask.CrossPortConstraint | addCrossPortConstraint |
getCrossPortConstraint | removeCrossPortConstraint

Topics
“Validate Port Signals Among Ports of the Same Masked Block”

 removeAllCrossPortConstraints

2-1263

Simulink.Mask.Constraints.convertMatToXML
Package: Simulink

Convert shared constraints from MAT to XML file format

Syntax
Simulink.Mask.Constraints.convertMatToXML(matFileName,xmlFileName)

Description
Simulink.Mask.Constraints.convertMatToXML(matFileName,xmlFileName) convert a MAT
file containing constraints into an XML file.

Examples

Convert Mat to XML File Format

Specify the name of the MAT file, exampleSharedConstraintsand the XML file,
sharedConstraintsfile' as the argument to the method.

Simulink.Mask.Constraints.convertMatToXML('exampleSharedConstraints'...
,'sharedConstraintsfile')

Input Arguments
matFileName — Name of MAT file
character vector (default) | string

Name of the MAT file that contains the shared constraints, specified as a character vector or string.
Data Types: char | string

xmlFileName — Name of XML file
character vector (default) | string

Name of the XML file , specified as a character vector or string.
Data Types: char | string

Version History
Introduced in R2023a

See Also
Simulink.Mask.SharedConstraintFile | saveConstraints | addConstraint |
saveConstraints | removeConstraint

2 Functions

2-1264

Topics
“Share Parameter Constraints Across Multiple Block Masks”

 Simulink.Mask.Constraints.convertMatToXML

2-1265

addConstraint
Package: Simulink

Add constraint to XML file

Syntax
fileobj.addConstraint(constraint)

Description
fileobj.addConstraint(constraint) adds a constraint in XML file format. Constraint is a
Simulink.Mask.Constraints object that you must first create by using saveConstraints.

Examples

Add Constraint to XML File

Create a Simulink.Mask.Constraint object to create a parameter constraint.

constraintObj = Simulink.Mask.Constraints;

Assign a name to the constraint.

constraintObj.Name = 'numericconst';

Add parameter constraint rules to the constraint.

constraintObj.addParameterConstraintRule('DataTypes',{'numeric'},'Fraction',{'integer'});

Create a Simulink.Mask.SharedConstraintFile object to add constraint to an XML file.

% fileobj is an object of Simulink.Mask.SharedConstraintFile
fileobj = Simulink.Mask.SharedConstraintFile;
fileobj.FileName = "sharedconstraint";
fileobj.addConstraint(constraint)

ans =

 Constraints with properties:

 Name: 'numericconst'
 ConstraintRules: [1×1 Simulink.Mask.ParameterConstraintRules]

Input Arguments
constraint — Parameter constraint
Simulink.Mask.Constraints object (default)

Parameter constraint, specified as a Simulink.Mask.Constraints object. Save the constraint
using saveConstraints.

2 Functions

2-1266

Data Types: cell

Version History
Introduced in R2023a

See Also
Simulink.Mask.SharedConstraintFile | Simulink.Mask.Constraints |
removeConstraint | saveConstraints

Topics
“Share Parameter Constraints Across Multiple Block Masks”

 addConstraint

2-1267

saveConstraints
Saves the constraint in the XML file

Syntax
fileobj.saveConstraints()

Description
fileobj.saveConstraints() saves a constraint in an XML file in the current directory. Use an
instance of Simulink.Mask.SharedConstraintFile, fileobj to save the constraint in the XML
file.

Examples

Save Shared Constraint in XML File

Save a shared constraint as an XML file by using a Simulink.Mask.SharedConstraintFile
object.

fileobj.saveConstraints()

Version History
Introduced in R2023a

See Also
Simulink.Mask.SharedConstraintFile | addConstraint | removeConstraint |
Simulink.Mask.Constraints

Topics
“Share Parameter Constraints Across Multiple Block Masks”

2 Functions

2-1268

removeConstraint
Package: Simulink

Remove specified constraint from XML file

Syntax
fileobj.removeConstraint(constraintName)

Description
Use an instance of Simulink.Mask.SharedConstraintFile, fileobj to remove the specified
constraint from the XML file. fileobj.removeConstraint(constraintName) removes the
specified constraint from the XML file.

Examples

Remove Specified Constraint from XML File

Create an object, fileobj of Simulink.Mask.SharedConstraintFile to remove the constraint
from the XML file.

fileobj.removeConstraint('numericconst')

Input Arguments
constraintName — Name of constraint
character vector (default) | string

Name of the constraint present in the XML file, specified as a character vector.
Data Types: char | string

Version History
Introduced in R2023a

See Also
Simulink.Mask.SharedConstraintFile | addConstraint | Simulink.Mask.Constraints |
saveConstraints

Topics
“Share Parameter Constraints Across Multiple Block Masks”

 removeConstraint

2-1269

Mask Icon Drawing Commands

color Change drawing color of subsequent mask icon drawing commands
disp Display text on masked subsystem icon
dpoly Display transfer function on masked subsystem icon
droots Display transfer function on masked subsystem icon
fprintf Displays variable text centered on masked subsystem icon
image Display RGB image on masked subsystem icon
patch Draw color patch of specified shape on masked subsystem icon
plot Draw graph connecting series of points on masked subsystem icon
port_label Draw port label on masked subsystem icon
text Display text at specific location on masked subsystem icon
block_icon Promote a block icon image to the masked Subsystem

3

color
Change drawing color of subsequent mask icon drawing commands

Syntax
color(colorstr)

Description
color(colorstr) sets the drawing color of all subsequent mask drawing commands to the color
specified by the string colorstr.

Examples
Set the Drawing Color of all Subsequent Mask Drawing Commands

Set the colors cyan and magenta in the mask icon of the Subsystem.

color('cyan');
droots([-1], [-2 -3], 4)
color('magenta')
port_label('input',1,'in')
port_label('output',1,'out')

Input Arguments
colorstr — Color for the mask drawing commands is specified as string
blue | green | red | cyan | magenta | yellow | black

Entering any other string or specifying the color using RGB values results in a warning at the
MATLAB command prompt. Simulink ignores the color change. The specified drawing color does not
influence the color used by the patch or image drawing commands.
Data Types: string

Version History
Introduced in R2006b

See Also
droots | port_label

3 Mask Icon Drawing Commands

3-2

disp
Display text on masked subsystem icon

Syntax
disp(text)
disp(text, 'texmode', 'on')

Description
disp(text) displays text centered on the block icon. text is any MATLAB expression that
evaluates to a string.

disp(text, 'texmode', 'on') allows you to use TeX formatting commands in text. The TeX
formatting commands in turn allow you to include symbols and Greek letters in icon text. See
“Interpreter” for information on the TeX formatting commands supported by Simulink software.

Examples
The following command
disp('{\itEquation:} \alpha^2 + \beta^2 \rightarrow \gamma^2,
\chi, \phi_3 = {\bfcool}', 'texmode','on')

draws the equation that appears on this masked block icon.

Version History
Introduced in R2007a

See Also
fprintf | port_label | text

 disp

3-3

dpoly
Display transfer function on masked subsystem icon

Syntax
dpoly(num, den)

dpoly(num, den, 'character')

Description
dpoly(num, den) displays the transfer function whose numerator is num and denominator is den.

dpoly(num, den, 'character') specifies the name of the transfer function independent
variable. The default is s.

When Simulink draws the block icon, the initialization commands execute and the resulting equation
appears on the block icon, as in the following examples:

• To display a continuous transfer function in descending powers of s, enter

dpoly(num, den)

For example, for num = [0 0 1]; and den = [1 2 1] the icon looks like:

• To display a discrete transfer function in descending powers of z, enter

dpoly(num, den, 'z')

For example, for num = [0 0 1]; and den = [1 2 1]; the icon looks like:

• To display a discrete transfer function in ascending powers of 1/z, enter

dpoly(num, den, 'z-')

For example, for num and den as defined previously, the icon looks like:

If the parameters are not defined or have no values when you create the icon, Simulink software
displays three question marks (? ? ?) in the icon. When you define parameter values in the Mask

3 Mask Icon Drawing Commands

3-4

Settings dialog box, Simulink software evaluates the transfer function and displays the resulting
equation in the icon.

See Also
disp | port_label | text | droots

 dpoly

3-5

droots
Display transfer function on masked subsystem icon

Syntax
droots(zero, pole, gain)
droots(zero, pole, gain,'z')
droots(zero, pole, gain,'z-')

Description
droots(zero, pole, gain) displays the transfer function whose zero is zero, pole is pole, and
gain is gain.

droots(zero, pole, gain,'z') and droots(zero, pole, gain,'z-') expresses the
transfer function in terms of z or 1/z.

When Simulink draws the block icon, the initialization commands execute and the resulting equation
appears on the block icon, as in the following examples:

• To display a zero-pole gain transfer function, enter

droots(z, p, k)

For example, the preceding command creates this icon for these values:

z = []; p = [-1 -1]; k = 1;

If the parameters are not defined or have no values when you create the icon, Simulink software
displays three question marks (? ? ?) in the icon. When you define parameter values in the Mask
Settings dialog box, Simulink software evaluates the transfer function and displays the resulting
equation in the icon.

Version History
Introduced in R2007a

See Also
disp | port_label | text | dpoly

3 Mask Icon Drawing Commands

3-6

fprintf
Displays variable text centered on masked subsystem icon

Syntax
fprintf(text)
fprintf(formatspec,var)

Description
fprintf(text) command displays formatted text centered on the icon .

fprintf(formatspec,var) formats var as specified in formatSpec.

Examples
Display Text on the Block Icon

Display the text Hello on the icon.

fprintf('Hello');

Display Formatted Text on the Block Icon

Convert the character a to an integer 97 and display it on the block icon.

myvar = 'a'
fprintf('hello = %d',myvar);

Input Arguments
text — Text that appears on the block
(default) | string

Text that appears on the block is specified as string
Data Types: char | string

formatspec — Formatting character for the variable
(default) | string

Conversion character for the variable is specified.

Formatting Operator

 fprintf

3-7

A formatting operator starts with a percent sign, %, and ends with a conversion character. It is
mandatory to specify the conversion character. Optionally, you can specify identifier, flags, field width,
precision, and subtype operators between % and the conversion character. Spaces are invalid between
operators and are shown here only for readability.

Conversion Character

This table shows conversion characters to format numeric and character data as text.

Value Type Conversion Details
Integer, signed %d or %i Base 10
Integer, unsigned %u Base 10

%o Base 8 (octal)
%x Base 16 (hexadecimal), lowercase letters a–f
%X Same as %x, uppercase letters A–F

Floating-point number %f Fixed-point notation (Use a precision operator
to specify the number of digits after the
decimal point.)

%e Exponential notation, such as 3.141593e+00
(Use a precision operator to specify the
number of digits after the decimal point.)

%E Same as %e, but uppercase, such as
3.141593E+00 (Use a precision operator to
specify the number of digits after the decimal
point.)

%g The more compact of %e or %f, with no trailing
zeros (Use a precision operator to specify the
number of significant digits.)

%G The more compact of %E or %f, with no trailing
zeros (Use a precision operator to specify the
number of significant digits.)

Characters or strings %c Single character
%s Character vector or string array. The type of

the output text is the same as the type of
formatSpec.

Data Types: char | string

var — Variable containing the value is specified
(default) | string

The variable is formatted as per the formatting character specified in formatspec.

3 Mask Icon Drawing Commands

3-8

Note While this fprintf function is identical in name to its corresponding MATLAB function, it
provides only the functionality described on this page.

Version History
Introduced before R2006a

See Also
disp | port_label | text

 fprintf

3-9

image
Display RGB image on masked subsystem icon

Syntax
image(a)
image(a, position)
image(a, position, rotation)

Description
image(a) displays the image a, where a is an m-by-n-by-3 array of RGB values. If necessary, use the
MATLAB commands imread and ind2rgb to read and convert bitmap files (such as GIF) to the
necessary matrix format.

image(a, position) creates the image at the specified position as follows.

Position Description
[x, y, w, h] Position (x, y) and size (w, h) of the image where the position is

relative to the lower-left corner of the mask. The image scales to fit
the specified size.

'center' Center of the mask
'top-left' Top left corner of the mask, unscaled
'bottom-left' Bottom left corner of the mask, unscaled
'top-right' Top right corner of the mask, unscaled
'bottom-right' Bottom right corner of the mask, unscaled

image(a, position, rotation) allows you to specify whether the image rotates ('on') or
remains stationary ('off') as the icon rotates. The default is 'off'.

Note Images in formats .cur, .hdf4, .ico, .pcx, .ras, .xwd, .svg (full version) cannot be used
as block mask images.

Examples
You can use different commands depending on your requirement to add an image. These commands
can be added in the Icon & Ports pane of the Mask Editor dialog box.

Syntax Description
image('icon.jpg') Reads the icon image from a JPEG file named icon.jpg in

the MATLAB path.
[data, map]=image('label.gif');
pic=ind2rgb(data,map);

Reads and converts a GIF file, label.gif, to the
appropriate matrix format.

image(pic) Reads the converted label image.

3 Mask Icon Drawing Commands

3-10

Version History
Introduced before R2006a

See Also
patch | plot

 image

3-11

patch
Draw color patch of specified shape on masked subsystem icon

Syntax
patch(x, y)
patch(x, y, [r g b])

Description
patch(x, y) creates a solid patch having the shape specified by the coordinate vectors x and y. The
patch's color is the current foreground color.

patch(x, y, [r g b]) creates a solid patch of the color specified by the vector [r g b], where r
is the red component, g the green, and b the blue. For example,

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask's icon.

Examples
The command

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask's icon.

Version History
Introduced before R2006a

See Also
image | plot

3 Mask Icon Drawing Commands

3-12

plot
Draw graph connecting series of points on masked subsystem icon

Syntax
plot(Y)
plot(X1,Y1,X2,Y2,...)

Description
plot(Y) plots, for a vector Y, each element against its index. If Y is a matrix, it plots each column of
the matrix as though it were a vector.

plot(X1,Y1,X2,Y2,...) plots the vectors Y1 against X1, Y2 against X2, and so on. Vector pairs
must be the same length and the list must consist of an even number of vectors.

Plot commands can include NaN and inf values. When Simulink software encounters NaNs or infs, it
stops drawing, and then begins redrawing at the next numbers that are not NaN or inf. The
appearance of the plot on the icon depends on the units defined by the Icon units option in the Mask
Editor.

Simulink software displays three question marks (? ? ?) in the block icon and issues warnings in
these situations:

• When you have not defined values for the parameters used in the drawing commands (for
example, when you first create the mask, but have not yet entered values in the Mask Settings
dialog box)

• When you enter a masked block parameter or drawing command incorrectly

The plot command in masking supports a subset of the syntax of the MATLAB plot command. The
plot command in masking supports all numeric data types and accepts only numbers as input.

Examples
The command

plot([0 1 5], [0 0 4])

generates the plot that appears on the icon for the Ramp block, in the Sources library.

Version History
Introduced before R2006a

 plot

3-13

See Also
image

3 Mask Icon Drawing Commands

3-14

port_label
Draw port label on masked subsystem icon

Syntax
port_label('port_type', port_number, 'label')
port_label('port_type', port_number, 'label', 'texmode', 'on')

Description
port_label('port_type', port_number, 'label') draws a label on a port. Valid values for
port_type include the following.

Value Description
input Simulink input port
output Simulink output port
lconn Physical Modeling connection port on the left side of a masked

subsystem
rconn Physical Modeling connection port on the right side of a masked

subsystem
reset Label for the reset port in a masked Resettable Subsystem.
Enable Label for the enable port in a masked Triggered or Enabled and

Triggered subsystem.
trigger Label for the trigger port in a masked Triggered or Enabled and

Triggered subsystem.
action Label for the action port in a masked Switch Case Action Subsystem.

The input argument port_number is an integer, and label is text specifying the port's label.

Note Physical Modeling port labels are assigned based on the nominal port location. If the masked
subsystem has been rotated or flipped, for example, a port labeled using 'lconn' as the port_type
may not appear on the left side of the block.

port_label('port_type', port_number, 'label', 'texmode', 'on') lets you use TeX
formatting commands in label. The TeX formatting commands allow you to include symbols and
Greek letters in the port label. See “Interpreter” for information on the TeX formatting commands
that the Simulink software supports.

Note Simulink does not support LaTex formatting commands.

Examples
The command

 port_label

3-15

port_label('input', 1, 'a')

defines a as the label of input port 1.

The command

port_label('reset','R')

defines R as the label of reset port.

The command

port_label('Enable','En')

defines En as the label of Enable port.

The command

port_label('trigger','Tr')

defines Tr as the label of trigger port.

The command

port_label('action','Switch():')

defines Switch(): as the label of action port.

The command

port_label('trigger','\surd m','interpreter','tex')

defines the label of trigger port with TeX interpretation.

The commands

disp('Card\nSwapper');
port_label('input',1,'\spadesuit','texmode','on');
port_label('output',1,'\heartsuit','texmode','on');

draw playing card symbols as the labels of the ports on a masked subsystem.

Version History
Introduced before R2006a

3 Mask Icon Drawing Commands

3-16

See Also
disp | fprintf | text

 port_label

3-17

text
Display text at specific location on masked subsystem icon

Syntax
text(x, y, 'text')
text(x, y, 'text', 'horizontalAlignment', 'halign',
 'verticalAlignment', 'valign')
text(x, y, 'text', 'texmode', 'on')

Description
The text command places a character vector at a location specified by the point (x,y) whose units
are defined by the Icon units option in the Mask Editor.

text(x,y, text, 'texmode', 'on') allows you to use TeX formatting commands in text. The
TeX formatting commands in turn allow you to include symbols and Greek letters in icon text. See
“Interpreter” for information on the TeX formatting commands supported by Simulink software.

You can optionally specify the horizontal and/or vertical alignment of the text relative to the point (x,
y) in the text command.

The text command offers the following horizontal alignment options.

Option Aligns
'left' The left end of the text at the specified point
'right' The right end of the text at the specified point
'center' The center of the text at the specified point

The text command offers the following vertical alignment options.

Option Aligns
'base' The baseline of the text at the specified point
'bottom' The bottom line of the text at the specified point
'middle' The midline of the text at the specified point
'cap' The capitals line of the text at the specified point
'top' The top of the text at the specified point

Note While this text function is identical in name to its corresponding MATLAB function, it provides
only the functionality described on this page.

Examples

3 Mask Icon Drawing Commands

3-18

Text Alignment

Center the mask icon text foobar.

text(0.5, 0.5, 'foobar', 'horizontalAlignment', 'center')

Equation in Mask Icon

Draw a left-aligned equation as the mask icon.

In the Icons & Ports dialog of the Mask Editor, set Icon units to Normalized.

In the Icon drawing commands text box, enter the following command.

text(.05,.5,'{\itEquation:} \Sigma \alpha^2 +
\beta^2 \rightarrow \infty, \Pi, \phi_3 = {\bfcool}',
'hor','left','texmode','on')

Version History
Introduced before R2006a

See Also
disp | fprintf | port_label

 text

3-19

block_icon
Promote a block icon image to the masked Subsystem

Syntax
block_icon(BlockName)

Description
block_icon(BlockName) displays the underneath block icon image on the masked Subsystem icon.
For more information, see “Draw Mask Icon Using Drawing Commands” .

Input Arguments
BlockName — Name of the underneath block
string

The name of the underneath block whose icon image you want to display on the Subsystem block that
encapsulates the specified block. For more information, see “Draw Mask Icon Using Drawing
Commands”
Data Types: string

Version History
Introduced in R2006b

See Also
simulink.mask | “Draw Mask Icon Using Drawing Commands”

3 Mask Icon Drawing Commands

3-20

Simulink Debugger Commands

4

ashow
Identify and highlight algebraic loops in simulation debugging session

Syntax
ashow
ashow blk
ashow aloop
ashow clear

Description
ashow displays in the MATLAB Command Window a list of algebraic loops in the model for the
current simulation debugging session.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

ashow blk displays in the MATLAB Command Window information about the algebraic loop that
contains the block blk. When the block blk is part of an algebraic loop, this command also highlights
the algebraic loop that contains the block blk in the block diagram.

ashow aloop displays in the MATLAB Command Window information about the algebraic loop
aloop and highlights the algebraic loop in the block diagram.

ashow clear removes algebraic loop highlighting from the block diagram.

Examples

Examine Algebraic Loops in Simulation Debugging Session

Use the ashow function to examine algebraic loops in the model sldemo_hydcyl.

Open the model sldemo_hydcyl.

openExample("simulink_general/sldemo_hydcylExample",...
 supportingFile="sldemo_hydcyl.slx")

Start a simulation debugging session for the model using the sldebug function. The MATLAB
Command Prompt (>>) becomes the Simulink debugger prompt ((sldebug @0): >>).

sldebug sldemo_hydcyl

4 Simulink Debugger Commands

4-2

(sldebug @0): >>

Use the step function to step to the first method in the first major time step for the simulation.

step top

%--%
[TM = 0] sldemo_hydcyl.Outputs.Major

Use the ashow function to show a list of algebraic loops in the model.

ashow

Found 1 Algebraic loop(s):
System number#Algebraic loop id, number of blocks in loop
- (0)0#1, 9 block(s) in loop

Use the algebraic loop identifier in the information returned by the ashow function to get more
information about the algebraic loop. The ashow function lists the paths to the nine blocks in the loop
and identifies which blocks correspond to algebraic variables in the loop.

ashow (0)0#1

- sldemo_hydcyl/Valve//Cylinder//Piston//Spring Assembly/Control Valve Flow/IC
- sldemo_hydcyl/Valve//Cylinder//Piston//Spring Assembly/Control Valve Flow/Sqrt
- sldemo_hydcyl/Valve//Cylinder//Piston//Spring Assembly/Control Valve Flow/Product
- sldemo_hydcyl/Valve//Cylinder//Piston//Spring Assembly/laminar flow pressure drop
- sldemo_hydcyl/Valve//Cylinder//Piston//Spring Assembly/Sum7
- sldemo_hydcyl/Pump/IC
- sldemo_hydcyl/Valve//Cylinder//Piston//Spring Assembly/Control Valve Flow/Sum1 (algebraic variable)
- sldemo_hydcyl/Pump/Sum1
- sldemo_hydcyl/Pump/leakage (algebraic variable)

The ashow function also highlights the specified loop in the block diagram. In this model, the loop
includes blocks in two different levels of the model hierarchy so only the blocks in the Control
Valve Flow masked subsystem are visible.

When you have finished analyzing and debugging the model, use the stop function to end the
simulation debugging session.

 ashow

4-3

stop

Input Arguments
blk — Block in model
(t)s:b | gcb

Block in model, specified as one of these options:

• gcb — Current block
• (t)s:b — Block ID, where t is the index of the task that contains the block, s is the index of the

system that contains the block, and b is the block index

.

aloop — Algebraic loop
algebraic loop ID

Algebraic loop, specified as an algebraic loop ID. Algebraic loop IDs have the form (t)s#n, where t
is the index of the task that contains the algebraic loop, s is the index of the system that contains the
algebraic loop, and n is the index of the algebraic loop in the system.

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced before R2006a

See Also
sldebug | atrace

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-4

atrace
Configure simulation debugging session to display information each time algebraic loop is solved

Syntax
atrace lvl

Description
atrace lvl configures the simulation debugging session to display information each time an
algebraic loop is solved in the simulation. Specify the level of information to display using the lvl
input argument.

• When you start the simulation debugging session programmatically, the information is displayed in
the MATLAB Command Window.

• When you start the simulation debugging session using the Simulink Editor, the information is
displayed in the Diagnostic Viewer.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Input Arguments
lvl — Level of information to display
0 | 1 | 2 | 3 | 4

Level of information to display, specified as one of these options:

• 0 — No information
• 1 or 2 — Loop variable solution, number of iterations required to solve loop, estimated solution

error
• 3 — All information for 1 and 2 plus the Jacobian matrix used to solve the loop
• 4 — All information for 3 plus intermediate solutions for the loop variable

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

 atrace

4-5

Version History
Introduced before R2006a

See Also
sldebug | states | systems

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-6

bafter
Insert breakpoint after specified method in simulation debugging session

Syntax
bafter
bafter m:mid
bafter blk
bafter blk mth tid:t
bafter mdlName blk mth tid:t
bafter sys
bafter sys mth tid:t
bafter mdl
bafter mdl mth tid:t

Description
bafter inserts a breakpoint after the current method.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

bafter m:mid inserts a breakpoint after the method with the method ID mid.

bafter blk inserts a breakpoint after each method for the block blk.

bafter blk mth tid:t inserts a breakpoint after the method mth of block blk in the task with
task ID t.

bafter mdlName blk mth tid:t inserts a breakpoint after the method mth of block blk that is
executed in the task with task ID t in the referenced model with the name mdlName.

bafter sys inserts a breakpoint after each method in the system sys.

bafter sys mth tid:t inserts a breakpoint after the method mth in the system sys with task id
t.

bafter mdl inserts a breakpoint after each method of the model mdl.

bafter mdl mth tid:t inserts a breakpoint after the method mth in the task with task ID t of
model mdl.

Input Arguments
mid — Method after which to insert breakpoint
method ID

Method after which to insert breakpoint, specified as a method ID.

 bafter

4-7

blk — Block
(t)s:b | gcb

Block, specified as one of these options:

• (t)s:b — Block with index b in system with index s and task with task ID t
• gcb — Current block

mth — Method name
string | character vector

Method name, specified as a string or a character vector. For example, this command sets a
breakpoint before the Outputs method of the currently selected block.

break gcb Outputs

t — Task ID
task ID

Task ID, specified as a task ID.

mdlName — Name of referenced model
string | character vector

Name of referenced model, specified as a string or a character vector.

sys — System
s:sysIdx | gcs

System, specified as one of these options:

• s:sysIdx — System specification, where sysIdx is the system index
• gcs — Current system

mdl — Model name
string | character vector

Model name, specified as a string or a character vector.

Tips
To determine the current location within the simulation, use the where function.

Version History
Introduced before R2006a

See Also
sldebug | break | ebreak | tbreak | xbreak | nanbreak | zcbreak | rbreak | clear | where |
slist | systems

4 Simulink Debugger Commands

4-8

Topics
“Simulink Debugging Programmatic Interface”

 bafter

4-9

break
Insert breakpoint before specified method in simulation debugging session

Syntax
break
break m:mid
break blk
break blk mth tid:t
break mdlName blk mth tid:t
break sys
break sys mth tid:t
break mdl
break mdl mth tid:t

Description
break inserts a breakpoint before the current method.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

break m:mid inserts a breakpoint before the method with the method ID mid.

break blk inserts a breakpoint before each method for the block blk.

break blk mth tid:t inserts a breakpoint before the method mth of block blk in the task with
task ID t.

break mdlName blk mth tid:t inserts a breakpoint before the method mth of block blk that is
executed in the task with task ID t in the referenced model with the name mdlName.

break sys inserts a breakpoint before each method in the system sys.

break sys mth tid:t inserts a breakpoint before the method mth in the system sys with task id
t.

break mdl inserts a breakpoint before each method of the model mdl.

break mdl mth tid:t inserts a breakpoint before the method mth in the task with task ID t of
model mdl.

Input Arguments
mid — Method ID
method ID

Method ID, specified as a method ID.

4 Simulink Debugger Commands

4-10

blk — Block
(t)s:b | gcb

Block, specified as one of these options:

• (t)s:b — Block with index b in system with index s and task with task ID t
• gcb — Current block

mth — Method name
string | character vector

Method name, specified as a string or a character vector. For example, this command sets a
breakpoint before the Outputs method of the currently selected block.

break gcb Outputs

t — Task ID
task ID

Task ID, specified as a task ID.

mdlName — Name of referenced model
string | character vector

Name of referenced model, specified as a string or a character vector.

sys — System
s:sysIdx | gcs

System, specified as one of these options:

• s:sysIdx — System specification, where sysIdx is the system index
• gcs — Current system

mdl — Model name
string | character vector

Model name, specified as a string or a character vector.

Tips
To determine the current location within the simulation, use the where function.

Version History
Introduced before R2006a

See Also
sldebug | bafter | clear | ebreak | nanbreak | rbreak | systems | tbreak | where | xbreak |
zcbreak | slist

 break

4-11

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-12

bshow
Highlight block in model with specified block ID during simulation debugging session

Syntax
bshow blk
bshow mdl blk

Description
bshow blk selects and highlights in the block diagram the block in the top model that corresponds
to the block ID blk.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

bshow mdl blk selects and highlights in the block diagram the block in the referenced model mdl
that corresponds to the block ID blkID.

Input Arguments
blk — Block to show
debugging session block ID

Block to show, specified as a debugging session block ID. The debugging session block ID has the
form (t)s:b, where t is the index of the task that contains the block, s is the index of the system
that contains the block, and b is the index of the block within the system that contains it.

For a list of block IDs in a model, use the slist function.

mdl — Name of referenced model that contains block
string | character vector

Name of referenced model that contains block, specified as a string or a character vector.

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

 bshow

4-13

Version History
Introduced before R2006a

See Also
sldebug | slist

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-14

clear
Clear breakpoint in simulation debugging session

Syntax
clear
clear m:mid
clear brID
clear blk

Description
clear clears the breakpoint from the current method.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

clear m:mid clears the breakpoint from the method with the method ID mid.

clear brID clears the breakpoint from the breakpoint with the breakpoint ID brID.

clear blk clears all breakpoints from the block blk.

Input Arguments
mid — Method from which to remove breakpoint
method ID

Method from which to remove breakpoint, specified as a method ID.

brID — Breakpoint ID for breakpoint to remove
breakpoint ID

Breakpoint ID for breakpoint to remove, specified as a breakpoint ID.

blk — Block from which to remove all breakpoints
(t)s:b | gcb

Block from which to remove all breakpoints, specified using one of these options:

• (t)s:b — Block ID, where t is the index of the task in which the block executes, s is the index of
the system that contains the block, and b is the index of the block within the system

• gcb — Current block

Version History
Introduced before R2006a

 clear

4-15

See Also
sldebug | break | bafter | slist

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-16

continue
Continue simulation debugging session

Syntax
continue

Description
continue continues the simulation debugging session. The simulation continues until a breakpoint
pauses the simulation, you pause the simulation, or the simulation completes the final time step.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

To run the simulation to the end, ignoring breakpoints, use the run function.

Version History
Introduced before R2006a

See Also
sldebug | run | stop | quit

Topics
“Simulink Debugging Programmatic Interface”

 continue

4-17

disp
Display information about specified block when simulation debugging session pauses

Syntax
disp blk
disp mdl blk
disp

Description
disp blk registers a display point for the block specified by blk. The software displays information
about all registered display points each time the simulation pauses.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

disp mdl blk registers a display point for the block specified by blk in the referenced model
specified by mdl.

disp displays a list of registered display points for the current simulation debugging session.

Input Arguments
blk — Block to register as a display point
(t)s:b | gcb

Block to register as a display point, specified as one of these options:

• (t)s:b — Block with index b in system with index s and task with index t
• gcb — Current block

When you specify the name of the referenced model that contains the block, you must specify the
block to register as a display point in the form (t)s:b.

mdl — Name of referenced model that contains block to register as display point
string | character vector

Name of referenced model that contains block to register as display point, specified as a string or a
character vector.

When you specify this argument, you must specify the block to register as a display point in the form
(t)s:b.

Tips
• To clear a registered display point, use the undisp function.

4 Simulink Debugger Commands

4-18

• The software displays the level of information configured for the simulation debugging session. To
specify the level of information to display, use the probe function.

Version History
Introduced before R2006a

See Also
sldebug | undisp | slist | probe | trace

Topics
“Simulink Debugging Programmatic Interface”

 disp

4-19

ebreak
Set or clear breakpoint to pause when solver error occurs in simulation debugging session

Syntax
ebreak

Description
ebreak sets or clears a breakpoint that pauses simulation when a recoverable solver error occurs
during a simulation debugging session.

• If the breakpoint was not set, the command sets the breakpoint.
• If the breakpoint had been set, the command clears the breakpoint.

When you do not set this breakpoint, the solver recovers from the error and continues simulation.
When an unrecoverable error occurs with or without this breakpoint set, the error stops the
simulation.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

Version History
Introduced before R2006a

See Also
sldebug | break | bafter | tbreak | xbreak | nanbreak | zcbreak | rbreak | clear | where |
slist | systems

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-20

elist
Display execution order in simulation debugging session

Syntax
elist m:mid
elist sys mthName tid:t
elist blk mthName tid:t
elist mdlName blk mthName tid:t

Description
elist m:mid displays the list of methods invoked by the method with the method ID mid in the
order in which they execute.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

elist sys mthName tid:t displays the list of methods invoked by the method mthName of the
specified system sys that executes as part of the task with the task ID t.

elist blk mthName tid:t displays the list of methods invoked by the method mthName of block
blk that executes as part of the task with task ID t.

elist mdlName blk mthName tid:t displays the list of methods invoked by the method mthName
of block blk in referenced model mdlName that executes as part of the task with task ID t.

Input Arguments
mid — Method ID
positive integer

Method, specified as a positive integer.

sys — System
s:sysIdx | gcs

System, specified as one of these options:

• s:sysIdx — System with the system index sysIdx
• gcs — Current system

 elist

4-21

mthName — Method name
string | character vector

Method name, specified as a string or a character vector.

t — Task ID
positive integer

Task ID, specified as a positive integer.

blk — Block
(t)s:b | gcb

Block, specified using one of these options:

• (t)s:b — Block ID, where t is the task ID for the task in which the block executes, s is the
system index for the system that contains the block, and b is the index of the block within the
system

• gcb — Current block

mdlName — Name of referenced model
string | character vector

Name of referenced model, specified as a string or a character vector.

Tips
• To start a simulation debugging session interactively, add one or more breakpoints to your model

and in the Breakpoints List, check that Pause within time step is selected. When the
simulation pauses on a breakpoint, some of the programmatic debugging commands, such as the
stop command, are available for use in the MATLAB Command Window.

• You can view the execution order for the output methods of blocks in a model using the Execution
Order viewer. Using the Execution Order viewer, you can also annotate the block diagram with the
execution order for the model. For more information, see “Control and Display Execution Order”.

Version History
Introduced before R2006a

See Also
sldebug | where | slist | systems

Topics
“Simulink Debugging Programmatic Interface”
“Control and Display Execution Order”

4 Simulink Debugger Commands

4-22

emode
Switch between accelerator and normal mode during simulation debugging session

Syntax
emode

Description
emode switches the simulation mode between accelerator mode and normal mode during a simulation
debugging session.

The Simulink debugging programmatic interface supports only normal mode and accelerator mode
simulations. Rapid accelerator mode is not supported.

To switch between accelerator mode and normal mode, you must start the simulation debugging
session with the model in accelerator model. Before starting the simulation debugging session, in the
Simulink Toolstrip, on the Simulation tab, in the Simulate section, select Accelerator from the
drop-down list.

Starting a simulation debugging session in accelerator mode can speed up a simulation debugging
session. For example, if you know you need to investigate the simulation after a certain simulation
time, you can start the simulation debugging session in accelerator mode, specify a time breakpoint,
and continue. The simulation runs faster in accelerator mode than it would in normal mode to reach
the time breakpoint. Then, for access to complete debugging capabilities, you can change to normal
mode.

You must switch to normal mode execution to step the simulation block by block and to use these
functions:

• trace
• break
• zcbreak
• nanbreak

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

Examples

Use Accelerator Mode in Simulation Debugging Session

For complex models and long simulations, accelerator mode can decrease the time required to debug
a simulation. This example shows how to switch between simulation modes for a simulation of the
model vdp.

Open the model vdp.

 emode

4-23

openExample("simulink_general/VanDerPolOscillatorExample",...
 supportingFile="vdp")

To use accelerator mode during a simulation debugging session, you must start the simulation
debugging session with the model configured to simulate in accelerator mode. In the Simulink
Toolstrip, on the Simulation tab, in the Simulate section, select Accelerator from the simulation
drop-down list.

Start a simulation debugging session for the model vdp using the sldebug function. The MATLAB
Command Prompt (>>) becomes the Simulink debugger prompt ((sldebug @0): >>).

sldebug vdp

(sldebug @0): >>

Use the tbreak function to set a breakpoint for a simulation time of 5 seconds.

tbreak 5

Time break point : enabled (t>=5.0)

Use the continue function to progress the simulation debugging session to the time breakpoint. This
portion of the simulation runs in accelerator mode.

continue

Interrupting model execution at time break point (tbreak 5)
%--%
[Tm = 5.0073507114851168] vdp.Outputs.Minor

Only a subset of the debugging capabilities are available while the model runs in accelerator mode.
To use the full Simulink debugging programmatic interface to debug the model at this point of
interest, use the emode function to switch to normal mode.

emode

Execution Mode : Normal
Normal execution mode. All break points are enabled.

Use the step function to progress the simulation. This portion of the simulation debugging session
runs using normal mode.

step top

%--%
[TM = 5.051795155929562] vdp.Outputs.Major

After investigating this point of interest, you can:

• Continue the simulation debugging session in normal mode
• Set a breakpoint for another point of interest, use the emode function to switch back to

accelerator mode, and use the continue function to progress the simulation to the point of
interest

4 Simulink Debugger Commands

4-24

• Use the stop function to end the simulation debugging session

Version History
Introduced before R2006a

See Also
sldebug | break | step | ebreak | nanbreak | rbreak | tbreak | xbreak | zcbreak

Topics
“Simulink Debugging Programmatic Interface”
“What Is Acceleration?”

 emode

4-25

etrace
Configure simulation debugging session to display information when entering and exiting methods

Syntax
etrace lvl

Description
etrace lvl configures method tracing for certain methods according to the value you specify for
lvl. You can configure a simulation debugging session to trace:

• No methods
• Model methods
• Model and system methods
• Model, block, and system methods

The simulation debugging session displays information each time the simulation enters or exits a
traced method. The information displayed includes the current simulation time, whether the
simulation entered or exited the method, the method name, the method ID, and the name of the
model, system, or block to which the method belongs.

• When you start the simulation debugging session programmatically, the information is displayed in
the MATLAB Command Window.

• When you start the simulation debugging session using the Simulink Editor, the information is
displayed in the Diagnostic Viewer.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Input Arguments
lvl — Methods to trace
0 | 1 | 2 | 3

Methods to trace, specified as one of these options:

• 0 — No methods
• 1 — Model methods

4 Simulink Debugger Commands

4-26

• 2 — Model and system methods
• 3 — Model, system, and block methods

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced before R2006a

See Also
sldebug | elist | where | trace

Topics
“Simulink Debugging Programmatic Interface”

 etrace

4-27

help
Display help for Simulink debugging programmatic interface during simulation debugging session

Syntax
help

Description
help displays complete help information available for the Simulink debugging programmatic
interface.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced before R2006a

See Also
Functions
sldebug

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-28

nanbreak
Set or clear breakpoint to pause when Inf or NaN value occurs in simulation debugging session

Syntax
nanbreak

Description
nanbreak sets or clears a breakpoint that pauses simulation when a NaN or Inf value occurs in the
model during a simulation debugging session.

• If the breakpoint was not set, the command sets the breakpoint.
• If the breakpoint had been set, the command clears the breakpoint.

The Inf or NaN value breakpoint can help locate and investigate computational issues in your model.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced before R2006a

See Also
sldebug | break | bafter | rbreak | tbreak | xbreak | zcbreak

Topics
“Simulink Debugging Programmatic Interface”

 nanbreak

4-29

next
Progress simulation debugging session to start of next method in model execution list

Syntax
next

Description
next progresses the simulation debugging session to the start of the next method in the model
execution list. The next function is equivalent to using the step function with the over option.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

Version History
Introduced before R2006a

See Also
sldebug | where | elist

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-30

probe
Display input, output, and state data for specified block in simulation debugging session

Syntax
probe blk
probe mdl blk
probe level lvl

Description
probe blk displays in the MATLAB Command Window information about the block specified by blk.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

probe mdl blk displays information about the block specified by blk in the model specified by mdl.

probe level lvl sets the level of detail for the information displayed when you call the probe,
trace, or disp functions in a simulation debugging session. By default, the software displays all
information about the specified block, including input, output, state, and zero-crossing information.

Examples

Display Information for Currently Selected Block

Open the model vdp.

openExample("simulink_general/VanDerPolOscillatorExample",...
 supportingFile="vdp.slx");

Start a simulation debugging session using the sldebug function. The MATLAB Command Prompt
(>>) becomes the Simulink debugger prompt ((sldebug @0): >>).

sldebug vdp

(sldebug @0): >>

Use the probe function to view information about the current block.

probe gcb

 probe

4-31

probe: Data of Outport block 'vdp/Out2':
U1 = [0]

Use the step function to step to the start of the first major time step.

step top

%--%
[TM = 0] vdp.Outputs.Major

In the block diagram, select the block Mu. Then use the probe function to view information about the
currently selected block.

probe gcb

probe: Data of SubSystem block (virtual) 'vdp/Mu':
U1 = [0]
Y1 = [0]

When you have finished probing blocks, use the stop function to end the simulation debugging
session.

stop

Input Arguments
blk — Block to probe
(t)s:b | gcb

Block to probe, specified as one of these options:

• (t)s:b — Display information about block in task with task ID t and system index s with block
index b.

• gcb — Display information for current block.

When you specify the name of the referenced model that contains the block, you must specify the
block to register as a display point in the form (t)s:b.

mdl — Name of referenced model that contains block to probe
string | character vector

Name of referenced model that contains block to probe, specified as a string or a character vector.

When you specify this argument, you must specify the block to register as a display point in the form
(t)s:b.

lvl — Level of detail for information displayed
all (default) | io

Level of detail for information displayed, specified as one of these options:

• all — Displays input and output values as well as information about states and zero crossings.
• io — Displays only input and output values.

4 Simulink Debugger Commands

4-32

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced in R2007a

See Also
sldebug | disp | trace

Topics
“Simulink Debugging Programmatic Interface”

 probe

4-33

quit
End simulation debugging session

Syntax
quit

Description
quit ends a simulation debugging session.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

Examples

Start and End Simulation Debugging Session

Use the sldebug function to start a simulation debugging session for the model vdp. Then, use the
quit function to end the simulation debugging session.

Open the model vdp.

openExample("simulink_general/VanDerPolOscillatorExample",...
 supportingFile="vdp.slx");

Start a simulation debugging session using the sldebug function. The MATLAB Command Prompt
(>>) becomes the Simulink debugger prompt ((sldebug @0): >>).

sldebug vdp

(sldebug @0): >>

Use the quit function to end the simulation debugging session.

quit

Version History
Introduced before R2006a

See Also
sldebug | continue | run | stop

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-34

rbreak
Configure simulation debugging session to pause before solver reset

Syntax
rbreak

Description
rbreak sets or clears the solver reset breakpoint that causes the simulation debugging session to
pause before each solver reset.

• If the breakpoint was not set, the command sets the breakpoint.
• If the breakpoint had been set, the command clears the breakpoint.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

Version History
Introduced before R2006a

See Also
sldebug | break | bafter | nanbreak | ebreak | tbreak | xbreak | zcbreak

Topics
“Simulink Debugging Programmatic Interface”

 rbreak

4-35

run
Run simulation debugging session from current point to end of simulation, ignoring breakpoints

Syntax
run

Description
run continues the simulation debugging session from the current point until the end of the
simulation, ignoring breakpoints and display points. At the end of the simulation, the software exits
the sldebug command prompt and returns to the MATLAB command prompt. To continue debugging
the model, you must start a new simulation debugging session.

To continue the simulation debugging session from the current point until the simulation pauses on a
breakpoint, use the continue function.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

Version History
Introduced before R2006a

See Also
sldebug | continue | stop | quit

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-36

slist
Display sorted list of blocks in model during simulation debugging session

Syntax
slist

Description
slist displays in the MATLAB Command Window the sorted list of blocks in the root system and
each nonvirtual subsystem or referenced model in the root system. For the root system, each
nonvirtual subsystem, and each referenced model, the returned information includes:

• A title line that indicates the name of the system, the number of nonvirtual blocks in the system,
and the number of blocks in the system that have ports with direct feedthrough

• An entry for each block in the system in the order in which the blocks appear in the sorted list

Each block entry includes:

• The block ID in the form of (t)s:b, where t is the task index, s is the system index, and b is the
block index.

• The number and indices of input ports on the block.
• The number and indices of output ports on the block.

The slist function displays only nonvirtual blocks in the model. Virtual blocks do not appear in the
sorted list.

When a block is part of an algebraic loop, the sorted list information also includes the algebraic loop
identifier for the block. The algebraic loop identifier has the form algID=s#n, where s is the index of
the subsystem that contains the algebraic loop and n is the index of the algebraic loop within the
system. During a simulation debugging session, you can use the ashow function to highlight the
blocks in an algebraic loop.

The software uses the sorted list to create block method execution lists for the root system, each
nonvirtual subsystem, and each referenced model. Typically, the block methods are invoked in the
same order that they appear in the sorted list. In some cases, the execution order does differ from the
order in the sorted list. For example, in models that group blocks that execute at the same rate into
separate tasks, the block execution order can differ from the order of blocks in the sorted list.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

 slist

4-37

Examples

Display Sorted List for Model

Use the slist function to display the sorted list for the model vdp in a simulation debugging session.

Open the model vdp.

openExample("simulink_general/VanDerPolOscillatorExample",...
 supportingFile="vdp")

Start a simulation debugging session for the model vdp using the sldebug function. The MATLAB
Command Prompt (>>) becomes the Simulink debugger prompt ((sldebug @0): >>).

sldebug vdp

(sldebug @0): >>

Use the slist function to view the sorted list for the model.

slist

---- Sorted list for 'vdp' [13 nonvirtual block(s), directFeed=0]
 Total number of tasks = 2
- Sorted list of task index [0], 12 nonvirtual block(s)
 (0)0:1 'vdp/x1' (Integrator)
 Input ports: [0]
 Output ports: [0]
 (0)0:2 'vdp/Out1' (Outport)
 Input ports: [0]
 Output ports: []
 (0)0:3 'vdp/x2' (Integrator)
 Input ports: [0]
 Output ports: [0]
 (0)0:4 'vdp/Out2' (Outport)
 Input ports: [0]
 Output ports: []
 (0)0:5 'vdp/Scope' (Scope)
 Input ports: [0 1]
 Output ports: []
 (0)0:6 'vdp/TAQOutportLogging_InsertedFor_x1_at_outport_0' (ToAsyncQueueBlock)
 Input ports: [0]
 Output ports: []
 (0)0:7 'vdp/TAQOutportLogging_InsertedFor_x2_at_outport_0' (ToAsyncQueueBlock)
 Input ports: [0]
 Output ports: []
 (0)0:8 'vdp/Square' (Math)
 Input ports: [0]
 Output ports: [0]
 (0)0:9 'vdp/Sum1' (Sum)
 Input ports: [0 1]
 Output ports: [0]
 (0)0:10 'vdp/Product' (Product)
 Input ports: [0 1]
 Output ports: [0]
 (0)0:11 'vdp/Mu/Slider Gain' (Gain)
 Input ports: [0]

4 Simulink Debugger Commands

4-38

 Output ports: [0]
 (0)0:12 'vdp/Sum' (Sum)
 Input ports: [0 1]
 Output ports: [0]

- Sorted list of task index [1], 1 nonvirtual block(s)
 (1)0:1 'vdp/Constant' (Constant)
 Input ports: []
 Output ports: [0]

 ----- Task Index Legend -----
 Task Index [0]: Cont FiM
 Task Index [1]: Constant

When you have finished debugging, use the stop function to end the simulation debugging session.

stop

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced before R2006a

See Also
sldebug | systems | elist | ashow

Topics
“Simulink Debugging Programmatic Interface”

 slist

4-39

states
Display state values during simulation debugging session

Syntax
states

Description
states displays in the MATLAB Command Window the current state values for the model running in
the current simulation debugging session. The information displayed for each state includes the state
index, state value, and block name.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Examples

Display State Values During Simulation Debugging Session

Use the states function to display the current values for states in the model vdp in a simulation
debugging session.

Open the model vdp.

openExample("simulink_general/VanDerPolOscillatorExample",...
 supportingFile="vdp")

Start a simulation debugging session for the model vdp using the sldebug function. The MATLAB
Command Prompt (>>) becomes the Simulink debugger prompt ((sldebug @0): >>).

sldebug vdp

(sldebug @0): >>

Use the states function to view a list of states in the model and their current values.

states

Continuous States for 'vdp':
 Idx Value (system:block:element Name 'BlockName')
 0. 0 (0:0:0 CSTATE 'vdp/x1')
 1. 0 (0:2:0 CSTATE 'vdp/x2')

4 Simulink Debugger Commands

4-40

When you have finished debugging, use the stop function to end the simulation debugging session.

stop

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced before R2006a

See Also
sldebug | systems | elist | ashow

Topics
“Simulink Debugging Programmatic Interface”

 states

4-41

status
Display options used in current simulation debugging session

Syntax
status

Description
status displays in the MATLAB Command Window a list of all debugging options and the values in
effect for the current simulation debugging session. Debugging options include:

• Model-wide breakpoints, such as the zero crossing breakpoint and the Inf or NaN value
breakpoint

• Active display and trace points
• Level of information to display for the probe function, display points, and trace points

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced before R2006a

See Also
sldebug

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-42

step
Advance simulation by specified increment

Syntax
step
step amt

Description
step advances the simulation to the next method in the current time step.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

step amt advances the simulation by the amount specified by amt. For example, to advance the
simulation to the first method in the next time step, specify amt as top.

step top

Input Arguments
amt — Amount to advance simulation
in (default) | over | out | top | blockmth

Amount to advance simulation, specified as one of these options:

• in — Advance simulation to the next method in the current time step and pause before the first
method within the next method. If the next method does not contain any methods, the simulation
debugging session pauses at the end of the next method.

• over — Advance simulation over the next method in the current time step.
• out — Advance simulation to the end of the current simulation point in the execution hierarchy.
• top — Advance simulation to the first method in the next time step.
• blkmth — Advance simulation to next block method.

Example: step top advances the simulation debugging session to the first method in the next time
step.
Data Types: char | string

Tips
After executing a block method in a programmatic simulation debugging session, the software
displays this information in the MATLAB Command Window:

• Current simulation time Tm

 step

4-43

• Block ID
• Next method to execute
• Block input values U1,...,Un
• Block output values Y1,...,Yn
• Block continuous state vector CSTATE
• Block discrete state vector DSTATE

The image shows typical Command Window output after calling the step function.

Version History
Introduced in R2007a

See Also
sldebug | next | where | elist

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-44

stimes
Display information about sample times in model during simulation debugging session

Syntax
stimes

Description
stimes displays in the MATLAB Command Window information about the sample times in the model
that is running in the current simulation debugging session. The sample time information includes
the period, offset, and task ID for each sample time.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Examples

Display Information About Sample Times in Model

Use the stimes function to display information about the sample times in the model vdp during a
simulation debugging session.

Open the model vdp.

openExample("simulink_general/VanDerPolOscillatorExample",...
 supportingFile="vdp")

Start a simulation debugging session for the model vdp using the sldebug function. The MATLAB
Command Prompt (>>) becomes the Simulink debugger prompt ((sldebug @0): >>).

sldebug vdp

(sldebug @0): >>

Use the stimes function to display information about the sample times in the model. The model vdp
contains three sample times.

stimes

--- Sample times for 'vdp' [Number of sample times = 3]
 1. tid=0 (continuous)

 stimes

4-45

 2. tid=1 (continuous but fixed-in-minor-step)
 3. tid=2 (value = inf in ModelWideParameterChangeEvent)

When you have finished debugging, use the stop function to end the simulation debugging session.

stop

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced before R2006a

See Also
sldebug | systems | elist | ashow

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-46

stop
Stop simulation debugging session

Syntax
stop

Description
stop stops a simulation debugging session.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

To stop a simulation using a logical signal in your model, use the Stop Simulation block.

To stop a simulation that was started using the Run button or by using the set_param function to
specify a simulation command, click the Stop button or use the set_param function to specify the
stop simulation command.

set_param(mdl,"SimulationCommand","stop")

Examples

Start and Stop Debug Simulation

Start and then stop a simulation debugging session for the model vdp.

Open the model vdp.

openExample("simulink_general/VanDerPolOscillatorExample",...
 supportingFile="vdp.slx")

Use the sldebug function to start the simulation debugging session for the model.

sldebug("vdp")

%--%
[TM = 0] simulate(vdp)

The MATLAB command prompt changes from >> to (sldebug @0): >> to indicate that a debug
simulation is in progress and that the Simulink debugging programmatic interface is available.

 stop

4-47

Use the step command to step the simulation to the start of the next major time step.

step top

%--%
[TM = 0] vdp.Outputs.Major

You can continue using the step command to progress the simulation and observe the results in the
Scope block.

Use the stop function to stop the debug simulation.

stop

%--%
% Simulation stopped

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced in R2006a

See Also
Functions
sldebug | continue | run | quit

Blocks
Stop Simulation

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-48

strace
Display solver information in simulation debugging session

Syntax
strace lvl

Description
strace lvl configures a simulation debugging session to display information about the solver as
you step through a simulation. Specify the level of information to display using the lvl input
argument.

• When you start the simulation debugging session programmatically, the information is displayed in
the MATLAB Command Window.

• When you start the simulation debugging session using the Simulink Editor, the information is
displayed in the Diagnostic Viewer.

Displaying solver information in a simulation debugging session can help you determine whether
choosing a different solver could improve simulation performance.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Input Arguments
lvl — Level of solver information to display
scalar between 0 and 4, inclusive

Level of solver information to display, specified as a scalar between 0 and 4, inclusive. A higher value
indicates a higher level of information. To stop displaying solver information in a simulation
debugging session, specify the argument as 0.

Tips
• When you configure a simulation debugging session to display solver information, the software

displays several types of timing information related to the solver computations. For information
about the notation, use this command.

help time

 strace

4-49

• To start a simulation debugging session interactively, add one or more breakpoints to your model
and in the Breakpoints List, check that Pause within time step is selected. When the
simulation pauses on a breakpoint, some of the programmatic debugging commands, such as the
stop command, are available for use in the MATLAB Command Window.

Version History
Introduced before R2006a

See Also
sldebug | atrace | etrace | states | trace | zclist

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-50

systems
List nonvirtual subsystems in model or model hierarchy during simulation debugging session

Syntax
systems

Description
systems displays in the MATLAB Command Window a list of nonvirtual subsystems in the model or
model hierarchy being simulated in the active simulation debugging session. When the active
simulation debugging session is for a model hierarchy, the list of nonvirtual subsystems is grouped by
model.

The systems function displays only nonvirtual subsystems and not virtual subsystems.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced before R2006a

See Also
sldebug | slist

Topics
“Simulink Debugging Programmatic Interface”

 systems

4-51

tbreak
Set or clear breakpoint that pauses simulation debugging session at specified time

Syntax
tbreak t

Description
tbreak t sets or clears a breakpoint that pauses simulation after the simulation reaches the
specified time t. The simulation debugging session pauses on the Outputs.Major method for the
model in the first time step after time t.

• If a breakpoint was not already set for time t, the command sets the breakpoint.
• If a breakpoint had been set for time t, the command clears the breakpoint.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

Input Arguments
t — Time to pause simulation debugging session
scalar

Time to pause simulation debugging session, specified as a scalar. The software pauses simulation on
the Outputs.Major method for the model in the time step that follows the specified time.

Version History
Introduced before R2006a

See Also
sldebug | break | bafter | xbreak | nanbreak | zcbreak | rbreak

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-52

trace
Display information about specified block each time block executes in simulation debugging session

Syntax
trace blk

Description
trace blk registers the block specified by blk as a trace point in the simulation debugging session.
The software displays information about the block that corresponds to a trace point each time that
block executes in the simulation debugging session.

• When you start the simulation debugging session programmatically, the information is displayed in
the MATLAB Command Window.

• When you start the simulation debugging session using the Simulink Editor, the information is
displayed in the Diagnostic Viewer.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Input Arguments
blk — Block to register as trace point
(t)s:b | gcb

Block to register as trace point, specified as one of these options:

• (t)s:b — Block with index b in system with index s and task with index t
• gcb — Current block

Tips
• To clear a registered trace point, use the untrace function.
• The software displays the level of information configured for the simulation debugging session. To

specify the level of information to display, use the probe function.
• To start a simulation debugging session interactively, add one or more breakpoints to your model

and in the Breakpoints List, check that Pause within time step is selected. When the
simulation pauses on a breakpoint, some of the programmatic debugging commands, such as the
stop command, are available for use in the MATLAB Command Window.

 trace

4-53

Version History
Introduced before R2006a

See Also
sldebug | disp | probe | untrace | slist | strace

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-54

undisp
Remove display point in simulation debugging session

Syntax
undisp blk

Description
undisp blk removes the display point for the block blk from the list of display points for the
current simulation debugging session. The software displays information for each registered display
point each time the simulation pauses.

• When you start the simulation debugging session programmatically, the information is displayed in
the MATLAB Command Window.

• When you start the simulation debugging session using the Simulink Editor, the information is
displayed in the Diagnostic Viewer.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Input Arguments
blk — Block that corresponds to display point to remove
(t)s:b | gcb

Block that corresponds to display point to remove, specified as one of these options:

• (t)s:b — Block ID, where t is the index of the task in which the block executes, s is the system
that contains the block, and b is the index of the block within the system

• gcb — Current block

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

 undisp

4-55

Version History
Introduced before R2006a

See Also
sldebug | disp | slist

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-56

untrace
Remove trace point in simulation debugging session

Syntax
untrace blk

Description
untrace blk removes the trace point for the block blk from the list of trace points for the current
simulation debugging session. The software displays information about the block that corresponds to
a trace point each time the block executes in the simulation debugging session.

• When you start the simulation debugging session programmatically, the information is displayed in
the MATLAB Command Window.

• When you start the simulation debugging session using the Simulink Editor, the information is
displayed in the Diagnostic Viewer.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Input Arguments
blk — Block that corresponds to trace point to remove
(t)s:b | gcb

Block that corresponds to trace point to remove, specified using one of these options:

• (t)s:b — Block ID where t is the index of the task in which the block executes, s is the index of
the system that contains the block, and b is the index of the block within the system

• gcb — Current block

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

 untrace

4-57

Version History
Introduced before R2006a

See Also
sldebug | trace | slist

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-58

where
Display current location within simulation loop during simulation debugging session

Syntax
where

Description
where displays the current location within the simulation loop for the debugging session, including
information about the call stack.

The display consists of a hierarchical list of simulation nodes, where the last node in the list indicates
the next node the simulation will enter or the node the simulation is about to leave. Each entry in the
list includes:

• The method ID
• A symbol that indicates the method status:

• >> — Active method
• >| — Next method simulation enters
• <| — Method simulation is about to leave

• The name of the method invoked.
• The block ID for the block on which the method is invoked, if the method is invoked on a block.
• The name of the block or system on which the method is invoked.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

 where

4-59

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced in R2006a

See Also
sldebug | step

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-60

xbreak
Set or clear breakpoint to pause when state limits step size in simulation debugging session

Syntax
xbreak

Description
xbreak sets or clears a breakpoint that pauses simulation when the value of a state in the model
limits the step size in a simulation debugging session that uses a variable-step solver.

• If the breakpoint was not set, the command sets the breakpoint.
• If the breakpoint had been set, the command clears the breakpoint.

The step-size limiting state breakpoint can help debug and analyze models that require more steps
than expected in a variable-step simulation.

Note This function is supported only for simulation debugging sessions started programmatically
using the sldebug function or using the sim function with the 'debug' name-value argument.

Version History
Introduced before R2006a

See Also
sldebug | break | bafter | zcbreak | tbreak | nanbreak | rbreak

Topics
“Simulink Debugging Programmatic Interface”

 xbreak

4-61

zcbreak
Configure simulation debugging session to pause when nonsampled zero-crossing events occur

Syntax
zcbreak

Description
zcbreak sets or clears a breakpoint that pauses simulation when a nonsampled zero-crossing event
occurs.

• If the breakpoint was not set, the command sets the breakpoint.
• If the breakpoint had been set, the command clears the breakpoint.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced before R2006a

See Also
sldebug | break | bafter | xbreak | tbreak | nanbreak | zclist

Topics
“Simulink Debugging Programmatic Interface”

4 Simulink Debugger Commands

4-62

zclist
List blocks that detect zero crossings in simulation debugging session

Syntax
zclist

Description
zclist displays in the MATLAB Command Window a list of blocks that detect zero crossings.

You can use this function in a simulation debugging session started:

• Interactively, using the Simulink Toolstrip
• Programmatically, using the sldebug function
• Programmatically, using the sim function with the 'debug' name-value argument

Note This function is available only for simulation debugging sessions started programmatically and
for interactive simulation debugging sessions while paused within a time step.

Tips
To start a simulation debugging session interactively, add one or more breakpoints to your model and
in the Breakpoints List, check that Pause within time step is selected. When the simulation
pauses on a breakpoint, some of the programmatic debugging commands, such as the stop
command, are available for use in the MATLAB Command Window.

Version History
Introduced before R2006a

See Also
sldebug | zcbreak

Topics
“Simulink Debugging Programmatic Interface”

 zclist

4-63

Classes

eventData Provide information about block method execution
events

Simulink.BlockCompDworkData Provide postcompilation information about block's
DWork vector

Simulink.BlockCompInputPortData
Provide postcompilation information about block input
port

Simulink.BlockCompOutputPortData
Provide postcompilation information about block output
port

Simulink.BlockData Provide run-time information about block-related data,
such as block parameters

Simulink.BlockPortData Describe block input or output port
Simulink.BlockPreCompInputPortData

Provide precompilation information about block input
port

Simulink.BlockPreCompOutputPortData
Provide precompilation information about block output
port

Simulink.dialog.Image Create an image dialog control
Simulink.dialog.Panel Create an instance of a panel dialog control
Simulink.dialog.parameter.CustomTable

Create custom tables programmatically
Simulink.dialog.TabContainer Create an instance of a tab container dialog control
Simulink.dialog.Text Create a text dialog control
Simulink.GlobalDataTransfer Configure concurrent execution data transfers
Simulink.MSFcnRunTimeBlock Get run-time information about Level-2 MATLAB S-

function block
Simulink.RunTimeBlock Allow Level-2 MATLAB S-function and other MATLAB

programs to get information about block while
simulation is running

Simulink.SampleTime Object containing sample time information
Simulink.SimulationData.BlockPath

Fully specified Simulink block path
Simulink.SimulationData.DataStoreMemory

Container for data store logging information
Simulink.SimulationData.State State logging element
Simulink.SimulationMetadata Access metadata of simulation runs

5

coder.BuildConfig class
Package: coder

Build context during code generation

Description
The code generator creates an object of this class to facilitate access to the build context. The build
context encapsulates the settings used by the code generator including:

• Target language
• Code generation target
• Target hardware
• Build toolchain

Use coder.BuildConfig methods in the methods that you write for the
coder.ExternalDependency class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Creation
The code generator creates objects of this class.

Methods
Public Methods
getHardwareImplementation Get handle of copy of hardware implementation object
getStdLibInfo Get standard library information
getTargetLang Get target code generation language
getToolchainInfo Returns handle of copy of toolchain information object
isCodeGenTarget Determine if build context represents specified target
isMatlabHostTarget Determine if hardware implementation object target is MATLAB host

computer

Examples

Use coder.BuildConfig methods to access the build context in
coder.ExternalDependency methods

This example shows how to use coder.BuildConfig methods to access the build context in
coder.ExternalDependency methods. In this example, you use:

5 Classes

5-2

• coder.BuildConfig.isMatlabHostTarget to verify that the code generation target is the
MATLAB host. If the host is not MATLAB report an error.

• coder.BuildConfig.getStdLibInfo to get the link-time and run-time library file extensions.
Use this information to update the build information.

Write a class definition file for an external library that contains the function adder.

%==
% This class abstracts the API to an external Adder library.
% It implements static methods for updating the build information
% at compile time and build time.
%==

classdef AdderAPI < coder.ExternalDependency
 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)
 bName = 'AdderAPI';
 end

 function tf = isSupportedContext(buildContext)
 if buildContext.isMatlabHostTarget()
 tf = true;
 else
 error('adder library not available for this target');
 end
 end

 function updateBuildInfo(buildInfo, buildContext)
 % Get file extensions for the current platform
 [~, linkLibExt, execLibExt, ~] = buildContext.getStdLibInfo();

 % Add file paths
 hdrFilePath = fullfile(pwd, 'codegen', 'dll', 'adder');
 buildInfo.addIncludePaths(hdrFilePath);

 % Link files
 linkFiles = strcat('adder', linkLibExt);
 linkPath = hdrFilePath;
 linkPriority = '';
 linkPrecompiled = true;
 linkLinkOnly = true;
 group = '';
 buildInfo.addLinkObjects(linkFiles, linkPath, ...
 linkPriority, linkPrecompiled, linkLinkOnly, group);

 % Non-build files for packaging
 nbFiles = 'adder';
 nbFiles = strcat(nbFiles, execLibExt);
 buildInfo.addNonBuildFiles(nbFiles,'','');
 end

 %API for library function 'adder'
 function c = adder(a, b)
 if coder.target('MATLAB')

 coder.BuildConfig class

5-3

 % running in MATLAB, use built-in addition
 c = a + b;
 else
 % Add the required include statements to the generated function code
 coder.cinclude('adder.h');
 coder.cinclude('adder_initialize.h');
 coder.cinclude('adder_terminate.h');
 c = 0;

 % Because MATLAB Coder generated adder, use the
 % housekeeping functions before and after calling
 % adder with coder.ceval.

 coder.ceval('adder_initialize');
 c = coder.ceval('adder', a, b);
 coder.ceval('adder_terminate');
 end
 end
 end
end

Version History
Introduced in R2013b

See Also
coder.target | coder.ExternalDependency | coder.HardwareImplementation

Topics
“Develop Interface for External C/C++ Code” (MATLAB Coder)
“Build Process Customization” (MATLAB Coder)

5 Classes

5-4

coder.ExternalDependency class
Package: coder

Interface to external code

Description
coder.ExternalDependency is an abstract class for developing an interface between external code
and MATLAB code intended for code generation. You can define classes that derive from
coder.ExternalDependency to encapsulate the interface to external libraries, object files, and C/C
++ source code. This encapsulation allows you to separate the details of the interface from your
MATLAB code.

To define a class derived from coder.ExternalDependency, create a subclass. For example:

classdef myClass < coder.ExternalDependency

You must define all of the methods listed in “Methods” on page 5-5. These methods are static and
are not compiled. The code generator invokes these methods in MATLAB after code generation is
complete to configure the build for the generated code. The RTW.BuildInfo and
coder.BuildConfig objects that describe the build information and build context are automatically
created during the build process. The updateBuildInfo method provides access to these objects.
For more information on build information customization, see “Build Process Customization”
(MATLAB Coder).

You also define methods that call the external code. These methods are compiled. For each external
function that you want to call, write a method to define the programming interface to the function. In
the method, use coder.ceval to call the external function.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Methods
Public Methods
coder.ExternalDependency.getDescriptiveName Return descriptive name for external dependency
coder.ExternalDependency.isSupportedContext Determine if build context supports external

dependency
coder.ExternalDependency.updateBuildInfo Update build information

Examples

Encapsulate the Interface to an External C Dynamic Library

This example shows how to encapsulate the interface to an external C dynamic linked library using
coder.ExternalDependency.

 coder.ExternalDependency class

5-5

Write a function adder that returns the sum of its inputs.

function c = adder(a,b)
%#codegen
c = a + b;
end

Generate a library that contains adder.

codegen('adder','-args',{-2,5},'-config:dll','-report')

Write the class definition file AdderAPI.m to encapsulate the library interface.

%==
% This class abstracts the API to an external Adder library.
% It implements static methods for updating the build information
% at compile time and build time.
%==

classdef AdderAPI < coder.ExternalDependency
 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)
 bName = 'AdderAPI';
 end

 function tf = isSupportedContext(buildContext)
 if buildContext.isMatlabHostTarget()
 tf = true;
 else
 error('adder library not available for this target');
 end
 end

 function updateBuildInfo(buildInfo, buildContext)
 % Get file extensions for the current platform
 [~, linkLibExt, execLibExt, ~] = buildContext.getStdLibInfo();

 % Add file paths
 hdrFilePath = fullfile(pwd, 'codegen', 'dll', 'adder');
 buildInfo.addIncludePaths(hdrFilePath);

 % Link files
 linkFiles = strcat('adder', linkLibExt);
 linkPath = hdrFilePath;
 linkPriority = '';
 linkPrecompiled = true;
 linkLinkOnly = true;
 group = '';
 buildInfo.addLinkObjects(linkFiles, linkPath, ...
 linkPriority, linkPrecompiled, linkLinkOnly, group);

 % Non-build files for packaging
 nbFiles = 'adder';
 nbFiles = strcat(nbFiles, execLibExt);
 buildInfo.addNonBuildFiles(nbFiles,'','');

5 Classes

5-6

 end

 %API for library function 'adder'
 function c = adder(a, b)
 if coder.target('MATLAB')
 % running in MATLAB, use built-in addition
 c = a + b;
 else
 % Add the required include statements to the generated function code
 coder.cinclude('adder.h');
 coder.cinclude('adder_initialize.h');
 coder.cinclude('adder_terminate.h');
 c = 0;

 % Because MATLAB Coder generated adder, use the
 % housekeeping functions before and after calling
 % adder with coder.ceval.

 coder.ceval('adder_initialize');
 c = coder.ceval('adder', a, b);
 coder.ceval('adder_terminate');
 end
 end
 end
end

Write a function adder_main that calls the external library function adder.

function y = adder_main(x1, x2)
 %#codegen
 y = AdderAPI.adder(x1, x2);
end

Generate a MEX function for adder_main. The MEX Function exercises the
coder.ExternalDependency methods.

codegen('adder_main','-args',{7,9},'-report')

Copy the library to the current folder using the file extension for your platform. For Windows, use:

copyfile(fullfile(pwd,'codegen','dll','adder','adder.dll'));

For Linux, use:

copyfile(fullfile(pwd,'codegen','dll','adder','adder.so'));

Run the MEX function and verify the result.

adder_main_mex(2,3)

Version History
Introduced in R2013b

See Also
coder.ceval | coder.cinclude | coder.updateBuildInfo | coder.BuildConfig

 coder.ExternalDependency class

5-7

Topics
“Develop Interface for External C/C++ Code” (MATLAB Coder)
“Build Process Customization” (MATLAB Coder)
“Integrate External/Custom Code” (MATLAB Coder)

5 Classes

5-8

eventData
Provide information about block method execution events

Description
Simulink software creates an instance of this class when a block method execution event occurs
during simulation and passes it to any listeners registered for the event (see
add_exec_event_listener). The instance specifies the type of event that occurred and the block
whose method execution triggered the event. See “Access Block Data During Simulation” for more
information.

Parent
None

Children
None

Property Summary

Name Description
“Type” on page 5-9 Type of method execution event that occurred.
“Source” on page 5-10 Block that triggered the event.

Properties
Type
Description

Type of method execution event that occurred. Possible values are:

event Occurs...
'PreOutputs' Before a block's Outputs method executes.
'PostOutputs' After a block's Outputs method executes.
'PreUpdate' Before a block's Update method executes.
'PostUpdate' After a block's Update method executes.
'PreDerivatives' Before a block's Derivatives method executes.
'PostDerivatives' After a block's Derivatives method executes.

Data Type

character vector

 eventData

5-9

Access

RO

Source
Description

Block that triggered the event

Data Type

Simulink.RunTimeBlock

Access

RO

Version History
Introduced in R2009b

5 Classes

5-10

io.reader class
Package: io

Base class used to define custom variable or file reader for Simulation Data Inspector

Description
Use the io.reader base class to specify how to import custom variable and file formats into the
Simulation Data Inspector. Write a class definition file that uses the io.reader methods to
specify how to extract information like time and data values from the variable or file. Use this syntax
as the first line in the class definition file to inherit from the io.reader class, where MyReader is
the name of your subclass:

classdef MyReader < io.reader

For an example that shows how to write and use a custom file reader, see “Import Data Using a
Custom File Reader”.

For an example that shows how to write and use a custom workspace data reader, see “Import
Workspace Variables Using a Custom Data Reader”.

The io.reader class is a handle class.

Class Attributes

Abstract true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Properties
FileName — Name of imported file
'' (default) | character array

Name of imported file when using the subclass to import a file, specified as a character array.
Example: 'MyCustomFile'

Attributes:

GetAccess public
SetAccess public

VariableName — Name of imported variable
'' (default) | character array

Name of imported variable or signal, specified as a character array.
Example: 'MyVar'

 io.reader class

5-11

Attributes:

GetAccess public
SetAccess public

VariableValue — Imported variable
variable

Imported variable. The VariableValue property has the same data type as the variable in the
workspace or file. Use the VariableValue property to access the variable data inside method
definitions.
Example: MyVar

Attributes:

GetAccess public
SetAccess public

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | enumerated | bus | table | cell | categorical | datetime
| duration | calendarDuration | fi

Methods
Public Methods

Abstract Methods
getName Get names for data imported using a custom reader
getDataValues Return data values for data imported using a custom reader
getTimeValues Return time values for data imported using a custom reader

Commonly Used Methods
getChildren Return custom reader object for each node and signal in data

imported using a custom reader
supportsFile Return logical indication of whether custom reader supports file
registerFileReader Register custom file reader for use in the Simulation Data Inspector
unregisterFileReader Unregister custom file reader for the Simulation Data Inspector
supportsVariable Return logical indication of whether custom reader supports variable
registerWorkspaceReader Register custom workspace reader for the Simulation Data Inspector
unregisterWorkspaceReader Unregister custom workspace reader for the Simulation Data

Inspector

Static Methods
io.reader.getRegisteredFileReaders Return all custom file readers registered for the

Simulation Data Inspector
io.reader.getSupportedReadersForFile Return all readers available to import file
io.reader.getRegisteredWorkspaceReaders Return all custom workspace readers registered for the

Simulation Data Inspector

5 Classes

5-12

Additional Public Methods

getDescription desc = getDescription(obj)

Return a character array or string that provides a
description of the custom file reader to display in
the import dialog in the Simulation Data
Inspector.

getSampleDimensions dims = getSampleDimensions(obj)

Return a vector that represents the dimensions of
a single sample. For a scalar signal, return [1].
Return a single value for wide signals ([3]).

getSignalDescription desc = getSignalDescription(obj)

Return a character array or string to use as the
value for the Description property of the
imported Simulink.sdi.Signal object.

getBlockPath blkPath = getBlockPath(obj)

Return a character array, string, or
Simulink.SimulationData.BlockPath object
that represents the source of the signal.

getPortIndex portInd = getPortIndex(obj)

Return an integer that corresponds to the index
of the block output port that produces the signal.

getInterpolation int = getInterpolation(obj)

Return a character array or string that contains
zoh to use zero-order hold interpolation or
linear to use linear interpolation.

getUnit sigUnit = getUnit(obj)

Return a character array or string that contains
the unit of measure for the signal.

isEventBasedSignal eventBased = isEventBasedSignal(obj)

Return true when the signal is event-based or a
message.

Version History
Introduced in R2020b

See Also
Functions
Simulink.sdi.createRun

 io.reader class

5-13

Objects
Simulink.sdi.Run | Simulink.sdi.Signal

Topics
“Import Data Using a Custom File Reader”
“Import Workspace Variables Using a Custom Data Reader”
“Microsoft Excel Import, Export, and Logging Format”
“Inspect Simulation Data”
“Compare Simulation Data”

5 Classes

5-14

getChildren
Class: io.reader
Package: io

Return custom reader object for each node and signal in data imported using a custom reader

Syntax
childObj = getChildren(obj)

Description
childObj = getChildren(obj) returns an array of custom reader objects that correspond to
hierarchical nodes and signals in data imported into the Simulation Data Inspector using a custom file
or workspace reader. Use the getChildren method to preserve the hierarchy for imported data.
When you import multiple signals from a file, you can use the getChildren method to import the
data as a flat list of signals contained under a top-level node that corresponds to the file.

Input Arguments
obj — Custom data reader
io.reader subclass object

Custom data reader, specified as an object of a class that inherits from the io.reader base class.
Example: MyCustomFileReader

Output Arguments
childObj — Hierarchical nodes and signals
cell array of io.reader subclass objects

Hierarchical nodes and signals in imported data, returned as a cell array of io.reader subclass
objects.

Examples

Structure Data Imported from File

This example uses the getChildren method to import multiple signals from a file as a flat list of
signals contained in a top-level node that represents the file. Specify code for the getChildren
method in the class definition file.

This example does not show a complete class definition. All custom readers must define behavior for
the getName, getTimeValues, and getDataValues methods. For an example that shows the
complete class definition and import workflow, see “Import Data Using a Custom File Reader”.

In this example, the getChildren method reads the data from the file using the readtable
function. The custom reader in this example always uses the data in the first column as time, so the

 getChildren

5-15

first variable name is cleared and not used. The getChildren method creates a custom reader
object for the top-level node that corresponds to the file and for each signal in the file and assigns
values to the FileName and VariableName properties.

classdef ExcelFirstColumnTimeReader < io.reader
 methods
 % ...

 function childObj = getChildren(obj)
 childObj = {};
 if isempty(obj.VariableName)
 t = readtable(obj.FileName);
 vars = t.Properties.VariableNames;
 vars(1) = [];
 childObj = cell(size(vars));
 for idx = 1:numel(vars)
 childObj{idx} = ExcelFirstColumnTimeReader;
 childObj{idx}.FileName = obj.FileName;
 childObj{idx}.VariableName = vars{idx};
 end
 end
 end

 % ...
 end
end

Structure Data Imported from Workspace

This example uses the getChildren method to import an array of structures stored in a variable in
the base workspace. Specify code for the getChildren method in the class definition file.

This example does not show a complete class definition. All custom readers must define behavior for
the getName, getTimeValues, and getDataValues methods, and workspace data readers need to
define the supportsVariable method. For an example that shows the complete class definition and
import workflow for a workspace data reader, see “Import Workspace Variables Using a Custom Data
Reader”.

In this example, the getChildren method creates a custom reader object for each structure in the
input variable when the variable is an array of structures. The workspace reader in this example
defines a ChannelIndex property that the getChildren method uses to identify each object it
creates.

classdef SimpleStructReader < io.reader

 properties
 ChannelIndex
 end

 methods
 % ...

 function childObj = getChildren(obj)
 childObj = {};
 if ~isscalar(obj.VariableValue) && isempty(obj.ChannelIndex)

5 Classes

5-16

 numChannels = numel(obj.VariableValue);
 childObj = cell(numChannels,1);
 for idx = 1:numChannels
 childObj{idx} = SimpleStructReader;
 childObj{idx}.VariableName = sprintf('%s(%d)',obj.VariableName,idx);
 childObj{idx}.VariableValue = obj.VariableValue;
 childObj{idx}.ChannelIndex = idx;
 end
 end
 end

 % ...
 end
end

Version History
Introduced in R2020b

See Also
Functions
getDataValues | getName | getTimeValues | supportsFile | supportsVariable

Topics
“Import Data Using a Custom File Reader”
“Import Workspace Variables Using a Custom Data Reader”
“Microsoft Excel Import, Export, and Logging Format”

 getChildren

5-17

getDataValues
Class: io.reader
Package: io

Return data values for data imported using a custom reader

Syntax
dataVals = getDataValues(obj)

Description
dataVals = getDataValues(obj) returns data values to use for data imported into the
Simulation Data Inspector using a custom file or workspace variable reader. Specify code for the
getDataValues method to extract signal values from a proprietary file or variable format.

Input Arguments
obj — Custom data reader
io.reader subclass object

Custom data reader, specified as an object of a class that inherits from the io.reader base class.
Example: MyCustomFileReader

Output Arguments
dataVals — Signal values
numeric array | enum array | logical array | string array

Signal values, returned as an array of numeric, enumeration, logical, or string values. For scalar
signals and wide signals, the first dimension of the array aligns with time and must match the length
of the time vector returned by getTimeValues. For multidimensional signals, the last dimension
aligns with time and must match the length of the time vector returned by getTimeValues.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Examples

Get Signal Values for Data Imported from File

Write the function definition for the getDataValues method to return signal values to use for data
imported from a file. The custom reader in this example imports the data from the file with a

5 Classes

5-18

hierarchical structure, treating the file as the top node. Specify the code for the getDataValues
method in the class definition file.

This example does not show a complete class definition. All custom readers must define behavior for
the getName, getTimeValues, and getDataValues methods. For an example that shows the
complete class definition and import workflow, see “Import Data Using a Custom File Reader”.

In this example, the getChildren method reads the data from the file using the readtable function
and returns an array of custom reader objects for the top-level node that corresponds to the file and
for each signal in the file. Then, the getDataValues method reads the data using the readtable
function and selects the signal data to return for each signal in the file using the VariableName
property of each custom reader object.

classdef ExcelFirstColumnTimeReader < io.reader
 methods
 % ...

 function childObj = getChildren(obj)
 childObj = {};
 if isempty(obj.VariableName)
 t = readtable(obj.FileName);
 vars = t.Properties.VariableNames;
 vars(1) = [];
 childObj = cell(size(vars));
 for idx = 1:numel(vars)
 childObj{idx} = ExcelFirstColumnTimeReader;
 childObj{idx}.FileName = obj.FileName;
 childObj{idx}.VariableName = vars{idx};
 end
 end
 end

 function dataVals = getDataValues(obj)
 dataVals = [];
 if ~isempty(obj.VariableName)
 t = readtable(obj.FileName);
 dataVals = t.(obj.VariableName);
 end
 end

 % ...
 end
end

Get Signal Values from Workspace Variable

Write the function definition for the getDataValues method to return signal values from a
workspace variable. Specify the code executed by the getDataValues method in the class definition
file.

This example does not show a complete class definition. All custom readers must define behavior for
the getName, getTimeValues, and getDataValues methods, and workspace data readers need to
define the supportsVariable method. For an example that shows the complete class definition and
import workflow for a workspace data reader, see “Import Workspace Variables Using a Custom Data
Reader”.

 getDataValues

5-19

The custom reader in this example imports a structure or an array of structures from the workspace.
The structures must contain fields for the signal data (d), the time data (t), and the signal name (n).
When the variable to import is a scalar structure, the getDataValues method returns the data from
the d field of the structure.

When the variable is an array of structures, the custom reader uses both the getDataValues and
getChildren methods to import the data. The getChildren method creates a custom reader object
for each structure in the array and sets the ChannelIndex property to identify the index of the
signal data within the array. Then, the getDataValues method uses the ChannelIndex property
value to select the appropriate structure from the VariableValue property value, which is the array
of structures.

classdef SimpleStructReader < io.reader

 properties
 ChannelIndex
 end

 methods
 % ...

 function childObj = getChildren(obj)
 childObj = {};
 if ~isscalar(obj.VariableValue) && isempty(obj.ChannelIndex)
 numChannels = numel(obj.VariableValue);
 childObj = cell(numChannels,1);
 for idx = 1:numChannels
 childObj{idx} = SimpleStructReader;
 childObj{idx}.VariableName = sprintf('%s(%d)',obj.VariableName,idx);
 childObj{idx}.VariableValue = obj.VariableValue;
 childObj{idx}.ChannelIndex = idx;
 end
 end
 end

 function dataVals = getDataValues(obj)
 if isscalar(obj.VariableValue)
 dataVals = obj.VariableValue.d;
 elseif ~isempty(obj.ChannelIndex)
 varVal = obj.VariableValue(obj.ChannelIndex);
 dataVals = varVal.d;
 else
 dataVals = [];
 end
 end

 % ...
 end
end

Version History
Introduced in R2020b

5 Classes

5-20

See Also
Functions
getName | getTimeValues | supportsFile | getChildren | supportsVariable

Topics
“Import Data Using a Custom File Reader”
“Import Workspace Variables Using a Custom Data Reader”
“Microsoft Excel Import, Export, and Logging Format”

 getDataValues

5-21

getName
Class: io.reader
Package: io

Get names for data imported using a custom reader

Syntax
retName = getName(obj)

Description
retName = getName(obj) returns the name to use in the Simulation Data Inspector for a signal
or hierarchical node in data imported from the workspace or a file.

Input Arguments
obj — Custom data reader
io.reader subclass object

Custom data reader, specified as an object of a class that inherits from the io.reader base class.
Example: MyCustomFileReader

Output Arguments
retName — Signal name
character array

Signal name used by the Simulation Data Inspector, returned as a character array.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Examples

Get Names for Data Imported from File

Write the function definition for the getName method to return names for signals imported from a
file. The custom reader in this example imports the data from the file with a hierarchical structure,
treating the file as the top node. Specify code for the getName method in the class definition file.

This example does not show a complete class definition. All custom readers must define behavior for
the getName, getTimeValues, and getDataValues methods. For an example that shows the
complete class definition and import workflow, see “Import Data Using a Custom File Reader”.

5 Classes

5-22

In this example, the getName and getChildren methods work together to assign the appropriate
name to each imported signal. The getChildren method reads the data from the file using the
readtable function. The method then constructs a cell array that contains a custom reader object
for each signal read from the file.

The getName method uses the FileName property of the custom reader object to return the file
name as the name for the top-level node. The getName method uses the VariableName property to
return the signal name extracted from the file to use as the signal name for each imported signal.

classdef ExcelFirstColumnTimeReader < io.reader
 methods
 % ...

 function childObj = getChildren(obj)
 childObj = {};
 if isempty(obj.VariableName)
 t = readtable(obj.FileName);
 vars = t.Properties.VariableNames;
 vars(1) = [];
 childObj = cell(size(vars));
 for idx = 1:numel(vars)
 childObj{idx} = ExcelFirstColumnTimeReader;
 childObj{idx}.FileName = obj.FileName;
 childObj{idx}.VariableName = vars{idx};
 end
 end
 end

 function retName = getName(obj)
 if isempty(obj.VariableName)
 fullName = obj.FileName;
 splitName = split(fullName,["\" "/"]);
 retName = splitName{end};
 else
 retName = obj.VariableName;
 end

 % ...
 end
end

Get Names for Data Imported from Workspace

Write the function definition for the getName method to return signal names for data imported from
the workspace. Specify code for the getName method in the class definition file.

This example does not show a complete class definition. All custom readers must define behavior for
the getName, getTimeValues, and getDataValues methods, and workspace data readers need to
define the supportsVariable method. For an example that shows the complete class definition and
import workflow for a workspace data reader, see “Import Workspace Variables Using a Custom Data
Reader”.

The custom reader in this example imports a structure or an array of structures from the workspace.
The structures must contain fields for the signal data (d), the time data (t), and the signal name (n).

 getName

5-23

When the variable to import is a scalar structure, the getName method returns the value in the n
field of the imported structure.

When the variable is an array of structures, the custom reader uses both the getName and
getChildren methods to return signal names. The getChildren method creates a custom reader
object for each structure in the array and sets the ChannelIndex property to identify the index of
the signal data within the array. Then, the getName method uses the ChannelIndex property value
to select the appropriate structure from the VariableValue property value, which is the array of
structures.

classdef SimpleStructReader < io.reader

 properties
 ChannelIndex
 end

 methods
 % ...

 function childObj = getChildren(obj)
 childObj = {};
 if ~isscalar(obj.VariableValue) && isempty(obj.ChannelIndex)
 numChannels = numel(obj.VariableValue);
 childObj = cell(numChannels,1);
 for idx = 1:numChannels
 childObj{idx} = SimpleStructReader;
 childObj{idx}.VariableName = sprintf('%s(%d)',obj.VariableName,idx);
 childObj{idx}.VariableValue = obj.VariableValue;
 childObj{idx}.ChannelIndex = idx;
 end
 end
 end

 function retName = getName(obj)
 if isscalar(obj.VariableValue)
 retName = char(obj.VariableValue.n);
 elseif ~isempty(obj.ChannelIndex)
 varVal = obj.VariableValue(obj.ChannelIndex);
 retName = char(varVal.n);
 else
 retName = 'Signal Array';
 end
 end

 % ...
 end
end

Version History
Introduced in R2020b

See Also
Functions
getTimeValues | supportsFile | getChildren | supportsVariable

5 Classes

5-24

Topics
“Import Data Using a Custom File Reader”
“Import Workspace Variables Using a Custom Data Reader”
“Microsoft Excel Import, Export, and Logging Format”

 getName

5-25

io.reader.getRegisteredFileReaders
Class: io.reader
Package: io

Return all custom file readers registered for the Simulation Data Inspector

Syntax
readers = io.reader.getRegisteredFileReaders

Description
readers = io.reader.getRegisteredFileReaders returns an array of strings that indicate all
custom file readers registered for the Simulation Data Inspector.

Output Arguments
readers — Custom file readers registered for the Simulation Data Inspector
array of strings

Custom file readers registered for the Simulation Data Inspector, returned as an array of strings.

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

Examples

Register Custom File Reader for the Simulation Data Inspector

This example shows how to register a custom file reader with the Simulation Data Inspector, verify
registration was successful, and unregister a file reader.

Register the Custom File Reader

This example registers the file reader ExcelFirstColumnTime. For an example that shows how to
author the custom file reader, see “Import Data Using a Custom File Reader”. As the name suggests,
the custom file reader for this example supports Microsoft Excel™ files. Register the reader for
the .xlsx and .xls extensions.

registerFileReader(ExcelFirstColumnTimeReader, [".xlsx" ".xls"]);

Verify Custom Reader Registration

To verify registration of a custom reader, you can use the
io.reader.getRegisteredFileReaders method or the
io.reader.getSupportedReadersForFile method.

5 Classes

5-26

The io.reader.getRegisteredFileReaders returns a string array that contains the names of all
registered custom file readers.

io.reader.getRegisteredFileReaders

ans =
"ExcelFirstColumnTimeReader"

You can also use the io.reader.getSupportedReadersForFile method to see all reader options
for a specific file. The built-in option in the returned string array indicates that the Simulation
Data Inspector has a built-in Excel file reader.

 io.reader.getSupportedReadersForFile('CustomFile.xlsx')

ans = 1x2 string
 "ExcelFirstColumnTimeReader" "built-in"

Unregister a Custom File Reader

To unregister a custom file reader, use the unregisterFileReader method. All custom readers are
unregistered when you close a MATLAB™ session.

unregisterFileReader(ExcelFirstColumnTimeReader, [".xlsx" ".xls"])

Version History
Introduced in R2020b

See Also
Functions
Simulink.sdi.createRun | io.reader.getSupportedReadersForFile |
registerFileReader | unregisterFileReader

Topics
“Import Data Using a Custom File Reader”
“Microsoft Excel Import, Export, and Logging Format”

 io.reader.getRegisteredFileReaders

5-27

io.reader.getRegisteredWorkspaceReaders
Class: io.reader
Package: io

Return all custom workspace readers registered for the Simulation Data Inspector

Syntax
readers = io.reader.getRegisteredWorkspaceReaders

Description
readers = io.reader.getRegisteredWorkspaceReaders returns an array of strings that
indicate all custom workspace readers registered for the Simulation Data Inspector.

Output Arguments
readers — Custom workspace readers registered for the Simulation Data Inspector
array of strings

Custom workspace readers registered for the Simulation Data Inspector, returned as an array of
strings.

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

Examples

Register Custom Workspace Reader for the Simulation Data Inspector

This example shows how to register a custom workspace data reader with the Simulation Data
Inspector, verify registration was successful, and unregister the workspace reader.

This example registers a custom workspace data reader called SimpleStructReader. For an
example that shows how to author the custom workspace reader, see “Import Workspace Variables
Using a Custom Data Reader”.

registerWorkspaceReader(SimpleStructReader);

To verify registration of a custom workspace reader, use the
io.reader.getRegisteredWorkspaceReaders method, which returns a string array that
contains the names of all registered custom workspace readers.

io.reader.getRegisteredWorkspaceReaders

5 Classes

5-28

ans =
"SimpleStructReader"

To unregister a custom workspace reader, use the unregisterWorkspaceReader method. All
readers are unregistered when you close the MATLAB™ session.

unregisterWorkspaceReader(SimpleStructReader);

Version History
Introduced in R2020b

See Also
Functions
Simulink.sdi.createRun | io.reader.getSupportedReadersForFile |
io.reader.getRegisteredFileReaders | registerWorkspaceReader |
unregisterWorkspaceReader

Topics
“Import Workspace Variables Using a Custom Data Reader”
“View Data in the Simulation Data Inspector”

 io.reader.getRegisteredWorkspaceReaders

5-29

io.reader.getSupportedReadersForFile
Class: io.reader
Package: io

Return all readers available to import file

Syntax
readers = io.reader.getSupportedReadersForFile(filename)

Description
readers = io.reader.getSupportedReadersForFile(filename) returns all readers in the
Simulation Data Inspector that support importing the file specified by filename.

Input Arguments
filename — Name of or path to file to import
character array | string

Name of or path to file to import, specified as a character array or string.
Example: 'MyDataFile.csv'
Data Types: char | string

Output Arguments
readers — File readers available to import file
array of strings

File readers available to import file, returned as an array of strings. When the Simulation Data
Inspector has a built-in reader for the file, the array contains "built-in".

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

Examples

Register Custom File Reader for the Simulation Data Inspector

This example shows how to register a custom file reader with the Simulation Data Inspector, verify
registration was successful, and unregister a file reader.

5 Classes

5-30

Register the Custom File Reader

This example registers the file reader ExcelFirstColumnTime. For an example that shows how to
author the custom file reader, see “Import Data Using a Custom File Reader”. As the name suggests,
the custom file reader for this example supports Microsoft Excel™ files. Register the reader for
the .xlsx and .xls extensions.

registerFileReader(ExcelFirstColumnTimeReader, [".xlsx" ".xls"]);

Verify Custom Reader Registration

To verify registration of a custom reader, you can use the
io.reader.getRegisteredFileReaders method or the
io.reader.getSupportedReadersForFile method.

The io.reader.getRegisteredFileReaders returns a string array that contains the names of all
registered custom file readers.

io.reader.getRegisteredFileReaders

ans =
"ExcelFirstColumnTimeReader"

You can also use the io.reader.getSupportedReadersForFile method to see all reader options
for a specific file. The built-in option in the returned string array indicates that the Simulation
Data Inspector has a built-in Excel file reader.

 io.reader.getSupportedReadersForFile('CustomFile.xlsx')

ans = 1x2 string
 "ExcelFirstColumnTimeReader" "built-in"

Unregister a Custom File Reader

To unregister a custom file reader, use the unregisterFileReader method. All custom readers are
unregistered when you close a MATLAB™ session.

unregisterFileReader(ExcelFirstColumnTimeReader, [".xlsx" ".xls"])

Version History
Introduced in R2020b

See Also
Functions
Simulink.sdi.createRun | io.reader.getRegisteredFileReaders | registerFileReader
| unregisterFileReader

Topics
“Import Data Using a Custom File Reader”
“Microsoft Excel Import, Export, and Logging Format”

 io.reader.getSupportedReadersForFile

5-31

getTimeValues
Class: io.reader
Package: io

Return time values for data imported using a custom reader

Syntax
timeVals = getTimeValues(obj)

Description
timeVals = getTimeValues(obj) returns time values to use for data imported into the
Simulation Data Inspector using a custom file or workspace variable reader. Specify code for the
getTimeValues method to extract the data from a proprietary file or variable format.

Input Arguments
obj — Custom data reader
io.reader subclass object

Custom data reader, specified as an object of a class that inherits from the io.reader base class.
Example: MyCustomFileReader

Output Arguments
timeVals — Time values for imported data
column vector

Time values for imported data, returned as a column vector.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Examples

Get Time Values for Data Imported from File

Write the function definition for the getTimeValues method to return time values to use for data
imported from a file. The custom reader in this example always uses the data in the first column of
the file as time. Specify the code for the getTimeValues method in the class definition file.

5 Classes

5-32

This example does not show a complete class definition. All custom readers must define behavior for
the getName, getTimeValues, and getDataValues methods. For an example that shows the
complete class definition and import workflow, see “Import Data Using a Custom File Reader”.

In this example, the getTimeValues method reads the data from the file using the readtable
function and returns the data from the first column to use as the time values for imported signals.

classdef ExcelFirstColumnTimeReader < io.reader
 methods
 % ...

 function timeVals = getTimeValues(obj)
 timeVals = [];
 if ~isempty(obj.VaribleName)
 t = readtable(obj.FileName);
 timeName = t.Properties.VariableNames{1};
 timeVals = t.(timeName);
 end
 end

 % ...
 end
end

Get Time Values for Data Imported from Workspace

Write the function definition for the getTimeValues method to return time values for data imported
from the workspace. Specify the code executed by the getTimeValues method in the class definition
file.

This example does not show a complete class definition. All custom readers must define behavior for
the getName, getTimeValues, and getDataValues methods, and workspace data readers need to
define the supportsVariable method. For an example that shows the complete class definition and
import workflow for a workspace data reader, see “Import Workspace Variables Using a Custom Data
Reader”.

The custom reader in this example imports a structure or an array of structures from the workspace.
The structures must contain fields for the signal data (d), the time data (t), and the signal name (n).
When the variable to import is a scalar structure, the getTimeValues method returns the value in
the t field of the imported structure.

When the variable is an array of structures, the custom reader uses both the getTimeValues and
getChildren methods to return time data. The getChildren method creates a custom reader
object for each structure in the array and sets the ChannelIndex property to identify the index of
the signal data within the array. Then, the getTimeData method uses the ChannelIndex property
value to select the appropriate structure from the VariableValue property value, which is the array
of structures.

classdef ExcelFirstColumnTimeReader < io.reader

 properties
 ChannelIndex
 end

 getTimeValues

5-33

 methods
 % ...

 function childObj = getChildren(obj)
 childObj = {};
 if ~isscalar(obj.VariableValue) && isempty(obj.ChannelIndex)
 numChannels = numel(obj.VariableValue);
 childObj = cell(numChannels,1);
 for idx = 1:numChannels
 childObj{idx} = SimpleStructReader;
 childObj{idx}.VariableName = sprintf('%s(%d)',obj.VariableName,idx);
 childObj{idx}.VariableValue = obj.VariableValue;
 childObj{idx}.ChannelIndex = idx;
 end
 end
 end

 function timeVals = getTimeValues(obj)
 if isscalar(obj.VariableValue)
 timeVals = obj.VariableValue.t;
 elseif ~isempty(obj.ChannelIndex)
 varVal = obj.VariableValue(obj.ChannelIndex);
 timeVals = varVal.t;
 else
 timeVals = [];
 end
 end

 % ...
 end
end

Version History
Introduced in R2020b

See Also
Functions
getDataValues | getName | supportsFile | getChildren | supportsVariable

Topics
“Import Data Using a Custom File Reader”
“Import Workspace Variables Using a Custom Data Reader”
“Microsoft Excel Import, Export, and Logging Format”

5 Classes

5-34

registerFileReader
Class: io.reader
Package: io

Register custom file reader for use in the Simulation Data Inspector

Syntax
registerRileReader(obj,ext)

Description
registerRileReader(obj,ext) registers the custom file reader obj with the Simulation Data
Inspector to use for files with extensions specified by ext. To use a custom file reader in the
Simulation Data Inspector, you must register the reader at the start of each MATLAB session.

Tip To verify registration, use the io.reader.getRegisteredFileReaders method or the
io.reader.getSupportedReadersForFile method.

Input Arguments
obj — Custom data reader
io.reader subclass object

Custom data reader, specified as an object of a class that inherits from the io.reader base class.
Example: MyCustomFileReader

ext — File extensions supported by custom reader
character vector | string | cell array of character vectors | cell array of strings

File extensions supported by custom reader, specified as a character vector, string, cell array of
character vectors, or cell array of strings.
Example: [".xlsx" ".xls"]
Data Types: char | string | cell

Examples

Register Custom File Reader for the Simulation Data Inspector

This example shows how to register a custom file reader with the Simulation Data Inspector, verify
registration was successful, and unregister a file reader.

Register the Custom File Reader

This example registers the file reader ExcelFirstColumnTime. For an example that shows how to
author the custom file reader, see “Import Data Using a Custom File Reader”. As the name suggests,

 registerFileReader

5-35

the custom file reader for this example supports Microsoft Excel™ files. Register the reader for
the .xlsx and .xls extensions.

registerFileReader(ExcelFirstColumnTimeReader, [".xlsx" ".xls"]);

Verify Custom Reader Registration

To verify registration of a custom reader, you can use the
io.reader.getRegisteredFileReaders method or the
io.reader.getSupportedReadersForFile method.

The io.reader.getRegisteredFileReaders returns a string array that contains the names of all
registered custom file readers.

io.reader.getRegisteredFileReaders

ans =
"ExcelFirstColumnTimeReader"

You can also use the io.reader.getSupportedReadersForFile method to see all reader options
for a specific file. The built-in option in the returned string array indicates that the Simulation
Data Inspector has a built-in Excel file reader.

 io.reader.getSupportedReadersForFile('CustomFile.xlsx')

ans = 1x2 string
 "ExcelFirstColumnTimeReader" "built-in"

Unregister a Custom File Reader

To unregister a custom file reader, use the unregisterFileReader method. All custom readers are
unregistered when you close a MATLAB™ session.

unregisterFileReader(ExcelFirstColumnTimeReader, [".xlsx" ".xls"])

Version History
Introduced in R2020b

See Also
Functions
Simulink.sdi.createRun | io.reader.getRegisteredFileReaders |
io.reader.getSupportedReadersForFile | unregisterFileReader

Topics
“Import Data Using a Custom File Reader”
“Microsoft Excel Import, Export, and Logging Format”

5 Classes

5-36

registerWorkspaceReader
Class: io.reader
Package: io

Register custom workspace reader for the Simulation Data Inspector

Syntax
registerWorkspaceReader(obj)

Description
registerWorkspaceReader(obj) registers the custom workspace reader specified by obj for the
Simulation Data Inspector. To use a custom workspace reader, you must register the reader at the
start of each MATLAB session.

Tip To verify registration, use the io.reader.getRegisteredWorkspaceReaders method.

Input Arguments
obj — Custom data reader
io.reader subclass object

Custom data reader, specified as an object of a class that inherits from the io.reader base class.
Example: MyCustomReader

Examples

Register Custom Workspace Reader for the Simulation Data Inspector

This example shows how to register a custom workspace data reader with the Simulation Data
Inspector, verify registration was successful, and unregister the workspace reader.

This example registers a custom workspace data reader called SimpleStructReader. For an
example that shows how to author the custom workspace reader, see “Import Workspace Variables
Using a Custom Data Reader”.

registerWorkspaceReader(SimpleStructReader);

To verify registration of a custom workspace reader, use the
io.reader.getRegisteredWorkspaceReaders method, which returns a string array that
contains the names of all registered custom workspace readers.

io.reader.getRegisteredWorkspaceReaders

ans =
"SimpleStructReader"

 registerWorkspaceReader

5-37

To unregister a custom workspace reader, use the unregisterWorkspaceReader method. All
readers are unregistered when you close the MATLAB™ session.

unregisterWorkspaceReader(SimpleStructReader);

Version History
Introduced in R2020b

See Also
Functions
Simulink.sdi.createRun | unregisterWorkspaceReader | registerFileReader

Topics
“Import Workspace Variables Using a Custom Data Reader”
“View Data in the Simulation Data Inspector”

5 Classes

5-38

supportsFile
Class: io.reader
Package: io

Return logical indication of whether custom reader supports file

Syntax
supported = supportsFile(obj,filename)

Description
supported = supportsFile(obj,filename) returns the logical value supported that indicates
whether the custom reader specified by obj supports the file specified by filename. The Simulation
Data Inspector always checks whether a file is supported based on the file extension alone. Use the
supportsFile method to specify code for additional support validation.

Input Arguments
obj — Custom data reader
io.reader subclass object

Custom data reader, specified as an object of a class that inherits from the io.reader base class.
Example: MyCustomFileReader

filename — Name of file to import
character vector | string

Name of file to import, specified as a character vector or string.
Example: 'MyDataFile.xlsx'
Data Types: char | string

Output Arguments
supported — Whether custom reader supports file
logical

Whether custom reader supports file, returned as a logical value.

Examples

Determine Whether Custom File Reader Supports File

Write the function definition for the supportsFile method to determine whether the custom reader
supports the data in the file. This example does not show a complete class definition. All custom
readers must define behavior for the getName, getTimeValues, and getDataValues methods. For

 supportsFile

5-39

an example that shows the complete class definition and import workflow, see “Import Data Using a
Custom File Reader”.

In this example, the supportsFile method reads the data in the file using the readtable function
and checks that the file contains data in more than one column.

classdef ExcelFirstColumnTimeReader < io.reader
 methods
 % ...

 function childObj = getChildren(obj)
 try
 t = readtable(filename);
 supported = height(t) > 0 && numel(t.Properties.VariableNames) > 1;
 catch
 supported = false;
 end
 end
 % ...
 end
end

Version History
Introduced in R2020b

See Also
Functions
getDataValues | getName | getTimeValues

Topics
“Import Data Using a Custom File Reader”
“Microsoft Excel Import, Export, and Logging Format”

5 Classes

5-40

supportsVariable
Class: io.reader
Package: io

Return logical indication of whether custom reader supports variable

Syntax
supported = supportsVariable(obj,var)

Description
supported = supportsVariable(obj,var) returns the logical value supported that indicates
whether the custom workspace reader specified by obj supports the variable specified by var. When
you write a custom workspace reader, you must implement the supportsVariable method in the
class definition.

Input Arguments
obj — Custom data reader
io.reader subclass object

Custom data reader, specified as an object of a class that inherits from the io.reader base class.
Example: MyCustomReader

var — Workspace variable to import
variable

Workspace variable to import, specified as a variable in the base workspace.
Example: myVar
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | categorical | datetime | duration |
calendarDuration | fi
Complex Number Support: Yes

Output Arguments
supported — Whether custom reader supports variable
logical

Whether the custom reader supports variable, returned as a logical value.

Examples

 supportsVariable

5-41

Determine Whether Custom Reader Supports Variable

Write the function definition for the supportsVariable method to return true only when the reader
can import the input variable. Specify the code for the supportsVariable method in the class
definition file.

This example does not show a complete class definition. All custom readers must define behavior for
the getName, getTimeValues, and getDataValues methods, and workspace data readers need to
define the supportsVariable method. For an example that shows the complete class definition and
import workflow for a workspace data reader, see “Import Workspace Variables Using a Custom Data
Reader”.

The custom reader in this example imports a structure or an array of structures from the workspace.
The structures must contain fields for the signal data (d), the time data (t), and the signal name (n).
The supportsVariable method returns true when:

1 The input variable is a structure or array of structures that contains the appropriate fields.
2 The n field of each structure contains a character array or string to represent the signal name.
3 The t field of each structure is a column vector of double data.
4 The d field of each structure contains numeric data and is the same size as the t field, meaning

there is a sample value for each time step.

classdef ExcelFirstColumnTimeReader < io.reader

 methods
 % ...

 function supported = supportsVariable(~, val)
 % Support structure with fields t (time), d (data), and n (name)
 supported = ...
 isstruct(val) && ...
 isfield(val,'t') && ...
 isfield(val,'d') && ...
 isfield(val,'n');
 if supported
 for idx = 1:numel(val)
 varName = val(idx).n;
 time = val(idx).t;
 varData = val(idx).d;

 % Name must be string or character array
 if ~ischar(varName) && ~isstring(varName)
 supported = false;

 % Time must be double column vector
 elseif ~isa(time,'double') || ~iscolumn(time)
 supported = false;

 % Data size must match time size
 else
 timeSz = size(time);
 dataSz = size(varData);

 if ~isnumeric(varData) || ~isequal(dataSz, timeSz)
 supported = false;
 end

5 Classes

5-42

 end
 end
 end
 end

 % ...
 end
end

Version History
Introduced in R2020b

See Also
Functions
getName | getTimeValues | supportsFile | getChildren

Topics
“Import Workspace Variables Using a Custom Data Reader”
“Microsoft Excel Import, Export, and Logging Format”

 supportsVariable

5-43

unregisterFileReader
Class: io.reader
Package: io

Unregister custom file reader for the Simulation Data Inspector

Syntax
unregisterFileReader(obj,ext)

Description
unregisterFileReader(obj,ext) unregisters the custom file reader specified by obj for the
extensions specified by ext. All custom file and workspace variable readers are unregistered when
you close MATLAB.

Tip To verify the unregister operation, use the io.reader.getRegisteredFileReaders method
or the io.reader.getSupportedReadersForFile method.

Input Arguments
obj — Custom data reader
io.reader subclass object

Custom data reader, specified as an object of a class that inherits from the io.reader base class.
Example: MyCustomFileReader

ext — File extensions supported by custom reader
character vector | string | cell array of character vectors | cell array of strings

File extensions supported by custom reader, specified as a character vector, string, cell array of
character vectors, or cell array of strings.
Example: [".xlsx" ".xls"]
Data Types: char | string | cell

Examples

Register Custom File Reader for the Simulation Data Inspector

This example shows how to register a custom file reader with the Simulation Data Inspector, verify
registration was successful, and unregister a file reader.

Register the Custom File Reader

This example registers the file reader ExcelFirstColumnTime. For an example that shows how to
author the custom file reader, see “Import Data Using a Custom File Reader”. As the name suggests,

5 Classes

5-44

the custom file reader for this example supports Microsoft Excel™ files. Register the reader for
the .xlsx and .xls extensions.

registerFileReader(ExcelFirstColumnTimeReader, [".xlsx" ".xls"]);

Verify Custom Reader Registration

To verify registration of a custom reader, you can use the
io.reader.getRegisteredFileReaders method or the
io.reader.getSupportedReadersForFile method.

The io.reader.getRegisteredFileReaders returns a string array that contains the names of all
registered custom file readers.

io.reader.getRegisteredFileReaders

ans =
"ExcelFirstColumnTimeReader"

You can also use the io.reader.getSupportedReadersForFile method to see all reader options
for a specific file. The built-in option in the returned string array indicates that the Simulation
Data Inspector has a built-in Excel file reader.

 io.reader.getSupportedReadersForFile('CustomFile.xlsx')

ans = 1x2 string
 "ExcelFirstColumnTimeReader" "built-in"

Unregister a Custom File Reader

To unregister a custom file reader, use the unregisterFileReader method. All custom readers are
unregistered when you close a MATLAB™ session.

unregisterFileReader(ExcelFirstColumnTimeReader, [".xlsx" ".xls"])

Version History
Introduced in R2020b

See Also
Functions
registerFileReader | io.reader.getRegisteredFileReaders |
io.reader.getSupportedReadersForFile

Topics
“Import Data Using a Custom File Reader”
“Microsoft Excel Import, Export, and Logging Format”

 unregisterFileReader

5-45

unregisterWorkspaceReader
Class: io.reader
Package: io

Unregister custom workspace reader for the Simulation Data Inspector

Syntax
unregisterWorkspaceReader(obj)

Description
unregisterWorkspaceReader(obj) unregisters the custom workspace reader specified by obj
from the Simulation Data Inspector. All custom file and workspace variable readers are unregistered
when you close MATLAB.

Input Arguments
obj — Custom data reader
io.reader subclass object

Custom data reader, specified as an object of a class that inherits from the io.reader base class.
Example: MyCustomReader

Examples

Register Custom Workspace Reader for the Simulation Data Inspector

This example shows how to register a custom workspace data reader with the Simulation Data
Inspector, verify registration was successful, and unregister the workspace reader.

This example registers a custom workspace data reader called SimpleStructReader. For an
example that shows how to author the custom workspace reader, see “Import Workspace Variables
Using a Custom Data Reader”.

registerWorkspaceReader(SimpleStructReader);

To verify registration of a custom workspace reader, use the
io.reader.getRegisteredWorkspaceReaders method, which returns a string array that
contains the names of all registered custom workspace readers.

io.reader.getRegisteredWorkspaceReaders

ans =
"SimpleStructReader"

To unregister a custom workspace reader, use the unregisterWorkspaceReader method. All
readers are unregistered when you close the MATLAB™ session.

5 Classes

5-46

unregisterWorkspaceReader(SimpleStructReader);

Version History
Introduced in R2020b

See Also
Functions
registerWorkspaceReader | unregisterFileReader

Topics
“Import Workspace Variables Using a Custom Data Reader”
“View Data in the Simulation Data Inspector”

 unregisterWorkspaceReader

5-47

matlab.io.datastore.sdidatastore class
Package: matlab.io.datastore

Datastore for Simulation Data Inspector signals

Description
A matlab.io.datastore.sdidatastore object provides access to signals logged to the
Simulation Data Inspector that are too large to fit into memory. An sdidatastore object references
the data for a single signal. The read method loads the signal data referenced by an sdidatastore
object in a chunk-wise manner such that each chunk always fits into memory. You can use an
sdidatastore object to create a tall timetable for your signal data. For more information about
working with tall arrays, see “Tall Arrays”.

Note matlab.io.datastore.sdidatastore does not support parallel computations. If you have
a Parallel Computing Toolbox license, use mapreducer(0) to set the execution environment to the
local MATLAB client before creating a tall timetable from the
matlab.io.datastore.sdidatastore.

Construction
ds = dsrObj.getAsDatastore(arg) creates the sdidatastore, ds, for the signal in the
Simulink.sdi.DatasetRef object selected by the search criterion arg. You can specify arg as an
integer representing the index of the desired signal within the Simulink.sdi.DatasetRef object,
or as a character vector containing the name of the signal.

ds = matlab.io.datastore.sdidatastore(signalID) creates the sdidatastore, ds, for the
signal corresponding to the specified signalID.

Input Arguments

arg — Element selection criterion
character vector | integer

Search criterion used to retrieve the element from the Simulink.sdi.DatasetRef object. For
name-based searches, specify arg as a character vector. For index-based searches, arg is an integer,
representing the index of the desired element.
Example: 'MySignal'
Example: 3

signalID — Numeric signal identifier
integer

Numeric signal identifier generated for the signal by the Simulation Data Inspector. You can get the
signal ID for a signal using methods of the Simulink.sdi.Run object containing the signal or as a
return from the Simulink.sdi.createRun function.

5 Classes

5-48

Properties
Name — Signal name
character vector

Name of the signal specified as a character vector.
Example: 'My Signal'

Signal — Simulink.sdi.Signal object
Simulink.sdi.Signal object

Simulink.sdi.Signal object associated with the sdidatastore. The Signal property provides
access to the signal data and metadata.

Methods

hasdata Determine if data is available to read
preview Return preview of data in sdidatstore
read Read a chunk of data from an sdidatastore
readall Read all data from an sdidatastore
reset Reset the read position

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Create a Tall Timetable for a Simulation Data Inspector Signal

This example shows how to create a tall timetable for a signal in the Simulation Data Inspector
repository. You can create the tall timetable using a Simulink.sdi.Signal object or by first
creating a matlab.io.datastore.sdidatastore for the signal. You can use a
matlab.io.datastore.sdidatastore to incrementally read and process signal data for signals
that do not fit into memory. A tall timetable handles the data chunking and processing in the
background. In general, you can work with tall timetables very similarly to how you work with in-
memory data.

Create Data and Access Signal ID

Whether you create your tall timetable using a Simulink.sdi.Signal object or a
matlab.io.datastore.sdidatastore, start by creating data and accessing the signal ID for a
signal of interest. The sldemo_fuelsys model is configured to log signals which stream to the
Simulation Data Inspector repository when you simulate the model.

open_system('sldemo_fuelsys')
sim('sldemo_fuelsys')

Then, use the Simulation Data Inspector programmatic interface to access the signal ID for a signal
of interest. For example, access the ego signal.

 matlab.io.datastore.sdidatastore class

5-49

runCount = Simulink.sdi.getRunCount;
latestRunID = Simulink.sdi.getRunIDByIndex(runCount);
latestRun = Simulink.sdi.getRun(latestRunID);

egoSigID = latestRun.getSignalIDByIndex(7);

Create a Tall Timetable Using a matlab.io.datastore.sdidatastore

In general, tall timetables are backed by datastores. Create a
matlab.io.datastore.sdidatastore object to reference the signal data in the Simulation Data
Inspector repository.

egoDs = matlab.io.datastore.sdidatastore(egoSigID);

Check the name of the datastore to verify you have the signal you expect.

egoDs.Name

ans =
'fuel'

Create a tall timetable from the matlab.io.datastore.sdidatastore to use for processing the
signal data. When you have a Parallel Computing Toolbox™ license, you need to explicitly set the
execution environment to the local MATLAB® session using mapreducer before creating the tall
timetable. The matlab.io.datastore.sdidatastore object does not support parallel
computations.

mapreducer(0);

egoTt = tall(egoDs)

egoTt =

 Mx1 tall timetable

 Time Data
 ______________ ______

 0 sec 1.209
 0.00056199 sec 1.209
 0.0033719 sec 1.209
 0.01 sec 1.1729
 0.02 sec 1.1409
 0.03 sec 1.1124
 0.04 sec 1.0873
 0.05 sec 1.0652
 : :
 : :

Create a Tall Timetable Using a Simulink.sdi.Signal Object

The Simulink.sdi.Signal class has a method to create a tall timetable directly, allowing you to
skip the step of creating a datastore by creating it behind the scenes. Use the signal ID to access the
Simulink.sdi.Signal object for the ego signal. Then, use the getTable method to create the tall
timetable.

5 Classes

5-50

egoSig = Simulink.sdi.getSignal(egoSigID);

egoTt = egoSig.getAsTall

egoTt =

 Mx1 tall timetable

 Time Data
 ______________ ______

 0 sec 1.209
 0.00056199 sec 1.209
 0.0033719 sec 1.209
 0.01 sec 1.1729
 0.02 sec 1.1409
 0.03 sec 1.1124
 0.04 sec 1.0873
 0.05 sec 1.0652
 : :
 : :

Use the Tall Timetable to Process Your Signal Data

When you use the tall timetable egoTt, its underlying datastore reads chunks of data and passes
them to the tall timetable to process. Neither the datastore nor the tall timetable retain any of the
data in memory after processing. Also, the tall timetable defers processing for many operations. For
example, calculate the mean value of the signal.

egoMean = mean(egoTt.Data)

egoMean =

 tall double

 ?

You can use the gather function to evaluate a variable and write its value to the workspace, or you
can use the write function to write the results to disc. When you use gather, be sure the results fit
into memory.

egoMean = gather(egoMean)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 5.7 sec
Evaluation completed in 6.1 sec

egoMean = 1.3292

When you perform multiple operations on a tall timetable, evaluation of the results for each step is
deferred until you explicitly request the results with write or gather. During evaluation, MATLAB
optimizes the number of passes it makes through the tall timetable, which can significantly speed up
processing time for analyzing very large signals. For more information about working with tall arrays,
see “Tall Arrays for Out-of-Memory Data”.

Process Signal Data Using a matlab.io.datastore.sdidatastore

A matlab.io.datastore.sdidatastore references signal data in the Simulation Data Inspector
repository. When the signal is too large to fit into memory, you can use the

 matlab.io.datastore.sdidatastore class

5-51

matlab.io.datastore.sdidatastore to incrementally process the data manually or to create a
tall timetable for the signal that handles the incremental processing for you. This example shows how
to process data using a matlab.io.datastore.sdidatastore.

Create a matlab.io.datastore.sdidatastore for a Signal

Simulate the sldemo_fuelsys model, which is configured to log several signals, to create data in
the Simulation Data Inspector repository.

sim('sldemo_fuelsys')

Use the Simulation Data Inspector programmatic interface to get the signal ID for the signal.

runCount = Simulink.sdi.getRunCount;

latestRunID = Simulink.sdi.getRunIDByIndex(runCount);

latestRun = Simulink.sdi.getRun(latestRunID);

speedSigID = latestRun.getSignalIDByIndex(4);

Use the signal ID to create a matlab.io.datastore.sdidatastore for the speed signal.

speedSDIds = matlab.io.datastore.sdidatastore(speedSigID);

Verify the Contents of the Datastore

Check the Name property of the matlab.io.datastore.sdidatastore to verify that it matches
your expectations.

speedSDIds.Name

ans =
'map'

You can also use the preview method to check that the first ten samples in the signal look correct.

speedSDIds.preview

ans=10×1 timetable
 Time Data
 ______________ _______

 0 sec 0.589
 0.00056199 sec 0.58772
 0.0033719 sec 0.58148
 0.01 sec 0.56765
 0.02 sec 0.54897
 0.03 sec 0.53264
 0.04 sec 0.51837
 0.05 sec 0.50594
 0.055328 sec 0.5
 0.055328 sec 0.5

Process Signal Data with the matlab.io.datastore.sdidatastore

When your signal is too large to fit into memory, you can use the readData method to read chunks of
data from the Simulation Data Inspector repository to incrementally process your data. Use the

5 Classes

5-52

hasdata method as the condition for a while loop to incrementally process the whole signal. For
example, find the maximum signal value.

latestMax = [];

while speedSDIds.hasdata

 speedChunk = speedSDIds.read;
 speedChunkData = speedChunk.Data;
 latestMax = max([speedChunkData; latestMax]);

end

latestMax

latestMax = 0.8897

On each read operation, the read method updates the read position for the start of the next read
operation. After reading some or all of the matlab.io.datastore.sdidatastore, you can reset
the read position to start again from the beginning of the signal.

speedSDIds.reset

Process Signal Data in Memory

When the signal referenced by your matlab.io.datastore.sdidatastore fits into memory, you
can use the readall method to read all the signal data into memory for processing, rather than
reading and processing the data incrementally with the read method. The readall method returns
a timetable with all the signal data.

speedTimetable = speedSDIds.readall;

speedMax = max(speedTimetable.Data)

speedMax = 0.8897

Version History
Introduced in R2017b

See Also
Simulink.sdi.DatasetRef | getAsDatastore |
matlab.io.datastore.SimulationDatastore | Simulink.sdi.Signal

Topics
“Tall Arrays”
“Datastore”

 matlab.io.datastore.sdidatastore class

5-53

hasdata
Class: matlab.io.datastore.sdidatastore
Package: matlab.io.datastore

Determine if data is available to read

Syntax
tf = sdi_ds.hasdata

Description
tf = sdi_ds.hasdata returns logical 1 if the matlab.io.datastore.sdidatastore, sdi_ds,
has data available to read. When sdi_ds does not have data available to read, hasdata returns 0.

Output Arguments
tf — Data availability indication
logical

Logical indication of whether the matlab.io.datastore.sdidatastore has data available to
read. When data is available, tf is 1. When data is not available, tf is 0.

Examples
Process Signal Data Using a matlab.io.datastore.sdidatastore

A matlab.io.datastore.sdidatastore references signal data in the Simulation Data Inspector
repository. When the signal is too large to fit into memory, you can use the
matlab.io.datastore.sdidatastore to incrementally process the data manually or to create a
tall timetable for the signal that handles the incremental processing for you. This example shows how
to process data using a matlab.io.datastore.sdidatastore.

Create a matlab.io.datastore.sdidatastore for a Signal

Simulate the sldemo_fuelsys model, which is configured to log several signals, to create data in
the Simulation Data Inspector repository.

sim('sldemo_fuelsys')

Use the Simulation Data Inspector programmatic interface to get the signal ID for the signal.

runCount = Simulink.sdi.getRunCount;

latestRunID = Simulink.sdi.getRunIDByIndex(runCount);

latestRun = Simulink.sdi.getRun(latestRunID);

speedSigID = latestRun.getSignalIDByIndex(4);

Use the signal ID to create a matlab.io.datastore.sdidatastore for the speed signal.

5 Classes

5-54

speedSDIds = matlab.io.datastore.sdidatastore(speedSigID);

Verify the Contents of the Datastore

Check the Name property of the matlab.io.datastore.sdidatastore to verify that it matches
your expectations.

speedSDIds.Name

ans =
'map'

You can also use the preview method to check that the first ten samples in the signal look correct.

speedSDIds.preview

ans=10×1 timetable
 Time Data
 ______________ _______

 0 sec 0.589
 0.00056199 sec 0.58772
 0.0033719 sec 0.58148
 0.01 sec 0.56765
 0.02 sec 0.54897
 0.03 sec 0.53264
 0.04 sec 0.51837
 0.05 sec 0.50594
 0.055328 sec 0.5
 0.055328 sec 0.5

Process Signal Data with the matlab.io.datastore.sdidatastore

When your signal is too large to fit into memory, you can use the readData method to read chunks of
data from the Simulation Data Inspector repository to incrementally process your data. Use the
hasdata method as the condition for a while loop to incrementally process the whole signal. For
example, find the maximum signal value.

latestMax = [];

while speedSDIds.hasdata

 speedChunk = speedSDIds.read;
 speedChunkData = speedChunk.Data;
 latestMax = max([speedChunkData; latestMax]);

end

latestMax

latestMax = 0.8897

On each read operation, the read method updates the read position for the start of the next read
operation. After reading some or all of the matlab.io.datastore.sdidatastore, you can reset
the read position to start again from the beginning of the signal.

speedSDIds.reset

 hasdata

5-55

Process Signal Data in Memory

When the signal referenced by your matlab.io.datastore.sdidatastore fits into memory, you
can use the readall method to read all the signal data into memory for processing, rather than
reading and processing the data incrementally with the read method. The readall method returns
a timetable with all the signal data.

speedTimetable = speedSDIds.readall;

speedMax = max(speedTimetable.Data)

speedMax = 0.8897

Version History
Introduced in R2017b

See Also
matlab.io.datastore.sdidatastore

Topics
“Tall Arrays”
“Datastore”

5 Classes

5-56

preview
Class: matlab.io.datastore.sdidatastore
Package: matlab.io.datastore

Return preview of data in sdidatstore

Syntax
dataPreview = sdi_ds.preview

Description
dataPreview = sdi_ds.preview returns the first 10 samples of signal data in the
matlab.io.datastore.sdidatastore, sdi_ds. The preview method does not change the read
position. Use the preview method to verify that the data in your
matlab.io.datastore.sdidatastore appears as you expect.

Output Arguments
dataPreview — Preview of the data
timetable

First 10 samples of the signal referenced by the matlab.io.datastore.sdidatastore in a
timetable.

Examples
Process Signal Data Using a matlab.io.datastore.sdidatastore

A matlab.io.datastore.sdidatastore references signal data in the Simulation Data Inspector
repository. When the signal is too large to fit into memory, you can use the
matlab.io.datastore.sdidatastore to incrementally process the data manually or to create a
tall timetable for the signal that handles the incremental processing for you. This example shows how
to process data using a matlab.io.datastore.sdidatastore.

Create a matlab.io.datastore.sdidatastore for a Signal

Simulate the sldemo_fuelsys model, which is configured to log several signals, to create data in
the Simulation Data Inspector repository.

sim('sldemo_fuelsys')

Use the Simulation Data Inspector programmatic interface to get the signal ID for the signal.

runCount = Simulink.sdi.getRunCount;

latestRunID = Simulink.sdi.getRunIDByIndex(runCount);

latestRun = Simulink.sdi.getRun(latestRunID);

speedSigID = latestRun.getSignalIDByIndex(4);

 preview

5-57

Use the signal ID to create a matlab.io.datastore.sdidatastore for the speed signal.

speedSDIds = matlab.io.datastore.sdidatastore(speedSigID);

Verify the Contents of the Datastore

Check the Name property of the matlab.io.datastore.sdidatastore to verify that it matches
your expectations.

speedSDIds.Name

ans =
'map'

You can also use the preview method to check that the first ten samples in the signal look correct.

speedSDIds.preview

ans=10×1 timetable
 Time Data
 ______________ _______

 0 sec 0.589
 0.00056199 sec 0.58772
 0.0033719 sec 0.58148
 0.01 sec 0.56765
 0.02 sec 0.54897
 0.03 sec 0.53264
 0.04 sec 0.51837
 0.05 sec 0.50594
 0.055328 sec 0.5
 0.055328 sec 0.5

Process Signal Data with the matlab.io.datastore.sdidatastore

When your signal is too large to fit into memory, you can use the readData method to read chunks of
data from the Simulation Data Inspector repository to incrementally process your data. Use the
hasdata method as the condition for a while loop to incrementally process the whole signal. For
example, find the maximum signal value.

latestMax = [];

while speedSDIds.hasdata

 speedChunk = speedSDIds.read;
 speedChunkData = speedChunk.Data;
 latestMax = max([speedChunkData; latestMax]);

end

latestMax

latestMax = 0.8897

On each read operation, the read method updates the read position for the start of the next read
operation. After reading some or all of the matlab.io.datastore.sdidatastore, you can reset
the read position to start again from the beginning of the signal.

5 Classes

5-58

speedSDIds.reset

Process Signal Data in Memory

When the signal referenced by your matlab.io.datastore.sdidatastore fits into memory, you
can use the readall method to read all the signal data into memory for processing, rather than
reading and processing the data incrementally with the read method. The readall method returns
a timetable with all the signal data.

speedTimetable = speedSDIds.readall;

speedMax = max(speedTimetable.Data)

speedMax = 0.8897

Version History
Introduced in R2017b

See Also
matlab.io.datastore.sdidatastore

Topics
“Timetables”

 preview

5-59

read
Class: matlab.io.datastore.sdidatastore
Package: matlab.io.datastore

Read a chunk of data from an sdidatastore

Syntax
data = sdi_ds.read

Description
data = sdi_ds.read reads a chunk of samples from the matlab.io.datastore.sdidatastore,
sdi_ds, and updates the read position for sdi_ds to the point following the endpoint of the returned
data. The samples are returned in the timetable, data. The number of samples read by the read
method vary, and the returned timetable always fits into memory. Use the read method to
incrementally process signals that are too large to fit into memory.

Output Arguments
data — Chunk of data read from sdidatastore
timetable

Chunk of samples read from the matlab.io.datastore.simulationdatastore, returned as a
timetable.

Examples
Process Signal Data Using a matlab.io.datastore.sdidatastore

A matlab.io.datastore.sdidatastore references signal data in the Simulation Data Inspector
repository. When the signal is too large to fit into memory, you can use the
matlab.io.datastore.sdidatastore to incrementally process the data manually or to create a
tall timetable for the signal that handles the incremental processing for you. This example shows how
to process data using a matlab.io.datastore.sdidatastore.

Create a matlab.io.datastore.sdidatastore for a Signal

Simulate the sldemo_fuelsys model, which is configured to log several signals, to create data in
the Simulation Data Inspector repository.

sim('sldemo_fuelsys')

Use the Simulation Data Inspector programmatic interface to get the signal ID for the signal.

runCount = Simulink.sdi.getRunCount;

latestRunID = Simulink.sdi.getRunIDByIndex(runCount);

latestRun = Simulink.sdi.getRun(latestRunID);

5 Classes

5-60

speedSigID = latestRun.getSignalIDByIndex(4);

Use the signal ID to create a matlab.io.datastore.sdidatastore for the speed signal.

speedSDIds = matlab.io.datastore.sdidatastore(speedSigID);

Verify the Contents of the Datastore

Check the Name property of the matlab.io.datastore.sdidatastore to verify that it matches
your expectations.

speedSDIds.Name

ans =
'map'

You can also use the preview method to check that the first ten samples in the signal look correct.

speedSDIds.preview

ans=10×1 timetable
 Time Data
 ______________ _______

 0 sec 0.589
 0.00056199 sec 0.58772
 0.0033719 sec 0.58148
 0.01 sec 0.56765
 0.02 sec 0.54897
 0.03 sec 0.53264
 0.04 sec 0.51837
 0.05 sec 0.50594
 0.055328 sec 0.5
 0.055328 sec 0.5

Process Signal Data with the matlab.io.datastore.sdidatastore

When your signal is too large to fit into memory, you can use the readData method to read chunks of
data from the Simulation Data Inspector repository to incrementally process your data. Use the
hasdata method as the condition for a while loop to incrementally process the whole signal. For
example, find the maximum signal value.

latestMax = [];

while speedSDIds.hasdata

 speedChunk = speedSDIds.read;
 speedChunkData = speedChunk.Data;
 latestMax = max([speedChunkData; latestMax]);

end

latestMax

latestMax = 0.8897

 read

5-61

On each read operation, the read method updates the read position for the start of the next read
operation. After reading some or all of the matlab.io.datastore.sdidatastore, you can reset
the read position to start again from the beginning of the signal.

speedSDIds.reset

Process Signal Data in Memory

When the signal referenced by your matlab.io.datastore.sdidatastore fits into memory, you
can use the readall method to read all the signal data into memory for processing, rather than
reading and processing the data incrementally with the read method. The readall method returns
a timetable with all the signal data.

speedTimetable = speedSDIds.readall;

speedMax = max(speedTimetable.Data)

speedMax = 0.8897

Alternatives
You can use your matlab.io.datastore.sdidatastore to create a tall timetable to process
signals too large to fit into memory. The tall timetable handles loading and processing the chunks of
signal data for you. The matlab.io.datastore.sdidatastore reference page includes an
example that shows how to process your data using a tall timetable. For more information about
working with tall timetables, see “Tall Arrays”.

Version History
Introduced in R2017b

See Also
matlab.io.datastore.sdidatastore

Topics
“Datastore”

5 Classes

5-62

readall
Class: matlab.io.datastore.sdidatastore
Package: matlab.io.datastore

Read all data from an sdidatastore

Syntax
data = sdi_ds.readall

Description
data = sdi_ds.readall reads all the data in the matlab.io.datastore.sdidatastore,
sdi_ds, into memory, returning the timetable, data. Use readall only when the signal
referenced by the matlab.io.datastore.sdidatastore fits into memory.

Output Arguments
data — timetable of data
timetable

All the data in the matlab.io.datastore.sdidatastore, returned in a timetable.

Examples
Process Signal Data Using a matlab.io.datastore.sdidatastore

A matlab.io.datastore.sdidatastore references signal data in the Simulation Data Inspector
repository. When the signal is too large to fit into memory, you can use the
matlab.io.datastore.sdidatastore to incrementally process the data manually or to create a
tall timetable for the signal that handles the incremental processing for you. This example shows how
to process data using a matlab.io.datastore.sdidatastore.

Create a matlab.io.datastore.sdidatastore for a Signal

Simulate the sldemo_fuelsys model, which is configured to log several signals, to create data in
the Simulation Data Inspector repository.

sim('sldemo_fuelsys')

Use the Simulation Data Inspector programmatic interface to get the signal ID for the signal.

runCount = Simulink.sdi.getRunCount;

latestRunID = Simulink.sdi.getRunIDByIndex(runCount);

latestRun = Simulink.sdi.getRun(latestRunID);

speedSigID = latestRun.getSignalIDByIndex(4);

Use the signal ID to create a matlab.io.datastore.sdidatastore for the speed signal.

 readall

5-63

speedSDIds = matlab.io.datastore.sdidatastore(speedSigID);

Verify the Contents of the Datastore

Check the Name property of the matlab.io.datastore.sdidatastore to verify that it matches
your expectations.

speedSDIds.Name

ans =
'map'

You can also use the preview method to check that the first ten samples in the signal look correct.

speedSDIds.preview

ans=10×1 timetable
 Time Data
 ______________ _______

 0 sec 0.589
 0.00056199 sec 0.58772
 0.0033719 sec 0.58148
 0.01 sec 0.56765
 0.02 sec 0.54897
 0.03 sec 0.53264
 0.04 sec 0.51837
 0.05 sec 0.50594
 0.055328 sec 0.5
 0.055328 sec 0.5

Process Signal Data with the matlab.io.datastore.sdidatastore

When your signal is too large to fit into memory, you can use the readData method to read chunks of
data from the Simulation Data Inspector repository to incrementally process your data. Use the
hasdata method as the condition for a while loop to incrementally process the whole signal. For
example, find the maximum signal value.

latestMax = [];

while speedSDIds.hasdata

 speedChunk = speedSDIds.read;
 speedChunkData = speedChunk.Data;
 latestMax = max([speedChunkData; latestMax]);

end

latestMax

latestMax = 0.8897

On each read operation, the read method updates the read position for the start of the next read
operation. After reading some or all of the matlab.io.datastore.sdidatastore, you can reset
the read position to start again from the beginning of the signal.

speedSDIds.reset

5 Classes

5-64

Process Signal Data in Memory

When the signal referenced by your matlab.io.datastore.sdidatastore fits into memory, you
can use the readall method to read all the signal data into memory for processing, rather than
reading and processing the data incrementally with the read method. The readall method returns
a timetable with all the signal data.

speedTimetable = speedSDIds.readall;

speedMax = max(speedTimetable.Data)

speedMax = 0.8897

Alternatives
When your signals fit into memory, you can use other classes and functions of the Simulation Data
Inspector programmatic interface, like the Simulink.sdi.Signal class, to access and process
simulation data.

Version History
Introduced in R2017b

See Also
matlab.io.datastore.sdidatastore

Topics
“Datastore”

 readall

5-65

reset
Class: matlab.io.datastore.sdidatastore
Package: matlab.io.datastore

Reset the read position

Syntax
sdi_ds.reset

Description
sdi_ds.reset resets the read position for the matlab.io.datastore.sdidatastore, sdi_ds,
to the beginning.

Examples
Process Signal Data Using a matlab.io.datastore.sdidatastore

A matlab.io.datastore.sdidatastore references signal data in the Simulation Data Inspector
repository. When the signal is too large to fit into memory, you can use the
matlab.io.datastore.sdidatastore to incrementally process the data manually or to create a
tall timetable for the signal that handles the incremental processing for you. This example shows how
to process data using a matlab.io.datastore.sdidatastore.

Create a matlab.io.datastore.sdidatastore for a Signal

Simulate the sldemo_fuelsys model, which is configured to log several signals, to create data in
the Simulation Data Inspector repository.

sim('sldemo_fuelsys')

Use the Simulation Data Inspector programmatic interface to get the signal ID for the signal.

runCount = Simulink.sdi.getRunCount;

latestRunID = Simulink.sdi.getRunIDByIndex(runCount);

latestRun = Simulink.sdi.getRun(latestRunID);

speedSigID = latestRun.getSignalIDByIndex(4);

Use the signal ID to create a matlab.io.datastore.sdidatastore for the speed signal.

speedSDIds = matlab.io.datastore.sdidatastore(speedSigID);

Verify the Contents of the Datastore

Check the Name property of the matlab.io.datastore.sdidatastore to verify that it matches
your expectations.

speedSDIds.Name

5 Classes

5-66

ans =
'map'

You can also use the preview method to check that the first ten samples in the signal look correct.

speedSDIds.preview

ans=10×1 timetable
 Time Data
 ______________ _______

 0 sec 0.589
 0.00056199 sec 0.58772
 0.0033719 sec 0.58148
 0.01 sec 0.56765
 0.02 sec 0.54897
 0.03 sec 0.53264
 0.04 sec 0.51837
 0.05 sec 0.50594
 0.055328 sec 0.5
 0.055328 sec 0.5

Process Signal Data with the matlab.io.datastore.sdidatastore

When your signal is too large to fit into memory, you can use the readData method to read chunks of
data from the Simulation Data Inspector repository to incrementally process your data. Use the
hasdata method as the condition for a while loop to incrementally process the whole signal. For
example, find the maximum signal value.

latestMax = [];

while speedSDIds.hasdata

 speedChunk = speedSDIds.read;
 speedChunkData = speedChunk.Data;
 latestMax = max([speedChunkData; latestMax]);

end

latestMax

latestMax = 0.8897

On each read operation, the read method updates the read position for the start of the next read
operation. After reading some or all of the matlab.io.datastore.sdidatastore, you can reset
the read position to start again from the beginning of the signal.

speedSDIds.reset

Process Signal Data in Memory

When the signal referenced by your matlab.io.datastore.sdidatastore fits into memory, you
can use the readall method to read all the signal data into memory for processing, rather than
reading and processing the data incrementally with the read method. The readall method returns
a timetable with all the signal data.

 reset

5-67

speedTimetable = speedSDIds.readall;

speedMax = max(speedTimetable.Data)

speedMax = 0.8897

Version History
Introduced in R2017b

See Also
matlab.io.datastore.sdidatastore

Topics
“Datastore”

5 Classes

5-68

matlab.io.datastore.SimulationDatastore class
Package: matlab.io.datastore

Datastore for inputs and outputs of Simulink models

Description
A matlab.io.datastore.SimulationDatastore object enables a Simulink model to interact
with big data. You can load big data as simulation input and log big output data from a simulation. To
simulate models with big data, you store the data in a MAT-file and refer to the data through a
SimulationDatastore object. See “Work with Big Data for Simulations”.

A SimulationDatastore object refers to big simulation data (which a MAT-file stores) for one
signal. If the MAT-file stores simulation data for a bus signal, a SimulationDatastore object refers
to the data for one leaf signal element in the bus. You can use the datastore object to inspect and
access the data and, through a parent object such as Simulink.SimulationData.Signal,
simulate a Simulink model with the data.

To analyze the datastore data, you can use the methods and properties of the
SimulationDatastore object as well as MATLAB tools such as the tall function. For more
information about the MATLAB tools, see “Getting Started with Datastore”.

Construction
After you store big simulation data in a Simulink.SimulationData.Dataset object in a MAT-file,
a signal element in the Dataset object points to the big data. To create a
matlab.io.datastore.SimulationDatastore object that refers to the big data:

1 At the command prompt or in a script, create a Simulink.SimulationData.DatasetRef
object that refers to the Dataset object in the MAT-file.

2 Use one of these techniques:

• Use one-based, curly-brace indexing (for example, {1}) to return an object that represents
the target signal element, such as Simulink.SimulationData.Signal or
Simulink.SimulationData.State. For example, for a DatasetRef object named
logsout_ref, to create a Signal object that refers to the second signal element, use this
code:

myLoggedSig = logsout_ref{2}

• Use the getAsDatastore method of the DatasetRef object to return an object that
represents the target signal element. For more information, see getAsDatastore.

The SimulationDatastore object resides in the Values property of the returned object.

Properties
FileName — Name and path of file that contains big data
character vector

 matlab.io.datastore.SimulationDatastore class

5-69

Name and path of the file that contains the big data, returned as a character vector. This property is
read-only.
Data Types: char

NumSamples — Total number of samples (time steps) in the datastore
integer

Total number of samples (time steps) in the datastore, returned as an integer. The readall method
extracts this many samples from the big data. This property is read-only.
Data Types: uint64

ReadSize — Amount of data to read at a time
100 (default) | scalar double

Amount of data to read at a time, in number of samples (time steps), specified as a scalar double. The
read method extracts this many samples from the big data.
Data Types: double

Methods
hasdata Determine if data is available to read
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable
preview Return subset of data from datastore
progress Return percentage of data that you have read from a datastore
read Read data in datastore
readall Read all data in datastore
reset Reset datastore to initial state

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Limitations
• SimulationDatastore does not support using a parallel pool with Parallel Computing Toolbox

installed. To analyze data using tall arrays or run MapReduce algorithms, set the global execution
environment to be the local MATLAB session using mapreducer. Enter this code:

mapreducer(0)

For information about controlling parallel resources, see “Run mapreduce on a Parallel Pool”
(Parallel Computing Toolbox).

• You cannot use a MATLAB tall variable as simulation input data.

Examples

5 Classes

5-70

Inspect and Analyze Data in Simulation Datastore

This example shows how to log big data from a simulation and inspect and analyze portions of that
data by interacting with a matlab.io.datastore.SimulationDatastore object.

Log Big Data from Model

Open the example model sldemo_fuelsys.

open_system('sldemo_fuelsys')

Select Configuration Parameters > Data Import/Export > Log Dataset data to file.

set_param('sldemo_fuelsys','LoggingToFile','on')

Simulate the model.

sim('sldemo_fuelsys')

The MAT-file out.mat appears in your current folder. The file contains data for logged signals such as
fuel (which is at the root level of the model).

At the command prompt, create a DatasetRef object that refers to the logging variable by name,
sldemo_fuelsys_output.

DSRef = Simulink.SimulationData.DatasetRef('out.mat','sldemo_fuelsys_output');

 matlab.io.datastore.SimulationDatastore class

5-71

Preview Big Data

Use curly braces ({ and }) to extract the signal element fuel, which is the tenth element in DSRef,
as a Simulink.SimulationData.Signal object that contains a SimulationDatastore object.

SimDataSig = DSRef{10};

To more easily interact with the SimulationDatastore object that resides in the Values property
of the Signal object, store a handle in a variable named DStore.

DStore = SimDataSig.Values;

Use the preview method to inspect the first five samples of logged data for the fuel signal.

preview(DStore)

ans =

 10x1 timetable

 Time Data
 ______________ ______

 0 sec 1.209
 0.00056199 sec 1.209
 0.0033719 sec 1.209
 0.01 sec 1.1729
 0.02 sec 1.1409
 0.03 sec 1.1124
 0.04 sec 1.0873
 0.05 sec 1.0652
 0.055328 sec 1.0652
 0.055328 sec 1.0652

Inspect Specific Sample

Inspect the 603rd sample of logged fuel data.

Set the ReadSize property of DStore to a number that, considering memory resources, your
computer can tolerate. For example, set ReadSize to 200.

DStore.ReadSize = 200;

Read from the datastore three times. Each read operation advances the reading position by 200
samples.

read(DStore);
read(DStore);
read(DStore);

Now that you are very close to the 603rd sample, set ReadSize to a smaller number. For example,
set ReadSize to 5.

DStore.ReadSize = 5;

Read from the datastore again.

5 Classes

5-72

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ ______

 5.79 sec 1.6097
 5.8 sec 1.6136
 5.81 sec 1.6003
 5.82 sec 1.5904
 5.83 sec 1.5832

The third sample of read data is the 603rd sample in the datastore.

Inspect Earlier Sample

Inspect the 403rd sample of logged fuel data. Due to previous read operations, the datastore now
reads starting from the 606th sample, so you must reset the datastore. Then, you can read from the
first sample up to the 403rd sample.

Use the reset method to reset DStore.

reset(DStore);

Set ReadSize to 200 again.

DStore.ReadSize = 200;

Read from the datastore twice to advance the read position to the 401st sample.

read(DStore);
read(DStore);

Set ReadSize to 5 again.

DStore.ReadSize = 5;

Read from the datastore.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ _______

 3.85 sec 0.999
 3.86 sec 0.99219
 3.87 sec 0.98538
 3.88 sec 0.97858

 matlab.io.datastore.SimulationDatastore class

5-73

 3.89 sec 0.97179

Extract Multiple Samples

Extract samples 1001 through 1020 (a total of 20 samples).

Reset the datastore.

reset(DStore)

Advance to sample 1001.

DStore.ReadSize = 200;

for i = 1:5
 read(DStore);
end

Prepare to extract 20 samples from the datastore.

DStore.ReadSize = 20;

Extract samples 1001 through 1020. Store the extracted data in a variable named targetSamples.

targetSamples = read(DStore)

targetSamples =

 20x1 timetable

 Time Data
 ________ ______

 9.7 sec 1.5828
 9.71 sec 1.5733
 9.72 sec 1.5664
 9.73 sec 1.5614
 9.74 sec 1.5579
 9.75 sec 1.5553
 9.76 sec 1.5703
 9.77 sec 1.582
 9.78 sec 1.5913
 9.79 sec 1.5988
 9.8 sec 1.605
 9.81 sec 1.6101
 9.82 sec 1.6145
 9.83 sec 1.6184
 9.84 sec 1.6049
 9.85 sec 1.595
 9.86 sec 1.5877
 9.87 sec 1.5824
 9.88 sec 1.5785
 9.89 sec 1.5757

5 Classes

5-74

Find Maximum Value of Data in Datastore

Reset the datastore.

reset(DStore)

Write a while loop, using the hasdata method, to incrementally analyze the data in chunks of 200
samples.

DStore.ReadSize = 200;
runningMax = [];
while hasdata(DStore)
 tt = read(DStore);
 rawChunk = tt.Data;
 runningMax = max([rawChunk; runningMax]);
end

Now, the variable runningMax stores the maximum value in the entire datastore.

runningMax

runningMax =

 1.6423

Version History
Introduced in R2017a

See Also
Topics
“Work with Big Data for Simulations”

 matlab.io.datastore.SimulationDatastore class

5-75

hasdata
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Determine if data is available to read

Syntax
tf = hasdata(dst)

Description
tf = hasdata(dst) returns logical 1 (true) if there is data available to read from the datastore
(matlab.io.datastore.SimulationDatastore object) specified by dst. Otherwise, it returns
logical 0 (false).

Input Arguments
dst — Input datastore
matlab.io.datastore.SimulationDatastore object

Input datastore, specified as a matlab.io.datastore.SimulationDatastore object. To create a
SimulationDatastore object, see matlab.io.datastore.SimulationDatastore.

Examples

Inspect and Analyze Data in Simulation Datastore

This example shows how to log big data from a simulation and inspect and analyze portions of that
data by interacting with a matlab.io.datastore.SimulationDatastore object.

Log Big Data from Model

Open the example model sldemo_fuelsys.

open_system('sldemo_fuelsys')

5 Classes

5-76

Select Configuration Parameters > Data Import/Export > Log Dataset data to file.

set_param('sldemo_fuelsys','LoggingToFile','on')

Simulate the model.

sim('sldemo_fuelsys')

The MAT-file out.mat appears in your current folder. The file contains data for logged signals such as
fuel (which is at the root level of the model).

At the command prompt, create a DatasetRef object that refers to the logging variable by name,
sldemo_fuelsys_output.

DSRef = Simulink.SimulationData.DatasetRef('out.mat','sldemo_fuelsys_output');

Preview Big Data

Use curly braces ({ and }) to extract the signal element fuel, which is the tenth element in DSRef,
as a Simulink.SimulationData.Signal object that contains a SimulationDatastore object.

SimDataSig = DSRef{10};

To more easily interact with the SimulationDatastore object that resides in the Values property
of the Signal object, store a handle in a variable named DStore.

DStore = SimDataSig.Values;

 hasdata

5-77

Use the preview method to inspect the first five samples of logged data for the fuel signal.

preview(DStore)

ans =

 10x1 timetable

 Time Data
 ______________ ______

 0 sec 1.209
 0.00056199 sec 1.209
 0.0033719 sec 1.209
 0.01 sec 1.1729
 0.02 sec 1.1409
 0.03 sec 1.1124
 0.04 sec 1.0873
 0.05 sec 1.0652
 0.055328 sec 1.0652
 0.055328 sec 1.0652

Inspect Specific Sample

Inspect the 603rd sample of logged fuel data.

Set the ReadSize property of DStore to a number that, considering memory resources, your
computer can tolerate. For example, set ReadSize to 200.

DStore.ReadSize = 200;

Read from the datastore three times. Each read operation advances the reading position by 200
samples.

read(DStore);
read(DStore);
read(DStore);

Now that you are very close to the 603rd sample, set ReadSize to a smaller number. For example,
set ReadSize to 5.

DStore.ReadSize = 5;

Read from the datastore again.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ ______

 5.79 sec 1.6097
 5.8 sec 1.6136

5 Classes

5-78

 5.81 sec 1.6003
 5.82 sec 1.5904
 5.83 sec 1.5832

The third sample of read data is the 603rd sample in the datastore.

Inspect Earlier Sample

Inspect the 403rd sample of logged fuel data. Due to previous read operations, the datastore now
reads starting from the 606th sample, so you must reset the datastore. Then, you can read from the
first sample up to the 403rd sample.

Use the reset method to reset DStore.

reset(DStore);

Set ReadSize to 200 again.

DStore.ReadSize = 200;

Read from the datastore twice to advance the read position to the 401st sample.

read(DStore);
read(DStore);

Set ReadSize to 5 again.

DStore.ReadSize = 5;

Read from the datastore.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ _______

 3.85 sec 0.999
 3.86 sec 0.99219
 3.87 sec 0.98538
 3.88 sec 0.97858
 3.89 sec 0.97179

Extract Multiple Samples

Extract samples 1001 through 1020 (a total of 20 samples).

Reset the datastore.

reset(DStore)

Advance to sample 1001.

 hasdata

5-79

DStore.ReadSize = 200;

for i = 1:5
 read(DStore);
end

Prepare to extract 20 samples from the datastore.

DStore.ReadSize = 20;

Extract samples 1001 through 1020. Store the extracted data in a variable named targetSamples.

targetSamples = read(DStore)

targetSamples =

 20x1 timetable

 Time Data
 ________ ______

 9.7 sec 1.5828
 9.71 sec 1.5733
 9.72 sec 1.5664
 9.73 sec 1.5614
 9.74 sec 1.5579
 9.75 sec 1.5553
 9.76 sec 1.5703
 9.77 sec 1.582
 9.78 sec 1.5913
 9.79 sec 1.5988
 9.8 sec 1.605
 9.81 sec 1.6101
 9.82 sec 1.6145
 9.83 sec 1.6184
 9.84 sec 1.6049
 9.85 sec 1.595
 9.86 sec 1.5877
 9.87 sec 1.5824
 9.88 sec 1.5785
 9.89 sec 1.5757

Find Maximum Value of Data in Datastore

Reset the datastore.

reset(DStore)

Write a while loop, using the hasdata method, to incrementally analyze the data in chunks of 200
samples.

DStore.ReadSize = 200;
runningMax = [];
while hasdata(DStore)
 tt = read(DStore);
 rawChunk = tt.Data;

5 Classes

5-80

 runningMax = max([rawChunk; runningMax]);
end

Now, the variable runningMax stores the maximum value in the entire datastore.

runningMax

runningMax =

 1.6423

Version History
Introduced in R2017a

See Also
Topics
“Work with Big Data for Simulations”

 hasdata

5-81

isPartitionable
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Determine whether datastore is partitionable

Syntax
tf = isPartitionable(ds)

Description
tf = isPartitionable(ds) returns logical 1 (true) if the datastore ds is partitionable.
Otherwise, the result is logical 0 (false).

Input Arguments
ds — Input datastore
datastore

Input datastore. You can use these datastores as input:

• MATLAB datastores — Datastores created using MATLAB datastore functions. For a complete
list of datastores, see “Select Datastore for File Format or Application”.

• Combined and transformed datastores — Datastores created using the combine and transform
functions.

• Custom datastores — Datastores created using the custom datastore framework. Any datastore
that subclasses from matlab.io.Datastore supports the isPartitionable function. See
“Develop Custom Datastore” for more information.

Examples

Test Partitionability of Simulation Datastore

This example shows how to determine the partitionability of a
matlab.io.datastore.SimulationDatastore object that contains big data from a simulation.

Log Big Data from Model

Open the example model sldemo_fuelsys.

open_system('sldemo_fuelsys')

5 Classes

5-82

Select Configuration Parameters > Data Import/Export > Log Dataset data to file.

set_param('sldemo_fuelsys','LoggingToFile','on')

Simulate the model.

sim('sldemo_fuelsys')

The MAT-file out.mat appears in your current folder. The file contains data for logged signals such as
fuel (which is at the root level of the model).

At the command prompt, create a DatasetRef object that refers to the logging variable by name,
sldemo_fuelsys_output.

DSRef = Simulink.SimulationData.DatasetRef('out.mat','sldemo_fuelsys_output');

Preview Big Data

Use curly braces ({ and }) to extract the signal element fuel, which is the tenth element in DSRef,
as a Simulink.SimulationData.Signal object that contains a SimulationDatastore object.

SimDataSig = DSRef{10};

To more easily interact with the SimulationDatastore object that resides in the Values property
of the Signal object, store a handle in a variable named DStore.

DStore = SimDataSig.Values;

 isPartitionable

5-83

Determine if the datastore is partitionable.

if isPartitionable(DStore)
 disp('Datastore is partitionable.')
else
 disp('Datatstore is not partitionable.')
end

Datatstore is not partitionable.

Version History
Introduced in R2020a

See Also
partition | numpartitions | datastore | matlab.io.Datastore

Topics
“Getting Started with Datastore”
“Set Up Datastore for Processing on Different Machines or Clusters”

5 Classes

5-84

isShuffleable
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Determine whether datastore is shuffleable

Syntax
tf = isShuffleable(ds)

Description
tf = isShuffleable(ds) returns logical 1 (true) if the datastore ds is shuffleable. Otherwise,
the result is logical 0 (false).

You can use the shuffle function on shuffleable datastores to randomize the ordering of files, while
preserving the row associations of files in different datastores.

Input Arguments
ds — Input datastore
datastore

Input datastore. You can use these datastores as input:

• MATLAB datastores — Datastores created using MATLAB datastore functions. For a complete
list of datastores, see “Select Datastore for File Format or Application”.

• Combined and transformed datastores — Datastores created using the combine and transform
functions.

• Custom datastores — Datastores created using the custom datastore framework. Any datastore
that subclasses from matlab.io.Datastore supports the isShuffleable function. See
“Develop Custom Datastore” for more information.

Examples

Test Shuffleability of Simulation Datastore

This example shows how to determine the shuffleability of a
matlab.io.datastore.SimulationDatastore object that contains big data from a simulation.

Log Big Data from Model

Open the example model sldemo_fuelsys.

open_system('sldemo_fuelsys')

 isShuffleable

5-85

Select Configuration Parameters > Data Import/Export > Log Dataset data to file.

set_param('sldemo_fuelsys','LoggingToFile','on')

Simulate the model.

sim('sldemo_fuelsys')

The MAT-file out.mat appears in your current folder. The file contains data for logged signals such as
fuel (which is at the root level of the model).

At the command prompt, create a DatasetRef object that refers to the logging variable by name,
sldemo_fuelsys_output.

DSRef = Simulink.SimulationData.DatasetRef('out.mat','sldemo_fuelsys_output');

Preview Big Data

Use curly braces ({ and }) to extract the signal element fuel, which is the tenth element in DSRef,
as a Simulink.SimulationData.Signal object that contains a SimulationDatastore object.

SimDataSig = DSRef{10};

To more easily interact with the SimulationDatastore object that resides in the Values property
of the Signal object, store a handle in a variable named DStore.

DStore = SimDataSig.Values;

5 Classes

5-86

Determine if the datastore is shuffleable.

if isShuffleable(DStore)
 disp('Datastore is shuffleable.')
else
 disp('Datatstore is not shuffleable.')
end

Datatstore is not shuffleable.

Version History
Introduced in R2020a

See Also
datastore | shuffle | matlab.io.Datastore

Topics
“Getting Started with Datastore”

 isShuffleable

5-87

preview
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Return subset of data from datastore

Syntax
data = preview(dst)

Description
data = preview(dst) returns a subset of data from datastore
(matlab.io.datastore.SimulationDatastore object) dst without changing its current read
position. preview returns only the first ten samples (time steps) of data in the datastore. Use this
method to quickly inspect and verify that the data appears as you expect.

Input Arguments
dst — Input datastore
matlab.io.datastore.SimulationDatastore object

Input datastore, specified as a matlab.io.datastore.SimulationDatastore object. To create a
SimulationDatastore object, see matlab.io.datastore.SimulationDatastore.

Output Arguments
data — Subset of data
timetable object

Subset of data, returned as a timetable object. For information about timetable, see
“Timetables”.

Examples

Inspect and Analyze Data in Simulation Datastore

This example shows how to log big data from a simulation and inspect and analyze portions of that
data by interacting with a matlab.io.datastore.SimulationDatastore object.

Log Big Data from Model

Open the example model sldemo_fuelsys.

open_system('sldemo_fuelsys')

5 Classes

5-88

Select Configuration Parameters > Data Import/Export > Log Dataset data to file.

set_param('sldemo_fuelsys','LoggingToFile','on')

Simulate the model.

sim('sldemo_fuelsys')

The MAT-file out.mat appears in your current folder. The file contains data for logged signals such as
fuel (which is at the root level of the model).

At the command prompt, create a DatasetRef object that refers to the logging variable by name,
sldemo_fuelsys_output.

DSRef = Simulink.SimulationData.DatasetRef('out.mat','sldemo_fuelsys_output');

Preview Big Data

Use curly braces ({ and }) to extract the signal element fuel, which is the tenth element in DSRef,
as a Simulink.SimulationData.Signal object that contains a SimulationDatastore object.

SimDataSig = DSRef{10};

To more easily interact with the SimulationDatastore object that resides in the Values property
of the Signal object, store a handle in a variable named DStore.

DStore = SimDataSig.Values;

 preview

5-89

Use the preview method to inspect the first five samples of logged data for the fuel signal.

preview(DStore)

ans =

 10x1 timetable

 Time Data
 ______________ ______

 0 sec 1.209
 0.00056199 sec 1.209
 0.0033719 sec 1.209
 0.01 sec 1.1729
 0.02 sec 1.1409
 0.03 sec 1.1124
 0.04 sec 1.0873
 0.05 sec 1.0652
 0.055328 sec 1.0652
 0.055328 sec 1.0652

Inspect Specific Sample

Inspect the 603rd sample of logged fuel data.

Set the ReadSize property of DStore to a number that, considering memory resources, your
computer can tolerate. For example, set ReadSize to 200.

DStore.ReadSize = 200;

Read from the datastore three times. Each read operation advances the reading position by 200
samples.

read(DStore);
read(DStore);
read(DStore);

Now that you are very close to the 603rd sample, set ReadSize to a smaller number. For example,
set ReadSize to 5.

DStore.ReadSize = 5;

Read from the datastore again.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ ______

 5.79 sec 1.6097
 5.8 sec 1.6136

5 Classes

5-90

 5.81 sec 1.6003
 5.82 sec 1.5904
 5.83 sec 1.5832

The third sample of read data is the 603rd sample in the datastore.

Inspect Earlier Sample

Inspect the 403rd sample of logged fuel data. Due to previous read operations, the datastore now
reads starting from the 606th sample, so you must reset the datastore. Then, you can read from the
first sample up to the 403rd sample.

Use the reset method to reset DStore.

reset(DStore);

Set ReadSize to 200 again.

DStore.ReadSize = 200;

Read from the datastore twice to advance the read position to the 401st sample.

read(DStore);
read(DStore);

Set ReadSize to 5 again.

DStore.ReadSize = 5;

Read from the datastore.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ _______

 3.85 sec 0.999
 3.86 sec 0.99219
 3.87 sec 0.98538
 3.88 sec 0.97858
 3.89 sec 0.97179

Extract Multiple Samples

Extract samples 1001 through 1020 (a total of 20 samples).

Reset the datastore.

reset(DStore)

Advance to sample 1001.

 preview

5-91

DStore.ReadSize = 200;

for i = 1:5
 read(DStore);
end

Prepare to extract 20 samples from the datastore.

DStore.ReadSize = 20;

Extract samples 1001 through 1020. Store the extracted data in a variable named targetSamples.

targetSamples = read(DStore)

targetSamples =

 20x1 timetable

 Time Data
 ________ ______

 9.7 sec 1.5828
 9.71 sec 1.5733
 9.72 sec 1.5664
 9.73 sec 1.5614
 9.74 sec 1.5579
 9.75 sec 1.5553
 9.76 sec 1.5703
 9.77 sec 1.582
 9.78 sec 1.5913
 9.79 sec 1.5988
 9.8 sec 1.605
 9.81 sec 1.6101
 9.82 sec 1.6145
 9.83 sec 1.6184
 9.84 sec 1.6049
 9.85 sec 1.595
 9.86 sec 1.5877
 9.87 sec 1.5824
 9.88 sec 1.5785
 9.89 sec 1.5757

Find Maximum Value of Data in Datastore

Reset the datastore.

reset(DStore)

Write a while loop, using the hasdata method, to incrementally analyze the data in chunks of 200
samples.

DStore.ReadSize = 200;
runningMax = [];
while hasdata(DStore)
 tt = read(DStore);
 rawChunk = tt.Data;

5 Classes

5-92

 runningMax = max([rawChunk; runningMax]);
end

Now, the variable runningMax stores the maximum value in the entire datastore.

runningMax

runningMax =

 1.6423

Version History
Introduced in R2017a

See Also
Topics
“Work with Big Data for Simulations”

 preview

5-93

progress
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Return percentage of data that you have read from a datastore

Syntax
p = progress(dst)

Description
p = progress(dst) returns the percentage, as a number between 0 and 1, of the data that you
have read from a datastore (matlab.io.datastore.SimulationDatastore object). For example,
a return value of 0.55 means you have read 55% of the data. Use the progress method and the
NumSamples property to determine the current read position.

You read data from a SimulationDatastore object by using the read method.

Input Arguments
dst — Input datastore
matlab.io.datastore.SimulationDatastore object

Input datastore, specified as a matlab.io.datastore.SimulationDatastore object. To create a
SimulationDatastore object, see matlab.io.datastore.SimulationDatastore.

Output Arguments
p — Percentage of data that you have read from the datastore
scalar double

Percentage of data that you have read from the datastore, returned as a scalar double.
Data Types: double

Version History
Introduced in R2017a

See Also
Topics
“Work with Big Data for Simulations”

5 Classes

5-94

read
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Read data in datastore

Syntax
data = read(dst)
[data,info] = read(dst)

Description
data = read(dst) returns data from a datastore
(matlab.io.datastore.SimulationDatastore object). Subsequent calls to the read function
continue reading from the endpoint of the previous call. Use the ReadSize property of the
SimulationDatastore object to specify the amount of data, in samples (time steps), to read at a
time. Use the progress method and the NumSamples property to determine the current read
position.

[data,info] = read(dst) also returns information about the extracted data in info.

Input Arguments
dst — Input datastore
matlab.io.datastore.SimulationDatastore object

Input datastore, specified as a matlab.io.datastore.SimulationDatastore object. To create a
SimulationDatastore object, see matlab.io.datastore.SimulationDatastore.

Output Arguments
data — Output data
timetable object

Output data, returned as a timetable object. For information about timetable, see “Timetables”.

info — Information about read data
structure array

Information about read data, returned as a structure. The structure has one field, FileName, which is
a fully resolved path containing the path string, the name of the file, and the file extension.

Examples

 read

5-95

Inspect and Analyze Data in Simulation Datastore

This example shows how to log big data from a simulation and inspect and analyze portions of that
data by interacting with a matlab.io.datastore.SimulationDatastore object.

Log Big Data from Model

Open the example model sldemo_fuelsys.

open_system('sldemo_fuelsys')

Select Configuration Parameters > Data Import/Export > Log Dataset data to file.

set_param('sldemo_fuelsys','LoggingToFile','on')

Simulate the model.

sim('sldemo_fuelsys')

The MAT-file out.mat appears in your current folder. The file contains data for logged signals such as
fuel (which is at the root level of the model).

At the command prompt, create a DatasetRef object that refers to the logging variable by name,
sldemo_fuelsys_output.

DSRef = Simulink.SimulationData.DatasetRef('out.mat','sldemo_fuelsys_output');

5 Classes

5-96

Preview Big Data

Use curly braces ({ and }) to extract the signal element fuel, which is the tenth element in DSRef,
as a Simulink.SimulationData.Signal object that contains a SimulationDatastore object.

SimDataSig = DSRef{10};

To more easily interact with the SimulationDatastore object that resides in the Values property
of the Signal object, store a handle in a variable named DStore.

DStore = SimDataSig.Values;

Use the preview method to inspect the first five samples of logged data for the fuel signal.

preview(DStore)

ans =

 10x1 timetable

 Time Data
 ______________ ______

 0 sec 1.209
 0.00056199 sec 1.209
 0.0033719 sec 1.209
 0.01 sec 1.1729
 0.02 sec 1.1409
 0.03 sec 1.1124
 0.04 sec 1.0873
 0.05 sec 1.0652
 0.055328 sec 1.0652
 0.055328 sec 1.0652

Inspect Specific Sample

Inspect the 603rd sample of logged fuel data.

Set the ReadSize property of DStore to a number that, considering memory resources, your
computer can tolerate. For example, set ReadSize to 200.

DStore.ReadSize = 200;

Read from the datastore three times. Each read operation advances the reading position by 200
samples.

read(DStore);
read(DStore);
read(DStore);

Now that you are very close to the 603rd sample, set ReadSize to a smaller number. For example,
set ReadSize to 5.

DStore.ReadSize = 5;

Read from the datastore again.

 read

5-97

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ ______

 5.79 sec 1.6097
 5.8 sec 1.6136
 5.81 sec 1.6003
 5.82 sec 1.5904
 5.83 sec 1.5832

The third sample of read data is the 603rd sample in the datastore.

Inspect Earlier Sample

Inspect the 403rd sample of logged fuel data. Due to previous read operations, the datastore now
reads starting from the 606th sample, so you must reset the datastore. Then, you can read from the
first sample up to the 403rd sample.

Use the reset method to reset DStore.

reset(DStore);

Set ReadSize to 200 again.

DStore.ReadSize = 200;

Read from the datastore twice to advance the read position to the 401st sample.

read(DStore);
read(DStore);

Set ReadSize to 5 again.

DStore.ReadSize = 5;

Read from the datastore.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ _______

 3.85 sec 0.999
 3.86 sec 0.99219
 3.87 sec 0.98538
 3.88 sec 0.97858

5 Classes

5-98

 3.89 sec 0.97179

Extract Multiple Samples

Extract samples 1001 through 1020 (a total of 20 samples).

Reset the datastore.

reset(DStore)

Advance to sample 1001.

DStore.ReadSize = 200;

for i = 1:5
 read(DStore);
end

Prepare to extract 20 samples from the datastore.

DStore.ReadSize = 20;

Extract samples 1001 through 1020. Store the extracted data in a variable named targetSamples.

targetSamples = read(DStore)

targetSamples =

 20x1 timetable

 Time Data
 ________ ______

 9.7 sec 1.5828
 9.71 sec 1.5733
 9.72 sec 1.5664
 9.73 sec 1.5614
 9.74 sec 1.5579
 9.75 sec 1.5553
 9.76 sec 1.5703
 9.77 sec 1.582
 9.78 sec 1.5913
 9.79 sec 1.5988
 9.8 sec 1.605
 9.81 sec 1.6101
 9.82 sec 1.6145
 9.83 sec 1.6184
 9.84 sec 1.6049
 9.85 sec 1.595
 9.86 sec 1.5877
 9.87 sec 1.5824
 9.88 sec 1.5785
 9.89 sec 1.5757

 read

5-99

Find Maximum Value of Data in Datastore

Reset the datastore.

reset(DStore)

Write a while loop, using the hasdata method, to incrementally analyze the data in chunks of 200
samples.

DStore.ReadSize = 200;
runningMax = [];
while hasdata(DStore)
 tt = read(DStore);
 rawChunk = tt.Data;
 runningMax = max([rawChunk; runningMax]);
end

Now, the variable runningMax stores the maximum value in the entire datastore.

runningMax

runningMax =

 1.6423

Version History
Introduced in R2017a

See Also
Topics
“Work with Big Data for Simulations”

5 Classes

5-100

readall
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Read all data in datastore

Syntax
data = readall(dst)

Description
data = readall(dst) returns all the data in the datastore
(matlab.io.datastore.SimulationDatastore object) specified by dst.

If all the data in the datastore does not fit in memory, readall returns an error. To determine how
many samples (time steps) a datastore holds, inspect the NumSamples property of the
SimulationDatastore object.

Input Arguments
dst — Input datastore
matlab.io.datastore.SimulationDatastore object

Input datastore, specified as a matlab.io.datastore.SimulationDatastore object. To create a
SimulationDatastore object, see matlab.io.datastore.SimulationDatastore.

Output Arguments
data — All data in the datastore
timetable object

All data in the datastore, returned as a timetable object. For information about timetable, see
“Timetables”.

Version History
Introduced in R2017a

See Also
Topics
“Work with Big Data for Simulations”

 readall

5-101

reset
Class: matlab.io.datastore.SimulationDatastore
Package: matlab.io.datastore

Reset datastore to initial state

Syntax
reset(dst)

Description
reset(dst) sets the read position of the datastore
(matlab.io.datastore.SimulationDatastore object) specified by dst to the first sample in the
datastore. Use reset to reread data from a datastore. You read from a datastore by using the read
method.

Input Arguments
dst — Input datastore
matlab.io.datastore.SimulationDatastore object

Input datastore, specified as a matlab.io.datastore.SimulationDatastore object. To create a
SimulationDatastore object, see matlab.io.datastore.SimulationDatastore.

Examples

Inspect and Analyze Data in Simulation Datastore

This example shows how to log big data from a simulation and inspect and analyze portions of that
data by interacting with a matlab.io.datastore.SimulationDatastore object.

Log Big Data from Model

Open the example model sldemo_fuelsys.

open_system('sldemo_fuelsys')

5 Classes

5-102

Select Configuration Parameters > Data Import/Export > Log Dataset data to file.

set_param('sldemo_fuelsys','LoggingToFile','on')

Simulate the model.

sim('sldemo_fuelsys')

The MAT-file out.mat appears in your current folder. The file contains data for logged signals such as
fuel (which is at the root level of the model).

At the command prompt, create a DatasetRef object that refers to the logging variable by name,
sldemo_fuelsys_output.

DSRef = Simulink.SimulationData.DatasetRef('out.mat','sldemo_fuelsys_output');

Preview Big Data

Use curly braces ({ and }) to extract the signal element fuel, which is the tenth element in DSRef,
as a Simulink.SimulationData.Signal object that contains a SimulationDatastore object.

SimDataSig = DSRef{10};

To more easily interact with the SimulationDatastore object that resides in the Values property
of the Signal object, store a handle in a variable named DStore.

DStore = SimDataSig.Values;

 reset

5-103

Use the preview method to inspect the first five samples of logged data for the fuel signal.

preview(DStore)

ans =

 10x1 timetable

 Time Data
 ______________ ______

 0 sec 1.209
 0.00056199 sec 1.209
 0.0033719 sec 1.209
 0.01 sec 1.1729
 0.02 sec 1.1409
 0.03 sec 1.1124
 0.04 sec 1.0873
 0.05 sec 1.0652
 0.055328 sec 1.0652
 0.055328 sec 1.0652

Inspect Specific Sample

Inspect the 603rd sample of logged fuel data.

Set the ReadSize property of DStore to a number that, considering memory resources, your
computer can tolerate. For example, set ReadSize to 200.

DStore.ReadSize = 200;

Read from the datastore three times. Each read operation advances the reading position by 200
samples.

read(DStore);
read(DStore);
read(DStore);

Now that you are very close to the 603rd sample, set ReadSize to a smaller number. For example,
set ReadSize to 5.

DStore.ReadSize = 5;

Read from the datastore again.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ ______

 5.79 sec 1.6097
 5.8 sec 1.6136

5 Classes

5-104

 5.81 sec 1.6003
 5.82 sec 1.5904
 5.83 sec 1.5832

The third sample of read data is the 603rd sample in the datastore.

Inspect Earlier Sample

Inspect the 403rd sample of logged fuel data. Due to previous read operations, the datastore now
reads starting from the 606th sample, so you must reset the datastore. Then, you can read from the
first sample up to the 403rd sample.

Use the reset method to reset DStore.

reset(DStore);

Set ReadSize to 200 again.

DStore.ReadSize = 200;

Read from the datastore twice to advance the read position to the 401st sample.

read(DStore);
read(DStore);

Set ReadSize to 5 again.

DStore.ReadSize = 5;

Read from the datastore.

read(DStore)

ans =

 5x1 timetable

 Time Data
 ________ _______

 3.85 sec 0.999
 3.86 sec 0.99219
 3.87 sec 0.98538
 3.88 sec 0.97858
 3.89 sec 0.97179

Extract Multiple Samples

Extract samples 1001 through 1020 (a total of 20 samples).

Reset the datastore.

reset(DStore)

Advance to sample 1001.

 reset

5-105

DStore.ReadSize = 200;

for i = 1:5
 read(DStore);
end

Prepare to extract 20 samples from the datastore.

DStore.ReadSize = 20;

Extract samples 1001 through 1020. Store the extracted data in a variable named targetSamples.

targetSamples = read(DStore)

targetSamples =

 20x1 timetable

 Time Data
 ________ ______

 9.7 sec 1.5828
 9.71 sec 1.5733
 9.72 sec 1.5664
 9.73 sec 1.5614
 9.74 sec 1.5579
 9.75 sec 1.5553
 9.76 sec 1.5703
 9.77 sec 1.582
 9.78 sec 1.5913
 9.79 sec 1.5988
 9.8 sec 1.605
 9.81 sec 1.6101
 9.82 sec 1.6145
 9.83 sec 1.6184
 9.84 sec 1.6049
 9.85 sec 1.595
 9.86 sec 1.5877
 9.87 sec 1.5824
 9.88 sec 1.5785
 9.89 sec 1.5757

Find Maximum Value of Data in Datastore

Reset the datastore.

reset(DStore)

Write a while loop, using the hasdata method, to incrementally analyze the data in chunks of 200
samples.

DStore.ReadSize = 200;
runningMax = [];
while hasdata(DStore)
 tt = read(DStore);
 rawChunk = tt.Data;

5 Classes

5-106

 runningMax = max([rawChunk; runningMax]);
end

Now, the variable runningMax stores the maximum value in the entire datastore.

runningMax

runningMax =

 1.6423

Version History
Introduced in R2017a

See Also
Topics
“Work with Big Data for Simulations”

 reset

5-107

allowModelReferenceDiscreteSampleTimeInheritan
ceImpl
Model reference sample time inheritance status for discrete sample times

Syntax
flag = allowModelReferenceDiscreteSampleTimeInheritanceImpl(obj)

Description
flag = allowModelReferenceDiscreteSampleTimeInheritanceImpl(obj) specifies
whether a System object in a referenced model is allowed to inherit the sample time of the parent
model. Use this method only for System objects that use discrete sample time and are intended for
inclusion in Simulink via the MATLAB System block.

Run-Time Details

During model compilation, Simulink sets the referenced model sample time inheritance before the
System object setupImpl method is called.

Method Authoring Tips

You must set Access = protected for this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
allowModelReferenceDiscreteSampleTimeInheritanceImpl method does not use the object,
you can replace this input with ~.

Output Arguments
flag — discrete sample time inheritance flag
true | false

Flag indicating whether model reference discrete sample time inheritance is allowed for the MATLAB
System block containing the System object, returned as a logical value.

The default value for this argument depends on the number of inputs to the System object. If you
want to use the default value, you do not need to include this method in your System object class
definition file.

5 Classes

5-108

Number of System
object Inputs

Default Value and Override Effects

No inputs Default: false — Model reference discrete sample time inheritance is not
allowed.

If your System object uses discrete sample time in its algorithm, override the
default by returning true from
allowModelReferenceDiscreteSampleTimeInheritanceImpl.

One or more inputs Default: true — If no other Simulink constraint prevents it, model reference
sample time inheritance is allowed.

Examples

Set Sample Time Inheritance for System Object

For a System object that has one or more inputs, to disallow model reference discrete sample time
inheritance for that object, set the sample time inheritance to false. Include this code in your class
definition file for the object.

methods (Access = protected)
 function flag = allowModelReferenceDiscreteSampleTimeInheritanceImpl(~)
 flag = false;
 end
end

Version History
Introduced in R2016a

See Also
matlab.System

Topics
“Set Model Reference Discrete Sample Time Inheritance”
“Model Reference Basics”
“Referenced Model Sample Times”

 allowModelReferenceDiscreteSampleTimeInheritanceImpl

5-109

getInputNamesImpl
Names of MATLAB System block input ports

Syntax
names = getInputNamesImpl(obj)

Description
names = getInputNamesImpl(obj) specifies the names of the input ports from System object,
obj implemented in a MATLAB System block. The size of names matches the number of inputs
returned by the getNumInputs method. If you change a property value that changes the number of
inputs, the names of those inputs also change.

Class Information

This method is part of the matlab.System class.

Run-Time Details

getInputNamesImpl is called by the MATLAB System block.

Method Authoring Tips

You must set Access = protected for this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
getInputNamesImpl method does not use the object, you can replace this input with ~.

Output Arguments
names — Names of inputs
empty string array (default) | string array

Names of the inputs for the specified object, returned as a string array whose length equals the
number of inputs.

Examples
“Customize MATLAB System Block Appearance”

Version History
Introduced in R2013b

5 Classes

5-110

See Also
getNumInputsImpl | getOutputNamesImpl

Topics
“Specify Input and Output Names”
“Customize MATLAB System Block Appearance”

 getInputNamesImpl

5-111

getOutputNamesImpl
Names of MATLAB System block output ports

Syntax
names = getOutputNamesImpl(obj)

Description
names = getOutputNamesImpl(obj) specifies the names of the output ports from System object,
obj implemented in a MATLAB System block. The size of names matches the number of outputs
returned by the getNumOutputs method. If you change a property value that affects the number of
outputs, the names of those outputs also change.

Class Information

This method is part of the matlab.System class.

Run-Time Details

getOutputNamesImpl is called by the MATLAB System block.

Method Authoring Tips

You must set Access = protected for this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
getOutputNamesImpl method does not use the object, you can replace this input with ~.

Output Arguments
names — Names of outputs
empty string array (default) | string array

Names of the outputs for the specified object, returned as a string array whose length equals the
number of outputs.

Examples
“Customize MATLAB System Block Appearance”

Version History
Introduced in R2013b

5 Classes

5-112

See Also
getNumOutputsImpl | getInputNamesImpl

Topics
“Specify Input and Output Names”

 getOutputNamesImpl

5-113

getPropertyGroupsImpl
Property groups for System object display

Syntax
group = getPropertyGroupsImpl

Description
group = getPropertyGroupsImpl specifies how to display properties in the block dialog of a
MATLAB System block. You can specify:

• Sections — Arrange properties into sections (panel on the MATLAB System block dialog) with
matlab.system.display.Section.

• Section Groups — Arrange properties and sections into groups (tabs on the MATLAB System block
dialog) with matlab.system.display.SectionGroup.

• Order of properties — Specify the order of properties within sections/groups
• Order of sections — Specify the order of sections within groups.

If you create a section, but that section is not in a section group, its properties appear above the
block dialog tab panels.

Run-Time Details

In Simulink, getPropertyGroupsImpl modifies the MATLAB System block dialog.

If you choose to modify the MATLAB System block dialog from the Mask Editor, the
getPropertyGroupsImpl method is removed from the System object. All block dialog
customizations are then saved in a supporting XML file: sysObjectName_mask.xml.

In MATLAB, getPropertyGroupsImpl modifies how properties appear when the System object is
displayed at the MATLAB command line. getPropertyGroupsImpl defines the order and groupings
of properties. If your getPropertyGroupsImpl defines multiple section groups, only properties
from the first section group are displayed at the command line. To display properties in other
sections, a link is provided at the end of a System object property display. Group titles are also
displayed at the command line.

Method Authoring Tips

• You must set Access = protected for this method.
• If you include a getPropertyGroupsImpl method but do not list all properties, the excluded

properties do not appear in the dialog box.
• To omit the Main title for the first group of properties, in

matlab.system.display.SectionGroup, set TitleSource to 'Auto'.
• By default if you do not customize this method in your System object, the MATLAB System block

dialog displays all public properties in the order specified in the System object class file.
• To customize property names, add comments above each property. For an example, see “System

Object to Block Dialog Box Default Mapping”.

5 Classes

5-114

Output Arguments
group — Property sections and groups
array of SectionGroup or Section objects

Property groups and sections to pass to the MATLAB System block, specified as an array of
matlab.system.display.Section and matlab.system.display.SectionGroup objects.

Examples
“Customize System Block Dialog Box Using System object”

Version History
Introduced in R2013b

See Also
matlab.system.display.Header | matlab.system.display.Section |
matlab.system.display.SectionGroup

Topics
“Customize System Block Dialog Box Using System object”
“Mapping System Object Code to MATLAB System Block Dialog Box”

 getPropertyGroupsImpl

5-115

getSimulateUsingImpl
Specify value for Simulate using parameter

Syntax
simmode = getSimulateUsingImpl

Description
simmode = getSimulateUsingImpl specifies the simulation mode of the System object
implemented in a MATLAB System block. The simulation mode restricts your System object to
simulation using either code generation or interpreted execution. The associated
showSimulateUsingImpl method controls whether the Simulate using option is displayed on the
dialog box.

Run-Time Details

getSimulateUsingImpl is called by the MATLAB System block.

Method Authoring Tips

You must set Access = protected and Static for this method.

Output Arguments
simmode — Simulation mode
"Code generation" | "Interpreted execution"

Simulation mode, returned as the string "Code generation" or "Interpreted execution". If
you do not include the getSimulateUsingImpl method in your class definition file, the simulation
mode is unrestricted. Depending on the value returned by the associated showSimulateUsingImpl
method, the simulation mode is displayed on the dialog box as either a dropdown list or not at all.

Examples

Specify the Simulation Mode

In the class definition file of your System object, define the simulation mode to display in the MATLAB
System block. To prevent Simulate using from displaying, see showSimulateUsingImpl.

 methods (Static, Access = protected)
 function simMode = getSimulateUsingImpl
 simMode = "Interpreted execution";
 end
 end

Version History
Introduced in R2015a

5 Classes

5-116

See Also
showSimulateUsingImpl

Topics
“Control Simulation Type in MATLAB System Block”

 getSimulateUsingImpl

5-117

getSimulinkFunctionNamesImpl
Register Simulink function names used in your System object

Syntax
names = getSimulinkFunctionNamesImpl(obj)

Description
names = getSimulinkFunctionNamesImpl(obj) specifies the Simulink function names used in
the System object obj.

If you use a Simulink function in your System object, you can only call a Simulink function from the
stepImpl, updateImpl, or outputImpl method.

Run-Time Details

getSimulinkFunctionNamesImpl is invoked by the MATLAB System during model compilation to
obtain the list of Simulink functions being called from the System object. Simulink uses this
information to resolve the function names to a Simulink function declared in a Simulink Function
block. If getSimulinkFunctionNamesImpl does not return the name of a function being called in
the System object methods, Simulink attempts to resolve the function to a function on the MATLAB
path.

Method Authoring Tips

You must set Access = protected for this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
getSimulinkFunctionNamesImpl method does not use the object, you can replace this input with
~.

Output Arguments
names — Simulink function names
{''} (default) | cell array of character vectors | string array

The names of the Simulink function you want to call from your System object.

Examples
“Call Simulink Functions from a MATLAB System Block”

5 Classes

5-118

Version History
Introduced in R2019a

See Also
Classes
matlab.System

Blocks
Simulink Function | MATLAB System

Topics
“Simulink Functions Overview”
“Call Simulink Functions from MATLAB System Block”

 getSimulinkFunctionNamesImpl

5-119

getInterfaceImpl
Set System object as message or data

Syntax
interface = getInterfaceImpl(obj)

Description
MATLAB interface = getInterfaceImpl(obj) specifies the inputs and outputs of a System
block as either data or a message.

Run-Time Details

getInterfaceImpl is part of the matlab.System class and is called before the setupImpl
method.

Method Authoring Tips

You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
getInterfaceImpl method does not use the object, you can replace this input with ~.

Output Arguments
interface — MATLAB System block interface
scalar of interface objects | vector of interface objects

MATLAB System block interface, returned as a scalar or vector of matlab.system.interface.*
objects. Use matlab.system.interface.Input(signalName,signalType) to define input signal
types. Use matlab.system.interface.Output(signalName,signalType) to define output signal
types.

• signalName – Defines the name of the port. Represented by a character array.
• signalType – Defines the type of port. The value is either matlab.system.interface.Data

or matlab.system.interface.Message.

Examples

5 Classes

5-120

Process Message Payload Using MATLAB System Block

This example shows how to send, receive, and process messages using the MATLAB System block.
Use System objects to author blocks to model custom behavior to send and receive messages and
manipulate the message payload.

Load and Open the Model

Open the model of the Message Send and Receive system. This model contains a random number
generator as a data source. Based on that data, the Message Sender sends a message with a sine
wave payload to a queue block. The queue block stores the messages, and the Message Receiver
converts the message back to data.

open_system('slexMessageArrivalExample');

Use getInterfaceImpl System Object API to Specify Message Ports

getInterfaceImpl is used in this example to specify the input and output message ports in the
MATLAB System block for both the Message Sender and the Message Receiver. For the Message
Sender, getInterfaceImpl is used to define the output of the MATLAB System block as a message.
This action prompts the System object to create a message output. For the Message Receiver,
getInterfaceImpl is used to define the input of the System object as a message and the output as
data.

%Function to send messages
function interface = getInterfaceImpl(~)
 import matlab.system.interface.*;
 interface = Output("Out1", Message);
end

%Function to receive messages and output as data
function interface = getInterfaceImpl(obj)
 import matlab.system.interface.*;
 interface = [Input("In1", Message), ...
 Output("Out1", Data), Output("out2", Data)];
end

Set the Propagators and Sample time

The following four propagators need to be set in the Message Sender: getOutputSizeImpl,
getOutputDataTypeImpl, isOutputComplexImpl, isOutputFixedSizeImpl.

In this example, the message queue has a maximum capacity of 16 messages. The random number
generator has a sample time of 0.1. The receiver has a sample time of 1. The Message Receiver
sample time is set in the MATLAB System block using the getSampleTimeImpl API.

 getInterfaceImpl

5-121

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj,'Type','Discrete', ...
 'SampleTime',obj.SampleTime);
end

Simulate the Model and Review Results

The Scope block displays the results. These results show that as you run more simulations, the
random number generator produces a number greater than zero 50% of the time, as expected.

Version History
Introduced in R2021a

See Also
Classes
matlab.System

Blocks
MATLAB System

Topics
“Messages”

5 Classes

5-122

showFiSettingsImpl
Fixed point data type tab visibility for System objects

Syntax
flag = showFiSettingsImpl

Description
flag = showFiSettingsImpl specifies whether the Data Types tab appears on the MATLAB
System block dialog box. The Data Types tab includes parameters to control processing of fixed point
data the MATLAB System block. You cannot specify which parameters appear on the tab. If you
implement showFiSettingsImpl, the simulation mode is set to code generation.

The parameters that appear on the Data Types tab, which cannot be customized, are:

• Saturate on integer overflow — a check box to control the action to take on integer overflow for
built-in integer types. The default is that the box is checked, which indicates to saturate. This is
also the default for when Same as MATLAB is selected as the MATLAB System fimath option.

• Treat these inherited Simulink signal types as fi objects — a pull down that indicates which
inherited data types to treat as fi data types. Valid options are:

• Fixed point (default)
• Fixed point & integer

• MATLAB System fimath has two radio button options:

• Same as MATLAB (default) — uses the current MATLAB fixed-point math settings.
• Specify Other — enables the edit box for specifying the desired fixed-point math settings.

For information on setting fixed-point math, see fimath.

Run-Time Details

showFiSettingsImpl is called by the MATLAB System block. For more information, see “Simulink
Engine Phases Mapped to System Object Methods”.

Method Authoring Tips

• If you do not want to display the tab, you do not need to implement this method in your class
definition file.

• You must set Access = protected for this method.

Output Arguments
flag — Display Data Types tab
false (default) | true

 showFiSettingsImpl

5-123

Flag indicating whether to display the Data Types tab on the MATLAB System block mask, returned
as a logical scalar value. Returning a true value displays the tab. A false value does not display the
tab.

Examples

Show the Data Types Tab

Show the Data Types tab on the MATLAB System block dialog box.

methods (Static, Access = protected)
 function isVisible = showFiSettingsImpl
 isVisible = true;
 end
end

If you set the flag, isVisible, to true, the tab appears as follows when you add the object to
Simulink with the MATLAB System block.

5 Classes

5-124

Version History
Introduced in R2016a

See Also
Topics
“Customize System Block Dialog Box Using System object”

 showFiSettingsImpl

5-125

showSimulateUsingImpl
Visibility of Simulate using parameter

Syntax
flag = showSimulateUsingImpl

Description
flag = showSimulateUsingImpl specifies whether Simulate using appears on the MATLAB
System block dialog box.

Run-Time Details

showSimulateUsingImpl is called by the MATLAB System block.

Method Authoring Tips

You must set Access = protected and Static for this method.

Output Arguments
flag — Display parameter on block dialog box
true (default) | false

Flag indicating whether to display the Simulate using parameter and dropdown list on the MATLAB
System block mask. true displays the parameter and dropdown list. false hides the parameter and
dropdown list.

Examples

Hide the Simulate using Parameter

Hide the Simulate using parameter on the MATLAB System block dialog box.

methods (Static, Access = protected)
 function flag = showSimulateUsingImpl
 flag = false;
 end
end

If you set the flag to true or omit the showSimulateUsingImpl method, which defaults to true,
the dialog appears as follows when you add the object to Simulink with the MATLAB System block.

5 Classes

5-126

If you also specify a single value for getSimulateUsingImpl, the dialog appears as follows when
you add the object to Simulink with the MATLAB System block.

Version History
Introduced in R2015a

See Also
getSimulateUsingImpl

Topics
“Control Simulation Type in MATLAB System Block”

 showSimulateUsingImpl

5-127

getGlobalNamesImpl
Global variable names for MATLAB System block

Syntax
name = getGlobalNamesImpl(obj)

Description
name = getGlobalNamesImpl(obj) specifies the names of global variables that are declared in a
System object for use in a Simulink P-code file. For P-code files, in addition to declaring your global
variables in stepImpl, outputImpl, or updateImpl, you must include the getGlobalNamesImpl
method. You declare global variables in a cell array in the getGlobalNamesImpl method. System
objects that contain these global variables are included in Simulink using a MATLAB System block. To
enable a global variable in Simulink, your model also must include a Data Store Memory block with a
Data Store Name that matches the global variable name.

Run-Time Details

getGlobalNamesImpl is called by the MATLAB System block.

Method Authoring Tips

You must set Access = protected for this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
getGlobalNamesImpl method does not use the object, you can replace this input with ~.

Output Arguments
name — Global variable names
cell array of character vectors

Cell array containing the global variable names. The elements of the cell array are character vectors.

Examples

Specify Global Names

Specify two global names in your class definition file.

methods(Access = protected)
 function glnames = getGlobalNamesImpl(obj)

5 Classes

5-128

 glnames = {'FEE','OTHERFEE'};
 end

 function y = stepImpl(obj,u)
 global FEE
 global OTHERFEE
 y = u - FEE * obj.lastData + OTHERFEE;
 obj.lastData = u;
 end
end

Version History
Introduced in R2016b

See Also
stepImpl | updateImpl | outputImpl

Topics
“System Object Global Variables in Simulink”

 getGlobalNamesImpl

5-129

getHeaderImpl
Header for System object display

Syntax
header = getHeaderImpl

Description
header = getHeaderImpl specifies the dialog header to display on the MATLAB System block
dialog box. If you do not specify the getHeaderImpl method, no title or text appears for the header
in the block dialog box.

Run-Time Details

getHeaderImpl is called by the MATLAB System block.

Method Authoring Tips

You must set Access = protected for this method.

Output Arguments
header — Header text
matlab.system.display.Header class

Header text specified as a matlab.system.display.Header class.

Examples

Define Header for System Block Dialog Box

Define a header in your class definition file for the EnhancedCounter System object.

 methods (Static, Access = protected)
 function header = getHeaderImpl
 header = matlab.system.display.Header('EnhancedCounter',...
 'Title','Enhanced Counter');
 end
 end

Version History
Introduced in R2013b

See Also
getPropertyGroupsImpl

5 Classes

5-130

Topics
“Add Header Description”

 getHeaderImpl

5-131

getDiscreteStateImpl
Discrete state property values

Syntax
s = getDiscreteStateImpl(obj)

Description
s = getDiscreteStateImpl(obj) returns a struct s of internal state value properties, which
have the DiscreteState attribute. The field names of the struct are the object’s DiscreteState
property names. To restrict or change the values returned by getDiscreteState method, you can
override this getDiscreteStateImpl method.

Run-Time Details

getDiscreteStateImpl is called by the setup method. For details, see

“Detailed Call Sequence”.

Method Authoring Tips

• You must set Access = protected for this method.
• You cannot modify any properties in this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
getDiscreteStateImpl method does not use the object, you can replace this input with ~.

Output Arguments
s — State values
struct

State values, returned as a struct.

Examples

Get Discrete State Values

Use the getDiscreteStateImpl method in your class definition file to customize the behavior of
getDiscreteState method. The System object contains discrete states value and power. A
nontunable parameter keepTrack determines the states displayed by getDiscreteState method.

5 Classes

5-132

methods (Access = protected)
 function s = getDiscreteStateImpl(obj)
 if obj.keepTrack
 s.value = obj.value;
 s.power = obj.power;
 else
 s.value = obj.value;
 end
 end
end

Version History
Introduced in R2012b

See Also
setupImpl

Topics
“Define Property Attributes”

 getDiscreteStateImpl

5-133

supportsMultipleInstanceImpl
Support System object in Simulink For Each subsystem

Syntax
flag = supportsMultipleInstanceImpl(obj)

Description
flag = supportsMultipleInstanceImpl(obj) specifies whether the System object can be used
in a Simulink For Each subsystem via the MATLAB System block. To enable For Each support, you
must include the supportsMultipleInstanceImpl in your class definition file and have it return
true. Do not enable For Each support if your System object allocates exclusive resources that may
conflict with other System objects, such as allocating file handles, memory by address, or hardware
resources.

Run-Time Details

During Simulink model compilation and propagation, the MATLAB System block calls the
supportsMultipleInstance method, which then calls the supportsMultipleInstanceImpl
method to determine For Each support.

Method Authoring Tips

• You must set Access = protected for this method.
• You cannot modify any properties in this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
supportsMultipleInstanceImpl method does not use the object, you can replace this input with
~.

Output Arguments
flag — Support for For Each subsystem flag
false (default) | true

Boolean value indicating whether the System object can be used in a For Each subsystem. The default
value, if you do not include the supportsMultipleInstanceImpl method, is false.

Examples

5 Classes

5-134

Enable For-Each Support for System Object

Specify in your class definition file that the System object can be used in a Simulink For Each
subsystem.

methods (Access = protected)
 function flag = supportsMultipleInstanceImpl(obj)
 flag = true;
 end
end

Version History
Introduced in R2014b

See Also
matlab.System

Topics
“Enable For Each Subsystem Support”

 supportsMultipleInstanceImpl

5-135

processTunedPropertiesImpl
Action when tunable properties change

Syntax
processTunedPropertiesImpl(obj)

Description
processTunedPropertiesImpl(obj) specifies the algorithm to perform when one or more
tunable property values change. This method is called as part of the next call to the System object
after a tunable property value changes. A property is tunable only if its Nontunable attribute is
false, which is the default.

Run-Time Details

processTunedPropertiesImpl is called when you run the System object.

In MATLAB when multiple tunable properties are changed before running the System object,
processTunedPropertiesImpl is called only once for all the changes. isChangedProperty
returns true for all the changed properties.

In Simulink, when a parameter is changed in a MATLAB System block dialog, the next simulation step
calls processTunedPropertiesImpl before calling stepImpl. All tunable parameters are
considered changed and processTunedPropertiesImpl method is called for each of them.
isChangedProperty returns true for all the dialog properties.

For details, see “Detailed Call Sequence”.

Method Authoring Tips

• You must set Access = protected for this method.
• Use this method when a tunable property affects the value of a different property.
• If the System object will be used in the Simulink MATLAB System block, you cannot modify any

tunable properties in this method.
• To check if a property has changed since stepImpl was last called, use isChangedProperty

within processTunedPropertiesImpl. See “Specify Action When Tunable Property Changes”
on page 5-136 for an example.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
processTunedPropertiesImpl method does not use the object, you can replace this input with ~.

Examples

5 Classes

5-136

Specify Action When Tunable Property Changes

Use processTunedPropertiesImpl to recalculate the lookup table if the value of either the
NumNotes or MiddleC property changes before the next call to the System object. propChange
indicates if either property has changed.

methods (Access = protected)
 function processTunedPropertiesImpl(obj)
 propChange = isChangedProperty(obj,'NumNotes') ||...
 isChangedProperty(obj,'MiddleC')
 if propChange
 obj.pLookupTable = obj.MiddleC * (1+log(1:obj.NumNotes)/log(12));
 end
 end
end

Version History
Introduced in R2013b

See Also
validatePropertiesImpl | setProperties

Topics
“Process Tuned Properties”
“Validate Property and Input Values”
“Define Property Attributes”

 processTunedPropertiesImpl

5-137

matlab.system.mixin.CustomIcon class
Package: matlab.system.mixin

Custom icon mixin class

Note The matlab.system.mixin.CustomIcon mixin will be removed in a future release. You no
longer need to inherit from this mixin in your System object. The associated getIcon method has
been moved to the matlab.System class.

Description
matlab.system.mixin.CustomIcon is a class that specifies the getIcon method. This method
customizes the name of the icon used for the System object implemented through a MATLAB System
block.

To use this method, you must subclass from this class in addition to the matlab.System base class.
Type the following syntax as the first line of your class definition file, where ObjectName is the name
of your object:

classdef ObjectName < matlab.system &...
 matlab.system.mixin.CustomIcon

The matlab.system.mixin.CustomIcon class is a handle class.

Version History
Introduced in R2017a

R2020a: matlab.system.mixin.CustomIcon will be removed
Not recommended starting in R2020a

The matlab.system.mixin.CustomIcon mixin will be removed in a future release. You no longer need to
inherit from this mixin in your System object. The associated method has been moved to the
matlab.System class.

Remove matlab.system.mixin.CustomIcon from the classdef line of your System object.

See Also
matlab.System | matlab.system.display.Icon

Topics
“Add Text to Block Icon”

5 Classes

5-138

getIconImpl
Name to display as block icon

Syntax
icon = getIconImpl(obj)

Description
icon = getIconImpl(obj) specifies the text or image to display on the block icon of the MATLAB
System block. If you do not specify the getIconImpl method, the block displays the class name of
the System object as the block icon. For example, if you specify pkg.MyObject in the MATLAB
System block, the default icon is labeled MyObject

Run-Time Details

getIconImpl is called by the MATLAB System block during Simulink model compilation.

Method Authoring Tips

You must set Access = protected for this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
getIconImpl method does not use the object, you can replace this input with ~.

Output Arguments
icon — Block icon
character vector | cell array of character vectors | string | string array |
matlab.system.display.Icon object

The text or image to display as the block icon. Each cell is displayed as a separate line.

Examples

Add System Block Icon Name

Specify in your class definition file the name of the block icon as 'Enhanced Counter' using two
lines.

methods (Access = protected)
 function icon = getIconImpl(~)
 icon = {'Enhanced','Counter'};

 getIconImpl

5-139

 end
end

Add Image to MATLAB System Block

Define an image in your class definition file.

 methods(Access = protected)
 function icon = getIconImpl(~)
 % Define icon for System block
 icon = matlab.system.display.Icon('my_icon.png');
 end
 end

The image now appears on the System block icon.

Version History
Introduced in R2017a

See Also
matlab.system.mixin.CustomIcon | matlab.system.display.Icon

Topics
“Customize System Block Appearance”
“Customize MATLAB System Block Appearance”

5 Classes

5-140

matlab.system.display.Header class
Package: matlab.system.display

Header for System objects properties

Syntax
matlab.system.display.Header(N1,V1,...Nn,Vn)
matlab.system.display.Header(Obj,...)

Description
matlab.system.display.Header(N1,V1,...Nn,Vn) specifies a header for the System object,
with the header properties defined in Name-Value (N,V) pairs. You use
matlab.system.display.Header within the getHeaderImpl method. The available header
properties are

• Title — Header title. The default value is an empty character vector.
• Text — Header description. The default value is an empty character vector.
• ShowSourceLink — Show link to source code for the object.

matlab.system.display.Header(Obj,...) creates a header for the specified System object
(Obj) and sets the following property values:

• Title — Set to the Obj class name.
• Text — Set to help summary for Obj.
• ShowSourceLink — Set to true if Obj is MATLAB code. In this case, the Source Code link is

displayed. If Obj is P-coded and the source code is not available, set this property to false.

You can use mfilename('class') from within this method to get the name of the System object. If
you set any Name-Value pairs, those property values override the default settings.

Examples

Define System Block Header

Define a header in your class definition file.

 methods (Static, Access = protected)
 function header = getHeaderImpl
 header = matlab.system.display.Header(mfilename('class'), ...
 'Title','AlternativeTitle',...
 'Text','An alternative class description');
 end
 end

The resulting output appears as follows. In this case, Source code appears because the
ShowSourceLink property was set to true.

 matlab.system.display.Header class

5-141

See Also
getHeaderImpl | matlab.system.display.Section |
matlab.system.display.SectionGroup

Topics
“Classes”
“Add Header Description”

5 Classes

5-142

matlab.system.display.Section class
Package: matlab.system.display

Property group section for System objects

Syntax
matlab.system.display.Section(N1,V1,...Nn,Vn)
matlab.system.display.Section(Obj,...)

Description
matlab.system.display.Section(N1,V1,...Nn,Vn) creates a property group section for
displaying System object properties, which you define using property Name-Value pairs (N,V). You use
matlab.system.display.Section to define property groups using the
getPropertyGroupsImpl method. The available Section properties are:

• Title — Section title. The default value is an empty character vector.
• TitleSource — Source of section title. Valid values are 'Property' and 'Auto'. The default

value is 'Property', which uses the character vector from the Title property. If the Obj name
is given, the default value is Auto, which uses the Obj name.

• Description — Section description. The default value is an empty character vector.
• PropertyList — Section property list as a cell array of property names. The default value is an

empty array. If the Obj name is given, the default value is all eligible display properties.
• Type — Container type. For example, tab, group, panel, and collapsible panel.
• Row— Specify the row in which the containers need to be placed (current/new). You can specify

the row using the enum class matlab.system.display.internal.Row.
• AlignPrompts— Specify a boolean value to control align prompts within the containers.

Note Certain properties are not eligible for display either in a dialog box or in the System object
summary on the command-line. Property types that cannot be displayed are: hidden, abstract, private
or protected access, discrete state, and continuous state. Dependent properties do not display in a
dialog box, but do display in the command-line summary.

matlab.system.display.Section(Obj,...) creates a property group section for the specified
System object (Obj) and sets the following property values:

• TitleSource — Set to 'Auto', which uses the Obj name.
• PropertyList — Set to all publicly-available properties in the Obj.

You can use mfilename('class') from within this method to get the name of the System object. If
you set any Name-Value pairs, those property values override the default settings.

Examples

 matlab.system.display.Section class

5-143

Define Property Groups

Define two property groups in your class definition file by specifying their titles and property lists.

 classdef MultipleGroupsWithSection < matlab.System
 % MultipleGroupsWithTabs Customize block dialog with multiple tabs and parameter groups.

 % Public, tunable properties
 properties
 %StartValue Start Value
 StartValue = 0

 %EndValue End Value
 EndValue = 10

 Threshold = 1
 end
 % Public Nontunable
 properties(Nontunable)
 %UseThreshold Use threshold
 UseThreshold (1,1) logical = true
 end

 methods (Static, Access = protected)
 function groups = getPropertyGroupsImpl
 valueGroup = matlab.system.display.Section(...
 'Title','Value parameters',...
 'PropertyList',{'StartValue','EndValue'},...
 'SectionType', matlab.system.display.SectionType.tab);

 thresholdGroup = matlab.system.display.Section(...
 'Title','Threshold parameters',...
 'PropertyList',{'Threshold','UseThreshold'},...
 'SectionType', matlab.system.display.SectionType.tab);
 groups = [valueGroup,thresholdGroup];
 end
 end
end

When you specify the System object in the MATLAB System block, the resulting dialog box appears as
follows.

5 Classes

5-144

See Also
matlab.system.display.Header | matlab.system.display.SectionGroup |
getPropertyGroupsImpl

Topics
“Customize System Block Dialog Box Using System object”

 matlab.system.display.Section class

5-145

matlab.system.display.Action class
Package: matlab.system.display

Custom button

Syntax
matlab.system.display.Action(action)
matlab.system.display.Action(action,Name,Value)

Description
matlab.system.display.Action(action) specifies a button to display on the MATLAB System
block. This button executes a function by launching a System object method or invoking any MATLAB
function or code.

A typical button function launches a figure. The launched figure is decoupled from the block dialog
box. Changes to the block are not synced to the displayed figure.

You define matlab.system.display.Action within the getPropertyGroupsImpl method in
your class definition file. You can define multiple buttons using separate instances of
matlab.system.display.Action in your class definition file.

matlab.system.display.Action(action,Name,Value) includes Name,Value pair arguments,
which you can use to specify any properties.

Input Arguments
action

Action taken when the user presses the specified button on the MATLAB System block dialog. The
action is defined as a function handle or as a MATLAB command. If you define the action as a function
handle, the function definition must define two inputs. These inputs are a
matlab.system.display.ActionData object and a System object instance, which can be used to
invoke a method.

A matlab.system.display.ActionData object is the callback object for a display action. You use
the UserData property of matlab.system.display.ActionData to store persistent data, such as
a figure handle.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

5 Classes

5-146

Properties
You specify these properties as part of the input using Name,Value pair arguments. Optionally, you
can define them using object.property syntax.

• ActionCalledFcn — Action to take when the button is pressed. You cannot specify this property
using a Name-Value pair argument.

• Label — Text to display on the button. The default value is an empty character vector.
• Description — Text for the button tooltip. The default value is an empty character vector.
• Placement — Character vector indicating where on a separate row in the property group to place

the button. Valid values are 'first', 'last', or a property name. If you specify a property
name, the button is placed above that property. The default value is 'last'.

• Alignment — Character vector indicating how to align the button. Valid values are 'left' and
'right'. The default value is 'left'.

Examples

Define Button on MATLAB System Block

Define a Visualize button and its associated function to open a figure that plots a ramp using the
parameter values in the block dialog.

methods(Static,Access = protected)
 function group = getPropertyGroupsImpl
 group = matlab.system.display.Section(mfilename('class'));
 group.Actions = matlab.system.display.Action(@(~,obj)...
 visualize(obj),'Label','Visualize');
 end
end

methods
 function obj = PlotRamp(varargin)
 setProperties(obj,nargin,varargin{:});
 end

 function visualize(obj)
 figure;
 d = 1:obj.RampLimit;
 plot(d);
 end
end

When you specify the System object in the MATLAB System block, the resulting block dialog box
appears as follows.

 matlab.system.display.Action class

5-147

To open the same figure, rather than multiple figures, when the button is pressed more than once,
use this code instead.

methods(Static,Access = protected)
 function group = getPropertyGroupsImpl
 group = matlab.system.display.Section(mfilename('class'));
 group.Actions = matlab.system.display.Action(@(actionData,obj)...
 visualize(obj,actionData),'Label','Visualize');
 end
end

methods
 function obj = ActionDemo(varargin)
 setProperties(obj,nargin,varargin{:});
 end

 function visualize(obj,actionData)
 f = actionData.UserData;
 if isempty(f) || ~ishandle(f)
 f = figure;
 actionData.UserData = f;
 else
 figure(f); % Make figure current
 end

 d = 1:obj.RampLimit;
 plot(d);
 end
end

See Also
getPropertyGroupsImpl | matlab.system.display.Section |
matlab.system.display.SectionGroup

Topics
“Classes”

5 Classes

5-148

Class Attributes
Property Attributes
“Add Custom Button to MATLAB System Block”

 matlab.system.display.Action class

5-149

matlab.system.display.SectionGroup class
Package: matlab.system.display

Section group for System objects

Syntax
matlab.system.display.SectionGroup(N1,V1,...Nn,Vn)
matlab.system.display.SectionGroup(Obj,...)

Description
matlab.system.display.SectionGroup(N1,V1,...Nn,Vn) creates a group for displaying
System object properties and display sections created with matlab.system.display.Section.
You define such sections or properties using property Name-Value pairs (N,V). A section group can
contain both properties and sections. You use matlab.system.display.SectionGroup to define
section groups using the getPropertyGroupsImpl method. Section groups display as separate tabs
in the MATLAB System block. The available Section properties are:

• Title — Group title. The default value is an empty character vector.
• TitleSource — Source of group title. Valid values are 'Property' and 'Auto'. The default

value is 'Property', which uses the character vector from the Title property. If the Obj name
is given, the default value is Auto, which uses the Obj name. In the System object property
display at the MATLAB command line, you can omit the default "Main" title for the first group of
properties by setting TitleSource to 'Auto'.

• Description — Group or tab description that appears above any properties or panels. The
default value is an empty character vector.

• PropertyList — Group or tab property list as a cell array of property names. The default value
is an empty array. If the Obj name is given, the default value is all eligible display properties.

• Sections — Group sections as an array of section objects. If the Obj name is given, the default
value is the default section for the Obj.

• Type — Container type. For example, tab, group, panel, and collapsible panel.
• Row— Specify the row in which the containers need to be placed (current/new). You can specify

the row using the enum class matlab.system.display.internal.Row.
• AlignPrompts— Specify a boolean value to control align prompts within the containers.

matlab.system.display.SectionGroup(Obj,...) creates a section group for the specified
System object (Obj) and sets the following property values:

• TitleSource — Set to 'Auto'.
• Sections — Set to matlab.system.display.Section object for Obj.

You can use mfilename('class') from within this method to get the name of the System object. If
you set any Name-Value pairs, those property values override the default settings.

Examples

5 Classes

5-150

Define Block Dialog Containers

Define in your class definition file two tabs, each containing specific properties. For this example, you
use the matlab.system.display.SectionGroup, matlab.system.display.Section, and
getPropertyGroupsImpl methods.

classdef MultipleGroupsWithSectionGroup < matlab.System
 % MultipleGroupsWithTabs Customize block dialog with multiple tabs and parameter groups.

 % Public, tunable properties
 properties
 %StartValue Start Value
 StartValue = 0

 %EndValue End Value
 EndValue = 10

 Threshold = 1

 %BlockLimit Limit
 BlockLimit = 55
 end
 % Public Nontunable
 properties(Nontunable)
 %IC1 First initial condition
 IC1 = 0

 %IC2 Second initial condition
 IC2 = 10

 %IC3 Third initial condition
 IC3 = 100

 %UseThreshold Use threshold
 UseThreshold (1,1) logical = true
 end

 methods (Static, Access = protected)
 function groups = getPropertyGroupsImpl
 % Section to always display above any tabs.
 alwaysSection = matlab.system.display.Section(...
 'Title','','PropertyList',{'BlockLimit'});

 % Group with no sections
 initTab = matlab.system.display.SectionGroup(...
 'Title','Initial conditions', ...
 'PropertyList',{'IC1','IC2','IC3'},...
 'GroupType', matlab.system.display.SectionType.group);

 % Section for the value parameters
 valueSection = matlab.system.display.Section(...
 'Title','Value parameters',...
 'PropertyList',{'StartValue','EndValue'},...
 'SectionType', matlab.system.display.SectionType.collapsiblepanel);

 % Section for the threshold parameters
 thresholdSection = matlab.system.display.Section(...
 'Title','Threshold parameters',...

 matlab.system.display.SectionGroup class

5-151

 'PropertyList',{'Threshold','UseThreshold'},...
 'SectionType', matlab.system.display.SectionType.collapsiblepanel);

 % Group with two sections: the valueSection and thresholdSection sections
 mainTab = matlab.system.display.SectionGroup(...
 'Title','Main', ...
 'Sections',[valueSection,thresholdSection],...
 'GroupType', matlab.system.display.SectionType.group);

 % Return an array with the group-less section, the group with
 % two sections, and the group with no sections.
 groups = [alwaysSection,mainTab,initTab];
 end
 end
end

The resulting dialog appears as follows when you add the object to Simulink with the MATLAB
System block.

5 Classes

5-152

See Also
matlab.system.display.Header | matlab.system.display.Section |
getPropertyGroupsImpl

Topics
“Customize System Block Dialog Box Using System object”

 matlab.system.display.SectionGroup class

5-153

matlab.system.display.Icon class
Package: matlab.system.display

Custom icon image

Syntax
icon = matlab.system.display.Icon(imageFile)

Description
icon = matlab.system.display.Icon(imageFile) sets the imageFile image as the MATLAB
System block icon. To set the icon image, use the icon output argument from getIconImpl.

Input Arguments
imageFile — Image file
character array

Image file to display on the block icon, specified as a character array. If the image is not on the path,
use the full path to your image file.

The image file must be in a file format supported for block masks. See “Draw Static Icon”.
Example: "image.png"

Examples

Add Image to MATLAB System Block

Define an image in your class definition file.

 methods(Access = protected)
 function icon = getIconImpl(~)
 % Define icon for MATLAB System block
 icon = matlab.system.display.Icon("my_icon.png");
 end
 end

The image now appears on the MATLAB System block icon.

5 Classes

5-154

Version History
Introduced in R2017a

See Also
getIconImpl | matlab.system.mixin.CustomIcon

Topics
Class Attributes
Property Attributes
“Customize System Block Appearance”

 matlab.system.display.Icon class

5-155

matlab.system.mixin.Propagates class
Package: matlab.system.mixin

Signal characteristics propagation mixin class

Note The matlab.system.mixin.Propagates mixin will be removed in a future release. You no
longer need to inherit from this mixin in your System object. The associated propagation methods
have been moved to the matlab.System class.

Description
matlab.system.mixin.Propagates specifies the output size, data type, and complexity of a
System object. Use this mixin class and its methods when you will include your System object in
Simulink via the MATLAB System block. This mixin is called by the MATLAB System block during
Simulink model compilation.

Note If your System object has exactly one input and one output and no discrete property states, or
if you do not need bus support, you do not have to implement any of these methods. The
matlab.system.mixin.Propagates provides default values in these cases.

Implement the methods of this class when Simulink cannot infer the output specifications directly
from the inputs or when you want bus support. If you do not include this mixin, Simulink cannot
propagate the output or bus data type, an error occurs.

To use this mixin, subclass from this matlab.system.mixin.Propagates in addition to
subclassing from the matlab.System base class. Type the following syntax as the first line of your
class definition file. ObjectName is the name of your System object.

classdef ObjectName < matlab.System &...
 matlab.system.mixin.Propagates

The matlab.system.mixin.Propagates class is a handle class.

Version History
Introduced in R2014a

R2020a: matlab.system.mixin.Propagates will be removed
Not recommended starting in R2020a

The matlab.system.mixin.Propagates mixin will be removed in a future release. You no longer
need to inherit from this mixin in your System object. The associated propagation methods have been
moved to the matlab.System class.

Remove matlab.system.mixin.Propagates from the classdef line of your System object.

5 Classes

5-156

See Also
matlab.System

Topics
“Set Output Data Type”
“Set Output Size”
“Set Output Complexity”
“Set Fixed- or Variable-Size Output”
“Set Discrete State Output Specification”

 matlab.system.mixin.Propagates class

5-157

getDiscreteStateSpecificationImpl
Discrete state size, data type, and complexity

Syntax
[size,dataType,complexity] = getDiscreteStateSpecificationImpl(obj,
propertyName)

Description
[size,dataType,complexity] = getDiscreteStateSpecificationImpl(obj,
propertyName) returns the size, data type, and complexity of the discrete state property. This
property must be a discrete state property. You must define this method if your System object has
discrete state properties and is used in the MATLAB System block.

Run-Time Details

getDiscreteStateSpecificationImpl is called by the MATLAB System block during Simulink
model compilation.

Method Authoring Tips

• You must set Access = protected for this method.
• You cannot modify any properties in this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
getDiscreteStateSpecificationImpl method does not use the object, you can replace this
input with ~.

propertyName — Discrete state property name
property name

Name of discrete state property of the System object

Output Arguments
size — Property size
[1 1] (default) | numeric vector

Vector containing the length of each dimension of the property.

dataType — Property data type
double (default) | character vector

5 Classes

5-158

Data type of the property. For built-in data types, dataType is a character vector. For fixed-point data
types, dataType is a numeric type object.

complexity — Complexity of the property
false (default) | true

Complexity of the property as a scalar, logical value:

• true — complex
• false — real

Examples

Specify Discrete State Property Size, Data Type, and Complexity

Specify in your class definition file the size, data type, and complexity of a discrete state property.

methods (Access = protected)
 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)
 sz = [1 1];
 dt = "double";
 cp = false;
 end
end

Version History
Introduced in R2013b

See Also
Topics
“Set Discrete State Output Specification”

 getDiscreteStateSpecificationImpl

5-159

getOutputDataTypeImpl
Data types of output ports

Syntax
[dt_1,dt_2,...,dt_n] = getOutputDataTypeImpl(obj)

Description
[dt_1,dt_2,...,dt_n] = getOutputDataTypeImpl(obj) returns the data type of each output
port as a character vector for built-in data types or as a numeric object for fixed-point data types. The
number of outputs must match the value returned from the getNumOutputsImpl method or the
number of output arguments listed in the stepImpl method.

For System objects with one input and one output and where you want the input and output data
types to be the same, you do not need to implement this method. In this case,
getOutputDataTypeImpl assumes the input and output data types are the same and returns the
data type of the input.

If your System object has more than one input or output, and you use propagation, you must set the
output data types in the getOutputDataTypeImpl method. For Simulink, if the input and output
data types are different, you might have to cast the output value to the data type of the appropriate
dt_n output argument. You specify this casting in the stepImpl method. For bus output, you must
specify the name of the output bus in getOutputDataTypeImpl.

If needed to determine the output data type, you can use propagatedInputDataType within the
getOutputDataTypeImpl method to obtain the input type.

Run-Time Details

getOutputDataTypeImpl is called by the MATLAB System block.

Method Authoring Tips

• You must set Access = protected for this method.
• You cannot modify any properties in this method.
• If you are debugging your code and examine the data types before Simulink completes

propagation, you might see outputs with empty, [], data types. This occurs because Simulink has
not completed setting the output data types.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
getOutputDataTypeImpl method does not use the object, you can replace this input with ~.

5 Classes

5-160

Output Arguments
dt_1,dt_2,... — Property data type
character vector | numeric type object

Data type of the property. For built-in data types, dt is a character vector. For fixed-point data types,
dt is a numeric type object.

For outputs with enumeration data type defined in the base workspace, dt is a character vector
specifying the name of the enumeration class. For outputs with enumeration data type defined as
Simulink.data.dictionary.EnumTypeDefinition object in the design data section of a data
dictionary, dt is a character vector specifying the name of the object.

Examples

Specify Output Data Type

Specify, in your class definition file how to control the output data type from a MATLAB System block.
This example shows how to use the getOutputDataTypeImpl method to change the output data
type from single to double, or propagate the input as a double. It also shows how to cast the data type
to change the output data type in the stepImpl method.

classdef DataTypeChange < matlab.System

 properties(Nontunable)
 Quantize = false
 end

 methods(Access = protected)
 function y = stepImpl(obj,u)
 if obj.Quantize == true
 % Cast for output data type to differ from input.
 y = single(u);
 else
 % Propagate output data type.
 y = u;
 end
 end

 function out = getOutputDataTypeImpl(obj)
 if obj.Quantize == true
 out = "single";
 else
 out = propagatedInputDataType(obj,1);
 end
 end
 end
end

Specify Bus Output

Specify, in your class definition file, that the System object data type is a bus. You must also include a
property to specify the bus name.

 getOutputDataTypeImpl

5-161

properties(Nontunable)
 OutputBusName = "myBus";
end

methods (Access = protected)
 function out = getOutputDataTypeImpl(obj)
 out = obj.OutputBusName;
 end
end

The data type of the output bus must be defined upfront. The propagatedInputDataType method
does not support propagation of bus data types to the output data type.

Version History
Introduced in R2013b

See Also
propagatedInputDataType

Topics
“Set Output Data Type”

5 Classes

5-162

getOutputSizeImpl
Sizes of output ports

Syntax
[sz_1,sz_2,...,sz_n] = getOutputSizeImpl(obj)

Description
[sz_1,sz_2,...,sz_n] = getOutputSizeImpl(obj) returns the size of each output port. The
number of outputs must match the value returned from the getNumOutputs method or the number
of output arguments listed in the stepImpl method.

If your System object has only one input and one output and you want the input and output sizes to
be the same, you do not need to implement this method. In this case getOutputSizeImpl assumes
that the input and output sizes are the same and returns the size of the input. For variable-size inputs
in MATLAB, the size varies each time you run your object. For variable-size inputs in Simulink, the
output size is the maximum input size.

You must implement the getOutputSizeImpl method to define the output size, if:

• Your System object has more than one input or output
• You need the output and input sizes to be different.

If the output size differs from the input size, you must also use the propagatedInputSize
method

By default, in Simulink the MATLAB System block recognizes 1-D input signals and propagates 1-D
output signal as 2-D. Use supports1DVectorsImpl method to enable the 1-D inputs and outputs to
be recognized and propagated as 1-D signals, respectively.

Run-Time Details

During Simulink model compilation and propagation, the MATLAB System block calls the
getOutputSizeImpl method to determine the output size.

All inputs default to variable-size inputs For these inputs, the output size is the maximum input size.

Method Authoring Tips

• You must set Access = protected for this method.
• In this method, you cannot modify any properties.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
getOutputSizeImpl method does not use the object, you can replace this input with ~.

 getOutputSizeImpl

5-163

Output Arguments
sz_1,sz_2,... — Output size
numeric vector

Vector containing the size of each output port.

Examples

Specify Output Size

Specify in your class definition file the size of a System object output.

methods (Access = protected)
 function sz_1 = getOutputSizeImpl(obj)
 sz_1 = [1 1];
 end
end

Specify Multiple Output Ports

Specify in your class definition file the sizes of multiple System object outputs.

methods (Access = protected)
 function [sz_1,sz_2] = getOutputSizeImpl(obj)
 sz_1 = propagatedInputSize(obj,1);
 sz_2 = [1 1];
 end
 end

Specify Output When Using Propagated Input Size

Specify in your class definition file the size of System object output when it depends on the
propagated input size.

methods (Access = protected)
 function varargout = getOutputSizeImpl(obj)
 varargout{1} = propagatedInputSize(obj,1);
 if obj.HasSecondOutput
 varargout{2} = [1 1];
 end
 end
end

Version History
Introduced in R2013b

See Also
propagatedInputSize

5 Classes

5-164

Topics
“Set Output Size”

 getOutputSizeImpl

5-165

isOutputComplexImpl
Complexity of output ports

Syntax
[cp_1,cp_2,...,cp_n] = isOutputComplexImpl(obj)

Description
[cp_1,cp_2,...,cp_n] = isOutputComplexImpl(obj) returns whether each output port has
complex data. The number of outputs must match the value returned from the getNumOutputs
method or the number of output arguments listed in the stepImpl method.

For System objects with one input and one output and where you want the input and output
complexities to be the same, you do not need to implement this method. In this case
isOutputComplexImpl assumes the input and output complexities are the same and returns the
complexity of the input.

If your System object has more than one input or output or you need the output and input
complexities to be different, you must implement the isOutputComplexImpl method to define the
output complexity. You also must use the propagatedInputComplexity method if the output
complexity differs from the input complexity.

Run-Time Details

During Simulink model compilation and propagation, the MATLAB System block calls the
isOutputComplex method, which then calls the isOutputComplexImpl method to determine the
output complexity.

Method Authoring Tips

• You must set Access = protected for this method.
• You cannot modify any properties in this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
isOutputComplexImpl method does not use the object, you can replace this input with ~.

Output Arguments
cp_1,cp_2,... — Complexity flag
true | false

Logical, scalar value indicating whether the specific output port is complex (true) or real (false).

5 Classes

5-166

Examples

Specify Output as Real-Valued

Specify in your class definition file that the output from a System object is a real value.

methods (Access = protected)
 function c1 = isOutputComplexImpl(obj)
 c1 = false;
 end
end

Version History
Introduced in R2013b

See Also
propagatedInputComplexity

Topics
“Set Output Complexity”

 isOutputComplexImpl

5-167

isOutputFixedSizeImpl
Fixed- or variable-size output ports

Syntax
[flag_1,flag_2,...flag_n] = isOutputFixedSizeImpl(obj)

Description
[flag_1,flag_2,...flag_n] = isOutputFixedSizeImpl(obj) returns whether each output
port is fixed size. The number of outputs must match the value returned from the getNumOutputs
method, which is the number of output arguments listed in the stepImpl method.

For System objects with one input and one output and where you want the input and output fixed
sizes to be the same, you do not need to implement this method. In this case
isOutputFixedSizeImpl assumes the input and output fixed sizes are the same and returns the
fixed size of the input.

If your System object has more than one input or output or you need the output and input fixed sizes
to be different, you must implement the isOutputFixedSizeImpl method to define the output fixed
size. You also must use the propagatedInputFixedSize method if the output fixed size status
differs from the input fixed size status.

Run-Time Details

During Simulink model compilation and propagation, the MATLAB System block calls the
isOutputFixedSize method, which then calls the isOutputFixedSizeImpl method to determine
the output fixed size.

All inputs default to variable-size inputs For these inputs, the output size is the maximum input size.

Method Authoring Tips

• You must set Access = protected for this method.
• You cannot modify any properties in this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
isOutputFixedSizeImpl method does not use the object, you can replace this input with ~.

Output Arguments
flag_1,flag2,... — Fixed size flag
true | false

5 Classes

5-168

Logical, scalar value indicating whether the specific output port is fixed size (true) or variable size
(false).

Examples

Specify Output as Fixed Size

Specify in your class definition file that the output from a System object is of fixed size.

methods (Access = protected)
 function c1 = isOutputFixedSizeImpl(obj)
 c1 = true;
 end
end

Version History
Introduced in R2013b

See Also
propagatedInputFixedSize

Topics
“Set Fixed- or Variable-Size Output”

 isOutputFixedSizeImpl

5-169

propagatedInputComplexity
Complexity of input during Simulink propagation

Syntax
flag = propagatedInputComplexity(obj,index)

Description
flag = propagatedInputComplexity(obj,index) returns true or false to indicate whether
the input argument for the indicated System object is complex. index specifies the input for which to
return the complexity flag.

You can use propagatedInputComplexity only from within the isOutputComplexImpl method
in your class definition file. Use isOutputComplexImpl when:

• Your System object has more than one input or output.
• The input complexity determines the output complexity.
• The output complexity must differ from the input complexity.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
propagatedInputComplexity method does not use the object, you can replace this input with ~.

index — Input index
positive integer

Index of the specified input. Do not count the obj in the index. The first input is always obj.

Output Arguments
flag — Complexity flag
true | false

Complexity of the specified input, returned as true or false

Examples

Match Input and Output Complexity

Get the complexity of the second input when you run the object and set the output to match it.
Assume that the first input has no impact on the output complexity.

5 Classes

5-170

methods (Access = protected)
 function outcomplx = isOutputComplexImpl(obj)
 outcomplx = propagatedInputComplexity(obj,2);
 end
end

Version History
Introduced in R2014a

See Also
isOutputComplexImpl

Topics
“Set Output Complexity”

 propagatedInputComplexity

5-171

propagatedInputDataType
Data type of input during Simulink propagation

Syntax
dt = propagatedInputDataType(obj,index)

Description
dt = propagatedInputDataType(obj,index) returns the data type of an input argument for a
System object. index specifies the input for which to return the data type.

You can use propagatedInputDataType only from within getOutputDataTypeImpl. Use
getOutputDataTypeImpl when:

• Your System object has more than one input or output.
• The input data type status determines the output data type.
• The output data type must differ from the input data type.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
propagatedInputDataType method does not use the object, you can replace this input with ~.

index — Input index
positive integer

Index of the specified input. Do not count the obj in the index. The first input is always obj.

Output Arguments
dt — Input data type
character vector | numerictype object

Data type of the specified input, returned as a character vector for floating-point input or as a
numerictype for fixed-point input.

Examples

Match Input and Output Data Type

Get the data type of the second input. If the second input data type is double, then the output data
type is int32. For all other cases, the output data type matches the second input data type. Assume
that the first input has no impact on the output.

5 Classes

5-172

methods (Access = protected)
 function dt = getOutputDataTypeImpl(obj)
 if strcmpi(propagatedInputDataType(obj,2),'double')
 dt = 'int32';
 else
 dt = propagatedInputDataType(obj,2);
 end
 end
end

Version History
Introduced in R2014a

See Also
getOutputDataTypeImpl

Topics
“Set Output Data Type”
“Data Type Propagation”

 propagatedInputDataType

5-173

propagatedInputFixedSize
Fixed-size status of input during Simulink propagation

Syntax
flag = propagatedInputFixedSize(obj,index)

Description
flag = propagatedInputFixedSize(obj,index) returns true or false to indicate whether
an input argument of a System object is fixed size. index specifies the input for which to return the
fixed-size flag.

You can use propagatedInputFixedSize only from within isOutputFixedSizeImpl. Use
isOutputFixedSizeImpl when:

• Your System object has more than one input or output.
• The input fixed-size status determines the output fixed-size status.
• The output fixed-size status must differ from the input fixed-size status.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
propagatedInputFixedSize method does not use the object, you can replace this input with ~.

index — Input index
positive integer

Index of the specified input. Do not count the obj in the index. The first input is always obj.

Output Arguments
flag — Fixed size flag
true | false

Fixed-size status of the specified input, returned as true or false.

Examples

Match Fixed-Size Status of Input and Output

Get the fixed-size status of the third input and set the output to match it. Assume that the first and
second inputs have no impact on the output.

5 Classes

5-174

methods (Access = protected)
 function outtype = isOutputFixedSizeImpl(obj)
 outtype = propagatedInputFixedSize(obj,3)
 end
end

Version History
Introduced in R2014a

See Also
isOutputFixedSizeImpl

Topics
“Set Fixed- or Variable-Size Output”

 propagatedInputFixedSize

5-175

propagatedInputSize
Size of input during Simulink propagation

Syntax
size = propagatedInputSize(obj,index)

Description
size = propagatedInputSize(obj,index) returns, as a vector, the input size of the specified
System object. The index specifies the input for which to return the size information. (Do not count
the obj in the index. The first input is always obj.)

You can use propagatedInputSize only from within the getOutputSizeImpl method in your
class definition file. Use getOutputSizeImpl when:

• Your System object has more than one input or output.
• The input size determines the output size.
• The output size must differ from the input size.

Note For variable-size inputs, the propagated input size from propagatedInputSize differs
depending on the environment.

• MATLAB — propagatedInputSize returns the size of the inputs used when you run the object
for the first time.

• Simulink — propagatedInputSize returns the upper bound of the input sizes.

By default, in Simulink the MATLAB System block recognizes 1-D input signals and propagates 1-D
output signal as 2-D. Use supports1DVectorsImpl method to enable the 1-D inputs and outputs to
be recognized and propagated as 1-D signals, respectively.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
propagatedInputSize method does not use the object, you can replace this input with ~.

index — Input index
integer

Index of the specified input

5 Classes

5-176

Output Arguments
size — Input size
numeric vector

Size of the specified input, returned as a vector

Examples

Match Size of Input and Output

Get the size of the second input. If the first dimension of the second input has a size greater than 1,
then set the output size to a 1 x 2 vector. For all other cases, the output is a 2 x 1 matrix. Assume that
the first input has no impact on the output size.

methods (Access = protected)
 function outsize = getOutputSizeImpl(obj)
 size = propagatedInputSize(obj,2);
 if size(1) == 1
 outsize = [1,2];
 else
 outsize = [2,1];
 end
 end
end

Version History
Introduced in R2014a

See Also
getOutputSizeImpl

Topics
“Set Output Size”

 propagatedInputSize

5-177

matlab.system.mixin.Nondirect class
Package: matlab.system.mixin

Nondirect feedthrough mixin class

Note The matlab.system.mixin.Nondirect mixin will be removed in a future release. You no
longer need to inherit from this mixin in your System object. The associated methods have been
moved to the matlab.System class.

Description
matlab.system.mixin.Nondirect is a class that uses the output and update methods to
process nondirect feedthrough data through a System object.

For System objects that use direct feedthrough, the object’s input is needed to generate the output at
that time. For these direct feedthrough objects, running the System object calculates the output and
updates the state values. For nondirect feedthrough, however, the object’s output depends only on
the internal states at that time. The inputs are used to update the object states. For these objects,
calculating the output with outputImpl is separated from updating the state values with
updateImpl. If you use the matlab.system.mixin.Nondirect mixin and include the stepImpl
method in your class definition file, an error occurs. In this case, you must include the updateImpl
and outputImpl methods instead.

The following cases describe when System objects in Simulink use direct or nondirect feedthrough.

• System object supports code generation and does not inherit from the Propagates mixin —
Simulink automatically infers the direct feedthrough settings from the System object code.

• System object supports code generation and inherits from the Propagates mixin — Simulink
does not automatically infer the direct feedthrough settings. Instead, it uses the value returned by
the isInputDirectFeedthroughImpl method.

• System object does not support code generation — Default isInputDirectFeedthroughImpl
method returns false, indicating that direct feedthrough is not enabled. To override the default
behavior, implement the isInputDirectFeedthroughImpl method in your class definition file.

Use the Nondirect mixin to allow a System object to be used in a Simulink feedback loop. A delay
object is an example of a nondirect feedthrough object.

To use this mixin, you must subclass from this class in addition to subclassing from the
matlab.System base class. Type the following syntax as the first line of your class definition file,
where ObjectName is the name of your object:

classdef ObjectName < matlab.system & matlab.system.mixin.Nondirect

Version History
Introduced in R2013b

R2020a: matlab.system.mixin.Nondirect will be removed
Not recommended starting in R2020a

5 Classes

5-178

The matlab.system.mixin.Nondirect mixin will be removed in a future release. You no longer
need to inherit from this mixin in your System object. The associated methods have been moved to
the matlab.System class.

Remove matlab.system.mixin.Nondirect from the classdef line of your System object

See Also
matlab.System

Topics
“Use Update and Output for Nondirect Feedthrough”

 matlab.system.mixin.Nondirect class

5-179

isInputDirectFeedthroughImpl
Direct feedthrough status of input

Syntax
[flag1,...,flagN] = isInputDirectFeedthroughImpl(obj)
[flag1,...,flagN] = isInputDirectFeedthroughImpl(obj,input,input2,...)

Description
[flag1,...,flagN] = isInputDirectFeedthroughImpl(obj) specifies whether each input is
a direct feedthrough input. If direct feedthrough is true, the output depends on the input at each
time instant.

[flag1,...,flagN] = isInputDirectFeedthroughImpl(obj,input,input2,...) uses one
or more of the System object input specifications to determine whether inputs have direct
feedthrough.

If you do not include the isInputDirectFeedthroughImpl method in your System object class
definition file, all inputs are assumed to be direct feedthrough.

Code Generation

The following cases describe when System objects in Simulink code generation use direct or
nondirect feedthrough.

System object's
code generation
support

Uses a
propagation
Impl method

Simulink Code Generation Result

Y N Simulink automatically infers the direct feedthrough settings
from the System object code.

Y Y Simulink does not automatically infer the direct feedthrough
settings. Instead, it uses the value returned by the
isInputDirectFeedthroughImpl method.

N — Default isInputDirectFeedthroughImpl method returns
false, indicating that direct feedthrough is not enabled. To
override the default behavior, implement the
isInputDirectFeedthroughImpl method in your class
definition file.

Run-Time Details

isInputDirectFeedthroughImpl is called by the MATLAB System block.

Method Authoring Tips

• You must set Access = protected for this method.
• You cannot modify, implement, or access tunable properties in this method.

5 Classes

5-180

• Do not use the input values of the System object in this method if you intend to use the System
object in Simulink using the MATLAB System block. You can only query the inputs for their
specifications namely data type, complexity and size.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
isInputDirectFeedthroughImpl method does not use the object, you can replace this input with
~.

input1,input2,... — Inputs to the System object
inputs to the System object algorithm

Inputs to the algorithm (stepImpl) of the System object. The inputs list must match the order of
inputs in the stepImpl signature.

Output Arguments
flag1,...,flagN — Output flag for each input to the System object
logical

Logical value, either true or false indicating whether the input is direct feedthrough. The number
of output flags must match the number of inputs to the System object (inputs to stepImpl,
outputImpl, or updateImpl).

Examples

Specify Input as Nondirect Feedthrough

Use isInputDirectFeedthroughImpl in your class definition file for marking all inputs as
nondirect feedthrough.

methods (Access = protected)
 function flag = isInputDirectFeedthroughImpl(~)
 flag = false;
 end
end

Complete Class Definition

classdef intDelaySysObj < matlab.System
 % intDelaySysObj Delay input by specified number of samples.

 properties
 InitialOutput = 0;
 end
 properties (Nontunable)
 NumDelays = 1;
 end
 properties (DiscreteState)

 isInputDirectFeedthroughImpl

5-181

 PreviousInput;
 end

 methods (Access = protected)
 function validatePropertiesImpl(obj)
 if ((numel(obj.NumDelays)>1) || (obj.NumDelays <= 0))
 error('Number of delays must be > 0 scalar value.');
 end
 if (numel(obj.InitialOutput)>1)
 error('Initial Output must be scalar value.');
 end
 end

 function setupImpl(obj)
 obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;
 end

 function resetImpl(obj)
 obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;
 end

 function [y] = outputImpl(obj,~)
 y = obj.PreviousInput(end);
 end
 function updateImpl(obj, u)
 obj.PreviousInput = [u obj.PreviousInput(1:end-1)];
 end
 function flag = isInputDirectFeedthroughImpl(~)
 flag = false;
 end
 end
end

Version History
Introduced in R2013b

See Also
updateImpl | outputImpl

Topics
“Use Update and Output for Nondirect Feedthrough”

5 Classes

5-182

outputImpl
Output calculation from input or internal state of System object

Syntax
[y1,y2,...,yN] = outputImpl(obj,u1,u2,...,uN)

Description
[y1,y2,...,yN] = outputImpl(obj,u1,u2,...,uN) specifies the algorithm to output the
System object states. The output values are calculated from the states and property values. Any
inputs that you set to nondirect feedthrough are ignored during output calculation.

Run-Time Details

outputImpl is called by the internal output method. It is also called before the updateImpl
method. For sink objects, calling updateImpl before outputImpl locks the object. For all other
types of objects, calling updateImpl before outputImpl causes an error.

Method Authoring Tips

• You must set Access = protected for this method.
• If the System object will be used in the Simulink MATLAB System block, you cannot modify any

tunable properties in this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
outputImpl method does not use the object, you can replace this input with ~.

u1,u2,...uN — Inputs to the algorithm
inputs

Inputs from the algorithm. The number of inputs must match the number of inputs returned by the
getNumInputs method. Nondirect feedthrough inputs are ignored during normal execution of the
System object. However, for code generation, you must provide these inputs even if they are empty.

Output Arguments
y1,y2,...yN — Outputs of the algorithm
outputs

Outputs calculated from the specified algorithm. The number of outputs must match the number of
outputs returned by the getNumOutputs method.

 outputImpl

5-183

Examples

Set Up Output that Does Not Depend on Input

Specify in your class definition file that the output does not directly depend on the current input with
the outputImpl method. PreviousInput is a property of the obj.

methods (Access = protected)
 function [y] = outputImpl(obj, ~)
 y = obj.PreviousInput(end);
 end
end

Version History
Introduced in R2013b

See Also
updateImpl | isInputDirectFeedthroughImpl

Topics
“Use Update and Output for Nondirect Feedthrough”

5 Classes

5-184

updateImpl
Update object states based on inputs

Syntax
updateImpl(obj,input1,input2,...)

Description
updateImpl(obj,input1,input2,...) specifies the algorithm to update the System object
states. You implement this method when your algorithm outputs depend only on the object’s internal
state and internal properties.

Run-Time Details

updateImpl is called by the update method and after the outputImpl method.

For sink objects, calling updateImpl before outputImpl locks the object. For all other types of
objects, calling updateImpl before outputImpl causes an error.

Method Authoring Tips

• Do not use this method to update the outputs from the inputs.
• You must set Access = protected for this method.
• If the System object will be used in the Simulink MATLAB System block, you cannot modify any

tunable properties in this method.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
updateImpl method does not use the object, you can replace this input with ~.

input1,input2,... — Inputs to the System object
inputs to the System object

List the inputs to the System object. The order of inputs must match the order of inputs defined in the
stepImpl method.

Examples

Set Up Output that Does Not Depend on Current Input

Update the object with previous inputs. Use updateImpl in your class definition file. This example
saves the u input and shifts the previous inputs.

 updateImpl

5-185

methods (Access = protected)
 function updateImpl(obj,u)
 obj.PreviousInput = [u obj.PreviousInput(1:end-1)];
 end
end

Version History
Introduced in R2013b

See Also
outputImpl | isInputDirectFeedthroughImpl

Topics
“Use Update and Output for Nondirect Feedthrough”

5 Classes

5-186

matlab.system.mixin.SampleTime class
Control sample time for System objects in Simulink

Note The matlab.system.mixin.SampleTime mixin will be removed in a future release. You no
longer need to inherit from this mixin in your System object. The associated sample time methods
have been moved to the matlab.System class.

Description
matlab.system.mixin.SampleTime specifies the sample time specifications for a System object
when it is included in a MATLAB System block. Inherit from this mixin class and use its methods to
control the sample time of your System object in Simulink, via the MATLAB System block.

With this mixin, you can:

• Specify the sample time type
• Specify the sample time
• Customize the sample time with offsets and tick times
• Get the current simulation time

System objects that inherit from this mixin class must also inherit from matlab.System. For
example:

classdef MySystemObject < matlab.System & matlab.system.mixin.SampleTime

The matlab.system.mixin.SampleTime class is a handle class.

Methods

Version History
Introduced in R2017b

R2020a: matlab.system.mixin.SampleTime will be removed
Not recommended starting in R2020a

The matlab.system.mixin.SampleTime mixin will be removed in a future release. You no longer
need to inherit from this mixin in your System object. The associated sample time methods have been
moved to the matlab.System class.

Remove matlab.system.mixin.SampleTime from the classdef line of your System object.

See Also
Classes
matlab.System

 matlab.system.mixin.SampleTime class

5-187

Blocks
MATLAB System

Topics
“Specify Sample Time for MATLAB System Block System Objects”

5 Classes

5-188

getSampleTimeImpl
Specify sample time type, offset time, and sample time

Syntax
sts = getSampleTimeImpl(obj)

Description
sts = getSampleTimeImpl(obj) returns the sample time specification created within the method
body, sts, for the System object obj. Specify the sample time specification within the body of
getSampleTimeImpl by calling createSampleTime. The sample time specification affects the
simulation time when the System object is included in a MATLAB System block.

Run-Time Details

getSampleTimeImpl is called during setup by setupImpl.

Method Authoring Tips

You must set Access = protected for this method.

Default Behavior

If you do not include this method in your System object definition, the sample time is inherited.

Input Arguments
obj — System object
System object

System object handle used to access properties, states, and methods specific to the object. If your
getSampleTimeImpl method does not use the object, you can replace this input with ~.

Output Arguments
sts — Sample time specification object
sample time specification object

An object defining the sample time specification values. You create this object with the
createSampleTime function.

Examples
Specify Inherited Sample Time

Specify that the MATLAB System block should inherit the sample from upstream blocks, except if the
sample time type is controllable.

 getSampleTimeImpl

5-189

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj,'ErrorOnPropagation','Controllable');
end

Specify Discrete Sample Time

Specify a discrete sample time for the MATLAB System block.

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj,'Type','Discrete',...
 'SampleTime',10.2,'OffsetTime',0.5);
end

Version History
Introduced in R2017b

See Also
createSampleTime | getCurrentTime | getSampleTime

Topics
“Specify Sample Time for MATLAB System Block System Objects”

5 Classes

5-190

getSampleTime
Query sample time

Syntax
sts = getSampleTime(obj)

Description
sts = getSampleTime(obj) returns the sample time specification for the System object obj when
the System object is included in a MATLAB System block. You can call getSampleTime in the
stepImpl method to change the algorithm based on the sample time.

Before sample time has propagated throughout the MATLAB System block model, getSampleTime
returns the getSampleTimeImpl sample time specification. If your system object does not override
getSampleTimeImpl, the default Inherited sample time specification is returned.

After sample time has propagated, getSampleTime returns the sample time specification populated
with the actual MATLAB System block sample time type, sample time, and offset time.

Input Arguments
obj — System object
System object

System object included in a MATLAB System block that you want to query.

Output Arguments
sts — Sample time specification object
sample time specification object

The sample time specification for the System object. For more details about sample time specification
objects, see createSampleTime.

Examples
Return Sample Time

This example of stepImpl returns a count value y, the current simulation time ct, and the sample
time st. The sample time is obtained by calling getSampleTime.

function [y,ct,st] = stepImpl(obj,u)
 y = obj.Count + u;
 obj.Count = y;
 ct = getCurrentTime(obj);
 sts = getSampleTime(obj);
 st = sts.SampleTime;
 end

 getSampleTime

5-191

For a complete class definition, see “Specify Sample Time for MATLAB System Block System
Objects”.

Version History
Introduced in R2017b

See Also
createSampleTime | getCurrentTime | getSampleTimeImpl

Topics
“Specify Sample Time for MATLAB System Block System Objects”

5 Classes

5-192

getCurrentTime
Current simulation time in MATLAB System block

Syntax
time = getCurrentTime(obj)

Description
time = getCurrentTime(obj) returns the current simulation time in the MATLAB System block.
Call this method in the stepImpl method of your System object.

Dependencies

If the MATLAB System block is operating in continuous sample time, getCurrentTime may return
non-monotonic times due to solver operation.

Input Arguments
obj — System object
system object

System object included in a MATLAB System block that you want to query.

Output Arguments
time — Current simulation time
double

The current simulation time of the MATLAB System block that contains the System object.

Examples
Return Current Simulation Time

This example of stepImpl returns a count value y and the current simulation time ct. The
simulation time is obtained by calling getCurrentTime.

 function [y,ct] = stepImpl(obj,u)
 y = obj.Count + u;
 obj.Count = y;
 ct = getCurrentTime(obj);
 end

 getCurrentTime

5-193

For a complete class definition, see “Specify Sample Time for MATLAB System Block System
Objects”.

Version History
Introduced in R2017b

See Also
createSampleTime | getSampleTime | getSampleTimeImpl

Topics
“Specify Sample Time for MATLAB System Block System Objects”

5 Classes

5-194

createSampleTime
Create sample time specification object

Syntax
sts = createSampleTime(obj)
sts = createSampleTime(obj,'Type',Type)
sts = createSampleTime(obj,'Type',Type,Name,Value)

Description
sts = createSampleTime(obj) creates a sample time specification object for inherited sample
time for the System object obj. Use this sample time specification object in the
getSampleTimeImpl method of your System object. The sample time specification affects the
simulation time when the System object is included in a MATLAB System block. If you do not include
this method in your System object definition, the sample time is inherited.

sts = createSampleTime(obj,'Type',Type) creates a sample time specification object with
the specified sample time type.

sts = createSampleTime(obj,'Type',Type,Name,Value) creates a sample time specification
object with additional options specified by one or more Name,Value pair arguments. Name is a
property name and Value is the corresponding value. Name must appear inside quotes. You can
specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Dependencies

You can only call createSampleTime from the getSampleTimeImpl method of your System object.

Input Arguments
obj — System object
System object

System object that you want to specify the sample time.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Type','Fixed In Minor Step'

Type — Sample time type
'Inherited' (default) | 'Controllable' | 'Discrete' | 'Fixed In Minor Step'

Type of sample time you want the System object to use in Simulink. For descriptions of the different
types of sample times, see:

 createSampleTime

5-195

• 'Inherited' - “Inherited Sample Time”
• 'Controllable' - “Controllable Sample Time”
• 'Discrete' - “Discrete Sample Time”
• 'Fixed In Minor Step' - “Fixed-in-Minor-Step”

Example: createSampleTime('Type','Fixed In Minor Step')

AllowPropagation — Allow the propagated sample time
'Controllable' | 'Constant' | 'Continuous' | cell array of character vectors | string array

For Inherited sample time only.

Specify one or more sample times you want to allow your object to use. When the sample time type is
set to Inherited and the MATLAB System block receives the specified sample time, the block allows
the sample time to propagate. You can specify multiple sample time types as a cell array or string
array.
Example: createSampleTime('Type','Inherited','AllowPropagation',
{'Controllable','Continuous'})

AlternatePropagation — Alter the propagated sample time
'Controllable' | 'Constant' | 'Continuous' | cell array of character vectors | string array

For Inherited sample time only.

Specify one or more sample times you do not want your object to use. When the sample time type is
set to Inherited and you do not want the MATLAB System block to use the specified inherited
sample time type, an alternative sample time is used by the block instead. You can specify multiple
sample time types. For each sample time type, Simulink substitutes a different sample time type:

• 'Controllable' — The base rate of the controlled sample is propagated instead. Use this option
if your System object depends on having constant time between each sample-time hit.

• 'Constant' — The base rate of the model is propagated instead, either the fastest discrete rate
or fixed in minor step.

• 'Continuous' — The fastest discrete rate is propagated instead.

Example:
createSampleTime('Type','Inherited','AlternatePropagation','Controllable')

ErrorOnPropagation — Error on the propagated sample time
'Controllable' | 'Constant' | 'Continuous' | cell array of character vectors | string array

For Inherited sample time only.

Specify one or more sample times you do not want your object to use. When the sample time type is
set to Inherited and the MATLAB System block receives the specified sample time, Simulink throws
an error.
Example:
createSampleTime('Type','Inherited','ErrorOnPropagation','Controllable')

SampleTime — Time between samples
1 (default) | positive number

For Discrete sample time only.

5 Classes

5-196

Specify the time between sample hits in Simulink.
Example: createSampleTime('Type','Discrete','SampleTime',1)
Data Types: single | double

OffsetTime — Offset from sample time
0 (default) | nonnegative number less than SampleTime

For Discrete sample time only.

Specify the offset time for the sample hit. The offset is a time interval indicating an update delay. The
block is updated later in the sample interval than other blocks operating at the same sample rate.

The offset time must be nonnegative and less than SampleTime.
Example: createSampleTime('Type','Discrete','SampleTime',2,'OffsetTime',1)
Data Types: single | double

TickTime — Time between sample time hits
-1 (default) | positive scalar

Required for Controllable sample time only.

Specify the time between controllable sample time hits. The tick time must be a positive scalar.
Example: createSampleTime('Type','Controllable','TickTime',obj.TickTime)
Data Types: single | double

Output Arguments
sts — Sample time specification object
sample time specification object

The sample time specification object. This object has the following properties:

• Type — Type of sample time
• SampleTime — Time between samples
• OffsetTime — Offset from sample time

Use this object as the return value of getSampleTimeImpl.

Examples
Create Inherited Sample Time Specification Object

Specify that the MATLAB System block inherits the sample from upstream blocks. Inherited sample
time is the default, so no additional arguments are needed.

 createSampleTime

5-197

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj);
end

Create Discrete Sample Time Object

Specify a discrete sample time specification for the MATLAB System block, including offset time and
the sample time.

function sts = getSampleTimeImpl(obj)
 sts = createSampleTime(obj,'Type','Discrete',...
 'SampleTime',10.2,'OffsetTime',0.5);
end

Version History
Introduced in R2017b

See Also
getCurrentTime | getSampleTime | getSampleTimeImpl | setNumTicksUntilNextHit

Topics
“Specify Sample Time for MATLAB System Block System Objects”

5 Classes

5-198

setNumTicksUntilNextHit
Set the number of ticks in Simulink sample time

Syntax
setNumTicksUntilNextHit(obj,ticks)

Description
setNumTicksUntilNextHit(obj,ticks) sets the number of ticks in Simulink sample time to wait
until the next call to stepImpl, or outputImpl/updateImpl.

Dependencies

To use this method, set your System object to controllable sample time with
createSampleTime('Type','Controllable'). Otherwise, your System object gives a
compilation error.

You can only call this method from stepImpl, outputImpl, updateImpl, or resetImpl.

Input Arguments
obj — System object
System object

System object that you want to specify the sample time.

ticks — Number of ticks in Simulink sample time
positive integer scalar

Number of ticks in Simulink sample time to wait until the next call to stepImpl or outputImpl/
updateImpl. Specify this number as a positive integer scalar less than intmax('uint64').

The number of sample time ticks to wait until the next hit is persistent. If you don’t update this
number, Simulink uses the previously set value of number of ticks to wait.

Version History
Introduced in R2018a

See Also
getCurrentTime | getSampleTime | getSampleTimeImpl | createSampleTime

Topics
“Specify Sample Time for MATLAB System Block System Objects”

 setNumTicksUntilNextHit

5-199

ModelAdvisor.Preferences class
Package: ModelAdvisor

Set Model Advisor window preferences by specifying which folders and tabs to display

Description
Use instances of this class to set Model Advisor preferences.

Construction

The constructor ModelAdvisor.Preferences creates an instance of this class with default
property values.

Create an instance modelPreferences of the ModelAdvisor.Preferences class.
modelPreferences = ModelAdvisor.Preferences;

Properties
DeselectByProduct — Deselect the By Product folder
(default) | true

Selection of the By Product folder in the Model Advisor window. The default value is true.
Example: true
Data Types: logical

ShowAccordion — Display advisors
(default) | true

Display of the Code Generation Advisor, Upgrade Advisor, and Performance Advisor in the
Model Advisor window. You can use these advisors to help configure your model for code generation,
upgrade your model for the current release, or improve performance.
Example: true
Data Types: logical

ShowByProduct — Display the By Product folder
(default) | true

Display of the By Product folder in the Model Advisor window. The default value is true.
Example: true
Data Types: logical

ShowByTask — Display the By Task folder
(default) | true

5 Classes

5-200

Display of the By Task folder in the Model Advisor window. The default value is true.
Example: true
Data Types: logical

ShowExclusionsInRpt — Include exclusions in report
(default) | true

Include exclusions in the Model Advisor report. The default value is true.
Example: true
Data Types: logical

ShowExclusionTab — Display the Exclusions tab
(default) | false

Display of the Exclusions tab in the Model Advisor window. The default value is false. When you
click the Exclusions tab, the Model Advisor window displays checks that are excluded form the
Model Advisor analysis.
Example: true
Data Types: logical

ShowSourceTab — Display the Source tab
(default) | false

Display of the Source tab in the Model Advisor window. The default value is false. When you click
the Source tab, the Model Advisor window displays the check Title, TitleID, and location of the
MATLAB source code for the check.
Example: true
Data Types: logical

Examples
Turn Off Display Of By Product Folder

This example shows how to not display the By Product folder in the Model Advisor window:

mp = ModelAdvisor.Preferences;
mp.load;
mp.ShowByProduct = false;
mp.save

Version History
Introduced in R2014b

See Also
“Run Model Advisor Checks”

 ModelAdvisor.Preferences class

5-201

Simulink.BlockCompDworkData
Provide postcompilation information about block's DWork vector

Description
Simulink software returns an instance of this class when a MATLAB program, e.g., a Level-2 MATLAB
S-function, invokes the “Dwork” on page 5-512 method of a block's run-time object after the model
containing the block has been compiled.

Parent
Simulink.BlockData

Children
None

Property Summary
Name Description
“Usage” on page 5-202 Usage type of this DWork vector.
“UsedAsDiscState” on page 5-
203

True if this DWork vector is being used to store the values of a
block's discrete states.

Properties
Usage

Description

Returns a character vector indicating how this DWork vector is used. Permissible values are:

• DWork
• DState
• Scratch
• Mode

Data Type

character vector

Access

RW for MATLAB S-function blocks, RO for other blocks.

5 Classes

5-202

UsedAsDiscState
Description

True if this DWork vector is being used to store the values of a block's discrete states.

Data Type

Boolean

Access

RW for MATLAB S-Function blocks, RO for other blocks.

Version History
Introduced before R2006a

 Simulink.BlockCompDworkData

5-203

Simulink.BlockCompInputPortData
Provide postcompilation information about block input port

Description
Simulink software returns an instance of this class when a MATLAB program, e.g., a Level-2 MATLAB
S-function, invokes the “InputPort” on page 5-513 method of a block's run-time object after the model
containing the block has been compiled.

Parent
Simulink.BlockPortData

Children
None

Property Summary
Name Description
“DirectFeedthrough” on page 5-204 True if this port has direct feedthrough.
“Overwritable” on page 5-204 True if this port is overwritable.

Properties
DirectFeedthrough
Description

True if this input port has direct feedthrough.

Data Type

Boolean

Access

RW for MATLAB S functions, RO for other blocks.

Overwritable
Description

True if this input port is overwritable.

Data Type

Boolean

5 Classes

5-204

Access

RW for MATLAB S functions, RO for other blocks.

Version History
Introduced before R2006a

 Simulink.BlockCompInputPortData

5-205

Simulink.BlockCompOutputPortData
Provide postcompilation information about block output port

Description
Simulink software returns an instance of this class when a MATLAB program, e.g., a Level-2 MATLAB
S-function, invokes the “OutputPort” on page 5-514 method of a block's run-time object after the
model containing the block has been compiled.

Parent
Simulink.BlockPortData

Children
None

Property Summary
Name Description
“Reusable” on page 5-216 Specifies whether an output port's memory is reusable.

Properties
Reusable

Description

Specifies whether an output port's memory is reusable. Options are: NotReusableAndGlobal and
ReusableAndLocal.

Data Type

character vector

Access

RW for MATLAB S functions, RO for other blocks.

Version History
Introduced before R2006a

5 Classes

5-206

Simulink.BlockData
Provide run-time information about block-related data, such as block parameters

Description
This class defines properties that are common to objects that provide run-time information about a
block's ports and work vectors.

Parent
None

Children
Simulink.BlockPortData, Simulink.BlockCompDworkData

Property Summary
Name Description
“AliasedThroughDataType” on page 5-207 Fundamental base data type.
“AliasedThroughDataTypeID” on page 5-208 Fundamental base data type ID.
“Complexity” on page 5-208 Numeric type (real or complex) of the block data.
“Data” on page 5-208 The block data.
“DataAsDouble” on page 5-209 The block data in double form.
“Datatype” on page 5-209 Data type of the block data.
“DatatypeID” on page 5-209 Index of the data type of the block data.
“Dimensions” on page 5-210 Dimensions of the block data.
“Name” on page 5-210 Name of the block data.
“Type” on page 5-210 Type of block data (e.g., a parameter).

Properties
AliasedThroughDataType
Description

Data type aliases allow a data type (B) to be recursively aliased to another alias type or BaseType
(A). If alias type A is aliased to another alias type that is aliased to another alias type and so forth,
this property allows the alias type to be iteratively searched (aliased through) until the type is no
longer an alias type and that final result is the value of the property returned. For example, assume
that you have created the Simulink Alias types A and B as follows:

A=Simulink.AliasType('double')

A =

 Simulink.BlockData

5-207

Simulink.AliasType
 Description: ''
 HeaderFile: ''
 BaseType: 'double'
B=Simulink.AliasType('A')

B =
Simulink.AliasType
 Description: ''
 HeaderFile: ''
 BaseType: 'A'

If the data type of an item of block data is B, this property returns the base type A instead of B.

Data Type

character vector

Access

RO

AliasedThroughDataTypeID
Description

Index of the data type alias returned by the AliasedThroughDataType property.

Data Type

integer

Access

RO

Complexity
Description

Numeric type (real or complex) of the block data.

Data Type

character vector

Access

RW for MATLAB S functions, RO for other blocks.

Data
Description

The block data.

Data Type

The data type specified by the “Datatype” on page 5-209 or “DatatypeID” on page 5-209 properties of
this object.

5 Classes

5-208

Access

RW

DataAsDouble
Description

The block data's in double form.

Data Type

double

Access

RO

Datatype
Description

Data type of the values of the block-related object.

Data Type

character vector

Access

RO

DatatypeID
Description

Index of the data type of the values of the block-related object. enter the numeric value for the
desired data type, as follows:

Data Type Value
'inherited' -1
'double' 0
'single' 1
'int8' 2
'uint8' 3
'int16' 4
'uint16' 5
'int32' 6
'uint32' 7
'boolean' or fixed-point data types 8

Data Type

integer

 Simulink.BlockData

5-209

Access

RW for MATLAB S functions, RO for other blocks

Dimensions
Description

Dimensions of the block-related object, e.g., parameter or DWork vector.

Data Type

array

Access

RW for MATLAB S functions, RO for other blocks

Name
Description

Name of block-related object, e.g., a block parameter or DWork vector.

Data Type

character vector

Access

RW for MATLAB S functions, RO for other blocks

Type
Description

Type of block data. Possible values are:

Type Description
'BlockPreCompInputPortData' This object contains data for an input port before

the model is compiled.
'BlockPreCompOutputPortData' This object contains data for an output port

before the model is compiled.
'BlockCompInputPortData' This object contains data for an input port after

the model is compiled.
'BlockCompOutputPortData' This object contains data for an output port after

the model is compiled.
'BlockPreCompDworkData' This object contains data for a DWork vector

before the model is compiled.
'BlockCompDworkData' This object contains data for a DWork vector after

the model is compiled.
'BlockDialogPrmData' This object describes a dialog box parameter of a

Level-2 MATLAB S-function.

5 Classes

5-210

Type Description
'BlockRuntimePrmData' This object describes a run-time parameter of a

Level-2 MATLAB S-function.
'BlockCompContStatesData' This object describes the continuous states of the

block at the current time step.
'BlockDerivativesData' This object describes the derivatives of the

block's continuous states at the current time step.

Data Type

character vector

Access

RO

Version History
Introduced before R2006a

 Simulink.BlockData

5-211

Simulink.BlockPortData
Describe block input or output port

Description
This class defines properties that are common to objects that provide run-time information about a
block's ports.

Parent
Simulink.BlockData

Children
Simulink.BlockPreCompInputPortData, Simulink.BlockPreCompOutputPortData,
Simulink.BlockCompInputPortData, Simulink.BlockCompOutputPortData

Property Summary
Name Description
“IsBus” on page 5-212 True if this port is connected to a bus.
“IsSampleHit” on page 5-212 True if this port produces output or accepts input at the

current simulation time step.
“SampleTime” on page 5-213 Sample time of this port.
“SampleTimeIndex” on page 5-213 Sample time index of this port.

Properties
IsBus
Description

True if this port is connected to a bus.

Data Type

Boolean

Access

RO

IsSampleHit
Description

True if this port produces output or accepts input at the current simulation time step.

5 Classes

5-212

Data Type

Boolean

Access

RO

SampleTime
Description

Sample time of this port.

Data Type

[period offset] where period and offset are values of type double. See “Specify Sample
Time” for more information.

Access

RW for MATLAB S functions, RO for other blocks

SampleTimeIndex
Description

Sample time index of this port.

Data Type

integer

Access

RO

Version History
Introduced before R2006a

 Simulink.BlockPortData

5-213

Simulink.BlockPreCompInputPortData
Provide precompilation information about block input port

Description
Simulink software returns an instance of this class when a MATLAB program, e.g., a Level-2 MATLAB
S-function, invokes the “InputPort” on page 5-513 method of a block's run-time object before the
model containing the block has been compiled.

Parent
Simulink.BlockPortData

Children
None

Property Summary
Name Description
“DirectFeedthrough” on page
5-214

True if this port has direct feedthrough.

“Overwritable” on page 5-214 True if this port is overwritable.

Properties
DirectFeedthrough
Description

True if this input port has direct feedthrough.

Data Type

Boolean

Access

RW for MATLAB S functions, RO for other blocks

Overwritable
Description

True if this input port is overwritable.

Data Type

Boolean

5 Classes

5-214

Access

RW for MATLAB S functions, RO for other blocks

Version History
Introduced before R2006a

 Simulink.BlockPreCompInputPortData

5-215

Simulink.BlockPreCompOutputPortData
Provide precompilation information about block output port

Description
Simulink software returns an instance of this class when a MATLAB program, e.g., a Level-2 MATLAB
S-function, invokes the “OutputPort” on page 5-514 method of a block's run-time object before the
model containing the block has been compiled.

Parent
Simulink.BlockPortData

Children
none

Property Summary
Name Description
“Reusable” on page 5-216 Specifies whether an output port's memory is reusable.

Properties
Reusable

Description

Specifies whether an output port's memory is reusable. Options are: NotReusableAndGlobal and
ReusableAndLocal.

Data Type

character vector

Access

RW for MATLAB S functions, RO for other blocks

Version History
Introduced before R2006a

5 Classes

5-216

Simulink.Breakpoint class
Package: Simulink

Store and share data for a breakpoint set, configure the data for ASAP2 and AUTOSAR code
generation

Description
An object of the Simulink.Breakpoint class stores breakpoint set data for a lookup table. You can
use that data in one or more Prelookup blocks. With the object, you can specify a data type and code
generation settings for the breakpoint set and share the set between multiple lookup tables. Use
Simulink.Breakpoint objects and Simulink.LookupTable objects to configure COM_AXIS code
generation for calibration.

The code generated for a Simulink.Breakpoint object is an array or a structure with two fields. If
you configure the object to appear as a structure, one field stores the specified breakpoint set data
and one scalar field stores the number of elements in the breakpoint set data. You can configure the
structure type name, the field name, and other characteristics by using the properties of the object.

To package lookup table and breakpoint set data into a single structure in the generated code, for
example, for STD_AXIS code generation, use a Simulink.LookupTable object to store all of the
data. See “Package Shared Breakpoint and Table Data for Lookup Tables”.

To subclass from Simulink.Breakpoint and inherit from this base class, type this syntax as the
first line of your class definition file, where myBreakpoint is the name of your new class:

classdef myBreakpoint < Simulink.Breakpoint

For an example on subclassing, see “Define Data Classes”.

If you add properties to the subclass, you can see them by displaying the subclass object at the
MATLAB command line. In the property dialog box, these properties display in a new tab.

Construction
BpSet = Simulink.Breakpoint returns a Simulink.Breakpoint object named BpSet with
default property values.

To create a Simulink.Breakpoint object by using the Model Explorer, use the button on the
toolbar. The default name for the object is Object.

 Simulink.Breakpoint class

5-217

Property Dialog Box

Breakpoints
The breakpoint set information. You can configure these characteristics:

Support tunable size
Specification to enable tuning the effective size of the table in the generated code. If you
select this option, in the generated code, the Simulink.Breakpoint object appears as a
structure variable. The structure has one field to store the breakpoint vector data and one
field to store the number of elements in the breakpoint vector. You can change the value of
the second field to adjust the effective size of the table.

If you clear this option, the Simulink.Breakpoint object appears in the generated code as
a separate array variable instead of a structure.

Value
Breakpoint set data. Specify a vector with at least two elements.

You can also use an expression with mathematical operators such as sin(1:0.5:30) as long
as the expression returns a numeric vector. When you click Apply or OK, the object executes
the expression and uses the result to set the value of this property.

When you set Data type to auto, to set Value, use a typed expression such as single([1 2
3]) or use the fi constructor to embed an fi object.

You can edit this data by using a more intuitive interface in a lookup table block. See “Import
Lookup Table Data from MATLAB”.

Data type
Data type of the breakpoint set. The default setting is auto, which means that the breakpoint
set acquires a data type from the value that you specify in Value. If you use an untyped
expression such as [1 2 3] to set Value, the breakpoint data use the data type double. If
you specify a typed expression such as single([1 2 3]) or an fi object, the breakpoint
data use the data type specified by the expression or object. Enumerated data types are also
supported.

5 Classes

5-218

You can explicitly specify an integer data type, half data type, a floating-point data type, a
fixed-point data type, or a data type expression such as the name of a Simulink.AliasType
object.

For more information about data types in Simulink, see “Data Types Supported by Simulink”.
To decide how to control the data types of table and breakpoint data in
Simulink.LookupTable and Simulink.Breakpoint objects, see “Control Data Types of
Lookup Table Objects” (Simulink Coder).

Dimensions
Dimension lengths of the breakpoint set.

To use symbolic dimensions, specify a character vector. See “Implement Symbolic Dimensions
for Array Sizes in Generated Code” (Embedded Coder).

Min
Minimum value of the elements in the breakpoint set. The default value is empty, []. You can
specify a numeric, real value.

For more information about how Simulink uses this property, see “Specify Minimum and
Maximum Values for Block Parameters”.

Max
Maximum value of the elements in the breakpoint set. The default value is empty, []. You can
specify a numeric, real value.

For more information about how Simulink uses this property, see “Specify Minimum and
Maximum Values for Block Parameters”.

Stored Int Min
For Simulink.Breakpoint objects with a fixed-point data type, the minimum value of the
elements in the breakpoint set, specified as a stored integer value. The value is derived from
the real-world value Min. This property is available only in the property dialog box.

Stored Int Max
For Simulink.Breakpoint objects with a fixed-point data type, the maximum value of the
elements in the breakpoint set, specified as a stored integer value. The value is derived from
the real-world value Max. This property is available only in the property dialog box.

Unit
Physical unit of the elements in the breakpoint set. You can specify text such as degC. See
“Unit Specification in Simulink Models”.

Field name
Name of a structure field in the generated code. This field stores the breakpoint set data. The
default value is BP. To change the field name, specify text.

This column appears only if you select Support tunable size.
Tunable size name

Name of a structure field in the generated code. This scalar field stores the length of the
breakpoint set (the number of elements), which the generated code algorithm uses to
determine the size of the table. To tune the effective size of the table during code execution,
change the value of this structure field in memory. The default name is N. To change the field
name, specify text.

 Simulink.Breakpoint class

5-219

This column appears only if you select Support tunable size.
Description

Description of the breakpoint set. You can specify text such as This breakpoint set
represents the pressure input.

Data definition: Storage class
Storage class of the structure variable (if you select Support tunable size) or array variable in
the generated code. The variable stores the breakpoint set data. The default setting is Auto.

For more information about storage classes, see “C Code Generation Configuration for Model
Interface Elements” (Simulink Coder).

If you have Embedded Coder, you can choose a custom storage class. For information about
custom storage classes, see “Organize Parameter Data into a Structure by Using Struct Storage
Class” (Embedded Coder).

Data definition: Identifier
Alternative name for the variable in the generated code. The default value is empty, in which case
the generated code uses the name of the Simulink.Breakpoint object as the name of the
variable. To set the identifier, specify text.

To enable this property, set Data definition: Storage class to a setting other than Auto.
Data definition: Alignment

Data alignment boundary in the generated code. The starting memory address for the data
allocated for the structure or array variable is a multiple of the value that you specify. The default
value is -1, which allows the code generator to determine an optimal alignment based on usage.

Specify a positive integer that is a power of 2, not exceeding 128. For more information about
using data alignment for code replacement, see “Data Alignment for Code Replacement”
(Embedded Coder).

Struct Type definition: Name
Name of the structure type that the structure variable uses in the generated code. The default
value is empty. Specify text.

This property appears only if you select Support tunable size.
Struct Type definition: Data scope

Scope of the structure type definition (imported from your handwritten code or exported from the
generated code). The default value is Auto. When you select Auto:

• If you do not specify a value in the Struct Type definition: Header file box, the generated
code exports the structure type definition to the file model_types.h. model is the name of
the model.

• If you specify a value in the Struct Type definition: Header file box, such as myHdr.h, the
generated code imports the structure type definition from myHdr.h.

To explicitly specify the data scope:

• To import the structure type definition into the generated code from your custom code, select
Imported.

• To export the structure type definition from the generated code, select Exported.

5 Classes

5-220

Set the data scope of the structure type definition to Imported or Exported to avoid potential
MISRA C:2012 violations.

If you do not specify a value in the Struct Type definition: Header file box, the generated code
imports or exports the type definition from or to StructName.h. StructName is the name that
you specify with the property Struct Type definition: Name.

This property appears only if you select Support tunable size.
Struct Type definition: Header file

Name of the header file that contains the structure type definition. You can import the definition
from a header file that you create, or export the definition into a generated header file. To control
the scope of the structure type, adjust the setting for the Struct Type definition: Data scope
property.

This property appears only if you select Support tunable size.

Properties
Breakpoints — Breakpoint set data
Simulink.lookuptable.Breakpoint object

Breakpoint set data, specified as a Simulink.lookuptable.Breakpoint object. Use this
embedded object to configure the structure field names and characteristics of the breakpoint set data
such as breakpoint values, data type, and dimensions.

CoderInfo — Code generation settings for variable
Simulink.CoderInfo object

Code generation settings for the structure variable (if you set SupportTunableSize to true) or
array variable (false) that stores the breakpoint set data, specified as a Simulink.CoderInfo
object. You can specify a storage class or custom storage class by using this embedded object. For
more information, see Simulink.CoderInfo.

StructTypeInfo — Settings for structure type in the generated code
Simulink.lookuptable.StructTypeInfo object

Settings for the structure type that the structure variable uses in the generated code, specified as a
Simulink.lookuptable.StructTypeInfo object.

If you set SupportTunableSize to false, the Simulink.Breakpoint object does not appear in
the generated code as a structure. The code generator ignores this property.

SupportTunableSize — Option to generate code that enables tunability of table size
false (default) | true

Option to generate code that enables tunability of the effective size of the table, specified as true or
false. See the Support Tunable Size parameter.
Data Types: logical

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

 Simulink.Breakpoint class

5-221

Examples
Share Breakpoint Data Between One-Dimensional Lookup Tables

1 Create a Simulink.Breakpoint object named myBpSet.

myBpSet = Simulink.Breakpoint
2 Specify the breakpoint data.

myBpSet.Breakpoints.Value = [-2 -1 0 1 2];
3 Create a Simulink.LookupTable object named FirstLUTObj.

FirstLUTObj = Simulink.LookupTable;
4 Specify the table data.

FirstLUTObj.Table.Value = [1.1 2.2 3.3 4.4 5.5];
5 Set first FirstLUTObj to Reference.

FirstLUTObj.BreakpointsSpecification = 'Reference';
6 Configure the lookup table object to refer to the breakpoint set object.

FirstLUTObj.Breakpoints = {'myBpSet'};
7 Create another Simulink.LookupTable object to store a different set of table data. Configure

the lookup table object to refer to the same breakpoint set object.

SecondLUTObj = Simulink.LookupTable;
SecondLUTObj.Table.Value = [1.2 2.3 3.4 4.5 5.6];
SecondLUTObj.BreakpointsSpecification = 'Reference';
SecondLUTObj.Breakpoints = {'myBpSet'};

You can use FirstLUTObj and SecondLUTObj to specify the table data in two different Interpolation
Using Prelookup blocks. Use myBpSet to specify the breakpoint set data in one or two Prelookup
blocks that provide the inputs for the Interpolation Using Prelookup blocks.

Limitations
• You cannot generate code according to the FIX_AXIS style.
• When blocks in a subsystem use Simulink.LookupTable or Simulink.Breakpoint objects,

you cannot set data type override (see “Control Fixed-Point Instrumentation and Data Type
Override”) only on the subsystem. Instead, set data type override on the entire model.

Version History
Introduced in R2016b

See Also
Simulink.lookuptable.Breakpoint | Simulink.lookuptable.StructTypeInfo |
Simulink.lookuptable.Table | Simulink.Parameter | Simulink.LookupTable

Topics
“Configure Lookup Tables for AUTOSAR Calibration and Measurement” (AUTOSAR Blockset)

5 Classes

5-222

“About Lookup Table Blocks”
“Package Shared Breakpoint and Table Data for Lookup Tables”
“Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder)

 Simulink.Breakpoint class

5-223

Simulink.CodeImporter class
Package: Simulink

Import custom C/C++ code into Simulink

Description
Use the Simulink.CodeImporter class to import custom C/C++ code into Simulink for modeling,
verification, and validation. Instances of this class are used to specify custom code to import into
Simulink.

The Simulink.CodeImporter class is a handle class.

Creation
Description

obj = Simulink.CodeImporter() creates an instance of the CodeImporter with the
LibraryFileName property set to "untitled".

obj = Simulink.CodeImporter(LibName), where LibName is a file name chosen by the user
and specified as a string or character vector, creates an instance of the CodeImporter with the
LibraryFileName property set to LibName.

Properties
LibraryFileName — Name of Simulink library file and generated artifacts
"untitled" (default) | string | character vector

Name of Simulink library file and generated artifacts created for the imported code, specified as a
string or a character vector. Name must be a valid MATLAB variable name. The same file name is
used with different extensions for the data dictionary and other artifacts generated when code is
imported.
Example: "pumpController"
Data Types: string | character vector

OutputFolder — Location of generated library file and generated artifacts
"" (default) | string | character vector

Location of generated library file and generated artifacts, specified as a string or a character vector.
If left blank, the current MATLAB folder is used.

File locations that are part of the CustomCode property can be specified relative to this folder.
Example: "C:\HeatPump\Controller"
Data Types: string | character vector

5 Classes

5-224

CustomCode — Custom C or C++ code files and associated properties to import
CustomCode object

C or C++ code files and associated properties to import, specified as an object of class
Simulink.CodeImporter.CustomCode. Use this property to specify code importing options, such
as source and header files, folder paths, libraries, and compiler and linker flags. For information, see
Simulink.CodeImporter.CustomCode.
Example:

%% Create code importer object
obj = Simulink.CodeImporter;

%% Set the custom code to import
obj.CustomCode.InterfaceHeaders = ["pumpController.h"];
obj.CustomCode.IncludePaths = ["./include"];
obj.CustomCode.SourceFiles = ["src/pumpController.c" "src/utils.c"];
obj.CustomCode

ans =

 CustomCode with properties:

 SourceFiles: ["src/pumpController.c" "src/utils.c"]
 InterfaceHeaders: "pumpController.h"
 IncludePaths: "./include"
 Libraries: [1×0 string]
 Defines: [1×0 string]
 Language: "C"
 CompilerFlags: [1×0 string]
 LinkerFlags: [1×0 string]
 GlobalVariableInterface: 0
 FunctionArrayLayout: NotSpecified

ParseInfo — Information regarding parsed custom code
Simulink.CodeImporter.ParseInfo object

Information regarding the parsed custom code, specified as an object of class
Simulink.CodeImporter.ParseInfo. This property is read-only. Parsing needs to be successful to
obtain information regarding custom code. For information, see
Simulink.CodeImporter.ParseInfo.
Example:

s = obj.parse;
obj.ParseInfo

ans =

 ParseInfo with properties:

 Success: 1
 AvailableFunctions: ["Controller" "setFanTempThreshold" "setPumpTempThreshold"]
 EntryFunctions: ["Controller" "setFanTempThreshold" "setPumpTempThreshold"]
 AvailableTypes: "pump_control_bus"
 Errors: []

 Simulink.CodeImporter class

5-225

Options — Additional options used by Code Importer during import for library creation
Options object

Additional options used by Code Importer during import for library creation, specified as an object of
class Simulink.CodeImporter.Options. Use this object to change the default values for the size
of an argument passed by a pointer to a function, and the Simulink library browser name. For
information, see Simulink.CodeImporter.Options.
Example:

>> obj.Options

ans =

 Options with properties:

 PassByPointerDefaultSize: "-1"
 CreateTestHarness: 0
 LibraryBrowserName: ""
 SimulateInSeparateProcess: 0
 UndefinedFunctionHandling: "FilterOut"

>> obj.Options.LibraryBrowserName = "Controller Library";
>> obj.Options

ans =

 Options with properties:

 PassByPointerDefaultSize: "-1"
 CreateTestHarness: 0
 LibraryBrowserName: "Controller Library"
 SimulateInSeparateProcess: 0
 UndefinedFunctionHandling: "FilterOut"

Methods
Public Methods
parse Analyze custom code for functions, types, global variables, and their

dependencies
import Import custom code, functions, and types into Simulink
addToProject Add custom code and imported artifacts to MATLAB project
view Launch Simulink Code Importer wizard
save Save import settings to JSON format text file
load Load import settings from saved import settings file
computeInterfaceHeaders Compute interface headers from specified source files

Examples
Import Custom Code

Specify location and options for custom code.

%% Create code importer object
obj = Simulink.CodeImporter('PumpController');

5 Classes

5-226

%% Set the custom code to import
obj.CustomCode.InterfaceHeaders = ["pumpController.h"];
obj.CustomCode.IncludePaths = ["./include"];
obj.CustomCode.SourceFiles = ["src/pumpController.c" "src/utils.c"];

%% Specify name for Library Browser
obj.Options.LibraryBrowserName = "Controller Library";

Parse custom code and examine results.

%% Parse custom code
s = obj.parse;
obj.ParseInfo

ans =

 ParseInfo with properties:

 Success: 1
 AvailableFunctions: ["Controller" "setFanTempThreshold" "setPumpTempThreshold"]
 EntryFunctions: ["Controller" "setFanTempThreshold" "setPumpTempThreshold"]
 AvailableTypes: "pump_control_bus"
 Errors: []

Import parsed code into Simulink

%% Import code
s = obj.import;

Version History
Introduced in R2021a

See Also
Simulink.CodeImporter.CustomCode | Simulink.CodeImporter.Options |
Simulink.CodeImporter.ParseInfo | Simulink.CodeImporter.Function |
Simulink.CodeImporter.SimulinkPortSpecification

Topics
“Import Custom C/C++ Code Using the Simulink Code Importer”

 Simulink.CodeImporter class

5-227

addToProject
Package: Simulink

Add custom code and imported artifacts to MATLAB project

Syntax
success = obj.addToProject(ProjectFilePath)

Description
success = obj.addToProject(ProjectFilePath), where obj is an object of class
Simulink.CodeImporter or sltest.CodeImporter, adds the specified custom C/C++ code and
the artifacts generated when importing custom code (using the import method) to an existing
MATLAB project. Generated artifacts include a Simulink library and a data dictionary, and for objects
of class sltest.CodeImporter, a sandbox folder. If you choose to generate a test harness and test
files for the imported blocks, generated artifacts also include Simulink Test™ files (Simulink Test
license required).

Invoke addToProject only after a successful import of custom code.

Input Arguments
ProjectFilePath — Name of existing MATLAB project
character vector | string scalar

Name of existing MATLAB project, specified as a character vector or string scalar. The path can be a
full path or a path relative to the current MATLAB folder. For addToProject to be successful, all
custom code files and the Simulink library and other generated artifacts must be located in either the
same folder as the MATLAB project or in direct or indirect subfolders of that folder.
Data Types: character vector | string scalar

Output Arguments
success — Success indicator
logical scalar

Success indicator of whether code and artifacts are added to project, returned as a logical scalar. If
not successful, Simulink throws an error.

Version History
Introduced in R2021a

See Also
Simulink.CodeImporter

5 Classes

5-228

computeInterfaceHeaders
Class: Simulink.CodeImporter
Package: Simulink

Compute interface headers from specified source files

Syntax
listOfHdr = obj.computeInterfaceHeaders()

Description
listOfHdr = obj.computeInterfaceHeaders(), where obj is an object of class
Simulink.CodeImporter, computes the interface header information for the custom code specified
in the CustomCode of obj.

Output Arguments
listOfHdr — List of interface header files
string array

List of interface header files computed from specified custom code, returned as a string array. This
value can be used to populate the InterfaceHeader property of the CustomCode property of obj.

Version History
Introduced in R2021b

See Also
Simulink.CodeImporter | Simulink.CodeImporter.CustomCode

 computeInterfaceHeaders

5-229

import
Package: Simulink

Import custom code, functions, and types into Simulink

Syntax
success = obj.import()
success = obj.import(Name1,Value1,...,NameN,ValueN)

Description
success = obj.import(), where obj is an object of class Simulink.CodeImporter, parses the
specified custom code and imports it into Simulink with default import options. If the custom code
was not previously parsed or if the custom code or the settings of obj.CustomCode have changed
since the custom code was parsed, then the ParseInfo property of obj is populated or repopulated
with the information resulting from the parse.

success = obj.import(Name1,Value1,...,NameN,ValueN) parses the specified custom code
and imports it into Simulink with options based on the specified name-value arguments.

Examples

Import Custom Code

Specify location and options for custom code, then import the code into Simulink.

%% Create code importer object
obj = Simulink.CodeImporter;

%% Set library file name and output folder
obj.LibraryFileName = "pumpController";
obj.OutputFolder = ".";

%% Set the custom code to import
obj.CustomCode.InterfaceHeaders = ["pumpController.h"];
obj.CustomCode.IncludePaths = ["./include"];
obj.CustomCode.SourceFiles = ["src/pumpController.c" "src/utils.c"];

%% Parse custom code and configure function
obj.parse();
fcn = obj.ParseInfo.getFunctions("Controller");
fcn.PortSpecification.ReturnArgument.Label = "control_out";

%% Import function "Controller"
obj.import('Functions', ["Controller"]);

5 Classes

5-230

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: obj.import('Functions',["Controller"],'EntryFunctionsOnly','On');

EntryFunctionsOnly — Option to limit import to entry-point functions
'On' (default) | 'Off'

Option to limit import to entry-point functions, specified as 'On' or 'Off'. If specified as 'On', only
entry-point functions from the custom code, that is, functions not called by other functions in the
custom code, are imported into the Simulink library. Otherwise, all available custom code functions
are imported.
Data Types: char | string

Functions — Functions to import
"" (default) | cell array of character vectors | string array

Functions to import, specified as a cell array of character vectors or a string array. Specify this
argument to limit import to the named custom code functions. Otherwise, all available custom code
functions or all available entry-point custom code functions are imported.
Data Types: char | string

Types — Additional types to import
"" (default) | cell array of character vectors | string array

Additional types to import, specified as a cell array of character vectors or a string array. All types
required by the imported functions are imported. Additional types are defined in the interface
headers.
Data Types: char | string

Overwrite — Option to overwrite existing Simulink library
'Off' (default) | 'On'

Option to overwrite existing Simulink library with the same name as the name specified in the
LibraryFileName property, specified as 'On' or 'Off'. If set to 'Off' and there is an existing
Simulink library with the same name, custom code is imported into the existing library without
changing block settings applied in the library after previous imports of custom code. If set to 'On',
the existing library is overwritten by the library created from the custom code import, and any prior
changes to the existing library are lost. If there is no existing Simulink library with the same name, a
new library is created.
Data Types: char | string

AddToProject — Option to add custom code and generated artifacts to existing MATLAB
project
project file path

 import

5-231

Option to add custom code and generated artifacts to existing MATLAB project, specified as a file
path. Artifacts include a library file for imported functions and a data dictionary for imported types. If
obj.Options.CreateTestHarness is set to true and Simulink Test is installed, artifacts also
include a Simulink Test file.
Data Types: char | string

Output Arguments
success — Whether import is successful
logical scalar

Whether import is successful, specified as a logical scalar. Simulink throws an exception if the import
is unsuccessful.

Version History
Introduced in R2021a

See Also
Simulink.CodeImporter.ParseInfo | Simulink.CodeImporter.Options |
Simulink.CodeImporter.CustomCode | Simulink.CodeImporter

5 Classes

5-232

load
Class: Simulink.CodeImporter
Package: Simulink

Load import settings from saved import settings file

Syntax
success = obj.load(filename)

Description
success = obj.load(filename), where obj is an object of class Simulink.CodeImporter,
loads import settings from a saved import settings JSON file, filename, created using the save
method.

Input Arguments
filename — Name or path of file with saved import settings
character vector | string scalar

Name or path of JSON file with saved import settings, specified as a character vector or string scalar.
Example: 'importsettings.json'
Data Types: char | string

Output Arguments
success — Indicator of whether loading import settings is successful
logical scalar

Indicator of whether loading import settings is successful, returned as a logical scalar.

Version History
Introduced in R2020a

See Also
Simulink.CodeImporter

 load

5-233

parse
Package: Simulink

Analyze custom code for functions, types, global variables, and their dependencies

Syntax
success = obj.parse()
success = obj.parse('Force','On')
success = obj.parse('Force','Off')

Description
success = obj.parse(), where obj is an object of Simulink.CodeImporter or
sltest.CodeImporter class, parses the custom code, but does not re-parse the custom code if the
custom code has been parsed previously and neither the custom code nor the settings of
obj.CustomCode have changed since the previous parse. Results of a successful parse or error
information from an unsuccessful parse are stored in the ParseInfo property of obj.

success = obj.parse('Force','On') parses the custom code irrespective of whether any
changes have been made since a previous parse.

success = obj.parse('Force','Off') has the same effect as success = obj.parse().

Examples

Parse Custom Code

%% Create code importer object
obj = Simulink.CodeImporter;

%% Set the custom code to import
obj.CustomCode.InterfaceHeaders = ["pumpController.h"];
obj.CustomCode.IncludePaths = ["./include"];
obj.CustomCode.SourceFiles = ["src/pumpController.c" "src/utils.c"];

%% Parse custom code
s = obj.parse;
obj.ParseInfo

ans =

 ParseInfo with properties:

 Success: 1
 AvailableFunctions: ["Controller" "setFanTempThreshold" "setPumpTempThreshold"]
 EntryFunctions: ["Controller" "setFanTempThreshold" "setPumpTempThreshold"]
 AvailableTypes: "pump_control_bus"
 Errors: []

5 Classes

5-234

Output Arguments
success — Indicator of whether parsing is successful
logical scalar

Indicator of whether parsing is successful, returned as a logical scalar. Simulink throws an exception
if parsing is unsuccessful.

Version History
Introduced in R2021a

See Also
Simulink.CodeImporter

 parse

5-235

save
Class: Simulink.CodeImporter
Package: Simulink

Save import settings to JSON format text file

Syntax
filepath = obj.save(filename)
filepath = obj.save(filename, 'Overwrite', 'Off')
filepath = obj.save(filename, 'Overwrite', 'On')

Description
filepath = obj.save(filename) or filepath = obj.save(filename, 'Overwrite',
'Off'), where obj is an object of class Simulink.CodeImporter, saves import settings in JSON
format to the specified file filename and returns the full path to the saved file. Import settings
include LibraryFileName, OutputFolder, CustomCode, Options, selected functions and types,
and function configurations. You can subsequently load the settings from this file using the load
method.

filepath = obj.save(filename, 'Overwrite', 'On') overwrites the specified file
filename if the file already exists.

Input Arguments
filename — Name or path of file to be used to save import settings
character vector | string scalar

Name or path of file to be used to save import settings, specified as a character vector or string
scalar.
Example: 'importsettings.json'
Data Types: char | string

Output Arguments
filepath — Full path to saved file
character vector

Full path to saved file, returned as a character vector.

Version History
Introduced in R2020a

5 Classes

5-236

See Also
Simulink.CodeImporter

 save

5-237

view
Package: Simulink

Launch Simulink Code Importer wizard

Syntax
obj.view

Description
obj.view, where obj is an object of Simulink.CodeImporter class, launches the Simulink Code
Importer wizard, a graphical user interface for the Simulink Code Importer. A series of screens leads
you through the process of creating a Simulink library from your custom code.

Note You can also launch the Simulink Code Importer wizard from within Simulink. On the Simulink
toolstrip, go to the Modeling tab. From Design, select Code Importer.

5 Classes

5-238

Version History
Introduced in R2021a

See Also
Simulink.CodeImporter

 view

5-239

Simulink.CodeImporter.CustomCode class
Package: Simulink.CodeImporter

Specify custom code settings for Simulink.CodeImporter and sltest.CodeImporter classes

Description

The Simulink.CodeImporter.CustomCode class is a handle class.

Creation
When you create an object of class Simulink.CodeImporter, an object of class
Simulink.CodeImporter.CustomCode is automatically created as the CustomCode property of
that object. Do not create an object of class Simulink.CodeImporter.CustomCode directly.

Properties

Note The first four properties listed below (SourceFiles, InterfaceHeaders, IncludePaths,
and Libraries) let you specify file path information about the location of your custom code. To
enable portability, specify this information as a file path relative to the folder specified in the
OutputFolder property of the relevant Simulink.CodeImporter object rather than as an absolute
path.

SourceFiles — Source files to be imported
cell array of character vectors | string array

Source files to be imported, specified as a cell array of character vector or a string array. Supported
files include .c and .cpp files. Each file name can be specified as a path relative to the folder
specified in the OutputFolder property of the relevant Simulink.CodeImporter object or as an
absolute path.

Providing a value for SourceFiles is optional for Simulink.CodeImporter and optional for
sltest.CodeImporter when the TestType is IntegrationTest.
Example: {'foo.c', 'bar.c'}
Example: [".\foo.c", "..\bar.c"]
Example: fullfile(pwd, 'Src', 'foo.c')
Data Types: cell array of character vectors | string array

InterfaceHeaders — Interface headers to be imported
cell array of character vectors | string array

Interface headers to be imported, specified as a cell array of character vectors or a string array.
Supported files include .h and .hpp files. Each file name can be specified as a path relative to the
folder specified in the OutputFolder property of the relevant Simulink.CodeImporter object or

5 Classes

5-240

as an absolute path. Interface headers should contain the function declarations and type definitions
that you want to bring into Simulink. These declarations and definitions are usually contained in the
export header of your C code library.
Example: {'foo.h', 'bar.h'}
Example: [".\foo.h", "..\bar.h"]
Example: fullfile(pwd, 'Hdr', 'foo.h')
Data Types: cell array of character vectors | string array

IncludePaths — Folders containing included header files
cell array of character vectors | string array

Folders containing included header files for the parser to find, specified as a cell array of character
vectors or a string array. Each folder path can be specified as a path relative to the folder specified in
the OutputFolder property of the relevant Simulink.CodeImporter object or as an absolute
path.
Example: {'.', '..\..'}
Example: [".\Include1", "..\Include2"]
Example: fullfile(pwd, 'Include1')
Data Types: cell array of character vectors | string array

Libraries — Libraries that contain custom object code to link
cell array of character vectors | string array

Libraries that contain custom object code to link, specified as a cell array of character vectors or a
string array. Supported files include .obj, .dll, .lib, .so, .o, .a, and .dylib files. Each file name
can be specified as a path relative to the folder specified in the OutputFolder property of the
relevant Simulink.CodeImporter object or as an absolute path.

Providing libraries is optional.
Example: {'foo.lib', 'foo.dll'}
Example: [".\foo.so", "..\bar.so"]
Data Types: cell array of character vectors | string array

Defines — Preprocessor macro definitions to be added to the compiler command line
cell array of character vectors | string array

Preprocessor macro definitions to be added to the compiler command line, specified as a cell array of
character vectors or a string array. '-D' is optional in defines.
Example: {'-D DEF1', '-D DEF2'}
Example: ["DEF1", "DEF2"]
Data Types: cell array of character vectors | string array

Language — Custom code language
'C' (default) | 'C++'

Custom code language, specified as 'C' or 'C++'. C and C++ are the only supported languages.

 Simulink.CodeImporter.CustomCode class

5-241

Data Types: character vector | string scalar

CompilerFlags — Additional compiler flags
cell array of character vectors | string array

Additional complier flags to be added to the compiler command line, specified as a cell array of
character vectors or a string array.
Example: {'/O2' , '/Og'}
Example: "-g"
Data Types: cell array of character vectors | string array

LinkerFlags — Additional linker flags
cell array of character vectors | string array

Additional linker flags to be added to the linker command line, specified as a cell array of character
vectors or a string array.
Example: {'/WX'}
Data Types: cell array of character vectors | string array

GlobalVariableInterface — Option to enable global variables as function interfaces
false (default) | true

Option to enable global variables as function interfaces, specified as a logical scalar. If set to true,
global variables accessed by the custom code functions will be treated as function interfaces in the
generated Simulink library. See “Call C Caller Block and Specify Ports” and “Enable global variables
as function interfaces”.
Data Types: logical scalar

FunctionArrayLayout — Default array layout for custom code functions
NotSpecified (default) | RowMajor | ColumnMajor | Any

Default array layout for custom code functions to use to access input argument arrays, specified as
NotSpecified, RowMajor, ColumnMajor, or Any. You can override the default for an individual
function by using the ArrayLayout property of the Simulink.CodeImporter.Function object
corresponding to that function. Matrix data passed to and from your C functions is converted to the
function array layout you specify. See “Integrate C Code Using C Caller Blocks” and “Default function
array layout”.
Data Types: enum

Examples

Specify Custom Code for Import

Create an object of class Simulink.CodeImporter. Set the properties of its CustomCode property
to specify custom code to import into Simulink.

obj = Simulink.CodeImporter("pumpController");

obj.OutputFolder = ".";

5 Classes

5-242

obj.CustomCode.InterfaceHeaders = ["pumpController.h"];
obj.CustomCode.IncludePaths = ["./include"];
obj.CustomCode.SourceFiles = ["src/pumpController.c" "src/utils.c"];

Version History
Introduced in R2021a

See Also
Simulink.CodeImporter | Simulink.CodeImporter.Options |
Simulink.CodeImporter.ParseInfo | Simulink.CodeImporter.Function |
Simulink.CodeImporter.SimulinkPortSpecification

 Simulink.CodeImporter.CustomCode class

5-243

Simulink.CodeImporter.Function class
Package: Simulink.CodeImporter

Access and configure detailed information about parsed custom code functions

Description
Access detailed information about parsed custom code functions obtained from
Simulink.CodeImporter or sltest.CodeImporter class instance. Configure information about
custom code functions for importing into Simulink.

The Simulink.CodeImporter.Function class is a handle class.

Creation
One or more objects of this class are automatically created when you invoke the getFunctions
method of an object of class Simuink.CodeImporter.ParseInfo. A
Simulink.CodeImporter.Function object is created for each function in the parsed custom code
for which getFunctions is invoked. Do not create an object of class
Simulink.CodeImporter.Function directly.

Properties
Name — Function name
string scalar

Function name, returned as a string scalar.
Example: "Controller"
Data Types: string scalar

CPrototype — C prototype
string scalar

C prototype for function, returned as a string scalar.
Example: "pump_control_bus Controller(real_T Tset, real_T Troom_in);"
Data Types: string scalar

PortSpecification — Port specification of function
SimulinkPortSpecification object

Port specification of function, specified as an object of class
Simulink.CodeImporter.SimulinkPortSpecification.

IsEntry — Whether function is entry-point function
logical scalar

5 Classes

5-244

Whether function is an entry-point function, returned as a logical scalar. An entry-point function is not
called by other functions in the custom code.

IsDefined — Whether function is defined
logical scalar

Whether function is defined, returned as a logical scalar. This scalar indicates whether custom code
contains a function body defining the function in addition to a function prototype defined in a header.

IsDeterministic — Whether function is deterministic
logical scalar

Whether function is deterministic, specified as a logical scalar. A deterministic function always
produces the same outputs for the same input values. Specifying a function as deterministic enables
the corresponding C Caller block to be used in a For Each subsystem and with continuous sample
time, and optimizes the use of the block in conditional input branch execution. See “Deterministic
functions”.

IsStub — Whether function is stubbed
logical scalar

Whether function is stubbed, returned as a logical scalar. This scalar indicates whether, for a unit
test, a stub for undefined symbols was generated for the function (Simulink Test license required).

ArrayLayout — Array layout for function
NotSpecified (default) | ColumnMajor | RowMajor | Any

Array layout for function, returned as NotSpecified, ColumnMajor, RowMajor, or Any. If
NotSpecified, then the default setting for the custom code as specified in the
FunctionArrayLayout property of the relevant SimulinkCode.CustomCode object is used.
Otherwise, the value specified for the function overrides the default.
Data Types: enum

Methods
Public Methods

gotoDefinition Display function definition in the MATLAB editor
with function name highlighted.

Syntax: fcnobj.gotoDefinition or
fcnobj.gotoDefinition(), where fcnobj is
an object of class Function

gotoDeclaration Display function declaration in MATLAB editor
with function name highlighted.

Syntax: fcnobj.gotoDeclaration or
fcnobj.gotoDeclaration(), where fcnobj is
an object of class Function

Examples

 Simulink.CodeImporter.Function class

5-245

Parse Custom Code Functions

Specify and parse custom code, then query information regarding custom code functions.

obj = Simulink.CodeImporter;

%% Set library file name and output folder
obj.LibraryFileName = "pumpController";
obj.OutputFolder = ".";

%% Set the custom code to import
obj.CustomCode.InterfaceHeaders = ["pumpController.h"];
obj.CustomCode.IncludePaths = ["./include"];
obj.CustomCode.SourceFiles = ["src/pumpController.c" "src/utils.c"];

%% Parse code
obj.parse;
parseobj = obj.ParseInfo

ans =

 ParseInfo with properties:

 Success: 1
 AvailableFunctions: ["Controller" "setFanTempThreshold" "setPumpTempThreshold"]
 EntryFunctions: ["Controller" "setFanTempThreshold" "setPumpTempThreshold"]
 AvailableTypes: "pump_control_bus"
 Errors: []

fcnobj = parseobj.getFunctions(["Controller"])

fcnobj =

 Function with properties:

 Name: "Controller"
 CPrototype: "pump_control_bus Controller(real_T Tset, real_T Troom_in);"
 PortSpecification: [1×1 Simulink.CodeImporter.SimulinkPortSpecification]
 IsEntry: 1
 IsDefined: 1
 IsStub: 0
 ArrayLayout: NotSpecified
 IsDeterministic: 0

Version History
Introduced in R2021a

See Also
Simulink.CodeImporter | Simulink.CodeImporter.CustomCode |
Simulink.CodeImporter.Options | Simulink.CodeImporter.ParseInfo |
Simulink.CodeImporter.SimulinkPortSpecification

5 Classes

5-246

Simulink.CodeImporter.Options class
Package: Simulink.CodeImporter

Specify additional import options for Simulink.CodeImporter and sltest.CodeImporter
classes

Description
Use the Simulink.CodeImporter class to specify options for importing custom code beyond what
is specified in the CustomCode property of the relevant Simulink.CodeImporter object.

The Simulink.CodeImporter.Options class is a handle class.

Creation
When you create an object of class Simulink.CodeImporter, an object of class
Simulink.CodeImporter.Options is automatically created as the Options property of that
object. Do not create an object of class Simulink.CodeImporter.Options directly.

Properties
PassByPointerDefaultSize — Default size of C argument passed by pointer to function
"-1" (default) | character vector | string scalar

Default size of C argument passed by pointer to function in the generated C Caller block port
specifications, specified as a character vector or string scalar. By default, the value is set to "-1",
meaning that the size is inherited. A value of "1" indicates that arguments passed by address to
functions are scalars, unless you override this setting in the
Simulink.CodeImporter.SimulinkPortSpecification corresponding to a particular function.
Data Types: char | string

CreateTestHarness — Automatic creation of test harness during import
true or 1 (default) | false or 0

Automatic creation of test harness during import, specified as a logical 1 (true) or 0 (false).
Specify whether the Simulink Code Importer should automatically create a test harness for each
block in the generated Simulink library (Simulink Test license required).
Data Types: logical

LibraryBrowserName — Name by which generated Simulink library appears in Simulink
Library Browser
"" (default) | character vector | string scalar

Name by which generated Simulink library appears in Simulink Library Browser, specified as a
character vector or string scalar. By default, the value is an empty string, meaning that the generated
library does not appear in the Simulink Library Browser. If you specify a name, the Simulink Code
Importer generates the file slblocks.m as part of the artifacts the Code Importer creates.

 Simulink.CodeImporter.Options class

5-247

Example: "Controller Library"
Data Types: char | string

SimulateInSeparateProcess — Run custom code in separate process
false or 0 (default) | true or 1

Run custom code in a separate process outside of MATLAB during model simulation, specified as
logical 1 (true) or 0 (false). If this property is false, the custom code runs in the same process
as the rest of the model during simulation. Simulations usually run faster, but run-time exceptions in
the custom code can cause MATLAB to crash. If the property is true, custom code runs in a separate
process during model simulation, which can prevent MATLAB from crashing due to run-time
exceptions in the custom code or errors in the interface between Simulink and the custom code.
Data Types: logical

UndefinedFunctionHandling — How to manage undefined functions and variables
"FilterOut" (default) | "ThrowError" | "DoNotDetect" | "UseInterfaceOnly"

How to manage undefined functions and variables, specified as:

Value Purpose
"FilterOut" Filter out undefined functions and variables.

Simulink Code Importer does not bring undefined
functions and variables into the generated
Simulink library.

"ThrowError" Return an error if Simulink Code Importer
detects an undefined function or variable.

"DoNotDetect" Simulink Code Importer brings undefined
functions and variables into the generated
Simulink library, but does not automatically
generate stub functions and variables equal to
zero.

"UseInterfaceOnly" Simulink Code Importer brings undefined
functions and variables into the generated
Simulink library, and generates stub functions
and variables equal to zero.

Data Types: enum

Examples

Set Custom Code Options

Create a Simulink.CodeImporter object and set options.

obj = Simulink.CodeImporter;
obj.CustomCode.InterfaceHeaders = ["pumpController.h"];
obj.CustomCode.IncludePaths = ["./include"];
obj.CustomCode.SourceFiles = ["src/pumpController.c" "src/utils.c"];
obj.Options.LibraryBrowserName="Controller Library";

obj.Options

5 Classes

5-248

ans =

 Options with properties:

 PassByPointerDefaultSize: "-1"
 CreateTestHarness: 1
 LibraryBrowserName: "Controller Library"
 SimulateInSeparateProcess: 0
 UndefinedFunctionHandling: "FilterOut"

Version History
Introduced in R2021a

See Also
Simulink.CodeImporter | Simulink.CodeImporter.CustomCode |
Simulink.CodeImporter.ParseInfo | Simulink.CodeImporter.Function |
Simulink.CodeImporter.SimulinkPortSpecification

 Simulink.CodeImporter.Options class

5-249

Simulink.CodeImporter.ParseInfo class
Package: Simulink.CodeImporter

Information about parsed custom code

Description
The Simulink.CodeImporter.ParseInfo class has read-only properties that store more
information about the parsed custom code. Parsing needs to be successful to obtain information
regarding custom code.

The Simulink.CodeImporter.ParseInfo class is a handle class.

Creation
When you create an object of class Simulink.CodeImporter, an object of class
Simulink.CodeImporter.ParseInfo is automatically created as the ParseInfo property of that
object. Do not create an object of class Simulink.CodeImporter.ParseInfo directly.

Properties
Success — Whether parsing of custom code is successful
true | false

Whether parsing of custom code is successful, specified as a logical scalar with value false before
successful parsing of specified custom code, then true after successful parsing.
Data Types: logical scalar

AvailableFunctions — Functions compatible with Simulink in custom code
string array

Functions compatible with Simulink in custom code, returned as a string array.
Example: ["myCustomFcn1", "myCustomFcn2", "myCustomFcn3"]
Data Types: string array

EntryFunctions — Entry-point functions in custom code
string array

Entry-point functions in custom code, returned as a string array. Entry-point functions are not called
by other custom code functions. EntryFunctions is a subset of AvailableFunctions.
Example: ["myCustomFcn1", "myCustomFcn3"]
Data Types: string array

AvailableTypes — Data types compatible with Simulink in custom code
string array

5 Classes

5-250

Data types compatible with Simulink in custom code, returned as a string array. Types are user-
defined, such as struct and enum.
Example: ["myStruct1","myStruct2"]
Data Types: string array

Errors — Error messages from failed parse
character vector

Error messages from failed parse of the specified custom code (Sucesss is equal to false), returned
as a character vector. Multiple error message are concatenated into a single character vector. If the
parsing is successful (Sucesss is equal to true), Errors is a null vector.
Data Types: character vector

Methods
Public Methods
Simulink.CodeImporter.ParseInfo.getFunctions Obtain detailed information regarding functions in

custom code

Examples

Parse Custom Code

obj = Simulink.CodeImporter;

%% Set library file name and output folder
obj.LibraryFileName = "pumpController";
obj.OutputFolder = ".";

%% Set the custom code to import
obj.CustomCode.InterfaceHeaders = ["pumpController.h"];
obj.CustomCode.IncludePaths = ["./include"];
obj.CustomCode.SourceFiles = ["src/pumpController.c" "src/utils.c"];
obj.parse;
obj.ParseInfo

ans =

 ParseInfo with properties:

 Success: 1
 AvailableFunctions: ["Controller" "setFanTempThreshold" "setPumpTempThreshold"]
 EntryFunctions: ["Controller" "setFanTempThreshold" "setPumpTempThreshold"]
 AvailableTypes: "pump_control_bus"
 Errors: []

Version History
Introduced in R2021a

 Simulink.CodeImporter.ParseInfo class

5-251

See Also
Simulink.CodeImporter | Simulink.CodeImporter.CustomCode |
Simulink.CodeImporter.Options | Simulink.CodeImporter.Function |
Simulink.CodeImporter.SimulinkPortSpecification

5 Classes

5-252

Simulink.CodeImporter.ParseInfo.getFunctions
Package: Simulink.CodeImporter

Obtain detailed information regarding functions in custom code

Syntax
fcnobjs = obj.ParseInfo.getFunctions()
fcnobjs = obj.ParseInfo.getFunctions(fcnlist)

Description
fcnobjs = obj.ParseInfo.getFunctions(), where obj is an object of class
Simulink.CodeImporter or sltest.CodeImporter, returns an array of objects of class
Simulink.CodeImporter.Function with detailed information on all Simulink compatible
functions in the custom code.

Note If your code has a function with a pointer output, specify the size of the output by setting the
port specification in the returned function object.

fcnobjs = obj.ParseInfo.getFunctions(fcnlist) returns an array of objects of class
Simulink.CodeImporter.Function with detailed information on the custom code functions
specified in fcnlist.

Examples

Get Custom Code Function Information

Specify and parse custom code, then query information regarding custom code functions.

obj = Simulink.CodeImporter;

%% Set library file name and output folder
obj.LibraryFileName = "pumpController";
obj.OutputFolder = ".";

%% Set the custom code to import
obj.CustomCode.InterfaceHeaders = ["pumpController.h"];
obj.CustomCode.IncludePaths = ["./include"];
obj.CustomCode.SourceFiles = ["src/pumpController.c" "src/utils.c"];

%% Parse code
obj.parse;
parseobj = obj.ParseInfo

ans =

 ParseInfo with properties:

 Simulink.CodeImporter.ParseInfo.getFunctions

5-253

 Success: 1
 AvailableFunctions: ["Controller" "setFanTempThreshold" "setPumpTempThreshold"]
 EntryFunctions: ["Controller" "setFanTempThreshold" "setPumpTempThreshold"]
 AvailableTypes: "pump_control_bus"
 Errors: []

fcnobjs = parseobj.getFunctions()

fcnobjs =

 1×3 Function array with properties:

 Name
 CPrototype
 PortSpecification
 IsEntry
 IsDefined
 IsStub
 ArrayLayout
 IsDeterministic

>> fcnobjs(1)

ans =

 Function with properties:

 Name: "Controller"
 CPrototype: "pump_control_bus Controller(real_T Tset, real_T Troom_in);"
 PortSpecification: [1×1 Simulink.CodeImporter.SimulinkPortSpecification]
 IsEntry: 1
 IsDefined: 1
 IsStub: 0
 ArrayLayout: NotSpecified
 IsDeterministic: 0

Input Arguments
fcnlist — Names of functions
cell array of character vectors | string array

Names of functions in custom code about which to obtain information, specified as a cell array of
character vectors or a string array. fcnlist must be limited to names contained in
obj.ParseInfo.AvailableFunctions, that is, functions compatible with Simulink in the specified
custom code.
Data Types: cell array of character vectors | string array

Output Arguments
fcnobjs — Information about functions in custom code
array of Simulink.CodeImporter.Function objects

Information about functions in custom code, returned as an array of
Simulink.CodeImporter.Function objects, where each object corresponds to one function. Each

5 Classes

5-254

object includes the function name, C prototype, port specification, whether function is an entry-point
function, and whether function is defined in the custom code. See
Simulink.CodeImporter.Function.

Version History
Introduced in R2021a

See Also
Simulink.CodeImporter.ParseInfo | Simulink.CodeImporter

 Simulink.CodeImporter.ParseInfo.getFunctions

5-255

Simulink.CodeImporter.SimulinkPortSpecification
class
Package: Simulink.CodeImporter

Configure port specification for imported custom code

Description
Configure port specification for custom code function arguments imported as C Caller blocks via
Simulink.CodeImporter or sltest.CodeImporter class instances, that is, configure how C/C++
interfaces map to Simulink interfaces for custom code functions.

This class is analogous to the FunctionPortSpecification class that is used to configure C Caller
block properties outside the context of the Simulink Code Importer. The properties and methods of
this class behave similarly to the like-named properties and methods of the
FunctionPortSpecification class.

The SimulinkPortSpecification class is a handle class.

Creation
One or more objects of this class are automatically created when you invoke the getFunctions
method of an object of class Simuink.CodeImporter.ParseInfo. One
Simulink.CodeImporter.SimulinkPortSpecification object is created for each function in
the parsed custom code for which getFunctions is invoked as the PortSpecification property
of the Function object corresponding to that function. Do not create an object of class
Simulink.CodeImporter.SimulinkPortSpecification directly.

Properties
InputArguments — Port specification for input arguments
FunctionArgument object

Port specification for input arguments, specified as a FunctionArgument Object.

ReturnArgument — Port specification for function return argument
FunctionArgument object | scalar

Port specification for function return argument, specified as a scalar or an empty
FunctionArgument Object.

GlobalArguments — Port specification for custom code global variables used as function
arguments
FunctionArgument object | scalar

Port specification for custom code global variables used as function arguments, specified as a scalar
or an empty FunctionArgument Object.

5 Classes

5-256

Methods
Public Methods
getGlobalArg Get an object definition of a global variable in a C Caller block

Examples

Configure Port Specifications for Custom Code Library Blocks

Specify and parse custom code, then customize port specification before importing into Simulink.

%% Create code importer object
obj = Simulink.CodeImporter;

%% Set library file name and output folder
obj.LibraryFileName = "pumpController";
obj.OutputFolder = ".";

%% Set the custom code to import
obj.CustomCode.InterfaceHeaders = ["pumpController.h"];
obj.CustomCode.IncludePaths = ["./include"];
obj.CustomCode.SourceFiles = ["src/pumpController.c" "src/utils.c"];

%% Parse custom code and configure function
obj.parse();
fcn = obj.ParseInfo.getFunctions("Controller");
fcn.PortSpecification.ReturnArgument.Label = "control_out";

fcn.PortSpecification.ReturnArgument

ans =

 FunctionArgument with properties:

 Name: 'out'
 PortNumber: 1
 Size: '1'
 Type: 'Bus: pump_control_bus'
 Label: 'control_out'
 Scope: 'Output'

Version History
Introduced in R2021a

See Also
Simulink.CodeImporter | Simulink.CodeImporter.CustomCode |
Simulink.CodeImporter.Options | Simulink.CodeImporter.ParseInfo |
Simulink.CodeImporter.Function

 Simulink.CodeImporter.SimulinkPortSpecification class

5-257

getGlobalArg
Class: Simulink.CodeImporter.SimulinkPortSpecification
Package: Simulink.CodeImporter

Get an object definition of a global variable in a C Caller block

Syntax

output_args = getGlobalArg(input_args,Name,Value)

Description

output_args = getGlobalArg(input_args,Name,Value) <verb phase> with additional
options specified by one or more Name,Value pair arguments.

Input Arguments
input_args —
(default) |

Example:
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:

Name —
(default) |

Example:
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

5 Classes

5-258

Output Arguments
output_args —

Attributes

To learn about attributes of methods, see Method Attributes.

Examples

Get definition of global variable

Version History
Introduced in R2021a

 getGlobalArg

5-259

Simulink.data.adapters.BaseMatlabFileAdapter
class
Package: Simulink.data.adapters

Base class used to define file adapter for reading custom file formats

Description
The Simulink.data.adapters.BaseMatlabFileAdapter class is the base class for custom file
adapters that the loadVariablesFromExternalSource function uses to load variables from an
external source file into a Simulink.SimulationInput object. Subclass the
Simulink.data.adapters.BaseMatlabFileAdapter class to specify how to load data from your
custom external data source.

For an example of how to write, test, and register a custom file adapter, see “Create External File
Adapter for Loading Variables into Simulink.SimulationInput Object”.

For an example of how to use a custom file adapter, see loadVariablesFromExternalSource.

The Simulink.data.adapters.BaseMatlabFileAdapter class is a handle class.

Class Attributes

Abstract true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Properties
section — Section of external file
adapter name (default) | character array | string

Section of the external file, specified as a character array.
Example: 'tireManufacturer'

source — External source file
'' (default) | character array

External source file, specified as a character array.
Example: 'Tires.xls'

Methods
Public Methods
close Code that executes when connection to external file is closed
getAdapterName Return display name for file adapter
getCurrentChecksum Return marker for identifying last change to external file

5 Classes

5-260

getData Read external file data into data source workspace
getSectionNames Return logical sections for external file
getSupportedExtensions Return supported file extensions for file adapter
isSourceValid Validates external file
open Code that executes when connection to external file is opened
supportsReading Check if external file has read attributes

Version History
Introduced in R2022b

See Also
Simulink.data.DataSourceWorkspace | Simulink.data.adapters.AdapterDataTester |
Simulink.data.adapters.registerAdapter |
Simulink.data.adapters.unregisterAdapter | loadVariablesFromExternalSource

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

 Simulink.data.adapters.BaseMatlabFileAdapter class

5-261

close
Class: Simulink.data.adapters.BaseMatlabFileAdapter
Package: Simulink.data.adapters

Code that executes when connection to external file is closed

Syntax
close(adapterObj)

Description
close(adapterObj) executes when the connection to an external source file is closed.

Custom file adapters must define behavior for the getAdapterName, getSupportedExtensions,
and getData methods. In addition, you can choose to override the isSourceValid,
supportsReading, getSectionNames, getCurrentChecksum, open, and close methods.

Input Arguments
adapterObj — Custom file adapter
Simulink.data.adapters.BaseMatlabFileAdapter subclass object

Custom file adapter, specified as an object of a class that derives from the
Simulink.data.adapters.BaseMatlabFileAdapter base class.
Example: myCustomFileAdapter

Version History
Introduced in R2022b

See Also
getAdapterName | getCurrentChecksum | getData | getSectionNames |
getSupportedExtensions | isSourceValid | open | supportsReading

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

5 Classes

5-262

getAdapterName
Class: Simulink.data.adapters.BaseMatlabFileAdapter
Package: Simulink.data.adapters

Return display name for file adapter

Syntax
dispName = getAdapterName(adapterObj)

Description
dispName = getAdapterName(adapterObj) returns the display name of the file adapter. This
name can be used by Simulink to display available adapters or used in an error message.

Custom file adapters must define behavior for the getAdapterName, getSupportedExtensions,
and getData methods. In addition, you can choose to override the isSourceValid,
supportsReading, getSectionNames, getCurrentChecksum, open, and close methods.

Input Arguments
adapterObj — Custom file adapter
Simulink.data.adapters.BaseMatlabFileAdapter subclass object

Custom file adapter, specified as an object of a class that derives from the
Simulink.data.adapters.BaseMatlabFileAdapter base class.
Example: myCustomFileAdapter

Output Arguments
dispName — Display name of custom file adapter
character array

Display name of the custom file adapter, returned as a character array.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Examples

Get Display Name for Custom File Adapter

Write the function definition for the getAdapterName method to return the display name for your
custom file adapter. Specify code for the getAdapterName method in the class definition file.

 getAdapterName

5-263

In this example, the getAdapterName method returns the display name for an adapter than can read
data from an XML file.

function name = getAdapterName(adapterObj)
 name = 'XML Adapter';
end

Version History
Introduced in R2022b

See Also
close | getCurrentChecksum | getData | getSectionNames | getSupportedExtensions |
isSourceValid | open | supportsReading

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

5 Classes

5-264

getCurrentChecksum
Class: Simulink.data.adapters.BaseMatlabFileAdapter
Package: Simulink.data.adapters

Return marker for identifying last change to external file

Syntax
currentChecksum = getCurrentChecksum(adapterObj)

Description
currentChecksum = getCurrentChecksum(adapterObj) returns a marker for identifying the
last change to the external source file. The default implementation returns the timestamp for the last
modified date of the file. The cache uses this method to determine if the adapter needs to get updates
from the external file.

Custom file adapters must define behavior for the getAdapterName, getSupportedExtensions,
and getData methods. In addition, you can choose to override the isSourceValid,
supportsReading, getSectionNames, getCurrentChecksum, open, and close methods.

Input Arguments
adapterObj — Custom file adapter
Simulink.data.adapters.BaseMatlabFileAdapter subclass object

Custom file adapter, specified as an object of a class that derives from the
Simulink.data.adapters.BaseMatlabFileAdapter base class.
Example: myCustomFileAdapter

Output Arguments
currentChecksum — Current checksum for external file
string | character array

Current checksum for the external file, returned as a string or character array.

Version History
Introduced in R2022b

See Also
close | getAdapterName | getData | getSectionNames | getSupportedExtensions |
isSourceValid | open | supportsReading

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

 getCurrentChecksum

5-265

getData
Read external file data into data source workspace

Syntax
diagnostic = getData(adapterObj,sourceWorkspace,prevChecksum,diagnostic)

Description
diagnostic = getData(adapterObj,sourceWorkspace,prevChecksum,diagnostic)
populates the data from the external source file into a data source workspace.

Custom file adapters must define behavior for the getAdapterName, getSupportedExtensions,
and getData methods. In addition, you can choose to override the isSourceValid,
supportsReading, getSectionNames, open, and close methods.

Input Arguments
adapterObj — Custom file adapter
Simulink.data.adapters.BaseMatlabFileAdapter subclass object

Custom file adapter, specified as an object of a class that derives from the
Simulink.data.adapters.BaseMatlabFileAdapter base class.
Example: myCustomFileAdapter

sourceWorkspace — Data source workspace
Simulink.data.DataSourceWorkspace object

Workspace that contains the data from an external data source, specified as a
Simulink.data.DataSourceWorkspace object.

prevChecksum — Previous checksum value
character array | string

Previous checksum value, specified as a character vector or string. By default, the value is the
timestamp for the last modified date of the external source file.

diagnostic — Diagnostic information
structure

Diagnostic information from the adapter, specified as a structure. Specify the error information that
your getData method returns by setting the fields of the empty diagnostic structure that Simulink
passes in to the method. The structure has these fields.

5 Classes

5-266

Field Description
AdapterDiagnostic Type of error, specified as an enumeration value

from the enumeration class
Simulink.data.adapters.AdapterError.
These are the possible enumeration values.

• NoDiagnostic (default)
• GenericFailure
• HardError
• Inaccessible
• AmbiguousSource
• NoPermission
• UnrecognizedFormat
• Unsupported

DiagnosticMessage Message returned as the error text, specified as a
string. When AdapterDiagnostic is set to
NoDiagnostic, the value is an empty string.

Data Types: struct

Output Arguments
diagnostic — Diagnostic information
structure

Diagnostic information from the adapter, specified as a structure. For more information, see the
diagnostic input argument.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Examples

Load Data From External Source File into Workspace

Write the function definition for the getData method to populate the data from the external source
file into the data source workspace.

In this example, the getData method reads data from an XML file with a format similar to the
following.

<customerData>
<x>10</x>
<y>15</y>
</customerData>

 getData

5-267

function diagnostic = getData(adapterObj, sourceWorkspace, previousChecksum, diagnostic)
 % Each time getData is called on the same source, sourceWorkspace is the same as
 % the last time it was called. Clear it to make sure no old variables exist.
 clearAllVariables(sourceWorkspace);
 dom = xmlread(adapterObj.source);
 tree = dom.getFirstChild;
 if tree.hasChildNodes
 item = tree.getFirstChild;
 while ~isempty(item)
 name = item.getNodeName.toCharArray';
 if isvarname(name)
 value = item.getTextContent;
 setVariable(sourceWorkspace, name, str2num(value));
 end
 item = item.getNextSibling;
 end
 end
end

Version History
Introduced in R2022b

See Also
close | getAdapterName | getSectionNames | getSupportedExtensions | isSourceValid |
open | supportsReading

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

5 Classes

5-268

getSectionNames
Class: Simulink.data.adapters.BaseMatlabFileAdapter
Package: Simulink.data.adapters

Return logical sections for external file

Syntax
sections = getSectionNames(adapterObj,sourceFile)

Description
sections = getSectionNames(adapterObj,sourceFile) returns the sections for the external
source file. The default implementation returns the adapter name. You can override this method to
define logical sections for the data in the external file.

Custom file adapters must define behavior for the getAdapterName, getSupportedExtensions,
and getData methods. In addition, you can choose to override the isSourceValid,
supportsReading, getSectionNames, getCurrentChecksum, open, and close methods.

Input Arguments
adapterObj — Custom file adapter
Simulink.data.adapters.BaseMatlabFileAdapter subclass object

Custom file adapter, specified as an object of a class that derives from the
Simulink.data.adapters.BaseMatlabFileAdapter base class.
Example: myCustomFileAdapter

sourceFile — External source file
character array | string

External source file, specified as a character array or string.

Output Arguments
sections — Section names for the external file
array of strings | cell array of character vectors

Section names for the external file, returned as an array of strings or a cell array of character
vectors.

Version History
Introduced in R2022b

 getSectionNames

5-269

See Also
close | getAdapterName | getCurrentChecksum | getData | getSupportedExtensions |
isSourceValid | open | supportsReading

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

5 Classes

5-270

getSupportedExtensions
Class: Simulink.data.adapters.BaseMatlabFileAdapter
Package: Simulink.data.adapters

Return supported file extensions for file adapter

Syntax
fileExtensions = getSupportedExtensions(adapterObj)

Description
fileExtensions = getSupportedExtensions(adapterObj) returns the file extensions that
are supported by the file adapter.

Custom file adapters must define behavior for the getAdapterName, getSupportedExtensions,
and getData methods. In addition, you can choose to override the isSourceValid,
supportsReading, getSectionNames, open, and close methods.

Input Arguments
adapterObj — Custom file adapter
Simulink.data.adapters.BaseMatlabFileAdapter subclass object

Custom file adapter, specified as an object of a class that derives from the
Simulink.data.adapters.BaseMatlabFileAdapter base class.
Example: myCustomFileAdapter

Output Arguments
fileExtensions — Supported file extensions for adapter
array of strings | cell array of character vectors

List of supported file extensions for the custom file adapter, returned as a string array or cell array of
character vectors.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Examples

 getSupportedExtensions

5-271

Get Supported File Extensions for Custom File Adapter

Write the function definition for the getSupportedExtensions method to return the list of
supported file extensions for your custom adapter. Simulink uses this function to determine if the
adapter can be used to load data from a particular external source file.

In this example, the getSupportedExtensions method for an XML file adapter returns only XML in
its list of supported extensions.

function fileExtensions = getSupportedExtensions(adapterObj)
 fileExtensions = {'.XML'};
end

Version History
Introduced in R2022b

See Also
close | getAdapterName | getData | getSectionNames | isSourceValid | open |
supportsReading

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

5 Classes

5-272

isSourceValid
Class: Simulink.data.adapters.BaseMatlabFileAdapter
Package: Simulink.data.adapters

Validates external file

Syntax
tf = isSourceValid(adapterObj,sourceFile)

Description
tf = isSourceValid(adapterObj,sourceFile) validates the external source file. The default
implementation validates that the source file exists.

Custom file adapters must define behavior for the getAdapterName, getSupportedExtensions,
and getData methods. In addition, you can choose to override the isSourceValid,
supportsReading, getSectionNames, getCurrentChecksum, open, and close methods.

Input Arguments
adapterObj — Custom file adapter
Simulink.data.adapters.BaseMatlabFileAdapter subclass object

Custom file adapter, specified as an object of a class that derives from the
Simulink.data.adapters.BaseMatlabFileAdapter base class.
Example: myCustomFileAdapter

sourceFile — External source file
character array | string

External source file, specified as a character array or string.

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical or an array of logical values.

Version History
Introduced in R2022b

See Also
close | getAdapterName | getCurrentChecksum | getData | getSectionNames |
getSupportedExtensions | open | supportsReading

 isSourceValid

5-273

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

5 Classes

5-274

open
Class: Simulink.data.adapters.BaseMatlabFileAdapter
Package: Simulink.data.adapters

Code that executes when connection to external file is opened

Syntax
open(adapterObj,sourceFile,section)

Description
open(adapterObj,sourceFile,section) executes when the connection to an external source
file is first opened. By default, the source file and section name are saved as the properties source
and section in the adapter object.

Custom file adapters must define behavior for the getAdapterName, getSupportedExtensions,
and getData methods. In addition, you can choose to override the isSourceValid,
supportsReading, getSectionNames, getCurrentChecksum, open, and close methods.

Input Arguments
adapterObj — Custom file adapter
Simulink.data.adapters.BaseMatlabFileAdapter subclass object

Custom file adapter, specified as an object of a class that derives from the
Simulink.data.adapters.BaseMatlabFileAdapter base class.
Example: myCustomFileAdapter

sourceFile — External source file
character array | string

External source file, specified as a character array or string.

section — Section of external source file
character array | string

Section of the external source file, specified as a character array or string. The section name must be
one of the sections returned by the getSectionNames method. The default implementation of the
getSectionNames method returns the adapter name.

Version History
Introduced in R2022b

See Also
close | getAdapterName | getCurrentChecksum | getData | getSectionNames |
getSupportedExtensions | isSourceValid | supportsReading

 open

5-275

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

5 Classes

5-276

supportsReading
Class: Simulink.data.adapters.BaseMatlabFileAdapter
Package: Simulink.data.adapters

Check if external file has read attributes

Syntax
tf = supportsReading(adapterObj,sourceFile)

Description
tf = supportsReading(adapterObj,sourceFile) checks if the external source file has read
attributes. The default implementation uses the isSourceValid method to check that the file exists
and is in the correct format, then checks that the file has read attributes. You can override this
method so that multiple adapters can read the same file type but with different headers.

Custom file adapters must define behavior for the getAdapterName, getSupportedExtensions,
and getData methods. In addition, you can choose to override the isSourceValid,
supportsReading, getSectionNames, getCurrentChecksum, open, and close methods.

Input Arguments
adapterObj — Custom file adapter
Simulink.data.adapters.BaseMatlabFileAdapter subclass object

Custom file adapter, specified as an object of a class that derives from the
Simulink.data.adapters.BaseMatlabFileAdapter base class.
Example: myCustomFileAdapter

sourceFile — External source file
character array | string

External source file, specified as a character array or string.

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical or an array of logical values.

Examples

Check That External XML File Has Correct Header Information

Write the function definition for the supportsReading method to determine if the external source
file supports reading.

 supportsReading

5-277

In this example, the supportsReading method reads data from an XML file with a format similar to
the following.

<customerData>
<x>10</x>
<y>15</y>
</customerData>

The method checks that XML file has read attributes and that it contains the appropriate header
information for this adapter.

function retVal = supportsReading(adapterObj, source)
 retVal = false;
 % Call base class method to ensure file has read attributes
 if supportsReading@Simulink.data.adapters.BaseMatlabFileAdapter(adapterObj,source)
 dom = xmlread(source);
 tree = dom.getFirstChild;
 if strcmp(tree.getNodeName, "customerData")
 retVal = true;
 end
 end
end

Version History
Introduced in R2022b

See Also
close | getAdapterName | getCurrentChecksum | getData | getSectionNames |
getSupportedExtensions | isSourceValid | open

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

5 Classes

5-278

Simulink.dialog.Button class
Package: Simulink.dialog
Superclasses: Simulink.dialog.Control

Create instance of button dialog control

Description
The Simulink.dialog.Button class is a handle class that enables you to manage button dialog
control.

The Simulink.dialog.Button class is a handle class.

Properties
Name — Identifier of button dialog control
'Control' (default) | string scalar | character vector

Identifier of the button dialog control, specified as a string scalar or character vector.
Example: 'Control1'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Prompt — Display text of button dialog control
string scalar | character vector

Display text of the button dialog control, specified as a string scalar or character vector.
Example: 'Signal 1'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Callback — MATLAB code executed when you click button dialog control
character vector

MATLAB code executed when you click the button dialog control, specified as a character vector.

 Simulink.dialog.Button class

5-279

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char

FilePath — Filename of image
string scalar | character vector

Filename of image shown on the button dialog control, specified as a string scalar or character
vector. The file must be located on the MATLAB path.
Example: 'model.png'
Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Row — Placement of button dialog control
'new' (default) | 'current'

Placement of button dialog control, specified as 'new' or 'current'.

• 'new' — Place the button dialog control in a new row on the mask dialog box.
• 'current' — Place the button dialog control in the same row as the previous dialog control on

the mask dialog box.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Enabled — Option to edit button on mask dialog box
'on' (default) | 'off'

Option to edit the button on the mask dialog box, specified as 'on' or 'off'.
Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

5 Classes

5-280

Visible — Option to display button on mask dialog box
'on' (default) | 'off'

Option to display the button on the mask dialog box, specified as 'on' or 'off'.
Example: 'on'
Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

HorizontalStretch — Option to control horizontal stretch of button dialog control
'on' (default) | 'off'

Option to control the horizontal stretch of the button dialog control when you resize the mask dialog
box, specified as 'on' or 'off'.
Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

Tooltip — Informative message
string scalar | character vector

Informative message that appears when you point to the button on the mask dialog box, specified as a
string scalar or character vector.
Example: 'Click to select'
Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Alternatives
You can manage a button dialog control using the Parameters & Dialog pane in the Mask Editor
dialog box. For more information, see “Parameters & Dialog Pane”.

Version History
Introduced in R2013b

 Simulink.dialog.Button class

5-281

See Also
Simulink.dialog.Control | “Create Block Masks”

5 Classes

5-282

Simulink.dialog.Container class
Package: Simulink.dialog
Superclasses: Simulink.dialog.Control

Create instance of container dialog control

Description
The Simulink.dialog.Container class is a handle class that enables you to manage container
dialog controls.

The Simulink.dialog.Container class is a handle class.

Properties
Name — Identifier of container dialog control
'Container' (default) | string scalar | character vector

Identifier of the container dialog control, specified as a string scalar or character vector.
Example: 'Container1'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Enabled — Option to edit parameters in mask dialog box
'on' (default) | 'off'

Option to edit parameters in the mask dialog box, specified as 'on' or 'off'.

• 'on' — You can edit the parameters within the container on a mask dialog box.
• 'off' — You cannot edit the parameters within the container on a mask dialog box.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

Visible — Option to display container on mask dialog box
'on' (default) | 'off'

Option to display the container on the mask dialog box, specified as 'on' or 'off'.

 Simulink.dialog.Container class

5-283

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

AlignPrompts — Option to justify text boxes of edit and popup parameters within
container dialog control
'off' (default) | 'on'

Option to justify the text boxes of edit and popup parameters within the container dialog control,
specified as 'on' or 'off'.

• 'on' — Justify text boxes within the container dialog based on the longest parameter prompt.
• 'off' — Do not justify text boxes.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

DialogControls — Child dialog controls of container dialog control
character vector

Child dialog controls of the container dialog control, specified as a character vector.
Example: '[1×2 Simulink.dialog.parameter.Edit]'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char

Tooltip — Informative message
string scalar | character vector

Informative message that appears when you point to an instance of the container dialog control,
specified as a string scalar or character vector.
Example: 'Signal Attributes'

5 Classes

5-284

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Methods
Public Methods
addDialogControl Add dialog control elements to mask dialog box
getDialogControl Search for a specific dialog control on the mask
removeDialogControl Remove dialog control element from mask dialog box

Alternatives
You can manage container dialog control elements using the Property editor in the Mask Editor
dialog box. For more information, see “Property editor”.

Version History
Introduced in R2013b

See Also
Simulink.dialog.Group | Simulink.dialog.Panel | Simulink.dialog.Tab |
Simulink.dialog.TabContainer | Simulink.dialog.Control | “Create Block Masks”

 Simulink.dialog.Container class

5-285

addDialogControl
Class: Simulink.dialog.Container
Package: Simulink.dialog

Add dialog control elements to mask dialog box

Syntax
successIndicator = maskObj.addDialogControl(controlType,controlIdentifier)
successIndicator = maskObj.addDialogControl(Name,Value)

Description
successIndicator = maskObj.addDialogControl(controlType,controlIdentifier)
adds dialog control elements like text, hyperlinks, or tabs to mask dialog box. First get the mask
object and assign it to the variable maskObj

successIndicator = maskObj.addDialogControl(Name,Value) specifies the Name and
Value arguments for an element on the mask dialog box. You can specify multiple Name-Value pairs.

Input Arguments
controlType — Value type of dialog control element
character vector

Type of dialog control element, specified

• 'panel'
• 'group'
• 'tabcontainer'
• 'tab'
• 'collapsiblepanel'
• 'text'
• 'image'
• 'hyperlink'
• 'pushbutton'

controlIdentifer — Unique identifier for the element
character vector

Specifies the programmatic identifier for the element of mask dialog box. Use a name that is unique
and does not have space between words. For more information, see “Variable Names”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes (' ') and is case-sensitive.

5 Classes

5-286

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Type

Type of control that is used to specify the value of this dialog control element. Type is a required
argument. The permitted values are 'panel', 'group', 'tabcontainer', 'tab',
'collapsiblepanel', 'text', 'image', 'hyperlink', and 'pushbutton'. If the parent dialog
control type is 'tabcontainer', the child dialog control must be 'tab'.

Name

The identifier of the dialog control element. Name is a required argument. This field is available for
all dialog control types.

Prompt

Text that is displayed in the dialog control element on the Mask dialog box. This field is available for
all except for panel and image dialog control types.

Default: empty

Enabled

Option to specify whether you can set value for the dialog control element. This field is available for
all dialog control types.

Default: 'on'

Visible

Option to set whether the dialog control element is hidden or visible to the user. This field is available
for all dialog control types.

Default: 'on'

Callback

Container for MATLAB code that executes when you edit the dialog control element and click Apply.
This field is available only for the hyperlink and push button dialog control types.

Default: empty

Row

Option to set whether the dialog control is placed in the new row or the same row. This field is
available for all dialog control types.

Default: empty

FilePath

Contains the path to an image file. This field is available for image, and push button dialog control
types.

Default: empty

 addDialogControl

5-287

Container

Option to specifies a container for the child dialog control. The permitted values are the names of
'panel', 'group', and 'tab' dialog controls.

Examples

Add Dialog Control Elements to Mask Dialog Box

Get mask object and add dialog control element to it.

% Get mask object on model Engine

maskObj = Simulink.Mask.get('Engine/Gain');

% Add hyperlink to mask dialog box

maskLink = maskObj.addDialogControl('hyperlink','link_1');
maskLink.Prompt = 'Mathworks Home Page';
maskLink.Callback = 'web(''www.mathworks.com'')'

% Alternative method to add hyperlink

maskLink = maskObj.addDialogControl('hyperlink','link_2');
maskLink.Prompt = 'www.mathworks.com';

% Add text to mask dialog box

maskText = maskObj.addDialogControl('text','text_tag');
maskText.Prompt = 'Enable range checking';

% Add button to mask dialog box

maskButton = maskObj.addDialogControl('pushbutton','button_tag');
maskButton.Prompt = 'Compute';

Add Dialog Control Elements to Mask Dialog Box Tabs

Create tabs on the mask dialog box and add elements to these tabs.

% Get mask object on a block named 'GainBlock'

maskObj = Simulink.Mask.get('GainBlock/Gain');

% Create a tab container

maskObj.addDialogControl('tabcontainer','allTabs');
tabs = maskObj.getDialogControl('allTabs');

% Create tabs and name them

maskTab1 = tabs.addDialogControl('tab','First');
maskTab1.Prompt = 'First tab';

5 Classes

5-288

maskTab2 = tabs.addDialogControl('tab','Second');
maskTab2.Prompt = 'Second tab';

% Add elements to one of the tabs

firstTab = tabs.getDialogControl('First');
firstTab.addDialogControl('text','textOnFirst');
firstTab.getDialogControl('textOnFirst').Prompt = 'Tab one';

Add Dialog Control Element Using Name-Value Pair

Add dialog control element and specify values for it

% Get mask object on model Engine

maskObj = Simulink.Mask.get('Engine/Gain');

% Add a dialog box and specify values for it

maskDialog = maskObj.addDialogControl('Type','text',...
'Prompt','hello','Visible','off');

Version History
Introduced in R2014a

See Also
Simulink.dialog.Container | “Create Block Masks”

 addDialogControl

5-289

Simulink.dialog.Container.getDialogControl
Package: Simulink.dialog

Search for a specific dialog control on the mask

Syntax
[control,phandle] = handle.getDialogControl(controlIdentifier)

Description
[control,phandle] = handle.getDialogControl(controlIdentifier), search for a
specific child dialog control recursively on the mask dialog box.

Examples

Find a dialog control

• Find a dial dialog control on the mask dialog box. maskObj is the handle to the mask object. The
getDialogControl method returns the handle to the dialog control (control) and handle to
the parent dialog control (phandle).

[hdlgctrl, phandle] = maskobj.getDialogControl('Parameter4')

hdlgctrl =

 Dial with properties:

 Name: 'Parameter4'
 Scale: 'linear'
 Row: 'new'
 HorizontalStretch: 'on'
 Tooltip: ''

phandle =

 Tab with properties:

 Name: 'Container6'
 Prompt: 'Main Controls'
 Enabled: 'on'
 Visible: 'on'
 AlignPrompts: 'off'
 DialogControls: [1×3 Simulink.dialog.parameter.Control]

Input Arguments
controlIdentifier — Name of the dialog control
empty (default)

5 Classes

5-290

Name of the dialog control being searched on the mask dialog box specified as a character vector.
Data Types: char | string

Output Arguments
control — Handle to the dialog control
empty (default)

Target dialog control being searched on the mask dialog box.
Data Types: char | string

phandle — Handle to the parent dialog control
empty (default)

Parent of the dialog control being searched mask dialog box.
Data Types: char | string

Version History
Introduced in R2014a

See Also
Simulink.dialog.Container | “Create Block Masks”

 Simulink.dialog.Container.getDialogControl

5-291

removeDialogControl
Class: Simulink.dialog.Container
Package: Simulink.dialog

Remove dialog control element from mask dialog box

Syntax
successIndicator = maskVariable.removeDialogControl(controlIdentifier)

Description
successIndicator = maskVariable.removeDialogControl(controlIdentifier) removes
dialog control element, specified by controlIndentifier, like text, hyperlinks, or tabs from a mask
dialog box. First get the mask object and assign it to the variable maskVariable.

Successful removal of a dialog control element returns a Boolean value of 1.

Input Arguments
controlIdentifer — Unique identifier for the element
character vector

Programmatic identifier for the dialog control element of mask dialog box, specified as a character
vector.

Examples

Remove Dialog Control Element from Mask Dialog Box

% Get mask object on the Gain block in the model Engine.

maskObj = Simulink.Mask.get('Engine/Gain');

% Remove element named AllTab from mask dialog box.

maskTab = maskObj.removeDialogControl('AllTab');

Version History
Introduced in R2013b

See Also
Simulink.dialog.Container | “Create Block Masks”

5 Classes

5-292

Simulink.dialog.Control class
Package: Simulink.dialog

Create instance of dialog control

Description
The Simulink.dialog.Control class is a handle class that enables you to manage different types
of controls such as parameter, display, and action controls.

The Simulink.dialog.Control class is a handle class.

Properties
Name — Identifier of dialog control
string scalar | character vector

Identifier of the dialog control, specified as a string scalar or character vector.
Example: 'Container1', 'Parameter2'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Tooltip — Informative message
string scalar | character vector

Informative message that appears when you point to an instance of the dialog control, specified as a
string scalar or character vector.
Example: 'Open to View'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Alternatives
You can manage dialog control elements using the Parameters & Dialog pane in the Mask Editor
dialog box. For more information, see “Parameters & Dialog Pane”.

 Simulink.dialog.Control class

5-293

Version History
Introduced in R2013b

See Also
Simulink.dialog.Button | Simulink.dialog.Hyperlink | Simulink.dialog.Image |
Simulink.dialog.Text | Simulink.dialog.parameter.Control |
Simulink.dialog.Container | “Create Block Masks”

5 Classes

5-294

Simulink.dialog.Group class
Package: Simulink.dialog
Superclasses: Simulink.dialog.Container, Simulink.dialog.Control

Create instance of group dialog control

Description
The Simulink.dialog.Group class is a handle class that enables you to manage dialog control
elements within groups on a mask dialog box. To manage dialog control elements in groups, get the
mask object and use the methods of the Simulink.dialog.Container class.

The Simulink.dialog.Group class is a handle class.

Properties
Name — Identifier of group dialog control
'Container' (default) | string scalar | character vector

Identifier of the group dialog control, specified as a string scalar or character vector.
Example: 'Container1'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Prompt — Display text of group dialog control
string scalar | character vector

Display text of the group dialog control, specified as a string scalar or character vector.
Example: 'Signal Attributes'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Row — Placement of group dialog control
'new' (default) | 'current'

Placement of group dialog control, specified as 'new' or 'current'.

 Simulink.dialog.Group class

5-295

• 'new' — Place the group dialog control in a new row on the mask dialog box.
• 'current' — Place the group dialog control in the same row as the previous dialog control on

the mask dialog box.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Enabled — Option to edit parameters in mask dialog box
'on' (default) | 'off'

Option to edit parameters in the mask dialog box, specified as 'on' or 'off'.

• 'on' — You can edit the parameters within the group on a mask dialog box.
• 'off' — You cannot edit the parameters within the group on a mask dialog box.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

Visible — Option to display group on mask dialog box
'on' (default) | 'off'

Option to display the group on the mask dialog box, specified as 'on' or 'off'.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

AlignPrompts — Option to justify text boxes of edit and popup parameters within group
dialog control
'off' (default) | 'on'

Option to justify the text boxes of edit and popup parameters within the group dialog control,
specified as 'on' or 'off'.

• 'on' — Justify text boxes within the group dialog based on the longest parameter prompt.
• 'off' — Do not justify text boxes.

5 Classes

5-296

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

DialogControls — Child dialog controls of group dialog control
character vector

Child dialog controls of the group dialog control, specified as a character vector.
Example: '[1×2 Simulink.dialog.Control]'

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

Data Types: char

Tooltip — Informative message
string scalar | character vector

Informative message that appears when you point to an instance of the group dialog control, specified
as a string scalar or character vector.
Example: 'Type-A Signals'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Methods
Public Methods
addDialogControl Add dialog control elements to mask dialog box
getDialogControl Search for a specific dialog control on the mask
removeDialogControl Remove dialog control element from mask dialog box

Alternatives
You can manage group dialog control elements using the Parameters & Dialog pane in the Mask
Editor dialog box. For more information, see “Parameters & Dialog Pane”.

 Simulink.dialog.Group class

5-297

Version History
Introduced in R2013b

See Also
Simulink.dialog.Panel | Simulink.dialog.Tab | Simulink.dialog.TabContainer |
Simulink.dialog.Container | Simulink.dialog.Control | “Create Block Masks”

5 Classes

5-298

Simulink.dialog.Hyperlink class
Package: Simulink.dialog
Superclasses: Simulink.dialog.Control

Create instance of hyperlink dialog control

Description
The Simulink.dialog.Button class is a handle class that enables you to manage the hyperlink
dialog control.

The Simulink.dialog.Hyperlink class is a handle class.

Properties
Name — Identifier of hyperlink dialog control
'Control' (default) | string scalar | character vector

Identifier of the hyperlink dialog control, specified as a string scalar or character vector.
Example: 'Control1'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Prompt — Display text of hyperlink dialog control
'Add text here and link in callback' (default) | string scalar | character vector

Display text of the hyperlink dialog control, specified as a string scalar or character vector.
Example: 'Signal 1'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Callback — MATLABcode executed when you click hyperlink dialog control
character vector

MATLAB code executed when you click the hyperlink dialog control, specified as a character vector.

 Simulink.dialog.Hyperlink class

5-299

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char

Row — Placement of hyperlink dialog control
'new' (default) | 'current'

Placement of hyperlink dialog control, specified as 'new' or 'current'.

• 'new' — Place the hyperlink dialog control in a new row on the mask dialog box.
• 'current' — Place the hyperlink dialog control in the same row as the previous dialog control on

the mask dialog box.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Enabled — Option to edit hyperlink in mask dialog box
'on' (default) | 'off'

Option to edit the hyperlink on the mask dialog box, specified as 'on' or 'off'.

• 'on' — You can click the hyperlink on a mask dialog box.
• 'off' — You cannot click the hyperlink on a mask dialog box.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

Visible — Option to display hyperlink on mask dialog box
'on' (default) | 'off'

Option to display the hyperlink on the mask dialog box, specified as 'on' or 'off'.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

5 Classes

5-300

Data Types: logical

HorizontalStretch — Option to control horizontal stretch of hyperlink dialog control
'on' (default) | 'off'

Option to control the horizontal stretch of the hyperlink dialog control when you resize the mask
dialog box, specified as 'on' or 'off'.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

Tooltip — Informative message
string scalar | character vector

Informative message that appears when you point to an instance of the hyperlink dialog control,
specified as a string scalar or character vector.
Example: 'Click to select'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Alternatives
You can manage a hyperlink dialog control using the Parameters & Dialog pane in the Mask Editor
dialog box. For more information, see “Parameters & Dialog Pane”.

Version History
Introduced in R2013b

See Also
Simulink.dialog.Control | “Create Block Masks”

 Simulink.dialog.Hyperlink class

5-301

Simulink.dialog.Image class
Package: Simulink.dialog

Create an image dialog control

Description
Use an instance of Simulink.dialog.Image class to add an image dialog control.

Properties
Name

Uniquely identifies the dialog control and is a required field.

Type: character vector

FilePath

Specifies the path to the image file to be displayed on the dialog box.

Type: character vector

Default: empty

Row

Specifies whether dialog control is placed on the current row or on a new row.

Type: character vector

Value: 'current'|'new'

Default: 'new'

Enabled

Indicates whether image is active on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

Visible

Indicates whether image is displayed on the mask dialog box.

Type: boolean

Value: 'on'|'off'

5 Classes

5-302

Default: 'on'

See Also
Simulink.dialog.Control | “Create Block Masks”

 Simulink.dialog.Image class

5-303

Simulink.dialog.ListboxControl class
Package: Simulink.dialog
Superclasses: Simulink.dialog.Control

Control list box programmatically

Description
The Simulink.dialog.ListBoxControl class is a handle class that enables you to perform the
following operations:

• Get selected items from the list box.
• Set selected items in the list box.

The Simulink.dialog.ListboxControl class is a handle class.

Properties
Name — Identifier of list box dialog control
'Parameter' (default) | string scalar | character vector

Identifier of the list box dialog control, specified as a string scalar or character vector.
Example: 'Parameter1'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Prompt — Display text of list box dialog control
string scalar | character vector

Display text of the list box dialog control, specified as a string scalar or character vector.
Example: 'Signal Types'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Row — Placement of list box dialog control
'new' (default) | 'current'

5 Classes

5-304

Placement of list box dialog control, specified as 'new' or 'current'.

• 'new' — Place the list box dialog control in a new row on the mask dialog box.
• 'current' — Place the list box dialog control in the same row as the previous dialog control on

the mask dialog box.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Enabled — Option to edit parameters in mask dialog box
'on' (default) | 'off'

Option to edit the parameters in the mask dialog box, specified as 'on' or 'off'.

• 'on' — You can select the options in the list box dialog control on a mask dialog box.
• 'off' — You cannot select the options in the list box dialog control on a mask dialog box.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

Visible — Option to display list box on mask dialog box
'on' (default) | 'off'

Option to display the list box on the mask dialog box, specified as 'on' or 'off'.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

HorizontalStretch — Option to control horizontal stretch of list box dialog control
'on' (default) | 'off'

Option to control the horizontal stretch of the list box dialog control when you resize the mask dialog
box, specified as 'on' or 'off'.

 Simulink.dialog.ListboxControl class

5-305

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

Tooltip — Informative message
string scalar | character vector

Informative message that appears when you point to an instance of the list box dialog control,
specified as a string scalar or character vector.
Example: 'Select correct options'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Multiselect — Selection of multiple values
'on' (default) | 'off'

Selection of multiple values, specified as 'on' or 'off'.

• 'on' — You can select multiple values in the list box list.
• 'off' — You cannot select multiple values in the list box list.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

Type Options — List of options
cell array

List of options shown in the list box, specified as a cell array.
Example: Analog Signal, Digital Signal

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

5 Classes

5-306

Data Types: cell

Callback — MATLAB code executed when you select list box options
character vector

MATLAB code executed when you select the list box options, specified as a character vector.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char

Methods
Public Methods
getSelectedItems Get the values of selected items from a list box
setSelectedItems Set values for a list box

Alternatives
You can manage a list box dialog control using the Property editor in the Mask Editor dialog box.
For more information, see “Property editor”.

Version History
Introduced in R2019a

See Also
Topics
“Control Masks Programmatically”
“Create Block Masks”

 Simulink.dialog.ListboxControl class

5-307

getSelectedItems
Class: Simulink.dialog.ListboxControl
Package: Simulink.dialog

Get the values of selected items from a list box

Syntax
getItems = listboxControl.getSelectedItems

Description
getItems = listboxControl.getSelectedItems gets the information of the selected items
from the list box.

Output Arguments
getItems — value of selected items
cell array

Value of the selected items, returned as a cell array.

Examples
% Get block mask handle
maskObj = Simulink.Mask.get(gcb);

% Get listbox handle
listboxControl = maskObj.getDialogControl('Control2');

% Get selected items
getItems = listboxControl.getSelectedItems;

getItems =
 1×2 cell array
 {'Hello', 'World'}

Version History
Introduced in R2019a

See Also
Simulink.Mask | “Create Block Masks”

5 Classes

5-308

setSelectedItems
Class: Simulink.dialog.ListboxControl
Package: Simulink.dialog

Set values for a list box

Syntax
setItems = listboxControl.setSelectedItems({string1','string2',...})

Description
setItems = listboxControl.setSelectedItems({string1','string2',...}) sets the
values for the selected items in the list box.

Input Arguments
listControl — List box handle
table object

Handle to the list box, specified as an object. You can use the getDialogControl command to get
the list box handle. For more information, see Simulink.dialog.Container.getDialogControl.

For example, litboxControl = maskObj.getDialogControl('listboxname'). Here,
maskObj is the mask object and listboxname is the name of the list box.
Data Types: cell array

string1 — value to be set
string

Value to be set for selected items in the list box

For example, 'Hello'.

Examples
% Get block mask handle
maskObj = Simulink.Mask.get(gcb);

% Get listbox handle
listboxControl = maskObj.getDialogControl('Control2');

% Set selected items
listboxControl.setSelectedItems({'Hello','World'});

Version History
Introduced in R2019a

 setSelectedItems

5-309

See Also
Simulink.Mask | “Create Block Masks”

5 Classes

5-310

Simulink.dialog.LookuptableControl class
Package: Simulink.dialog

Control mask lookup tables programmatically

Description
Create an instance of Simulink.dialog.LookupTableControl to add values for table and
breakpoints data in the lookup table control.

Properties
Public Properties

Name — Unique name
(default) | empty

Specifies unique name for the LUT control.
Data Types: String

Prompt — Display text
(default) | empty

Specifies the text displayed on the lookup table control.
Data Types: String

Row — Placement of the LUT control
(default) | new

Specifies whether dialog control is placed on the current row or on a new row.
Data Types: Character vector

Enabled — Is LUT control active
(default) | on

Indicates whether lookup table control is active on the mask dialog box.
Data Types: Logical

Visible — Visibility of LUT control on mask dialog
(default) | on

Indicates whether lookup table control is displayed on the mask dialog box.
Data Types: Logical

HorizontalStretch — Resizing of LUT control along the dialog
(default) | on

Indicates if lookup table control gets resized along with the dialog.

 Simulink.dialog.LookuptableControl class

5-311

Data Types: Logical

Tooltip — Tooltip text
(default) | empty

Tool tip text for the lookup table control.
Data Types: String

Table — Table data class
(default) | empty

A class that holds the properties of table data.
Data Types: String

Breakpoints — Breakpoint data set class
(default) | empty

A class that holds the properties of an array of breakpoint data.
Data Types: String

LookupTableObject — Name of the object holding data
(default) | empty

Specifies the name of the Simulink.LookupTable object in the base workspace or model
workspace that holds the table and breakpoint data.
Data Types: String

DataSpecification — Value array or table object
(default) | empty

Indicates if the table and breakpoints data is specified explicitly or through a lookup table object.
Data Types: String

Examples

Add Table and Breakpoint Data

new_system('LUTexample');
add_block('built-in/subsystem','LUTexample/subsystem');
save_system;
open_system('LUTexample');
maskObj = Simulink.Mask.create(gcb);
bp1 = maskObj.addParameter('Name', 'torque', 'Prompt', 'Torque:', 'Type', 'edit');
bp2 = maskObj.addParameter('Name', 'speed', 'Prompt', 'Engine speed:', 'Type', 'edit');
table = maskObj.addParameter('Name', 'fuelflowtable', 'Prompt', 'Fuel Flow Map:', 'Type', 'edit');
lutControl = maskObj.addDialogControl('Name', 'fuelflowlut', 'Type', 'lookuptablecontrol');
lutControl.Table.Name = 'fuelflowtable';
lutControl.Table.Unit = 'kg/s';
lutControl.Breakpoints(1).Name = 'torque';
lutControl.Breakpoints(1).Unit ='Nm';
lutControl.Breakpoints(1).FieldName = 'Torque';
lutControl.Breakpoints(2).Name = 'speed';

5 Classes

5-312

lutControl.Breakpoints(2).FieldName = 'Speed';
save_system;

Version History
Introduced in R2021b

See Also
Simulink.dialog.LookupTableControl.Table |
Simulink.dialog.LookupTableControl.Breakpoints

Topics
“Visualize and Plot N-Dimensional Data Using Mask Lookup Table Control”

 Simulink.dialog.LookuptableControl class

5-313

Simulink.dialog.LookuptableControlbreakpoints
class
Package: Simulink.dialog

Control breakpoint data set for mask lookup table

Description
Create an instance of Simulink.dialog.LookupTableControl.Breakpoints to specify the
properties of the breakpoint data set in the lookup table control. The value of the Breakpoints
property is an array of Simulink.dialog.LookupTableControl.Breakpoints objects. Each
embedded object represents one breakpoint set.

Properties
Name — Name of the parameter
(default) | empty

Name of the parameter specifying the breakpoint data.
Data Types: String

Units — Units for the breakpoint data
(default) | empty

Specifies the units for the breakpoint data.
Data Types: String

FieldName — Display name
(default) | empty

Specifies the display name for the breakpoint data.
Data Types: String

Min — Minimum value
(default) | empty

Control the minimum value that can be specified for any cell in the table. This is a read only field and
cannot be set through lookup table control.
Data Types: String

Max — Maximum value
(default) | empty

Control the maximum value that can be specified for any cell in the table. This is a read only field and
cannot be set through lookup table control.
Data Types: String

5 Classes

5-314

Examples
Add Breakpoint Data Set

Set breakpoint properties of Dimension 1.
 >>lutControl.Breakpoints(1).Name = 'torque';
 >>lutControl.Breakpoints(1).Unit = 'Nm';
 >>lutControl.Breakpoints(1).FieldName = 'Torque';

Set Breakpoint properties of Dimension 2
 >>lutControl.Breakpoints(2).Name = 'speed';
 >>lutControl.Breakpoints(2).Unit = 'rpm';
 >>lutControl.Breakpoints(2).FieldName = 'Speed';

Version History
Introduced in R2021b

See Also
Simulink.dialog.LookupTableControl | Simulink.dialog.LookupTableControl.Table

Topics
“Visualize and Plot N-Dimensional Data Using Mask Lookup Table Control”

 Simulink.dialog.LookuptableControlbreakpoints class

5-315

Simulink.dialog.LookuptableControlTable class
Package: Simulink.dialog

Control table data for mask lookup table

Description
Create an instance of Simulink.dialog.LookupTableControl.Table to specify the properties of
the table data in the lookup table control.

Properties
Public Properties

Name — Name of the parameter
(default) | empty

Name of the parameter specifying the table data.
Data Types: String

Units — Units for table data
(default) | empty

Specifies the units for the table data.
Data Types: String

FieldName — Display name
(default) | empty

Specifies the display name for the table data.
Data Types: String

Min — Minimum value
(default) | empty

Control the minimum value that can be specified for any cell in the table. This is a read only field and
cannot be set through lookup table control.
Data Types: String

Max — Maximum value
(default) | empty

Control the maximum value that can be specified for any cell in the table. This is a read only field and
cannot be set through lookup table control.
Data Types: String

5 Classes

5-316

Examples
Add Table Data

>>lutControl.Table.Name = 'fuelflowtable';
>>lutControl.Table.Unit = 'kg/s' ;
>>lutControl.Table.FieldName = 'Fuel Flow';

Version History
Introduced in R2021b

See Also
Simulink.dialog.LookupTableControl |
Simulink.dialog.LookupTableControl.Breakpoints

Topics
“Visualize and Plot N-Dimensional Data Using Mask Lookup Table Control”

 Simulink.dialog.LookuptableControlTable class

5-317

Simulink.dialog.Panel class
Package: Simulink.dialog

Create an instance of a panel dialog control

Description
Use an instance of Simulink.dialog.Panel class to create an instance of panel dialog control.

Properties
Name

Uniquely identifies the panel dialog control and is a required field.

Type: character vector

Row

Specifies whether panel is placed on the current row or on a new row.

Type: character vector

Values: 'current'|'new'

Default: 'new'

Enabled

Specifies whether panel is active on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

Visible

Specifies whether panel is displayed on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

DialogControls

Specifies the child dialog controls contained in the panel.

Type: Simulink.dialog.Control

5 Classes

5-318

Default: Empty array

Methods
addDialogControl Add dialog control elements to mask dialog box
removeDialogControl Remove dialog control element from mask dialog box

See Also
Simulink.dialog.Group | Simulink.dialog.Tab | Simulink.dialog.TabContainer |
Simulink.dialog.Container | Simulink.dialog.Control | “Create Block Masks”

 Simulink.dialog.Panel class

5-319

Simulink.dialog.parameter.Control
Create a parameter dialog control

Description
Use an instance of Simulink.dialog.parameter.Control class to add a parameter dialog
control.

Properties
Name — Name of the dialog control
empty (default)

Uniquely identifies the dialog control element. This is a required field and has the same value as its
underlying parameter name.
Data Types: char

Row — Indicates if the dialog control is placed in a new row
new (default) | current

Specifies whether the dialog control is placed on the current row or on a new row.
Data Types: char

Version History
Introduced in R2014a

See Also
Simulink.dialog.Control | “Create Block Masks”

5 Classes

5-320

Simulink.dialog.parameter.CustomTable class
Package: Simulink.dialog.parameter

Create custom tables programmatically

Description
Instance of Simulink.dialog.parameter.CustomTable class on a mask object to perform the
following operations:

• Create and remove custom tables
• Insert, remove, and get values of columns.
• Insert, remove, swap, and add rows.

Methods
addColumn Add new column in the custom table
addRow Add a new row in the custom table
getChangedCells Get all the changed cells of a custom table
getColumn Get the column properties
getNumberOfColumns Get value of a table cell
getNumberOfRows Get the number of rows available in a custom table
getSelectedRows Get all the selected rows of a custom table
getTableCell Get the properties of a custom table cell
getValue Get value of a table cell
insertColumn Insert a column at a specific position in the custom table
insertRow Insert a row at a specific position in a custom table
removeColumn Remove an existing column from a specific position in a custom table
removeRow Remove an existing row from a specific position in a custom table
setTableCell Set the properties of a custom table cell
swapRows Swap two existing rows in a custom table

See Also
Topics
“Control Masks Programmatically”
“Create Block Masks”

 Simulink.dialog.parameter.CustomTable class

5-321

addColumn
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Add new column in the custom table

Syntax
tableControl.addColumn(Name, Value)

Description
tableControl.addColumn(Name, Value) adds a column with the specified properties in the
custom table.

Input Arguments
tableControl — Custom table handle
table object

Handle to the custom table, specified as an object. You can use the getDialogControl command to
get the custom table handle. For more information, see
Simulink.dialog.Container.getDialogControl.

Consider, for example, tableControl = maskObj.getDialogControl(TableName). Here,
maskObj is the mask object and TableName is the name of the custom table.
Data Types: char vector | cell array

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Add column.
tableControl.addColumn('Name', 'HDL Name', 'Type', 'edit');

Version History
Introduced in R2019a

5 Classes

5-322

See Also
Simulink.mask | “Create Block Masks”

 addColumn

5-323

addRow
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Add a new row in the custom table

Syntax
NewRow = tableControl.addRow(RowValue)

Description
NewRow = tableControl.addRow(RowValue) adds a row with the specified properties in the
custom table.

Input Arguments
tableControl — Custom table handle
table object

Handle to the custom table, specified as an object. You can use the getDialogControl command to
get the custom table handle. For more information, see
Simulink.dialog.Container.getDialogControl.

Consider, for example, tableControl = maskObj.getDialogControl(TableName). Here,
maskObj is the mask object and TableName is the name of the custom table.
Data Types: char vector

RowValue — Row Values for each column
table object

Row values specified for the number of columns available. If five values are provided for RowValue in
a custom table with five columns, one row is added to the table. If 10 row values are added for such a
table, then two rows are added.

Consider, for example, tableControl = maskObj.getDialogControl(TableName). Here,
maskObj is the mask object and TableName is the name of the custom table.
Data Types: char vector | cell array

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Add a row with six column values.
tableControl.addRow('sig5', 'Input', 'Inherit', 'Inherit', 'on', 'Inherit');

5 Classes

5-324

Version History
Introduced in R2019a

See Also
Simulink.mask | “Create Block Masks”

 addRow

5-325

getChangedCells
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Get all the changed cells of a custom table

Syntax
changedCells = tableControl.getChangedCells()

Description
changedCells = tableControl.getChangedCells() gets the properties of a cell in the custom
table.

Output Arguments
changedCells — Cells in a custom table whose values have been changed
cell array

Shows the changed cells in a custom table.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Get changed cells.
changedCell = tableControl.getChangedCells();

ans =

 1×4 cell array

 {1×2 double} {1×2 double} {1×2 double} {1×2 double}
Output: Cell Array
Input: None

Version History
Introduced in R2019a

See Also
Simulink.mask | “Create Block Masks”

5 Classes

5-326

getColumn
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Get the column properties

Syntax
FetchColumn = tableControl.getColumn(column)

Description
FetchColumn = tableControl.getColumn(column) fetches the information from the specified
column of the custom table.

Input Arguments
tableControl — Custom table handle
table object

Handle to the custom table, specified as an object. You can use the getDialogControl command to
get the custom table handle. For more information, see
Simulink.dialog.Container.getDialogControl.

Consider, for example, tableControl = maskObj.getDialogControl(TableName). Here,
maskObj is the mask object and TableName is the name of the custom table.
Data Types: integer

columnIndex — Column Index
string | character array

Index of the column in the custom table.

For example, '4'.

Output Arguments
fetchcolumn — Column properties
column object

Column object

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

 getColumn

5-327

% Get properties of column 3.
tableControl.getColumn(3);

ans =

 TableParamColumnInfo with properties:

 Name: 'Data Type'
 Type: 'popup'
 Enabled: 'on'
 TypeOptions: {4×1 cell}

Version History
Introduced in R2019a

See Also
Simulink.mask | “Create Block Masks”

5 Classes

5-328

getNumberOfColumns
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Get value of a table cell

Syntax
numberOfColumns = tableControl()

Description
numberOfColumns = tableControl() gets the number of columns in a custom table.

Output Arguments
numberOfColumns — Table cell value
integer

Number of columns in the custom table returned as an integer.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Get cell value.
numberOfColumns = tableControl.getNumberOfColumns();

Version History
Introduced in R2019a

See Also
“Create Block Masks” | Simulink.mask

 getNumberOfColumns

5-329

getNumberOfRows
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Get the number of rows available in a custom table

Syntax
numberOfRows = tableControl()

Description
numberOfRows = tableControl() gets the number of rows in a custom table.

Output Arguments
numberOfRows — Number of Rows
integer

Number of rows in the custom table returned as an integer.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Get number of rows.
numberOfRows = tableControl.getNumberOfRows();

Version History
Introduced in R2019a

See Also
Simulink.mask | “Create Block Masks”

5 Classes

5-330

getSelectedRows
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Get all the selected rows of a custom table

Syntax
selectedRows = tableControl.getSelectedRows()

Description
selectedRows = tableControl.getSelectedRows() fetches the information from the
specified column of a custom table.

Output Arguments
selectedRows — Row information
numeric array

Value of the specified rows, returned as a numeric array.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Get selected rows.
selectedRows = tableControl.getSelectedRows();

ans =

 3 4

Version History
Introduced in R2019a

See Also
Simulink.mask | “Create Block Masks”

 getSelectedRows

5-331

getTableCell
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Get the properties of a custom table cell

Syntax
tableCell = tableControl.getTableCell([rowIdx colIdx])

Description
tableCell = tableControl.getTableCell([rowIdx colIdx]) gets the properties of a cell in
a custom table.

Input Arguments
tableControl — Custom table handle
table object

Handle to a custom table, specified as an object. You can use the getDialogControl command to
get the custom table handle. For more information, see
Simulink.dialog.Container.getDialogControl.

Consider, for example, tableControl = maskObj.getDialogControl(TableName). Here,
maskObj is the mask object and TableName is the name of the custom table.
Data Types: numeric array

rowIdx — Row index

Row index number of the custom table cell for which the value is being fetched.

For example, '3'.

colIdx — Column index

Column index number of the custom table cell for which the value is being fetched.

For example, '5'.

Output Arguments
tableCell — Table cell object
cell object

Properties of the table cell, returned as a cell array.

5 Classes

5-332

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Get cell properties.
tableCell = tableControl.getTableCell([2 2]);

tableCell =

 CustomTableParamCellObject with properties:

 Value: 'Inherit'
 Type: 'popup'
 Enabled: 'off'
 TypeOptions: {4×1 cell}

tableCell.Value = 'Value'

Version History
Introduced in R2019a

See Also
Simulink.mask | “Create Block Masks”

 getTableCell

5-333

getValue
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Get value of a table cell

Syntax
tableCellValue = tableControl.getValue([rowIdx colIdx])

Description
tableCellValue = tableControl.getValue([rowIdx colIdx]) gets the value of a cell in a
custom table.

Input Arguments
tableControl — Custom table handle
table object

Handle to the custom table, specified as an object. You can use the getDialogControl command to
get the custom table handle. For more information, see
Simulink.dialog.Container.getDialogControl.

Consider, for example, tableControl = maskObj.getDialogControl(TableName). Here,
maskObj is the mask object and TableName is the name of the custom table.
Data Types: numeric array

rowIdx — Row index
|

Row index number of the custom table cell for which the value is being fetched.

For example, [2 2].

colIdx — Column index
|

Column index number of the custom table cell for which the value is being fetched.

For example,[2 2].

Output Arguments
tableCellValue — Table cell value
character vector

Value of the table cell, returned as a character vector.

5 Classes

5-334

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Get cell value.
tableCellValue = tableControl.getValue([2 2]);

ans =
 'Input'

Version History
Introduced in R2019a

See Also
Simulink.mask | “Create Block Masks”

 getValue

5-335

insertColumn
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Insert a column at a specific position in the custom table

Syntax
tableControl.insertColumn(columnIndex[Name,Value])

Description
tableControl.insertColumn(columnIndex[Name,Value]) inserts a column with the specified
properties at a specified index in a custom table.

Input Arguments
tableControl — Custom table handle
table object

Handle to the custom table, specified as an object. You can use the getDialogControl command to
get the custom table handle. For more information, see
Simulink.dialog.Container.getDialogControl.

Consider, for example, tableControl = maskObj.getDialogControl(TableName). Here,
maskObj is the mask object and TableName is the name of the custom table.
Data Types: char vector | cell array

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Type — Type of control
edit | checkbox | popup

Type of control that is used to specify the value of this parameter. The permitted values are: edit
(default), checkbox, popup.

TypeOptions — Options that are displayed within a popup control or in a promoted
parameter
''

The options that are displayed within a popup control or in a promoted parameter. This field is a cell
array.

5 Classes

5-336

Enabled — Specify whether the user can set the value
'on' | 'off'

Option to specify whether the user can set parameter value.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Insert a column at the fifth position.
tableControl.insertColumn(5,'Name', 'HDL Name', 'Type', 'edit');

Version History
Introduced in R2019a

See Also
Simulink.mask | “Create Block Masks”

 insertColumn

5-337

insertRow
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Insert a row at a specific position in a custom table

Syntax
InsertedRow = tableControl.insertRow(rowIndex,string1,string2)

Description
InsertedRow = tableControl.insertRow(rowIndex,string1,string2) inserts a row with
specified properties at the specified index in a custom table.

Input Arguments
tableControl — Custom table handle
table object

Handle to the custom table, specified as an object. You can use the getDialogControl command to
get the custom table handle. For more information, see
Simulink.dialog.Container.getDialogControl.

Consider, for example, tableControl = maskObj.getDialogControl(TableName). Here,
maskObj is the mask object and TableName is the name of the custom table.
Data Types: char vector | cell array

rowIndex — Row Index

Index in table at which the new row is to be inserted.

For example, '4'.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Insert Row.
tableControl.insertRow(rowIndex,'insertSig4', 'Input', 'Inherit', 'Inherit', 'on', 'Inherit');

Version History
Introduced in R2019a

5 Classes

5-338

See Also
Simulink.mask | “Create Block Masks”

 insertRow

5-339

removeColumn
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Remove an existing column from a specific position in a custom table

Syntax
tableControl.removeColumn(columnIndex)

Description
tableControl.removeColumn(columnIndex) removes a column from the specified index in a
custom table.

Input Arguments
tableControl — Custom table handle
table object

Handle to the custom table, specified as an object. You can use the getDialogControl command to
get the custom table handle. For more information, see
Simulink.dialog.Container.getDialogControl.

Consider, for example, tableControl = maskObj.getDialogControl(TableName). Here,
maskObj is the mask object and TableName is the name of the custom table.
Data Types: string

columnIndex — Column Index
integer

Column index number of the custom table from which the column is to be removed.

For example, '4'.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Remove the third column.
tableControl.removeColumn(3);

5 Classes

5-340

Version History
Introduced in R2019a

See Also
Simulink.mask | “Create Block Masks”

 removeColumn

5-341

removeRow
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Remove an existing row from a specific position in a custom table

Syntax
tableControl.removeRow(rowIndex)

Description
tableControl.removeRow(rowIndex) removes the row from a specified position in a custom
table.

Input Arguments
tableControl — Custom table handle
table object

Handle to the custom table, specified as an object. You can use the getDialogControl command to
get the custom table handle. For more information, see
Simulink.dialog.Container.getDialogControl.

Consider, for example, tableControl = maskObj.getDialogControl(TableName). Here,
maskObj is the mask object and TableName is the name of the custom table.
Data Types: integer

rowIndex — Row Index

Row index number of the custom table from which the row is to be removed.

For example, '4'.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Remove row with index number 6.
tableControl.removeRow(6);

Version History
Introduced in R2019a

5 Classes

5-342

See Also
Simulink.mask | “Create Block Masks”

 removeRow

5-343

setTableCell
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Set the properties of a custom table cell

Syntax
tableCell = tableControl.setTableCell([rowIdx colIdx], Type, customtable,
Evaluate, off)

Description
tableCell = tableControl.setTableCell([rowIdx colIdx], Type, customtable,
Evaluate, off) sets the specified properties of a cell in a custom table.

Input Arguments
tableControl — Custom table handle
table object

Handle to the custom table, specified as an object. You can use the getDialogControl command to
get the custom table handle. For more information, see
Simulink.dialog.Container.getDialogControl .

Consider, for example, tableControl = maskObj.getDialogControl(TableName). Here,
maskObj is the mask object and TableName is the name of the custom table.
Data Types: Numeric Array Name Value Pair

rowIdx — Row index

Row index number of the custom table cell for which the value is being fetched.

For example, '3'.

colIdx — Column index

Column index number of the custom table cell for which the value is being fetched.

For example, '5'.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

5 Classes

5-344

Type — Type of control that specifies the value of the parameter

Type of control that is used to specify the value of this parameter. The permitted values are: edit,
checkbox, popup, combobox, listbox, radiobutton, slider, dial, spinbox, unit, textarea, breakpoint,
customtable, tree, unit, min, max.

Value — Value

The value for the cell is specified. It depends on the Type of the parameter

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Set cell properties.
tableControl.setTableCell([2 2], 'Type','edit','Value','1024');

Version History
Introduced in R2019a

See Also
Simulink.Mask | “Create Block Masks”

 setTableCell

5-345

swapRows
Class: Simulink.dialog.parameter.CustomTable
Package: Simulink.dialog.parameter

Swap two existing rows in a custom table

Syntax
tableControl.swapRows(rowIndex1, rowIndex2)

Description
tableControl.swapRows(rowIndex1, rowIndex2)swaps specified rows in a custom table.

Input Arguments
tableControl — Custom table handle
table object

Handle to the custom table, specified as an object. You can use the getDialogControl command to
get the custom table handle. For more information, see
Simulink.dialog.Container.getDialogControl.

Consider, for example, tableControl = maskObj.getDialogControl(TableName). Here,
maskObj is the mask object and TableName is the name of the custom table.
Data Types: integer

rowIndex1 — Row Index value
integer

Row index number of the first row to be swapped with another row.

For example, '4'.

rowIndex2 — Row Index value
integer

Row index number of the second row to be swapped with another row.

For example, '5'.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get custom table handle.
tableControl = maskObj.getDialogControl('myTable');

% Swap rows 3 and 6.

5 Classes

5-346

tableControl.swapRows(3,6);

Version History
Introduced in R2019a

See Also
Simulink.mask | “Create Block Masks”

 swapRows

5-347

Simulink.dialog.Tab class
Package: Simulink.dialog
Superclasses: Simulink.dialog.Container, Simulink.dialog.Control

Create instance of tab dialog control

Description
The Simulink.dialog.Tab class is a handle class that enables you to manage dialog control
elements in tabs on a mask dialog box. To manage dialog control elements in tabs, get the mask
object and use methods of the Simulink.dialog.Container class. See Add Dialog Control
Elements to Mask Dialog Box Tabs for more information.

The Simulink.dialog.Tab class is a handle class.

Properties
Name — Identifier of tab dialog control
'Container' (default) | string scalar | character vector

Identifier of the tab dialog control, specified as a string scalar or character vector.
Example: 'Container1'
Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Prompt — Display text of tab dialog control
string scalar | character vector

Display text of the tab dialog control, specified as a string scalar or character vector.
Example: 'Signal Attributes'
Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Enabled — Option to edit parameters in mask dialog box
'on' (default) | 'off'

Option to edit parameters in the mask dialog box, specified as 'on' or 'off'.

5 Classes

5-348

• 'on' — You can edit the parameters within the tab on a mask dialog box.
• 'off' — You cannot view or edit the parameters within the tab on a mask dialog box, although

the tab prompt appears.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

Visible — Option to display tab on mask dialog box
'on' (default) | 'off'

Option to display the tab on the mask dialog box, specified as 'on' or 'off'.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

AlignPrompts — Option to justify text boxes of edit and popup parameters within tab
dialog control
'off' (default) | 'on'

Option to justify the text boxes of edit and popup parameters within the tab dialog control, specified
as 'on' or 'off'.

• 'on' — Justify text boxes within the tab dialog based on the longest parameter prompt.
• 'off' — Do not justify text boxes.

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: logical

DialogControls — Child dialog controls of tab dialog control
character vector

Child dialog controls of the tab dialog control, specified as a character vector.
Example: '[1×4 Simulink.dialog.parameter.Control]'

 Simulink.dialog.Tab class

5-349

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

Data Types: char

Tooltip — Informative message
string scalar | character vector

Informative message that appears when you point to an instance of the tab dialog control, specified
as a string scalar or character vector.
Example: 'Open to View'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: char | string

Methods
Public Methods
addDialogControl Add dialog control elements to mask dialog box
getDialogControl Search for a specific dialog control on the mask
removeDialogControl Remove dialog control element from mask dialog box

Alternatives
You can manage tab dialog control elements using the Property editor in the Mask Editor dialog
box. For more information, see “Property editor”.

Version History
Introduced in R2013b

See Also
Simulink.dialog.Group | Simulink.dialog.Panel | Simulink.dialog.TabContainer |
Simulink.dialog.Container | Simulink.dialog.Control | “Create Block Masks”

5 Classes

5-350

Simulink.dialog.TabContainer class
Package: Simulink.dialog

Create an instance of a tab container dialog control

Description
Use an instance of Simulink.dialog.TabContainer class to create an instance of tab container
dialog control. Tab container dialog box be used to group the tab dialog controls.

Properties
Name

Uniquely identifies the tab container dialog control and is a required field.

Type: character vector

Row

Specifies whether tab container is placed on the current row or on a new row.

Type: enumerated string

Values: 'current'|'new'

Default: 'new'

Enabled

Specifies whether tab container is active on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

Visible

Specifies whether tab container is displayed on the mask dialog box.

Type: boolean

Values: 'on'|'off'

Default: 'on'

DialogControls

Specifies the child dialog controls contained in the group. Simulink.dialog.TabContainer class
can only contain Simulink.dialog.Tab dialog control.

 Simulink.dialog.TabContainer class

5-351

Type: Simulink.dialog.Tab

Default: Empty array

Methods
addDialogControl Add dialog control elements to mask dialog box
removeDialogControl Remove dialog control element from mask dialog box

See Also
Simulink.dialog.Group | Simulink.dialog.Panel | Simulink.dialog.Tab |
Simulink.dialog.Container | Simulink.dialog.Control | “Create Block Masks”

5 Classes

5-352

Simulink.dialog.Text class
Package: Simulink.dialog

Create a text dialog control

Description
Use an instance of Simulink.dialog.Text class to add a text dialog control.

Properties
Name

Uniquely identifies the dialog control element and is a required field.

Type: character vector

Prompt

Specifies the text displayed on the mask dialog box.

Type: character vector

Default: empty

WordWrap

Specifies whether to wrap long text to the next line on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

Row

Specifies whether dialog control is placed on the current row or on a new row.

Type: character vector

Value: 'current'|'new'

Default: 'new'

Enabled

Indicates whether dialog control is active on the mask dialog box.

Type: boolean

Value: 'on'|'off'

 Simulink.dialog.Text class

5-353

Default: 'on'

Visible

Indicates whether dialog control is displayed on the mask dialog box.

Type: boolean

Value: 'on'|'off'

Default: 'on'

See Also
Simulink.dialog.Control | “Create Block Masks”

5 Classes

5-354

Simulink.dialog.TreeControl class
Package: Simulink

Control Tree control programmatically

Description
Use an instance of Simulink.dialog.TreeControl class to perform the following operations:

• Get selected items from the tree
• Set selected items in the tree

Properties
Public Properties

Name — Name of the dialog control
empty (default)

Uniquely identifies the dialog control, specified as a character vector. It is a mandatory field.
Data Types: string | character vector

Prompt — Display text of the dialog control
empty (default)

Display text on the tree dialog control, specified as a character vector.
Data Types: string | char

TreeItems — Elements in the tree
empty (default)

Items shown in the tree, specified as a cell array.
Data Types: cell array

Callback — Callback code executed on invoking dialog control
empty (default)

MATLAB command to be executed when the dialog control is invoked, specified as character vector.
Data Types: char | String

Row — Indicates if dialog control is placed in a new row
current (default) | new

Indicates whether dialog control is placed on the current row or on a new row, specified as a
character vector.
Data Types: char

Enabled — Indicates if tree control is active on the mask dialog
on (default) | off

 Simulink.dialog.TreeControl class

5-355

Indicates whether tree control is active on the mask dialog box, specified as logical value.
Data Types: logical

Visible — Indicates if tree control is visible on the mask dialog
on (default) | off

Indicates whether tree control is visible or hidden on the mask dialog box specified as a logical value..
Data Types: logical

Multiselect — Indicates if tree control is enabled for multiple selection
on (default) | off

Indicates whether tree control is enabled for multiple selection, specified as a logical value.
Data Types: logical

Tooltip — Tooltip for the tree control
empty (default)

Tooltip for the tree control, specified as a character vector.
Data Types: char | string

Methods
Public Methods

Version History
Introduced in R2014a

See Also
simulink.mask | “Create Block Masks”

5 Classes

5-356

setSelectedItems(TreeControl)
Set values for a tree

Syntax
treeControl.setSelectedItems({'Node1/ChildNode1','Node1/ChildNode2'})

Description
treeControl.setSelectedItems({'Node1/ChildNode1','Node1/ChildNode2'})set the
values for the selected items in the tree.

Input Arguments
TreeControl — tree handle
table object

Handle to the tree, specified as an object. You can use the getDialogControl command to get the
tree handle. For more information, see Simulink.dialog.Container.getDialogControl.

For example, treeControl = maskObj.getDialogControl('TreeControl'). Here, maskObj
is the mask object and TreeControl is the name of the tree.
Data Types: cell array

value — value to be set
cell-array of string

Value to be set for selected items in the tree.

Examples
maskObj = Simulink.Mask.get(gcb);
treeControl = maskObj.getDialogControl('Control2')

% Set selected items
treeControl.setSelectedItems({'Node1/ChildNode1', 'Node1/ChildNode2'})

Version History
Introduced in R2019b

See Also
Simulink.mask | “Create Block Masks”

 setSelectedItems(TreeControl)

5-357

getSelectedItems(TreeControl)
Get the values of selected items from a tree hierarchy

Syntax
selectedItems = treeControl.getSelectedItems()

Description
selectedItems = treeControl.getSelectedItems() fetches the information of the selected
items in the tree.

Output Arguments
selectedItems — value of selected items
cell array

Value of the selected items, returned as a cell array.

Examples
% Get block mask handle
maskObj = Simulink.Mask.get(gcb);

% Get tree handle
treeControl = maskObj.getDialogControl('TreeControl');
treeControl.getSelectedItems();

ans =

 4×1 cell array

 {'Node1/ChildNode1'}
 {'Node1/ChildNode2'}
 {'Node2/ChildNode1'}
 {'Node2/ChildNode2'}

Version History
Introduced in R2019b

See Also
Simulink.mask | “Create Block Masks”

5 Classes

5-358

Simulink.GlobalDataTransfer class
Package: Simulink

Configure concurrent execution data transfers

Description
The Simulink.GlobalDataTransfer object contains the data transfer information for the
concurrent execution of a model. To access the properties of this class, use the get_param function
to get the handle for this class, and then use dot notation to access the properties. For example:

dt=get_param(gcs,'DataTransfer');
dt.DefaultTransitionBetweenContTasks

ans =

Ensure deterministic transfer (minimum delay)

Properties
DefaultTransitionBetweenSyncTasks

Global setting for data transfer handling option when the source and destination of a signal are in two
different and periodic tasks.

Data Type: Enumeration. Can be one of:

• 'Ensure data integrity only'
• 'Ensure deterministic transfer (maximum delay)'
• 'Ensure deterministic transfer (minimum delay)'

Access: Read/write

DefaultTransitionBetweenContTasks

Global setting for the data transfer handling option for signals that have a continuous sample time.

Data Type: Enumeration. Can be one of:

• 'Ensure data integrity only'
• 'Ensure deterministic transfer (maximum delay)'
• 'Ensure deterministic transfer (minimum delay)'

Access: Read/write

DefaultExtrapolationMethodBetweenContTasks

Global setting for the data transfer extrapolation method for signals that have a continuous sample
time.

Data Type: Enumeration. Can be one of:

 Simulink.GlobalDataTransfer class

5-359

• 'None'
• 'Zero Order Hold'
• 'Linear'
• 'Quadratic'

Access: Read/write

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Access the properties of this class.

dt=get_param(gcs,'DataTransfer');
dt.DefaultTransitionBetweenContTasks

ans =

Ensure deterministic transfer (minimum delay)

See Also
Simulink.architecture.get_param | Simulink.architecture.add |
Simulink.architecture.delete | Simulink.architecture.find_system |
Simulink.architecture.importAndSelect | Simulink.architecture.profile |
Simulink.architecture.register | Simulink.architecture.set_param

Topics
“Configure Data Transfer Settings Between Concurrent Tasks”

5 Classes

5-360

Simulink.io.BaseWorkspace class
Package: Simulink.io

Read data in format used by base workspace

Description
Simulink.io.BaseWorkspace inherits from the Simulink.io.FileType base class. It reads data
formatted in a format used by the base workspace. Use base workspace file types to move data to and
from the base workspace to a function, automated process, or user interface. To import data from the
base workspace, use this command.

classdef BaseWorkspace < Simulink.io.FileType

The Simulink.io.BaseWorkspace class is a handle class.

Class Attributes

Abstract false
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Properties
iofile.BaseWorkspace — Base workspace reader
character array

Base workspace reader, specified as a character array.
Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Methods
Specialized Operators and Functions

These methods specialize standard MATLAB operators and functions for objects in this class.

isFileSupported This method always returns true because it
operates only on data in the base workspace.

getFileTypeDescription This method returns the base workspace file
reader description.

Examples

 Simulink.io.BaseWorkspace class

5-361

Read Data in Base Workspace Format

Read data in base workspace format from file, foo.mat.

Set up a timeseries variable, ts. If ts is a variable in the workspace, the object ignores fileName.

ts = timeseries([0;9]);

Set up reader.

aReader = Simulink.io.BaseWorkspace();
resultOfWhos = whos(aReader);

Load the reader, which has no inputs.

varsOnFileStruct = load(aReader);

Load one variable.

var = loadAVariable(aReader,'ts');

Import the file.

importedVars = import(aReader);

Export to a file.

ds = Simulink.SimulationData.Dataset;
ds = ds.addElement(timeseries([1:10]',[1:10]'),'Signal1');
ds = ds.addElement(timeseries([1:10]',[11:20]'),'Signal2');
ds = ds.addElement(timeseries([1:10]',[21:30]'),'Signal3');
%filePath is ignored, must be provided because the API ruleset
filePath = '';
didWrite = aReader.export(filePath,{'ds'},{ds},0);

Version History
Introduced in R2021a

See Also
Simulink.io.FileType | Simulink.io.MatFile |
Simulink.io.SignalBuilderSpreadsheet | exportImpl | getFileTypeDescription |
Simulink.io.FileType.isFileSupported | loadImpl | loadAVariableImpl |
validateFileNameImpl | whosImpl

Topics
“Import Custom File Type”
“Create Custom File Type for Import to Signal Editor”

5 Classes

5-362

Simulink.io.FileType class
Package: Simulink.io

Base class for file type readers for Simulink interfaces such as Signal Editor

Description
Simulink.io.FileType is the base class for Simulink.io.FileType objects. In your class
definition file, you must subclass your object from this base class. Simulink requires direct
inheritance from FileType. Subclassing allows you to use the implementation methods and service
methods provided by this class to build your object. Type this syntax as the first line of your class
definition file to directly inherit from the Simulink.io.FileType base class, where ObjectName is
the name of your object:

classdef ObjectName < Simulink.io.FileType

The Simulink.io.FileType class is a handle class.

Class Attributes

Abstract true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Properties
FileName — File name
character array

File name of file that contains custom signals for import to Signal Editor, specified as a character
array.

Attributes:

GetAccess public
SetAccess public

Methods
Public Methods
exportImpl Export signals to file
Simulink.io.FileType.getFileTypeDescription Get custom file reader description
Simulink.io.FileType.isFileSupported Check if file type is supported in Simulink
Simulink.io.FileType.isInput Check if input is acceptable Simulink input
Simulink.io.FileType.isSimulinkParameter Check if input is Simulink parameter
loadImpl Load signal names from custom FileType object
loadAVariableImpl Load specified variable from MAT-file
validateFileNameImpl Validate contents of custom MAT-file

 Simulink.io.FileType class

5-363

whosImpl Determine contents of MAT-file associated with
Simulink.io.FileType object

Specialized Operators and Functions

These methods specialize standard MATLAB operators and functions for objects in this class.

export This method calls the exportImpl method.

From Signal Editor, write the structure of signals
to a MAT-file. The structure must contain two cell
arrays; one for signal names and one for signal
values. Specify if the method appends to or
overwrites the contents of the MAT-file. The
method indicates if it succeeded in writing to the
MAT-file and returns any error messages.

import [importedData, warnStr] = import(reader)

To import custom signals for a custom file type,
identify the custom file type reader as a
Simulink.io.FileType object. The method
returns the found variable as a cell array of signal
variables of supported types. For more
information on supported types, see “Choose a
Base Workspace and MAT-File Format”. The
method returns a structure with two fields, Data
and Name. Data is a cell array of signals and
Name is a cell array of character vectors of the
corresponding signal names.

importAVariable varOut = importAVariable(reader,variableName)

To import a specified variable for a custom file
type, identify the custom file type reader as a
Simulink.io.FileType object. Use
VariableName, specified as a character array, to
extract the desired signal from the file of custom
format signals. The method returns the found
variable, returned as a cell array of signal
variables of supported types. For more
information on supported types, see “Choose a
Base Workspace and MAT-File Format”.

load This method calls the loadImpl method.

Load the signal listed in the custom file type.
loadAVariable This method calls the loadAVariableImpl

method.

Validate the format of the signals in the custom
MAT-file fileName with the associated
Simulink.io.FileType reader.

5 Classes

5-364

validateFileName This method calls the validateFileNameImpl
method.

Validate the format of the signals in the custom
MAT-file fileName with the associated
Simulink.io.FileType reader.

whos This method calls the whosImpl method.

Return the contents of the custom file type MAT-
file.

Examples

Subclass FileType

Define a Simulink.io.FileType class.

classdef MySignalMatFile < Simulink.io.FileType

end

Interact with FileType Using Specialized Functions

Interact with FileType using specialized functions. This example refers to the
open('Simulink.io.CreateSignals') sample file.

Get contents of foo.mat.
fileName = 'foo.mat';
aReader = Simulink.io.CreateSignals(fileName);
resultOfWhos = whos(aReader);

Import custom signals from foo.mat.

aFileType = Simulink.io.CreateSignals('foo.mat');
out = import(aFileType);

Load the custom signals in foo.mat.

aFileType = Simulink.io.CreateSignals('foo.mat');
out = load(aFileType);

Load a variable from foo.mat.

aFileType = Simulink.io.CreateSignals('foo.mat');
out = loadAVariable(aFileType,'bar');

Export the signals from Signal Editor.

ds = Simulink.SimulationData.Dataset;
ds = ds.addElement(timeseries([1:10]',[1:10]'),'Siganl1');
ds = ds.addElement(timeseries([1:10]',[11:20]'),'Siganl2');
ds = ds.addElement(timeseries([1:10]',[21:30]'),'Siganl3');

 Simulink.io.FileType class

5-365

aReader = Simulink.io.CreateSignals('myFileToExport.mat');

didWrite = aReader.export(filePath,{'ds'},{ds},0);

Version History
Introduced in R2020a

See Also
Simulink.io.BaseWorkspace | Simulink.io.MatFile | Simulink.io.ModelWorkspace |
Simulink.io.PluggableNamespace | Simulink.io.SignalBuilderSpreadsheet |
sltest.io.SimulinkTestSpreadsheet

Topics
“Import Custom File Type”
“Create Custom File Type for Import to Signal Editor”

5 Classes

5-366

exportImpl
Class: Simulink.io.FileType
Package: Simulink.io

Export signals to file

Syntax
[didWrite,errMsg] = exportImpl(exportFileName,varNames,varValues,isAppend)

Description
[didWrite,errMsg] = exportImpl(exportFileName,varNames,varValues,isAppend)
exports signals from Signal Editor using the specified variables and returns didWrite and errMsg
and saves them to exportFileName.

Input Arguments
exportFileName — File name for exported signals
character array

File name for exported signals, specified as a character array.
Data Types: char

varNames — Signal names
cell array of character vectors

Signal names, specified as a cell array of character vectors.
Data Types: cell

varValues — Signal values
cell array of signal variables

Signal values associated with the signals in varNames, specified as a cell array of signal variables of
supported types. For more information on supported types, see “Choose a Base Workspace and MAT-
File Format”.
Data Types: cell

isAppend — Append or overwrite signal file
false or 0 (default) | true or 1

Append or overwrite signal file, specified as true (1) or false (0).
Data Types: logical

Output Arguments
didWrite — Whether signals were successfully written
false or 0 | true or 1

 exportImpl

5-367

Whether the signals were successfully written to exportFileName, returned as true (1) or false (0).

errMsg — Error message
character array

Error message, indicating errors with the reporting process, returned as a character array.

Examples

Subclass FileType Class and Implement exportImpl Method

Subclass FileType class and implement exportImpl method.

classdef MySignalMatFile < Simulink.io.FileType

Implement the static method exportImpl.
methods

 function [didWrite,errMsg] = exportImpl(obj,fileName,cellOfVarNames, ...
 cellOfVarValues,isAppend)
 didWrite = false;
 errMsg = '';

 saveStruct = struct;

 for k = 1: length (cellOfVarNames)
 saveStruct.(cellOfVarNames{k}) = cellOfVarValues{k};
 end

 try
 if isAppend
 save(fileName,'-struct','saveStruct','-append');
 else
 save(fileName,'-struct','saveStruct');
 end
 didWrite = true;
 catch ME

 % Optional, return errMsg or throw hard error.
 % Returning an error message allows your automated
 % processes to carry on while allowing you to report the
 % error at a later time.
 errMsg = ME.message;
 end

 end
 end
end

Version History
Introduced in R2020a

See Also
Simulink.io.FileType | Simulink.io.FileType.getFileTypeDescription |
Simulink.io.FileType.isFileSupported | loadImpl | loadAVariableImpl |
validateFileNameImpl | whosImpl

Topics
“Import Custom File Type”
“Export Signals to Custom Registered File Types”
“Create Custom File Type for Import to Signal Editor”

5 Classes

5-368

“Choose a Base Workspace and MAT-File Format”

 exportImpl

5-369

Simulink.io.FileType.getFileTypeDescription
Class: Simulink.io.FileType
Package: Simulink.io

Get custom file reader description

Syntax
FileReaderDescription = getFileTypeDescription()

Description
FileReaderDescription = getFileTypeDescription() returns the file reader description.

Output Arguments
FileReaderDescription — FileType description
character array

FileType description, returned as a character array. When writing the file type description, consider
describing the data layout of the file.

Examples

Subclass FileType Class and Implement getFileTypeDescription Method

Subclass FileType class and implement the getFileTypeDescription method.

classdef MySignalMatFile < Simulink.io.FileType

Implement the static method getFileTypeDescription.
methods (Static)

 function aFileReaderDescription = getFileTypeDescription()

 aFileReaderDescription = ['Return a char array describing your reader.'];
 end

 end

Version History
Introduced in R2020a

See Also
Simulink.io.FileType | exportImpl | Simulink.io.FileType.isFileSupported |
loadAVariableImpl | loadImpl | validateFileNameImpl | whosImpl

Topics
“Import Custom File Type”

5 Classes

5-370

“Create Custom File Type for Import to Signal Editor”

 Simulink.io.FileType.getFileTypeDescription

5-371

Simulink.io.FileType.isFileSupported
Class: Simulink.io.FileType
Package: Simulink.io

Check if file type is supported in Simulink

Syntax
isSupported = isFileSupported(fullFile)

Description
isSupported = isFileSupported(fullFile) checks if the file located at fullFile is
supported in Simulink.

Input Arguments
fullFile — Fully qualified file name
character array

Fully qualified file name, specified as a character array.
Example: C:\mydir\mySignals.csv
Data Types: char

Output Arguments
isSupported — File supported indicator
true (1) | false (0)

File support indicator, returned as true (1) or false (0).

Examples

Subclass FileType Class and Implement isFileSupported Method

Subclass FileType class and implement the isFileSupported method.

classdef MySignalMatFile < Simulink.io.FileType

Implement the static method isFileSupported.
methods (Static)

 function isSupported = isFileSupported(fileLocation)

 isSupported = false;

 if exist(fileLocation, 'file')
 isSupported = true;
 end

5 Classes

5-372

 end
 end

Version History
Introduced in R2020a

See Also
Simulink.io.FileType | exportImpl | Simulink.io.FileType.getFileTypeDescription |
loadImpl | loadAVariableImpl | validateFileNameImpl | whosImpl

Topics
“Import Custom File Type”
“Create Custom File Type for Import to Signal Editor”

 Simulink.io.FileType.isFileSupported

5-373

Simulink.io.FileType.isInput
Class: Simulink.io.FileType
Package: Simulink.io

Check if input is acceptable Simulink input

Syntax
isSimulinkInput = Simulink.io.FileType.isInput(ts)

Description
isSimulinkInput = Simulink.io.FileType.isInput(ts) checks if the ts argument is a
MATLAB variable that can be used as Simulink simulation input.

Input Arguments
ts — Simulink input
MATLAB variable

Simulink input, specified as a MATLAB variable. This variable must be an acceptable Simulink input,
such as the data formats listed at “Data Format or Type”.
Example: timeseries([0;9])
Data Types: char | string

Output Arguments
isSimulinkInput — File input indicator
't' (true) | 'f' (false)

File input indicator, returned as 't' (true) or 'f' (false).

Examples

Check Appropriateness of Input

Check if the timeseries ts is an input supported by Simulink.

Create timeseries variable ts.

ts = timeseries([sin(0:.01:100)'])

 timeseries

 Common Properties:
 Name: 'unnamed'
 Time: [10001x1 double]

5 Classes

5-374

 TimeInfo: [1x1 tsdata.timemetadata]
 Data: [10001x1 double]
 DataInfo: [1x1 tsdata.datametadata]

 More properties, Methods

Check if ts is accepted by Simulink.

Simulink.io.FileType.isInput(ts)

ans =

 logical

 1

Version History
Introduced in R2021b

See Also
Simulink.io.FileType | exportImpl | Simulink.io.FileType.getFileTypeDescription |
Simulink.io.FileType.isSimulinkParameter | loadImpl | loadAVariableImpl |
validateFileNameImpl | whosImpl

Topics
“Data Format or Type”
“Import Custom File Type”
“Create Custom File Type for Import to Signal Editor”

 Simulink.io.FileType.isInput

5-375

Simulink.io.FileType.isSimulinkParameter
Class: Simulink.io.FileType
Package: Simulink.io

Check if input is Simulink parameter

Syntax
isParameter = Simulink.io.FileType.isSimulinkParameter(aParam)

Description
isParameter = Simulink.io.FileType.isSimulinkParameter(aParam) checks if the
aParam argument is a supported Simulink.Parameter type:

• Simulink.Simulation.ModelParameter
• Simulink.Simulation.BlockParameter
• Simulink.Simulation.Variable
• Simulink.op.ModelOperatingPoint

Input Arguments
aParam — Simulink parameter
vector of Simulink parameters | Simulink parameter as scalar

Simulink parameter, specified as a vector or scalar of one of these types:

• Simulink.Simulation.ModelParameter (can be scalar or vector)
• Simulink.Simulation.BlockParameter (can be scalar or vector)
• Simulink.Simulation.Variable (can be scalar or vector)
• Simulink.op.ModelOperatingPoint (must be scalar)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

Output Arguments
isParameter — Simulink parameter indicator
true (1) | false (0)

Simulink parameter indicator, returned as true (1) or false (0).

Examples

5 Classes

5-376

Check if Input Parameter Is Simulink Parameter

Check if the parameter aParam is a Simulink parameter.

Create parameter aParam.

aParam = Simulink.Simulation.BlockParameter('f/g','Gain','5')

aParam =

 BlockParameter with properties:

 BlockPath: 'f/g'
 Name: 'Gain'
 Value: '5'

Check if the parameter aParam is a Simulink parameter.

Simulink.io.FileType.isSimulinkParameter(aParam)

ans =

 logical

 1

Version History
Introduced in R2021b

See Also
Simulink.io.FileType | exportImpl | Simulink.io.FileType.getFileTypeDescription |
Simulink.io.FileType.isInput | loadImpl | loadAVariableImpl | validateFileNameImpl
| whosImpl

Topics
“Data Format or Type”
“Import Custom File Type”
“Create Custom File Type for Import to Signal Editor”

 Simulink.io.FileType.isSimulinkParameter

5-377

loadAVariableImpl
Class: Simulink.io.FileType
Package: Simulink.io

Load specified variable from MAT-file

Syntax
varOut = loadAVariableImpl(MATfile,varName)

Description
varOut = loadAVariableImpl(MATfile,varName) loads the specified variable from the MAT-
file.

Input Arguments
MATfile — File name of MAT-file
character array

File name of the MAT-file that contains signals to load, specified as a character array.
Data Types: char

varName — Variable name
character array

Variable name to load, specified as a character array.
Data Types: char

Output Arguments
varOut — Found variable
cell array of signal variables

Found variables to load, returned as a cell array of signal variables of supported types. For more
information on supported types, see “Choose a Base Workspace and MAT-File Format”.

Examples

Subclass FileType Class and Implement loadAVariableImpl Method

Subclass FileType class and implement loadAVariableImpl method.

classdef MySignalMatFile < Simulink.io.FileType

Implement the static method loadAVariableImpl.
methods

5 Classes

5-378

 function structOut = loadAVariableImpl(obj,varName)

 % Assume loading a variable from a MAT-file.
 data = load(obj.FileName,varName);

 if isempty(fieldnames(data))
 error([varName ' was not found on the file.']);
 end

 if isSimulinkSignalFormat(data.(varName))
 structOut.(varName) = ...
 data.(varName);
 else
 error([varName ' is not a Simulink signal format.']);
 end

 end
 end

Version History
Introduced in R2020a

See Also
Simulink.io.FileType | exportImpl | Simulink.io.FileType.getFileTypeDescription |
Simulink.io.FileType.isFileSupported | loadImpl | validateFileNameImpl | whosImpl

Topics
“Import Custom File Type”
“Create Custom File Type for Import to Signal Editor”
“Choose a Base Workspace and MAT-File Format”

 loadAVariableImpl

5-379

loadImpl
Class: Simulink.io.FileType
Package: Simulink.io

Load signal names from custom FileType object

Syntax
matFileData = loadImpl(reader)

Description
matFileData = loadImpl(reader) loads the signal names listed in the custom FileType object.

Run-Time Details

loadImpl is called via load when you run the Simulink.io.FileType object. You can also run the
application, which calls load. For details, see “Create Custom File Type for Import to Signal Editor”.

Input Arguments
reader — Signals to load
Simulink.io.FileType

Signals to load, specified as a Simulink.io.FileType object.
Data Types: char

Output Arguments
matFileData — Signals
cell array of signal variables

Variables of signals to load, returned as a cell array of signal variables of supported types. For more
information on supported types, see “Choose a Base Workspace and MAT-File Format”.

Examples

Subclass FileType Class and Implement loadImpl Method

Subclass FileType class and implement the loadImpl method.

classdef MySignalMatFile < Simulink.io.FileType

Implement the static method loadImpl.

methods

 function structOut = loadImpl(obj)

5 Classes

5-380

 structOut = struct;

 %assume mat-file
 data = load(obj.FileName);
 varsOnFile = fieldnames(data);

 for k = 1: length(varsOnFile)

 if isSimulinkSignalFormat(data.(varsOnFile{k}))
 structOut.(varsOnFile{k}) = ...
 data.(varsOnFile{k});
 end
 end
 end
 end

Version History
Introduced in R2020a

See Also
Simulink.io.FileType | exportImpl | Simulink.io.FileType.getFileTypeDescription |
Simulink.io.FileType.isFileSupported | loadAVariableImpl | validateFileNameImpl |
whosImpl

Topics
“Import Custom File Type”
“Create Custom File Type for Import to Signal Editor”
“Choose a Base Workspace and MAT-File Format”

 loadImpl

5-381

validateFileNameImpl
Class: Simulink.io.FileType
Package: Simulink.io

Validate contents of custom MAT-file

Syntax
validateFileNameImpl(reader,fileName)

Description
validateFileNameImpl(reader,fileName) validates the format of the signals in the custom
MAT-file fileName with the associated Simulink.io.FileType reader.

Input Arguments
reader — Reader
Simulink.io.FileType object

Reader, specified as a Simulink.io.FileType object.

fileName — File name of MAT-file
character array

File name of a MAT-file that contains custom signals, specified as a character array.
Data Types: char

Examples

Subclass FileType Class and Implement validateFileNameImpl Method

Subclass FileType class and implement the validateFileNameImpl method.

classdef MySignalMatFile < Simulink.io.FileType

Implement static method validateFileNameImpl.
function validateFileNameImpl(aFile,filename) %#ok<INUSL>
%validateFileNameImpl

[~, ~, fileExt] = fileparts(filename);
isSupported = strcmpi(fileExt,'.mat');

if ~isSupported
 error('This file format is not supported by application.');
end

5 Classes

5-382

end

Version History
Introduced in R2020a

See Also
Simulink.io.FileType | exportImpl | Simulink.io.FileType.getFileTypeDescription |
Simulink.io.FileType.isFileSupported | loadAVariableImpl | loadImpl | whosImpl

 validateFileNameImpl

5-383

whosImpl
Class: Simulink.io.FileType
Package: Simulink.io

Determine contents of MAT-file associated with Simulink.io.FileType object

Syntax
signals = whosImpl(reader)

Description
signals = whosImpl(reader) returns a structure containing the contents of the MAT-file
associated with the Simulink.io.FileType object.

Run-Time Details

whosImpl is called via whos when you run the application. For details, see “Create Custom File Type
for Import to Signal Editor”.

Input Arguments
reader — Reader
Simulink.io.FileType object

Reader, specified as a Simulink.io.FileType object.

Output Arguments
signals — Contents of MAT-file
array of structures

Contents of the MAT-file, returned as an array of structures. This structure has a signal name ['char
array'] and an optional signal type of a supported type. For more information on supported types,
see “Choose a Base Workspace and MAT-File Format”.

Examples

Subclass FileType Class and Implement whosImpl Method

Subclass FileType class and implement the whosImpl method.

classdef MySignalMatFile < Simulink.io.FileType

Implement the static method whosImpl.
methods

 function outOnFile = whosImpl(obj)
 onFile = whos(obj.FileName);

5 Classes

5-384

 numVars = length(onFile);

 outOnFile(1).name = [];
 outOnFile(1).type = [];

 for k = 1: length(numVars)

 outOnFile(k).name = onFile(k).name;

 if strcmpi(onFile(k).class, 'Simulink.SimulationData.Dataset')
 outOnFile(k).type = 'Dataset';
 else
 % Assume Signal(timeseries or timetable)
 % other acceptable types
 % - Bus : for bus signals
 % - Ground: for grounds (empty double)
 % - FunctionCall: for single column double data arrays
 outOnFile(k).type = 'Signal';
 end

 end

 end
 end

Version History
Introduced in R2020a

See Also
Simulink.io.FileType | exportImpl | Simulink.io.FileType.getFileTypeDescription |
Simulink.io.FileType.isFileSupported | loadImpl | loadAVariableImpl |
validateFileNameImpl

Topics
“Create Custom File Type for Import to Signal Editor”
“Choose a Base Workspace and MAT-File Format”

 whosImpl

5-385

Simulink.io.MatFile class
Package: Simulink.io

Read data in MAT-file format

Description
Simulink.io.MatFile inherits from the Simulink.io.FileType base class. The class reads data
formatted in a format used by MAT-files. To import data from a MAT-file, use this class.

classdef MatFile < Simulink.io.FileType

The Simulink.io.MatFile class is a handle class.

Class Attributes

Abstract false
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Properties
iofile.STAMatFile — MAT-file reader
character array

MAT-file reader, specified as a character array.
Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Methods
Specialized Operators and Functions

These methods specialize standard MATLAB operators and functions for objects in this class.

isFileSupported This method always returns true because it
operates only on data in the MAT-file.

getFileTypeDescription This method returns the MAT-file reader
description for MAT-files containing data with
loading and logging signal formats that Simulink
supports.

Examples

5 Classes

5-386

Read Data in MAT-File Format

Read data in MAT-file format from the file foo.mat.

fileName = 'foo.mat';
aReader = Simulink.io.MatFile(fileName);
resultOfWhos = whos(aReader);

Load the reader, which has no inputs.

varsOnFileStruct = load(aReader);

Load one variable.

var = loadAVariable(aReader,'ts');

Import all the variables from the MAT-file, foo.mat.

importedVars = import(aReader);

Export the dataset to a MAT-file named bar.mat.

ds = Simulink.SimulationData.Dataset;
ds = ds.addElement(timeseries([1:10]',[1:10]'),'Signal1');
ds = ds.addElement(timeseries([1:10]',[11:20]'),'Signal2');
ds = ds.addElement(timeseries([1:10]',[21:30]'),'Signal3');

filePath = 'bar.mat';
didWrite = aReader.export(filePath,{'ds'},{ds},0);

Version History
Introduced in R2021a

See Also
Simulink.io.BaseWorkspace | Simulink.io.FileType |
Simulink.io.SignalBuilderSpreadsheet | exportImpl | getFileTypeDescription |
Simulink.io.FileType.isFileSupported | loadImpl | loadAVariableImpl |
validateFileNameImpl | whosImpl

Topics
“Import Custom File Type”
“Create Custom File Type for Import to Signal Editor”

 Simulink.io.MatFile class

5-387

Simulink.io.ModelWorkspace class
Package: Simulink.io

Read data in format used by model workspace

Description
Simulink.io.ModelWorkspace inherits from the Simulink.io.FileType base class. It reads
data formatted in a format used by the model workspace. Use model workspace file types to move
data to and from the model workspace to a function, an automated process, or a user interface. To
import data from the model workspace, use this command.

classdef ModelWorkspace < Simulink.io.FileType

The Simulink.io.ModelWorkspace class is a handle class.

Class Attributes

Abstract false
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Properties
DataSource — Source for initializing variables in model workspace
'Model File' (default) | 'MAT-File' | 'MATLAB Code' | 'MATLAB File'

Source for initializing the variables in the model workspace, specified as one of these character
vectors:

• 'Model File' — The variables are stored in the model file. When you save the model, you also
save the variables.

• 'MATLAB Code' — The variables are created by MATLAB code that you write and store in the
model file.

• 'MAT-File' — The variables are stored in a MAT-file, which you can manage and manipulate
separately from the model file.

• 'MATLAB File' — The variables are created by MATLAB code in a script file, which you can
manage and manipulate separately from the model file.

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

FileName — Name of external file that stores or creates variables
'' (empty character vector) (default) | character vector

5 Classes

5-388

Name of the external file that stores or creates variables, specified as a character vector. To enable
this property, set DataSource to 'MAT-File' or 'MATLAB File'.

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

MATLABCode — MATLAB code for initializing variables
'' (empty character vector) (default) | character vector

MATLAB code for initializing variables, specified as a character vector. To enable this property, set
DataSource to 'MATLAB Code'.

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Methods
Specialized Operators and Functions

These methods specialize standard MATLAB operators and functions for objects in this class.

isFileSupported This method always returns true because it
operates only on data in the base workspace.

getFileTypeDescription This method returns the base workspace file
reader description.

Examples

Read Data in Model Workspace Format

Set up myExample to use with the model workspace and perform basic operations.

Set up the model workspace for the myExample. Assign timeseries([1;3]) as the value of
aSignal.

myExample;

 mWS = get_param('myExample','ModelWorkspace');
 assignin(mWS, 'aSignal', timeseries([1;3]));

Determine the contents of the MAT-file aFileType associated with the
Simulink.io.ModelWorkspace object.

aFileType = Simulink.io.ModelWorkspace('myExample.slx');

 Simulink.io.ModelWorkspace class

5-389

%whos on file
out = whos(aFileType)

out =

 struct with fields:

 name: 'aSignal'
 type: 'Signal'

Load signal names from the aFileType of the myExample model workspace.

aFileType = Simulink.io.ModelWorkspace('myExample.slx');
%load
out = load(aFileType)

out =

 struct with fields:

 aSignal: [1×1 timeseries]

aFileType = Simulink.io.ModelWorkspace('myExample.slx');
%import all
out = import(aFileType)

out =

 struct with fields:

 Data: {[1×1 timeseries]}
 Names: {'aSignal'}

out =

 struct with fields:

 Data: {[1×1 timeseries]}
 Names: {'aSignal'}

Import the specified variable aSignal from the model workspace.

aFileType = Simulink.io.ModelWorkspace('myExample.slx');
var = importAVariable(aFileType, 'aSignal')

timeseries

 Common Properties:
 Name: 'unnamed'
 Time: [2x1 double]
 TimeInfo: [1x1 tsdata.timemetadata]
 Data: [2x1 double]
 DataInfo: [1x1 tsdata.datametadata]

 More properties, Methods

Write a structure of signals to a MAT-file.

ts = timeseries([11112;36532415]);
aFileType = Simulink.io.ModelWorkspace('minportsOnly_withOutputs.slx');

5 Classes

5-390

[didWrite, errMsg] = export(aFileType, 'minportsOnly_withOutputs.slx', ...
 {'ts'}, {ts}, ...
 false)

didWrite =

 logical

 1

errMsg =

 0×0 empty char array

Version History
Introduced in R2021b

See Also
Simulink.io.FileType | Simulink.io.MatFile |
Simulink.io.SignalBuilderSpreadsheet | exportImpl | getFileTypeDescription |
Simulink.io.FileType.isFileSupported | loadImpl | loadAVariableImpl |
validateFileNameImpl | whosImpl

Topics
“Import Custom File Type”
“Create Custom File Type for Import to Signal Editor”

 Simulink.io.ModelWorkspace class

5-391

Simulink.io.PluggableNamespace class
Package: Simulink.io

Register Simulink.io.FileType objects from different name space

Description
Use the Simulink.io.PluggableNamespace class interface to implement a name space to register
Simulink.io.FileType objects from custom name spaces.

In your class definition file, you must subclass your object from this base class. Simulink requires
direct inheritance from PluggableNamespace.

The process to contain the new class is similar to the one to create a custom file type. To contain your
class, create a folder and add that folder path to the MATLAB path. In that folder, create a
+Simulink folder, and inside that folder, create a +io folder.

To examine issues with the registration of these objects, use the
Simulink.io.getFileTypeDiagnostics function.

The Simulink.io.PluggableNamespace class is a handle class.

Class Attributes

Abstract false
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
Description

classdef SimulinkIOPlugin < Simulink.io.PluggableNamespace creates a name space.

Properties
NameSpace — Name space to register
character array

Name space to register, specified as a character array.
Example: Namespace = 'Simulink.io'

Attributes:

GetAccess public

Data Types:

5 Classes

5-392

Examples

Create Pluggable Name Space

Create a pluggable name space, MyNamespace.

Inherit from the Simulink.io.PluggableNamespace base class.

classdef MyNamespace < Simulink.io.PluggableNamespace

Implement the property, Namespace, as MyNamespace.

 properties (Access = public, Constant)
 Namespace = 'MyNamespace';
 end
end

You can now create a folder on the MATLAB path, create a folder such as +MyNamespace and place
your file types in that folder.

Version History
Introduced in R2021a

See Also
Simulink.io.FileType | Simulink.io.getFileTypeDiagnostics

 Simulink.io.PluggableNamespace class

5-393

Simulink.io.SignalBuilderSpreadsheet class
Package: Simulink.io

Read spreadsheet in format used by Signal Builder

Description
Simulink.io.SignalBuilderSpreadsheet inherits from the Simulink.io.FileType base
class. It reads spreadsheets formatted in a format used by Signal Builder. To import spreadsheets
used in Signal Builder, use this class.

classdef SignalBuilderSpreadsheet < Simulink.io.FileType

The Simulink.io.SignalBuilderSpreadsheet class is a handle class.

Class Attributes

Abstract false
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Properties
Public Properties

FileName — File name
character array

File name of file that contains signals to import to Signal Editor, specified as a character array.

Attributes:

GetAccess public
SetAccess public

Data Types:

Methods
Specialized Operators and Functions

These methods specialize standard MATLAB operators and functions for objects in this class.

5 Classes

5-394

export This method calls the exportImpl method.

From Signal Editor, write the structure of signals
to a MAT-file. The structure must contains two
cell arrays; one for signal names and one for
signal values. Specify if the method appends to or
overwrites the contents of the MAT-file. The
method indicates if it succeeded in writing to the
MAT-file and returns any error messages.

import [importedData, warnStr] = import(reader)

To import custom signals for a custom file type,
identify the custom file type reader as a
Simulink.io.FileType object. The method
returns the found variable as a cell array of signal
variables of supported types. For more
information on supported types, see “Choose a
Base Workspace and MAT-File Format”. The
method returns a structure with two fields, Data
and Name. Data is a cell array of signals and
Name is a cell array of character vectors of the
corresponding signal names.

importAVariable varOut = importAVariable(reader,variableName)

To import a specified variable for a custom file
type, identify the custom file type reader as a
Simulink.io.FileType object. Use
VariableName, specified as a character array, to
extract the desired signal from the file of custom
format signals. The method returns the found
variable, returned as a cell array of signal
variables of supported types. For more
information on supported types, see “Choose a
Base Workspace and MAT-File Format”.

load This method calls the loadImpl method.

Load the signal listed in the custom file type.
loadAVariable This method calls the loadAVariableImpl

method.

Validate the format of the signals in the custom
MAT-file fileName with the associated
Simulink.io.FileType reader.

validateFileName This method calls the validateFileNameImpl
method.

Validate the format of the signals in the custom
MAT-file fileName with the associated
Simulink.io.FileType reader.

 Simulink.io.SignalBuilderSpreadsheet class

5-395

whos This method calls the whosImpl method.

Return the contents of the custom file type MAT-
file.

Examples

Interact with SignalBuilderSpreadsheet Using Specialized Functions

Interact with FileType using specialized functions. This example refers to the
open('Simulink.io.CreateSignals') sample file.

Get contents of Signal Builder format foo.xlsx spreadsheet.
fileName = 'foo.xlsx';
aReader = Simulink.io.SignalBuilderSpreadsheet(fileName);
resultOfWhos = whos(aReader);

Load the custom signals in foo.xlsx.

fileName = 'foo.xlsx';

aReader = Simulink.io.SignalBuilderSpreadsheet(fileName);
varsOnFileStruct = load(aReader,'myGroup1');

Load a variable from foo.xlsx.

fileName = 'foo.xlsx';

aReader = Simulink.io.SignalBuilderSpreadsheet(fileName);
var = loadAVariable(aReader,'myGroup1');

Import custom signals from foo.xlsx.

fileName = 'foo.xlsx';

aReader = Simulink.io.SignalBuilderSpreadsheet(fileName);
importedVars = import(aReader,'myGroup1');

Export the signals from Signal Editor.
ds = Simulink.SimulationData.Dataset;
ds = ds.addElement(timeseries([1:10]',[1:10]'),'Signal1'); %#ok<*NBRAK>
ds = ds.addElement(timeseries([1:10]',[11:20]'),'Signal2');
ds = ds.addElement(timeseries([1:10]',[21:30]'),'Signal3');

aReader = Simulink.io.SignalBuilderSpreadsheet('myFileToExport.xls');

didWrite = aReader.export(filePath,{'ds'},{ds},0);

Version History
Introduced in R2020a

See Also
Simulink.io.FileType | exportImpl | getFileTypeDescription |
Simulink.io.FileType.isFileSupported | loadImpl | loadAVariableImpl |
validateFileNameImpl | whosImpl

5 Classes

5-396

Topics
“Import Custom File Type”
“Create Custom File Type for Import to Signal Editor”

 Simulink.io.SignalBuilderSpreadsheet class

5-397

Simulink.io.SLDVMatFile class
Package: Simulink.io

Read Simulink Design Verifier format data in MAT-file

Description
The Simulink.io.SLDVMatFile class inherits from the Simulink.io.MatFile reader class,
which inherits from the Simulink.io.FileType base class. This class reads the data in the
sldvData structure used by Simulink Design Verifier. The data is contained in a MAT-file. To import
data from a MAT-file that contains the sldvData structure, use this class.

classdef Simulink.io.SLDVMatFile < Simulink.io.MatFile

The Simulink.io.SLDVMatFile class is a handle class.

Class Attributes

Abstract false

HandleCompatible true

For information on class attributes, see “Class Attributes”.

Properties
FileName — Simulink Design Verifier data format reader
character array

Simulink Design Verifier data format reader, specified as a character array.

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Methods
Public Methods

Specialized Operators and Functions

These methods specialize standard MATLAB operators and functions for objects in this class.

export Not available.

5 Classes

5-398

import [importedData, warnStr] = import(reader)

To import custom signals for a custom file type,
identify the custom file type reader as a
Simulink.io.FileType object. The method
returns the found variable as a cell array of signal
variables of supported types. For more
information on supported types, see “Choose a
Base Workspace and MAT-File Format”. The
method returns a structure with two fields, Data
and Name. Data is a cell array of signals. Name is
a cell array of character vectors of the
corresponding signal names.

importAVariable varOut = importAVariable(reader,variableName)

To import a specified variable for a custom file
type, identify the custom file type reader as a
Simulink.io.FileType object. Use
VariableName, specified as a character array, to
extract the desired signal from the file of custom
format signals. The method returns the found
variable, returned as a cell array of signal
variables of supported types. For more
information on supported types, see “Choose a
Base Workspace and MAT-File Format”.

load This method calls the loadImpl method.

Load the signal listed in the custom file type.
loadAVariable This method calls the loadAVariableImpl

method.

Validate the format of the signals in the custom
MAT-file fileName with the associated
Simulink.io.FileType reader.

validateFileName This method calls the validateFileNameImpl
method.

Validate the format of the signals in the custom
MAT-file fileName with the associated
Simulink.io.FileType reader.

whos This method calls the whosImpl method.

Return the list of sldvData structure datasets.

Examples

 Simulink.io.SLDVMatFile class

5-399

Read Data in Simulink Design Verifier MAT-File Format

List the test cases in a Simulink Design Verifier MAT-file. The whos() method returns a structure
with the fields name and type. The structure contains the names of all the test cases in the
sldvData structure file along with the type Dataset.

fileName = 'foo.mat';
aReader = Simulink.io.SLDVMatFile(fileName);
resultOfWhos = whos(aReader);

Load the data. The load() method converts the test case data in the sldvData structure into
Simulink.SimulationData.Dataset objects. The result is a structure where each field is the
name of the test case and the value is the corresponding dataset object.

loadedVars = load(aReader);

Import the data. Similarly to load(), the import() method converts the test case data in the
sldvData structure into Simulink.SimulationData.Dataset objects. The result is a structure
with fields Data and Names. The Names field contains the name of the test cases. The Data field
contains the corresponding dataset objects.

importedVars = import(aReader);

Version History
Introduced in R2022a

See Also
Simulink.io.FileType | Simulink.io.BaseWorkspace | Simulink.io.MatFile

Topics
“Create Custom File Type for Import to Signal Editor”
“Create sldvData Custom File Type Reader to Import to Signal Editor”
“Manage Simulink Design Verifier Data Files” (Simulink Design Verifier)

5 Classes

5-400

Simulink.LookupTable class
Package: Simulink

Store and share lookup table and breakpoint data, configure data for ASAP2 and AUTOSAR code
generation

Description
An object of the Simulink.LookupTable class stores lookup table and breakpoint data. You can use
that data in a lookup table block such as the n-D Lookup Table block. With the object, you can specify
data types and code generation settings for the table and the breakpoint sets.

When you store all of the table and breakpoint set data in a single Simulink.LookupTable object,
all of the data appears in a single structure in the generated code. To configure STD_AXIS code
generation for calibration, use this technique.

To share a breakpoint set between multiple lookup tables, for example for COM_AXIS code
generation, use a Simulink.Breakpoint object in one or more Prelookup blocks. Use
Simulink.LookupTable objects in Interpolation Using Prelookup blocks. Then, configure the
lookup table objects to refer to the breakpoint object. For more information, see “Package Shared
Breakpoint and Table Data for Lookup Tables”.

To subclass from Simulink.LookupTable and inherit from this base class, type this syntax as the
first line of your class definition file, where myLookuptable is the name of your new class:

classdef myLookuptable < Simulink.LookupTable

For an example on subclassing, see “Define Data Classes”.

If you add properties to the subclass, you can see them by displaying the subclass object at the
MATLAB command line. In the property dialog box, these properties display in a new tab.

Construction
LUTObj = Simulink.LookupTable returns a Simulink.LookupTable object LUTObj with
default property values.

To create a Simulink.LookupTable object by using the Model Explorer, use the button on
the toolbar. The default name for the object is Object.

Property Dialog Box
Setting Breakpoints specification to Explicit values (default) displays this view of the property
dialog box.

 Simulink.LookupTable class

5-401

The bottom of the dialog box contains the table and breakpoint data values. For more information on
this tabular area, see “Edit Lookup Table Data with Lookup Table Spreadsheet”. The contents of this
table are equivalent to the Value property, visible when the Breakpoints specification property is
set to Even spacing or Reference.

Table and Breakpoints

Number of table dimensions
Number of dimensions of the lookup table. Specify an integer value up to 30 (inclusive). For
example, to represent a three-dimensional lookup table, specify the integer 3.

Breakpoints specification
Source for the information of the breakpoint sets, specified as Explicit values (default),
Reference, or Even spacing.

• To store all of the table and breakpoint set data in the Simulink.LookupTable object, set
Breakpoints specification to Explicit values.

The Simulink.LookupTable object appears in the generated code as a single structure
variable.

• To store the table data in the Simulink.LookupTable object and store the breakpoint set
data in Simulink.Breakpoint objects, set Breakpoints specification to Reference.

The Simulink.LookupTable object appears in the generated code as a separate array
variable that contains the table data. Each Simulink.Breakpoint object appears as a
separate array or structure variable that contains the breakpoint set data.

5 Classes

5-402

• To store the table data and evenly spaced breakpoints in the Simulink.LookupTable object,
set Breakpoints specification to Even spacing. Use the First point and Spacing
parameters to generate a set of evenly spaced breakpoints.

Note When Breakpoints specification is set to Explicit values or Even spacing, you can
change the order of the tunable size, breakpoint, and table entries in a lookup table object-
generated structure.

Table
Information for the table data. You can configure these characteristics:

Value
Table data. Specify a numeric vector or multidimensional array with at least two elements.

The Value table data is the same as the contents of the tabular interface visible at the bottom
of the dialog box when the Breakpoints specification property is set to Explicit values.
For more information on this tabular area, see “Edit Lookup Table Data with Lookup Table
Spreadsheet”.

Note This property appears only if Breakpoints specification is set to Even spacing or
Reference.

You can also use an expression with mathematical operators such as sin(1:0.5:30) as long
as the expression returns a numeric vector or multidimensional array. When you click Apply
or OK, the object executes the expression and uses the result to set the value of this property.

When you set Data type to auto, to set Value, use a typed expression such as single([1 2
3]) or use the fi constructor to embed an fi object.

When you specify table data with three or more dimensions, Value displays the data as an
expression that contains a call to the reshape function. To edit the values in the data, modify

 Simulink.LookupTable class

5-403

the first argument of the reshape call, which contains all of the values in a serialized vector.
When you add or remove elements along a dimension, you must also correct the argument
that represents the length of the modified dimension.

You can edit this data by using a more intuitive interface in a lookup table block. See “Import
Lookup Table Data from MATLAB”.

Data type
Data type of the table data. The default setting is auto, which means that the table data
acquire a data type from the value that you specify in Value. If you use an untyped expression
such as [1 2 3] to set Value, the table data use the data type double. If you specify a typed
expression such as single([1 2 3]) or an fi object, the table data use the data type
specified by the expression or object. Enumerated data types are also supported.

You can explicitly specify an integer data type, half data type, a floating-point data type, a
fixed-point data type, or a data type expression such as the name of a Simulink.AliasType
object.

For more information about data types in Simulink, see “Data Types Supported by Simulink”.
To decide how to control the data types of table and breakpoint data in
Simulink.LookupTable and Simulink.Breakpoint objects, see “Control Data Types of
Lookup Table Objects” (Simulink Coder).

Dimensions
Dimension lengths of the lookup table data.

To use symbolic dimensions, specify a character vector. See “Implement Symbolic Dimensions
for Array Sizes in Generated Code” (Embedded Coder).

Min
Minimum value of the elements in the table data. The default value is empty, []. You can
specify a numeric, real value.

For more information about how Simulink uses this property, see “Specify Minimum and
Maximum Values for Block Parameters”.

Max
Maximum value of the elements in the table data. The default value is empty, []. You can
specify a numeric, real value.

For more information about how Simulink uses this property, see “Specify Minimum and
Maximum Values for Block Parameters”.

Stored Int Min
For Simulink.LookupTable objects with a fixed-point data type, the minimum value of the
elements in the table data, specified as a stored integer value. The value is derived from the
real-world value Min. This property is available only in the property dialog box.

Stored Int Max
For Simulink.LookupTable objects with a fixed-point data type, the maximum value of the
elements in the table data, specified as a stored integer value. The value is derived from the
real-world value Max. This property is available only in the property dialog box.

Unit
Physical units of the elements in the lookup table. You can specify text such as degC. See
“Unit Specification in Simulink Models”.

5 Classes

5-404

Field name
Name of a structure field in the generated code. This field stores the table data if you
configure the Simulink.LookupTable object to appear in the generated code as a
structure. The default value is Table. To change the field name, specify text.

Description
Description of the lookup table. You can specify text such as This lookup table
describes the action of a pump.

Breakpoints
Breakpoint set information. Each row is one breakpoint set. To configure additional breakpoint
sets, specify an integer value in the Number of table dimensions box.

For the breakpoint sets, you can configure these characteristics:
Value

Data for the breakpoint set. Specify a numeric vector with at least two elements.

Note This property appears only if Breakpoints specification is set to Even spacing
or Reference. The Value breakpoint set data is the same as the contents of the tabular
interface visible at the bottom of the dialog box when the Breakpoints specification
property is set to Explicit values. For more information on this tabular area, see “Edit
Lookup Table Data with Lookup Table Spreadsheet”.

You can also use an expression with mathematical operators such as sin(1:0.5:30) as long
as the expression returns a numeric vector. When you click Apply or OK, the object executes
the expression and uses the result to set the value of this property.

When you set Data type to auto, to set Value, use a typed expression such as single([1 2
3]) or use the fi constructor to embed an fi object.

You can edit this data by using a more intuitive interface in a lookup table block. See “Import
Lookup Table Data from MATLAB”.

Data type
Data type of the breakpoint set. The default setting is auto, which means that the breakpoint
set acquires a data type from the value that you specify in Value. If you use an untyped
expression such as [1 2 3] to set Value, the breakpoint data use the data type double. If
you specify a typed expression such as single([1 2 3]) or an fi object, the breakpoint
data use the data type specified by the expression or object.

You can explicitly specify an integer data type, a floating-point data type, a fixed-point data
type, or a data type expression such as the name of a Simulink.AliasType object.

For more information about data types in Simulink, see “Data Types Supported by Simulink”.
To decide how to control the data types of table and breakpoint data in
Simulink.LookupTable and Simulink.Breakpoint objects, see “Control Data Types of
Lookup Table Objects” (Simulink Coder).

Dimensions
Dimension lengths of the breakpoint set.

To use symbolic dimensions, specify a character vector. See “Implement Symbolic Dimensions
for Array Sizes in Generated Code” (Embedded Coder).

 Simulink.LookupTable class

5-405

Min
Minimum value of the elements in the breakpoint set. The default value is empty, []. You can
specify a numeric, real value.

For more information about how Simulink uses this property, see “Specify Minimum and
Maximum Values for Block Parameters”.

Max
Maximum value of the elements in the breakpoint set. The default value is empty, []. You can
specify a numeric, real value.

For more information about how Simulink uses this property, see “Specify Minimum and
Maximum Values for Block Parameters”.

Unit
Physical unit of the elements in the breakpoint set. You can specify text such as degF. See
“Unit Specification in Simulink Models”.

Field name
Name of a structure field in the generated code. This field stores the breakpoint set data. The
default value is BP1 for the first breakpoint set and BP2 for the second set. To change the
field name, specify text.

Tunable size name
Name of a structure field in the generated code. This field stores the length (number of
elements) of the breakpoint set, which the generated code algorithm uses to determine the
size of the table. To tune the effective size of the table during code execution, change the
value of this structure field in memory. The default name is N1 for the first breakpoint set and
N2 for the second set. To change the field name, specify text.

This column appears only if you select Support tunable size.
Description

Description of the breakpoint set. You can specify text such as This breakpoint set
represents the pressure input.

First point
First point in evenly spaced breakpoint data. This parameter is available when Breakpoints
specification is set to Even spacing.

Spacing
Spacing between points in evenly spaced breakpoint data. This parameter is available when
Breakpoints specification is set to Even spacing.

Name
Name of the Simulink.Breakpoint object that stores the information for this breakpoint
set.

This column appears only if you set Breakpoints specification to Reference.
First point name

Name of the Simulink.Breakpoint object that stores the information for the first point.
This parameter is available when Breakpoints specification is set to Even spacing.

5 Classes

5-406

Spacing name
Name of the Simulink.Breakpoint object that stores the information for the spacing. This
parameter is available when Breakpoints specification is set to Even spacing.

Table and breakpoint value edit area
Information for table and breakpoint data. You can enter a MATLAB expression in the associated
text box or add data directly in the accompanying table. Select the desired data type:

• Select table elements
• Use standard keyboard shortcuts such as:

• Copy — Ctrl+C
• Paste — Ctrl+V
• Undo — Ctrl+Z
• Delete
• Redo — Shift+Ctrl+Z

Entering or manipulating data in the table is simple and intuitive. Like Microsoft Excel
spreadsheets, you can work with the table with operations such as:

• Table — Table data. Specify a numeric vector or multidimensional array with at least two
elements.

You can also use an expression with mathematical operators such as sin(1:0.5:30) as long
as the expression returns a numeric vector or multidimensional array. When you press Enter,
the object executes the expression and uses the result to set the value of this property.

When you specify table data with three or more dimensions, the table displays the data as an
expression that contains a call to the reshape function. To edit the values in the data, modify
the first argument of the reshape call, which contains all of the values in a serialized vector.
When you add or remove elements along a dimension, you must also correct the argument
that represents the length of the modified dimension.

You can edit this data using a more intuitive interface in a lookup table block. See “Import
Lookup Table Data from MATLAB”.

• BPN — Data for the breakpoint set.

Specify a numeric vector with at least two elements.

You can also use an expression with mathematical operators such as sin(1:0.5:30) as long
as the expression returns a numeric vector. When you press Enter, the object executes the
expression and uses the result to set the value of this property.

You can edit this data by using a more intuitive interface in a lookup table block. See “Import
Lookup Table Data from MATLAB”.

Code Generation

Data definition: Storage class
Storage class of the structure variable (if you set Breakpoints specification to Explicit
values or Even spacing) or array variable (Reference) in the generated code. The variable
stores the table data and, if the variable is a structure, the breakpoint set data. The default
setting is Auto.

 Simulink.LookupTable class

5-407

For more information about storage classes, see “C Code Generation Configuration for Model
Interface Elements” (Simulink Coder).

If you have Embedded Coder, you can choose a custom storage class. For information about
custom storage classes, see “Organize Parameter Data into a Structure by Using Struct Storage
Class” (Embedded Coder).

Data definition: Identifier
Alternative name for the structure variable (if you set Breakpoints specification to Explicit
values or Even spacing) or array variable (Reference) in the generated code. The default
value is empty, in which case the generated code uses the name of the Simulink.LookupTable
object as the name of the structure or array variable. To set the identifier, specify text.

To enable this property, set Data definition: Storage class to a setting other than Auto.
Data definition: Alignment

Data alignment boundary in the generated code. The starting memory address for the data
allocated for the structure or array variable is a multiple of the value that you specify. The default
value is -1, which allows the code generator to determine an optimal alignment based on usage.

Specify a positive integer that is a power of 2, not exceeding 128. For more information about
using data alignment for code replacement, see “Data Alignment for Code Replacement”
(Embedded Coder).

Struct Type definition: Name
Name of the structure type that the structure variable uses in the generated code. The default
value is empty. Specify text.

This property appears only if you set Breakpoints specification to Explicit values or Even
spacing.

Struct Type definition: Data scope
Scope of the structure type definition (imported from your custom code or exported from the
generated code). The default value is Auto. When you select Auto:

• If you do not specify a value in the Struct Type definition: Header file box, the generated
code exports the structure type definition to the file model_types.h. model is the name of
the model.

• If you specify a value in the Struct Type definition: Header file box, such as myHdr.h, the
generated code imports the structure type definition from myHdr.h.

To explicitly specify the data scope:

• To import the structure type definition into the generated code from your custom code, select
Imported.

• To export the structure type definition from the generated code, select Exported.

Set the data scope of the structure type definition to Imported or Exported to avoid potential
MISRA C:2012 violations.

If you do not specify a value in the Struct Type definition: Header file box, the generated code
imports or exports the type definition from or to StructName.h. StructName is the name that
you specify by using the property Struct Type definition: Name.

5 Classes

5-408

This property appears only if you set Breakpoints specification to Explicit values or Even
spacing.

Struct Type definition: Header file
Name of the header file that contains the structure type definition. You can import the definition
from a header file that you create, or export the definition into a generated header file. To control
the scope of the structure type, adjust the setting for the Struct Type definition: Data scope
property.

This property appears only if you set Breakpoints specification to Explicit values or Even
spacing.

Advanced

Support tunable size
Specification to enable tuning the effective size of the table in the generated code. In the code,
the structure that corresponds to the object has an extra field for each breakpoint vector. Each
extra field stores the length of the corresponding breakpoint vector. You can change the value of
each field to adjust the effective size of the table. For more information on breakpoint and table
sizes, see “Breakpoint and Table Size Features in Lookup Tables”.

This property appears only if you set Breakpoints specification to Explicit values or Even
spacing. Selecting Allow multiple instances of this type to have different table and
breakpoint sizes automatically selects this property.

Note If you store breakpoint data in Simulink.Breakpoint objects by setting Breakpoints
specification to Reference, to enable tuning of the table size in the generated code, use the
Support tunable size property of each Simulink.Breakpoint object.

Allow multiple instances of this type to have different table and breakpoint sizes
Specification to configure a Lookup Table object to support differently sized tables and
breakpoints that have the same structure type. For example, assume two 1-D lookup table objects
are configured as shown and have the same struct type name.

• Lookup table with tables and breakpoints of size [1x4]
• Lookup table with tables and breakpoints of size [1x6]

To enable a model with two blocks containing these objects to simulate, select the Allow
multiple instances of this type to have different table and breakpoint sizes check box. For
code generation with Simulink Coder, the software generates a common struct type with pointer
typed member fields for the two objects to represent the table and breakpoint data.

This property appears only if you set Breakpoints specification to Explicit values or Even
spacing.

For more information on breakpoint and table sizes, see “Breakpoint and Table Size Features in
Lookup Tables”.

Properties
Breakpoints — Breakpoint set information
vector of Simulink.lookuptable.Breakpoint objects | cell array of character vectors

 Simulink.LookupTable class

5-409

Breakpoint set information, specified as a vector of Simulink.lookuptable.Breakpoint objects,
a cell array of character vectors, or a vector of Simulink.lookuptable.Evenspacing objects.

If you use a vector of Simulink.lookuptable.Breakpoint objects, each object represents a
breakpoint set. To use a vector of Simulink.lookuptable.Breakpoint objects, set the property
BreakpointsSpecification to 'Explicit values'.

If you use a cell array of character vectors, each character vector represents the name of a
Simulink.Breakpoint object. To use a cell array of character vectors, set the property
BreakpointsSpecification to 'Reference'.

If you use a vector of Simulink.lookuptable.Evenspacing objects, each object represents a
breakpoint set. To use a vector of Simulink.lookuptable.Evenspacing objects, set the property
BreakpointsSpecification to 'Even Spacing'.

BreakpointsSpecification — Source of breakpoint set information
'Explicit values' (default) | 'Reference' | 'Even spacing'

Source of the breakpoint set information, specified as 'Explicit values' (default), 'Even
spacing', or 'Reference'. See the Breakpoints > Specification parameter.
Data Types: char

CoderInfo — Code generation settings for structure or array variable
Simulink.CoderInfo object

Code generation settings for the structure variable (if you set BreakpointsSpecification to
'Explicit values' or 'Even spacing') or array variable ('Reference') that stores the lookup
table and breakpoint sets, specified as a Simulink.CoderInfo object. You can specify a storage
class or custom storage class by using this embedded object. See Simulink.CoderInfo.

StructTypeInfo — Settings for structure type in the generated code
Simulink.lookuptable.StructTypeInfo object

Settings for the structure type that the structure variable uses in the generated code, specified as a
Simulink.lookuptable.StructTypeInfo object.

If you set BreakpointsSpecification to 'Reference', the Simulink.LookupTable object
does not appear in the generated code as a structure. The code generator ignores this property.

SupportTunableSize — Option to generate code that enables tunability of table size
false (default) | true

Option to generate code that enables tunability of the effective size of the table, specified as true or
false. See the Support Tunable Size parameter.
Data Types: logical

Table — Information for table data
Simulink.lookuptable.Table object

Information for the table data, specified as a Simulink.lookuptable.Table object.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

5 Classes

5-410

Examples
Represent a One-Dimensional Lookup Table

1 Create a Simulink.LookupTable object named LUTObj.

LUTObj = Simulink.LookupTable;
2 Specify the table data.

LUTObj.Table.Value = [1.1 2.2 3.3 4.4 5.5];
3 Specify the breakpoint set data.

LUTObj.Breakpoints(1).Value = [-2 -1 0 1 2];
4 Specify a name for the structure type in the generated code.

LUTObj.StructTypeInfo.Name = 'myLUTStruct';

You can use LUTObj in a 1-D Lookup Table block dialog box. In the block, set Data specification to
Lookup table object and Name to LUTObj.

To view the data, use the property dialog as described in “Edit Lookup Table Data with Lookup Table
Spreadsheet”.

Represent a Two-Dimensional Lookup Table

1 Create a Simulink.LookupTable object named LUTObj.

LUTObj = Simulink.LookupTable;
2 Specify the table data.

LUTObj.Table.Value = [1.1 2.2 3.3 4.4 5.5; ...
 6.6 7.7 8.8 9.9 10.1];

3 Specify the breakpoint set data. In the Breakpoints property, use the vector index 2 to set the
values in the second breakpoint set.

LUTObj.Breakpoints(1).Value = [-1 1];

LUTObj.Breakpoints(2).Value = [-2 -1 0 1 2];

LUTObj creates a Simulink.lookuptable.Breakpoint object as the second vector element
in the value of the Breakpoints property. Except for the Value property, the new object has
default property values.

4 Specify a name for the structure type in the generated code.

LUTObj.StructTypeInfo.Name = 'myLUTStruct';

You can use LUTObj in a 2-D Lookup Table block dialog box.

To view the data, use the property dialog as described in “Edit Lookup Table Data with Lookup Table
Spreadsheet”.

Evenly Space Every Second Value Starting from 1

To evenly space every second value starting from 1, use the Breakpoint object.

 Simulink.LookupTable class

5-411

1 Create a Simulink.LookupTable object named LUTObj.

LUTObj=Simulink.LookupTable

LUTObj =

 LookupTable with properties:

 Table: [1×1 Simulink.lookuptable.Table]
 BreakpointsSpecification: 'Explicit values'
 Breakpoints: [1×1 Simulink.lookuptable.Breakpoint]
 SupportTunableSize: 0
 CoderInfo: [1×1 Simulink.CoderInfo]
 StructTypeInfo: [1×1 Simulink.lookuptable.StructTypeInfo]

2 Set up the breakpoint property to even spacing.

LUTObj.BreakpointsSpecification='Even spacing'

LUTObj =

 LookupTable with properties:

 Table: [1×1 Simulink.lookuptable.Table]
 BreakpointsSpecification: 'Even spacing'
 Breakpoints: [1×1 Simulink.lookuptable.Evenspacing]
 SupportTunableSize: 0
 CoderInfo: [1×1 Simulink.CoderInfo]
 StructTypeInfo: [1×1 Simulink.lookuptable.StructTypeInfo]

3 Get the properties of the breakpoint.

LUTObj.Breakpoints(1)

ans =

 Evenspacing with properties:

 FirstPoint: 0
 Spacing: 1
 DataType: 'auto'
 Min: []
 Max: []
 Unit: ''
 FirstPointName: 'BPFirstPoint1'
 SpacingName: 'BPSpacing1'
 TunableSizeName: 'N1'
 Description: ''

4 To set the first point property, use the Breakpoint object FirstPoint property.

LUTObj.Breakpoints(1).FirstPoint=1
5 To set the spacing property, use the Breakpoint object.

LUTObj.Breakpoints(1).Spacing=2
6 Get the properties of the breakpoint.

5 Classes

5-412

LUTObj.Breakpoints(1)

ans =

 Evenspacing with properties:

 FirstPoint: 1
 Spacing: 2
 DataType: 'auto'
 Min: []
 Max: []
 Unit: ''
 FirstPointName: 'BPFirstPoint1'
 SpacingName: 'BPSpacing1'
 TunableSizeName: 'N1'
 Description: ''

Control Code Generation for Lookup Table and Breakpoint Sets

Create a Simulink.LookupTable object named LUTObj.

LUTObj = Simulink.LookupTable;

Specify the table data.

LUTObj.Table.Value = [1.00 2.25 3.50 4.75 6.00; ...
 7.25 8.50 9.75 11.00 12.25];

Specify the breakpoint set data. In the Breakpoints property, use the array index 2 to create an
additional Simulink.lookuptable.BreakpointInfo object, which represents the second
breakpoint set.

LUTObj.Breakpoints(1).Value = [-1 1];

LUTObj.Breakpoints(2).Value = [-2 -1 0 1 2];

Specify data types for the lookup table and each breakpoint set.

LUTObj.Table.DataType = 'fixdt(1,16,2)';

LUTObj.Breakpoints(1).DataType = 'int16';

LUTObj.Breakpoints(2).DataType = 'int16';

Specify unique names for the structure fields that store the table data and breakpoint sets in the
generated code.

LUTObj.Table.FieldName = 'myTable';

LUTObj.Breakpoints(1).FieldName = 'myBPSet1';

LUTObj.Breakpoints(2).FieldName = 'myBPSet2';

Export the structure variable definition from the generated code by using the storage class
ExportedGlobal.

LUTObj.CoderInfo.StorageClass = 'ExportedGlobal';

 Simulink.LookupTable class

5-413

Name the structure type in the generated code LUTStructType. Export the structure type definition
to a generated header file named myLUTHdr.h.

LUTObj.StructTypeInfo.Name = 'LUTStructType';
LUTObj.StructTypeInfo.DataScope = 'Exported';
LUTObj.StructTypeInfo.HeaderFileName = 'myLUTHdr.h';

In an n-D Lookup Table block in a model, set Data specification to Lookup table object and
Name to LUTObj.

load_system('myModel_LUTObj')
set_param('myModel_LUTObj/Lookup Table','DataSpecification','Lookup table object',...
 'LookupTableObject','LUTObj')

Generate code from the model.

slbuild('myModel_LUTObj')

Starting build procedure for: myModel_LUTObj
Generated code for 'myModel_LUTObj' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of code generation for: myModel_LUTObj

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: 0h 0m 2.141s

The generated code defines the structure type LUTStructType in the generated header file
myLUTHdr.h.

file = fullfile('myModel_LUTObj_ert_rtw','myLUTHdr.h');
rtwdemodbtype(file,'typedef struct {','} LUTStructType;',1,1)

typedef struct {
 int16_T myBPSet1[2];
 int16_T myBPSet2[5];
 int16_T myTable[10];
} LUTStructType;

The code uses the global structure variable LUTObj to store the table and breakpoint set data. The
table data is scaled based on the specified fixed-point data type.

file = fullfile('myModel_LUTObj_ert_rtw','myModel_LUTObj.c');
rtwdemodbtype(file,'LUTStructType LUTObj = {','/* Variable: LUTObj',1,1)

LUTStructType LUTObj = {
 { -1, 1 },

 { -2, -1, 0, 1, 2 },

 { 4, 29, 9, 34, 14, 39, 19, 44, 24, 49 }
} ; /* Variable: LUTObj

5 Classes

5-414

Limitations
When blocks in a subsystem use Simulink.LookupTable or Simulink.Breakpoint objects, you
cannot set data type override only on the subsystem. Instead, set data type override on the entire
model.

Version History
Introduced in R2016b

R2022b: New Advanced Tab
Behavior changed in R2022b

• The Support tunable size property has been moved to the new Advanced tab.
• To configure a Lookup Table object to support differently sized tables and breakpoints, select the

new Allow multiple instances of this type to have different table and breakpoint sizes
check box.

See Also
Simulink.lookuptable.Breakpoint | Simulink.lookuptable.Evenspacing |
Simulink.lookuptable.StructTypeInfo | Simulink.lookuptable.Table |
Simulink.Parameter | Simulink.Breakpoint

Topics
“Configure Lookup Tables for AUTOSAR Calibration and Measurement” (AUTOSAR Blockset)
“About Lookup Table Blocks”
“Edit Lookup Table Data with Lookup Table Spreadsheet”
“Breakpoint and Table Size Features in Lookup Tables”
“Package Shared Breakpoint and Table Data for Lookup Tables”
“Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder)

 Simulink.LookupTable class

5-415

Simulink.lookuptable.Breakpoint class
Package: Simulink.lookuptable

Configure breakpoint set data for lookup table object

Description
An object of the Simulink.lookuptable.Breakpoint class stores breakpoint set information for a
lookup table. The object resides in the Breakpoints property of a Simulink.LookupTable object
or Simulink.Breakpoint object.

You can use Simulink.LookupTable and Simulink.Breakpoint objects to store and configure a
lookup table for ASAP2 and AUTOSAR code generation.

To represent multiple breakpoint sets for a multidimensional lookup table, store a vector of
Simulink.lookuptable.Breakpoint objects in the Breakpoints property of a
Simulink.LookupTable object.

To share a breakpoint set between multiple lookup tables, use a Simulink.Breakpoint object to
store and configure the breakpoint set information. Use the object in a Prelookup block and create
Simulink.LookupTable objects to use in Interpolation Using Prelookup blocks.

Construction
When you create a Simulink.LookupTable object or Simulink.Breakpoint object, a
Simulink.lookuptable.Breakpoint object appears as the value of the Breakpoints property.

To create more Simulink.lookuptable.Breakpoint objects for a Simulink.LookupTable
object, use this technique:

Access the Breakpoints property by specifying a vector index.

To create a Simulink.lookuptable.Breakpoint object, you can set the value of any of the object
properties. The Simulink.LookupTable object creates the Simulink.lookuptable.Breakpoint
object with default property values, and sets the property that you specified.

The value of the Breakpoints property is an array of Simulink.lookuptable.Breakpoint
objects. Each embedded object represents one breakpoint set.

For example, suppose that you create a Simulink.LookupTable object named LUTObj. To create
more breakpoint sets, access the Breakpoints property by specifying vector indices:

LUTObj.Breakpoints(1).Value = [-1 1];
LUTObj.Breakpoints(2).Value = [-2 -1 0 1 2];
LUTObj.Breakpoints(3).Value = [-5 -3 0 3 5];

The object LUTObj creates additional Simulink.lookuptable.Breakpoint objects and sets the
Value property of each object. LUTObj now stores information for three breakpoint sets.

5 Classes

5-416

Properties
DataType — Data type of breakpoint set elements
'auto' (default) | character vector

Data type of breakpoint set elements, specified as a character vector. You can explicitly specify an
integer, half data type, a floating-point, a fixed-point data type, or a data type expression such as the
name of a Simulink.AliasType object.

The default value, 'auto', means that the breakpoint set acquires a data type from the value that
you specify in the Value property. If you use an untyped expression such as [1 2 3] to set Value,
the breakpoint data use the data type double. If you specify a typed expression such as single([1
2 3]) or an fi object, the breakpoint data use the data type specified by the expression or object.

For more information about data types in Simulink, see “Data Types Supported by Simulink”. To
decide how to control the data types of table and breakpoint data in Simulink.LookupTable and
Simulink.Breakpoint objects, see “Control Data Types of Lookup Table Objects” (Simulink Coder).
Example: 'int16'
Example: 'myTypeAlias'
Data Types: char

Description — Description of breakpoint set
'' (default) | character vector

Description of the breakpoint set, specified as a character vector.
Example: 'This breakpoint set represents the pressure input.'
Data Types: char

Dimensions — Dimension lengths of breakpoint set
[0 0] (default) | numeric vector

Dimension lengths of the breakpoint set, returned as a numeric vector or specified as a character
vector.

To use symbolic dimensions, specify a character vector.

FieldName — Name of structure field that stores breakpoint set data
'BP' (default) | character vector

Name of a structure field in the generated code, specified as a character vector. This field stores the
breakpoint set data.

The code generator uses this property only under these circumstances, which cause the breakpoint
data to appear in the generated code as a structure field:

• The Simulink.lookuptable.Breakpoint object exists in a Simulink.LookupTable object
and in the Simulink.LookupTable object you set BreakpointsSpecification to 'Explicit
values'.

• The Simulink.lookuptable.Breakpoint object exists in a Simulink.Breakpoint object
and in the Simulink.Breakpoint object you set SupportTunableSize to true.

Example: 'MyBkptSet1'

 Simulink.lookuptable.Breakpoint class

5-417

Data Types: char

Max — Maximum value of breakpoint set elements
[] (default) | numeric double value

Maximum value of the elements of the breakpoint set, specified as a numeric, real value of the data
type double.
Example: 17.23
Data Types: double

Min — Minimum value of breakpoint set elements
[] (default) | numeric double value

Minimum value of the elements of the breakpoint set, specified as a numeric, real value of the data
type double.
Example: -52.6
Data Types: double

TunableSizeName — Name of structure field that stores length of breakpoint set
'N' (default) | character vector

Name of a structure field in the generated code, specified as a character vector. This field stores the
length of the breakpoint set, which the generated code algorithm uses to determine the size of the
table. To tune the effective size of the table during code execution, change the value of this structure
field in memory.

The code generator uses this property only under these circumstances, which enable a tunable table
size in the generated code:

• The Simulink.lookuptable.Breakpoint object exists in a Simulink.LookupTable object
and in the Simulink.LookupTable object you set:

• BreakpointsSpecification to 'Explicit values'.
• SupportTunableSize to true.

• The Simulink.lookuptable.Breakpoint object exists in a Simulink.Breakpoint object
and in the Simulink.Breakpoint object you set SupportTunableSize to true.

Example: 'LengthForDim1'
Data Types: char

Unit — Physical unit of breakpoint set
'' (default) | character vector

Physical unit of the elements of the breakpoint set, specified as a character vector.
Example: 'inches'
Data Types: char

Value — Breakpoint set data
[] (default) | numeric vector

5 Classes

5-418

The breakpoint set data, specified as a numeric vector with at least two elements. To control the data
type of the breakpoint set, use the DataType property of the
Simulink.lookuptable.Breakpoint object.

When you set DataType to 'auto', to set the Value property, use a typed expression such as
single([1 2 3]) or use the fi constructor to embed an fi object.
Example: [10 20 30]
Data Types: single | double | half | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Version History
Introduced in R2016b

See Also
Simulink.LookupTable | Simulink.Breakpoint

 Simulink.lookuptable.Breakpoint class

5-419

Simulink.lookuptable.Evenspacing class
Package: Simulink.lookuptable

Configure even spacing set data for lookup table object

Description
An object of the Simulink.lookuptable.Evenspacing class stores event spacing set information
for a lookup table. The object resides in the Evenspacing property of a Simulink.LookupTable
object.

You can use Simulink.LookupTable objects to store and configure a lookup table for ASAP2 and
AUTOSAR code generation.

To represent multiple breakpoint sets for a multidimensional lookup table, store a vector of
Simulink.lookuptable.Evenspacing objects in the Evenspacing property of a
Simulink.LookupTable object.

Construction
When you create a Simulink.LookupTable object and set BreakpointSpecification to 'Even
spacing', a Simulink.lookuptable.Evenspacing object appears as the value of the
Breakpoints property.

To create more Simulink.lookuptable.Evenspacing objects for a Simulink.LookupTable
object, use this technique:

Access the Breakpoints property by specifying a vector index.

To create a Simulink.lookuptable.Evenspacing object, you can set the value of any of the
object properties. The Simulink.LookupTable object creates the
Simulink.lookuptable.Evenspacing object with default property values, and sets the property
that you specified.

The value of the Breakpoints property is an array of Simulink.lookuptable.Evenspacing
objects. Each embedded object represents one breakpoint set.

For example, suppose that you create a Simulink.LookupTable object named myLUTObj. To create
more breakpoint sets, access the Breakpoints property by specifying scalar indices for
FirstPoint and Spacing properties. To create more even spacing breakpoint sets, update the
object with this pair of properties:

LUTObj.Breakpoints(1).FirstPoint=-1;
LUTObj.Breakpoints(1).Spacing=2;
LUTObj.Breakpoints(1).FirstPoint=-2;
LUTObj.Breakpoints(1).Spacing=1;
LUTObj.Breakpoints(1).FirstPoint=-5;
LUTObj.Breakpoints(1).Spacing=2;

5 Classes

5-420

The object myLUTObj creates additional Simulink.lookuptable.Evenspacing objects and sets
the FirstPoint and Spacing properties of each object. LUTObj now stores information for three
breakpoint sets.

Properties
FirstPoint — First point in evenly spaced breakpoint data
[] (default) | numeric scalar

First point in evenly spaced breakpoint data, specified as a numeric scalar. To control the data type of
the breakpoint set, use the DataType property of the Simulink.lookuptable.Evenspacing
object.

When you set DataType to 'auto', to set the FirstPoint property, use a typed expression such as
single(1) or use the fi constructor to embed a fi object.
Example: -1
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Spacing — Spacing between points in evenly spaced breakpoint data
[] (default) | numeric, positive, monotonically increasing scalar

Spacing between points in evenly spaced breakpoint data, specified as a numeric scalar. To control
the data type of the breakpoint set, use the DataType property of the
Simulink.lookuptable.Evenspacing object.

When you set DataType to 'auto', to set the Spacing property, use a typed expression such as
single(1) or use the fi constructor to embed an fi object.
Example: -1
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

DataType — Data type of breakpoint set elements
'auto' (default) | character vector

Data type of breakpoint set elements, specified as a character vector. You can explicitly specify an
integer, a floating-point, a fixed-point data type, or a data type expression such as the name of a
Simulink.AliasType object.

The default value, 'auto', means that the breakpoint set acquires a data type from the value that
you specify in the Value property. If you use an untyped expression such as [1 2 3] to set Value,
the breakpoint data use the data type double. If you specify a typed expression such as single([1
2 3]) or an fi object, the breakpoint data use the data type specified by the expression or object.

For more information about data types in Simulink, see “Data Types Supported by Simulink”. To
decide how to control the data types of table and breakpoint data in Simulink.LookupTable and
Simulink.Breakpoint objects, see “Control Data Types of Lookup Table Objects” (Simulink Coder).
Example: 'int16'
Example: 'myTypeAlias'
Data Types: char

 Simulink.lookuptable.Evenspacing class

5-421

Min — Minimum value of breakpoint set elements
[] (default) | numeric double value

Minimum value of the elements of the breakpoint set, specified as a numeric, real value of the data
type double.
Example: -52.6
Data Types: double

Max — Maximum value of breakpoint set elements
[] (default) | numeric double value

Maximum value of the elements of the breakpoint set, specified as a numeric, real value of the data
type double.
Example: 17.23
Data Types: double

Unit — Physical unit of breakpoint set
'' (default) | character vector

Physical unit of the elements of the breakpoint set, specified as a character vector.
Example: 'inches'
Data Types: char

FirstPointName — Name of the Simulink.lookuptable.Evenspacing object that stores
the information for the first point
'BPFirstPoint1' (default) | character vector

Name of the Simulink.Breakpoint object that stores the information for the first point, specified
as a character vector. Generated code uses this name to display the first point.
Example: 'myFirstPointName'
Data Types: char

SpacingName — Name of the Simulink.lookuptable.Evenspacing object that stores the
information for the spacing
'auto' (default) | character vector

Name of the Simulink.Breakpoint object that stores the information for the spacing, specified as
a character vector. Generated code uses this name to display the spacing.
Example: 'mySpacing'
Data Types: char

TunableSizeName — Name of structure field that stores length of breakpoint set
'N' (default) | character vector

Name of a structure field in the generated code, specified as a character vector. This field stores the
length of the breakpoint set, which the generated code algorithm uses to determine the size of the
table. To tune the effective size of the table during code execution, change the value of this structure
field in memory.

5 Classes

5-422

The code generator uses the property only under these circumstances, which enable a tunable table
size in the generated code:

• The Simulink.lookuptable.Evenspacing object exists in a Simulink.LookupTable object,
in which you set BreakpointsSpecification to 'Even spacing' and SupportTunableSize
to true.

Example: 'LengthForDim1'
Data Types: char

Description — Description of breakpoint set
'' (default) | character vector

Description of the breakpoint set, specified as a character vector.
Example: 'This breakpoint set represents the pressure input.'
Data Types: char

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Version History
Introduced in R2017b

See Also
Simulink.LookupTable | Simulink.lookuptable.Breakpoint

 Simulink.lookuptable.Evenspacing class

5-423

Simulink.lookuptable.StructTypeInfo class
Package: Simulink.lookuptable

Configure settings for structure type that lookup table object uses in the generated code

Description
An object of the Simulink.lookuptable.StructTypeInfo class controls the structure type that
the generated code creates to store data for lookup table objects. The
Simulink.lookuptable.StructTypeInfo object resides in the StructTypeInfo property of a
Simulink.LookupTable object or Simulink.Breakpoint object. Use these parent objects to
store and configure a lookup table for ASAP2 and AUTOSAR code generation.

A Simulink.LookupTable object appears as a structure in the generated code when you set the
Specification property to 'Explicit values'. A Simulink.Breakpoint object appears as a
structure in the generated code when you set the SupportTunableSize property to true.

Construction
When you create a Simulink.LookupTable or Simulink.Breakpoint object, a
Simulink.lookuptable.StructTypeInfo object appears as the value of the StructTypeInfo
property.

Properties
DataScope — Scope of structure type definition
'Auto' (default) | 'Exported' | 'Imported'

Scope of structure type definition, specified as a character vector.

Set the data scope to Imported or Exported to avoid potential MISRA C:2012 violations.
Data Types: char

HeaderFileName — Name of header file that contains structure type definition
'' (default) | character vector

Name of the header file that contains the structure type definition, specified as a character vector.
Example: 'myHdr.h'
Data Types: char

Name — Name of structure type
'' (default) | character vector

Name of the structure type, specified as a character vector.
Data Types: char

5 Classes

5-424

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Version History
Introduced in R2016b

See Also
Simulink.LookupTable | Simulink.Breakpoint

 Simulink.lookuptable.StructTypeInfo class

5-425

Simulink.lookuptable.Table class
Package: Simulink.lookuptable

Configure table data for lookup table object

Description
An object of the Simulink.lookuptable.Table class stores table information for a lookup table.
The object resides in the Table property of a Simulink.LookupTable object. You can use the
Simulink.LookupTable object to store and configure a lookup table for ASAP2 and AUTOSAR code
generation.

Construction
When you create a Simulink.LookupTable object, a Simulink.lookuptable.Table object
appears as the value of the Table property.

Properties
DataType — Data type of table data elements
'auto' (default) | character vector

Data type of the table data elements, specified as a character vector. You can explicitly specify an
integer data type, half data type, a floating-point data type, a fixed-point data type, or a data type
expression such as the name of a Simulink.AliasType object.

The default value, 'auto', means that the table data acquire a data type from the value that you
specify in the Value property. If you use an untyped expression such as [1 2 3] to set Value, the
table data use the data type double. If you specify a typed expression such as single([1 2 3]) or
an fi object, the table data use the data type specified by the expression or object.

For more information about data types in Simulink, see “Data Types Supported by Simulink”. To
decide how to control the data types of table and breakpoint data in Simulink.LookupTable and
Simulink.Breakpoint objects, see “Control Data Types of Lookup Table Objects” (Simulink Coder).
Example: 'int16'
Example: 'myTypeAlias'
Data Types: char

Description — Description of table data
'' (default) | character vector

Description of the table data, specified as a character vector.
Example: 'This lookup table describes the action of a pump.'
Data Types: char

Dimensions — Dimension lengths of table data
[0 0] (default) | numeric vector

5 Classes

5-426

Dimension lengths of the table data, returned as a numeric vector or specified as a character vector.

To use symbolic dimensions, specify a character vector.

FieldName — Name of a structure field in the generated code
'Table' (default) | character vector

Name of a structure field in the generated code, specified as a character vector. This field stores the
table data if you configure the Simulink.LookupTable object to appear in the generated code as a
structure.
Example: 'MyPumpTable'
Data Types: char

Max — Maximum value of table data elements
[] (default) | numeric double value

Maximum value of the elements of the table data, specified as a numeric, real value of the data type
double.
Example: 17.23
Data Types: double

Min — Minimum value of table data elements
[] (default) | numeric double value

Minimum value of the elements of the table data, specified as a numeric, real value of the data type
double.
Example: -52.6
Data Types: double

Unit — Physical unit of table elements
'' (default) | character vector

Physical unit of the elements of the table data, specified as a character vector.
Example: 'degC'
Data Types: char

Value — Table data
[] (default) | numeric vector or multidimensional array

The table data, specified as a numeric vector or multidimensional array with at least two elements. To
control the data type of the table data, use the DataType property of the
Simulink.lookuptable.Table object.

When you set DataType to 'auto', to set the Value property, use a typed expression such as
single([1 2 3]) or use the fi constructor to embed an fi object.
Example: [10 20 30; 40 50 60]
Data Types: single | double | half | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

 Simulink.lookuptable.Table class

5-427

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Version History
Introduced in R2016b

See Also
Simulink.LookupTable | Simulink.Breakpoint

5 Classes

5-428

Simulink.Mask class
Package: Simulink

Control masks programmatically

Description
Use an instance of the Simulink.Mask class to perform the following operations:

• Create, copy, and delete masks.
• Create, edit, and delete mask parameters.
• Determine the block that owns the mask.
• Obtain workspace variables defined for a mask.

Properties
Type — Mask type of block
character vector (default) | string

Mask type of the associated block is specified as a character vector or string.
Data Types: char | string

Description — Description of block
character vector (default) | string

Description of the block, specified as a character vector or string.
Data Types: char | string

Help — Help text for the masked block
character vector (default) | string

Help text for the masked block, specified as a character vector or string.
Data Types: char | string

Initialization — Initialization commands
character vector (default) | string

Initialization commands for the masked block, specified as a character vector or string.
Data Types: char | string

SelfModifiable — Option to allow block to modify its contents
off (default) | on

Option to allow the block to modify its contents, specified as a logical.
Data Types: logical

Display — MATLAB code for block icon
character vector (default) | string

 Simulink.Mask class

5-429

MATLAB code for the block icon, specified as a character vector or string.
Data Types: char | string

IconFrame — Visibility of block frame
off (default) | on

Visibility of the block frame, specified as a logical value.
Data Types: logical

IconOpaque — Option to make the icon opaque
opaque (default) | transparent

Option to make the icon opaque, specified as a logical.

• Opaque: Make the icon opaque.
• Transparent: Make the icon transparent.

Data Types: logical

RunInitForIconRedraw — Option to run initialization before executing drawing commands
auto (default) | on | off

Option to run mask initialization commands before executing the mask icon commands, specified as
enumerated data type.
Data Types: enum

IconRotate — Option to rotate icon with block
none (default) | port

Option to rotate icon along with block, specified as enumerated data type.
Data Types: enum

PortRotate — Port rotation type
default (default) | physical

Port rotation type, specified as enumerated data type. Set this property to default to reorder ports
after a clockwise rotation to maintain a left-to-right port numbering order for ports along the top and
bottom of the block and a top-to-bottom port numbering order for ports along the left and right sides
of the block. Set this property to physical to rotate ports with the block without reordering them
after a clockwise rotation.
Data Types: enum

IconUnits — Units for drawing commands
autoscale (default) | pixels | normalized

Units for drawing commands, specified as enumerated type. autoscale scales the icon to fit the
block frame. normalized draws the icon within a block frame whose bottom-left corner is (0,0) and
whose top-right corner is (1,1). Only X and Y values from 0 through 1 appear. When the block is
resized, the icon is also resized. pixels draws the icon with X and Y values expressed in pixels. The
icon is not automatically resized when the block is resized.
Data Types: enum

5 Classes

5-430

SaveCallbackFileWithModel — Option to save callback file with the model
off (default) | on

Use this option to save the callback file along with the model, if you have mask initialization code and
callback code in a separate MAT file, specified as a logical value.
Data Types: logical

CallbackFile — Name of callback file
empty (default) | character vector | string

Name of the callback file containing the mask initialization code and callback code, specified as a
character vector or string.
Data Types: char | string

Parameters — Mask parameter properties
Simulink.MaskParameterobject (default)

Mask parameter properties, specified as a Simulink.MaskParameter object.

PortIdentifiers — Port identifier properties
Simulink.Mask.PortIdentifiers object (default)

Port identifier properties, specified as a Simulink.Mask.PortIdentifiers object.

ParameterConstraints — Parameter constraints properties Object of
Simulink.Mask.Constraints object (default)

Option to add or remove parameter constraint rule, specified as a Simulink.Mask.Constraints
object.

CrossParameterConstraints — Constraints between parameters
Simulink.Mask.CrossParameterConstraints (default)

Constraints between parameters, specified as Simulink.Mask.CrossParameterConstraints.

PortConstraints — Port constraints properties
Simulink.Mask.PortConstraint object (default)

Option to add or remove port constraints, specified as a Simulink.Mask.PortConstraint object.

CrossPortConstraints — Cross port constraints properties
Simulink.Mask.CrossPortConstraint object (default)

Option to add or remove constraints on ports of the masked block, specified as a
Simulink.Mask.CrossPortConstraint object.

Methods
Public Methods
addCrossParameterConstraint Add cross-parameter constraint
addCrossPortConstraint Create cross-port constraint among ports of the same

masked block
addParameter Add a parameter to a mask

 Simulink.Mask class

5-431

addParameterConstraint Add parameter constraint to a mask
addPortConstraint Create port constraint on a mask object
addPortConstraintAssociation Associate port constraints to port identifiers
addPortIdentifier Creates a port identifier to identify port in mask
addCrossParameterConstraint Add cross-parameter constraint
Simulink.Mask.copy Copy a mask from one block to another
Simulink.Mask.create Create a mask on a Simulink block
delete Unmask a block and delete the mask from memory
get Returns mask from a specified block
getPortConstraintAssociation Displays port identifiers associated with port constraint
getAssociatedParametersOfConstraint Get mask parameters associated with a constraint
getCrossParameterConstraint Get cross-parameter constraint
getCrossPortConstraint Display attributes of cross-port constraint
getDialogControl Search for a specific dialog control on the mask
getOwner Determine the block that owns a mask
getParameter Get mask parameter by name
getParameterConstraint Get mask parameter constraint properties
getPortConstraint Displays attributes of specified port constraint
getPortConstraintAssociation Displays port identifiers associated with port constraint
getPortIdentifier Displays attributes of specified port identifier
getWorkspaceVariables Get all the variables defined in the mask workspace for a

masked block
numParameters Display number of parameters in a mask
removeAllCrossParameterConstraints Delete all cross-parameter constraints from a mask
removeAllParameterConstraints Delete all mask parameter constraints
removeAllParameters Remove all existing parameters from a mask
removeAllCrossPortConstraints Remove all cross-port constraints from mask object
removeAllPortConstraintAssociation Removes the associations of all port constraints from mask
removeAllPortConstraints Remove all port constraints on masked block
removeAllPortIdentifiers Removes all port identifiers from mask object
removeCrossParameterConstraint Delete a cross-parameter constraint
removeCrossPortConstraint Remove cross-port constraint
removeDialogControl Remove dialog control element from mask dialog box
removeParameter Remove parameter from mask dialog box
removeParameterConstraint Delete a mask parameter constraint
removePortConstraint Remove specified port constraint
removePortIdentifier Removes specified port identifier from mask object
removePortConstraintAssociation Remove association between port constraint and port

identifiers
set Set properties of an existing mask

Version History
Introduced in R2010a

See Also
“Control Masks Programmatically” | “Create Block Masks”

5 Classes

5-432

addCrossParameterConstraint
Class: Simulink.Mask
Package: Simulink

Add cross-parameter constraint

Syntax
CrossConstraint = maskObj.addCrossParameterConstraint(Name,Value)

Description
CrossConstraint = maskObj.addCrossParameterConstraint(Name,Value) adds a
constraint among parameters of a mask.

Input Arguments
maskObj — Block mask handle
mask object

Block mask handle, specified as a mask object. You can use the Simulink.Mask.get command to
get the block mask handle. For more information, see get.
Data Types: char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the property name and
Value is the corresponding value. You can specify several name and value pair arguments in any
order as Name1,Value1,...,NameN,ValueN.

Name — Cross-parameter constraint name
character vector | string

Cross-parameter constraint name, specified as a character vector. Must be a valid MATLAB value.

Rule — Cross-parameter constraint rule
MATLAB expression | string

Cross-parameter constraint rule, specified as a valid MATLAB expression that returns logical true or
false. You can specify multiple rules by separating them with a logical operators like &&. For example,
parameter1 > parameter2 && parameter2 > parameter3. Here, parameter1, parameter2
and parameter3 are parameters of a mask.

ErrorMessage — Error message
character vector | string

Optional field. Specifies the error message to be displayed when the cross parameter constraint rule
is not satisfied. You can specify the error message as character vector or as a message catalog ID. If
you use the message catalog ID to specify an error, the error message must not have any holes in it.
Simulink displays a default error message if no user-defined error message is found.

 addCrossParameterConstraint

5-433

Output Arguments
CrossConstraint — Cross parameter constraint
cell array

Handle to the cross-parameter constraint, returned as a cell array.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Add cross parameter constraint.
CrossConstraint = maskObj.addCrossParameterConstraint('Name','crossconstraint1',...
'MATLABexpression','upperbound > lowerbound','ErrorMessage','Incorrect value specified.')

ans =

 CrossParameterConstraints with properties:

 Name: 'crossconstraint1'
MATLABexpression: 'upperbound > lowerbound'
 ErrorMessage: 'Incorrect value specified.'

Version History
Introduced in R2018a

See Also
Simulink.mask | “Create Block Masks”

5 Classes

5-434

addDialogControl
Add dialog control elements to mask dialog box

Syntax
maskObj.addDialogControl(controlType,controlIdentifier)
successIndicator= maskObj.addDialogControl(Name,Value)

Description
maskObj.addDialogControl(controlType,controlIdentifier) adds dialog control elements
like text, hyperlinks, or tabs to mask dialog box. First get the mask object and assign it to the variable
maskObj.

successIndicator= maskObj.addDialogControl(Name,Value)adds dialog control elements
specified by one or more Name,Value pair arguments. You can specify multiple Name-Value pairs.

Input Arguments
controlType — Value type of dialog control element
panel | group | tabcontainer | tab | collapsiblepanel | text | image | webbrowser |
pushbutton | ...

Type of dialog control element, specified as character vector or string
Data Types: char | string

controlIdentifer — Unique identifier for the element
character vector | string scalar

Programmatic identifier for the element of mask dialog box is specified as a character vector or
string. Use a name that is unique and does not have a space between words. For more information,
see “Variable Names”.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Type — Type of dialog control element
empty (default) | panel | group | tabcontainer | tab | collapsiblepanel | text | image

Type of control that is used to specify the value of this dialog control element. Type is a required
argument. The permitted values are , , , , , , , 'hyperlink', and 'pushbutton'.
Data Types: char | string

 addDialogControl

5-435

Name — Identifier name for the dialog control element
character vector (default) | string

The identifier of the dialog control element specified as a character vector or string. Name is a
required argument. This field is available for all dialog control types.
Data Types: char | string

Prompt — Display text in the dialog control element
character vector (default) | string

Text that is displayed in the dialog control element on the Mask dialog box specified as a character
vector or string. This field is available for all except for panel and image dialog control types.
Data Types: char | string

Tooltip — Tooltip for the dialog control element
character vector (default) | string

Text that is displayed in the dialog control element on the Mask dialog box. This field is available for
all except for panel and image dialog control types.
Data Types: char | string

Enabled — Option to specify whether to set the value for the dialog control element or not
on | off

Option to specify whether you can set value for the dialog control element. This field is available for
all dialog control types.
Data Types: logical

Visible — Hide or Unhide the dialog control element in the dialog box
on | off

Option to set whether the dialog control element is hidden or visible to the user. This field is available
for all dialog control types.
Data Types: logical

Callback — MATLAB code that executes when the dialog control element is edited
character vector | string

Container for MATLAB code that executes when you edit the dialog control element and click Apply.
This field is available only for the hyperlink and push button dialog control types.
Data Types: char | string

Row — Option to set the dialog control in the same row or new row
character vector | string

Option to set whether the dialog control is placed in the new row or the same row. This field is
available for all dialog control types.
Data Types: logical

Filepath — Path to an image file
character vector | string

5 Classes

5-436

Contains the path to an image file. This field is available for image, and push button dialog control
types.
Data Types: char | string

Container — Option to specify container for the child dialog control
character vector | string

Option to specify a container for the child dialog control. The permitted values are the names of
'panel', 'group', and 'tab' dialog controls.
Data Types: logical

ExamplesAdd Dialog Control Elements to Mask Dialog Box

Get mask object and add dialog control element to it.

% Get mask object on model Engine
new_system('Engine');
add_block('built-in/Gain','Engine/gain');
save_system;
open_system('Engine');
maskObj = Simulink.Mask.create(gcb);
save_system;
% Add hyperlink to mask dialog box

maskLink = maskObj.addDialogControl('hyperlink','link');
maskLink.Prompt = 'Mathworks Home Page';
maskLink.Callback = 'web(''www.mathworks.com'')'

maskLink =
 Hyperlink with properties:

 Name: 'link'
 Prompt: 'Mathworks Home Page'
 Callback: 'web('www.mathworks.com')'
 Row: 'new'
 Enabled: 'on'
 Visible: 'on'
 HorizontalStretch: 'on'
 Tooltip: ''

% Add text to mask dialog box
maskText = maskObj.addDialogControl('text','text_tag');
maskText.Prompt = 'Enable range checking';

% Add button to mask dialog box
maskButton = maskObj.addDialogControl('pushbutton','button_tag');
maskButton.Prompt = 'Compute';
save_system;

Add Dialog Control Elements to Mask Dialog Box Tabs

Create tabs on the mask dialog box and add elements to these tabs.

% Get mask object on a block named 'GainBlock'
add_block('built-in/Gain','Engine/gain1');

 addDialogControl

5-437

maskObj = Simulink.Mask.create(gcb);
maskObj = Simulink.Mask.get(gcb);

% Create a tab container

maskObj.addDialogControl('tabcontainer','allTabs');
tabs = maskObj.getDialogControl('allTabs');

% Create tabs and name them

maskTab1 = tabs.addDialogControl('tab','First');
maskTab1.Prompt = 'First tab';

maskTab2 = tabs.addDialogControl('tab','Second');
maskTab2.Prompt = 'Second tab';

% Add elements to one of the tabs

firstTab = tabs.getDialogControl('First');
firstTab.addDialogControl('text','textOnFirst');
firstTab.getDialogControl('textOnFirst').Prompt = 'Tab one';
save_system;

Add Dialog Control Element Using Name-Value Pair

Add dialog control element and specify values for it.

% Get mask object on model Engine

add_block('built-in/Gain','Engine/gain2');
maskObj = Simulink.Mask.create(gcb);
maskObj = Simulink.Mask.get(gcb);

% Add a dialog box and specify values for it

maskDialog = maskObj.addDialogControl('Name','abc','Type','text','Prompt','hello','Visible','off');
save_system;

Version History
Introduced in R2014a

See Also
Simulink.mask | “Create Block Masks” | Control Masks Programmatically

5 Classes

5-438

Simulink.Mask.addParameter
Package: Simulink

Add a parameter to a mask

Syntax
maskobj = Simulink.Mask.get(blockName)
maskobj.addParameter(Name,Value)

Description
maskobj = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

maskobj.addParameter(Name,Value) appends a parameter to the mask. If you do not specify
name–value pairs as arguments with this command, Simulink generates name for the mask parameter
with control type set to edit.

Examples

Add Popup Parameter

Step 1: Get mask as an object using a masked block’s path.

new_system('paramexample');
add_block('built-in/subsystem','paramexample/subsystem');
save_system;
open_system('paramexample');
p= Simulink.Mask.create(gcb);

Step 2: Add a parameter to the mask without specifying name–value pairs for parameter attributes.

p.addParameter;

Step 3: Add a mask parameter of type popup that cannot be evaluated.

p.addParameter('Type','popup','TypeOptions',{'Red' 'Blue' 'Green'},'Evaluate','off');
save_system;

Input Arguments
blockName — Handle or path to block
empty (default)

Handle or path to the block inside the model, specified as a character vector.
Data Types: char | string

 Simulink.Mask.addParameter

5-439

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: “Add Popup Parameter” on page 5-439

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Type — Type of parameter
edit (default) | checkbox | popup | combobox | listbox | promote

Type of parameter, specified as character vector.
Data Types: char | string

TypeOptions — Type options of parameter
edit (default) | checkbox | slider | dial | unit | min | max | promote | ...

The options that are displayed within a popup or combobox or listbox parameter, specified as a cell
array.
Data Types: cell

Name — Name of mask parameter
character vector (default) | ...

The name of the mask parameter, specified as a character vector. This name is assigned to the mask
workspace variable created for this parameter.
Data Types: char | string

Prompt — Display name for mask parameter
character vector (default) | ...

Display name for the mask parameter, specified as a character vector. This name appears as the label
associated with the parameter on the mask dialog.
Data Types: char | string

Value — Mask parameter value
character vector (default) | ...

The default value of the mask parameter in the Mask Parameters dialog. Type specific, depends on
the Type of the parameter, specified as a character vector.
Data Types: char | string

Evaluate — Option to evaluate mask parameter
on (default) | off

Option to evaluate mask parameter, specified as a logical.
Data Types: logical

Tunable — Option to change mask parameter during simulation
on (default) | off

5 Classes

5-440

Option to change the mask parameter during simulation, specified as logical value.
Data Types: logical

Enabled — Option to enable mask parameter
on (default) | off

Option to enable the mask parameter in the mask dialog, specified as a logical.
Data Types: logical

Visible — Option to show mask parameter in mask dialog
on (default) | off

Option to show the mask parameter in the mask dialog, specified as a logical.
Data Types: logical

Callback — Callback code for the mask parameter
character vector (default)

Callback code for the mask parameter, specified as a character vector. The callback code executes
when a user changes the parameter value in the mask dialog box.
Data Types: char

ShowTooltip — Option to enable tooltips for mask parameter
on (default) | off

Option to enable tooltips for the mask parameter, specified as a logical value.
Data Types: logical

Alias — Alternative name for mask parameter
empty (default) | ...

Alternative name for the mask parameter is specified as character vector.
Data Types: char | string

DialogControl — Layout options
empty (default) | ...

Layout options for the parameter in the mask dialog, specified as a character vector. The location of
the parameter in the mask dialog such as the row location, prompt location is specified. Additionally
horizontal stretch or shrink of the mask parameter is also specified.
Data Types: char | string

Version History
Introduced in R2014a

See Also
Simulink.mask | “Create Block Masks”

 Simulink.Mask.addParameter

5-441

addParameterConstraint
Class: Simulink.Mask
Package: Simulink

Add parameter constraint to a mask

Syntax
paramConstraint = maskObj.addParameterConstraint(Name,Value)

Description
paramConstraint = maskObj.addParameterConstraint(Name,Value) adds a constraint to
the specified mask. Constraints can only be associated to the Edit type mask parameters.

Input Arguments
maskObj — Block mask handle
mask object

Block mask handle, specified as a mask object. You can use the Simulink.Mask.get command to
get the block mask handle. For more information, see get
Data Types: char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. You can specify several name and value pair arguments in any
order as Name1,Value1,...,NameN,ValueN.

Name — Mask constraint name
character vector | string

Required field. Must be a valid MATLAB name. Specifies a name for the mask parameter constraint.

Parameters — Mask parameter name
cell array of character vector | string

Optional field. Specifies the Edit mask parameter name to which you want to associate the
constraint.

Rules — Rule for mask parameter constraint
DataType | Dimension | Complexity | Sign | Finiteness | Minimum | Maximum | CustomConstraint

Required field. Rules are defined within curly braces. A constraint can have single or multiple rules.

5 Classes

5-442

Name-Value Pairs for Rules
Name Value
DataType double, single, numeric, integer, int8,

uint8, int16, uint16, int32, uint32,
boolean, enum, fixdt

Dimension scalar, row vector, column vector, 2-D
matrix, n-D matrix

Complexity real, complex
Sign positive, negative, zero
Finiteness finite, inf, -inf, NaN
Minimum character vector
Maximum character vector
CustomConstraint Valid MATLAB expression returning logical true

or false.
CustomErrorMessage character vector or a message catalog ID. If you

use the message catalog ID to specify an error,
the error message must not have any holes in it.
This error message is specifically for custom
constraint validation failure.

Output Arguments
paramConstraint — Mask parameter constraint
character vector | string

Handle to the mask parameter constraint, returned as a character vector. You can associate a
constraint to the mask parameter either during or after creating the constraint.

Examples
Create Mask Constraint
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Create mask constraint
paramConstraint = maskobj.addParameterConstraint('Name','const2',...
'Parameters',{'Parameter1'}, 'Rules', {'DataTypes', {'uint8','uint16'}})

paramConstraint =

 Constraints with properties:

 Name: 'const2'
 ConstraintRules: [1×1 Simulink.Mask.ParameterConstraintRules]

Version History
Introduced in R2018a

 addParameterConstraint

5-443

See Also
“Create Block Masks” | Simulink.Mask

5 Classes

5-444

Simulink.Mask.copy
Package: Simulink

Copy a mask from one block to another

Syntax
pSource = Simulink.Mask.get(srcBlockName)
pDest = Simulink.Mask.create(destBlockName)
pDest.copy(pSource)

Description
pSource = Simulink.Mask.get(srcBlockName) gets the mask on the source block specified by
srcBlockName as a mask object.

pDest = Simulink.Mask.create(destBlockName) creates an empty mask on the destination
block specified by destBlockName.

pDest.copy(pSource) overwrites the destination mask with the source mask.

Examples

Copy Mask

Step 1: Create an empty mask on the destination block using the block’s path.

new_system('mymodel');
add_block('built-in/subsystem','mymodel/subsystem');
open_system('mymodel');
pDest=Simulink.Mask.create('mymodel/subsystem');

Step 2: Get source mask as an object using the source block’s path.

add_block('built-in/gain','mymodel/gain');
Simulink.Mask.create('mymodel/gain');
pSource = Simulink.Mask.get('mymodel/gain');

Step 3: Make the destination mask a copy of the source mask.

pDest.copy(pSource);
save_system;

Input Arguments
srcBlockName — Handle or path to the source block
empty (default)

 Simulink.Mask.copy

5-445

Handle to the source block or the path to the source block inside the model is specified as character
vector.
Data Types: char | string

destBlockName — Handle or path to the destination block
empty (default)

The handle to the destination block or the path to the destination block inside the model.

Note The destination block should have an empty mask. Otherwise, the copied mask will overwrite
the non-empty mask.

Data Types: char | string

pSource — Mask object of source block
empty (default)

Mask object of the source block.

Note The destination block should have an empty mask. Otherwise, the copied mask will overwrite
the non-empty mask.

Data Types: char | string

Version History
Introduced in R2006a

See Also
Simulink.mask | “Create Block Masks”

5 Classes

5-446

Simulink.Mask.create
Package: Simulink

Create a mask on a Simulink block

Syntax
maskobj= Simulink.Mask.create(blockName)

Description
maskobj= Simulink.Mask.create(blockName)creates an empty mask on the block specified by
blockName. If the specified block is already masked, an error message appears.

Examples

Create a Mask on a Block

Create a mask using a block’s handle.

Note In the model, select the block to be masked.

maskobj = Simulink.Mask.create(gcb);

Create a mask using the block’s path.

maskobj = Simulink.Mask.create('myModel/Subsystem');

Input Arguments
blockName — Handle or path to block
empty (default)

Handle or path to the block inside the model, specified as a character vector.
Data Types: char | string

Version History
Introduced in R2010a

See Also
Simulink.mask | “Create Block Masks”

 Simulink.Mask.create

5-447

Simulink.Mask.delete
Package: Simulink

Unmask a block and delete the mask from memory

Syntax
maskobj = Simulink.Mask.get(blockName)
maskobj.delete

Description
maskobj = Simulink.Mask.get(blockName) gets the mask on the block specified by the
blockName.

maskobj.delete unmasks the block and deletes the mask from memory.

Examples

Remove Mask on the Block

Get mask as an object using the masked block’s path.

maskobj = Simulink.Mask.get('myModel/Subsystem');

Unmask the block using the mask object and delete the mask from memory.

maskobj.delete;

Input Arguments
blockName — Handle or path to the block
empty (default)

The handle to the block or the path to the block inside the model, specified as a character vector.
Data Types: char | string

Version History
Introduced in R2010a

See Also
Simulink.mask | “Create Block Masks”

5 Classes

5-448

get
Class: Simulink.Mask
Package: Simulink

Returns mask from a specified block

Syntax
maskObj = Simulink.Mask.get(blockName)

Description
maskObj = Simulink.Mask.get(blockName) gets the mask on the specified block as a mask
object. If the specified block is not masked, a null value returns.

Input Arguments
blockName — Handle or path to the block
character vector (default) | string

The path or handle to the block is specified as a character vector or string.
Data Types: char | string

Examples
Get mask from the block using block path.

openExample('simulink_masking/MaskLookupTableControlExample')
Simulink.Mask.get('slexMaskLookupTableControlExample/
LUT Control with Explicit Data');

Get mask from the block using block handle

Note In the model, select the masked block.

Simulink.Mask.get(gcb);

Version History
Introduced in R2014a

See Also
“Create Block Masks” | Simulink.mask

 get

5-449

getAssociatedParametersOfConstraint
Class: Simulink.Mask
Package: Simulink

Get mask parameters associated with a constraint

Syntax
maskParam = maskObj.getAssociatedParametersOfConstraint(paramConstraintName)

Description
maskParam = maskObj.getAssociatedParametersOfConstraint(paramConstraintName)
gets the parameters that are associated with a mask constraint.

Input Arguments
maskObj — Block mask handle
mask object

Handle to the block mask, specified as mask object. You can use the Simulink.Mask.get command
to get the block mask handle. For more information, see get .
Data Types: char | cell

paramConstraintName — Mask constraint name
character vector | string

Name of the constraint for which you want to find the associated mask parameters, specified as
character vector.

Output Arguments
maskParam — Mask parameter name
cell array of character vector

Mask parameter, specified as a cell array.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Find parameters associated with the constraint.
maskParam = maskObj.getAssociatedParametersOfConstraint('const3')

ans =

 1×1 cell array

5 Classes

5-450

 {'Parameter1'}

Version History
Introduced in R2018a

See Also
simulink.mask | “Create Block Masks”

 getAssociatedParametersOfConstraint

5-451

getCrossParameterConstraint
Class: Simulink.Mask
Package: Simulink

Get cross-parameter constraint

Syntax
CrossConstraint = maskObj.getCrossParameterConstraint(CrossConstraintName)

Description
CrossConstraint = maskObj.getCrossParameterConstraint(CrossConstraintName) gets
the properties of a cross parameter constraint on a mask. Apply a cross-parameter constraint to
specify rules between mask parameter values.

Input Arguments
maskObj — Block mask handle
mask object

Handle to the block mask, specified as mask object. You can use the Simulink.Mask.get command
to get the block mask handle. For more information, see get.
Data Types: char | cell

CrossConstraintName — Cross-constraint name
character vector | string

Name of the cross-parameter constraint for which you get the constraint properties, specified as the
mask object.

Output Arguments
CrossConstraint — Cross-constraint property
cell array

Cross-parameter constraint properties, returned as a cell array.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get cross constraint.
CrossConstraint = maskObj.getCrossParameterConstraint('crossparam1')

ans =

5 Classes

5-452

 CrossParameterConstraints with properties:
 Name: 'crossparam1'
 Rule: 'Parameter2 > Parameter3'
 ErrorMessage: ''

Version History
Introduced in R2018a

See Also
simulink.mask | “Create Block Masks”

 getCrossParameterConstraint

5-453

Simulink.Mask.getDialogControl
Package: Simulink

Search for a specific dialog control on the mask

Syntax
[control,phandle] = maskobj.getDialogControl(cname)

Description
[control,phandle] = maskobj.getDialogControl(cname), search for a specific child dialog
control recursively on the mask dialog.

Examples
Find a dialog control

• Find a text dialog control on the mask dialog box. maskObj is the handle to the mask object. The
getDialogControl method returns the handle to the dialog control (hdlgctrl) and handle to
the parent dialog control (phandle).

Input Arguments
cname — Name of the dialog control
empty (default)

Name of the dialog control being searched on the mask dialog, specified as a character vector.
Data Types: char | string

Output Arguments
control — Handle to the dialog control
empty (default)

Target dialog control being searched on the mask dialog.
Data Types: char | string

phandle — Handle to the parent dialog control
empty (default)

Parent of the dialog control being searched mask dialog.
Data Types: char | string

Version History
Introduced in R2010a

5 Classes

5-454

See Also
Simulink.Mask | “Create Block Masks”

 Simulink.Mask.getDialogControl

5-455

Simulink.Mask.getOwner
Package: Simulink

Determine the block that owns a mask

Syntax
maskobj = Simulink.Mask.get(blockName)
maskobj.getOwner

Description
maskobj = Simulink.Mask.get(blockName)gets the mask on the block specified by blockName
as a mask object.

maskobj.getOwner returns the interface to the block that owns the mask.

Examples

Get Interface to the Block Owning the Mask

Get mask as an object using a masked block’s path.

maskobj = Simulink.Mask.get('myModel/Subsystem');

Get the interface to the block that owns the mask.

maskobj.getOwner;

Input Arguments
blockName — Handle or path to block
empty (default)

Handle or path to the block inside the model, specified as a character vector.
Data Types: char | string

Version History
Introduced in R2014a

See Also
Simulink.mask | “Create Block Masks”

5 Classes

5-456

getParameter
Class: Simulink.Mask
Package: Simulink

Get mask parameter by name

Syntax
param = maskObj.getParameter(paramName)

Description
param = maskObj.getParameter(paramName) returns an array of mask parameters.

Input Arguments
paramName — Name of the parameter
character vector (default) | string

Name of the parameter specified as a character vector or string.
Example:
Data Types: char | string

Examples
1 Get mask as an object using a masked block’s path.

p = Simulink.Mask.get('myModel/Subsystem');
2 Get a mask parameter by using its name.

param = p.getParameter('intercept');

Version History
Introduced in R2014a

See Also
simulink.mask | “Create Block Masks”

 getParameter

5-457

getParameterConstraint
Class: Simulink.Mask
Package: Simulink

Get mask parameter constraint properties

Syntax
paramConstraint = maskObj.getParameterConstraint(paramConstraintName)

Description
paramConstraint = maskObj.getParameterConstraint(paramConstraintName) gets the
properties of a mask parameter constraint.

Input Arguments
maskObj — Block mask handle
mask object

Handle to the block mask, specified as mask object. You can use the Simulink.Mask.get command
to get the block mask handle. For more information, see get.
Data Types: char | cell

paramConstraintName — Mask constraint name
character vector | string

Name of the constraint of which you want get the properties, specified as character vector.

Output Arguments
paramConstraint — Mask constraint property
cell array of character vector

Constraint properties, returned as a cell array.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Find parameters associated with the constraint.
paramConstraint = maskObj.getParameterConstraint('const3')

ans =

 Constraints with properties:

5 Classes

5-458

 Name: 'const3'
 ConstraintRules: [1×2 Simulink.Mask.ParameterConstraintRules]

Version History
Introduced in R2018a

See Also
simulink.mask | “Create Block Masks”

 getParameterConstraint

5-459

Simulink.Mask.getWorkspaceVariables
Package: Simulink

Get all the variables defined in the mask workspace for a masked block

Syntax
maskobj = Simulink.Mask.get(blockName)
variables = maskobj.getWorkspaceVariables

Description
maskobj = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

variables = maskobj.getWorkspaceVariables returns as a structure all the variables defined
in the mask workspace for the masked block.

Examples

Get Mask Workspace Variables

1 Get mask object using a block path.

maskobj = Simulink.Mask.get('setmaskparameter/Subsystem');
2 Get all the variables defined in the mask workspace for the masked block.

variables = maskobj.getWorkspaceVariables

variables =

 struct with fields:

 Name: 'Parameter1'
 Value: 0

Input Arguments
blockName — Name of block
empty (default)

Handle or path to the block inside the model.
Data Types: char | string

Version History
Introduced in R2006a

5 Classes

5-460

See Also
Simulink.Mask | “Create Block Masks”

 Simulink.Mask.getWorkspaceVariables

5-461

Simulink.Mask.numParameters
Package: Simulink

Display number of parameters in a mask

Syntax
maskobj = Simulink.Mask.get(blockName)
maskobj.numParameters

Description
maskobj = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

maskobj.numParameters returns the number of parameters in the mask.

Examples

Get Number of Parameters from Mask

1 Get mask object using block path.

maskobj = Simulink.Mask.get('myModel/Subsystem');
2 Get the number of parameters in the mask.

maskobj.numParameters;

ans =

 13

Input Arguments
blockName — Handle or path to the block name
empty (default)

The handle to the block or the path to the block inside the model specified as a character vector.
Data Types: char | string

Version History
Introduced in R2014a

See Also
Simulink.mask | “Create Block Masks”

5 Classes

5-462

Simulink.Mask.ParameterCondition class

Create mask parameter conditions

Description
Create an instance of the Simulink.Mask.ParameterCondition class to create mask parameter
conditions for constraints.

Properties
Public Properties

Name — Name of mask parameter
character vector (default)

Name of the mask parameter present in the mask object, specified as a string.
Data Types: string

Value — Possible values for mask parameter
character vector (default)

List of possible values for the mask parameter, specified as a cell array.
Data Types: cell

Methods
Public Methods
addParameterCondition Creates a mask parameter condition for constraint
getParameterCondition Returns parameter condition associated with constraint
removeParameterCondition Removes specified parameter condition on constraint
removeAllParameterCondition Removes all parameter conditions from constraint

Version History
Introduced in R2022a

See Also
Simulink.Mask.PortIdentifier | Simulink.Mask.PortConstraintRule |
Simulink.Mask.PortConstraints

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 Simulink.Mask.ParameterCondition class

5-463

Simulink.Mask.PortConstraintRule class

Create instance of Simulink.Mask.PortConstraintRule to define rules of port constraint

Description
Define the DataType, Dimension, and Complexity rules for a port constraint. Port signal values are
validated against these rules.

Properties
Public Properties

DataType — Permitted data types
cell array (default) | string

Permitted data types, specified as a cell array. The allowed values are int, double, fixed point
and so on.
Data Types: string

Dimension — Permitted dimension for port signals
cell array of character vector (default) | string

The allowed values in the array are scalar, vector, 2dmatrix, ndmatrix, rowvector, and
colvector.
Data Types: cell

Complexity — Complexity of port signal
character vector (default) | string

The allowed complexity, specified as a cell array. The allowed values in the array are real and
complex.

FixedPointConstraint — Fixed point constraints of port signal
character vector (default)

Set the Signedness, bias, Wordlength, and Scaling for fixed point data type.

Methods
Public Methods
setRule Create rules that are validated against data at port
removeRule Remove all datatype, complexity, and dimension attributes of port constraint rule

Version History
Introduced in R2022a

5 Classes

5-464

See Also
Simulink.Mask.PortIdentifier | Simulink.Mask.PortConstraints |
Simulink.Mask.ParameterCondition

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 Simulink.Mask.PortConstraintRule class

5-465

Simulink.Mask.PortConstraint class

Create mask port constraints programmatically

Description
Use an instance of the Simulink.Mask.PortConstraint class to add or remove port constraints
on a masked block.

Properties
Public Properties

Name — Name of the constraint
(default) | character vector

Name of the port constraint specified as a string.
Data Types: char

ParameterConditions — Mask parameter conditions
(default) | Simulink.Mask.ParameterCondition object

Mask parameter conditions are specified as an array of Simulink.Mask.ParameterCondition
object. The port constraints are active on the associated port only when the port satisfies all the
parameter conditions.

Rule — Datatype, complexity, and dimension associated with the constraint
(default) | Simulink.Mask.PortConstraintRule object

The allowed datatype, complexity, and dimension associated with the constraint, specified as a
PortConstraintRule object.
Data Types: string

DiagnosticLevel — Type of diagnostic message
error (default) | warning

The type of diagnostic message displayed when validation condition fails specified as error or
warning.
Data Types: char

DiagnosticMessage — Diagnostic message
(default) | character vector

The diagnostic message that is displayed when the validation fails, specified as a character vector.
Data Types: character vector

5 Classes

5-466

Methods
Public Methods
addPortConstraint Create port constraint on a mask object
getPortConstraint Displays attributes of specified port constraint
removePortConstraint Remove specified port constraint
removeAllPortConstraint Remove all port constraints on masked block

Version History
Introduced in R2022a

See Also
Simulink.Mask.ParameterCondition | Simulink.Mask.PortIdentifier |
Simulink.Mask.PortConstraintRule

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 Simulink.Mask.PortConstraint class

5-467

Simulink.Mask.PortIdentifier class

Create port identifiers to identify ports of block in mask object

Description
Create an instance of Simulink.Mask.PortIdentifier to create and set the properties for the
port identifier on a masked block.

Properties
Public Properties

Name — Name for the port identifier
empty character vector (default)

Name of the port identifier, specified as a character vector. This name uniquely identifies the port
identifier in the mask.
Data Types: char

Type — Type of port
input (default) | output

Type of the port, specified as either Input or Output.
Data Types: string

IdentifierType — Type of identifier
index (default) | name

Type of identifier, specified as name or index. Specify name if you want to identify the ports using a
name, otherwise specify index, if you want to identify the ports using a port index.
Data Types: string

Identifier — Port identifier appearing in block
character vector (default)

Port identifier appearing in the block, specified as a character vector. If the IdentifierType is index,
you can specify the identifiers in one of these formats:

• Index: The index to associate the port with the port identifier. For example, '3' associates port '3'
with the port identifier.

• Lower port index:Upper port index: The lower port index and upper port index to associate all the
ports between the indices with the port identifier. For example, '2:4' associates ports 2, 3, and 4
with the port identifier.

• List of port indices: The ports separated by comma to associate the ports with the port identifier.
For example, 3,5,7. This associates the ports 3, 5, and 7 with the port identifier. Duplicates are not
allowed.

5 Classes

5-468

• : The name of the port is specified.

Port name: String: If IdentifierType is name, this parameter is the name of the port.
Data Types: string | char

Methods
Public Methods
addPortIdentifier Creates a port identifier to identify port in mask
getPortIdentifier Displays attributes of specified port identifier
remove PortIdentifier Removes specified port identifier from mask object
removeAllPortIdentifiers Removes all port identifiers from mask object

Version History
Introduced in R2022a

See Also
Simulink.Mask.PortConstraints | Simulink.Mask.ParameterCondition |
Simulink.Mask.PortConstraintRule

Topics
“Validate Input and Output Port Signals Using Port Constraints”

 Simulink.Mask.PortIdentifier class

5-469

removeAllCrossParameterConstraints
Class: Simulink.Mask
Package: Simulink

Delete all cross-parameter constraints from a mask

Syntax
maskObj.removeAllCrossParameterConstraints()

Description
maskObj.removeAllCrossParameterConstraints() deletes all cross-constraints from a mask.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Remove all cross constraints from the mask.
maskObj.removeAllCrossParameterConstraints()

Version History
Introduced in R2018a

See Also
Simulink.Mask | “Create Block Masks”

5 Classes

5-470

removeAllParameterConstraints
Class: Simulink.Mask
Package: Simulink

Delete all mask parameter constraints

Syntax
maskObj.removeAllParameterConstraints()

Description
maskObj.removeAllParameterConstraints() deletes all the parameter constraints from a
mask.

Input Arguments
maskObj — Block mask handle
mask object

Handle to the block mask. You can use the Simulink.Mask.get command to get the block mask
handle. For more information see, get

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Remove all constraints from the mask.
maskObj.removeAllParameterConstraints()

Version History
Introduced in R2018a

See Also
simulink.mask | “Create Block Masks”

 removeAllParameterConstraints

5-471

Simulink.Mask.removeAllParameters
Package: Simulink

Remove all existing parameters from a mask

Syntax
maskobj = Simulink.Mask.get(blockName)
maskobj.removeAllParameters

Description
maskobj = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

maskobj.removeAllParameters deletes all existing parameters from the mask.

Examples

Remove all Parameters from the Mask

Get mask object using block path.

maskobj = Simulink.Mask.get('myModel/Subsystem');

Delete all existing parameters from the mask.

maskobj.removeAllParameters;

Input Arguments
blockName — Handle or path to block
empty (default)

The handle to the block or the path to the block inside the model, specified as a character vector.
Data Types: char | string

Version History
Introduced in R2014a

See Also
Simulink.mask | “Create Block Masks”

5 Classes

5-472

removeCrossParameterConstraint
Class: Simulink.Mask
Package: Simulink

Delete a cross-parameter constraint

Syntax
maskObj.removeCrossParameterConstraint(CrossConstraint)

Description
maskObj.removeCrossParameterConstraint(CrossConstraint) deletes the specified cross-
constraint.

Input Arguments
maskObj — Block mask handle
mask object

Handle to the block mask, specified as mask object. You can use the Simulink.Mask.get command
to get the block mask handle. For more information, see get.
Data Types: char | cell

CrossConstraint — Cross constraint name
character vector | string

Name of the cross-constraint to be removed, specified as character vector.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Remove cross-constraint of name 'const1'.
maskObj.removeCrossParameterConstraint('const1')

Version History
Introduced in R2018a

See Also
simulink.mask | “Create Block Masks”

 removeCrossParameterConstraint

5-473

removeDialogControl
Class: Simulink.Mask
Package: Simulink

Remove dialog control element from mask dialog box

Syntax
successIndicator = maskVariable.removeDialogControl(controlIdentifier)

Description
successIndicator = maskVariable.removeDialogControl(controlIdentifier) removes
dialog control element, specified by controlIndentifier, like text, hyperlinks, or tabs from a mask
dialog box. First get the mask object and assign it to the variable maskVariable.

Successful removal of a dialog control element returns a Boolean value of 1.

Input Arguments
controlIdentifer — Unique identifier for the element
character vector | string scalar

Programmatic identifier for the dialog control element of mask dialog box.

Examples

Remove Dialog Control Element from Mask Dialog Box

% Get mask object on the Gain block in the model Engine.

maskObj = Simulink.Mask.get('Engine/Gain');

% Remove element named AllTab from mask dialog box.

p = maskObj.removeDialogControl('AllTab');

Version History
Introduced in R2013b

See Also
simulink.mask | “Create Block Masks”

5 Classes

5-474

removeParameter
Class: Simulink.Mask
Package: Simulink

Remove parameter from mask dialog box

Syntax
successIndicator = maskObj.removeParameter(controlIdentifier)

Description
successIndicator = maskObj.removeParameter(controlIdentifier) removes parameter,
specified by controlIdentifier, like edit, check box, popup from an existing mask dialog box.
First get the mask object and assign it to the variable maskObj.

Successful removal of a parameter returns a Boolean value of 1.

Input Arguments
controlIdentifer — Unique identifier for the parameter
character vector | string scalar

Programmatic identifier for the parameter of mask dialog box, specified as a character vector.

Examples

Remove Parameter from Mask Dialog Box

% Get mask object on the Gain block in the model Engine.

maskObj = Simulink.Mask.get('Engine/Gain');

% Remove parameter named checkbox1 from mask dialog box.

p = maskObj.removeParameter('checkbox1');

Note You can also use the index number as the controlIdentifier.

Version History
Introduced in R2012b

See Also
Simulink.mask | “Create Block Masks”

 removeParameter

5-475

removeParameterConstraint
Class: Simulink.Mask
Package: Simulink

Delete a mask parameter constraint

Syntax
maskObj.removeParameterConstraint(paramConstraint)

Description
maskObj.removeParameterConstraint(paramConstraint) deletes the specified mask
parameter constraint.

Input Arguments
maskObj — Block mask handle
mask object

Handle to the block mask, specified as mask object. You can use the Simulink.Mask.get command
to get the block mask handle. For more information, see get.
Data Types: char | cell

paramConstraint — Mask constraint name
character vector | string

Name of the mask parameter constraint to be deleted, specified as character vector.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Remove mask constraint with name 'const1'.
maskObj.removeParameterConstraint('const1')

Version History
Introduced in R2018a

See Also
simulink.mask | “Create Block Masks”

5 Classes

5-476

Simulink.Mask.set
Package: Simulink

Set properties of an existing mask

Syntax
maskobj = Simulink.Mask.get(blockName)
maskobj.set(Name,Value)

Description
maskobj = Simulink.Mask.get(blockName) gets the mask on the block specified by
blockName as a mask object.

maskobj.set(Name,Value) sets mask properties that you specify using name–value pairs as
arguments.

Examples

Set properties of an existing masked block

Get mask as an object using a masked block’s path.

maskobj = Simulink.Mask.get('setparameter/Subsystem');

Modify the mask so that its mask icon is transparent and its documentation summarizes what it does.

maskobj.set('IconOpaque','off','Type','Random number generator',...
'Description','This block generates random numbers.');

Input Arguments
blockName — Handle or path of the block
empty (default)

Handle or the path to the block inside the model.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:

 Simulink.Mask.set

5-477

Type — Mask type of block
character vector (default) | string

Mask type of the associated block is specified as a character vector or string.
Data Types: char | string

Description — Description of block
character vector (default) | string

Description of the block, specified as a character vector or string.
Data Types: char | string

Help — Help text for the masked block
character vector (default) | string

Help text for the masked block, specified as a character vector or string.
Data Types: char | string

Initialization — Initialization commands
character vector (default) | string

Initialization commands for the masked block, specified as a character vector or string.
Data Types: char | string

SelfModifiable — Option to allow block to modify its contents
off (default) | on

Option to allow the block to modify its contents, specified as a logical.
Data Types: logical

Display — MATLAB code for block icon
character vector (default) | string

MATLAB code for the block icon, specified as a character vector or string.
Data Types: char | string

IconFrame — Visibility of block frame
off (default) | on

Visibility of the block frame, specified as a logical value.
Data Types: logical

IconOpaque — Option to make the icon opaque
opaque (default) | transparent

Option to make the icon opaque, specified as a logical.

• Opaque: Make the icon opaque.
• Transparent: Make the icon transparent.

Data Types: string | char

5 Classes

5-478

RunInitForIconRedraw — Option to run initialization before executing drawing commands
auto (default) | on | off

Option to run mask initialization commands before executing the mask icon commands, specified as
enumerated data type.
Data Types: enum

IconRotate — Option to rotate icon with block
none (default) | port

Option to rotate icon along with block, specified as enumerated data type.
Data Types: enum

PortRotate — Port rotation type
default (default) | physical

Port rotation type, specified as enumerated data type. Set this property to default to reorder ports
after a clockwise rotation to maintain a left-to-right port numbering order for ports along the top and
bottom of the block and a top-to-bottom port numbering order for ports along the left and right sides
of the block. Set this property to physical to rotate ports with the block without reordering them
after a clockwise rotation.
Data Types: enum

IconUnits — Units for drawing commands
autoscale (default) | pixels | normalized

Units for drawing commands, specified as enumerated type. autoscale scales the icon to fit the
block frame. normalized draws the icon within a block frame whose bottom-left corner is (0,0) and
whose top-right corner is (1,1). Only X and Y values from 0 through 1 appear. When the block is
resized, the icon is also resized. pixels draws the icon with X and Y values expressed in pixels. The
icon is not automatically resized when the block is resized.
Data Types: enum

SaveCallbackFileWithModel — Option to save callback file along with the model
off (default) | on

Use this option to save the callback file along with the model, if you have mask initialization code and
callback code in a separate MAT file, specified as a logical value.
Data Types: logical

Callbackfile — Name of callback file
empty (default) | character vector | string

Name of the callback file containing the mask initialization code and callback code, specified as a
character vector or string.
Data Types: char | string

Parameters — Mask parameter properties
Simulink.MaskParameterobject (default)

Mask parameter properties, specified as a Simulink.MaskParameter object.

 Simulink.Mask.set

5-479

Data Types: object

PortIdentifiers — Port identifier properties
Simulink.Mask.PortIdentifiers object (default)

Port identifier properties, specified as a Simulink.Mask.PortIdentifiers object.
Data Types: object

ParameterConstraints — Parameter constraints properties Object of
Simulink.Mask.Constraints object (default)

Option to add or remove parameter constraint rule, specified as a Simulink.Mask.Constraints
object.
Data Types: object

CrossParameterConstraints — Constraints between parameters
Simulink.Mask.CrossParameterConstraints (default)

Constraints between parameters, specified as Simulink.Mask.CrossParameterConstraints.
Data Types: object

PortConstraints — Port constraints properties
Simulink.Mask.PortConstraint object (default)

Option to add or remove port constraints, specified as a Simulink.Mask.PortConstraint object.
Data Types: object

CrossPortConstraints — Cross port constraints properties
Simulink.Mask.CrossPortConstraint object (default)

Option to add or remove constraints on ports of the masked block, specified as a
Simulink.Mask.CrossPortConstraint object.
Data Types: object

Version History
Introduced in R2014a

See Also
Simulink.mask | “Create Block Masks”

5 Classes

5-480

Simulink.Mask.Constraints class
Package: Simulink.Mask

Create mask parameter constraint

Description
Use an instance of the Simulink.Mask.Constraints to add or remove a mask parameter
constraint rule.

The Simulink.Mask.Constraints class is a handle class.

Properties
Name — Name of mask parameter constraint
string scalar | character vector

Name of the mask parameter constraint, specified as a string scalar or character vector.
Example: 'evenNumberConstraint'

Attributes:

GetAccess public
SetAccess public
GetObservable true
SetObservable true

Data Types: string | char

ConstraintRules — Rules to create mask parameter constraint
Simulink.Mask.ParameterConstraintRules object

Rules to create the mask parameter constraints, specified as a
Simulink.Mask.ParameterConstraintRules object. For more information, see “Rule Attributes”

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

Data Types: Simulink.Mask.ParameterConstraintRules object

Methods
Public Methods
addParameterConstraintRule Add rules to a parameter constraint
removeParameterConstraintRule Delete a mask parameter constraint rule

 Simulink.Mask.Constraints class

5-481

Alternatives
You can manage mask parameter constraints using Constraints in the Mask Editor dialog box. For
more information, see “Validating Mask Parameters Using Constraints”.

Version History
Introduced in R2018a

See Also
“Validating Mask Parameters Using Constraints”

5 Classes

5-482

addParameterConstraintRule
Class: Simulink.Mask.Constraints
Package: Simulink.Mask

Add rules to a parameter constraint

Syntax
paramConstRule = paramConstraint.addParameterConstraintRule(Name,Value)

Description
paramConstRule = paramConstraint.addParameterConstraintRule(Name,Value) adds
rule to a parameter constraint.

Input Arguments
paramConstraint — Handle to mask constraint
constraint object

Handle to the mask parameter constraint for which you want to add constraint rules, specified as
constraint object.
Data Types: char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. You can specify several name and value pair arguments in any
order as Name1,Value1,...,NameN,ValueN.

Name-Value Pair for Rules

Name Value
DataType double, single, numeric, integer, int8,

uint8, int16, uint16, int32, uint32,
boolean, enum, fixdt

Dimension scalar, row vector, column vector, 2-d
matrix, n-d matrix

Complexity real, complex
Sign positive, negative, zero
Finiteness finite, inf, -inf, NaN
Minimum string
Maximum string
CustomConstraint Valid MATLAB expression

 addParameterConstraintRule

5-483

Output Arguments
paramConstRule — Mask constraint rule
cell array

Mask constraint rule, specified as a cell array.

Examples
% Get mask constraint handle
paramConstraint = maskObj.getParameterConstraint('const3');

% Add rules to the constraint.
paramConstRule = paramConstraint.addParameterConstraintRule('DataType','int8')

ans =

 ParameterConstraintRules with properties:

 DataType: 'int8'
 Dimension: {0×1 cell}
 Complexity: {0×1 cell}
 Sign: {0×1 cell}
 Finiteness: {0×1 cell}
 Minimum: ''
 Maximum: ''
 CustomConstraint: ''

Version History
Introduced in R2018a

See Also
simulink.mask | “Create Block Masks”

5 Classes

5-484

removeParameterConstraintRule
Class: Simulink.Mask.Constraints
Package: Simulink.Mask

Delete a mask parameter constraint rule

Syntax
paramConstraint.removeParameterConstraintRule(RuleIndex)

Description
paramConstraint.removeParameterConstraintRule(RuleIndex) deletes the specified
constraint rule from a mask parameter constraint.

Input Arguments
paramConstraint — Handle to constraint
constraint object

Handle to mask parameter constraint of which you want to remove constraint rule, specified as an
object.
Data Types: char | cell

RuleIndex — Constraint rule index
integer

Index number of the mask constraint rule, specified as an integer.

Examples
% Get block mask handle.
maskObj = Simulink.Mask.get(gcb);

% Get mask constraint handle.
paramConstraint = maskObj.getParameterConstraint('const3');

% Remove mask constraint rule.
paramConstraint.removeParameterConstraintRule(1)

Version History
Introduced in R2018a

See Also
simulink.mask | “Create Block Masks”

 removeParameterConstraintRule

5-485

Simulink.Mask.EnumerationBase class
Derive an enumeration class to hold numeric values of any datatype

Description
The members of the enumeration class derived from Simulink.Mask.EnumerationBase can hold
values of any numeric datatype. The datatype of the enumeration members should be consistent.

Methods
Public Methods

getValueArrayName Simulink creates an internal array which holds
the value corresponding to each enumeration
members. You can customize the name of the
array as the return value of the function.

addClassNameToEnumNames This method belongs to
Simulink.IntEnumType. Override this function
to return true to prefix the member name with
the class name, false otherwise.

Examples
Derive an enumeration class from Simulink.Mask.EnumerationBase

classdef XFactor < Simulink.Mask.EnumerationBase
 enumeration
 alpha(.001, 'alpha (.001)')
 beta(.0001, 'beta (.0001)')
 gamma(.00001, 'gamma (.00001)')
 end

Version History
Introduced in R2021a

See Also
Simulink.Mask.EnumerationTypeOptions

Topics
“Tune Mask Popup Parameters by Referencing an External Enumeration File”

5 Classes

5-486

Simulink.Mask.EnumerationTypeOptions class
Parse information from enumeration file derived from Simulink.IntEnumType and
Simulink.Mask.EnumerationBase

Description
Create an instance of Simulink.Mask.EnumerationTypeOptions to parse the information from
the enumeration file into the object.

Creation
enumObj =Simulink.Mask.EnumerationTypeOptions('ExternalEnumerationClass',
'XFactor')

Properties
Public Properties

ExternalEnumerationClass — Reference external enumeration class
empty (default) | Name of the enumeration file

This property holds the name of the enumeration class file.
Data Types: char

EnumerationMembers — Contains the information parsed from the enumeration file
empty (default) | MemberName | DescriptiveName | Value

This property holds the member name, display name, and numeric value specified in the enumeration
file.
Data Types: Simulink.Mask.EnumerationMember

Examples
Display the properties of the enumeration members

>> obj = Simulink.Mask.EnumerationTypeOptions
('ExternalEnumerationClass', 'XFactor')

obj =
 EnumerationTypeOptions with properties:

ExternalEnumerationClass: 'XFactor'
 EnumerationMembers: [1x3 Simulink.Mask.EnumerationMember]

>> obj.EnumerationMembers(1)

ans =
 EnumerationMember with properties:

 Simulink.Mask.EnumerationTypeOptions class

5-487

 MemberName: 'alpha'
 DescriptiveName: 'alpha (.001)'
 Value: 1.0000e-03

Note The properties are read only. You can modify the enumeration file to change the properties of
the enumeration members .

Version History
Introduced in R2021a

See Also
Simulink.Mask.EnumerationBase

Topics
“Tune Mask Popup Parameters by Referencing an External Enumeration File”

5 Classes

5-488

Simulink.MaskParameter class
Package: Simulink

Control mask parameters programmatically

Description
Use an instance of Simulink.MaskParameter to set the properties of a mask parameter.

Properties
Type — Mask parameter type
edit (default) | checkbox | popup | combobox | listbox | promote

Mask parameter type, specified as character vector
Data Types: char | string

TypeOptions — Type options of parameter
edit (default) | checkbox | slider | dial | unit | min | max | promote | ...

Type options of a popup or combobox or listbox parameter, specified as a cell array.
Data Types: cell

Name — Name of mask parameter
character vector (default)

Name of the mask parameter, specified as a character vector. This name is assigned to the mask
workspace variable created for the mask parameter. The mask parameter name must not match the
built-in parameter name.
Data Types: char

Prompt — Display name for mask parameter
character vector (default)

Display name for the mask parameter, specified as a character vector. This name appears as the label
associated with the parameter on the mask dialog.
Data Types: char

Value — Mask parameter value
character vector (default)

Mask parameter value, specified as a character vector. For example, the default value for Checkbox
is 'on' while the default value for Listbox is {''} and accepts a cell array of character vectors.
Data Types: char

Evaluate — Option to evaluate mask parameter
on (default) | off

Option to evaluate mask parameter, specified as a logical.

 Simulink.MaskParameter class

5-489

Data Types: logical

Tunable — Option to change mask parameter during simulation
on (default) | off

Option to change the mask parameter during simulation, specified as logical value.
Data Types: logical

NeverSave — Option to save mask parameter value in model file
off (default) | on

Option to save the mask parameter value in the model file, specified as a logical.
Data Types: logical

Hidden — Option to hide mask parameter
off (default) | on

Option to hide the mask parameter in the mask dialog, specified as a logical.
Data Types: logical

ReadOnly — Option to edit mask parameter
off (default) | on

Option to edit the mask parameter in the mask dialog, specified as a logical.
Data Types: logical

Enabled — Option to enable mask parameter
on (default) | off

Option to enable the mask parameter in the mask dialog, specified as a logical.
Data Types: logical

Visible — Option to show mask parameter in mask dialog
on (default) | off

Option to show the mask parameter in the mask dialog, specified as a logical.
Data Types: logical

ShowTooltip — Option to enable tooltips for mask parameter
on (default) | off

Option to enable tooltips for the mask parameter, specified as a logical.
Data Types: logical

Callback — Callback code for the mask parameter
character vector (default)

Callback code for the mask parameter, specified as a character vector. The callback code executes
when a user changes the parameter value in the mask dialog box.
Data Types: char

5 Classes

5-490

TabName — Name of tab container
character vector (default)

Name of the tab container in which the mask parameter is displayed in the mask dialog box, specified
as a character vector.
Data Types: char

Alias — Alternative name for mask parameter
character vector (default)

Alternative name for the mask parameter, specified as a character vector.
Data Types: char

DialogControl — Layout options
character vector (default)

Layout options for the parameter in the mask dialog, specified as a character vector. The location of
the parameter in the mask dialog such as the row location, prompt location is specified. Additionally
horizontal stretch or shrink of the mask parameter is also specified.
Data Types: char

ConstraintName — Constraint associated with the parameter
character vector (default)

Constraint associated with the mask parameter, specified as a character vector. To associate a
constraint programmatically the constraint must be already available. To associate a constraint in a
MAT file, use the format <matfilename>:<constraintname>.
Data Types: char

Methods
Public Methods

Version History
Introduced in R2006a

See Also
“Control Masks Programmatically” | “Create Block Masks”

 Simulink.MaskParameter class

5-491

Simulink.MaskParameter.set
Package: Simulink

Set properties of mask parameters

Syntax
maskobj.Parameters.set(Name,Value)

Description
maskobj.Parameters.set(Name,Value) sets the properties of a mask parameter.

Examples

Set the Values of Mask Parameter

1 Get mask as an object using a masked block’s path.

maskobj = Simulink.Mask.get('setmaskparameter/Subsystem');
2 Get mask parameter

parameters = maskobj.Parameters(1);
3 Edit mask parameter so it is of type popup, cannot be evaluated.

 maskobj.Parameters.set('Type','popup','TypeOptions',
{'Red' 'Blue' 'Green'},'Evaluate','off')

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: “Set the Values of Mask Parameter” on page 5-492

Type — Type of parameter
edit (default) | checkbox | popup | combobox | listbox | promote

Type of parameter, specified as character vector.
Data Types: char | string

TypeOptions — Type options of parameter
edit (default) | checkbox | slider | dial | unit | min | max | promote | ...

5 Classes

5-492

The options that are displayed within a popup or combobox or listbox parameter, specified as a cell
array.
Data Types: cell

Name — Name of mask parameter
character vector (default)

The name of the mask parameter, specified as a character vector. This name is assigned to the mask
workspace variable created for this parameter.
Data Types: char | string

Prompt — Display name for mask parameter
character vector (default)

Display name for the mask parameter, specified as a character vector. This name appears as the label
associated with the parameter on the mask dialog.
Data Types: char | string

Value — Mask parameter value
character vector (default)

The default value of the mask parameter in the Mask Parameters dialog. Type specific, depends on
the Type of the parameter, specified as a character vector.
Data Types: char | string

Evaluate — Option to evaluate mask parameter
on (default) | off

Option to evaluate mask parameter, specified as a logical.
Data Types: logical

Tunable — Option to change mask parameter during simulation
on (default) | off

Option to change the mask parameter during simulation, specified as logical value.
Data Types: logical

NeverSave — Option to save mask parameter value in model file
off (default) | on

Option to save the mask parameter value in the model file, specified as a logical.
Data Types: logical

Hidden — Option to hide mask parameter
off (default) | on

Option to hide the mask parameter in the mask dialog, specified as a logical.
Data Types: logical

ReadOnly — Option to edit mask parameter
off (default) | on

 Simulink.MaskParameter.set

5-493

Option to edit the mask parameter in the mask dialog, specified as a logical.
Data Types: logical

Enabled — Option to enable mask parameter
on (default) | off

Option to enable the mask parameter in the mask dialog, specified as a logical.
Data Types: logical

Visible — Option to show mask parameter in mask dialog
on (default) | off

Option to show the mask parameter in the mask dialog, specified as a logical.
Data Types: logical

ShowTooltip — Option to enable tooltips for mask parameter
on (default) | off

Option to enable tooltips for the mask parameter, specified as a logical value.
Data Types: logical

Callback — Callback code for the mask parameter
character vector (default)

Callback code for the mask parameter, specified as a character vector. The callback code executes
when a user changes the parameter value in the mask dialog box.
Data Types: char

Alias — Alternative name for mask parameter
empty (default)

Alternative name for the mask parameter is specified as character vector.
Data Types: char | string

DialogControl — Layout options
character vector (default)

Layout options for the parameter in the mask dialog, specified as a character vector. The location of
the parameter in the mask dialog such as the row location, prompt location is specified. Additionally
horizontal stretch or shrink of the mask parameter is also specified.
Data Types: char | string

Version History
Introduced in R2006a

See Also
“Control Masks Programmatically” | “Create Block Masks”

5 Classes

5-494

Simulink.MSFcnRunTimeBlock
Get run-time information about Level-2 MATLAB S-function block

Description
This class allows a Level-2 MATLAB S-function or other MATLAB program to obtain information from
Simulink software and provide information to Simulink software about a Level-2 MATLAB S-Function
block. Simulink software creates an instance of this class for each Level-2 MATLAB S-Function block
in a model. Simulink software passes the object to the callback methods of Level-2 MATLAB S-
functions when it updates or simulates a model, allowing the callback methods to get and provide
block-related information to Simulink software. See “Write Level-2 MATLAB S-Functions” for more
information.

You can also use instances of this class in MATLAB programs to obtain information about Level-2
MATLAB S-Function blocks during a simulation. See “Access Block Data During Simulation” for more
information.

The Level-2 MATLAB S-function template matlabroot/toolbox/simulink/blocks/
msfuntmpl.m shows how to use a number of the following methods.

Parent Class
Simulink.RunTimeBlock

Derived Classes
None

Property Summary
Name Description
“AllowSignalsWithMoreThan2D” on page 5-497 enable Level-2 MATLAB S-function to use

multidimensional signals.
“DialogPrmsTunable” on page 5-497 Specifies which of the S-function's dialog

parameters are tunable.
“NextTimeHit” on page 5-497 Time of the next sample hit for variable

sample time S-functions.

Method Summary
Name Description
“AutoRegRuntimePrms” on page 5-497 Register this block's dialog

parameters as run-time
parameters.

 Simulink.MSFcnRunTimeBlock

5-495

Name Description
“AutoUpdateRuntimePrms” on page 5-498 Update this block's run-time

parameters.
“IsDoingConstantOutput” on page 5-498 Determine whether the current

simulation stage is the constant
sample time stage.

“IsMajorTimeStep” on page 5-499 Determine whether the current
simulation time step is a major
time step.

“IsSampleHit” on page 5-499 Determine whether the current
simulation time is one at which a
task handled by this block is active.

“IsSpecialSampleHit” on page 5-499 Determine whether the current
simulation time is one at which
multiple tasks handled by this
block are active.

“RegBlockMethod” on page 5-500 Register a callback method for this
block.

“RegisterDataTypeFxpBinaryPoint” on page 5-500 Register fixed-point data type with
binary point-only scaling.

“RegisterDataTypeFxpFSlopeFixexpBias” on page 5-501 Register fixed-point data type with
[Slope Bias] scaling specified in
terms of fractional slope, fixed
exponent, and bias.

“RegisterDataTypeFxpSlopeBias” on page 5-502 Register data type with [Slope
Bias] scaling.

“SetAccelRunOnTLC” on page 5-503 Specify whether to use this block's
TLC file to generate the simulation
target for the model that uses it.

“SetPreCompInpPortInfoToDynamic” on page 5-504 Set precompiled attributes of this
block's input ports to be inherited.

“SetPreCompOutPortInfoToDynamic” on page 5-504 Set precompiled attributes of this
block's output ports to be
inherited.

“SetPreCompPortInfoToDefaults” on page 5-504 Set precompiled attributes of this
block's ports to the default values.

“SetSimViewingDevice” on page 5-504 Specify whether block is a viewer.
“SupportsMultipleExecInstances” on page 5-505
“WriteRTWParam” on page 5-505 Write custom parameter

information to Simulink Coder file.

5 Classes

5-496

Properties
AllowSignalsWithMoreThan2D
Description

Allow Level-2 MATLAB S-functions to use multidimensional signals. You must set the
AllowSignalsWithMoreThan2D property in the setup method.

Data Type

Boolean

Access

RW

DialogPrmsTunable
Description

Specifies whether a dialog parameter of the S-function is tunable. Tunable parameters are registered
as run-time parameters when you call the “AutoRegRuntimePrms” on page 5-497 method. Note that
SimOnlyTunable parameters are not registered as run-time parameters. For example, the following
lines initializes three dialog parameters where the first is tunable, the second in not tunable, and the
third is tunable only during simulation.
block.NumDialogPrms = 3;
block.DialogPrmsTunable = {'Tunable','Nontunable','SimOnlyTunable'};

Data Type

array

Access

RW

NextTimeHit
Description

Time of the next sample hit for variable sample-time S-functions.

Data Type

double

Access

RW

Methods
AutoRegRuntimePrms
Purpose

Register a block's tunable dialog parameters as run-time parameters.

 Simulink.MSFcnRunTimeBlock

5-497

Syntax

AutoRegRuntimePrms;

Description

The default names for the MATLAB S-Function tunable parameters are MSFcnParameter,
MSFcnParameter1, … MSFcnParameterN. You can assign other names by passing a cell array to
AutoRegRuntimePrms. Use AutoRegRuntimePrms in the PostPropagationSetup method to
register this block's tunable dialog parameters as run-time parameters.

AutoUpdateRuntimePrms
Purpose

Update a block's run-time parameters.
Syntax

AutoUpdateRuntimePrms;

Description

Automatically update the values of the run-time parameters during a call to ProcessParameters.

See the S-function matlabroot/toolbox/simulink/simdemos/simfeatures/adapt_lms.m in
the Simulink model sldemo_msfcn_lms for an example.

IsDoingConstantOutput
Purpose

Determine whether this is in the constant sample time stage of a simulation.
Syntax

bVal = IsDoingConstantOutput;

Description

Returns true if this is the constant sample time stage of a simulation, i.e., the stage at the beginning
of a simulation where Simulink software computes the values of block outputs that cannot change
during the simulation (see “Constant Sample Time”). Use this method in the Outputs method of an
S-function with port-based sample times to avoid unnecessarily computing the outputs of ports that
have constant sample time, i.e., [inf, 0].

function Outputs(block)
.
.
 if block.IsDoingConstantOutput
 ts = block.OutputPort(1).SampleTime;
 if ts(1) == Inf
 %% Compute port's output.
 end
 end
.
.
%% end of Outputs

See “Specifying Port-Based Sample Times” for more information.

5 Classes

5-498

IsMajorTimeStep
Purpose.

Determine whether current time step is a major or a minor time step.

Syntax

bVal = IsMajorTimeStep;

Description

Returns true if the current time step is a major time step; false, if it is a minor time step. This method
can be called only from the Outputs or Update methods.

IsSampleHit
Purpose

Determine whether the current simulation time is one at which a task handled by this block is active.

Syntax

bVal = IsSampleHit(stIdx);

Arguments

stIdx
Global index of the sample time to be queried.

Description

Use in Outputs or Update block methods when the MATLAB S-function has multiple sample times to
determine whether a sample hit has occurred at stIdx. The sample time index stIdx is a global
index for the Simulink model. For example, consider a model that contains three sample rates of 0.1,
0.2, and 0.5, and a MATLAB S-function block that contains two rates of 0.2 and 0.5. In the MATLAB S-
function, block.IsSampleHit(0) returns true for the rate 0.1, not the rate 0.2.

This block method is similar to ssIsSampleHit for C-MeX S-functions, however ssIsSampleHit
returns values based on only the sample times contained in the S-function. For example, if the model
described above contained a C-MeX S-function with sample rates of 0.2 and 0.5,
ssIsSampleHit(S,0,tid) returns true for the rate of 0.2.

Use port-based sample times to avoid using the global sample time index for multi-rate systems (see
Simulink.BlockPortData).

IsSpecialSampleHit
Purpose

Determine whether the current simulation time is one at which multiple tasks implemented by this
block are active.

Syntax

bVal = IsSpecialSampleHit(stIdx1,stIdx1);

 Simulink.MSFcnRunTimeBlock

5-499

Arguments

stIdx1
Index of sample time of first task to be queried.

stIdx2
Index of sample time of second task to be queried.

Description

Use in Outputs or Update block methods to ensure the validity of data shared by multiple tasks
running at different rates. Returns true if a sample hit has occurred at stIdx1 and a sample hit has
also occurred at stIdx2 in the same time step (similar to ssIsSpecialSampleHit for C-Mex S-
functions).

When using the IsSpecialSampleHit macro, the slower sample time must be an integer multiple of
the faster sample time.

RegBlockMethod
Purpose

Register a block callback method.
Syntax

RegBlockMethod(methName, methHandle);

Arguments

methName
Name of method to be registered.

methHandle
MATLAB function handle of the callback method to be registered.

Description

Registers the block callback method specified by methName and methHandle. Use this method in the
setup function of a Level-2 MATLAB S-function to specify the block callback methods that the S-
function implements.

RegisterDataTypeFxpBinaryPoint
Purpose

Register fixed-point data type with binary point-only scaling.
Syntax

dtID = RegisterDataTypeFxpBinaryPoint(isSigned, wordLength, fractionalLength,
obeyDataTypeOverride);

Arguments

isSigned
true if the data type is signed.

false if the data type is unsigned.

5 Classes

5-500

wordLength
Total number of bits in the data type, including any sign bit.

fractionalLength
Number of bits in the data type to the right of the binary point.

obeyDataTypeOverride
true indicates that the Data Type Override setting for the subsystem is to be obeyed.
Depending on the value of Data Type Override, the resulting data type could be Double,
Single, ScaledDouble, or the fixed-point data type specified by the other arguments of the
function.

false indicates that the Data Type Override setting is to be ignored.

Description

This method registers a fixed-point data type with Simulink software and returns a data type ID. The
data type ID can be used to specify the data types of input and output ports, run-time parameters,
and DWork states. It can also be used with all the standard data type access methods defined for
instances of this class, such as “DatatypeSize” on page 5-511.

Use this function if you want to register a fixed-point data type with binary point-only scaling.
Alternatively, you can use one of the other fixed-point registration functions:

• Use “RegisterDataTypeFxpFSlopeFixexpBias” on page 5-501 to register a data type with [Slope
Bias] scaling by specifying the word length, fractional slope, fixed exponent, and bias.

• Use “RegisterDataTypeFxpSlopeBias” on page 5-502 to register a data type with [Slope Bias]
scaling.

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point Designer
license is checked out.

RegisterDataTypeFxpFSlopeFixexpBias
Purpose

Register fixed-point data type with [Slope Bias] scaling specified in terms of fractional slope, fixed
exponent, and bias

Syntax

dtID = RegisterDataTypeFxpFSlopeFixexpBias(isSigned, wordLength,
fractionalSlope, fixedexponent, bias, obeyDataTypeOverride);

Arguments

isSigned
true if the data type is signed.

false if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
fractionalSlope

Fractional slope of the data type.

 Simulink.MSFcnRunTimeBlock

5-501

fixedexponent
exponent of the slope of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
true indicates that the Data Type Override setting for the subsystem is to be obeyed.
Depending on the value of Data Type Override, the resulting data type could be True Doubles,
True Singles, ScaledDouble, or the fixed-point data type specified by the other arguments of
the function.

false indicates that the Data Type Override setting is to be ignored.

Description

This method registers a fixed-point data type with Simulink software and returns a data type ID. The
data type ID can be used to specify the data types of input and output ports, run-time parameters,
and DWork states. It can also be used with all the standard data type access methods defined for
instances of this class, such as “DatatypeSize” on page 5-511.

Use this function if you want to register a fixed-point data type by specifying the word length,
fractional slope, fixed exponent, and bias. Alternatively, you can use one of the other fixed-point
registration functions:

• Use “RegisterDataTypeFxpBinaryPoint” on page 5-500 to register a data type with binary point-
only scaling.

• Use “RegisterDataTypeFxpSlopeBias” on page 5-502 to register a data type with [Slope Bias]
scaling.

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point Designer
license is checked out.

RegisterDataTypeFxpSlopeBias
Purpose

Register data type with [Slope Bias] scaling.

Syntax

dtID = RegisterDataTypeFxpSlopeBias(isSigned, wordLength, totalSlope, bias,
obeyDataTypeOverride);

Arguments

isSigned
true if the data type is signed.

false if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
totalSlope

Total slope of the scaling of the data type.

5 Classes

5-502

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
true indicates that the Data Type Override setting for the subsystem is to be obeyed.
Depending on the value of Data Type Override, the resulting data type could be True Doubles,
True Singles, ScaledDouble, or the fixed-point data type specified by the other arguments of
the function.

false indicates that the Data Type Override setting is to be ignored.

Description

This method registers a fixed-point data type with Simulink software and returns a data type ID. The
data type ID can be used to specify the data types of input and output ports, run-time parameters,
and DWork states. It can also be used with all the standard data type access methods defined for
instances of this class, such as “DatatypeSize” on page 5-511.

Use this function if you want to register a fixed-point data type with [Slope Bias] scaling.
Alternatively, you can use one of the other fixed-point registration functions:

• Use “RegisterDataTypeFxpBinaryPoint” on page 5-500 to register a data type with binary point-
only scaling.

• Use “RegisterDataTypeFxpFSlopeFixexpBias” on page 5-501 to register a data type by specifying
the word length, fractional slope, fixed exponent, and bias

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point Designer
license is checked out.

SetAccelRunOnTLC
Purpose

Specify whether to use block's TLC file to generate code for the Accelerator mode of Simulink
software.

Syntax

SetAccelRunOnTLC(bVal);

Arguments

bVal
May be 'true' (use TLC file) or 'false' (run block in interpreted mode).

Description

Specify if the block should use its TLC file to generate code that runs with the accelerator. If this
option is 'false', the block runs in interpreted mode. See the S-function msfcn_times_two.m in
the Simulink model msfcndemo_timestwo for an example.

Note The default JIT Accelerator mode does not support inlining of user-written TLC S-Functions.
Please see “How Acceleration Modes Work” and “Control S-Function Execution” for more
information.

 Simulink.MSFcnRunTimeBlock

5-503

SetPreCompInpPortInfoToDynamic
Purpose

Set precompiled attributes of this block's input ports to be inherited.

Syntax

SetPreCompInpPortInfoToDynamic;

Description

Initialize the compiled information (dimensions, data type, complexity, and sampling mode) of this
block's input ports to be inherited. See the S-function matlabroot/toolbox/simulink/
simdemos/simfeatures/adapt_lms.m in the Simulink model sldemo_msfcn_lms for an
example.

SetPreCompOutPortInfoToDynamic
Purpose

Set precompiled attributes of this block's output ports to be inherited.

Syntax

SetPreCompOutPortInfoToDynamic;

Description

Initialize the compiled information (dimensions, data type, complexity, and sampling mode) of the
block's output ports to be inherited. See the S-function matlabroot/toolbox/simulink/
simdemos/simfeatures/adapt_lms.m in the Simulink model sldemo_msfcn_lms for an
example.

SetPreCompPortInfoToDefaults
Purpose

Set precompiled attributes of this block's ports to the default values.

Syntax

SetPreCompPortInfoToDefaults;

Description

Initialize the compiled information (dimensions, data type, complexity, and sampling mode) of the
block's ports to the default values. By default, a port accepts a real scalar sampled signal with a data
type of double.

SetSimViewingDevice
Purpose

Specify whether this block is a viewer.

Syntax

SetSimViewingDevice(bVal);

5 Classes

5-504

Arguments

bVal
May be 'true' (is a viewer) or 'false' (is not a viewer).

Description

Specify if the block is a viewer/scope. If this flag is specified, the block will be used only during
simulation and automatically stubbed out in generated code.

SupportsMultipleExecInstances
Purpose

Specify whether or not a For Each Subsystem supports an S-function inside of it.

Syntax

SupportsMultipleExecInstances(bVal);

Arguments

bVal
May be 'true' (S-function is supported) or 'false' (S-function is not supported).

Description

Specify if an S-function can operate within a For Each Subsystem.

WriteRTWParam
Purpose

Write a custom parameter to the Simulink Coder information file used for code generation.

Syntax

WriteRTWParam(pType, pName, pVal)

Arguments

pType
Type of the parameter to be written. Valid values are 'string' and 'matrix'.

pName
Name of the parameter to be written.

pVal
Value of the parameter to be written.

Description

Use in the WriteRTW method of the MATLAB S-function to write out custom parameters. These
parameters are generally settings used to determine how code should be generated in the TLC file for
the S-function. See the S-function matlabroot/toolbox/simulink/simdemos/simfeatures/
adapt_lms.m in the Simulink model sldemo_msfcn_lms for an example.

 Simulink.MSFcnRunTimeBlock

5-505

Version History
Introduced before R2006a

5 Classes

5-506

Simulink.RunTimeBlock
Allow Level-2 MATLAB S-function and other MATLAB programs to get information about block while
simulation is running

Description
This class allows a Level-2 MATLAB S-function or other MATLAB program to obtain information about
a block. Simulink software creates an instance of this class or a derived class for each block in a
model. Simulink software passes the object to the callback methods of Level-2 MATLAB S-functions
when it updates or simulates a model, allowing the callback methods to get block-related information
from and provide such information to Simulink software. See “Write Level-2 MATLAB S-Functions” in
Writing S-Functions for more information. You can also use instances of this class in MATLAB
programs to obtain information about blocks during a simulation. See “Access Block Data During
Simulation” for more information.

Note Simulink.RunTimeBlock objects do not support MATLAB sparse matrices. For example, the
following line of code attempts to assign a sparse identity matrix to the run-time object's output port
data. This line of code in a Level-2 MATLAB S-function produces an error:

 block.Outport(1).Data = speye(10);

Parent Class
None

Derived Classes
Simulink.MSFcnRunTimeBlock

Property Summary
Name Description
“BlockHandle” on page 5-508 Block's handle.
“CurrentTime” on page 5-508 Current simulation time.
“NumDworks” on page 5-508 Number of discrete work vectors used by the block.
“NumOutputPorts” on page 5-
509

Number of block output ports.

“NumContStates” on page 5-509 Number of block's continuous states.
“NumDworkDiscStates” on page
5-509

Number of block's discrete states

“NumDialogPrms” on page 5-509 Number of parameters that can be entered on S-function block's
dialog box.

“NumInputPorts” on page 5-510 Number of block's input ports.

 Simulink.RunTimeBlock

5-507

Name Description
“NumRuntimePrms” on page 5-
510

Number of run-time parameters used by block.

“SampleTimes” on page 5-510 Sample times at which block produces outputs.

Method Summary
Name Description
“ContStates” on page 5-510 Get a block's continuous states.
“DataTypeIsFixedPoint” on page 5-511 Determine whether a data type is fixed point.
“DatatypeName” on page 5-511 Get name of a data type supported by this block.
“DatatypeSize” on page 5-511 Get size of a data type supported by this block.
“Derivatives” on page 5-512 Get a block's continuous state derivatives.
“DialogPrm” on page 5-512 Get a parameter entered on an S-function block's

dialog box.
“Dwork” on page 5-512 Get one of a block's DWork vectors.
“FixedPointNumericType” on page 5-513 Determine the properties of a fixed-point data type.
“InputPort” on page 5-513 Get one of a block's input ports.
“OutputPort” on page 5-514 Get one of a block's output ports.
“RuntimePrm” on page 5-514 Get one of the run-time parameters used by a block.

Properties
BlockHandle
Description

Block's handle.

Access

RO

CurrentTime
Description

Current simulation time.

Access

RO

NumDworks
Description

Number of data work vectors.

5 Classes

5-508

Access

RW

See Also

ssGetNumDWork

NumOutputPorts
Description

Number of output ports.

Access

RW

See Also

ssGetNumOutputPorts

NumContStates
Description

Number of continuous states.

Access

RW

See Also

ssGetNumContStates

NumDworkDiscStates
Description

Number of discrete states. In a MATLAB S-function, you need to use DWorks to set up discrete states.

Access

RW

See Also

ssGetNumDiscStates

NumDialogPrms
Description

Number of parameters declared on the block's dialog. In the case of the S-function, it returns the
number of parameters listed as a comma-separated list in the S-function parameters dialog field.

Access

RW

 Simulink.RunTimeBlock

5-509

See Also

ssGetNumSFcnParams

NumInputPorts
Description

Number of input ports.

Access

RW

See Also

ssGetNumInputPorts

NumRuntimePrms
Description

Number of run-time parameters used by this block. See “Create and Update S-Function Run-Time
Parameters” for more information.

Access

RW

See Also

ssGetNumSFcnParams

SampleTimes
Description

Block's sample times.

Access

RW for MATLAB S-functions, RO for all other blocks.

Methods
ContStates
Purpose

Get a block's continuous states.

Syntax

states = ContStates();

Description

Get vector of continuous states.

5 Classes

5-510

See Also

ssGetContStates

DataTypeIsFixedPoint
Purpose

Determine whether a data type is fixed point.

Syntax

bVal = DataTypeIsFixedPoint(dtID);

Arguments

dtID
Integer value specifying the ID of a data type.

Description

Returns true if the specified data type is a fixed-point data type.

DatatypeName
Purpose

Get the name of a data type.

Syntax

name = DatatypeName(dtID);

Arguments

dtID
Integer value specifying ID of a data type.

Description

Returns the name of the data type specified by dtID.

See Also

“DatatypeSize” on page 5-511

DatatypeSize
Purpose

Get the size of a data type.

Syntax

size = DatatypeSize(dtID);

Arguments

dtID
Integer value specifying the ID of a data type.

 Simulink.RunTimeBlock

5-511

Description

Returns the size of the data type specified by dtID.

See Also

“DatatypeName” on page 5-511

Derivatives
Purpose

Get derivatives of a block's continuous states.

Syntax

derivs = Derivatives();

Description

Get vector of state derivatives.

See Also

ssGetdX

DialogPrm
Purpose

Get an S-function's dialog parameters.

Syntax

param = DialogPrm(pIdx);

Arguments

pIdx
Integer value specifying the index of the parameter to be returned.

Description

Get the specified dialog parameter. In the case of the S-function, each DialogPrm corresponds to one
of the elements in the comma-separated list of parameters in the S-function parameters dialog
field.

See Also

ssGetSFcnParam, “RuntimePrm” on page 5-514

Dwork
Purpose

Get one of a block's DWork vectors.

Syntax

dworkObj = Dwork(dwIdx);

5 Classes

5-512

Arguments

dwIdx
Integer value specifying the index of a work vector.

Description

Get information about the DWork vector specified by dwIdx where dwIdx is the index number of the
work vector. This method returns an object of type Simulink.BlockCompDworkData.

See Also

ssGetDWork

FixedPointNumericType
Purpose

Get the properties of a fixed-point data type.

Syntax

eno = FixedPointNumericType(dtID);

Arguments

dtID
Integer value specifying the ID of a fixed-point data type.

Description

Returns an object of embedded.Numeric class that contains the attributes of the specified fixed-
point data type.

Note embedded.Numeric is also the class of the numerictype objects created by Fixed-Point
Designer software. For information on the properties defined by embedded.Numeric class, see
“numerictype Object Properties” (Fixed-Point Designer).

InputPort
Purpose

Get an input port of a block.

Syntax

port = InputPort(pIdx);

Arguments

pIdx
Integer value specifying the index of an input port.

Description

Get the input port specified by pIdx, where pIdx is the index number of the input port. For example,

 Simulink.RunTimeBlock

5-513

port = rto.InputPort(1)

returns the first input port of the block represented by the run-time object rto.

This method returns an object of type Simulink.BlockPreCompInputPortData or
Simulink.BlockCompInputPortData, depending on whether the model that contains the port is
uncompiled or compiled. You can use this object to get and set the input port's uncompiled or
compiled properties, respectively.

See Also

ssGetInputPortSignalPtrs, Simulink.BlockPreCompInputPortData,
Simulink.BlockCompInputPortData, “OutputPort” on page 5-514

OutputPort
Purpose

Get an output port of a block.

Syntax

port = OutputPort(pIdx);

Arguments

pIdx
Integer value specifying the index of an output port.

Description

Get the output port specified by pIdx, where pIdx is the index number of the output port. For
example,

port = rto.OutputPort(1)

returns the first output port of the block represented by the run-time object rto.

This method returns an object of type Simulink.BlockPreCompOutputPortData or
Simulink.BlockCompOutputPortData, depending on whether the model that contains the port is
uncompiled or compiled, respectively. You can use this object to get and set the output port's
uncompiled or compiled properties, respectively.

See Also

ssGetInputPortSignalPtrs, Simulink.BlockPreCompOutputPortData,
Simulink.BlockCompOutputPortData

RuntimePrm
Purpose

Get an S-function's run-time parameters.

Syntax

param = RuntimePrm(pIdx);

5 Classes

5-514

Arguments

pIdx
Integer value specifying the index of a run-time parameter.

Description

Get the run-time parameter whose index is pIdx. This run-time parameter is a Simulink.BlockData on
page 5-207 object of type Simulink.BlockRunTimePrmData.

See Also

ssGetRunTimeParamInfo

Version History
Introduced before R2006a

 Simulink.RunTimeBlock

5-515

Simulink.SampleTime class
Package: Simulink

Object containing sample time information

Description
The SampleTime class represents the sample time information associated with an individual sample
time.

Use the methods Simulink.Block.getSampleTimes and
Simulink.BlockDiagram.getSampleTimes to retrieve the values of the SampleTime properties
for a block and for a block diagram, respectively.

Properties
Value

A two-element array of doubles that contains the period and offset of the sample time

Description

A 1xn character array that describes the sample time type

ColorRGBValue

A 1x3 array of doubles that contains the red, green and blue (RGB) values of the sample time color

Annotation

A 1xn character array that represents the annotation of a specific sample time (for example, 'D1')

OwnerBlock

For asynchronous and variable sample times, OwnerBlock is a character vector containing the full
path to the block that controls the sample time. For all other types of sample times, it is an empty
character vector.

ComponentSampleTimes

If the sample time is an async union or if the sample time is hybrid and the component sample times
are available, then the array ComponentSampleTimes contains Simulink.SampleTime objects.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples
Retrieve the sample time information for the 'vdp' model.

5 Classes

5-516

ts = Simulink.BlockDiagram.getSampleTimes('vdp')

Simulink returns:

ts =

 1x2 Simulink.SampleTime
 Package: Simulink

 Properties:
 Value
 Description
 ColorRGBValue
 Annotation
 OwnerBlock
 ComponentSampleTimes

 Methods

To examine the values of the properties:

ts(1), ts(2)

ans =

 Simulink.SampleTime
 Package: Simulink

 Properties:
 Value: [0 0]
 Description: 'Continuous'
 ColorRGBValue: [0 0 0]
 Annotation: 'Cont'
 OwnerBlock: []
 ComponentSampleTimes: {}

 Methods

ans =

 Simulink.SampleTime
 Package: Simulink

 Properties:
 Value: [Inf 0]
 Description: 'Constant'
 ColorRGBValue: [1 0.2600 0.8200]
 Annotation: 'Inf'
 OwnerBlock: []
 ComponentSampleTimes: {}

 Methods

See Also
Simulink.Block.getSampleTimes | Simulink.BlockDiagram.getSampleTimes

 Simulink.SampleTime class

5-517

simulink.schedule.OrderedSchedule class
Package: simulink.schedule

Creates an OrderedSchedule object containing priority order of the partitions of a model

Description
The simulink.schedule.OrderedSchedule object is a representation of the execution order of
the partitions of the specified model. Access this object as a model parameter with get_param. You
can use the OrderedSchedule object to modify the schedule of the partitions of the model through
the command line.

You can use set_param to apply the schedule to the model.

Creation
get_param(mdl,'Schedule') creates an OrderedSchedule object for the specified model, mdl.

Properties
Order — Priority order of the partitions
table

Priority order of the partitions, specified as a table where:

• The row names are names of the partitions.
• The first column is the index of the partition. Modify the index to change the order of the

partitions.
• The second column shows the type of the partitions.
• The third column shows the trigger of the partition. This column lists either the sample time of the

partitions, or the hit times at which the partitions execute.

RateSections — Sections of the order table
array

RateSections is an array of objects containing a portion of the order table with a single rate. Use
RateSections to easily modify the order of the execution of partitions within valid groups.

Description — Description of the OrderedSchedule object
string

Purpose of an individual schedule object, specified as a string.

Events — Schedule Editor events
array

Schedule Editor events that may be triggers for aperiodic partitions. Schedule Editor events are sent
by Stateflow chart and by Input Events in Simulink, specified as an array of
simulink.schedule.Event objects.

5 Classes

5-518

Examples

Create and Analyze Random Schedules for a Model Using the Schedule Editor API

This example uses the Schedule Editor API to perform operations on the schedule. Then it uses a
function to generate random schedules and analyze them in Simulation Data Inspector

Open the Model and get the Schedule Object

Open a model of a Throttle Position Control system and use get_param to obtain the
simulink.schedule.OrderedSchedule object. This object contains the current schedule.

model = 'ScheduleEditorAPIWithSubsystemPartitions';
open_system(model);
schedule = get_param(model, 'Schedule')

schedule =

 OrderedSchedule with properties:

 Order: [9x3 table]
 RateSections: [3x1 simulink.schedule.RateSection]
 Events: [0x1 simulink.schedule.Event]
 Description: ''

 simulink.schedule.OrderedSchedule class

5-519

Examine the Schedule Object

The schedule object has an Order property that contains the execution order of the partitions in the
model. The Order property displays a table that contains partition names, their index, type, and their
trigger.

schedule.Order

ans =

 9x3 table

 Index Type Trigger
 _____ ________ _______

 Cont 1 Periodic "0"
 TPSSecondaryRun5ms 2 Periodic "0.005"
 MonitorRun5ms 3 Periodic "0.005"
 ControllerRun5ms 4 Periodic "0.005"
 ActuatorRun5ms 5 Periodic "0.005"
 D2 6 Periodic "0.005"
 D3 7 Periodic "0.01"
 APPSnsrRun 8 Periodic "0.01"
 TPSPrimaryRun10ms 9 Periodic "0.01"

Use the index variable in the Order table to change the execution order of the model

schedule.Order.Index('ActuatorRun5ms') = 2;
schedule.Order

ans =

 9x3 table

 Index Type Trigger
 _____ ________ _______

 Cont 1 Periodic "0"
 ActuatorRun5ms 2 Periodic "0.005"
 TPSSecondaryRun5ms 3 Periodic "0.005"
 MonitorRun5ms 4 Periodic "0.005"
 ControllerRun5ms 5 Periodic "0.005"
 D2 6 Periodic "0.005"
 D3 7 Periodic "0.01"
 APPSnsrRun 8 Periodic "0.01"
 TPSPrimaryRun10ms 9 Periodic "0.01"

Any moves within the Order property that are made to modify the schedule should result in valid
schedule. To perform the schedule modifications and valid moves easier, each partition is grouped
with partitions of the same rate in the RateSections property. Each element of the RateSection
property contains an order table with partitions of the same rate.

schedule.RateSections(2)
schedule.RateSections(2).Order

5 Classes

5-520

ans =

 RateSection with properties:

 Rate: "0.005"
 Order: [5x3 table]

ans =

 5x3 table

 Index Type Trigger
 _____ ________ _______

 ActuatorRun5ms 2 Periodic "0.005"
 TPSSecondaryRun5ms 3 Periodic "0.005"
 MonitorRun5ms 4 Periodic "0.005"
 ControllerRun5ms 5 Periodic "0.005"
 D2 6 Periodic "0.005"

Use the index variable to move the partitions within RateSections.

schedule.RateSections(2).Order.Index('ActuatorRun5ms') = 5;
schedule.Order

ans =

 9x3 table

 Index Type Trigger
 _____ ________ _______

 Cont 1 Periodic "0"
 TPSSecondaryRun5ms 2 Periodic "0.005"
 MonitorRun5ms 3 Periodic "0.005"
 ControllerRun5ms 4 Periodic "0.005"
 ActuatorRun5ms 5 Periodic "0.005"
 D2 6 Periodic "0.005"
 D3 7 Periodic "0.01"
 APPSnsrRun 8 Periodic "0.01"
 TPSPrimaryRun10ms 9 Periodic "0.01"

Create a Function to Generate Random Schedules

In this section, we create three different functions: randomSchedule,
generateSimulationInputs and simulateRandomSchedules

randomSchedule function is used to create random schedules by using random permutations of
index modifications in the schedule object. Using the Order and the RateSections properties of
the schedule object, partitions in the schedules are moved around in different, random
combinations. With these randomly created schedules, models are simulated and compared to study
the effect of different schedules on simulation. In the function randomSchedule, the input is the
model name. Then use get_param to obtain the simulink.schedule.OrderedSchedule object of

 simulink.schedule.OrderedSchedule class

5-521

the model. The schedule object and its properties are used to modify and randomize the schedules.
Create a variable firstExecutionOrder for the first rate section of the model. The
rateSections(1).ExecutionOrder = [firstExecutionOrder(1,:);
reSchedule(firstExecutionOrder(2:end,:))] line of code calls the function reSchedule
which creates random permutations of the indexes.

type randomSchedule

function schedule = randomSchedule(model)
 % schedule = randomSchedule(model) Produces a
 % simulink.schedule.OrderedSchedule that has a randomized permutation
 % of the model's original execution order schedule

 arguments
 model char = bdroot
 end

 schedule = get_param(model, 'Schedule');

 rateSections = schedule.RateSections;
 firstOrder = rateSections(1).Order;

 % This assumes that the slowest discrete rate is at index 1. This may
 % not be the case for all models (ex. JMAAB-B).
 rateSections(1).Order = [firstOrder(1,:); reSchedule(firstOrder(2:end,:))];

 for i=2:length(rateSections)
 rateSections(i).Order = reSchedule(rateSections(i).Order);
 end

 schedule.RateSections = rateSections;
end

function out = reSchedule(in)
 numPartitions = height(in);
 in.Index = in.Index(randperm(numPartitions));
 out = in;
end

To analyze the effects of different schedules on the model, simulate the model with the different
schedules. In this function, create an array of Simulink.SimulationInput objects. Through this
array of Simulink.SimulationInput objects, you can apply the schedules to the model with the
setModelParameters method of the Simulink.SimulationInput object.

type generateSimulationInputs

function in = generateSimulationInputs(model, numSimulations)
 % in = generateSimulationInputs(model, numSimulations) Generates
 % numSimulations Simulink.SimulationInput objects each containing a
 % different, randomized execution order schedule
 arguments
 model char = bdroot
 numSimulations double = 10
 end

 in(numSimulations) = Simulink.SimulationInput();

5 Classes

5-522

 in = in.setModelName(model);
 for idx = 1:numSimulations
 in(idx) = in(idx).setModelParameter('Schedule', randomSchedule(model));
 end
end

In the last function, use the array of Simulink.SimulationInput objects to run multiple
simulations. Once the simulations are complete, you can plot the output of all the simulations in
Simulation Data Inspector.

type simulateRandomSchedules

function out = simulateRandomSchedules(model, numSimulations)
 % out = simulateRandomSchedules(model, numSimulations) Simulates a
 % model numSimulations number of times. Each simulation has a
 % randomized execution order schedule.
 arguments
 model char = bdroot
 numSimulations double = 10
 end

 in = generateSimulationInputs(model, numSimulations);
 out = sim(in);
 plot(out);
end

Execute the Functions

Now run the above functions for the ScheduleEditorAPIWithSubsystemPartitions model.
First, use the randomSchedule function to create randomly generated schedules, then, use the
generateSimulationInputs function to generate an array of Simulink.SimulationInput
objects, and use the simulateRandomSchedule function to simulate the model with different
schedules and plot their results for comparison. Let's run simulations with 15 randomly generated
schedules.

simulateRandomSchedules(model,15)

[04-Mar-2023 02:35:56] Running simulations...
[04-Mar-2023 02:36:03] Completed 1 of 15 simulation runs
[04-Mar-2023 02:36:06] Completed 2 of 15 simulation runs
[04-Mar-2023 02:36:08] Completed 3 of 15 simulation runs
[04-Mar-2023 02:36:10] Completed 4 of 15 simulation runs
[04-Mar-2023 02:36:13] Completed 5 of 15 simulation runs
[04-Mar-2023 02:36:15] Completed 6 of 15 simulation runs
[04-Mar-2023 02:36:17] Completed 7 of 15 simulation runs
[04-Mar-2023 02:36:20] Completed 8 of 15 simulation runs
[04-Mar-2023 02:36:22] Completed 9 of 15 simulation runs
[04-Mar-2023 02:36:24] Completed 10 of 15 simulation runs
[04-Mar-2023 02:36:27] Completed 11 of 15 simulation runs
[04-Mar-2023 02:36:30] Completed 12 of 15 simulation runs
[04-Mar-2023 02:36:32] Completed 13 of 15 simulation runs
[04-Mar-2023 02:36:34] Completed 14 of 15 simulation runs
[04-Mar-2023 02:36:36] Completed 15 of 15 simulation runs

ans =

1x15 Simulink.SimulationOutput array

 simulink.schedule.OrderedSchedule class

5-523

Version History
Introduced in R2020a

See Also
Schedule Editor | simulink.event.InputWrite | simulink.event.InputWriteLost |
simulink.event.InputWriteTimeout

Topics
“Schedule the Partitions”
“Create Partitions”

5 Classes

5-524

Simulink.sdi.constraints.MatchesSignal class
Package: Simulink.sdi.constraints
Superclasses: matlab.unittest.constraints.Constraint

Constraint that compares time series data with tolerances using the Simulation Data Inspector

Description
Use the Simulink.sdi.constraints.MatchesSignal constraint to compare time series data
against an expected value as part of a test. You can configure the constraint to use a combination of
absolute, relative, and time tolerance values for the comparison. You can also specify additional
options to configure the comparison behavior using a
Simulink.sdi.constraints.MatchesSignalOptions object or using one or more name-value
pair arguments on page 5-525. For more information about how tolerances and alignment options
affect comparisons, see “How the Simulation Data Inspector Compares Data”.

Note The MatchesSignal constraint uses the Simulation Data Inspector to perform comparisons
and requires a license for one of these products:

• Simulink
• Signal Processing Toolbox™
• MATLAB Coder
• Fixed-Point Designer

Creation
Description

MatchesSignal(expVal) creates a constraint that determines whether time series data
representing an actual value matches the data specified by the expected value, expVal on page 5-
0 .

MatchesSignal(expVal,Name,Value) creates a constraint with additional properties on page 5-
527 specified by one or more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IgnoringDataTypes',true

 Simulink.sdi.constraints.MatchesSignal class

5-525

IgnoringDataTypes — Constraint behavior when data types do not match
false (default) | true

Configure constraint sensitivity to the actual value having a different data type from the expected
value.

• false — The constraint checks whether the expected value and actual value data types match.
• true — The constraint is insensitive to data type mismatches between the expected value and

actual value.

Example: 'IgnoringDataTypes',true

IgnoringSignalsNotAligned — Constraint behavior when signals do not align
false (default) | true

Configure constraint sensitivity to one or more signals not aligning between the expected value and
actual value.

• false — The constraint checks for signals that do not align between the expected value and
actual value.

• true — The constraint is insensitive to one or more signals not aligning between the expected
value and actual value.

Example: 'IgnoringSignalsNotAligned',true

IgnoringExtraData — Constraint behavior when the actual value covers a different time
interval from the expected value
false (default) | true

Configure the constraint sensitivity to the actual value containing data outside of the time interval
defined by the expected value.

• false — The constraint checks whether the actual value contains data outside the time interval
defined by the expected value.

• true — The constraint is insensitive to the actual value containing data outside the time interval
defined by the expected value.

Example: 'IgnoringExtraData',true

AligningBy — Signal alignment criteria
string array

Alignment criteria for the comparison. When the expected value contains more than one signal, the
Simulation Data Inspector comparison algorithm aligns signals for comparison between the expected
and actual values. By default, the Simulation Data Inspector aligns by data source, then by block
path, then by SID, and then by signal name. For details about the Simulation Data Inspector
alignment algorithm, see “How the Simulation Data Inspector Compares Data”.

Specify alignment criteria as a string array with one or more of these options listed in the order in
which you want them considered:

• BlockPath — The path to the source block for the signal.
• SID — Automatically assigned Simulink identifier.

5 Classes

5-526

• SignalName — The name of the signal.
• DataSource — Path of the variable.

Example: 'AligningBy',["SignalName","BlockPath"] specifies signal alignment by signal
name and then by block path.

Properties
Expected — Expected value to use as the baseline for the comparison
time series data | string scalar | character array

Expected value to use as the baseline for the comparison. The data for the expected value must pair
data values with time. The data can be in any format supported by the Simulation Data Inspector. The
Simulation Data Inspector requires data in a format that associates sample values with time.
Supported formats include timeseries, Structure with time, and Dataset.

You can specify the expected value for the constraint using a variable in the workspace that contains
the data or by specifying the full path or file name of a file that contains the data, as a string scalar or
a character array.

Attributes:

GetAccess public
SetAccess immutable

MatchesSignalOptions — Constraint comparison configuration options
Simulink.sdi.constraints.MatchesSignalOptions

Simulink.sdi.constraints.MatchesSignalOptions object that specifies options to configure
the comparison for the constraint. By default, the comparison uses the default alignment settings for
the Simulation Data Inspector and has strict acceptance criteria, meaning that the comparison does
not ignore any checks. You can use the MatchesSignalOptions property to configure how the
constraint aligns signals in the expected and actual runs and whether tests using the constraint are
sensitive to:

• The actual value having a different data type from the expected value.
• One or more signals not aligning between the expected and actual runs.
• The actual value containing data outside the time interval defined by the expected value.

You can specify the MatchesSignalOptions property for the constraint using individual name-value
pair arguments on page 5-525 or using the name-value pair 'WithOptions' with a
Simulink.sdi.constraints.MatchesSignalOptions object as the value. When you specify the
MatchesSignalOptions property using a MatchesSignalOptions object, you can use a single
name-value pair to configure all the options for comparisons that use the constraint.

Attributes:

GetAccess public
SetAccess immutable

Data Types: Simulink.sdi.constraints.MatchesSignalOptions

AbsTol — Absolute tolerance for comparison
0 (default) | scalar

 Simulink.sdi.constraints.MatchesSignal class

5-527

Absolute tolerance for comparisons using the constraint. For details about how the Simulation Data
Inspector uses tolerance values in comparisons, see “How the Simulation Data Inspector Compares
Data”.
Example: 0.1
Example: 2

Attributes:

GetAccess public
SetAccess immutable

Data Types: double

RelTol — Relative tolerance for comparison
0 (default) | scalar

Relative tolerance for comparisons using the constraint. For example, specify 0.1 to use a 10%
tolerance for the comparison. For details about how the Simulation Data Inspector uses tolerance
values in comparisons, see “How the Simulation Data Inspector Compares Data”.
Example: 0.05

Attributes:

GetAccess public
SetAccess immutable

Data Types: double

TimeTol — Time tolerance for comparison
0 (default) | scalar

Time tolerance for comparisons using the constraint, in seconds. For details about how the
Simulation Data Inspector uses tolerance values in comparisons, see “How the Simulation Data
Inspector Compares Data”.
Example: 0.001

Attributes:

GetAccess public
SetAccess immutable

Data Types: double

Examples

Create Tests for Time Series Comparisons

This example shows how to use the Simulink.sdi.constraints.MatchesSignal constraint to
compare time series data using data generated in the workspace. You can use the MatchesSignal
constraint to compare data from many sources, including measured test data in a file and logged
simulation outputs.

5 Classes

5-528

When you use the MatchesSignal constraint, you can specify absolute, relative, and time tolerances
to use in the comparison. The MatchesSignal constraint uses the Simulation Data Inspector
comparison algorithm, which includes steps for alignment and synchronization. For more information
about the algorithm, see “How the Simulation Data Inspector Compares Data”.

The MatchesSignal constraint uses the Simulation Data Inspector for the time series comparison
and requires one of these products:

• Simulink®
• Signal Processing Toolbox™
• MATLAB Coder™
• Fixed-Point Designer™

Create Time Series Data

This example generates workspace data in timeseries format for illustrative purposes only. You can
use the MatchesSignal constraint to compare data from other sources, such as simulation outputs
or a file containing test data, and the constraint can compare time series data in any format
supported by the Simulation Data Inspector.

In this example, the first signal is a timeseries object containing data for a sine wave with the
name Wave Data.

time = 0:0.1:20;
sig1vals = sin(2*pi/5*time);
sig1_ts = timeseries(sig1vals,time);
sig1_ts.Name = 'Wave Data';

The second signal is also a sine wave at the same frequency, with a slight attenuation and sampled at
a different rate. Because the comparison algorithm for the MatchesSignal constraint includes a
synchronization step, comparing these two signals with different time vectors does not always result
in a test failure. The second signal is also named Wave Data so the alignment algorithm can pair the
signals for comparison.

time2 = 0:0.05:20;
sig2vals = 0.98*sin(2*pi/5*time2);
sig2_ts = timeseries(sig2vals,time2);
sig2_ts.Name = 'Wave Data';

Create a Test Case and Compare the Signals

This example uses an interactive test for illustrative purposes. You can use the MatchesSignal
constraint with other types of unit tests in the MATLAB testing framework. For example, to write
class-based unit tests, see “Write Simple Test Case Using Classes”.

Create a TestCase instance for interactive use.

import matlab.unittest.TestCase

testCase = TestCase.forInteractiveUse;

Compare sig1_ts and sig2_ts using the MatchesSignal constraint. Use sig1_ts for the
expected value in the instance of the MatchesSignal constraint.

 Simulink.sdi.constraints.MatchesSignal class

5-529

import Simulink.sdi.constraints.MatchesSignal

testCase.verifyThat(sig2_ts,MatchesSignal(sig1_ts));

Verification failed.

 Framework Diagnostic:

 MatchesSignal(<Value>) failed.
 --> The following aligned signals did not match:

 Name ActualSignals ExpectedSignals
 _________ _____________ _______________

 Wave Data <Actual>.Data <Expected>.Data

 Comparison results have been saved to:
 --> C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\comparisonResults_d00018a9-61f2-4ce0-98df-5f3f629d1133.mldatx

 Stack Information:

 In C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex22803619\TestTimeSeriesDataWithTimeToleranceExample.mlx (TestTimeSeriesDataWithTimeToleranceExample) at 14
 In B:\matlab\toolbox\matlab\codetools\embeddedoutputs\+matlab\+internal\+editor\evaluateRegions.p (evaluateRegions) at 0
 In B:\matlab\toolbox\matlab\codetools\embeddedoutputs\+matlab\+internal\+editor\EvaluationOutputsService.p (EvaluationOutputsService.evalRegions) at 0
 In B:\matlab\toolbox\matlab\codetools\+matlab\+internal\+liveeditor\@LiveEditorUtilities\execute.m (execute) at 68
 In B:\matlab\tools\examples\exampletools\+mwtools\liveCodeToDocbook.m (doRun) at 431
 In B:\matlab\tools\examples\exampletools\+mwtools\liveCodeToDocbook.m (doRunConvert) at 346
 In B:\matlab\tools\examples\exampletools\+mwtools\liveCodeToDocbook.m (liveCodeToDocbook) at 164
 In B:\matlab\tools\build_using_matlab\BML.m (BML) at 13

The diagnostic information shows that the verification failed. When a test fails, the comparison
results and original run data are saved in a Simulation Data Inspector session file. Click the link for
the MLDATX file to open the session in the Simulation Data Inspector, where you can investigate the
data compared by the test and the comparison results. When you inspect the results, you can see the
attenuation creates the difference and causes the comparison to fail.

5 Classes

5-530

Specify an absolute tolerance of 0.02 for the instance of the MatchesSignal constraint to use in the
comparison.

testCase.verifyThat(sig2_ts,MatchesSignal(sig1_ts,'AbsTol',0.02));

Verification passed.

Configure MatchesSignal Constraint Behavior

This example shows how to configure the comparison behavior of a
Simulink.sdi.constraints.MatchesSignal constraint using a
Simulink.sdi.constraints.MatchesSignalOptions object. You can use a
MatchesSignalOptions object to configure multiple comparison properties with a single name-
value pair input in the construction of the MatchesSignal instance.

Create Time Series Data

This example creates workspace data to use for illustrative purposes only. You can use the
MatchesSignal constraint to compare data from other sources, such as simulation outputs or a file
containing test data, and the constraint can compare time series data in any format supported by the
Simulation Data Inspector.

In this example, the first signal is a timeseries object with the name Wave Data that contains data
for a sine wave.

 Simulink.sdi.constraints.MatchesSignal class

5-531

time = 0:0.1:20;
sig1vals = sin(2*pi/5*time);
sig1_ts = timeseries(sig1vals,time);
sig1_ts.Name = 'Wave Data';

The second signal is also a sine wave at the same frequency, with a slight attenuation and sampled at
a different rate. Because the comparison algorithm for the MatchesSignal constraint includes a
synchronization step, comparing these two signals with different time vectors does not necessarily
result in a test failure. The second signal is cast to single data type and also named Wave Data so
the alignment algorithm can pair the signals for comparison.

time2 = 0:0.1:22;
sig2vals = single(0.98*sin(2*pi/5*time2));
sig2_ts = timeseries(sig2vals,time2);
sig2_ts.Name = 'Wave Data';

Configure a MatchesSignal Instance and Compare the Data

You can use a MatchesSignalOptions object to specify how an instance of the MatchesSignal
constraint handles conditions such as mismatched data types and how signals are aligned between
the actual and expected data sets. You can specify the properties of the MatchesSignalOptions
object to suit the test you want to write. For example, if you want your test to compare data of
varying types and a data type match is not functionally relevant, you could set the
IgnoreDataTypes property to true.

Create a MatchesSignalOptions object to create a MatchesSignal instance that ignores data
type mismatches and data samples outside the time interval the actual and expected signals share.

import Simulink.sdi.constraints.MatchesSignalOptions
opts = MatchesSignalOptions('IgnoringDataTypes',true,'IgnoringExtraData',true);

Create a TestCase instance for interactive use and compare sig1_ts and sig2_ts using the
MatchesSignal constraint, the MatchesSignalOptions object, and an absolute tolerance of 0.02.

import matlab.unittest.TestCase
testCase = TestCase.forInteractiveUse;

import Simulink.sdi.constraints.MatchesSignal
testCase.verifyThat(sig2_ts,MatchesSignal(sig1_ts,'AbsTol',0.02,'WithOptions',opts))

Verification passed.

The test passes. When you run the same test again without the options defined by the
MatchesSignalOptions object, the test fails due to the mismatched data types.

testCase.verifyThat(sig2_ts,MatchesSignal(sig1_ts,'AbsTol',0.02))

Verification failed.

 Framework Diagnostic:

 MatchesSignal(<Value>,'AbsTol',0.02) failed.
 --> Data types do not match for the following aligned signals:

 Name ActualSignals ActualDataType ExpectedSignals ExpectedDataType
 _________ _____________ ______________ _______________ ________________

 Wave Data <Actual>.Data single <Expected>.Data double

5 Classes

5-532

 Stack Information:

 In C:\TEMP\Bdoc23a_2213998_3568\ib570499\35\tpa88bc75b\simulink-ex71177165\ConfigureMatchesSignalConstraintBehaviorExample.mlx (ConfigureMatchesSignalConstraintBehaviorExample) at 16
 In B:\matlab\toolbox\matlab\codetools\embeddedoutputs\+matlab\+internal\+editor\evaluateRegions.p (evaluateRegions) at 0
 In B:\matlab\toolbox\matlab\codetools\embeddedoutputs\+matlab\+internal\+editor\EvaluationOutputsService.p (EvaluationOutputsService.evalRegions) at 0
 In B:\matlab\toolbox\matlab\codetools\+matlab\+internal\+liveeditor\@LiveEditorUtilities\execute.m (execute) at 68
 In B:\matlab\tools\examples\exampletools\+mwtools\liveCodeToDocbook.m (doRun) at 431
 In B:\matlab\tools\examples\exampletools\+mwtools\liveCodeToDocbook.m (doRunConvert) at 346
 In B:\matlab\tools\examples\exampletools\+mwtools\liveCodeToDocbook.m (liveCodeToDocbook) at 164
 In B:\matlab\tools\build_using_matlab\BML.m (BML) at 13

Version History
Introduced in R2019a

R2020a: Enhanced diagnostic information
Behavior changed in R2020a

Starting in R2020a, when a test that uses the Simulink.sdi.constraints.MatchesSignal
constraint fails, the diagnostic information provides a path and link to a Simulation Data Inspector
session file that includes the comparison results and the original data compared by the test. Open the
session file to inspect the data and comparison results in the Simulation Data Inspector.

In previous releases, the diagnostic information included a path and link to a static image of the
comparison results. The diagnostic information no longer includes the image.

See Also
Simulink.sdi.constraints.MatchesSignalOptions | matlab.unittest.TestCase |
matlab.unittest.constraints.Constraint | matlab.unittest.constraints Package |
verifyThat

Topics
“How the Simulation Data Inspector Compares Data”
“Author Class-Based Unit Tests in MATLAB”
“Write Script-Based Unit Tests”
“Write Simple Test Case Using Classes”
“Write Simple Test Case Using Functions”

 Simulink.sdi.constraints.MatchesSignal class

5-533

Simulink.sdi.constraints.MatchesSignalOptions
class
Package: Simulink.sdi.constraints

Specify comparison options for Simulink.sdi.MatchesSignal constraint

Description
Use a Simulink.sdi.constraints.MatchesSignalOptions object to configure the comparison
behavior and acceptance criteria for an instance of the
Simulink.sdi.constraints.MatchesSignal constraint.

Note The MatchesSignal constraint uses the Simulation Data Inspector to perform comparisons
and requires a license for one of these products:

• Simulink
• Signal Processing Toolbox
• MATLAB Coder
• Fixed-Point Designer

Creation
Description

MatchesSignalOptions creates an instance of the
Simulink.sdi.constraints.MatchesSignalOptions class with properties that correspond to a
constraint that does not ignore any checks and uses the default alignment settings for the Simulation
Data Inspector.

MatchesSignalOptions(Name,Value) creates an instance of the
Simulink.sdi.constraints.MatchesSignalOptions class with comparison behavior using
properties on page 5-534 specified by one or more Name,Value pair arguments.

Properties
IgnoreDataTypes — Constraint behavior when data types do not match
false (default) | true

Constraint sensitivity to the actual value having a different data type from the expected value.

• false — The constraint checks whether the expected value and actual value data types match.
• true — The constraint is insensitive to data type mismatches between the expected value and

actual value.

You can specify the IgnoreDataTypes property in the constructor using the
'IgnoringDataTypes' name-value pair argument.

5 Classes

5-534

Attributes:

GetAccess public
SetAccess public

IgnoreSignalsNotAligned — Constraint behavior when signals do not align
false (default) | true

Constraint sensitivity to one or more signals not aligning between the expected value and actual
value.

• false — The constraint checks for signals that do not align between the expected value and
actual value.

• true — The constraint is insensitive to one or more signals not aligning between the expected
value and actual value.

You can specify the IgnoreSignalsNotAligned property in the constructor using the
'IgnoringSignalsNotAligned' name-value pair argument.

Attributes:

GetAccess public
SetAccess public

IgnoreExtraData — Constraint behavior when the actual value covers a different time
interval from the expected value
false (default) | true

Constraint sensitivity to the actual value containing data outside of the time interval defined by the
expected value.

• false — The constraint checks whether the actual value contains data outside the time interval
defined by the expected value.

• true — The constraint is insensitive to the actual value containing data outside the time interval
defined by the expected value.

You can specify the IgnoreExtraData property in the constructor using the
'IgnoringExtraData' name-value pair argument.

Attributes:

GetAccess public
SetAccess public

Alignment — Signal alignment criteria
string array

Alignment criteria for the comparison. When the expected value contains more than one signal, the
Simulation Data Inspector comparison algorithm aligns signals for comparison between the expected
and actual values. By default, the Simulation Data Inspector aligns by data source, then by block
path, then by SID, and then by signal name. For details about the Simulation Data Inspector
alignment algorithm, see “How the Simulation Data Inspector Compares Data”.

Specify alignment criteria as a string array with one or more of these options listed in the order in
which you want them considered:

 Simulink.sdi.constraints.MatchesSignalOptions class

5-535

• BlockPath — The path to the source block for the signal.
• SID — Automatically assigned Simulink identifier.
• SignalName — The name of the signal.
• DataSource — Path of the variable.

You can specify the Alignment property in the constructor using the 'AligningBy' name-value
pair argument.

Examples

Configure MatchesSignal Constraint Behavior

This example shows how to configure the comparison behavior of a
Simulink.sdi.constraints.MatchesSignal constraint using a
Simulink.sdi.constraints.MatchesSignalOptions object. You can use a
MatchesSignalOptions object to configure multiple comparison properties with a single name-
value pair input in the construction of the MatchesSignal instance.

Create Time Series Data

This example creates workspace data to use for illustrative purposes only. You can use the
MatchesSignal constraint to compare data from other sources, such as simulation outputs or a file
containing test data, and the constraint can compare time series data in any format supported by the
Simulation Data Inspector.

In this example, the first signal is a timeseries object with the name Wave Data that contains data
for a sine wave.

time = 0:0.1:20;
sig1vals = sin(2*pi/5*time);
sig1_ts = timeseries(sig1vals,time);
sig1_ts.Name = 'Wave Data';

The second signal is also a sine wave at the same frequency, with a slight attenuation and sampled at
a different rate. Because the comparison algorithm for the MatchesSignal constraint includes a
synchronization step, comparing these two signals with different time vectors does not necessarily
result in a test failure. The second signal is cast to single data type and also named Wave Data so
the alignment algorithm can pair the signals for comparison.

time2 = 0:0.1:22;
sig2vals = single(0.98*sin(2*pi/5*time2));
sig2_ts = timeseries(sig2vals,time2);
sig2_ts.Name = 'Wave Data';

Configure a MatchesSignal Instance and Compare the Data

You can use a MatchesSignalOptions object to specify how an instance of the MatchesSignal
constraint handles conditions such as mismatched data types and how signals are aligned between
the actual and expected data sets. You can specify the properties of the MatchesSignalOptions
object to suit the test you want to write. For example, if you want your test to compare data of
varying types and a data type match is not functionally relevant, you could set the
IgnoreDataTypes property to true.

5 Classes

5-536

Create a MatchesSignalOptions object to create a MatchesSignal instance that ignores data
type mismatches and data samples outside the time interval the actual and expected signals share.

import Simulink.sdi.constraints.MatchesSignalOptions
opts = MatchesSignalOptions('IgnoringDataTypes',true,'IgnoringExtraData',true);

Create a TestCase instance for interactive use and compare sig1_ts and sig2_ts using the
MatchesSignal constraint, the MatchesSignalOptions object, and an absolute tolerance of 0.02.

import matlab.unittest.TestCase
testCase = TestCase.forInteractiveUse;

import Simulink.sdi.constraints.MatchesSignal
testCase.verifyThat(sig2_ts,MatchesSignal(sig1_ts,'AbsTol',0.02,'WithOptions',opts))

Verification passed.

The test passes. When you run the same test again without the options defined by the
MatchesSignalOptions object, the test fails due to the mismatched data types.

testCase.verifyThat(sig2_ts,MatchesSignal(sig1_ts,'AbsTol',0.02))

Verification failed.

 Framework Diagnostic:

 MatchesSignal(<Value>,'AbsTol',0.02) failed.
 --> Data types do not match for the following aligned signals:

 Name ActualSignals ActualDataType ExpectedSignals ExpectedDataType
 _________ _____________ ______________ _______________ ________________

 Wave Data <Actual>.Data single <Expected>.Data double

 Stack Information:

 In C:\TEMP\Bdoc23a_2213998_3568\ib570499\35\tpa88bc75b\simulink-ex71177165\ConfigureMatchesSignalConstraintBehaviorExample.mlx (ConfigureMatchesSignalConstraintBehaviorExample) at 16
 In B:\matlab\toolbox\matlab\codetools\embeddedoutputs\+matlab\+internal\+editor\evaluateRegions.p (evaluateRegions) at 0
 In B:\matlab\toolbox\matlab\codetools\embeddedoutputs\+matlab\+internal\+editor\EvaluationOutputsService.p (EvaluationOutputsService.evalRegions) at 0
 In B:\matlab\toolbox\matlab\codetools\+matlab\+internal\+liveeditor\@LiveEditorUtilities\execute.m (execute) at 68
 In B:\matlab\tools\examples\exampletools\+mwtools\liveCodeToDocbook.m (doRun) at 431
 In B:\matlab\tools\examples\exampletools\+mwtools\liveCodeToDocbook.m (doRunConvert) at 346
 In B:\matlab\tools\examples\exampletools\+mwtools\liveCodeToDocbook.m (liveCodeToDocbook) at 164
 In B:\matlab\tools\build_using_matlab\BML.m (BML) at 13

Version History
Introduced in R2019a

See Also
Simulink.sdi.constraints.MatchesSignal | matlab.unittest.TestCase |
matlab.unittest.constraints.Constraint | matlab.unittest.constraints Package |
verifyThat

Topics
“How the Simulation Data Inspector Compares Data”

 Simulink.sdi.constraints.MatchesSignalOptions class

5-537

“Author Class-Based Unit Tests in MATLAB”
“Write Script-Based Unit Tests”
“Write Simple Test Case Using Classes”
“Write Simple Test Case Using Functions”

5 Classes

5-538

Simulink.sdi.DatasetRef class
Package: Simulink.sdi

Access data in Simulation Data Inspector repository

Description
The Simulink.sdi.DatasetRef object provides access to data in the Simulation Data Inspector
without loading the entire set of data into memory. The object is compatible with the
Simulink.SimulationData.DatasetRef class.

Construction
dsr_array = Simulink.sdi.DatasetRef constructs an array that contains a
Simulink.sdi.DatasetRef object that corresponds to each run in the Simulation Data Inspector.

dsr_array = Simulink.sdi.DatasetRef(domain) creates an array of DatasetRef objects that
contains a Simulink.sdi.DatasetRef object for each run, with the contents of each run limited to
the specified domain.

dsr = Simulink.sdi.DatasetRef(runID) creates a Simulink.sdi.DatasetRef object that
references the run specified by the run identifier, runID.

dsr = Simulink.sdi.DatasetRef(runID, domain) creates a Simulink.sdi.DatasetRef
object that references the run specified by runID with contents specified by domain.

dsr = Simulink.sdi.DatasetRef(runID, domain, repositoryPath) creates a
Simulink.sdi.DatsetRef object that references the run specified by the run identifier, runID.
The DatasetRef object contains the contents specified by domain from the repository specified by
repositoryPath.

Input Arguments

domain — Data to reference in DatasetRef object
'signals' | 'outports' | 'dsm' | 'state' | 'param' | ...

Data to reference in DatasetRef object, specified as one of the following:

• 'signals' — Signals produced by signal logging.
• 'outports' — Model output signals, represented by top-level Outport blocks.
• 'dsm' — Data Store Memory blocks.
• 'state' — Simulink states.
• 'param' — Parameter data for block parameters and variables tuned using dashboard blocks.
• 'sf_data' — Stateflow local data.
• 'sf_state' — Stateflow states.
• 'sf_state_child' — Stateflow child activity.
• 'sf_state_leaf' — Stateflow leaf activity.

 Simulink.sdi.DatasetRef class

5-539

• 'slt_verify' — Assertion blocks and verify assessments in Simulink Test.

runID — Run identifier
integer

Specifies the run containing the data for the Simulink.sdi.DatasetRef object.

repositoryPath — Path containing the run
string | character vector

Specifies the location of the run containing the data for the Simulink.sdi.DatasetRef object.

Properties
Name — Run name
character vector

The name of the run that corresponds with the Simulink.sdi.DatasetRef object.
Example: 'Run 1'

Run — Simulink.sdi.Run object
Simulink.sdi.Run object

Simulink.sdi.Run object associated with the Simulink.sdi.DatasetRef object.

numElements — Number of top-level elements in run
Simulink.sdi.Run object

Number of top-level elements in the Simulink.sdi.Run object associated with the
Simulink.sdi.DatasetRef object.

Methods
compare Compare runs with DatasetRef objects
getAsDatastore Retrieve element as sdidatastore object
getElement Retrieve DatasetRef element by index
getElementNames Get character vectors of element names
getSignal Return Signal object
plot Open the Simulation Data Inspector to view and compare data

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by comparing two
runs of the ex_sldemo_absbrake system with different desired slip ratios.

5 Classes

5-540

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
brakeRun = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = brakeRun.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]
 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

Version History
Introduced in R2017b

 Simulink.sdi.DatasetRef class

5-541

See Also
Simulink.SimulationData.DatasetRef | Simulink.sdi.Run | Simulink.sdi.WorkerRun |
getDatasetRef

Topics
“Inspect and Compare Data Programmatically”

5 Classes

5-542

compare
Class: Simulink.sdi.DatasetRef
Package: Simulink.sdi

Compare runs with DatasetRef objects

Syntax
[matches, mismatches, results] = dsrObj.compare(other)

Description
[matches, mismatches, results] = dsrObj.compare(other) returns the number of
matches, number of mismatches, and comparison results for a comparison of data in a
Simulink.sdi.DatasetRef object. The comparison results are returned as a
Simulink.sdi.DiffRunResult object.

Input Arguments
other — Comparison data
MAT-file | variable

Comparison data, which can come from another Simulink.sdi.DatasetRef object, a Dataset in
the workspace, or a MAT-file.
Example: 'data.mat'
Example: var

Output Arguments
matches — Number of matching signals
integer

Number of signals that matched within tolerance in the comparison.

mismatches — Number of mismatched signals
integer

Number of signals that did not match within tolerance in the comparison.

results — Simulink.sdi.DiffRunResult object with comparison results
Simulink.sdi.DiffRunResult object

Results of the comparison, returned in a Simulink.sdi.DiffRunResult object.

 compare

5-543

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by comparing two
runs of the ex_sldemo_absbrake system with different desired slip ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
brakeRun = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = brakeRun.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]
 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

5 Classes

5-544

Alternatives
Using the Simulation Data Inspector API, you could create runs for the data you want to compare and
use Simulink.sdi.compareRuns for the comparison. You can also view runs created from
simulation, import data to runs, and compare runs with the Simulation Data Inspector UI.

Version History
Introduced in R2017b

See Also
Simulink.sdi.DatasetRef | Simulink.sdi.Run | Simulink.sdi.DiffRunResult |
Simulink.sdi.compareRuns | Simulink.sdi.compareSignals | Simulink.sdi.view

Topics
“Inspect and Compare Data Programmatically”
“How the Simulation Data Inspector Compares Data”

 compare

5-545

getAsDatastore
Class: Simulink.sdi.DatasetRef
Package: Simulink.sdi

Retrieve element as sdidatastore object

Syntax
[elementDatastore, name, index] = SDIDatasetRef.getAsDatastore(arg)

Description
[elementDatastore, name, index] = SDIDatasetRef.getAsDatastore(arg) returns the
requested element as a matlab.io.datastore.sdidatastoreobject, along with the element
name and index.

Input Arguments
arg — Element selection criterion
integer | character vector

Search criterion used to retrieve the element from the Simulink.sdi.DatasetRefobject. For
name-based searches, specify arg as a character vector. For index-based searches, arg is an integer,
representing the index of the desired element.
Example: 'MySignal'
Example: 3

Output Arguments
elementDatastore — Element as sdidatastore
sdidatastore object

Element as matlab.io.datastore.sdidatastore object.

name — Element name
character vector

The name of the element.

index — Element index in DatasetRef object
integer

The index of the element in the Simulink.sdi.DatasetRef object.

5 Classes

5-546

Examples
Create an sdidatastore Object for a Signal

This example shows how to create a sdidatastore object for a signal in a
Simulink.sdi.DatasetRef object.

% Simulate model sldemo_fuelsys to create a run of logged signals
sim('sldemo_fuelsys')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
fuelRun = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = fuelRun.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 16x1 cell
 {'CheckRange' }
 {'air_fuel_ratio' }
 {'speed' }
 {'map' }
 {'ego' }
 {'throttle' }
 {'fuel' }
 {'EGO Fault Switch:1' }
 {'Engine Speed Fault Switch:1' }
 {'MAP Fault Switch:1' }
 {'Throttle Angle Fault Switch:1'}
 {'ego_sw' }
 {'engine_speed' }
 {'speed_sw' }
 {'map_sw' }
 {'throttle_sw' }

% Get sdidatastore object for fuel signal
fuel_ds = run_DSRef.getAsDatastore(10);

Alternatives
You can construct a sdidatastore object for a specified signal using
matlab.io.datastore.sdidatastore.

Version History
Introduced in R2017b

 getAsDatastore

5-547

See Also
Simulink.sdi.DatasetRef | getElement | matlab.io.datastore.sdidatastore |
matlab.io.datastore.SimulationDatastore

Topics
“Inspect and Compare Data Programmatically”

5 Classes

5-548

getElement
Class: Simulink.sdi.DatasetRef
Package: Simulink.sdi

Retrieve DatasetRef element by index

Syntax
[element, name, index] = SDIdatasetRef.getElement(index)

Description
[element, name, index] = SDIdatasetRef.getElement(index) returns the element within
the Run in the Simulink.sdi.DatasetRef object at the specified index.

Input Arguments
index — Index of element
integer

Location of the element in the Simulink.sdi.DatasetRef object.

Output Arguments
element — Run element in the DatasetRef object
signal

Element from the run in the Simulink.sdi.DatasetRef object.

name — Element name
character vector

Name of the element retrieved from the Simulink.sdi.DatasetRef object.

index — Location of element
integer

Location of the element within the Simulink.sdi.DatasetRef object.

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by comparing two
runs of the ex_sldemo_absbrake system with different desired slip ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

 getElement

5-549

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
brakeRun = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = brakeRun.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]
 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

Version History
Introduced in R2017b

See Also
Simulink.sdi.DatasetRef | getSignal | getElementNames

5 Classes

5-550

Topics
“Inspect and Compare Data Programmatically”

 getElement

5-551

getElementNames
Class: Simulink.sdi.DatasetRef
Package: Simulink.sdi

Get character vectors of element names

Syntax
names = dsrObj.getElementNames

Description
names = dsrObj.getElementNames returns a cell array of character vectors containing the names
of the elements in dsrObj.

Output Arguments
names — Element names
cell array

Names of the top level elements in the Simulink.sdi.DatasetRef object in a cell array.

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by comparing two
runs of the ex_sldemo_absbrake system with different desired slip ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
brakeRun = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = brakeRun.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell
 {'yout'}
 {'slp' }

5 Classes

5-552

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]
 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

Version History
Introduced in R2017b

See Also
Simulink.sdi.DatasetRef | getElement | getSignal |
Simulink.SimulationData.DatasetRef

Topics
“Inspect and Compare Data Programmatically”

 getElementNames

5-553

getSignal
Class: Simulink.sdi.DatasetRef
Package: Simulink.sdi

Return Signal object

Syntax
sigObj = SDIDatasetRef.getSignal(searchArg)

Description
sigObj = SDIDatasetRef.getSignal(searchArg) returns the Simulink.sdi.Signal object
corresponding to the search argument, searchArg.

Input Arguments
searchArg — Search parameter
character vector | integer

The search parameters to select the Simulink.sdi.Signal object. The searchArg can be a
character vector or string targeting a signal name or an integer for an index-based search.
Example: 'throttle'
Example: 2

Output Arguments
sigObj — Simulink.sdi.Signal object
Simulink.sdi.Signal object

The Simulink.sdi.Signal object corresponding to the search query.

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by comparing two
runs of the ex_sldemo_absbrake system with different desired slip ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object

5 Classes

5-554

brakeRun = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = brakeRun.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]
 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

Alternatives
If the signal is a top-level element in the Simulink.sdi.DatasetRef object, you can use the
getElement method to get the Simulink.sdi.Signal object by index.

Version History
Introduced in R2017b

See Also
Simulink.sdi.DatasetRef | getElement | Simulink.sdi.getSignal

 getSignal

5-555

Topics
“Inspect and Compare Data Programmatically”

5 Classes

5-556

plot
Class: Simulink.sdi.DatasetRef
Package: Simulink.sdi

Open the Simulation Data Inspector to view and compare data

Syntax
SDIDatasetRef.plot

Description
SDIDatasetRef.plot opens the Simulation Data Inspector, where you can view and compare runs
and signals.

Examples
Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by comparing two
runs of the ex_sldemo_absbrake system with different desired slip ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
brakeRun = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = brakeRun.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]

 plot

5-557

 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

Alternatives
You can use the Simulink.sdi.view function to open the Simulation Data Inspector. For
information on using the UI to open the Simulation Data Inspector, see “View Data in the Simulation
Data Inspector”.

Version History
Introduced in R2017b

See Also
Simulink.sdi.DatasetRef | Simulink.sdi.view | Simulink.sdi.setSubPlotLayout |
plotOnSubPlot

Topics
“Inspect and Compare Data Programmatically”

5 Classes

5-558

Simulink.sdi.WorkerRun class
Package: Simulink.sdi

Access simulation data from parallel workers

Description
The Simulink.sdi.WorkerRun class provides access to run data generated on Parallel Computing
Toolbox parallel workers. Create a Simulink.sdi.WorkerRun object on the worker, and then use
the object to access data in your local MATLAB session.

Construction
workerRun = Simulink.sdi.WorkerRun(runID) creates a Simulink.sdi.WorkerRun object
with the run identifier specified by runID.

workerRun = Simulink.sdi.WorkerRun.getLatest creates a Simulink.sdi.WorkerRun
object of the most recent run.

Input Arguments

runID — Run identifier
integer

Run identifier

Methods

getDataset Create Dataset of worker run data
getDatasetRef Create DatasetRef for worker run
getLatest Create worker run for latest run
getLocalRun Create local run from worker run

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with different input
filter time constants and shows several ways to access the data using the Simulation Data Inspector
programmatic interface.

 Simulink.sdi.WorkerRun class

5-559

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox support is
configured to import runs created on local workers automatically. Then, create a vector of filter
parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already have one. In
an spmd code block, load the slexAircraftExample model and select signals to log. To avoid data
concurrency issues using sim in parfor, create a temporary directory for each worker to use during
simulations.

p = gcp;

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each simulation, and
modify the value of Ts in the model workspace. Then, run the simulation and build an array of
Simulink.sdi.WorkerRun objects to access the data with the Simulation Data Inspector. After the
parfor loop, use another spmd segment to remove the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

5 Classes

5-560

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you can easily
post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated with the
WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 3: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

 Simulink.sdi.WorkerRun class

5-561

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the Simulation Data
Inspector API. This example adds a tag indicating the filter time constant value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you want to run on
your worker pool.

Simulink.sdi.cleanupWorkerResources

Alternatives
You can also access, view, and analyze simulation data from Parallel Computing Toolbox workers
using the Simulation Data Inspector UI.

Version History
Introduced in R2017b

See Also
Simulink.sdi.Run

Topics
“Inspect and Compare Data Programmatically”

5 Classes

5-562

getDataset
Class: Simulink.sdi.WorkerRun
Package: Simulink.sdi

Create Dataset of worker run data

Syntax
dataset = workerRun.getDataset
dataset = workerRun.getDataset(domain)

Description
dataset = workerRun.getDataset returns a Simulink.SimulationData.Dataset object of
the data corresponding to the Simulink.sdi.WorkerRun object.

dataset = workerRun.getDataset(domain) returns a Simulink.SimulationData.Dataset
object of the data corresponding to the Simulink.sdi.WorkerRun object limited to the scope
specified by domain.

Input Arguments
domain — Scope specifier
'signals' | 'outports'

Scope limiting argument that selects the data to return in the
Simulink.SimulationData.Dataset object.

• 'signals' limits the data returned in the Dataset to signals in the WorkerRun.
• 'outports' limits the data returned in the Dataset to outport data in the WorkerRun.

Output Arguments
dataset — Simulink.SimulationData.Dataset object
Simulink.SimulationData.Dataset object

Simulink.SimulationData.Dataset object containing the data from the
Simulink.sdi.WorkerRun object.

Examples
Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with different input
filter time constants and shows several ways to access the data using the Simulation Data Inspector
programmatic interface.

 getDataset

5-563

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox support is
configured to import runs created on local workers automatically. Then, create a vector of filter
parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already have one. In
an spmd code block, load the slexAircraftExample model and select signals to log. To avoid data
concurrency issues using sim in parfor, create a temporary directory for each worker to use during
simulations.

p = gcp;

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each simulation, and
modify the value of Ts in the model workspace. Then, run the simulation and build an array of
Simulink.sdi.WorkerRun objects to access the data with the Simulation Data Inspector. After the
parfor loop, use another spmd segment to remove the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

5 Classes

5-564

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you can easily
post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated with the
WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 3: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

 getDataset

5-565

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the Simulation Data
Inspector API. This example adds a tag indicating the filter time constant value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you want to run on
your worker pool.

Simulink.sdi.cleanupWorkerResources

Version History
Introduced in R2017b

See Also
Simulink.SimulationData.Dataset | getDatasetRef |
Simulink.sdi.WorkerRun.getLatest | getLocalRun

Topics
“Inspect and Compare Data Programmatically”

5 Classes

5-566

getDatasetRef
Class: Simulink.sdi.WorkerRun
Package: Simulink.sdi

Create DatasetRef for worker run

Syntax
datasetRef = workerRun.getDatasetRef
datasetRef = workerRun.getDatasetRef(domain)

Description
datasetRef = workerRun.getDatasetRef returns a
Simulink.SimulationData.DatasetRef object referencing the data in the
Simulink.sdi.WorkerRun object, workerRun.

datasetRef = workerRun.getDatasetRef(domain) returns a
Simulink.SimulationData.DatasetRef object referencing the data in the
Simulink.sdi.WorkerRun object, workerRun, limited to the scope specified by domain.

Input Arguments
domain — Scope limiting input
'signals' | 'outports'

Scope limiting argument that selects the data to reference in the
Simulink.SimulationData.DatasetRef object.

• 'signals' limits the data referenced in the DatasetRef to signals in the WorkerRun.
• 'outports' limits the data referenced in the DatasetRef to outport data in the WorkerRun.

Output Arguments
datasetRef — Simulink.SimulationData.DatasetRef object
Simulink.sdi.DatasetRef object

Simulink.sdi.DatasetRef object referencing the data in the Parallel Computing Toolbox worker
run.

Examples
Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with different input
filter time constants and shows several ways to access the data using the Simulation Data Inspector
programmatic interface.

 getDatasetRef

5-567

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox support is
configured to import runs created on local workers automatically. Then, create a vector of filter
parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already have one. In
an spmd code block, load the slexAircraftExample model and select signals to log. To avoid data
concurrency issues using sim in parfor, create a temporary directory for each worker to use during
simulations.

p = gcp;

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each simulation, and
modify the value of Ts in the model workspace. Then, run the simulation and build an array of
Simulink.sdi.WorkerRun objects to access the data with the Simulation Data Inspector. After the
parfor loop, use another spmd segment to remove the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

5 Classes

5-568

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you can easily
post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated with the
WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 3: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

 getDatasetRef

5-569

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the Simulation Data
Inspector API. This example adds a tag indicating the filter time constant value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you want to run on
your worker pool.

Simulink.sdi.cleanupWorkerResources

Version History
Introduced in R2017b

See Also
Simulink.SimulationData.DatasetRef | getDataset |
Simulink.sdi.WorkerRun.getLatest | getLocalRun

Topics
“Inspect and Compare Data Programmatically”

5 Classes

5-570

Simulink.sdi.WorkerRun.getLatest
Class: Simulink.sdi.WorkerRun
Package: Simulink.sdi

Create worker run for latest run

Syntax
runObj = Simulink.sdi.WorkerRun.getLatest

Description
runObj = Simulink.sdi.WorkerRun.getLatest creates a Simulink.sdi.WorkerRun object
for the latest run on a Parallel Computing Toolbox worker.

Output Arguments
runObj — Local Simulink.sdi.Run object
Simulink.sdi.WorkerRun object

Simulink.sdi.WorkerRun object to access the data from the latest Parallel Computing Toolbox
worker run.

Examples
Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with different input
filter time constants and shows several ways to access the data using the Simulation Data Inspector
programmatic interface.

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox support is
configured to import runs created on local workers automatically. Then, create a vector of filter
parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already have one. In
an spmd code block, load the slexAircraftExample model and select signals to log. To avoid data
concurrency issues using sim in parfor, create a temporary directory for each worker to use during
simulations.

 Simulink.sdi.WorkerRun.getLatest

5-571

p = gcp;

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each simulation, and
modify the value of Ts in the model workspace. Then, run the simulation and build an array of
Simulink.sdi.WorkerRun objects to access the data with the Simulation Data Inspector. After the
parfor loop, use another spmd segment to remove the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you can easily
post-process.

ds(7) = Simulink.SimulationData.Dataset;

5 Classes

5-572

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated with the
WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 3: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the Simulation Data
Inspector API. This example adds a tag indicating the filter time constant value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you want to run on
your worker pool.

 Simulink.sdi.WorkerRun.getLatest

5-573

Simulink.sdi.cleanupWorkerResources

Version History
Introduced in R2017b

See Also
Simulink.sdi.WorkerRun | getDataset | getDatasetRef | getLocalRun

Topics
“Inspect and Compare Data Programmatically”

5 Classes

5-574

getLocalRun
Class: Simulink.sdi.WorkerRun
Package: Simulink.sdi

Create local run from worker run

Syntax
runObj = workerRun.getLocalRun

Description
runObj = workerRun.getLocalRun creates the local Simulink.sdi.Run object runObj for the
Simulink.sdi.WorkerRun object workerRun. Use getLocalRun in the client MATLAB to access
the Simulink.sdi.WorkerRun data.

Output Arguments
runObj — Local Simulink.sdi.Run object
Simulink.sdi.Run object

Local Simulink.sdi.Run object.

Examples
Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with different input
filter time constants and shows several ways to access the data using the Simulation Data Inspector
programmatic interface.

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox support is
configured to import runs created on local workers automatically. Then, create a vector of filter
parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already have one. In
an spmd code block, load the slexAircraftExample model and select signals to log. To avoid data
concurrency issues using sim in parfor, create a temporary directory for each worker to use during
simulations.

 getLocalRun

5-575

p = gcp;

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each simulation, and
modify the value of Ts in the model workspace. Then, run the simulation and build an array of
Simulink.sdi.WorkerRun objects to access the data with the Simulation Data Inspector. After the
parfor loop, use another spmd segment to remove the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you can easily
post-process.

ds(7) = Simulink.SimulationData.Dataset;

5 Classes

5-576

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated with the
WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 3: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the Simulation Data
Inspector API. This example adds a tag indicating the filter time constant value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you want to run on
your worker pool.

 getLocalRun

5-577

Simulink.sdi.cleanupWorkerResources

Version History
Introduced in R2017b

See Also
Simulink.sdi.Run | Simulink.sdi.WorkerRun

Topics
“Inspect and Compare Data Programmatically”

5 Classes

5-578

Simulink.sfunction.Analyzer class
Package: Simulink.sfunction

Create a Simulink S-function analyzer object

Description
This class enables you to perform checks on S-functions within a model or a library. These checks
include MEX compiler setup check, source code check, MEX-file check, parameter robustness check
for S-functions. The check result can be accessed either from a MATLAB structure or an HTML
report.

The S-function analyzer checks the source code of the S-functions based on the S-function names.
The S-function source code can be automatically included in the analysis if the source file is a
single .c or .cpp file in the MATLAB path that has the same name as the S-function. Otherwise, the
build information can be specified through the S-function Analyzer APIs. If no source code is available
on the specified path, the analysis is skipped.

Construction
sfunAnalyzer = Simulink.sfunction.Analyzer(model) creates a
Simulink.sfunction.Analyzer object with the model you specify. In this case, the source code
for the S-function can be automatically included in the analysis if the source code file is a single .c
or .cpp file in the MATLAB path that has the same name as the S-function. For example, if the
specified model contains an S-function called mysfun, and the source file for mysfun is a single file
mysfun.c in the MATLAB path, a Simulink.sfunction.analyzer.BuildInfo object is
automatically created and included in the analysis.

sfunAnalyzer = Simulink.sfunction.Analyzer(model,'BuildInfo',{bdInfo}) creates a
Simulink.sfunction.Analyzer object with the model and a
Simulink.sfunction.analyzer.BuildInfo object named bdInfo.

sfunAnalyzer = Simulink.sfunction.Analyzer(model,'Options',{opts}) creates a
Simulink.sfunction.Analyzer object with the model and a
Simulink.sfunction.analyzer.Options object named opts.

Input Arguments

model — Specify a model in the path
character vector | string

Names of the model in the path, specified as a string or character vector.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

 Simulink.sfunction.Analyzer class

5-579

Example: 'BuildInfo', {buildInfo}

BuildInfo — Specify the buildinfo object
cell array

A cell array of buildinfo objects. See Simulink.sfunction.analyzer.BuildInfo for more
information.

Options — Specify the S-function analyzer running options
object

An object to specify S-function analyzer running options. These checks include Polyspace Code
Prover™ and parameter robustness checks. See Simulink.sfunction.analyzer.Options for
more information.

Methods
generateReport Generate an HTML report of S-function checks
run Perform checks on S-functions

Version History
Introduced in R2017b

See Also
run | generateReport | Simulink.sfunction.analyzer.BuildInfo |
Simulink.sfunction.analyzer.Options | findSfunctions

5 Classes

5-580

findSfunctions
Find and return all eligible S-functions in a model

Syntax
sfuns = Simulink.sfunction.analyzer.findSfunctions(model)

Description
sfuns = Simulink.sfunction.analyzer.findSfunctions(model) returns all eligible S-
functions in a model for the S-function checks. Rules are applied to filter out all ineligible S-functions.

Input Arguments
model — A Simulink model or library in path
character vector | string vector

A Simulink model or library in path specified as a string or a character vector.

Output Arguments
sfuns — A list of all eligible S-functions
cell array of character vectors

Eligible S-functions in the model, specified as a cell array of character vectors.

Version History
Introduced in R2017b

See Also
Simulink.sfunction.Analyzer | run | generateReport |
Simulink.sfunction.analyzer.BuildInfo | Simulink.sfunction.analyzer.Options

 findSfunctions

5-581

generateReport
Class: Simulink.sfunction.Analyzer
Package: Simulink.sfunction

Generate an HTML report of S-function checks

Syntax
generateReport()

Description
generateReport() generates an HTML report and launches the browser to display the report.

Version History
Introduced in R2017b

See Also
Simulink.sfunction.Analyzer | run | Simulink.sfunction.analyzer.BuildInfo |
Simulink.sfunction.analyzer.Options | findSfunctions

5 Classes

5-582

run
Class: Simulink.sfunction.Analyzer
Package: Simulink.sfunction

Perform checks on S-functions

Syntax
result = run()

Description
result = run() returns a struct containing the result from the analyzer checks. An example result
struct has the following fields:

 TimeGenerated: '19-Jul-2017 19:25:32'
 Platform: 'win64'
 Release: '(R2017b)'
 SimulinkVersion: '9.0'
 ExemptedBlocks: {}
 MexConfiguration: [1×1 mex.CompilerConfiguration]
 Data: [4×4 struct]

Output Arguments
result — Sfunction.Analyzer structure
MATLAB structure

MATLAB structure containing the result of S-function analyzer.

Version History
Introduced in R2017b

See Also
Simulink.sfunction.Analyzer | generateReport |
Simulink.sfunction.analyzer.BuildInfo | Simulink.sfunction.analyzer.Options |
findSfunctions

 run

5-583

Simulink.sfunction.analyzer.BuildInfo class
Package: Simulink.sfunction.analyzer

Create an object to represent build information

Description
Simulink.sfunction.analyzer.BuildInfo object captures the build information for S-
functions, such as source files, header files, and linking libraries, for use with the
Simulink.sfunction.Analyzer class.

Construction
bdInfo= Simulink.sfunction.analyzer.BuildInfo(SfcnFile) creates a
Simulink.sfunction.analyzer.BuildInfo object.

bdInfo = Simulink.sfunction.analyzer.BuildInfo(SfcnFile, 'SrcPath',
{srcpaths}, 'ExtraSrcFileList', {srcfilelist}) creates a
Simulink.sfunction.analyzer.BuildInfo object for a C-MEX S-function source file, a list of
extra source files located in the specified path.

bdInfo = Simulink.sfunction.analyzer.BuildInfo(SfcnFile, 'ObjFileList',
{objfilelist}) creates a Simulink.sfunction.analyzer.BuildInfo object for C-MEX S-
function source file and list of extra objective code files.

bdInfo = Simulink.sfunction.analyzer.BuildInfo(SfcnFile, 'IncPaths',
{incpathslist}) creates a Simulink.sfunction.analyzer.BuildInfo object for C-MEX S-
function source file and paths to the folders including header files.

bdInfo = Simulink.sfunction.analyzer.BuildInfo(SfcnFile, 'LibFileList',
{libfilelist}, 'LibPaths',{libpaths}) creates a
Simulink.sfunction.analyzer.BuildInfo object for C-MEX S-function source file and library
files and library file paths used for building.

bdInfo = Simulink.sfunction.analyzer.BuildInfo(SfcnFile, 'PreProcDefList',
{preprocdir}) creates a Simulink.sfunction.analyzer.BuildInfo object for C-MEX S-
function source file and pre-processor directives list.

Input Arguments

SfcnFile — S-function source file
character vector | string

S-function source file having the same name as the S-function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

5 Classes

5-584

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SrcPath', {srcpath}

SrcPath — Source file path
cell array of character vectors | string

Search paths to extra S-function source files that are referenced by SfcnFile, specified as a cell
array or a string.

ExtraSrcFileList — Extra source file list
cell array of character vectors | string

List of extra S-function source files, specified as a cell array or string.

ObjFileList — Extra objective code
cell array

List of objective files used for building, specified as a cell array.

IncPaths — Search paths for header files
cell array of character vectors | string

Specify paths to include folders for header files, specified as a cell array or a string.

LibFileList — External libraries list
cell array of character vectors | string

List of external library files used for building, specified as a cell array or string.

LibPaths — Search paths for external libraries
cell array of character vectors | string

Search paths for external library files used for building, specified as a cell array or a string.

PreProcDefList — Preprocessor directives
cell array of character vectors | string

List of the preprocessor directives, specified as a cell array or a string.

Output Arguments

bdInfo — BuildInfo object
object

Build information for the S-functions supplied to the S-function analyzer. Returns a
simulink.sfunction.analyzer.BuildInfo object.

Examples
Create a bdInfo object for an S-function mysfun that includes a source file mysfun.c:

Basic Use

bdInfo = Simulink.sfunction.analyzer.BuildInfo('mysfun.c');

 Simulink.sfunction.analyzer.BuildInfo class

5-585

The output bdInfo has the following fields:

bdInfo =

 BuildInfo with properties:

 SfcnFile: 'mysfun.c'
 SfcnName: 'mysfun'
 SrcType: 'C'
 SrcPaths: {}
 ExtraSrcFileList: {}
 ObjFileList: {}
 IncPaths: {}
 LibFileList: {}
 LibPaths: {}
 PreProcDefList: {}

Advanced Use

Create a bdInfo object for an S-function mysfun that includes a source file mysfun.c and also
includes:

• List of extra source files, extra1.c and extra2.c
• Paths to source file folders, /path1 and /path2.
• List of objective files, o1.obj and o2.obj.
• List of library files, l1.lib and l2.lib.
• Library paths, /libpath1.
• Pre-processor running directives, -DDEBUG.

Simulink.sfunction.analyzer.BuildInfo('mysfun.c',...
 'ExtraSrcFileList',{extra1.c,extra2.c},... %specify extra source files, eg: extra1.c, extra2.c
 'SrcPaths',{/path1,/path2},... %specify paths to source file folders, eg: /path1, /path2
 'ObjFileList',{o1.obj,o2.obj},... %specify objective files, eg: o1.obj, o2.obj
 'LibFileList',{l1.lib,l2.lib},... %specify library files, eg: l1.lib, l2.lib
 'LibPaths',{/libpath1},... %specify library path folders, eg: /libpath1
 'PreProcDefList',{DEBUG}); %specify preprocessor directives, eg: -DDEBUG

Version History
Introduced in R2017b

See Also
Simulink.sfunction.Analyzer | run | generateReport |
Simulink.sfunction.analyzer.Options | findSfunctions

5 Classes

5-586

Simulink.sfunction.analyzer.Options class
Package: Simulink.sfunction.analyzer

Create an object to specify options for running S-function checks

Description
Simulink.sfunction.analyzer.Options object is created through the constructor
Simulink.sfunction.analyzer.Options(). Simulink.sfunction.analyzer.Options
object captures the options for running S-function checks. These checks include whether to enable
Polyspace and Parameter Robustness checks, maximum model simulation time and output path for
result report.

Construction
opts= Simulink.sfunction.analyzer.Options() returns a options object with these property
values:

 EnablePolyspace: 0
 EnableRobustness: 0
EnableUsePublishedOnly: 0
 ReportPath: pwd
 ModelSimTimeOut: 10

Properties
EnablePolyspace — Polyspace Code Prover check
False (default) | True

Boolean type check to determine whether to include Polyspace Code Prover check.

Note These checks usually take some time to run.

EnableRobustness — Parameter robustness check
False (default) | True

Boolean type check to indicate whether to include Robustness checks.

Note These checks usually take some time to run.

ReportPath — Generated report directory
current working directory (default) | character array

Path to the generated report directory.

ModelSimTimeOut — Maximum model simulation time
10 (default) | scalar

 Simulink.sfunction.analyzer.Options class

5-587

Maximum model simulation time in seconds.

EnableUsePublishedOnly — Check for use of only documented APIs
False (default) | True

Check to indicate if any undocumented S-function APIs are used in the code.

Version History
Introduced in R2017b

See Also
Simulink.sfunction.Analyzer | run | generateReport |
Simulink.sfunction.analyzer.BuildInfo | findSfunctions

5 Classes

5-588

Simulink.Simulation.BlockParameter class
Package: Simulink.Simulation

Block parameters in Simulink.SimulationInput objects

Description
The Simulink.Simulation.BlockParameter object specifies the block parameter, path of the
block, and the value of the block parameter used by the Simulink.SimulationInput object during
simulation.

In most cases, there is no need to create an object of this class directly. It is recommended that you
use the setBlockParameter method on the Simulink.SimulationInput object to add a block
parameter to the Simulink.SimulationInput object.

Creation
bp = Simulink.Simulation.BlockParameter('BlockPath', 'Name', 'Value') creates a
Simulink.Simulation.BlockParameter object, bp, that specifies the block parameter, Name,
with a Value on its path, BlockPath.

Properties
BlockPath — Path of the block
character vector

Path of the block, specified as a character vector.

Name — Name of the block parameter
character vector

Name of the block parameter, specified as a character vector.

Value — Value of the block parameter
character vector

Value of the block parameter, specified as a character vector.

Version History
Introduced in R2020a

See Also
Simulink.SimulationInput | parsim | applyToModel | setModelParameter |
setInitialState | setExternalInput | setVariable | validate | setPreSimFcn |
setPostSimFcn | loadVariablesFromMATFile | Simulation Manager

 Simulink.Simulation.BlockParameter class

5-589

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

5 Classes

5-590

Simulink.Simulation.Future class
Package: Simulink.Simulation

Create Future object for simulation

Description
Create a Simulink.Simulation.Future object when you execute parsim with the
'RunInBackground' argument set to 'on'. The parsim command runs multiple simulations in
parallel using the inputs specified with an array of Simulink.SimulationInput objects. You can
use this object to monitor the status of ongoing simulations, fetch outputs of completed simulations,
or cancel ongoing simulations.

The parsim command uses the Parallel Computing Toolbox license to run the simulations in parallel.
parsim runs the simulations in serial if a parallel pool cannot be created or if Parallel Computing
Toolbox is not used.

Construction
future = parsim(in,'RunInBackground','on') creates a Simulink.Simulation.Future
object, future, while running multiple simulations in parallel using the inputs specified in the
Simulink.SimulationInput object, in.

Input Arguments

in — Simulink.SimulationInput object array
object (default) | array

A Simulink.SimulationInput object or an array of Simulink.SimulationInput objects is used
to run multiple simulations. Specify parameters and values of a model to run multiple simulations
without making it dirty.
Example: in = Simulink.SimulationInput('vdp'), in(1:10) =
Simulink.SimulationInput('vdp')

'RunInBackground' — parsim argument to enable RunInbackground
'off' (default) | 'on'

Set to 'on', to run simulations asynchronously, keeping the MATLAB command prompt available.

Properties
Diary — Log of outputs from the simulation
text file

Text log of outputs from the simulation.

This property is read-only.

ID — Numeric identifier of the future object
scalar integer

 Simulink.Simulation.Future class

5-591

ID of the future object, specified as a scalar integer.

This property is read-only.

Read — Whether the outputs have been read
1 | 0

Whether a call to fetchNext or fetchOutputs has read the outputs in the
Simulink.Simulation.Future object array, specified as 1 if true and 0 if false.

This property is read-only.

State — Current state of future object array
'pending' | 'queued' | 'running' | 'finished' | 'failed' | 'unavailable'

Current state of future object array, specified as 'pending', 'queued', 'running',
'finished','failed', or 'unavailable'.

This property is read-only.

Methods
Method Purpose
cancel Cancel a pending, queued, or running

Simulink.Simulation.Future object
fetchNext Fetch next available unread output from

Simulink.Simulation.Future object array
fetchOutputs Retrieve Simulink.SimulationOutput from

Simulink.Simulation.Future
wait Wait for Simulink.Simulation.Future objects to

complete simulation

Examples

Create a Simulink.Simulation.Future Object

This example shows how to create a Simulink.Simulation.Future object array and use it to
retrieve outputs and see the status of simulations.

This example runs several simulations of the vdp model, varying the value of the gain Mu.

Open the model and define a vector of Mu values.

open_system('vdp');
Mu_Values = [0.5:0.25:5];
MuVal_length = length(Mu_Values);

Using Mu_Values, initialize an array of Simulink.SimulationInput objects. To preallocate the
array, a loop index is made to start from the largest value.

for i = MuVal_length:-1:1
 in(i) = Simulink.SimulationInput('vdp');

5 Classes

5-592

 in(i) = in(i).setBlockParameter('vdp/Mu',...
 'Gain',num2str(Mu_Values(i)));
end

Simulate the model using parsim. Set it to 'RunInBackground', to be able to use the command
prompt, while simulations are running.

Future = parsim(in,'RunInBackground','on');

Use the fetchNext method on Future simulations.

for i = 1:MuVal_length
 [completedIdx,simOut] = fetchNext(Future)
end

Version History
Introduced in R2018a

See Also
Functions
parsim | batchsim | batch | cancel | fetchNext | fetchOutputs | wait

Classes
Simulink.SimulationInput

 Simulink.Simulation.Future class

5-593

cancel
Cancel a pending, queued, or running Simulink.Simulation.Future object

Syntax
cancel(Future)

Description
cancel(Future) stops the objects of the Simulink.Simulation.Future array, Future, that are
currently in 'pending', 'queued', or 'running' state. For elements of the Futures in the
'finished' state, no action is taken.

Examples

Cancel Simulations of Future Objects

This example shows how to use the cancel method on an array of future objects to stop the
simulations.

This example runs several simulations of the vdp model, varying the value of the gain Mu.

Open the model and define a vector of Mu values.

open_system('vdp');
Mu_Values = [0.5:0.25:1000];
MuVal_length = length(Mu_Values)

Using Mu_Values, initialize an array of Simulink.SimulationInput objects. To preallocate the
array, a loop index is made to start from the largest value.

for i = MuVal_length:-1:1
 in(i) = Simulink.SimulationInput('vdp');
 in(i) = in(i).setBlockParameter('vdp/Mu',...
 'Gain',num2str(Mu_Values(i)));
end

Simulate the model using parsim. Set to 'RunInBackground' to enable the use the command
prompt, while simulations are running.

Future = parsim(in,'RunInBackground','on');

Now, assume that you want to run simulations with different values of Mu and cancel the ongoing
simulations.

5 Classes

5-594

cancel(Future)

Input Arguments
Future — Simulation.Simulink.Future object
array

Array of Simulation.Simulink.Future objects. To create Future, run parsim with
'RunInBackground' option set to 'on'.
Example: Future = parsim(in,'RunInBackground','on')

Version History
Introduced in R2018a

See Also
Functions
parsim | batchsim | batch | fetchOutputs | fetchNext | wait

Classes
Simulink.Simulation.Future | Simulink.SimulationInput

 cancel

5-595

fetchNext
Fetch next available unread output from Simulink.Simulation.Future object array

Syntax
[idx,simOut] = fetchNext(Future)
[idx,simOut] = fetchNext(Future, Timeout)

Description
[idx,simOut] = fetchNext(Future) waits for the unread element of
Simulink.Simulation.Future array, Future, to reach a 'finished' state. It returns the index
of the simulation that finished, and the corresponding Simulink.SimulationOutput object.

[idx,simOut] = fetchNext(Future, Timeout) waits for a maximum of Timeout seconds for a
result to become available. If the timeout expires before any result is available, simOut is returned as
an empty array.

An error is reported if there are no elements in Future with property Read as false. You can check
for are any unread futures using anyUnread = ~all([F.Read]).

fetchNext displays an error if any element of Future with a 'finished' state encounters an error
during execution. The Read property of that element becomes true allowing any subsequent call to
fetchNext to proceed.

Examples

Create a Simulink.Simulation.Future Object

This example shows how to create a Simulink.Simulation.Future object array and use it to
retrieve outputs and see the status of simulations.

This example runs several simulations of the vdp model, varying the value of the gain Mu.

Open the model and define a vector of Mu values.

open_system('vdp');
Mu_Values = [0.5:0.25:5];
MuVal_length = length(Mu_Values);

Using Mu_Values, initialize an array of Simulink.SimulationInput objects. To preallocate the
array, a loop index is made to start from the largest value.

for i = MuVal_length:-1:1
 in(i) = Simulink.SimulationInput('vdp');
 in(i) = in(i).setBlockParameter('vdp/Mu',...
 'Gain',num2str(Mu_Values(i)));
end

5 Classes

5-596

Simulate the model using parsim. Set it to 'RunInBackground' to be able to use the command
prompt, while simulations are running.

Future = parsim(in,'RunInBackground','on');

Use the fetchNext method on Future.

for i = 1:MuVal_length
 [completedIdx,simOut] = fetchNext(Future)
end

Input Arguments
Future — Simulation.Simulink.Future object
array

Array of Simulation.Simulink.Future objects. To create Future, run parsim with
'RunInBackground' option set to 'on'.
Example: Future = parsim(in,'RunInBackground','on')

Timeout — Number of seconds specified for fetchNext to time out
scalar

Specify a Timeout for fetchNext to retrieve the results from the Simulation.Simulink.Future
array, Future.
Example: [idx, simOut] = fetchNext(Future, 45)

Output Arguments
idx — Index of the simulation
integer

When fetchNext method is used on an array of Simulink.Simulation.Future objects, it returns
the index of the simulation whose output is being retrieved.

simOut — Simulation object containing logged simulation results
object | array

Array of Simulink.SimulationOutput objects that contain all of the logged simulation results.
The size of the array is equal to the size of the array of Simulink.SimulationInput objects.

All simulation outputs (logged time, states, and signals) are returned in a single
Simulink.SimulationOutput object. You define the model time, states, and output that are logged
using the Data Import/Export pane of the Model Configuration Parameters dialog box. You can log
signals using blocks such as the To Workspace and Scope blocks. The Viewers & Generators
Manager tool can directly log signals.

Version History
Introduced in R2017b

 fetchNext

5-597

See Also
Functions
parsim | batchsim | batch | cancel | fetchOutputs | wait

Classes
Simulink.Simulation.Future | Simulink.SimulationInput

5 Classes

5-598

fetchOutputs
Retrieve Simulink.SimulationOutput from Simulink.Simulation.Future objects

Syntax
simOut = fetchOutputs(Future)

Description
simOut = fetchOutputs(Future) fetches the output from an array of
Simulink.Simulation.Future objects, Future, after each element of Future is in a
'finished' state. fetchOutputs returns an array of Simulink.SimulationOutput objects.

Examples

Create a Future and Retrieve Outputs Using fetchOutputs

This example shows how to use the fetchOutputs method on an array of future objects to retrieve
a Simulink.SimulationOutput array.

This example runs several simulations of the vdp model, varying the value of the gain Mu.

Open the model and define a vector of Mu values.

open_system('vdp');
Mu_Values = [0.5,0.75,1,1.25];
MuVal_length = length(Mu_Values);

Using Mu_Values, initialize an array of Simulink.SimulationInput objects. To preallocate the
array, a loop index is made to start from the largest value.

for i = MuVal_length:-1:1
 in(i) = Simulink.SimulationInput('vdp');
 in(i) = in(i).setBlockParameter('vdp/Mu',...
 'Gain',num2str(Mu_Values(i)));
end

Simulate the model using parsim. Set to 'RunInBackground' to enable the use of command prompt,
while simulations are running.

Future = parsim(in,'RunInBackground','on');

Use the fetchOutputs method on Future

simOut = fetchOutputs(Future)

 fetchOutputs

5-599

simOut =

1x4 Simulink.SimulationOutput array

Input Arguments
Future — Simulation.Simulink.Future object
array

Array of Simulation.Simulink.Future objects. To create, Future, run parsim with
'RunInBackground' option set to 'on'.
Example: Future = parsim(in,'RunInBackground','on')

Output Arguments
simOut — Simulation object containing logged simulation results
object

Array of Simulink.SimulationOutput objects that contain all of the logged simulation results.
The size of the array is equal to the size of the array of Simulink.SimulationInput objects.

All simulation outputs (logged time, states, and signals) are returned in a single
Simulink.SimulationOutput object. You define the model time, states, and output that are logged
using the Data Import/Export pane of the Model Configuration Parameters dialog box. You can log
signals using blocks such as the To Workspace and Scope blocks. The Viewers & Generators
Manager tool can directly log signals.

Version History
Introduced in R2018a

See Also
Functions
parsim | batchsim | batch | cancel | fetchNext | wait

Classes
Simulink.Simulation.Future | Simulink.SimulationInput

5 Classes

5-600

wait
Wait for Simulink.Simulation.Future objects to complete simulation

Syntax
Ok = wait(Future)

Description
Ok = wait(Future) blocks the command prompt until each element of the
Simulink.Simulation.Future array, Future is in a 'finished' state.

Examples

Wait for the Future Array to Complete Simulations

This example shows how to use the wait method on an array of future objects.

This example runs several simulations of the vdp model, varying the value of the gain Mu.

Open the model and define a vector of Mu values.

open_system('vdp');
Mu_Values = [0.5:0.25:5];
MuVal_length = length(Mu_Values);

Using Mu_Values, initialize an array of Simulink.SimulationInput objects. To preallocate the
array, a loop index is made to start from the largest value.

for i = MuVal_length:-1:1
 in(i) = Simulink.SimulationInput('vdp');
 in(i) = in(i).setBlockParameter('vdp/Mu',...
 'Gain',num2str(Mu_Values(i)));
end

Simulate the model using parsim. Set to 'RunInBackground' to enable the use of command prompt
while the simulations are running and to create an array of Simulink.Simulation.Future
objects.

Future = parsim(in,'RunInBackground','on');

Use the wait method on Future to block the execution.

Ok = wait(Future)

Input Arguments
Future — Simulation.Simulink.Future object
array

 wait

5-601

Array of Simulation.Simulink.Future objects. To create Future, run parsim with
'RunInBackground' option set to 'on'.
Example: Future = parsim(in,'RunInBackground','on')

Output Arguments
Ok — Whether the wait is completed successfully
1 | 0

Ok is true if the wait completes successfully, false if any of the Future objects failed execution or
were canceled. Specified as 1 if true, 0 if false.

Version History
Introduced in R2017b

See Also
Functions
parsim | batchsim | batch | cancel | fetchOutputs | fetchNext

Classes
Simulink.Simulation.Future | Simulink.SimulationInput

5 Classes

5-602

Simulink.Simulation.Job class
Package: Simulink

Execute batchsim to create a Simulink.Simulation.Job object, simJob

Description
Execute batchsim command with a parallel pool to create a Simulink.Simulation.Job object.
The batchsim command offloads multiple simulations to run in batch using the inputs specified with
an array of Simulink.SimulationInput objects. You can use this object to monitor the status of a
batch job, fetch outputs of a completed batch job, or cancel one or more jobs.

The batchsim command uses the Parallel Computing Toolbox™ license to run the simulations on
compute cluster. If a parallel pool cannot be created batchsim runs the simulations in serial. In the
absence of Parallel Computing Toolbox license, batchsim errors out.

Construction
simJob = batchsim(in) creates a Simulink.Simulation.Job object, simJob, while running
multiple simulations in batches on a compute cluster using the inputs specified in the
Simulink.SimulationInput object, in.

createSimulationJob(batchJob) creates a Simulink.Simulation.Job object from a
parallel.job object, batchJob. Use the createSimulationJob command to retrieve the job
object returned by the batchsim command.

Input Arguments

in — Simulink.SimulationInput object array
object (default) | array

A Simulink.SimulationInput object or an array of Simulink.SimulationInput objects used
to run multiple simulations. Specify parameters and values of a model to run multiple simulations
without making it dirty.
Example: in = Simulink.SimulationInput('vdp'), in(1:10) =
Simulink.SimulationInput('vdp')

Properties
AdditionalPaths — Folders to add to MATLAB search path of workers
character vector | string | string array | array of character vectors

Specified folders to add to MATLAB search path of parallel workers.

This property is read-only.

AttachedFiles — Files and folders sent to the workers
character vector | string | string array | array of character vectors

Files and folders to send to the parallel workers.

 Simulink.Simulation.Job class

5-603

This property is read-only.

AutoAddClientPath — Whether user-added entries on client path are added to each worker
path
true (default) | false

Whether user-added entries on the client path are added to each parallel worker path at the start of
the batch job, specified as true or false.

CreateDateTime — Date and time of simJob creation
datetime object

Date and time at which the batch job was created, specified as a datetime object.

This property is read-only.

EnvironmentVariables — Environment variables sent to the workers
character vector | string | string array | array of character vectors

Defines the names of environment variables that are copied from a client session to the parallel
workers.

This property is read-only after job submission.

FinishDateTime — Date and time of simJob completion
datetime object

Date and time at when the batch job completes execution, specified as a datetime object.

This property is read-only.

ID — Numeric identifier of the simJob object
scalar integer

ID of the future object, specified as a scalar integer.

This property is read-only.

Name — simJob name
string | character vector

Name of the job object, specified as a string.

Parent — Cluster object containing simJob
parallel.cluster object

Cluster object that contains the Simulink.Simulation.Job object, simJob.

SimulationInputs — Array of Simulink.Simulation.Input objects
Simulink.Simulation.Input object | Array

Array of Simulink.Simulation.Input objects used for simulations for simJob.

StartDateTime — Date and time when simJob starts running
datetime object

5 Classes

5-604

Date and time when the Simulink.Simulation.Job starts running, specified as a datetime object.

This property is read-only.

State — Current state of future object array
'pending' | 'queued' | 'running' | 'finished' | 'failed'

Current state of future object array, specified as 'pending', 'queued', 'running', 'finished',
or 'failed'.

This property is read-only.

SubmitDateTime — Date and time of simJob submission
datetime object

Date and time when the Simulink.Simulation.Job is submitted, specified as a datetime object.

This property is read-only.

Tag — Label associated with simJob
string

Label associated with Simulink.Simulation.Job object.

Type — Job Type
independent | pool

Type of the Simulink.Simulation.Job object, specified as independent or pool.

UserData — Data associated with simJob
string

Stores any data associated with a job object. The data is stored in a client MATLAB session, and is not
available on the workers.

UserName — Name of the user who creates the simJob object
string | character vector

Name of the user who creates the Simulink.Simulation.Job object.

Methods
Method Purpose
cancel Cancel a pending, queued, or running

Simulink.Simulation.Job object
diary Display or save Command Window text of batch job
fetchOutputs Retrieve an array of Simulink.SimulationOutput objects

from all simulations in Simulink.Simulation.Job
listAutoAttachedFiles List of files automatically attached to job, task, or parallel

pool
wait Wait for Simulink.Simulation.Job object to change state

 Simulink.Simulation.Job class

5-605

Examples

Run Parallel Simulations With batchsim to Create Simulink.Simulation.Job

This example shows how to run parallel simulations in batch using the sldemo_househeat model.
batchsim offloads simulations to the compute cluster, enabling you to carry out other tasks while the
batch job is processing, or close the client MATLAB and access the batch job later.

Observe the model behavior for different temperature set points.

1. Open the model.

open_system('sldemo_househeat');

2. Define a set of values for different temperatures.

setPointValues = 65:2:85;
spv_Length = length(setPointValues);

3. Using the setPointValues, initialize an array of Simulink.SimulationInput objects.

in(1:spv_Length) = Simulink.SimulationInput('sldemo_househeat');
for i = 1:1:spv_Length
 in(i) = in(i).setBlockParameter('sldemo_househeat/Set Point',...
 'Value',num2str(setPointValues(i)));
end

4. Specify the pool size of the number of workers to use. In addition to the number of workers used to
run simulations in parallel, a head worker is required. In this case, assume that three workers are
available to run a batch job for the parallel simulations. The job object returns useful metadata as
shown. You can use the job ID to access the job object later from any machine. NumWorkers displays
how many workers are running the simulations – the number of workers specified in the 'Pool'
argument plus an additional head worker.

simJob = batchsim(in,'Pool',3)

 ID: 1
 Type: pool
 NumWorkers: 4
 Username: #####
 State: running
 SubmitDateTime: ##-###-#### ##:##:##
 StartDateTime:
 Running Duration: 0 days 0h 0m 0s

Version History
Introduced in R2018b

See Also
Functions
parsim | batchsim | cancel | diary | fetchOutputs | listAutoAttachedFiles | wait |
parcluster | getSimulationJobs

5 Classes

5-606

Classes
Simulink.SimulationInput | parallel.Cluster

Topics
“Comparison Between Multiple Simulation Workflows”
“Job Monitor” (Parallel Computing Toolbox)
“Batch Processing” (Parallel Computing Toolbox)

 Simulink.Simulation.Job class

5-607

cancel
Package: Simulink

Cancel a pending, queued, or running Simulink.Simulation.Job object

Syntax
cancel(simJob)
cancel(simJob,'Message')

Description
cancel(simJob) stops the Simulink.Simulation.Job object, simJob, that is currently in
'pending', 'queued', or 'running' state.

cancel(simJob,'Message') stops the Simulink.Simulation.Job object, simJob, that is in
'pending', 'queued', or 'running' state and displays a user-specified message.

The State property of Simulink.Simulation.Job object is set to finished, and other pending
simulations are canceled. Canceling a job object disables you to fetch results from it. A canceled job
object cannot be started again.

Note On canceling the job, the results of the completed simulations in the job are also lost.

Examples

Cancel a Batch Job

This example shows how to use the cancel method on a simJob object to stop simulations. The
example runs several simulations of the vdp model, varying the value of the gain Mu.

1. Open the model and define a vector of Mu values.

open_system('vdp');
mu_Values = [0.5:0.25:1000];
muVal_Length = length(mu_Values);

2. Using mu_Values, initialize an array of Simulink.SimulationInput objects.

in(1:muVal_Length) = Simulink.SimulationInput('vdp');
for i = 1:1:muVal_Length
 in(i) = in(i).setBlockParameter('vdp/Mu',...
 'Gain',num2str(mu_Values(i)));
end

3. Specify the pool size of the number of workers to use. In addition to the number of workers used to
run simulations in parallel, a head worker is required. In this case, assume that three workers are
available to run a batch job for the parallel simulations. The simulations are offloaded onto the default
cluster profile.

5 Classes

5-608

simJob = batchsim(in,'Pool',3);

4. Now, assume that you want to run simulations with different values of Mu and cancel the ongoing
simulations.

cancel(simJob)

Input Arguments
simJob — Simulink.Simulation.Job object
object

A Simulink.Simulation.Job object. To create a simJob, run batchsim.
Example: simJob = batchsim(in,'Pool',6)

Version History
Introduced in R2018b

See Also
Functions
parsim | batchsim | batch | diary | fetchOutputs | listAutoAttachedFiles | wait |
getSimulationJobs

Classes
Simulink.SimulationInput | Simulink.Simulation.Job

Topics
“Comparison Between Multiple Simulation Workflows”
“Batch Processing” (Parallel Computing Toolbox)

 cancel

5-609

diary
Package: Simulink

Display or save Command Window text of Simulink.Simulation.Job object

Syntax
diary(simJob)
diary(simJob,'filename')

Description
diary(simJob) displays the Command Window output from the Simulink.Simulation.Job
object, simJob, in the MATLAB Command Window. The Command Window output is captured only if
the batchsim command includes the 'CaptureDiary' argument with a value of true.

diary(simJob,'filename') causes the Command Window output from the batch job to be
appended to the specified file. Open the file, filename, with any text editor.

Examples

Display the Diary of simJob

This example uses sldemo_househeat model to show how to display the diary of the
Simulink.Simulation.Job object, simJob. To create a simJob, you run parallel simulations using
the batchsim command.

1. Open the model.

open_system('sldemo_househeat');

2. Define a set of values for different temperatures.

setPointValues = 65:2:85;
spv_Length = length(setPointValues);

3. Using setPointValues, initialize an array of Simulink.SimulationInput objects.

in(1:spv_Length) = Simulink.SimulationInput('sldemo_househeat');
for i = 1:1:spv_Length
 in(i) = in(i).setBlockParameter('sldemo_househeat/Set Point',...
 'Value',num2str(setPointValues(i)));
end

4. Specify the pool size of the number of workers to use. In addition to the number of workers used to
run simulations in parallel, a head worker is required. In this case, assume that three workers are
available to run a batch job for the parallel simulations. The job object returns useful metadata as
shown. You can use the job ID to access the job object later from any machine. NumWorkers displays
how many workers are running the simulations – the number of workers specified in the 'Pool'
argument plus an additional head worker.

5 Classes

5-610

simJob = batchsim(in,'Pool',3)

 ID: 1
 Type: pool
 NumWorkers: 4
 Username: #####
 State: running
 SubmitDateTime: ##-###-#### ##:##:##
 StartDateTime:
 Running Duration: 0 days 0h 0m 0s

5. Use the diary method of the Simulink.Simulation.Job object to display the output of the
batch job in the MATLAB command window.

Note that the diary is not displayed here because this is an example model.

diary(simJob)

Input Arguments
simJob — Simulink.Simulation.Job object
object

A Simulink.Simulation.Job object. To create a simJob, run batchsim.
Example: simJob = batchsim(in,'Pool',4)

'filename' — File to append with Command Window output text
string

Specify a file to append with Command Window output text from the Simulink.Simulation.Job
object.
Example: diary(simJob,'abc.txt')

Version History
Introduced in R2018b

See Also
Functions
parsim | batchsim | cancel | fetchOutputs | listAutoAttachedFiles | wait | parcluster |
getSimulationJobs

Classes
Simulink.SimulationInput | Simulink.Simulation.Job | parallel.Cluster

Topics
“Comparison Between Multiple Simulation Workflows”
“Batch Processing” (Parallel Computing Toolbox)

 diary

5-611

fetchOutputs
Package: Simulink

Retrieve an array of Simulink.SimulationOutput objects from all simulations in
Simulink.Simulation.Job

Syntax
out = fetchOutputs(simJob)

Description
out = fetchOutputs(simJob) returns an array of Simulink.SimulationOutput objects
containing the results of the simulations in a batch job, simJob.

fetchOutputs reports an error if the job is not in the 'finished' state, or if one of its simulations
encounters an error during execution. Use the wait method to wait for the job to complete before
fetching outputs.

Examples

Fetch Outputs of the Batch Simulations

This example shows how to run parallel simulations in batch and fetch the resulting
Simulink.SimulationOutput objects from the Simulink.Simulation.Job object. batchsim
command offloads simulations to the compute cluster, enabling you to carry out other tasks while the
batch job is processing, or close the client MATLAB and access the batch job later.

1. Open the model.

open_system('sldemo_househeat');

2. Define a set of values for different temperatures.

setPointValues = 65:2:85;
spv_Length = length(setPointValues);

3. Using setPointValues, initialize an array of Simulink.SimulationInput objects.

in(1:spv_Length) = Simulink.SimulationInput('sldemo_househeat');
for i = 1:1:spv_Length
 in(i) = in(i).setBlockParameter('sldemo_househeat/Set Point',...
 'Value',num2str(setPointValues(i)));
end

4. Specify the pool size of the number of workers to use. In addition to the number of workers used to
run simulations in parallel, a head worker is required. In this case, assume that three workers are
available to run a batch job for the parallel simulations. The job object returns useful metadata as
shown. You can use the job ID to access the job object later from any machine. NumWorkers displays

5 Classes

5-612

how many workers are running the simulations – the number of workers specified in the 'Pool'
argument plus an additional head worker.

simJob = batchsim(in,'Pool',3)

 ID: 1
 Type: pool
 NumWorkers: 4
 Username: #####
 State: running
 SubmitDateTime: ##-###-#### ##:##:##
 StartDateTime:
 Running Duration: 0 days 0h 0m 0s

5. Access the results of the batch job using the fetchOutputs method. fetchOutputs returns an
array of Simulink.SimulationOuput objects. You can fetch outputs only once simJob is in
finished state.

out = fetchOutputs(simJob)

1x11 Simulink.SimulationOutput array

Input Arguments
simJob — Simulink.Simulation.Job object
object

A Simulink.Simulation.Job object. To create simJob, run batchsim.
Example: simJob = batchsim(in,'Pool',4)

Output Arguments
out — Simulation object containing logged simulation results
object

Array of Simulink.SimulationOutput objects that contain all of the logged simulation results.
The size of the array is equal to the size of the array of Simulink.SimulationInput objects passed
to batchsim.

All simulation outputs (logged time, states, and signals) are returned in a single
Simulink.SimulationOutput object. You define the model time, states, and output that are logged
using the Data Import/Export pane of the Model Configuration Parameters dialog box. You can log
signals using blocks such as the To Workspace and Scope blocks. The Signal & Scope Manager tool
can directly log signals.

Version History
Introduced in R2018b

 fetchOutputs

5-613

See Also
Functions
parsim | batchsim | cancel | diary | listAutoAttachedFiles | wait | getSimulationJobs

Classes
Simulink.SimulationInput | Simulink.Simulation.Job | Simulink.SimulationOutput

Topics
“Comparison Between Multiple Simulation Workflows”
“Batch Processing” (Parallel Computing Toolbox)

5 Classes

5-614

getSimulationJobs
Get all Simulink.Simulation.Job objects from cluster

Syntax
jobs = getSimulationJobs(myCluster)

Description
jobs = getSimulationJobs(myCluster) returns an array of Simulink.Simulation.Job
objects that correspond to the jobs created by executing of batchsim on cluster, myCluster.

Examples

Get a Simulink.Simulation.Job Object from the Cluster

This example shows how to access a batchsim job that was submitted to a cluster. Assume that
myCluster is a parallel.Cluster object on which the Simulink.Simulation.Job object is
running.

jobs = getSimulationJobs(myCluster)

 1×2 Job array:

 ID Type State FinishDateTime Username

 1 3 pool queued #######
 2 4 pool queued #######

The output displays all the Simulink.Simulation.Job objects on cluster, myCluster.

Input Arguments
myCluster — parallel.Cluster object
object

Cluster object representing parallel cluster compute resources.

Output Arguments
jobs — Array of Simulink.Simulation.Job objects
array

Array of Simulink.Simulation.Job objects submitted by executing batchsim command.

 getSimulationJobs

5-615

Version History
Introduced in R2018b

See Also
Functions
parsim | batchsim | cancel | diary | fetchOutputs | listAutoAttachedFiles | wait |
parcluster

Classes
Simulink.SimulationInput | Simulink.Simulation.Job | parallel.Cluster

Topics
“Comparison Between Multiple Simulation Workflows”
“Batch Processing” (Parallel Computing Toolbox)
“Job Monitor” (Parallel Computing Toolbox)

5 Classes

5-616

listAutoAttachedFiles
Package: Simulink

List of files automatically attached to the Simulink.Simulation.Job object or parallel pool

Syntax
listAutoAttachedFiles(simJob)

Description
listAutoAttachedFiles(simJob) performs a dependency analysis on the
Simulink.Simulation.Job job object, simJob. Then it displays a list of the code files that are
already attached or are going to be automatically attached to the job object, simJob.

Examples

Run Parallel Simulations with batchsim and List Attached Files

This example shows how to run parallel simulations in batch and list any attached files. batchsim
offloads simulations to the compute cluster, enabling you to carry out other tasks while the batch job
is processing, or close the client MATLAB and access the batch job later.

1. Open the model.

open_system('sldemo_househeat');

2. Define a set of values for different temperatures.

setPointValues = 65:2:85;
spv_Length = length(setPointValues);

3. Using the setPointValues, initialize an array of Simulink.SimulationInput objects.

in(1:spv_Length) = Simulink.SimulationInput('sldemo_househeat');
for i = 1:1:spv_Length
 in(i) = in(i).setBlockParameter('sldemo_househeat/Set Point',...
 'Value',num2str(setPointValues(i)));
end

4. Specify the pool size of the number of workers to use. In addition to the number of workers used to
run simulations in parallel, a head worker is required. In this case, assume that three workers are
available to run a batch job for the parallel simulations. The job object returns useful metadata as
shown. You can use the job ID to access the job object later from any machine. NumWorkers displays
how many workers are running the simulations – the number of workers specified in the 'Pool'
argument plus an additional head worker.

simJob = batchsim(in,'Pool',3)

 ID: 1
 Type: pool

 listAutoAttachedFiles

5-617

 NumWorkers: 4
 Username: #####
 State: running
 SubmitDateTime: ##-###-#### ##:##:##
 StartDateTime:
 Running Duration: 0 days 0h 0m 0s

If AutoAttachFiles property of Simulink.Simulation.Job is set to true in the cluster profile,
then the job running on the cluster has the necessary code files automatically attached to it. Use the
listAutoAttachedFiles method to view the attached files.

Note that the list of attached files is not displayed here because this is an example model.

listAutoAttachedFiles(simJob)

Input Arguments
simJob — Simulink.Simulation.Job object
object

A Simulink.Simulation.Job object. To create a simJob, run batchsim.
Example: simJob = batchsim(in,'Pool',4)

Version History
Introduced in R2018b

See Also
Functions
parsim | batchsim | cancel | diary | fetchOutputs | wait | getSimulationJobs

Classes
Simulink.SimulationInput | Simulink.Simulation.Job

Topics
“Comparison Between Multiple Simulation Workflows”
“Batch Processing” (Parallel Computing Toolbox)

5 Classes

5-618

wait
Package: Simulink

Wait for Simulink.Simulation.Job object to change state

Syntax
wait(simJob)
wait(simJob,'stateOfJob')
wait(simJob,'stateOfJob',timeout)

Description
wait(simJob) blocks execution in a client session until the job identified by the object simJob
reaches the 'finished' state or fails. This occurs when all the simulations finish execution on the
workers.

wait(simJob,'stateOfJob') blocks execution in the client session until the specified job object
changes state to the value of 'state'. The valid states to wait for are 'queued', 'running', and
'finished'. If the object is currently or has already been in the specified state, wait is not
performed and execution returns immediately. For example, if you execute
wait(simJob,'queued') for a job already in the 'finished' state, the call returns immediately.

wait(simJob,'stateOfJob',timeout) blocks execution until either the job reaches the specified
'state', or timeout seconds elapse, whichever happens first.

Examples

Wait for Simulations in simJob to Finish

This example shows uses the sldemo_househeat model to show how to wait for the batch
simulations to finish.

1. Open the model.

open_system('sldemo_househeat');

2. Define a set of values for different temperatures.

setPointValues = 65:2:85;
spv_Length = length(setPointValues);

3. Using the setPointValues, initialize an array of Simulink.SimulationInput objects.

in(1:spv_Length) = Simulink.SimulationInput('sldemo_househeat');
for i = 1:1:spv_Length
 in(i) = in(i).setBlockParameter('sldemo_househeat/Set Point',...
 'Value',num2str(setPointValues(i)));
end

 wait

5-619

4. Specify the pool size of the number of workers to use. In addition to the number of workers used to
run simulations in parallel, a head worker is required. In this case, assume that three workers are
available to run a batch job for the parallel simulations. The job object returns useful metadata as
shown. You can use the job ID to access the job object later from any machine. NumWorkers displays
how many workers are running the simulations – the number of workers specified in the 'Pool'
argument plus an additional head worker.

simJob = batchsim(in,'Pool',3)

 ID: 1
 Type: pool
 NumWorkers: 4
 Username: #####
 State: running
 SubmitDateTime: ##-###-#### ##:##:##
 StartDateTime:
 Running Duration: 0 days 0h 0m 0s

5. Now, wait for the job to finish before retrieving the outputs.

wait(simJob)

Input Arguments
simJob — Simulink.Simulation.Job object
object

A Simulink.Simulation.Job object. To create a simJob, run batchsim.
Example: simJob = batchsim(in,'Pool','5')

'stateOfJob' — Value of the simulation job object State property to wait for
'pending' | 'queued' | 'running' | 'finished' | 'failed' | 'unavailable'

Value of the State property of Simulink.Simulation.Job object to wait for.
Example: wait(simJob,'queued')

timeout — Maximum time to wait, in seconds
object

Specify a timeout for wait to block execution in seconds.
Example: wait(simJob, 5)

Version History
Introduced in R2018b

See Also
Functions
parsim | batchsim | cancel | diary | fetchOutputs | listAutoAttachedFiles

Classes
Simulink.SimulationInput | Simulink.Simulation.Job

5 Classes

5-620

Topics
“Comparison Between Multiple Simulation Workflows”

 wait

5-621

Simulink.Simulation.Variable class
Package: Simulink.Simulation

Variables in Simulink.SimulationInput objects

Description
The Simulink.Simulation.Variables object specifies the variable and its value used by the
Simulink.SimulationInput object during simulation. By default, this object overrides variables
that already exist in the base workspace or the data dictionary.

In most cases, there is no need to create an object of this class directly. To add a variable to the
Simulink.SimulationInput object use the setVariable method on the
Simulink.SimulationInput object.

Creation
var = Simulink.Simulation.Variable(variableName,Value) creates a
Simulink.Simulation.Variables object, var, that specifies the variable and its value.

var =
Simulink.Simulation.Variable(variableName,Value,'Workspace',WorkspaceName)
creates a Simulink.Simulation.Variables object, var, that specifies the variable defined in the
specified workspace, WorksapceName and its value. Workspace can either be a model's name to
indicate that the variable is in a model workspace or 'global-workspace' to indicate that it is either in
the base workspace or in a data dictionary.

Properties
variableName — Name of the variable
character vector

Name of the variable, specified as a character vector.

Value — Value of the variable
character vector

Value of the variable, specified as a character vector.

WorkspaceName — Name of the variable
character vector

Name of the workspace that the variable is defined in, specified as a character vector.

Version History
Introduced in R2020a

5 Classes

5-622

See Also
Simulink.SimulationInput | parsim | applyToModel | setModelParameter |
setInitialState | setExternalInput | setVariable | validate | setPreSimFcn |
setPostSimFcn | loadVariablesFromMATFile | Simulation Manager

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

 Simulink.Simulation.Variable class

5-623

Simulink.SimulationData.BlockPath class
Package: Simulink.SimulationData

Fully specified Simulink block path

Description
Simulink creates block path objects when creating dataset objects for signal logging and data store
logging. Simulink.SimulationData.Signal and
Simulink.SimulationData.DataStoreMemory objects include block path objects.

You can create a block path that you can use with the getElement method to access a specific
dataset element. If you want to create a dataset in MATLAB to use as a baseline to compare against a
signal logging or data store logging dataset, then you need to create the block paths as part of that
dataset.

The Simulink.SimulationData.BlockPath class is very similar to the Simulink.BlockPath
class.

You do not have to have Simulink installed to use the Simulink.SimulationData.BlockPath
class. However, you must have Simulink installed to use the Simulink.BlockPath class. If you have
Simulink installed, consider using Simulink.BlockPath instead of
Simulink.SimulationData.BlockPath, because the Simulink.BlockPath class includes a
method for checking the validity of block path objects without you having to update the model
diagram.

Property Summary
Name Description
SubPath Individual component within the block specified by the block

path

Method Summary
Name Description
BlockPath Create a block path.
convertToCell Convert a block path to a cell array of character vectors.
getBlock Get a single block path in the model reference hierarchy.
getLength Get the length of the block path.

Properties
SubPath
Description

Represents an individual component within the block specified by the block path.

5 Classes

5-624

For example, if the block path refers to a Stateflow chart, you can use SubPath to indicate the chart
signals. For example:

Block Path:
 'sf_car/shift_logic'

 SubPath:
 'gear_state.first'

Data Type

character vector

Access

RW

Methods
BlockPath

Purpose

Create block path

Syntax

blockpath_object = Simulink.SimulationData.BlockPath()
blockpath_object = Simulink.SimulationData.BlockPath(blockpath)
blockpath_object = Simulink.SimulationData.BlockPath(paths)
blockpath_object = Simulink.SimulationData.BlockPath(paths, subpath)

Input Arguments

blockpath
The block path object that you want to copy.

paths
A character vector or cell array of character vectors that Simulink uses to build the block path.

Specify each character vector in order, from the top model to the specific block for which you are
creating a block path.

Each character vector must be a path to a block within the Simulink model. The block must be:

• A block in a single model
• A Model block (except for the last character vector, which may be a block other than a Model

block)
• A block that is in a model that is referenced by a Model block that is specified in the previous

character vector

subpath
A character vector that represents an individual component within a block.

 Simulink.SimulationData.BlockPath class

5-625

Output Arguments

blockpath_object
The block path that you create.

Description

blockpath_object = Simulink.SimulationData.BlockPath() creates an empty block path.

blockpath_object = Simulink.SimulationData.BlockPath(blockpath) creates a copy of
the block path of the block path object that you specify with the source_blockpath argument.

blockpath = Simulink.SimulationData.BlockPath(paths) creates a block path from the
character vector or cell array of character vectors that you specify with the paths argument. Each
character vector represents a path at a level of model hierarchy.

blockpath = Simulink.SimulationData.BlockPath(paths, subpath) creates a block path
from the character vector or cell array of character vectors that you specify with the paths argument
and creates a path for the individual component (for example, a signal) of the block.

Example

Create a block path object called bp1, using a cell array of character vectors representing elements
of the block path.

bp1 = Simulink.SimulationData.BlockPath(...
{'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
'sldemo_mdlref_F2C/Gain1'})

The resulting block path reflects the model reference hierarchy for the block path.

bp1 =

 Simulink.BlockPath
 Package: Simulink

 Block Path:
 'sldemo_mdlref_depgraph/thermostat'
 'sldemo_mdlref_heater/Fahrenheit to Celsius'
 'sldemo_mdlref_F2C/Gain1

convertToCell
Purpose

Convert block path to cell array of character vectors

Syntax

cellarray = blockPathObject.convertToCell()

Output Arguments

cellarray
The cell array of character vectors representing the elements of the block path.

5 Classes

5-626

Description

cellarray = blockPathObject.convertToCell() converts a block path to a cell array of
character vectors.

Examples

bp1 = Simulink.SimulationData.BlockPath(...
{'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
'sldemo_mdlref_F2C/Gain1'})
cellarray_for_bp1 = bp1.convertToCell()

The result is a cell array representing the elements of the block path.

cellarray_for_bp1 =

 'sldemo_mdlref_depgraph/thermostat'
 'sldemo_mdlref_heater/Fahrenheit to Celsius'
 'sldemo_mdlref_F2C/Gain1'

getBlock
Purpose

Get single block path in model reference hierarchy

Syntax

block = blockPathObject.getBlock(index)

Input Arguments

index
The index of the block for which you want to get the block path. The index reflects the level in the
model reference hierarchy. An index of 1 represents a block in the top-level model, an index of 2
represents a block in a model referenced by the block of index 1, and an index of n represents a
block that the block with index n-1 references.

Output Arguments

block
The block representing the level in the model reference hierarchy specified by the index
argument.

Description

blockpath = Simulink.SimulationData.BlockPath.getBlock(index) returns the block
path of the block specified by the index argument.

Example

Get the block for the second level in the model reference hierarchy.

bp1 = Simulink.SimulationData.BlockPath(...
{'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...

 Simulink.SimulationData.BlockPath class

5-627

'sldemo_mdlref_F2C/Gain1'})
blockpath = bp1.getBlock(2)

The result is the thermostat block, which is at the second level in the block path hierarchy.

blockpath =

sldemo_mdlref_heater/Fahrenheit to Celsius

getLength

Purpose

Get length of block path

Syntax

length = blockPathObject.getLength()

Output Arguments

length
The length of the block path. The length is the number of levels in the model reference hierarchy.

Description

length = Simulink.SimulationData.BlockPath.getLength() returns a numeric value that
corresponds to the number of levels in the model reference hierarchy for the block path.

Example

Get the length of block path bp1.

bp1 = Simulink.SimulationData.BlockPath(...
{'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
 'sldemo_mdlref_F2C/Gain1'})
length_bp1 = bp1.getLength()

The result reflects that the block path has three elements.

length_bp1 =

 3

Version History
Introduced in R2012b

See Also
Simulink.BlockPath | Simulink.SimulationData.Dataset

5 Classes

5-628

Simulink.SimulationData.DataStoreMemory
Container for data store logging information

Description
Simulink uses Simulink.SimulationData.DataStoreMemory objects to store logging information
from Data Store Memory blocks during simulation. The objects contain information about the blocks
that write to the data store.

Property Summary
Name Description
BlockPath on page 5-629 Location of Data Store Memory block for the logged data

store
DSMWriterBlockPaths on page 5-
629

Location of Data Store Write blocks that write to the data
store

DSMWriters on page 5-630 Data Store Write blocks for each signal value
Name on page 5-630 Name of the data store dataset
Scope on page 5-630 Scope of the data store: 'local' or 'global'
Values on page 5-630 Time and data that were logged

Properties
BlockPath
Description

Location of Data Store Memory block for the logged data store.

Data Type

character vector

Access

RW

DSMWriterBlockPaths
Description

Location of blocks that write to the data store. Each element of the array contains the full block path
of one writer block.

Data Type

Vector of Simulink.SimulationData.BlockPath objects

 Simulink.SimulationData.DataStoreMemory

5-629

Access

RO

DSMWriters
Description

The number of writes in the data store.

The nth element of DSMWriters contains the index of the element in DSMWriterBLockPaths that
contains the block path of the writer that performed the nth write to Values.
Data Type

Integer vector
Access

RO

Name
Description

Name of the data store dataset
Data Type

character vector
Access

RO

Scope
Description

Scope of the data store: 'local' or 'global'
Data Type

character vector
Access

RW

Values
Description

Time and data that were logged
Data Type

MATLAB timeseries
Access

RW

5 Classes

5-630

See Also
Simulink.SimulationData.Dataset | Data Store Memory | Data Store Write | plot

Topics
“Log Data Stores”

 Simulink.SimulationData.DataStoreMemory

5-631

plot
Package: Simulink.SimulationData

Plot simulation results in Simulation Data Inspector

Syntax
plot(simRes)
runObj = plot(simRes)

Description
plot(simRes) plots the simulation results in the object simRes in the Simulation Data Inspector
and opens the Simulation Data Inspector. You can use the plot function to plot simulation results
stored in these objects:

• Simulink.SimulationOutput
• Simulink.SimulationData.DataStoreMemory
• Simulink.SimulationData.Parameter
• Simulink.SimulationData.Signal
• Simulink.SimulationData.State
• Stateflow.SimulationData.Data
• Stateflow.SimulationData.State
• sltest.Assessment

When the input object contains fewer than eight signals, the Simulation Data Inspector layout
changes to 1-by-n, where n is the number of signals, and each subplot displays one signal. When the
simulation results contain more than eight signals to plot, the Simulation Data Inspector layout
changes to 1-by-1, and the plot displays the first signal.

When some or all of the data in a Simulink.SimulationOutput object is in a Simulation Data
Inspector run, the plot function opens the Simulation Data Inspector and plots all the signals in the
run. When the SimulationOutput object does not correspond to a run in the Simulation Data
Inspector, the plot function imports the data into a new run.

When you use the plot function to plot a single signal, the plot function always imports the data for
the signal into a new run.

These objects also have plot functions that plot data in the Simulation Data Inspector:

• Simulink.SimulationData.Dataset
• Simulink.SimulationData.DatasetRef

runObj = plot(simRes) returns the Simulink.sdi.Run object that corresponds to the plotted
data.

5 Classes

5-632

Examples

Plot Simulation Output Data

The model ex_vdp_simout_plot is configured to log signals, outputs, and states and return all
logged data as a single simulation output. You can use the plot function to plot the simulation results
in the Simulation Data Inspector.

Simulate the model. The model logs data using the Dataset format, so all the logged data streams to
the Simulation Data Inspector during simulation.

open_system('ex_vdp_simout_plot')
out = sim('ex_vdp_simout_plot');

Use the plot function to plot all the simulation results in the Simulation Data Inspector. The
Simulation Data Inspector updates to a 1-by-8 layout and plots one signal on each subplot.

plot(out)

You can also use the plot function to plot data for a single signal or a subset of the simulation
results. When you plot the data for a single signal, the Simulation Data Inspector always imports the
data for the signal into a new run.

The Simulink.SimulationOutput object contains a property for each logging variable. Access the
signal logging data in the property logsout.

logsout = out.logsout;

Then, use the get function for the Dataset object to access the data for the first element, which
contains the data for a single logged signal.

sig1 = get(logsout,1);

When you plot the data for the signal, the Simulation Data Inspector imports the signal into a new
run, updates the layout to 1-by-1, and plots the signal.

plot(sig1)

Input Arguments
simRes — Object that contains simulation data to plot
Simulink.SimulationOutput | Simulink.SimulationData.DataStoreMemory |
Simulink.SimulationData.Parameter | Simulink.SimulationData.Signal |
Simulink.SimulationData.State | sltest.Assessment |
Stateflow.SimulationData.Data | Stateflow.SimulationData.State

Object that contains simulation data plot, specified in one of these forms:

• Simulink.SimulationOutput object
• Simulink.SimulationData.DataStoreMemory object
• Simulink.SimulationData.Parameter object
• Simulink.SimulationData.Signal object

 plot

5-633

• Simulink.SimulationData.State object
• Stateflow.SimulationData.Data object
• Stateflow.SimulationData.State object
• sltest.Assessment object

Example: plot(out) plots the contents of the Simulink.SimulationOutput object out in the
Simulation Data Inspector and opens the Simulation Data Inspector.

Output Arguments
runObj — Run that corresponds to plotted data
Simulink.sdi.Run object

Run that corresponds to plotted data, returned as a Simulink.sdi.Run object.

Version History
Introduced in R2019b

See Also
Objects
Simulink.SimulationOutput

Functions
plot

Topics
“View Data in the Simulation Data Inspector”

5 Classes

5-634

Simulink.SimulationData.State class
Package: Simulink.SimulationData

State logging element

Description
Simulink uses Simulink.SimulationData.State objects to store state logging information during
simulation. The objects contain state information about which block the state data is coming from and
the type of state.

Properties
Name — Name of state element to use for name-based access
character vector

Name of state element to use for name-based access, specified as a character vector. If you do not
specify a name, 'CSTATE' or 'DSTATE' is used, depending on whether it a continuous or discrete
state.

BlockPath — Block path for state source block
a Simulink.SimulationData.BlockPath object

Block path for state source block, specified as a Simulink.SimulationData.BlockPath object

Label — Type of state
'CSTATE' | 'DSTATE'

Type of state, returned as 'CSTATE' or 'DSTATE'. Read-only property.

• 'CSTATE' – Continuous state
• 'DSTATE' – Discrete state

Values — State element information
single MATLAB timeseries object | a structure of MATLAB timeseries objects

State element information, specified as a single MATLAB timeseries object or as a structure of
MATLAB timeseries objects.

Methods

plot Plot simulation results in Simulation Data Inspector

Examples

 Simulink.SimulationData.State class

5-635

Access Final State Information Saved Using the Dataset Format

This example shows how to save final state information using the Dataset format and then access the
state data after simulation.

Load the model vdp and configure the model to log final states using the Dataset format. This
example uses the default final states variable name, xFinal.

load_system('vdp');
set_param('vdp','SaveFinalState','on','SaveFormat','Dataset');

Simulate the model.

out = sim('vdp');

By default, models create a single simulation output that contains all logged data in a
Simulink.SimulationOutput object. Get the xFinal Dataset object from the
SimulationOutput object. The xFinal Dataset object contains data for two states.

xFinal = get(out,'xFinal')

xFinal =
Simulink.SimulationData.Dataset 'xFinal' with 2 elements

 Name BlockPath
 ____ _________
 1 [1x1 State] '' vdp/x1
 2 [1x1 State] '' vdp/x2

 - Use braces { } to access, modify, or add elements using index.

Examine the data for the state that corresponds to the x1 block.

state_x1 = get(xFinal,1)

state_x1 =
 Simulink.SimulationData.State
 Package: Simulink.SimulationData

 Properties:
 Name: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 Label: CSTATE
 Values: [1x1 timeseries]

 Methods, Superclasses

Version History
Introduced in R2015a

See Also
Simulink.SimulationData.Dataset

5 Classes

5-636

Topics
“Save Block States and Simulation Operating Points”

 Simulink.SimulationData.State class

5-637

Simulink.SimulationData.Unit class
Package: Simulink.SimulationData

Store units for simulation data

Description
Simulink creates Simulink.SimulationData.Unit objects to store unit information for signals
when:

• Performing signal logging, which uses the Dataset format
• Logging root Outport blocks, if in Configurations Parameters you select the Output parameter

and set Format to Dataset
• Logging to a To Workspace block or To File block, if you set the Save format block parameter to

the default of Timeseries

Construction
unitsObj = Simulink.SimulationData.Unit(unitName) creates a
Simulink.SimulationData.Unit object with the unit that you specify.

Input Arguments

unitName — Name of logging data units
character vector

Name of logging data units, specified as a character vector.

Output Arguments

unitObj — Logging data units
Simulink.SimulationData.Unit object

Logging data units, returned as a Simulink.SimulationData.Unit object.

Properties
Name — Name of the units
character vector

Name of the units, specified as a character vector.

Methods
Method Purpose
setName Specify name of logging data unit

5 Classes

5-638

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Create and Use Inches Logging Units

Create a Simulink.SimulationData.Unit object representing inches.

inchesUnit = Simulink.SimulationData.Unit('inches');

Create a MATLAB timeseries object and set its Units field to the
Simulink.SimulationData.Unit object.

ts = timeseries(1:10);
ts.DataInfo.Units = inchesUnit;
ts.DataInfo.Units

ans =

 Units with properties:

 Name: 'inches'

Version History
Introduced in R2016a

See Also
Simulink.SimulationData.Dataset

Topics
“Load Signal Data That Uses Units”
“Convert Data to Dataset Format”
“Prepare Model Inputs and Outputs”

 Simulink.SimulationData.Unit class

5-639

setName
Class: Simulink.SimulationData.Unit
Package: Simulink.SimulationData

Specify name of logging data units

Syntax
unitObject = setName(unitObj,unitName)

Description
unitObject = setName(unitObj,unitName) sets the name for the
Simulink.SimulationData.Unit object to the name specified in unitName.

Input Arguments
unitObj — Logging data unit object to name
Simulink.SimulationData.Unit object

Logging data unit object to name, specified as a Simulink.SimulationData.Unit object.

unitName — Name of logging data unit
character vector

Name of logging data unit, specified as a character vector.

Output Arguments
name — Name of logging data units
character vector

Name of logging data units, returned as a character vector.

Examples

Name a Logging Data Unit Object

inchesUnit = Simulink.SimulationData.Unit('in');
inchesUnit = setName(inchesUnit,'inches')

inchesUnit =

 Units with properties:

5 Classes

5-640

 Name: 'inches'

Version History
Introduced in R2011a

See Also
Simulink.SimulationData.Unit

Topics
“Convert Data to Dataset Format”
“Prepare Model Inputs and Outputs”

 setName

5-641

Simulink.SimulationMetadata class
Package: Simulink

Access metadata of simulation runs

Description
The SimulationMetadata class contains information about a simulation run including:

• Model information
• Timing information
• Execution and diagnostic information
• Custom character vector to tag the simulation
• Custom data to describe the simulation

SimulationMetadata packages this information with the SimulationOutput object. To use
SimulationMetadata, use one of these approaches:

• In Configuration Parameters > Data Import/Export, under Save options, select Single
simulation output.

• Use set_param to set ReturnWorkspaceOutputs to on.

set_param(model_name,'ReturnWorkspaceOutputs','on');

To retrieve the SimulationMetadata object, use the getSimulationMetadata method on a
SimulationOutput object.

Properties
ModelInfo — Information about the model and simulation operating environment
structure

The ModelInfo structure has these fields.

Field Name Type Description
ModelName char Name of the model
ModelVersion char Version of the model
ModelFilePath char Absolute location of the .mdl/.slx file
UserID char System user ID of the machine used for the

simulation
MachineName char Hostname of the machine used for the

simulation
Platform char Operating system of the machine used for the

simulation

5 Classes

5-642

Field Name Type Description
ModelStructuralChecksum 4–by–1 uint32 Structural checksum of the model calculated

after an update diagram
SimulationMode char Simulation mode
StartTime double Simulation start time
StopTime double Time at which the simulation was terminated
SolverInfo structure Solver information:

• Fixed-step solvers – Solver type, name, and
fixed step size

• Variable solvers – Solver type, name, and
max step size (initial setting)

SimulinkVersion structure Version of Simulink
LoggingInfo structure Metadata about logging to persistent storage:

• LoggingToFile field — Indicates whether
logging to persistent storage is enabled
('on' or 'off')

• LoggingFileName field — Specifies the
resolved file name for the persistent
storage MAT-file (if LoggingToFile is
'on').

ExecutionInfo — Structure to store information about a simulation run
structure

Structure to store information about a simulation run, including the reason a simulation stopped and
any diagnostics reported during the simulation. The structure has these fields.

 Simulink.SimulationMetadata class

5-643

Field Name Type Description
StopEvent Nontranslated

character vector
Reason the simulation stopped, represented by
one of the following:

• ReachedStopTime – Simulation stopped
upon reaching stop time and no errors
were reported during execution.
StopEvent has value ReachedStopTime,
even if errors are reported in the stop
callbacks, which are executed after the
simulation ends.

• ModelStop – Simulation stopped by a
block or by solver before reaching stop
time.

• StopCommand – Simulation stopped
manually by clicking the Stop button or
using the set_param command.

• DiagnosticError – Simulation stopped
because an error was reported during
simulation.

• KeyboardControlC – Simulation stopped
using keystroke Ctrl+C.

• PauseCommand – Simulation paused
manually by clicking the Pause button or
using the set_param command.

• ConditionalPause – Simulation paused
using a conditional breakpoint.

• PauseTime – Simulation paused at or after
specified pause time.

• StepForward – Simulation paused after
clicking step forward.

• StepBackward – Simulation paused after
clicking step backward.

• TimeOut – Simulation stopped because
execution time exceeded timeout specified
by TimeOut.

StopEventSource Simulink.Simul
ationData.Bloc
kPath

Source of stop event, if it is a valid Simulink
object.

StopEventDescription Translated
character vector

Superset of information stored in StopEvent
and StopEventSource.

5 Classes

5-644

Field Name Type Description
ErrorDiagnostic struct Error reported during simulation, represented

by the following fields:

• Diagnostic – MSLDiagnostic object
that includes object paths, ID, message,
cause, and stack.

• SimulationPhase – Represented by one
of these: Initialization, Execution,
or Termination.

• SimulationTime – Simulation time
represented as a double, if reported during
Execution; else, represented as [].

By passing the name–value pair
'CaptureErrors', 'on' to the sim
command, errors generated during simulation
are reported in
ExecutionInfo.ErrorDiagnostic. The
sim command does not capture generated
errors.

WarningDiagnostics Array of struct Array of all warnings reported during the
simulation. Each array item is represented by
the following fields:

• Diagnostic – MSLDiagnostic object
that includes object paths, ID, message,
cause, and stack.

• SimulationPhase – Represented as:
Initialization, Execution, or
Termination.

• SimulationTime – Simulation time
represented as a double, if reported during
Execution; else, represented as [].

TimingInfo — Structure to store profiling information about the simulation
structure

Structure to store profiling information about the simulation, including the time stamps for the start
and end of the simulation. The structure has these fields.

Field Name Type Description
WallClockTimestampStart character vector Wall clock time when the simulation started, in

YYYY-MM-DD HH:MI:SS format with
microsecond resolution

WallClockTimestampStop character vector Wall clock time when the simulation stopped,
in YYYY-MM-DD HH:MI:SS format with
microsecond resolution

 Simulink.SimulationMetadata class

5-645

Field Name Type Description
InitializationElapsedWal
lTime

double Time spent before execution, in seconds

ExecutionElapsedWallTime double Time spent during execution, in seconds
TerminationElapsedWallTi
me

double Time spent after execution, in seconds

TotalElapsedWallTime double Total time spent in initialization, execution,
and termination, in seconds

ProfilerData Simulink.profi
ler.Data

Profiling results of the model, returned as a
Simulink.profiler.Data object

Note The ProfilerData field is shown only
when the Profile and
ReturnWorkspaceOutputs model
parameters are enabled

The ExecutionElapsedWallTime does not include time that the simulation is paused. For example,
when you step through a simulation, the simulation pauses after each step, and the
ExecutionElapsedWallTime does not count the time the simulation is paused between steps.
When you step through a simulation with stepping back enabled, the ExecutionElapsedWallTime
does include the time required to step back in the simulation.

UserString — Custom character vector to describe the simulation
character vector

Use Simulink.SimulationOutput.setUserString to directly store a character vector in the
SimulationMetadata object that is contained in the SimulationOutput object.

UserData — Custom data to store in SimulationMetadata object that is contained in the
SimulationOutput object
character vector

Use Simulink.SimulationOutput.setUserData to store custom data in the
SimulationMetadata object that is contained in the SimulationOutput object.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Get a SimulationMetadata Object for vdp Simulation

Simulate the vdp model. Retrieve metadata from a SimulationMetadata object of the simulation.

Simulate the vdp model. Save the results of the Simulink.SimulationOutput object in simout.

 open_system('vdp');
 simout = sim(bdroot,'ReturnWorkspaceOutputs','on');

5 Classes

5-646

Retrieve metadata information about this simulation using mData. This is the SimulationMetadata
object that simout contains.

 mData=simout.getSimulationMetadata()

mData =

 Simulink.SimulationMetadata class

5-647

 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: ''
 UserData: []

Store custom data or string in simout.

 simout=simout.setUserData(struct('param1','value1','param2','value2','param3','value3'));
 simout=simout.setUserString('Store first simulation results');

Retrieve the custom data you stored from mData.

 mData=simout.getSimulationMetadata()
 disp(mData.UserData)

mData =

 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: 'Store first simulation results'
 UserData: [1x1 struct]

 param1: 'value1'
 param2: 'value2'
 param3: 'value3'

Retrieve the custom string you stored from mData.

 mData=simout.getSimulationMetadata()
 disp(mData.UserString)

 % Copyright 2018-2022 The MathWorks, Inc.

mData =

 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: 'Store first simulation results'
 UserData: [1x1 struct]

5 Classes

5-648

Store first simulation results

Version History
Introduced in R2015a

See Also
getSimulationMetadata | setUserString | setUserString

 Simulink.SimulationMetadata class

5-649

sldiagviewer class
Generate, display, and log diagnostic messages in the Diagnostic Viewer

Description
Use an instance of sldiagviewer class to perform the following operations:

• Create a stage
• Report Error
• Report warning
• Report Info

The sldiagviewer class is a handle class.

Methods
Public Methods

Version History
Introduced in R2014a

See Also
Topics
“View Diagnostics”
“Customize Diagnostic Messages”

5 Classes

5-650

Simulink.SuppressedDiagnostic class
Package: Simulink

Suppress diagnostic messages from a specified block

Description
A Simulink.SuppressedDiagnostic object contains information related to diagnostic warnings or
errors that are suppressed from being thrown during simulation.

Construction
The Diagnostic Viewer in Simulink includes an option to suppress certain diagnostics. This feature
enables you to suppress warnings or errors for specific objects in your model. Click the Suppress
button next to the warning in the Diagnostic Viewer to suppress the warning from the specified
source. This action creates a Simulink.SuppressedDiagnostic object. You can access this object
at the MATLAB command line using the Simulink.getSuppressedDiagnostics function. You can
add a comment for the suppressed diagnostic. You can restore the diagnostic by clicking Restore.

DiagnosticObject = Simulink.SuppressedDiagnostic(source, message_id) creates a
suppressed diagnostic object. The object suppresses all instances of diagnostics represented by
message_id thrown by the blocks specified by source.

Input Arguments

source — System, block, or model object throwing diagnostic
model | subsystem | block path | block handle

The source of the diagnostic, specified as a model, subsystem, block path, block handle, cell array of
block paths, or cell array of block handles.

To get the block path, use the gcb function.

To get the block handle, use the getSimulinkBlockHandle function.
Data Types: char | cell | string

message_id — message identifier of diagnostic
message identifier

The message identifier of the diagnostic, specified as a character vector or string. You can find the
message identifier of diagnostics thrown during simulation by accessing the ExecutionInfo
property of the Simulink.SimulationMetadata object associated with a simulation. You can also
use the lastwarn function.

 Simulink.SuppressedDiagnostic class

5-651

Data Types: char | string

Properties
Comments — Comments associated with the suppression object
character vector

Comments associated with the suppression object, specified as a character vector. This property is
optional.
Data Types: char

ID — Message identifier of the diagnostic that was suppressed
character vector

The message identifier of the diagnostic that was suppressed, specified as a character vector.
Data Types: char

LastModified — Date and time the suppression object was last modified
character vector

Date and time the suppression object was last modified, specified as a character vector. This property
is read-only.
Data Types: char

LastModifiedBy — Name of the user who was last to add or edit the suppression object
character vector

Name of the user who last added or edited the suppression object, specified as a character vector.
This property is optional.
Data Types: char

Source — block path of the source of the diagnostic
character vector

The block path of the model object that has a suppressed diagnostic, specified as a character vector.
Data Types: char

Methods

restore Remove specified diagnostic suppressions
suppress Suppress diagnostic specified by Simulink.SuppressedDiagnostic object

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

5 Classes

5-652

Create a Simulink.SuppressedDiagnostic Object

To create and then restore a diagnostic suppression, use getDiagnosticObjects.m,
suppressor_script.m, and the Suppressor_CLI_Demo.slx model. The
getDiagnosticObjects.m function queries the simulation metadata to access diagnostics that
were thrown during simulation. The suppressor_script.m script contains the commands for
suppressing and restoring diagnostics to the Suppressor_CLI_Demo model. Open the model. To
access Simulink.SimulationMetadata class, set the ReturnWorkspaceOutputs parameter
value to 'on'. Simulate the model.

 model = 'Suppressor_CLI_Demo';
 open_system(model);
 set_param(model,'ReturnWorkspaceOutputs','on');
 out = sim(model);

Create a Simulink.SuppressedDiagnostic object, suppression to suppress the parameter
precision loss warning thrown by the Constant block, one.

 suppression = Simulink.SuppressedDiagnostic('Suppressor_CLI_Demo/one',...
 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss');

The parameter precision loss warning is no longer thrown in future simulations of this model. Add
accountability information to the object by editing the LastModifiedBy and Comments properties of
the object.

 suppression.LastModifiedBy = 'John Doe';
 suppression.Comments = 'Reviewed: Joe Schmoe'

You can restore the diagnostic using the restore method.

 restore(suppression);

Version History
Introduced in R2016b

See Also
Simulink.getSuppressedDiagnostics | Simulink.suppressDiagnostic |
Simulink.restoreDiagnostic | restore

Topics
“Suppress Diagnostic Messages Programmatically”
Class Attributes
Property Attributes

 Simulink.SuppressedDiagnostic class

5-653

restore
Class: Simulink.SuppressedDiagnostic
Package: Simulink

Remove specified diagnostic suppressions

Syntax
restore(SuppressedDiagnostic)

Description
restore(SuppressedDiagnostic) removes the specified suppressed diagnostic object.

Input Arguments
SuppressedDiagnostic — Suppressed diagnostic object to restore
Simulink.SuppressedDiagnostic object

Simulink.SuppressedDiagnostic object

Examples

Restore A Suppressed Diagnostic

To create and then restore a diagnostic suppression, use getDiagnosticObjects.m,
suppressor_script.m, and the Suppressor_CLI_Demo.slx model. The
getDiagnosticObjects.m function queries the simulation metadata to access diagnostics that
were thrown during simulation. The suppressor_script.m script contains the commands for
suppressing and restoring diagnostics to the Suppressor_CLI_Demo model. Open the model. To
access Simulink.SimulationMetadata class, set the ReturnWorkspaceOutputs parameter
value to 'on'. Simulate the model.

 model = 'Suppressor_CLI_Demo';
 open_system(model);
 set_param(model,'ReturnWorkspaceOutputs','on');
 out = sim(model);

Create a Simulink.suppressDiagnostic object, suppression to suppress the parameter
precision loss warning from the Constant block, one.

 suppression = Simulink.SuppressedDiagnostic('Suppressor_CLI_Demo/one',...
 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss');

You can restore the diagnostic using the restore method.

 restore(suppression);

5 Classes

5-654

Restore All Suppressed Diagnostics

To restore all suppressed diagnostics associated with a model, use getDiagnosticObjects.m,
suppressor_script.m, and the Suppressor_CLI_Demo.slx model. The
getDiagnosticObjects.m function queries the simulation metadata to access diagnostics that
were thrown during simulation. The suppressor_script.m script contains the commands for
suppressing and restoring diagnostics to the Suppressor_CLI_Demo model. Open the model. To
access Simulink.SimulationMetadata class, set the ReturnWorkspaceOutputs parameter
value to 'on'. Simulate the model.

 model = 'Suppressor_CLI_Demo';
 open_system(model);
 set_param(model,'ReturnWorkspaceOutputs','on');
 out = sim(model);

Use the Simulink.suppressDiagnostic function to suppress the parameter precision loss and
parameter underflow warnings from the Constant block, one.

 diags = {'SimulinkFixedPoint:util:fxpParameterPrecisionLoss', 'SimulinkFixedPoint:util:fxpParameterUnderflow'};
 Simulink.suppressDiagnostic('Suppressor_CLI_Demo/one',diags);

Use the Simulink.getSuppressedDiagnostics function to get all suppressions associated with
the model, returned as an array of Simulink.SuppressedDiagnostic objects.

 suppressed_diagnostics =
 Simulink.getSuppressedDiagnostics('Suppressor_CLI_Demo');

Restore all diagnostics using the restore method and iterating through the
suppressed_diagnostics array.

 for iter = 1:numel(suppressed_diagnostics)
 restore(suppressed_diagnostics(iter));
 end

Version History
Introduced in R2016b

See Also
Simulink.getSuppressedDiagnostics | Simulink.suppressDiagnostic |
Simulink.restoreDiagnostic | Simulink.SuppressedDiagnostic

Topics
“Suppress Diagnostic Messages Programmatically”

 restore

5-655

suppress
Class: Simulink.SuppressedDiagnostic
Package: Simulink

Suppress diagnostic specified by Simulink.SuppressedDiagnostic object

Syntax
suppress(SuppressedDiagnostic)

Description
suppress(SuppressedDiagnostic) suppresses the specified suppressed diagnostic object.

Input Arguments
SuppressedDiagnostic — Suppressed diagnostic object to suppress
Simulink.SuppressedDiagnostic object

Simulink.SuppressedDiagnostic object

Version History
Introduced in R2018a

See Also
Simulink.getSuppressedDiagnostics | Simulink.suppressDiagnostic |
Simulink.restoreDiagnostic | Simulink.SuppressedDiagnostic

Topics
“Suppress Diagnostic Messages Programmatically”

5 Classes

5-656

Simulink.Variant class
Package: Simulink

Specify conditions that control variant selection

Description
In a model that contains variant blocks, you must associate each variant choice with a variant control.
During simulation, Simulink evaluates the variant controls of all variant choices and activates the
choice that corresponds to the variant control that evaluates to true.

You can specify the variant control in the form of a Boolean condition expression, such as A == 1 and
A==1 && B == 2. In these expressions, the variant control variables A and B can be MATLAB
variables, Simulink.Parameter objects, or Simulink.VariantControl objects. For more
information, see “Switch Between Choices Using Condition Expressions in Variant Blocks”.

Create an object of the Simulink.Variant class to represent a Boolean variant condition
expression. You can define the object in the base workspace or in a data dictionary and use the object
as the variant control for a choice in a variant block. Using Simulink.Variant objects lets you
reuse common variant conditions across models and improves the readability of variant condition
expressions.

In this example, Simulink.Variant objects are used as variant controls in a Variant Source block.

v_EngType_Big = Simulink.Variant('V == 1');
v_EngType_Small = Simulink.Variant('V == 2');

 Simulink.Variant class

5-657

Note

• Defining variant controls using Simulink.Variant objects in the mask or model workspace is
not supported. For more information on storage locations for variant control variables, see
“Storage Locations for Variant Control Variables (Operands) in Variant Blocks”.

• Using Simulink.Variant objects within structures is not supported.

Creation
Description

variantControl = Simulink.Variant(conditionExpression) creates a variant control and
sets the Condition property to conditionExpression.

Properties
Condition — Variant condition expression
'' (default) | character vector | string

Variant condition expression, specified as a character vector or string. The expression must evaluate
to a Boolean value and can contain one or more of these operands and operators.

Operands

5 Classes

5-658

• Scalar literal values that represent integer or enumerated values
• Variable names that resolve to one of these types:

• MATLAB variables
• Simulink.VariantControl objects
• Simulink.Parameter objects with integer, enumerated data type, or scalar literal values
• Simulink.Variant objects

Operators

• Parentheses for grouping
• Arithmetic, relational, logical, or bitwise operators

For information on the supported types of operators and operands in a variant condition expression,
see “Types of Variant Control Variables (Operands) in Variant Blocks” and “Types of Operators in
Variant Blocks for Different Activation Times”.
Example: '(Fuel==2 || Emission==1) && Ratio==2'

Attributes:

GetAccess public
SetAccess public

Data Types: char | string

Examples

Create Variant Controls Using MATLAB Variables

Use MATLAB variables when you want to simulate the model but are not considering code
generation.

Create MATLAB variables with scalar literal values.

Fuel = 3;
Emission = 2;
Ratio = 3;

Define conditional expressions using the variables and create variant controls.

Variant1 = Simulink.Variant('Fuel==3 && Emission==2');
Variant2 = Simulink.Variant('(Fuel==2 || Emission==1) && Ratio==2');
Variant3 = Simulink.Variant('Fuel==3 || Ratio==4');

Create Variant Controls Using Simulink.Parameter Objects

To generate preprocessor conditionals for code generation, use Simulink.Parameter objects.

Create variant Simulink.Parameter objects with scalar literal values.

 Simulink.Variant class

5-659

Fuel = Simulink.Parameter(3);
Emission = Simulink.Parameter(2);
Ratio = Simulink.Parameter(3);

Specify the custom storage class for these objects as ImportedDefine so that the values are
specified by an external header file. Other valid values for the custom storage class are Define and
CompilerFlag.

Note If you generate code with variant activation time set to startup , specify the supported
custom storage class for the objects. For more information on built-in and custom storage classes
supported with startup activation time see “Storage Classes for Different Variant Activation Times”.

Fuel.CoderInfo.StorageClass = 'Custom';
Fuel.CoderInfo.CustomStorageClass = 'ImportedDefine';

Emission.CoderInfo.StorageClass = 'Custom';
Emission.CoderInfo.CustomStorageClass = 'ImportedDefine';

Ratio.CoderInfo.StorageClass = 'Custom';
Ratio.CoderInfo.CustomStorageClass = 'ImportedDefine';

Define conditional expressions using the variables and create variant controls.

Variant1 = Simulink.Variant('Fuel==3 && Emission==2');
Variant2 = Simulink.Variant('(Fuel==2 || Emission==1) && Ratio==2');
Variant3 = Simulink.Variant('Fuel==3 || Ratio==4');

Create Variant Controls Using Simulink.VariantControl Objects

You can associate a variant control variable of type Simulink.VariantControl with a variant
activation time. For an example, see “Simulink.VariantControl Variables for Coherent Switching of
Choices in Variant Blocks” on page 5-763.

Create Simulink.VariantControl objects with scalar literal values.
Fuel = Simulink.VariantControl('Value', 3, 'ActivationTime', 'update diagram');
Emission = Simulink.VariantControl('Value', 2, 'ActivationTime', 'update diagram');
Ratio = Simulink.VariantControl('Value', 3, 'ActivationTime', 'update diagram');

Define conditional expressions using the variables and create variant controls.

Variant1 = Simulink.Variant('Fuel==3 && Emission==2');
Variant2 = Simulink.Variant('(Fuel==2 || Emission==1) && Ratio==2');
Variant3 = Simulink.Variant('Fuel==3 || Ratio==4');

Simulink.Variant Objects for Variant Condition Reuse of Variant Blocks

After identifying the variant values that your model requires, you can construct complex variant
conditions to control the activation of your variant blocks by defining variant conditions as
Simulink.Variant objects. Simulink.Variant objects enable you to reuse common variant
conditions across models and help you encapsulate complex variant condition expressions.

5 Classes

5-660

You can specify the whole of a variant condition expression or only the variant control variable inside
the Condition property of the Simulink.Variant object.

Note:

• You can define a variant control variable of type Simulink.Variant only in the base workspace
or in a data dictionary. Defining variant controls using Simulink.Variant objects in the mask or
model workspace is not supported. For more information on storage locations for variant control
variables, see “Storage Locations for Variant Control Variables (Operands) in Variant Blocks”.

• Using Simulink.Variant within structures is not supported.

Open the slexVariantSubsystems model.

open_system('slexVariantSubsystems');

VSS_MODE = 2

In the MATLAB® Command Window, define variant control expressions in Simulink.Variant
objects.

V_LinearController = Simulink.Variant('V==1');
V_NonLinearController = Simulink.Variant('V==2');

Specify the Simulink.Variant objects as the variant control variables in the block parameters
dialog box of the Controller block.

set_param('slexVariantSubsystems/Controller/Linear Controller', 'VariantControl', 'V_LinearController')
set_param('slexVariantSubsystems/Controller/Nonlinear Controller', 'VariantControl', 'V_NonLinearController')

Open the Block Parameters dialog box for the Controller block in the model. The Condition
column of the Variant Choices table automatically shows the Boolean conditions that the
Simulink.Variant objects represent.

Set the value of variant control variable V as 1 and simulate the model.

 Simulink.Variant class

5-661

V = 1;
sim('slexVariantSubsystems');

During simulation, the Linear Controller block becomes active. Double-click the Controller
block to see the active choice. Using this approach, you can develop complex variant condition
expressions that are reusable.

Version History
Introduced before R2006a

See Also
Simulink.Parameter | Simulink.VariantControl | Simulink.VariantVariable

Topics
“Introduction to Variant Controls”
“Switch Between Choices Using Condition Expressions in Variant Blocks”
“Use Variant Control Variables in Variant Blocks”
“Simulink.Variant Objects for Variant Condition Reuse of Variant Parameters”
“Convert Variant Control Variables into Simulink.Parameter Objects”

5 Classes

5-662

Simulink.VariantBank class
Package: Simulink

Group all variant parameter values in structure array in generated code

Description
Use the Simulink.VariantBank class to group variant parameters (Simulink.VariantVariable
objects) with the same variant conditions into a structure in generated code called a variant
parameter bank.

To add a variant parameter to a variant parameter bank, set the Bank property of the
Simulink.VariantVariable object to the name of the Simulink.VariantBank object. To specify
code generation properties for a variant parameter bank, use the
Simulink.VariantBankCoderInfo class.

When you generate code using Embedded Coder, Simulink.VariantVariable objects that are
part of the same variant parameter bank appear in a structure. This structure is named according to
the Name property of the parameter bank object. The code contains an array of this structure type
and groups the choice values from the variant parameters based on the variant conditions specified
for the parameter bank. Each set of values becomes an element of the structure array. The code uses
a pointer variable to access the active set of values from the structure array. The code initializes this
pointer based on variant conditions in the model_initialize function.

Variant parameter bank switching using a pointer variable avoids copying the choice values into the
main program memory and improves the efficiency and readability of the generated code.
Additionally, you can set code generation properties for the variant parameter bank, which allows you
to customize code placement and specify the memory section to place the parameter values in the
compiled code.

For information on code generation with variant parameter banks, see “Extended Capabilities” on
page 5-0 .

Note You can use variant parameter banks only with variant parameters that have the variant
activation time set to startup.

You must have Embedded Coder to switch variant parameter banks in generated code.

Creation
Description

varparambank = Simulink.VariantBank returns a Simulink.VariantBank object with default
property values.

varparambank = Simulink.VariantBank(Name=Value) returns a Simulink.VariantBank
object and sets properties using one or more name-value arguments.

 Simulink.VariantBank class

5-663

Properties
Name — Name of variant parameter bank
'' (default) | string | character vector

Name of the variant parameter bank, specified as a string or character vector.

In the code generated using Embedded Coder, this property is the name of the structure that
represents the variant parameter bank.
Example: "EngineParams"

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

Description — Description of variant parameter bank
'' (default) | string | character vector

Description of the variant parameter bank, specified as a string or character vector.

In the code generated using Embedded Coder, this description appears as a comment for the variant
parameter bank structure type.
Example: "Engine parameters"

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

VariantConditions — List of variant conditions for variant parameter bank
[] (default) | cell array

List of variant conditions for the variant parameter bank, specified as a cell array of strings. These
conditions must match the variant conditions of the Simulink.VariantVariable objects in this
parameter bank, except any default variant choice specified using the (default) keyword.

When you use Embedded Coder, the generated code groups the choice values from the variant
parameters in the parameter bank based on these variant conditions. Each set of these grouped
values becomes an element of a structure array. During model initialization, Simulink selects the
active set of parameter values from the structure array based on the variant condition that evaluates
to true.

Note Variant parameter banks do not support the (default) variant condition in the
VariantConditions property.

Example: {'V == 1', 'V == 2'}

5 Classes

5-664

Attributes:

GetAccess public
SetAccess public

Data Types: cell

BankCoderInfo — Name of Simulink.VariantBankCoderInfo object
'' (default) | string | character vector

Name of a Simulink.VariantBankCoderInfo object, specified as a string or character vector. You
can use this object to specify code generation attributes for the variant parameter bank, including
filenames for code placement and memory section to place parameter values.

Note You must not specify storage class using the Specification property of a
Simulink.VariantVariable object if the object is part of a variant parameter bank. Use the
Simulink.VariantBankCoderInfo class instead.

Example: 'vparambankcoderinfo'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

Examples

Group Variant Parameter Values in Code Using Variant Parameter Bank

This example shows you how to group variant parameters in the generated code by adding them to
the same variant parameter bank (Simulink.VariantBank).

Create a variant parameter bank.

EngineParams = Simulink.VariantBank(Name='EngineParams', Description='Engine parameters', ...
 VariantConditions={'V == EngType.Small', 'V == EngType.Big'});

Create a variant control variable V using the Simulink.VariantControl class. The Value
property of this object allows you to select an active value for a variant parameter and the
ActivationTime property allows you to specify a variant activation time. Use this variable to
specify the variant condition expression for the choice values of a variant parameter.

Create two variant parameter objects K1 and K2 and associate them with the variant parameter bank
EngineParams.

Use the name of the variant parameter bank to set the Bank property of a
Simulink.VariantVariable object. The generated code groups the
Simulink.VariantVariable objects that share the same Bank property in the same structure.

 Simulink.VariantBank class

5-665

V = Simulink.VariantControl(Value=EngType.Small, ActivationTime='startup');
K1 = Simulink.VariantVariable(Choices={'V == EngType.Small', 3, 'V == EngType.Big', 6}, Bank='EngineParams');
K2 = Simulink.VariantVariable(Choices={'V == EngType.Small', [3, 6, 9], 'V == EngType.Big', [5, 10, 15]}, Bank='EngineParams');

To additionally specify code generation properties for a variant parameter bank, use the
Simulink.VariantBankCoderInfo class.

Specify Code Generation Properties for Variant Parameter Banks

Create a variant parameter bank.

EngineParams = Simulink.VariantBank(Name='EngineParams', ...
 Description='Engine parameters', ...
 VariantConditions={'V == EngType.Small', 'V == EngType.Big'});

To specify code generation properties for the variant parameter bank, create an object of the
Simulink.VariantBankCoderInfo class.

You can control code placement by specifying the HeaderFile and DefinitionFile properties.
You can specify the memory section to place the parameter values in the compiled code by providing
code statements in the PreStatement and PostStatement properties.

EngineParamsCoderInfo = Simulink.VariantBankCoderInfo(HeaderFile='vparams.h', ...
 DefinitionFile='vparams.c', ...
 PreStatement='#pragma data_seg(.mydata)', ...
 PostStatement="#pragma end");

Use the name of the Simulink.VariantBankCoderInfo object to set the BankCoderInfo
property of the variant bank object.

EngineParams.BankCoderInfo = 'EngineParamsCoderInfo';

Create a variant control variable V using the Simulink.VariantControl class. The Value
property of this object allows you to select an active value for a variant parameter and the
ActivationTime property allows you to specify a variant activation time. Use this variable to
specify the variant condition expression for the choice values of a variant parameter.

Create two variant parameter objects K1 and K2 with variant activation time startup and associate
them with the variant parameter bank EngineParams.

V = Simulink.VariantControl(Value=EngType.Small, ...
 ActivationTime='startup');
K1 = Simulink.VariantVariable(Choices={'V == EngType.Small', 3, 'V == EngType.Big', 6}, ...
 Bank='EngineParams');
K2 = Simulink.VariantVariable(Choices={'V == EngType.Small', [3, 6, 9], 'V == EngType.Big', [5, 10, 15]}, ...
 Bank='EngineParams');

Generate code from the model using Embedded Coder™. For information on how to generate code,
see “Generate Code Using Embedded Coder” (Embedded Coder).

Because K1 and K2 have variant activation time set to startup, the code contains a structure
EngineParams.The name of this structure is the same as the Name property of the parameter bank
object. The structure definition is in the header file vparams.h and the structure array is in the
definition file vparams.c.

5 Classes

5-666

/* vparams.h */

/* Variant parameter bank: EngineParams, for system '<Root>' */
typedef struct {
real_T K2[3]; /* Variable: K2
 * Referenced by: '<Root>/Gain1'
 */
real_T K1; /* Variable: K1
 * Referenced by: '<Root>/Gain'
 */
} EngineParams;

/* Variant parameter bank: EngineParams */

/* Variant parameter bank section */
#pragma data_seg(.mydata)

extern EngineParams EngineParams_ptr_impl[2];
extern EngineParams *EngineParams_ptr;

#pragma end

A structure array EngineParams_ptr_impl of type EngineParams contains choice values of K1
and K2. The number of elements in the array depends on the number of variant conditions that you
specify in the VariantConditions property of the parameter bank object.

 /* vparams.c */

#pragma data_seg(.mydata)
EngineParams EngineParams_ptr_impl[2] = {
 {
 /* Variable: K2
 * Referenced by: '<Root>/Gain1'
 */
 { 5.0, 10.0, 15.0 },

 /* Variable: K1
 * Referenced by: '<Root>/Gain'
 */
 6.0
 }, {
 /* Variable: K2
 * Referenced by: '<Root>/Gain1'
 */
 { 3.0, 6.0, 9.0 },

 /* Variable: K1
 * Referenced by: '<Root>/Gain'
 */
 3.0
 }
};

EngineParams *EngineParams_ptr = &EngineParams_ptr_impl[1];

#pragma end

 Simulink.VariantBank class

5-667

The var_param_bank_initialize function initializes the structure pointer variable
EngineParams_ptr. The code uses the pointer variable to access the active value set from the array
based on variant conditions.

/* model.c */

/* Model step function */
void var_param_bank_step(void)
{
 /* Outport: '<Root>/Out2' incorporates:
 * Gain: '<Root>/Gain1'
 * Inport: '<Root>/Input1'
 */
 var_param_bank_Y.Out2[0] = EngineParams_ptr->K2[0] * var_param_bank_U.Input1;
 var_param_bank_Y.Out2[1] = EngineParams_ptr->K2[1] * var_param_bank_U.Input1;
 var_param_bank_Y.Out2[2] = EngineParams_ptr->K2[2] * var_param_bank_U.Input1;

 /* Outport: '<Root>/Out1' incorporates:
 * Gain: '<Root>/Gain'
 * Inport: '<Root>/Input'
 */
var_param_bank_Y.Out1 = EngineParams_ptr->K1 * var_param_bank_U.Input;
}

/* Model initialize function */
void var_param_bank_initialize(void)
{
 /* Variant Parameters startup activation time */
if (V == EngType_Big) {
 EngineParams_ptr = &EngineParams_ptr_impl[0U];
 } else if (V == EngType_Small) {
 EngineParams_ptr = &EngineParams_ptr_impl[1U];
 }
 var_param_startupVariantChecker();
}

Limitations
• Variant parameter banks do not support code generation for external mode operation over tcpip

or serial protocols. These model configuration parameter settings in the Code Generation >
Interface category correspond to this mode — External mode parameter set to On and
Transport layer parameter set to tcpip or serial.

• Variant parameter banks do not support model hierarchies that contain referenced models.
• Variant parameters that are part of a variant parameter bank do not support AUTOSAR code

generation.

Tips
To modify a Simulink.VariantBank object, double-click the object to open the
Simulink.VariantBank dialog box.

5 Classes

5-668

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For variant parameters that are part of a variant parameter bank and have startup activation time:

• Simulink Coder:

The generated code contains inlined values of the variant parameters in the model_initialize
function.

• Embedded Coder:

The generated code contains the choice values grouped into a structure array based on the variant
conditions. The code uses a pointer variable to access values from the structure array.

• Code generation with C++ class interface:

When you use Embedded Coder to generate C++ code with the Code interface packaging
model configuration parameter set to C++ class, the Include model types in model class
parameter has no effect on the generated code. Regardless of the setting of this parameter, the
code generator places the type definitions of variant parameter banks in a separate header file.

 Simulink.VariantBank class

5-669

• Code generation when variant parameter contains default variant condition:

A Simulink.VariantVariable object that is part of a variant bank allows the (default)
variant condition for its choice conditions. However, a variant parameter bank does not support
(default) in its VariantConditions property.

Consider this example with two variant parameters K1 and K2 that are part of the same variant
bank. K1 defines a value for the condition V == EngType.Small and a value for the
(default) condition. Similarly, K2 defines values for the variant conditions V ==
EngType.Big and (default).
% Define variant parameter bank
EngineParams = Simulink.VariantBank('Name','EngineParams', 'Description', ...
 'Engine parameters', 'VariantConditions', {'V == EngType.Small', 'V == EngType.Big'});

% Define Bank CoderInfo
EngineParamsCoderInfo = Simulink.VariantBankCoderInfo('HeaderFile','vparams.h',...
 'DefinitionFile','vparams.cpp', 'PreStatement', '#pragma data_seg(.mydata)');
EngineParams.BankCoderInfo = 'EngineParamsCoderInfo';

% Define variant parameters
V = Simulink.VariantControl('Value', EngType.Small, 'ActivationTime', 'startup');
K1 = Simulink.VariantVariable('Choices', {'V == EngType.Small', 3 , '(default)', 6},...
 'Bank', 'EngineParams');
K2 = Simulink.VariantVariable("Choices", {'(default)', [3,6,9], 'V == EngType.Big', [5,10,15]},...
 'Bank', 'EngineParams');

When you generate code using Embedded Coder, the structure array contains the default value
if a value corresponding to a parameter bank variant condition is not found in the variant
parameter.

//vparams.cpp
EngineParams EngineParams_ptr_impl[2] = {
 {
 // Variable: K2
 // Referenced by: '<Root>/Gain1'

 { 5.0, 10.0, 15.0 },

 // Variable: K1
 // Referenced by: '<Root>/Gain'

 6.0
 }, {
 // Variable: K2
 // Referenced by: '<Root>/Gain1'

 { 3.0, 6.0, 9.0 },

 // Variable: K1
 // Referenced by: '<Root>/Gain'

 3.0
 }
};

See Also
Simulink.VariantVariable | Simulink.VariantBankCoderInfo

Topics
“Create a Simple Variant Parameter Model”

5 Classes

5-670

“Options to Represent Variant Parameters in Generated Code” (Embedded Coder)

 Simulink.VariantBank class

5-671

Simulink.VariantBankCoderInfo class
Package: Simulink

Specify code generation properties for variant parameter bank

Description
Use the Simulink.VariantBankCoderInfo class to specify code generation properties for
Simulink.VariantBank objects. You can use this class to customize code placement and specify
the memory section to place variant parameter values in compiled code.

To specify code generation properties for a variant parameter bank, create an object of the
Simulink.VariantBankCoderInfo class. Use the name of this object to set the BankCoderInfo
property of the Simulink.VariantBank object.

Note You cannot specify storage class using the Specification property of a
Simulink.VariantVariable object if the object is part of a variant parameter bank.

Creation
Description

varParamBankCoderInfo = Simulink.VariantBankCoderInfo returns a
Simulink.VariantBankCoderInfo object with default property values.

varParamBankCoderInfo = Simulink.VariantBankCoderInfo(Name=Value) returns a
Simulink.VariantBankCoderInfo object and sets properties using one or more name-value
arguments.

Properties
HeaderFile — Name of header file
'' (default) | string | character vector

Name of the header file where the code generator places the type definition and data declarations of
the variant parameter bank, specified as a string or character vector.
Example: 'variant_params.h'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

DefinitionFile — Name of definition file
'' (default) | string | character vector

5 Classes

5-672

Name of the definition file where the code generator places the structure array containing the variant
parameter choice values, specified as a string or character vector.
Example: 'variant_params.c'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

PreStatement — Code to insert before variant parameter bank data definition or
declarations
'' (default) | string | character vector

Code to insert before the variant parameter bank data definition or declarations in the header or
definition file, respectively, specified as a string or character vector.
Example: '#pragma data_seg(".mydata")'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

PostStatement — Code to insert after variant parameter bank data definition or
declarations
'' (default) | string | character vector

Code to insert after the variant parameter bank data definition or declarations in the header or
definition file, respectively, specified as a string or character vector.
Example: '#pragma end'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

Examples

Specify Code Generation Properties for Variant Parameter Banks

Create a variant parameter bank.

EngineParams = Simulink.VariantBank(Name='EngineParams', ...
 Description='Engine parameters', ...
 VariantConditions={'V == EngType.Small', 'V == EngType.Big'});

To specify code generation properties for the variant parameter bank, create an object of the
Simulink.VariantBankCoderInfo class.

 Simulink.VariantBankCoderInfo class

5-673

You can control code placement by specifying the HeaderFile and DefinitionFile properties.
You can specify the memory section to place the parameter values in the compiled code by providing
code statements in the PreStatement and PostStatement properties.

EngineParamsCoderInfo = Simulink.VariantBankCoderInfo(HeaderFile='vparams.h', ...
 DefinitionFile='vparams.c', ...
 PreStatement='#pragma data_seg(.mydata)', ...
 PostStatement="#pragma end");

Use the name of the Simulink.VariantBankCoderInfo object to set the BankCoderInfo
property of the variant bank object.

EngineParams.BankCoderInfo = 'EngineParamsCoderInfo';

Create a variant control variable V using the Simulink.VariantControl class. The Value
property of this object allows you to select an active value for a variant parameter and the
ActivationTime property allows you to specify a variant activation time. Use this variable to
specify the variant condition expression for the choice values of a variant parameter.

Create two variant parameter objects K1 and K2 with variant activation time startup and associate
them with the variant parameter bank EngineParams.

V = Simulink.VariantControl(Value=EngType.Small, ...
 ActivationTime='startup');
K1 = Simulink.VariantVariable(Choices={'V == EngType.Small', 3, 'V == EngType.Big', 6}, ...
 Bank='EngineParams');
K2 = Simulink.VariantVariable(Choices={'V == EngType.Small', [3, 6, 9], 'V == EngType.Big', [5, 10, 15]}, ...
 Bank='EngineParams');

Generate code from the model using Embedded Coder™. For information on how to generate code,
see “Generate Code Using Embedded Coder” (Embedded Coder).

Because K1 and K2 have variant activation time set to startup, the code contains a structure
EngineParams.The name of this structure is the same as the Name property of the parameter bank
object. The structure definition is in the header file vparams.h and the structure array is in the
definition file vparams.c.

/* vparams.h */

/* Variant parameter bank: EngineParams, for system '<Root>' */
typedef struct {
real_T K2[3]; /* Variable: K2
 * Referenced by: '<Root>/Gain1'
 */
real_T K1; /* Variable: K1
 * Referenced by: '<Root>/Gain'
 */
} EngineParams;

/* Variant parameter bank: EngineParams */

/* Variant parameter bank section */
#pragma data_seg(.mydata)

extern EngineParams EngineParams_ptr_impl[2];
extern EngineParams *EngineParams_ptr;

#pragma end

5 Classes

5-674

A structure array EngineParams_ptr_impl of type EngineParams contains choice values of K1
and K2. The number of elements in the array depends on the number of variant conditions that you
specify in the VariantConditions property of the parameter bank object.

 /* vparams.c */

#pragma data_seg(.mydata)
EngineParams EngineParams_ptr_impl[2] = {
 {
 /* Variable: K2
 * Referenced by: '<Root>/Gain1'
 */
 { 5.0, 10.0, 15.0 },

 /* Variable: K1
 * Referenced by: '<Root>/Gain'
 */
 6.0
 }, {
 /* Variable: K2
 * Referenced by: '<Root>/Gain1'
 */
 { 3.0, 6.0, 9.0 },

 /* Variable: K1
 * Referenced by: '<Root>/Gain'
 */
 3.0
 }
};

EngineParams *EngineParams_ptr = &EngineParams_ptr_impl[1];

#pragma end

The var_param_bank_initialize function initializes the structure pointer variable
EngineParams_ptr. The code uses the pointer variable to access the active value set from the array
based on variant conditions.

/* model.c */

/* Model step function */
void var_param_bank_step(void)
{
 /* Outport: '<Root>/Out2' incorporates:
 * Gain: '<Root>/Gain1'
 * Inport: '<Root>/Input1'
 */
 var_param_bank_Y.Out2[0] = EngineParams_ptr->K2[0] * var_param_bank_U.Input1;
 var_param_bank_Y.Out2[1] = EngineParams_ptr->K2[1] * var_param_bank_U.Input1;
 var_param_bank_Y.Out2[2] = EngineParams_ptr->K2[2] * var_param_bank_U.Input1;

 /* Outport: '<Root>/Out1' incorporates:
 * Gain: '<Root>/Gain'
 * Inport: '<Root>/Input'
 */
var_param_bank_Y.Out1 = EngineParams_ptr->K1 * var_param_bank_U.Input;
}

 Simulink.VariantBankCoderInfo class

5-675

/* Model initialize function */
void var_param_bank_initialize(void)
{
 /* Variant Parameters startup activation time */
if (V == EngType_Big) {
 EngineParams_ptr = &EngineParams_ptr_impl[0U];
 } else if (V == EngType_Small) {
 EngineParams_ptr = &EngineParams_ptr_impl[1U];
 }
 var_param_startupVariantChecker();
}

Tips
To modify a Simulink.VariantBankCoderInfo object, double-click the object to open the
Simulink.VariantBankCoderInfo dialog box.

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When you use Embedded Coder to generate code for variant parameter objects that are part of a
variant parameter bank, you can use the Simulink.VariantBankCoderInfo class to specify the
code generation settings for the parameter bank.

5 Classes

5-676

See Also
Simulink.VariantVariable | Simulink.VariantBank

Topics
“Create a Simple Variant Parameter Model”
“Options to Represent Variant Parameters in Generated Code” (Embedded Coder)

 Simulink.VariantBankCoderInfo class

5-677

Simulink.VariantConfigurationAnalysis class
Package: Simulink

Analyze variant configurations programmatically

Description

Note This class requires Variant Manager for Simulink.

Use the Simulink.VariantConfigurationAnalysis class to analyze variant configurations for a
model by specifying either named variant configurations or variable groups. The class returns a
variant configuration analysis object and has methods that can be used to:

• Get the list of active blocks in a variant configuration.
• Find blocks that are active across all variant configurations.
• Find blocks that are inactive in all variant configurations.
• Get the list of blocks that differ in active choice between variant configurations.
• Get the list of dependent models for a variant configuration.
• Get the list of dependent libraries that are used in a variant configuration.
• View the variant configuration analysis report.
• Hide the variant configuration analysis report.
• View variant conditions on a block in a given variant configuration.

Creation
varConfigObj = Simulink.VariantConfigurationAnalysis(model,Name,Value) returns a
variant configuration analysis object for the model specified by model and sets the ModelName and
Configurations properties.

Input Arguments
Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NamedConfigurations', {'config1', 'config2'}

NamedConfigurations — Names of variant configurations
string | cell array of strings

5 Classes

5-678

Names of variant configurations, specified as a string or a cell array of strings. Use this argument to
perform the analysis by specifying named variant configurations defined for the model.

You can use Variant Manager to create named variant configurations for a model, save them in a
variant configuration object of type Simulink.VariantConfigurationData, and associate this
object with the model. You can specify one or more configuration names defined in this variant
configuration object for the analysis.

Note If the model is associated with a variant configuration object, then the
VariantConfigurationObject model parameter contains the name of the corresponding variant
configuration object.

Example: NamedConfigurations={'config1', 'config2'}

VariableGroups — Variant control variable names and values
struct array

Variant control variable names and values, specified as a struct array. Use this argument to perform
the analysis by specifying values for the variant control variables used by the model.

You can specify multiple variable groups that represent the different variant configurations to be
analyzed. In each variable group, you must specify the variant control variables and their values that
must be used for the analysis.

To define the variable groups, provide a struct array with these fields:

• Name — Name of variable group
• VariantControls — Cell array with variant control variable names and their values

Example: 'VariableGroups',[struct('Name', 'V1W1',... 'VariantControls',
{{'V',1,'W',1}}),struct('Name', 'V1W2',... 'VariantControls',
{{'V',1,'W',2}})]

Note Specifying both NamedConfigurations and VariableGroups is not supported.

Properties
ModelName — Name of the model
character vector

Name of model to be analyzed, specified as a character vector.
Example: 'slexVariantReducer'

Attributes:

GetAccess public
SetAccess private

Data Types: character vector

 Simulink.VariantConfigurationAnalysis class

5-679

Configurations — Names of variant configurations or variable groups
cell array of strings

Names of variant configurations or variable groups to be analyzed, specified as a cell array of strings.
Example: {'config1', 'config2'}

Attributes:

GetAccess public
SetAccess private

Data Types: character vector

Methods
Public Methods
getActiveBlocks List of active blocks in a named variant configuration
getAlwaysActiveBlocks List of blocks that are always active across named variant configurations
getBlockDifferences List of blocks that differ in their active choice between multiple named

variant configurations
getDependentLibraries List of libraries that are used in a named variant configuration
getDependentModels List of dependent models that are used in a named variant configuration
getNeverActiveBlocks List of blocks that are inactive in named variant configurations
getVariantCondition Variant condition on a block in a named variant configuration
hideUI Hide variant configuration analysis report for a model
showUI Show variant configuration analysis report for a model

Examples

Create Variant Configuration Analysis Object for Model

Create a variant configuration analysis object by specifying either named variant configurations or
variable groups.

Open the model slexVariantReducer.

open_system('slexVariantReducer');

The model has two named variant configurations, config1 and config2. The named configurations
are saved in a variant configuration object, slexVariantReducer_config, associated with the
model.

Analyze the model using the named configurations.

VarConfigObjnc = Simulink.VariantConfigurationAnalysis('slexVariantReducer', ...
 'NamedConfigurations',{'config1', 'config2'})

VarConfigObjnc =
 VariantConfigurationAnalysis with properties:

 ModelName: 'slexVariantReducer'
 Configurations: {'config1' 'config2'}

5 Classes

5-680

Next, specify variable groups for analysis.

The slexVariantReducer model contains two variant control variables V and W.

Analyze the model using two variable groups, V1W1 and V2W2:

VarConfigObjvg = Simulink.VariantConfigurationAnalysis(...
 'slexVariantReducer',...
 'VariableGroups',[struct('Name','V1W1','VariantControls', {{'V',1,'W',1}}),...
 struct('Name', 'V1W2','VariantControls',{{'V',1,'W',2}})])

VarConfigObjvg =
 VariantConfigurationAnalysis with properties:

 ModelName: 'slexVariantReducer'
 Configurations: {'V1W1' 'V1W2'}

Version History
Introduced in R2019a

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager

Topics
“Analyze Variant Configurations in Models Containing Variant Blocks”
“Variant Manager for Simulink”
“Variant Configurations”
“Create and Activate Variant Configurations”

 Simulink.VariantConfigurationAnalysis class

5-681

getActiveBlocks
Class: Simulink.VariantConfigurationAnalysis
Package: Simulink

List of active blocks in a named variant configuration

Syntax
activeBlocks = varConfigObj.getActiveBlocks(configName)

Description
Use this method to find the active blocks in a named variant configuration after analyzing it using the
Simulink.VariantConfigurationAnalysis class. You must create a variant configuration
analysis object of type Simulink.VariantConfigurationAnalysis for a model and use it to
analyze the required named variant configurations for that model before calling the getActiveBlocks
method.

Note This method requires Variant Manager for Simulink.

activeBlocks = varConfigObj.getActiveBlocks(configName) returns the list of active
blocks in the variant configuration named configName. varConfigObj is the
VariantConfigurationAnalysis object for a model.

Input Arguments
configName — Name of variant configuration
character vector | string

Name of the variant configuration for which you want to find the active blocks, specified as a
character vector. You must analyze this configuration using the
Simulink.VariantConfigurationAnalysis class first.

Output Arguments
activeBlocks — List of active blocks
cell array

List of active blocks in the input variant configuration, returned as a cell array.

Examples

Analyze Variant Configurations Programmatically

This example shows how to use the Simulink.VariantConfigurationAnalysis class to analyze
variant configurations programmatically.

5 Classes

5-682

To analyze variant configurations using Variant Manager, see “Analyze Variant Configurations in
Models Containing Variant Blocks”.

Open the model slexVariantConfigurationAnalysis.

open_system('slexVariantConfigurationAnalysis');

You can provide either a list of named variant configurations or the variable groups to analyze to the
Simulink.VariantConfigurationAnalysis class. The operation returns a variant configuration
analysis object for the model.

varConfigObjNamedConfig = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis', ...
 'NamedConfigurations', {'VendorACtrlLinear', ...
 'VendorACtrlNonLinear', 'VendorACtrlFuzzy'})

varConfigObjNamedConfig =
 VariantConfigurationAnalysis with properties:

 ModelName: 'slexVariantConfigurationAnalysis'
 Configurations: {'VendorACtrlFuzzy' 'VendorACtrlLinear' 'VendorACtrlNonLinear'}

varConfigObjVarGroup = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis',...
 'VariableGroups', [struct('Name', 'VendorANonLinear',...
 'VariantControls', {{'CONTROLLER', 1, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}}),...
 struct('Name', 'VendorALinear',...
 'VariantControls', {{'CONTROLLER', 0, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}})]);

You can use the variant configuration analysis object to analyze the variant configurations using
different methods specified in the following steps.

Get the list of active blocks in the variant configuration VendorACtrlLinear.

activeblocks = varConfigObjNamedConfig.getActiveBlocks('VendorACtrlLinear');

Get the list of blocks that are always active across all the named variant configurations that have
been analyzed.

alwaysActiveBlocks = varConfigObjNamedConfig.getAlwaysActiveBlocks();

Get the list of blocks that are active in some of the analyzed variant configurations and inactive in
other configurations.

getBlockDifferences = varConfigObjNamedConfig.getBlockDifferences();

Get the list of dependent libraries for a variant configuration.

dependentLibraries = varConfigObjNamedConfig.getDependentLibraries('VendorACtrlNonLinear');

Get the list of dependent models for a variant configuration.

dependentModels = varConfigObjNamedConfig.getDependentModels('VendorACtrlFuzzy');

Get the list of blocks that are inactive in all the named variant configurations that have been
analyzed.

neverActiveBlocks = varConfigObjNamedConfig.getNeverActiveBlocks();

Get the variant condition on a block in a named variant configuration.

 getActiveBlocks

5-683

variantCondition = varConfigObjNamedConfig.getVariantCondition('VendorACtrlNonLinear',...
'slexVariantConfigurationAnalysis/Controller/NonLinear');

Show the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.showUI();

Hide the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.hideUI();

Version History
Introduced in R2019a

See Also
Simulink.VariantConfigurationAnalysis | Simulink.VariantManager |
Simulink.VariantConfigurationData

Topics
“Variant Manager for Simulink”
“Variant Configurations”
“Analyze Variant Configurations in Models Containing Variant Blocks”

5 Classes

5-684

getAlwaysActiveBlocks
Class: Simulink.VariantConfigurationAnalysis
Package: Simulink

List of blocks that are always active across named variant configurations

Syntax
alwaysActiveBlocks = varConfigObj.getAlwaysActiveBlocks()

Description
Use this method to find the blocks that are always active across all named variant configurations
after analyzing them using the Simulink.VariantConfigurationAnalysis class. You must
create a variant configuration analysis object of type Simulink.VariantConfigurationAnalysis
for a model and use it to analyze the required named variant configurations for that model before
calling the getAlwaysActiveBlocks method.

Note This method requires Variant Manager for Simulink.

alwaysActiveBlocks = varConfigObj.getAlwaysActiveBlocks() returns the list of blocks
that are always active across all the named variant configurations that have been analyzed using a
VariantConfigurationAnalysis object. varConfigObj is the
VariantConfigurationAnalysis object for a model.

Output Arguments
alwaysActiveBlocks — List of blocks that are always active
cell array

List of blocks that are active across all the named variant configurations that are analyzed, returned
as a cell array.

Examples

Analyze Variant Configurations Programmatically

This example shows how to use the Simulink.VariantConfigurationAnalysis class to analyze
variant configurations programmatically.

To analyze variant configurations using Variant Manager, see “Analyze Variant Configurations in
Models Containing Variant Blocks”.

Open the model slexVariantConfigurationAnalysis.

open_system('slexVariantConfigurationAnalysis');

 getAlwaysActiveBlocks

5-685

You can provide either a list of named variant configurations or the variable groups to analyze to the
Simulink.VariantConfigurationAnalysis class. The operation returns a variant configuration
analysis object for the model.

varConfigObjNamedConfig = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis', ...
 'NamedConfigurations', {'VendorACtrlLinear', ...
 'VendorACtrlNonLinear', 'VendorACtrlFuzzy'})

varConfigObjNamedConfig =
 VariantConfigurationAnalysis with properties:

 ModelName: 'slexVariantConfigurationAnalysis'
 Configurations: {'VendorACtrlFuzzy' 'VendorACtrlLinear' 'VendorACtrlNonLinear'}

varConfigObjVarGroup = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis',...
 'VariableGroups', [struct('Name', 'VendorANonLinear',...
 'VariantControls', {{'CONTROLLER', 1, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}}),...
 struct('Name', 'VendorALinear',...
 'VariantControls', {{'CONTROLLER', 0, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}})]);

You can use the variant configuration analysis object to analyze the variant configurations using
different methods specified in the following steps.

Get the list of active blocks in the variant configuration VendorACtrlLinear.

activeblocks = varConfigObjNamedConfig.getActiveBlocks('VendorACtrlLinear');

Get the list of blocks that are always active across all the named variant configurations that have
been analyzed.

alwaysActiveBlocks = varConfigObjNamedConfig.getAlwaysActiveBlocks();

Get the list of blocks that are active in some of the analyzed variant configurations and inactive in
other configurations.

getBlockDifferences = varConfigObjNamedConfig.getBlockDifferences();

Get the list of dependent libraries for a variant configuration.

dependentLibraries = varConfigObjNamedConfig.getDependentLibraries('VendorACtrlNonLinear');

Get the list of dependent models for a variant configuration.

dependentModels = varConfigObjNamedConfig.getDependentModels('VendorACtrlFuzzy');

Get the list of blocks that are inactive in all the named variant configurations that have been
analyzed.

neverActiveBlocks = varConfigObjNamedConfig.getNeverActiveBlocks();

Get the variant condition on a block in a named variant configuration.

variantCondition = varConfigObjNamedConfig.getVariantCondition('VendorACtrlNonLinear',...
'slexVariantConfigurationAnalysis/Controller/NonLinear');

Show the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.showUI();

5 Classes

5-686

Hide the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.hideUI();

Version History
Introduced in R2019a

See Also
Topics
“Variant Manager for Simulink”
“Variant Configurations”
“Analyze Variant Configurations in Models Containing Variant Blocks”

 getAlwaysActiveBlocks

5-687

getBlockDifferences
Class: Simulink.VariantConfigurationAnalysis
Package: Simulink

List of blocks that differ in their active choice between multiple named variant configurations

Syntax
getBlockDifferences = varConfigObj.getBlockDifferences()

Description
Use this method to find the blocks that differ in their active choice between all named variant
configurations after analyzing them using the Simulink.VariantConfigurationAnalysis class.
You must create a variant configuration analysis object of type
Simulink.VariantConfigurationAnalysis for a model and use it to analyze the required
named variant configurations for that model before calling the getBlockDifferences method.

Note This method requires Variant Manager for Simulink.

getBlockDifferences = varConfigObj.getBlockDifferences() returns a list of blocks that
are active in some of the analyzed variant configurations and inactive in other configurations.
varConfigObj is the VariantConfigurationAnalysis object for a model.

Output Arguments
getBlockDifferences — List of blocks that differ in active choice
cell array

List of blocks that differ in active choice between variant configurations, returned as a cell array.

Examples

Analyze Variant Configurations Programmatically

This example shows how to use the Simulink.VariantConfigurationAnalysis class to analyze
variant configurations programmatically.

To analyze variant configurations using Variant Manager, see “Analyze Variant Configurations in
Models Containing Variant Blocks”.

Open the model slexVariantConfigurationAnalysis.

open_system('slexVariantConfigurationAnalysis');

5 Classes

5-688

You can provide either a list of named variant configurations or the variable groups to analyze to the
Simulink.VariantConfigurationAnalysis class. The operation returns a variant configuration
analysis object for the model.

varConfigObjNamedConfig = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis', ...
 'NamedConfigurations', {'VendorACtrlLinear', ...
 'VendorACtrlNonLinear', 'VendorACtrlFuzzy'})

varConfigObjNamedConfig =
 VariantConfigurationAnalysis with properties:

 ModelName: 'slexVariantConfigurationAnalysis'
 Configurations: {'VendorACtrlFuzzy' 'VendorACtrlLinear' 'VendorACtrlNonLinear'}

varConfigObjVarGroup = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis',...
 'VariableGroups', [struct('Name', 'VendorANonLinear',...
 'VariantControls', {{'CONTROLLER', 1, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}}),...
 struct('Name', 'VendorALinear',...
 'VariantControls', {{'CONTROLLER', 0, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}})]);

You can use the variant configuration analysis object to analyze the variant configurations using
different methods specified in the following steps.

Get the list of active blocks in the variant configuration VendorACtrlLinear.

activeblocks = varConfigObjNamedConfig.getActiveBlocks('VendorACtrlLinear');

Get the list of blocks that are always active across all the named variant configurations that have
been analyzed.

alwaysActiveBlocks = varConfigObjNamedConfig.getAlwaysActiveBlocks();

Get the list of blocks that are active in some of the analyzed variant configurations and inactive in
other configurations.

getBlockDifferences = varConfigObjNamedConfig.getBlockDifferences();

Get the list of dependent libraries for a variant configuration.

dependentLibraries = varConfigObjNamedConfig.getDependentLibraries('VendorACtrlNonLinear');

Get the list of dependent models for a variant configuration.

dependentModels = varConfigObjNamedConfig.getDependentModels('VendorACtrlFuzzy');

Get the list of blocks that are inactive in all the named variant configurations that have been
analyzed.

neverActiveBlocks = varConfigObjNamedConfig.getNeverActiveBlocks();

Get the variant condition on a block in a named variant configuration.

variantCondition = varConfigObjNamedConfig.getVariantCondition('VendorACtrlNonLinear',...
'slexVariantConfigurationAnalysis/Controller/NonLinear');

Show the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.showUI();

 getBlockDifferences

5-689

Hide the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.hideUI();

Version History
Introduced in R2019a

See Also
Simulink.VariantConfigurationAnalysis | Simulink.VariantManager |
Simulink.VariantConfigurationData

Topics
“Variant Manager for Simulink”
“Variant Configurations”
“Analyze Variant Configurations in Models Containing Variant Blocks”

5 Classes

5-690

getDependentLibraries
Class: Simulink.VariantConfigurationAnalysis
Package: Simulink

List of libraries that are used in a named variant configuration

Syntax
dependentLibraries = varConfigObj.getDependentLibraries(configName)

Description
Use this method to find the libraries used in a named variant configuration after analyzing it using
the Simulink.VariantConfigurationAnalysis class. You must create a variant configuration
analysis object of type Simulink.VariantConfigurationAnalysis for a model and use it to
analyze the required named variant configurations for that model before calling the
getDependentLibraries method.

Note This method requires Variant Manager for Simulink.

dependentLibraries = varConfigObj.getDependentLibraries(configName) returns a list
of libraries that are used in the variant configuration named configName. varConfigObj is the
VariantConfigurationAnalysis object for a model.

Input Arguments
configName — Name of variant configuration
character vector | string

Name of the variant configuration for which you want to find the dependent libraries, specified as a
character vector. You must analyze this configuration using the
Simulink.VariantConfigurationAnalysis class first.

Output Arguments
dependentLibraries — List of libraries
cell array

List of dependent libraries, returned as a cell array.

Examples

Analyze Variant Configurations Programmatically

This example shows how to use the Simulink.VariantConfigurationAnalysis class to analyze
variant configurations programmatically.

 getDependentLibraries

5-691

To analyze variant configurations using Variant Manager, see “Analyze Variant Configurations in
Models Containing Variant Blocks”.

Open the model slexVariantConfigurationAnalysis.

open_system('slexVariantConfigurationAnalysis');

You can provide either a list of named variant configurations or the variable groups to analyze to the
Simulink.VariantConfigurationAnalysis class. The operation returns a variant configuration
analysis object for the model.

varConfigObjNamedConfig = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis', ...
 'NamedConfigurations', {'VendorACtrlLinear', ...
 'VendorACtrlNonLinear', 'VendorACtrlFuzzy'})

varConfigObjNamedConfig =
 VariantConfigurationAnalysis with properties:

 ModelName: 'slexVariantConfigurationAnalysis'
 Configurations: {'VendorACtrlFuzzy' 'VendorACtrlLinear' 'VendorACtrlNonLinear'}

varConfigObjVarGroup = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis',...
 'VariableGroups', [struct('Name', 'VendorANonLinear',...
 'VariantControls', {{'CONTROLLER', 1, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}}),...
 struct('Name', 'VendorALinear',...
 'VariantControls', {{'CONTROLLER', 0, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}})]);

You can use the variant configuration analysis object to analyze the variant configurations using
different methods specified in the following steps.

Get the list of active blocks in the variant configuration VendorACtrlLinear.

activeblocks = varConfigObjNamedConfig.getActiveBlocks('VendorACtrlLinear');

Get the list of blocks that are always active across all the named variant configurations that have
been analyzed.

alwaysActiveBlocks = varConfigObjNamedConfig.getAlwaysActiveBlocks();

Get the list of blocks that are active in some of the analyzed variant configurations and inactive in
other configurations.

getBlockDifferences = varConfigObjNamedConfig.getBlockDifferences();

Get the list of dependent libraries for a variant configuration.

dependentLibraries = varConfigObjNamedConfig.getDependentLibraries('VendorACtrlNonLinear');

Get the list of dependent models for a variant configuration.

dependentModels = varConfigObjNamedConfig.getDependentModels('VendorACtrlFuzzy');

Get the list of blocks that are inactive in all the named variant configurations that have been
analyzed.

neverActiveBlocks = varConfigObjNamedConfig.getNeverActiveBlocks();

Get the variant condition on a block in a named variant configuration.

5 Classes

5-692

variantCondition = varConfigObjNamedConfig.getVariantCondition('VendorACtrlNonLinear',...
'slexVariantConfigurationAnalysis/Controller/NonLinear');

Show the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.showUI();

Hide the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.hideUI();

Version History
Introduced in R2019a

See Also
Simulink.VariantConfigurationAnalysis | Simulink.VariantManager |
Simulink.VariantConfigurationData

Topics
“Variant Manager for Simulink”
“Variant Configurations”
“Analyze Variant Configurations in Models Containing Variant Blocks”

 getDependentLibraries

5-693

getDependentModels
Class: Simulink.VariantConfigurationAnalysis
Package: Simulink

List of dependent models that are used in a named variant configuration

Syntax
dependentModels = varConfigObj.getDependentModels(configName)

Description
Use this method to find the dependent models used in a named variant configuration after analyzing
it using the Simulink.VariantConfigurationAnalysis class. You must create a variant
configuration analysis object of type Simulink.VariantConfigurationAnalysis for a model and
use it to analyze the required named variant configurations for that model before calling the
getDependentModels method.

Note This method requires Variant Manager for Simulink.

dependentModels = varConfigObj.getDependentModels(configName) returns a list of
dependent models that are used in the variant configuration named configName. varConfigObj is
the VariantConfigurationAnalysis object for a model.

Input Arguments
configName — Variant configuration name
character vector | string

Name of the variant configuration for which you want to find the dependent models, specified as a
character vector. You must analyze this configuration using the
Simulink.VariantConfigurationAnalysis class first.

Output Arguments
dependentModels — List of models
cell array

List of dependent models, returned as a cell array.

Examples

Analyze Variant Configurations Programmatically

This example shows how to use the Simulink.VariantConfigurationAnalysis class to analyze
variant configurations programmatically.

5 Classes

5-694

To analyze variant configurations using Variant Manager, see “Analyze Variant Configurations in
Models Containing Variant Blocks”.

Open the model slexVariantConfigurationAnalysis.

open_system('slexVariantConfigurationAnalysis');

You can provide either a list of named variant configurations or the variable groups to analyze to the
Simulink.VariantConfigurationAnalysis class. The operation returns a variant configuration
analysis object for the model.

varConfigObjNamedConfig = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis', ...
 'NamedConfigurations', {'VendorACtrlLinear', ...
 'VendorACtrlNonLinear', 'VendorACtrlFuzzy'})

varConfigObjNamedConfig =
 VariantConfigurationAnalysis with properties:

 ModelName: 'slexVariantConfigurationAnalysis'
 Configurations: {'VendorACtrlFuzzy' 'VendorACtrlLinear' 'VendorACtrlNonLinear'}

varConfigObjVarGroup = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis',...
 'VariableGroups', [struct('Name', 'VendorANonLinear',...
 'VariantControls', {{'CONTROLLER', 1, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}}),...
 struct('Name', 'VendorALinear',...
 'VariantControls', {{'CONTROLLER', 0, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}})]);

You can use the variant configuration analysis object to analyze the variant configurations using
different methods specified in the following steps.

Get the list of active blocks in the variant configuration VendorACtrlLinear.

activeblocks = varConfigObjNamedConfig.getActiveBlocks('VendorACtrlLinear');

Get the list of blocks that are always active across all the named variant configurations that have
been analyzed.

alwaysActiveBlocks = varConfigObjNamedConfig.getAlwaysActiveBlocks();

Get the list of blocks that are active in some of the analyzed variant configurations and inactive in
other configurations.

getBlockDifferences = varConfigObjNamedConfig.getBlockDifferences();

Get the list of dependent libraries for a variant configuration.

dependentLibraries = varConfigObjNamedConfig.getDependentLibraries('VendorACtrlNonLinear');

Get the list of dependent models for a variant configuration.

dependentModels = varConfigObjNamedConfig.getDependentModels('VendorACtrlFuzzy');

Get the list of blocks that are inactive in all the named variant configurations that have been
analyzed.

neverActiveBlocks = varConfigObjNamedConfig.getNeverActiveBlocks();

Get the variant condition on a block in a named variant configuration.

 getDependentModels

5-695

variantCondition = varConfigObjNamedConfig.getVariantCondition('VendorACtrlNonLinear',...
'slexVariantConfigurationAnalysis/Controller/NonLinear');

Show the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.showUI();

Hide the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.hideUI();

Version History
Introduced in R2019a

See Also
Simulink.VariantConfigurationAnalysis | Simulink.VariantManager |
Simulink.VariantConfigurationData

Topics
“Variant Manager for Simulink”
“Variant Configurations”
“Analyze Variant Configurations in Models Containing Variant Blocks”

5 Classes

5-696

getNeverActiveBlocks
Class: Simulink.VariantConfigurationAnalysis
Package: Simulink

List of blocks that are inactive in named variant configurations

Syntax
getNeverActiveBlocks = varConfigObj.getNeverActiveBlocks()

Description
Use this method to find the blocks that are always inactive across all named variant configurations
after analyzing them using the Simulink.VariantConfigurationAnalysis class. You must
create a variant configuration analysis object of type Simulink.VariantConfigurationAnalysis
for a model and use it to analyze the required named variant configurations for that model before
calling the getNeverActiveBlocks method.

Note This method requires Variant Manager for Simulink.

getNeverActiveBlocks = varConfigObj.getNeverActiveBlocks() returns a list of blocks
that are inactive in all the named variant configurations that have been analyzed using a
VariantConfigurationAnalysis object. varConfigObj is the
VariantConfigurationAnalysis object for a model.

Output Arguments
neverActiveBlocks — List of never active blocks
cell array

List of blocks that are never active in all the named variant configurations that are analyzed, returned
as a cell array.

Examples

Analyze Variant Configurations Programmatically

This example shows how to use the Simulink.VariantConfigurationAnalysis class to analyze
variant configurations programmatically.

To analyze variant configurations using Variant Manager, see “Analyze Variant Configurations in
Models Containing Variant Blocks”.

Open the model slexVariantConfigurationAnalysis.

open_system('slexVariantConfigurationAnalysis');

 getNeverActiveBlocks

5-697

You can provide either a list of named variant configurations or the variable groups to analyze to the
Simulink.VariantConfigurationAnalysis class. The operation returns a variant configuration
analysis object for the model.

varConfigObjNamedConfig = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis', ...
 'NamedConfigurations', {'VendorACtrlLinear', ...
 'VendorACtrlNonLinear', 'VendorACtrlFuzzy'})

varConfigObjNamedConfig =
 VariantConfigurationAnalysis with properties:

 ModelName: 'slexVariantConfigurationAnalysis'
 Configurations: {'VendorACtrlFuzzy' 'VendorACtrlLinear' 'VendorACtrlNonLinear'}

varConfigObjVarGroup = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis',...
 'VariableGroups', [struct('Name', 'VendorANonLinear',...
 'VariantControls', {{'CONTROLLER', 1, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}}),...
 struct('Name', 'VendorALinear',...
 'VariantControls', {{'CONTROLLER', 0, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}})]);

You can use the variant configuration analysis object to analyze the variant configurations using
different methods specified in the following steps.

Get the list of active blocks in the variant configuration VendorACtrlLinear.

activeblocks = varConfigObjNamedConfig.getActiveBlocks('VendorACtrlLinear');

Get the list of blocks that are always active across all the named variant configurations that have
been analyzed.

alwaysActiveBlocks = varConfigObjNamedConfig.getAlwaysActiveBlocks();

Get the list of blocks that are active in some of the analyzed variant configurations and inactive in
other configurations.

getBlockDifferences = varConfigObjNamedConfig.getBlockDifferences();

Get the list of dependent libraries for a variant configuration.

dependentLibraries = varConfigObjNamedConfig.getDependentLibraries('VendorACtrlNonLinear');

Get the list of dependent models for a variant configuration.

dependentModels = varConfigObjNamedConfig.getDependentModels('VendorACtrlFuzzy');

Get the list of blocks that are inactive in all the named variant configurations that have been
analyzed.

neverActiveBlocks = varConfigObjNamedConfig.getNeverActiveBlocks();

Get the variant condition on a block in a named variant configuration.

variantCondition = varConfigObjNamedConfig.getVariantCondition('VendorACtrlNonLinear',...
'slexVariantConfigurationAnalysis/Controller/NonLinear');

Show the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.showUI();

5 Classes

5-698

Hide the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.hideUI();

Version History
Introduced in R2019a

See Also
Simulink.VariantConfigurationAnalysis | Simulink.VariantManager |
Simulink.VariantConfigurationData

Topics
“Variant Manager for Simulink”
“Variant Configurations”
“Analyze Variant Configurations in Models Containing Variant Blocks”

 getNeverActiveBlocks

5-699

getVariantCondition
Class: Simulink.VariantConfigurationAnalysis
Package: Simulink

Variant condition on a block in a named variant configuration

Syntax
variantCondition = varConfigObj.getVariantCondition(configName,blockName)

Description
Use this method to find the variant condition on a block in a named variant configuration after
analyzing it using the Simulink.VariantConfigurationAnalysis class. You must create a
variant configuration analysis object of type Simulink.VariantConfigurationAnalysis for a
model and use it to analyze the required named variant configurations for that model before calling
the getVariantCondition method.

Note This method requires Variant Manager for Simulink.

variantCondition = varConfigObj.getVariantCondition(configName,blockName),
returns the variant condition on the block blockName in the named variant configuration
configName. varConfigObj is the VariantConfigurationAnalysis object for a model.

Input Arguments
configName — Name of variant configuration
character vector | string

Name of the variant configuration, specified as a character vector. You must analyze this
configuration using the Simulink.VariantConfigurationAnalysis class first.

blockName — Name of block
character vector | string

Name of the block for which you want to find the variant condition, specified as character vector of
block path.

Output Arguments
variantCondition — Variant condition on a block
cell array

Variant condition on the block in the given variant configuration, returned as cell array.

Examples

5 Classes

5-700

Analyze Variant Configurations Programmatically

This example shows how to use the Simulink.VariantConfigurationAnalysis class to analyze
variant configurations programmatically.

To analyze variant configurations using Variant Manager, see “Analyze Variant Configurations in
Models Containing Variant Blocks”.

Open the model slexVariantConfigurationAnalysis.

open_system('slexVariantConfigurationAnalysis');

You can provide either a list of named variant configurations or the variable groups to analyze to the
Simulink.VariantConfigurationAnalysis class. The operation returns a variant configuration
analysis object for the model.

varConfigObjNamedConfig = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis', ...
 'NamedConfigurations', {'VendorACtrlLinear', ...
 'VendorACtrlNonLinear', 'VendorACtrlFuzzy'})

varConfigObjNamedConfig =
 VariantConfigurationAnalysis with properties:

 ModelName: 'slexVariantConfigurationAnalysis'
 Configurations: {'VendorACtrlFuzzy' 'VendorACtrlLinear' 'VendorACtrlNonLinear'}

varConfigObjVarGroup = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis',...
 'VariableGroups', [struct('Name', 'VendorANonLinear',...
 'VariantControls', {{'CONTROLLER', 1, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}}),...
 struct('Name', 'VendorALinear',...
 'VariantControls', {{'CONTROLLER', 0, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}})]);

You can use the variant configuration analysis object to analyze the variant configurations using
different methods specified in the following steps.

Get the list of active blocks in the variant configuration VendorACtrlLinear.

activeblocks = varConfigObjNamedConfig.getActiveBlocks('VendorACtrlLinear');

Get the list of blocks that are always active across all the named variant configurations that have
been analyzed.

alwaysActiveBlocks = varConfigObjNamedConfig.getAlwaysActiveBlocks();

Get the list of blocks that are active in some of the analyzed variant configurations and inactive in
other configurations.

getBlockDifferences = varConfigObjNamedConfig.getBlockDifferences();

Get the list of dependent libraries for a variant configuration.

dependentLibraries = varConfigObjNamedConfig.getDependentLibraries('VendorACtrlNonLinear');

Get the list of dependent models for a variant configuration.

dependentModels = varConfigObjNamedConfig.getDependentModels('VendorACtrlFuzzy');

 getVariantCondition

5-701

Get the list of blocks that are inactive in all the named variant configurations that have been
analyzed.

neverActiveBlocks = varConfigObjNamedConfig.getNeverActiveBlocks();

Get the variant condition on a block in a named variant configuration.

variantCondition = varConfigObjNamedConfig.getVariantCondition('VendorACtrlNonLinear',...
'slexVariantConfigurationAnalysis/Controller/NonLinear');

Show the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.showUI();

Hide the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.hideUI();

Version History
Introduced in R2019b

See Also
Simulink.VariantConfigurationAnalysis | Simulink.VariantManager |
Simulink.VariantConfigurationData

Topics
“Variant Manager for Simulink”
“Variant Configurations”
“Analyze Variant Configurations in Models Containing Variant Blocks”

5 Classes

5-702

hideUI
Class: Simulink.VariantConfigurationAnalysis
Package: Simulink

Hide variant configuration analysis report for a model

Syntax
varConfigObj.hideUI()

Description
Use this method to hide the variant configuration analysis report for a model after analyzing it using
the Simulink.VariantConfigurationAnalysis class.

Note This method requires Variant Manager for Simulink.

varConfigObj.hideUI() hides the variant configuration analysis report. varConfigObj is the
VariantConfigurationAnalysis object for a model.

Examples

Analyze Variant Configurations Programmatically

This example shows how to use the Simulink.VariantConfigurationAnalysis class to analyze
variant configurations programmatically.

To analyze variant configurations using Variant Manager, see “Analyze Variant Configurations in
Models Containing Variant Blocks”.

Open the model slexVariantConfigurationAnalysis.

open_system('slexVariantConfigurationAnalysis');

You can provide either a list of named variant configurations or the variable groups to analyze to the
Simulink.VariantConfigurationAnalysis class. The operation returns a variant configuration
analysis object for the model.

varConfigObjNamedConfig = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis', ...
 'NamedConfigurations', {'VendorACtrlLinear', ...
 'VendorACtrlNonLinear', 'VendorACtrlFuzzy'})

varConfigObjNamedConfig =
 VariantConfigurationAnalysis with properties:

 ModelName: 'slexVariantConfigurationAnalysis'
 Configurations: {'VendorACtrlFuzzy' 'VendorACtrlLinear' 'VendorACtrlNonLinear'}

 hideUI

5-703

varConfigObjVarGroup = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis',...
 'VariableGroups', [struct('Name', 'VendorANonLinear',...
 'VariantControls', {{'CONTROLLER', 1, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}}),...
 struct('Name', 'VendorALinear',...
 'VariantControls', {{'CONTROLLER', 0, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}})]);

You can use the variant configuration analysis object to analyze the variant configurations using
different methods specified in the following steps.

Get the list of active blocks in the variant configuration VendorACtrlLinear.

activeblocks = varConfigObjNamedConfig.getActiveBlocks('VendorACtrlLinear');

Get the list of blocks that are always active across all the named variant configurations that have
been analyzed.

alwaysActiveBlocks = varConfigObjNamedConfig.getAlwaysActiveBlocks();

Get the list of blocks that are active in some of the analyzed variant configurations and inactive in
other configurations.

getBlockDifferences = varConfigObjNamedConfig.getBlockDifferences();

Get the list of dependent libraries for a variant configuration.

dependentLibraries = varConfigObjNamedConfig.getDependentLibraries('VendorACtrlNonLinear');

Get the list of dependent models for a variant configuration.

dependentModels = varConfigObjNamedConfig.getDependentModels('VendorACtrlFuzzy');

Get the list of blocks that are inactive in all the named variant configurations that have been
analyzed.

neverActiveBlocks = varConfigObjNamedConfig.getNeverActiveBlocks();

Get the variant condition on a block in a named variant configuration.

variantCondition = varConfigObjNamedConfig.getVariantCondition('VendorACtrlNonLinear',...
'slexVariantConfigurationAnalysis/Controller/NonLinear');

Show the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.showUI();

Hide the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.hideUI();

Version History
Introduced in R2019b

See Also
Simulink.VariantConfigurationAnalysis | Simulink.VariantManager |
Simulink.VariantConfigurationData

5 Classes

5-704

Topics
“Variant Manager for Simulink”
“Variant Configurations”
“Analyze Variant Configurations in Models Containing Variant Blocks”

 hideUI

5-705

showUI
Class: Simulink.VariantConfigurationAnalysis
Package: Simulink

Show variant configuration analysis report for a model

Syntax
varConfigObj.showUI()

Description
Use this method to show the variant configuration analysis report for a model after analyzing it using
the Simulink.VariantConfigurationAnalysis class.

Note This method requires Variant Manager for Simulink.

varConfigObj.showUI() shows the variant analysis report. varConfigObj is the
VariantConfigurationAnalysis object for a model.

Examples

Analyze Variant Configurations Programmatically

This example shows how to use the Simulink.VariantConfigurationAnalysis class to analyze
variant configurations programmatically.

To analyze variant configurations using Variant Manager, see “Analyze Variant Configurations in
Models Containing Variant Blocks”.

Open the model slexVariantConfigurationAnalysis.

open_system('slexVariantConfigurationAnalysis');

You can provide either a list of named variant configurations or the variable groups to analyze to the
Simulink.VariantConfigurationAnalysis class. The operation returns a variant configuration
analysis object for the model.

varConfigObjNamedConfig = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis', ...
 'NamedConfigurations', {'VendorACtrlLinear', ...
 'VendorACtrlNonLinear', 'VendorACtrlFuzzy'})

varConfigObjNamedConfig =
 VariantConfigurationAnalysis with properties:

 ModelName: 'slexVariantConfigurationAnalysis'
 Configurations: {'VendorACtrlFuzzy' 'VendorACtrlLinear' 'VendorACtrlNonLinear'}

5 Classes

5-706

varConfigObjVarGroup = Simulink.VariantConfigurationAnalysis('slexVariantConfigurationAnalysis',...
 'VariableGroups', [struct('Name', 'VendorANonLinear',...
 'VariantControls', {{'CONTROLLER', 1, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}}),...
 struct('Name', 'VendorALinear',...
 'VariantControls', {{'CONTROLLER', 0, 'EXTERNAL_SENSOR', 1, 'ORDER', 1, 'SATURATE', 1, 'VENDOR', 1}})]);

You can use the variant configuration analysis object to analyze the variant configurations using
different methods specified in the following steps.

Get the list of active blocks in the variant configuration VendorACtrlLinear.

activeblocks = varConfigObjNamedConfig.getActiveBlocks('VendorACtrlLinear');

Get the list of blocks that are always active across all the named variant configurations that have
been analyzed.

alwaysActiveBlocks = varConfigObjNamedConfig.getAlwaysActiveBlocks();

Get the list of blocks that are active in some of the analyzed variant configurations and inactive in
other configurations.

getBlockDifferences = varConfigObjNamedConfig.getBlockDifferences();

Get the list of dependent libraries for a variant configuration.

dependentLibraries = varConfigObjNamedConfig.getDependentLibraries('VendorACtrlNonLinear');

Get the list of dependent models for a variant configuration.

dependentModels = varConfigObjNamedConfig.getDependentModels('VendorACtrlFuzzy');

Get the list of blocks that are inactive in all the named variant configurations that have been
analyzed.

neverActiveBlocks = varConfigObjNamedConfig.getNeverActiveBlocks();

Get the variant condition on a block in a named variant configuration.

variantCondition = varConfigObjNamedConfig.getVariantCondition('VendorACtrlNonLinear',...
'slexVariantConfigurationAnalysis/Controller/NonLinear');

Show the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.showUI();

Hide the variant configuration analysis report for a model after analyzing it.

varConfigObjNamedConfig.hideUI();

Version History
Introduced in R2019a

See Also
Simulink.VariantConfigurationAnalysis | Simulink.VariantManager |
Simulink.VariantConfigurationData

 showUI

5-707

Topics
“Variant Manager for Simulink”
“Variant Configurations”
“Analyze Variant Configurations in Models Containing Variant Blocks”

5 Classes

5-708

Simulink.VariantConfigurationData class
Package: Simulink

Create variant configurations programmatically

Description

Note This class requires Variant Manager for Simulink.

Use the Simulink.VariantConfigurationData class to create a variant configuration data object
that stores a collection of variant configurations, constraints, and the name of a preferred variant
configuration for a model. The class has methods that enable you to:

• Define new variant configurations.
• Add variant control variables to variant configurations.
• Create a copy of a variant configuration.
• Define constraints to check for invalid variant configurations.
• Delete existing variant configurations, constraints, and control variables.
• Set a specific configuration as the preferred variant configuration.

Creation
Description

varconfigdataObj = Simulink.VariantConfigurationData creates an empty variant
configuration data object.

varconfigdataObj = Simulink.VariantConfigurationData(Name=Value) creates a variant
configuration data object and sets “Properties” on page 5-709 using one or more name-value
arguments.

Properties
Configurations — Set of variant configurations
structure | array of structures

Set of variant configurations in the variant configuration data object, specified as an array of
structures with the following fields:

Field Type Description
Name character vector Name of the configuration. The value must be a unique and

valid MATLAB variable name.
Description character vector Description of the configuration

 Simulink.VariantConfigurationData class

5-709

Field Type Description
ControlVariabl
es

structure Variant control variable names and their values, specified as
a structure or array of structures with the fields:

• Name — Name of the control variable, specified as a
character vector

• Value — Value of the control variable, specified as any
of these data types:

• Normal MATLAB variable
• Simulink.Parameter
• Simulink.VariantControl whose Value is a

normal MATLAB variable
• Simulink.VariantControl whose Value is a

Simulink.Parameter
• Source — Source of the control variable, specified as a

character vector. Source must be'base workspace' or
the name of a data dictionary.

Example:
ctrlVarStruct=struct(Name='ControllerType.Lin
ear',Value='NoiseType.NoNoise',Source='plant.
sldd');

For an example that shows the use of different types of
variant control variables, see “Use Variant Control Variables
in Variant Blocks”.

Attributes:

GetAccess public
SetAccess private

Data Types: struct

Constraints — Constraints for variant configurations
structure | array of structures

Constraints that must be met by all variant configurations in the variant configuration data object,
specified as a structure array with the fields:

• Name — Name of the constraint, specified as a character vector. The value must be a unique and
valid MATLAB variable name.

• Condition — Boolean expression that must evaluate to true to satisfy the constraint, be defined
using variant control variables, and be specified as a character vector.

• Description — Description of the constraint, specified as a character vector.

Attributes:

GetAccess public
SetAccess private

5 Classes

5-710

Data Types: struct

PreferredConfiguration — Name of preferred variant configuration
character vector

Name of the preferred variant configuration, specified as a character vector. Use this property to
indicate the configuration that is suited for the model for common workflows. The value must be the
name of a variant configuration present in the variant configuration data object.

Attributes:

GetAccess public
SetAccess public

Data Types: char

Methods
Public Methods
addConfiguration Add new variant configuration to variant configuration data object
addComponentConfiguration Associate top-model variant configuration with variant

configuration of referenced model
addConstraint Add constraint to variant configuration data object
addControlVariables Add variant control variables to named variant configuration in

variant configuration data object
addCopyOfConfiguration Add copy of existing variant configuration to variant configuration

data object
convertDefaultToPreferred Convert default variant configuration to preferred variant

configuration
getConfiguration Get specific variant configuration from variant configuration data

object
getPreferredConfiguration Get name of preferred variant configuration for variant

configuration data object
setPreferredConfiguration Set name of preferred variant configuration for variant

configuration data object
removeConfiguration Remove variant configuration from variant configuration data

object
removeComponentConfiguration Remove association between variant configurations of top-level

model and referenced model
removeConstraint Remove constraint from variant configuration data object
removeControlVariable Remove variant control variable from variant configuration

Specialized Operators and Functions

These methods specialize standard MATLAB operators and functions for objects in this class.

 Simulink.VariantConfigurationData class

5-711

intersect vcdC = intersect(vcdA,vcdB)

Find the intersection of variant configuration data objects vcdA and
vcdB. This method returns a variant configuration data object, vcdC,
with the common variant configurations present in vcdA and vcdB.
The intersection is found by matching the variant control variables
and their values.

Constraints in vcdC are formed as follows. Consider the case where
vcdA and vcdB have two constraints each.

• vcdA: constraintA1, constraintA2
• vcdB: constraintB1, constraintB2

Then, vcdC has these constraints:

• constraintC1: constraintA1 && (constraintB1 &&
constraintB2)

• constraintC2: constraintA2 && (constraintB1 &&
constraintB2)

The constraint conditions formed by logical AND, OR, and NOT
operations are simplified by default using boolean algebra
arithmetic, and symbols can be reordered.

vcdC = intersect(vcdA, vcdB,
SimplifyConditions=false) returns a variant configuration data
object vcdC in which constraint conditions are not simplified to
simpler expressions.

The remaining properties of vcdC are the same as vcdA, and items
in vcdC appear in the same order as they appear in vcdA.

5 Classes

5-712

setdiff vcdC = setdiff(vcdA,vcdB)

Find the difference of variant configuration data objects vcdA and
vcdB. This method returns a variant configuration data object vcdC
that contains configurations that are in vcdA but not in vcdB. The
result is found based on the differences in the values of variant
control variables.

Constraints in vcdC are formed as follows. Consider the case where
vcdA and vcdB have two constraints each.

• vcdA : constraintA1, constraintA2
• vcdB : constraintB1, constraintB2

Then, vcdC has these constraints:

• constraintC1: constraintA1 && ~(constraintB1 &&
constraintB2)

• constraintC2: constraintA2 && ~(constraintB1 &&
constraintB2)

The constraint conditions formed by logical AND, OR, and NOT
operations are simplified by default using boolean algebra
arithmetic, and symbols can be reordered.

vcdC = setdiff(vcdA, vcdB, SimplifyConditions=false)
returns a variant configuration data object vcdC in which constraint
conditions are not simplified.

The remaining properties of vcdC are the same as vcdA, and items
in vcdC appear in the same order as they appear in vcdA.

 Simulink.VariantConfigurationData class

5-713

union vcdC = union(vcdA,vcdB)

Find the union of variant configuration data objects vcdA and vcdB.
This method returns a variant configuration data object vcdC that
contains configurations from both vcdA and vcdB, with no
duplicates. The union is found by matching the variant control
variables and their values.

Constraints in vcdC are formed as follows. Consider the case where
vcdA and vcdB have two constraints each.

• vcdA : constraintA1, constraintA2
• vcdB : constraintB1, constraintB2

Then, vcdC has these constraints:

• constraintC1: constraintA1 || (constraintB1 &&
constraintB2)

• constraintC2: constraintA2 || (constraintB1 &&
constraintB2)

The constraint conditions formed by logical AND, OR, and NOT
operations are simplified by default using boolean algebra
arithmetic, and symbols can be reordered.

vcdC = union(vcdA, vcdB, SimplifyConditions=false)
returns a variant configuration data object vcdC in which constraint
conditions are not simplified to simpler expressions.

The remaining properties of vcdC are the same as vcdA, and items
in vcdC appear in the same order as they appear in vcdA, then
vcdB.

unique uniquedVCD = unique(vcd)

Find unique configurations in the variant configuration data object
vcd.

Duplicate configurations in vcd are removed based on values of
variant control variables. Duplicate constraints in vcd are removed
based on the constraint conditions.

Examples

Create Variant Configuration Data Object

This example shows how to create an instance of the Simulink.VariantConfigurationData
class and set these class properties:

• Configurations (struct)
• Constraints (struct)
• PreferredConfiguration (char)

5 Classes

5-714

Define New Variant Configuration

Define a new variant configuration to add to the variant configuration data object.

The VariantConfigurations property in the Simulink.VariantConfigurationData class has
these fields:

• Name (char)
• ControlVariables (struct)
• Description (char)

• Create a struct for the ControlVariables field that contains the variant control variables and
values for the new configuration.

ctrlVarStruct = struct(Name='ControllerType.Linear',Value='NoiseType.NoNoise',Source='plant.sldd');

• Create a struct for the new variant configuration.

configStruct = struct(Name='LinInterExpNoNoise',ControlVariables=ctrlVarStruct, ...
 Description='Linear Internal Experimental Plant Controller');

Define Constraints

Define any constraints applicable for all the variant configurations in the variant configuration data
object.

constrStruct = struct(Name='PlantLocation',Condition= ...
'(PlantLoc==PlantLocation.Internal) || (PlantLoc==PlantLocation.External)', ...
Description='Plant location constraint');

Create Variant Configuration Data Object

Create the object by adding variant configurations, global constraints, and the name of the preferred
configuration.

 vcdo = Simulink.VariantConfigurationData(Configurations=configStruct,Constraints=constrStruct, ...
 PreferredConfiguration='LinInterExpNoNoise')

vcdo =
 VariantConfigurationData with properties:

 Configurations: [1x1 struct]
 Constraints: [1x1 struct]
 PreferredConfiguration: 'LinInterExpNoNoise'

Associate Variant Configuration Data Object With Model

You can associate vcdo with a Simulink® model using the VariantConfigurationObject model
parameter, for example:

set_param("<model_name>",VariantConfigurationObject="vcdo");

Tips
You can edit a variant configuration object from the base workspace or data dictionary without
launching Variant Manager. Double-click the object that is present in the base workspace or in the

 Simulink.VariantConfigurationData class

5-715

Configurations section of the data dictionary in the Model Explorer. This action launches the
Simulink.VariantConfigurationData property dialog box. This dialog box functions as a
standalone variant manager and allows you to modify variant configurations, control variables, and
constraints in the variant configuration object.

Version History
Introduced in R2013b

R2022b: New add-on required
Behavior changed in R2022b

You must install the Variant Manager for Simulink software support package to use this class and its
methods.

R2022b: New capabilities

• Support for set operations:

You can use the intersect, setdiff, union, and unique methods in
Simulink.VariantConfigurationData class to perform set operations on variant
configuration data objects. See “Specialized Operators and Functions” on page 5-711.

• New PreferredConfiguration property:

You can set any of the named configurations defined for a model as the
PreferredConfiguration to indicate the configuration that is suited for the model for common
workflows. This configuration is not applied automatically when compiling or simulating a model.
You must apply the preferred configuration explicitly on the model, if required.

If the variant configuration data object (vcd) for your model has an existing
DefaultConfiguration, you can convert it to PreferredConfiguration using this
command:

vcd.convertDefaultToPreferred(model);

To apply the PreferredConfiguration on your model before compiling or simulating the
model, use this command:

Simulink.VariantManager.applyConfiguration(model,...
vcd.getPreferredConfigurationName());

R2022b: DefaultConfigurationName and SubModelConfiguration properties will be
removed
Warns starting in R2022b

• The DefaultConfigurationName property will be removed. Use the
PreferredConfiguration property instead. Setting a default variant configuration for a variant
configuration data object is not recommended. Previously, if you had set a default configuration,
compiling or simulating the model automatically activated the default configuration irrespective of
the variant control variable values in the base workspace or data dictionary used by the model.
Now, this behavior is not applicable and setting the DefaultConfigurationName property has
no effect.

5 Classes

5-716

If the variant configuration data object (vcd) for your model has an existing
DefaultConfiguration, you can convert it to PreferredConfiguration using the
convertDefaultToPreferred method.

• The SubModelConfiguration property will be removed. The variant configurations for a top-
level model must also define the variant control variables used by any referenced components in
the model hierarchy, such as referenced models. This approach helps to maintain a single
consistent definition for a variant control across the hierarchy.

If the referenced component has named variant configurations of its own, you can use them to set
up the corresponding variant control variables in the top-level model configuration. For more
information, see “Compose Variant Configurations for Top Model Using Referenced Model
Configurations”.

For existing models with an associated variant configuration object, variant control variables in
the referenced model configuration will be automatically migrated to the configuration of the top-
level model. You must save the variant configuration object using Variant Manager to fix related
warnings.

Scripts that use these properties run with a warning.

R2022b: Methods to be removed
Not recommended starting in R2022b

These methods will be removed in a future release. Scripts that use these methods run with a
warning.

To be Removed Recommended Replacement
validateModel Simulink.VariantManager.activateModel
getFor Simulink.VariantManager.getConfigurationData
addSubModelConfiguration
s

Simulink.VariantConfigurationData.addComponentConfi
guration

removeSubModelConfigurat
ion

Simulink.VariantConfigurationData.removeComponentCo
nfiguration

getDefaultConfiguration Simulink.VariantConfigurationData.getPreferredConfi
guration

setDefaultConfigurationN
ame

Simulink.VariantConfigurationData.setPreferredConfi
guration

R2022b: Change in the format of errors output argument of validateModel method
Behavior changed in R2022b

The fields Type, Source, PathInModel, and PathInHierarchy have been removed from the
structure named Errors within the second output argument, errors. For an example, see
“Compatibility Considerations When Using Variant Manager for Simulink Support Package”.

See Also
Simulink.VariantConfigurationAnalysis | Simulink.VariantManager

Topics
“Variant Manager for Simulink”

 Simulink.VariantConfigurationData class

5-717

“Compatibility Considerations When Using Variant Manager for Simulink Support Package”
“Variant Configurations”
“Create and Activate Variant Configurations”

5 Classes

5-718

addComponentConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Associate top-model variant configuration with variant configuration of referenced model

Syntax
addComponentConfiguration(vcdTop,ConfigurationName=topConfig,ComponentName=
refmdl,ComponentConfigurationName=refConfig)
addComponentConfiguration(vcdTop,ConfigurationName=topConfig,ComponentName=
refmdl,ComponentConfigurationName=refConfig,PopulateControlVariables=false)

Description
Consider a variant model that has predefined variant configurations and also has a referenced model
in its model hierarchy. In Variant Manager, a variant configuration for a top-level model must also
define the variant control variables used by any referenced components in the model hierarchy, such
as referenced models. If the referenced component defines its own variant configurations, you can
use them to set up the control variables in the top-level configuration.

Use the addComponentConfiguration method to associate a variant configuration of the
referenced model with a variant configuration of the top-level model. This operation adds the control
variables present in the specified component configuration to the top-level model configuration. This
method thus allows you to author a top-model configuration using referenced component
configurations. For more information on this workflow, see “Compose Variant Configurations for Top
Model Using Referenced Model Configurations”.

Note This method requires Variant Manager for Simulink.

addComponentConfiguration(vcdTop,ConfigurationName=topConfig,ComponentName=
refmdl,ComponentConfigurationName=refConfig) associates the variant configuration
refConfig of the referenced model refmdl with the top-level variant configuration topConfig that
is present in the variant configuration data object vcdTop.

This operation populates variant control variables from refConfig to topConfig; that is
topConfig contains all variant control variables that are in refConfig, these variables are set to
the same values as in refConfig, and they are also marked as read-only in the top-level
configuration in the Variant Manager user interface. To populate variant control variables, refmdl is
loaded. The operation also checks that there are no conflicts in existing variant control variable
definitions of topConfig if it is associated with other referenced model configurations.

addComponentConfiguration(vcdTop,ConfigurationName=topConfig,ComponentName=
refmdl,ComponentConfigurationName=refConfig,PopulateControlVariables=false)
associates refConfig with topConfig but does not populate variant control variables from
refConfig to topConfig. Use this syntax if you do not want to update existing control variable
values in topConfig but only indicate that they come from refConfig. By default,
PopulateControlVariables is set to true.

 addComponentConfiguration

5-719

Input Arguments
vcdTop — Name of variant configuration object of top-level model
character vector | string

Name of the variant configuration data object of the top-level model, specified as a character vector
or string.
Example: "vcdo"
Data Types: char | string

topConfig — Name of top-level variant configuration
character vector | string

Name of the top-level variant configuration present in vcdTop to which the referenced component
configuration refConfig is associated, specified as a character vector or string.
Example: "LinInterExpNoNoise"
Data Types: char | string

refmdl — Name of referenced component
character vector | string

Name of the referenced component, such as a referenced model, specified as a character vector or
string.
Example: "slexVariantManagementExternalPlantMdlRef"
Data Types: char | string

refConfig — Name of referenced component configuration
character vector | string

Name of the referenced component configuration to associate with the top-level configuration
topConfig, specified as a character vector or string.
Example: "HighFid"
Data Types: char | string

Examples

Add Component Variant Configuration to Top-Model Variant Configuration

Consider the slexVariantManagement model, which is associated with the variant configuration
object vcd. The model has a referenced model named
slexVariantManagementExternalPlantMdlRef in its hierarchy that has a predefined variant
configuration named LowFid.

This command associates LowFid with the variant configuration named NonLinExterLowFid
present in vcd and populates the variant control variables from LowFid to NonLinExterLowFid.

addComponentConfiguration(vcd, ConfigurationName="NonLinExterLowFid",...
 ComponentName="slexVariantManagementExternalPlantMdlRef", ComponentConfigurationName="LowFid");

5 Classes

5-720

This command associates LowFid with NonLinExterLowFid but does not update existing control
variable values in NonLinExterLowFid.
addComponentConfiguration(vcd, ConfigurationName="NonLinExterLowFid",...
 ComponentName="slexVariantManagementExternalPlantMdlRef", ComponentConfigurationName="LowFid", PopulateControlVariables=false);

Version History
Introduced in R2022b

R2022b: Recommended over addSubModelConfigurations

The addSubModelConfigurations method will be removed in a future release. Use the
Simulink.VariantConfigurationData.addComponentConfiguration method instead.

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Create and Activate Variant Configurations”

 addComponentConfiguration

5-721

addConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Add new variant configuration to variant configuration data object

Syntax
vcdataObj.addConfiguration(name)
vcdataObj.addConfiguration(name,description)
vcdataObj.addConfiguration(name,description,controlVars)

Description

Note This method requires Variant Manager for Simulink.

vcdataObj.addConfiguration(name) adds a new variant configuration with the given name to
the variant configuration data object vcdataObj, which is an object of the
Simulink.VariantConfigurationData class.

vcdataObj.addConfiguration(name,description) adds a new variant configuration with a
given name and optional description to the variant configuration data object.

vcdataObj.addConfiguration(name,description,controlVars) adds a new variant
configuration with a given name, optional description, and control variables to the variant
configuration data object.

Input Arguments
name — Name of variant configuration
character vector | string

Name of the new variant configuration that you want to add to the variant configuration data object,
specified as a character vector or string.
Example: 'LinInterExpNoNoise'
Data Types: char | string

description — Description of variant configuration
character vector | string

Description of the variant configuration, specified as a character vector or string.
Example: 'Linear configuration with internal plant'
Data Types: char | string

controlVars — Control variables in variant configuration
structure | array of structure

5 Classes

5-722

Variant control variable names and their values, specified as a structure or array of structures with
fields:

• Name — Name of the control variable, specified as a character vector
• Value — Value of the control variable, specified as any of these data types:

• Normal MATLAB variable
• Simulink.Parameter
• Simulink.VariantControl with value as normal MATLAB variable
• Simulink.VariantControl with value as Simulink.Parameter

• Source — Source of the control variable, specified as a character vector. Source must be'base
workspace' or the name of a data dictionary.

Example:
ctrlVarStruct=struct(Name='Noise',Value='NoiseType.NoNoise',Source='plant.sld
d');

For an example that shows the use of different types of variant control variables, see “Use Variant
Control Variables in Variant Blocks”.
Data Types: struct

Examples

Add Variant Configuration

This example shows how to add a new variant configuration to a variant configuration data object.

Create an empty Simulink.VariantConfigurationData object.

vardataObj = Simulink.VariantConfigurationData

vardataObj =
 VariantConfigurationData with properties:

 Configurations: [1x0 struct]
 Constraints: [1x0 struct]
 PreferredConfiguration: ''

Create a struct with the control variable names and values for the new configuration.

% Define a variant control variable
PlantLoc = Simulink.VariantControl('Value', 1, 'ActivationTime', 'code compile');
% Create a variant control variable structure
ctrlVarStruct = struct(Name='PlantLoc', Value=PlantLoc, Source='topdata.sldd')

ctrlVarStruct = struct with fields:
 Name: 'PlantLoc'
 Value: [1x1 Simulink.VariantControl]
 Source: 'topdata.sldd'

Add the new configuration to vardataObj.

 addConfiguration

5-723

vardataObj.addConfiguration('LinInterExpNoNoise', 'Linear Internal Experimental Plant Controller', ctrlVarStruct)

Version History
Introduced in R2013b

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”

5 Classes

5-724

addConstraint
Class: Simulink.VariantConfigurationData
Package: Simulink

Add constraint to variant configuration data object

Syntax
vcdataObj.addConstraint(nameOfConstraint)
vcdataObj.addConstraint(nameOfConstraint,condition)
vcdataObj.addConstraint(nameOfConstraint,condition,description)

Description

Note This method requires Variant Manager for Simulink.

vcdataObj.addConstraint(nameOfConstraint) adds a constraint with the given name to
vcdataObj, which is an object of the Simulink.VariantConfigurationData class.

You can use constraints to check if all the variant configurations present in vcdataObj satisfy certain
conditions. The constraint must be specified as a valid Boolean condition expression. Simulink
evaluates these constraints during variant configuration activation, model compilation, simulation,
and code generation workflows.

vcdataObj.addConstraint(nameOfConstraint,condition) adds a new constraint with the
given name and condition expression to vcdataObj.

vcdataObj.addConstraint(nameOfConstraint,condition,description) adds a new
constraint with the given name, condition expression, and description to vcdataObj.

Input Arguments
nameOfConstraint — Name of constraint
character vector | string

Name of the constraint, specified as a character vector or string.
Example: "LinInternal"
Data Types: char | string

condition — Boolean condition expression
character vector | string

Boolean condition expression that is defined in terms of variant control variables, specified as a
character vector or string. The expression must evaluate to true to satisfy the constraint.
Example: "~((Ctrl==ControllerType.Linear) &&
(PlantLoc==PlantLocation.External))"

 addConstraint

5-725

Data Types: char | string

description — Description of constraint
character vector | string

Description of the constraint, specified as a character vector or string.
Example: "Linear controller must not have an external plant"
Data Types: char | string

Examples

Add Constraint

Add a new constraint to a variant configuration data object.

Create an empty Simulink.VariantConfigurationData object.

vcd = Simulink.VariantConfigurationData;

Add a constraint named LinInternal to the variant configuration data object vcdataObj.
vcd.addConstraint(Name = "LinInternal", ...
Condition = "~((Ctrl == ControllerType.Linear) && (PlantLoc == PlantLocation.External))", ...
Description = "Linear controller must not have an external plant");

Version History
Introduced in R2013b

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”

5 Classes

5-726

addControlVariables
Class: Simulink.VariantConfigurationData
Package: Simulink

Add variant control variables to named variant configuration in variant configuration data object

Syntax
vcdataObj.addControlVariables(nameOfConfiguration,variantControlVars)

Description

Note This method requires Variant Manager for Simulink.

vcdataObj.addControlVariables(nameOfConfiguration,variantControlVars) adds
variant control variables to the specified variant configuration in vcdataObj, which is an object of
the Simulink.VariantConfigurationData class.

Input Arguments
nameOfConfiguration — Name of variant configuration
character vector | string

Name of the variant configuration to which the variant control variables must be added, specified as a
character vector or string. This configuration must be present in the variant configuration data
object, vcdataObj.
Example: "LinInterExpNoNoise"
Data Types: char | string

variantControlVars — Variant control variable names and values
structure | array of structures

Variant control variable names and their values, specified as a structure or array of structures with
fields:

• Name — Name of the control variable, specified as a character vector
• Value — Value of the control variable, specified as any of these data types:

• Normal MATLAB variable
• Simulink.Parameter
• Simulink.VariantControl with value as normal MATLAB variable
• Simulink.VariantControl with value as Simulink.Parameter

• Source — Source of the control variable, specified as a character vector. Source must be'base
workspace' or the name of a data dictionary.

 addControlVariables

5-727

Example:
ctrlVarStruct=struct(Name='Noise',Value='NoiseType.NoNoise',Source='plant.sld
d');

For an example that shows the use of different types of variant control variables, see “Use Variant
Control Variables in Variant Blocks”.
Data Types: struct

Examples

Add Control Variables

This example shows how to add new variant control variables to an existing variant configuration in a
variant configuration data object.

Create an empty Simulink.VariantConfigurationData object.

vardataObj = Simulink.VariantConfigurationData

vardataObj =
 VariantConfigurationData with properties:

 Configurations: [1x0 struct]
 Constraints: [1x0 struct]
 PreferredConfiguration: ''

Create a variant configuration and add it to the variant configuration data object.

% Define a variant control variable
PlantLoc = Simulink.VariantControl('Value', 1, 'ActivationTime', 'code compile');
% Create a variant control variable structure
ctrlVarStruct = struct(Name = 'PlantLoc', Value = PlantLoc, Source = 'topdata.sldd')

ctrlVarStruct = struct with fields:
 Name: 'PlantLoc'
 Value: [1x1 Simulink.VariantControl]
 Source: 'topdata.sldd'

% Add a variant configuration to vardataObj
vardataObj.addConfiguration('LinInterExpNoNoise', 'Linear Internal Experimental Plant Controller', ctrlVarStruct)

Create a new variant control variable of type Simulink.VariantControl.

% Create a new variant control variable
SmartSensorMod = Simulink.VariantControl('Value', 2, 'ActivationTime', 'code compile');
newControlVarStruct = struct(Name = 'SmartSensorMod', Value = SmartSensorMod, Source = 'topdata.sldd')

newControlVarStruct = struct with fields:
 Name: 'SmartSensorMod'
 Value: [1x1 Simulink.VariantControl]
 Source: 'topdata.sldd'

Add the control variable to the existing variant configuration, LinInterExpNoNoise.

5 Classes

5-728

vardataObj.addControlVariables('LinInterExpNoNoise', newControlVarStruct);

Version History
Introduced in R2013b

See Also
addConfiguration | Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”

 addControlVariables

5-729

addCopyOfConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Add copy of existing variant configuration to variant configuration data object

Syntax
vcdataObj.addCopyOfConfiguration(nameofExistingConfig)
vcdataObj.addCopyOfConfiguration(nameofExistingConfig,nameofNewConfig)

Description

Note This method requires Variant Manager for Simulink.

vcdataObj.addCopyOfConfiguration(nameofExistingConfig) adds a copy of an existing
variant configuration to vcdataObj, which is an object of the
Simulink.VariantConfigurationData class. This syntax gives the new configuration a default
name based on the name of the configuration that is copied.

vcdataObj.addCopyOfConfiguration(nameofExistingConfig,nameofNewConfig) adds a
copy of an existing variant configuration to the variant configuration data object and gives the
specified name to the new configuration.

Input Arguments
nameofExistingConfig — Name of an existing configuration
character vector | string

Name of the existing variant configuration that must be copied, specified as a character vector or
string. This configuration must exist in the variant configuration data object vcdataObj.
Example: "LinInterExpNoNoise"
Data Types: char | string

nameofNewConfig — Name to be used for copied configuration
character vector | string

Name to be used for the copied configuration, specified as a character vector or string.
Example: "LinInterExpNoise"
Data Types: char | string

Examples

5 Classes

5-730

Copy Variant Configuration

Add a copy of the existing variant configuration LinInterExpNoNoise to vcdataObj and name the
copy as LinInterExpNoise.
vcdataObj.addCopyOfConfiguration("LinInterExpNoNoise","LinInterExpNoise");

Version History
Introduced in R2013b

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”

 addCopyOfConfiguration

5-731

addSubModelConfigurations
Class: Simulink.VariantConfigurationData
Package: Simulink

(To be removed) Add to a variant configuration the names of the configurations to be used for
referenced models

Note addSubModelConfigurations will be removed in a future release. For more information, see
“Version History”.

Syntax
vcdataObj.addSubModelConfigurations(nameOfConfiguration,
subModelConfigurations)

Description
vcdataObj.addSubModelConfigurations(nameOfConfiguration,
subModelConfigurations) associates a variant configuration in vcdataObj with the
configurations that must be used for referenced models. vcdataObj is an object of the
Simulink.VariantConfigurationData class and represents the variant configuration object of
the parent model. subModelConfigurations specifies names of the variant configurations to be
used for referenced models.

Input Arguments
nameOfConfiguration — Name of variant configuration of top level model
character vector | string

Name of variant configuration of top level model, specified as a character vector or string.
Example: "LinInterExpNoNoise"
Data Types: char | string

subModelConfigurations — List of referenced models and their variant configurations
vector of structures

Vector of structures containing fields: ModelName, ConfigurationName. The names of referenced
models must be unique and valid MATLAB variable names and configuration names must be valid
MATLAB variables.
Example: [struct('ModelName', 'slexVariantManagementExternalPlantMdlRef',...
'ConfigurationName', 'LowFid')]

Data Types: struct

5 Classes

5-732

Version History
addSubModelConfigurations will be removed
Warns starting in R2022b

The addSubModelConfigurations will be removed in a future release. Scripts which use this
method continue to work with a warning.

Use the Simulink.VariantConfiguratonData.addComponentConfiguration or add the
variant control variables used by referenced components in the model hierarchy to the variant
configurations of the top-level model instead.

For existing models with an associated variant configuration object, variant control variables in the
referenced model configuration will be automatically migrated to the configuration of the top-level
model. You must save the variant configuration object using Variant Manager to fix related warnings.

For more information on setting up variant control variables for referenced components, see
“Compose Variant Configurations for Top Model Using Referenced Model Configurations”.

Version History
Introduced in R2013b

See Also
Simulink.VariantConfigurationData | removeSubModelConfiguration |
addControlVariables | removeControlVariable

 addSubModelConfigurations

5-733

convertDefaultToPreferred
Class: Simulink.VariantConfigurationData
Package: Simulink

Convert default variant configuration to preferred variant configuration

Syntax
vcdataObj.convertDefaultToPreferred()
vcdataObj.convertDefaultToPreferred(model,Name=Value)

Description
Setting a default variant configuration for a variant configuration data object is not recommended. If
the variant configuration data object associated with your model has an existing default
configuration, you can convert it to the preferred variant configuration using this method.

Note This method requires Variant Manager for Simulink.

vcdataObj.convertDefaultToPreferred() sets the existing DefaultConfiguration property
of vcdataObj to its PreferredConfiguration property and then clears the
DefaultConfiguration property. vcdataObj is an object of the
Simulink.VariantConfigurationData class.

vcdataObj.convertDefaultToPreferred(model,Name=Value) sets the existing
DefaultConfiguration property of vcdataObj to its PreferredConfiguration property and
clears the DefaultConfiguration. It additionally updates the model callback functions specified
using Name=Value arguments to activate the preferred variant configuration on the model.

The preferred variant configuration is not applied automatically when compiling or simulating a
model. You must apply the preferred configuration explicitly on the model, if required. To additionally
activate the preferred configuration on the model, you can set the Name=Value arguments in this
method to add commands to the PostLoadFcn or InitFcn callbacks or both.

Input Arguments
model — Name of model
character vector | string

Name of the model, specified as a character vector or string.
Example: "slexVariantManagement"
Data Types: char | string

5 Classes

5-734

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: AddActivateToPostLoadFcn = true

AddActivateToPostLoadFcn — Option to activate preferred configuration using
PostLoadFcn callback of the model
false or 0 (default) | true or 1

Option to add commands to the PostLoadFcn callback to activate the preferred configuration on the
model, specified as a numeric or logical 1 (true) or 0 (false).
Example: true
Data Types: logical

AddActivateToInitFcn — Option to activate preferred configuration using InitFcn
callback of the model
false or 0 (default) | true or 1

Option to add commands to the InitFcn callback to activate the preferred configuration on the
model, specified as a numeric or logical 1 (true) or 0 (false).
Example: true
Data Types: logical

Examples

Convert Default to Preferred Configuration

Convert an existing default configuration of a variant configuration data object to its preferred
configuration.

Convert the DefaultConfiguration of a variant configuration data object vcdataObj to its
PreferredConfiguration and clear the DefaultConfiguration.

vcdataObj.convertDefaultToPreferred();

Convert the configuration and update the PostLoadFcn callback of the model to activate the
preferred configuration:

vcdataObj.convertDefaultToPreferred(model, ...
AddActivateToPostLoadFcn = true);

Convert the configuration and update the InitFcn callback of the model to activate the preferred
configuration:

vcdataObj.convertDefaultToPreferred(model, ...
AddActivateToInitFcn = true);

Convert the configuration and update both the PostLoadFcn and InitFcn callbacks of the model to
activate the preferred configuration:

 convertDefaultToPreferred

5-735

vcdataObj.convertDefaultToPreferred(model, ...
 AddActivateToPostLoadFcn = true,AddActivateToInitFcn = true);

Version History
Introduced in R2022b

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”

5 Classes

5-736

getConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Get specific variant configuration from variant configuration data object

Syntax
config_struct = vcdataObj.getConfiguration(nameOfConfiguration)

Description

Note This method requires Variant Manager for Simulink.

config_struct = vcdataObj.getConfiguration(nameOfConfiguration) returns the
specified variant configuration from vcdataObj, which is an object of the
Simulink.VariantConfigurationData class.

Input Arguments
nameOfConfiguration — Name of variant configuration to be returned
character vector | string

Name of the variant configuration to be returned, specified as a character vector or string.
Example: "LinInterExpNoNoise"
Data Types: char | string

Output Arguments
config_struct — Variant configuration
structure

Variant configuration, returned as a structure with the following fields:

Field Type Description
Name char Name of the configuration.
Description char Description of the configuration
ControlVariabl
es

structure The variant control variable names and their values,
returned as a struct.

Examples

 getConfiguration

5-737

Get Variant Configuration

Get the variant configuration named LinInterExpNoNoise from the variant configuration data
object vardataObj.

vardataObj.getVariantConfiguration("LinInterExpNoNoise");

Version History
Introduced in R2013b

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”

5 Classes

5-738

getDefaultConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

(To be removed) Returns default variant configuration, if any, for a variant configuration data object

Note getDefaultConfiguration will be removed in a future release. For more information, see
“Version History”.

Syntax
vcdataObj.getDefaultConfiguration

Description
vcdataObj.getDefaultConfiguration returns the default variant configuration for vcdataObj,
which is an object of the Simulink.VariantConfigurationData class. If no default variant
configuration is defined, then [] is returned.

Note Setting a default variant configuration for a variant configuration data object is not
recommended. Activate and validate the model using a specific variant configuration instead. If you
set a default configuration, compiling or simulating the model will apply the default configuration
irrespective of the variant control variable values in the base workspace or data dictionary associated
with the model.

Examples
% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

% Add the variant configuration named LinInterExp
vcdataObj.addConfiguration('LinInterExp',...
 'Linear Internal Experimental Plant Controller');

% Add the variant configuration LinInterStd
vcdataObj.addConfiguration('LinInterStd',...
 'Linear Internal Standard Plant Controller');

% Set LinExtExp as the default variant configuration
vcdataObj.setDefaultConfigurationName('LinInterExp');

% Obtain the default variant configuration
defvc = vcdataObj.getDefaultConfiguration

Version History
getDefaultConfiguration will be removed
Warns starting in R2022b

 getDefaultConfiguration

5-739

The getDefaultConfiguration method will be removed in a future release. Scripts which use this
method continue to work with a warning.

Setting a default variant configuration for a variant configuration data object is not recommended. If
the variant configuration data object associated with your model has an existing default
configuration, you can convert it to the preferred variant configuration using the
convertDefaultToPreferred method.

Version History
Introduced in R2013b

See Also
Simulink.VariantConfigurationData | getConfiguration |
setDefaultConfigurationName

5 Classes

5-740

getFor
Class: Simulink.VariantConfigurationData
Package: Simulink

(To be removed) Get the variant configuration data object associated with a model

Note getFor will be removed in a future release. Use
Simulink.VariantManager.getConfigurationData instead.

Syntax
vardatObj = Simulink.VariantConfigurationData.getFor(modelName)

Description
vardatObj = Simulink.VariantConfigurationData.getFor(modelName) returns the
variant configuration data object for a model. If no object is associated with the model, then [] is
returned.

Input Arguments
modelName — Model name
character vector

Model name specified as character vector.
Example: "slexVariantManagement"
Data Types: char

Output Arguments
vardatObj — Variant configuration data object
VariantConfigurationData

Variant configuration data object associated with the model, returned as object of
Simulink.VariantConfigurationData class.

Version History
Introduced in R2013b

R2022b: getFor will be removed
Warns starting in R2022b

The getFor will be removed in a future release. To find the variant configuration data object
associated with a model, use the Simulink.VariantManager.getConfigurationData method.
Scripts which use this method continue to work with a warning.

 getFor

5-741

See Also
Simulink.VariantManager.getConfigurationData |
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”

5 Classes

5-742

getPreferredConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Get name of preferred variant configuration for variant configuration data object

Syntax
configname = vcdataObj.getPreferredConfiguration()

Description

Note This method requires Variant Manager for Simulink.

configname = vcdataObj.getPreferredConfiguration() gets the name of the preferred
variant configuration for the Simulink.VariantConfigurationData object vcdataObj.

Output Arguments
configname — Name of preferred variant configuration
character vector | string

Name of the preferred variant configuration, returned as a character vector or string.
Data Types: char | string

Examples

Get Name of Preferred Variant Configuration for VariantConfigurationData Object

Open the model slexVariantManagement.

model = 'slexVariantManagement';
open_system(model);

Get the variant configuration data object associated with the model.

vcdataobj = Simulink.VariantManager.getConfigurationData(model);

Get the name of the preferred variant configuration for the variant configuration data object.

configname = vcdataobj.getPreferredConfiguration();

Version History
Introduced in R2022b

 getPreferredConfiguration

5-743

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”

5 Classes

5-744

removeComponentConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Remove association between variant configurations of top-level model and referenced model

Syntax
removeComponentConfiguration(vcdTop,ConfigurationName=
topConfig,ComponentName=refmdl)

Description
Consider a model that has predefined variant configurations and also has a referenced model in its
model hierarchy. The referenced model defines its own variant configurations. While authoring the
variant configurations for the top-level model, you might associate a referenced model configuration
with a top-level variant configuration to populate the corresponding control variables in the top-level
configuration. Use the removeComponentConfiguration method to remove this association. For
more information on the workflow, see “Compose Variant Configurations for Top Model Using
Referenced Model Configurations”.

Note This method requires Variant Manager for Simulink.

removeComponentConfiguration(vcdTop,ConfigurationName=
topConfig,ComponentName=refmdl) removes an existing association between a variant
configuration of the referenced model refmdl and the top-level variant configuration topConfig
that is present in the variant configuration data object vcdTop. This operation also makes variant
control variables in topConfig populated using the referenced model configuration writeable in the
Variant Manager user interface. You can modify these variables in topConfig independently of their
values in the referenced model configuration.

Input Arguments
vcdTop — Name of variant configuration object of top-level model
character vector | string

Name of the variant configuration data object of the top-level model, specified as a character vector
or string.
Example: "vcdo"
Data Types: char | string

topConfig — Name of top-level variant configuration
character vector | string

Name of the top-level variant configuration present in vcdTop from which the referenced component
configuration is disassociated, specified as a character vector or string.

 removeComponentConfiguration

5-745

Example: "LinInterExpNoNoise"
Data Types: char | string

refmdl — Name of referenced component
character vector | string

Name of the referenced component, such as a referenced model, specified as a character vector or
string.
Example: "slexVariantManagementExternalPlantMdlRef"
Data Types: char | string

Examples

Remove Association Between Variant Configurations of Top-Level Model and Referenced
Model

Consider the slexVariantManagement model, which is associated with the variant configuration
object vcd. The model has a referenced model named
slexVariantManagementExternalPlantMdlRef in its hierarchy that uses a predefined variant
configuration named LowFid. This command disassociates LowFid from the variant configuration
named NonLinExterLowFid present in vcd.

removeComponentConfiguration(vcd, ConfigurationName="NonLinExterLowFid",
 ComponentName="slexVariantManagementExternalPlantMdlRef");

Version History
Introduced in R2022b

R2022b: Recommended over removeSubModelConfiguration

The removeSubModelConfiguration method will be removed in a future release. Use the
Simulink.VariantConfigurationData.removeComponentConfiguration method instead.

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”

5 Classes

5-746

removeConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Remove variant configuration from variant configuration data object

Syntax
vcdataObj.removeConfiguration(nameOfConfiguration)

Description

Note This method requires Variant Manager for Simulink.

vcdataObj.removeConfiguration(nameOfConfiguration) removes the configuration from the
variant configuration data object vcdataObj, which is an object of the
Simulink.VariantConfigurationData class.

Input Arguments
nameOfConfiguration — Name of the configuration to be removed
character vector | string

Name of the configuration to be removed, specified as a character vector or string.
Example: "LinInterExpNoNoise"
Data Types: char | string

Examples

Remove Variant Configuration

Remove a variant configuration named LinInterExpNoNoise from the variant configuration data
object vcdataObj.

vcdataObj.removeConfiguration("LinInterExpNoNoise");

Version History
Introduced in R2013b

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

 removeConfiguration

5-747

Topics
“Variant Manager for Simulink”

5 Classes

5-748

removeConstraint
Class: Simulink.VariantConfigurationData
Package: Simulink

Remove constraint from variant configuration data object

Syntax
vcdataObj.removeConstraint(constrName)

Description

Note This method requires Variant Manager for Simulink.

vcdataObj.removeConstraint(constrName) removes the specified model-wide constraint from
the variant configuration data object vcdataObj, which is an object of the
Simulink.VariantConfigurationData class.

Input Arguments
constrName — Name of constraint
character vector | string

Name of the constraint that must be removed, specified as a character vector or string. This
constraint must be present in the variant configuration data object vcdataObj.
Example: "PlantLocConstraint"
Data Types: char | string

Examples

Remove Constraint

Remove a constraint named PlantLocConstraint from the variant configuration data object
vcdataObj:
constr_struct=vcdataObj.removeGlobalConstraint("PlantLocConstraint");

Version History
Introduced in R2013b

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

 removeConstraint

5-749

Topics
“Variant Manager for Simulink”

5 Classes

5-750

removeControlVariable
Class: Simulink.VariantConfigurationData
Package: Simulink

Remove variant control variable from variant configuration

Syntax
vcdataObj.removeControlVariable(nameOfConfiguration,nameOfControlVariable)

Description

Note This method requires Variant Manager for Simulink.

vcdataObj.removeControlVariable(nameOfConfiguration,nameOfControlVariable)
removes the specified variant control variable from the specified variant configuration in vcdataObj,
which is an object of the Simulink.VariantConfigurationData class.

Input Arguments
nameOfConfiguration — Name of variant configuration
character vector | string

Name of the variant configuration from which the control variable must be removed, specified as a
character vector or string. The configuration name must be present in the variant configuration data
object.
Example: "LinInterExpNoNoise"
Data Types: char | string

nameOfControlVariable — Name of control variable
character vector | string

Name of the control variable to be removed from the variant configuration, specified as a character
vector or string.
Example: "PlantLoc"
Data Types: char | string

Examples

Remove Control Variable

Remove a control variable named PlantLoc from the variant configuration LinInterExpNoNoise.

 removeControlVariable

5-751

vcdataObj.removeControlVariable("LinInterExpNoNoise","PlantLoc");

Version History
Introduced in R2013b

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”

5 Classes

5-752

removeSubModelConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

(To be removed) Remove from a variant configuration, the configuration to be used for a referenced
model

Note removeSubModelConfiguration will be removed in a future release. For more information,
see “Version History”.

Syntax
vcdataObj.removeSubModelConfiguration(nameOfConfiguration,nameOfSubModel)

Description
vcdataObj.removeSubModelConfiguration(nameOfConfiguration,nameOfSubModel),
removes the configuration specified for a referenced model.

Input Arguments
nameOfConfiguration — Name of referenced model configuration to be removed
character vector | string

Name of referenced model configuration to be removed, specified as a character vector or string.
Example: "HighFidelityConfig"
Data Types: char | string

nameOfSubModel — Name of referenced model from which the configuration must be
removed
character vector | string

Name of referenced model from which the configuration must be removed, specified as a character
vector or string.
Example: "ExternalPlantMdlRef"
Data Types: char | string

Version History
Introduced in R2013b

R2022b: removeSubModelConfiguration will be removed
Warns starting in R2022b

The removeSubModelConfiguration will be removed in a future release. Use the
Simulink.VariantConfiguratonData.removeComponentConfigurationmethod instead.

 removeSubModelConfiguration

5-753

For more information on setting up variant control variables for referenced components, see
“Referenced Component Configurations”.

See Also
Simulink.VariantConfigurationData | addSubModelConfigurations

5 Classes

5-754

setDefaultConfigurationName
Class: Simulink.VariantConfigurationData
Package: Simulink

(To be removed) Set name of the default variant configuration for a variant configuration data object

Note setDefaultConfigurationName will be removed in a future release. For more information,
see “Version History”.

Syntax
vcdataObj.setDefaultConfigurationName(nameOfConfiguration)

Description
vcdataObj.setDefaultConfigurationName(nameOfConfiguration) sets the default
configuration name for vcdataObj, which is an object of the
Simulink.VariantConfigurationData class. vcdataObj must contain a variant configuration
named nameOfConfiguration. If an empty value is passed, then the default configuration name is
cleared.

Note Setting a default variant configuration for a variant configuration data object is not
recommended. Activate and validate the model using a specific variant configuration instead. If you
set a default configuration, compiling or simulating the model will apply the default configuration
irrespective of the variant control variable values in the global workspace.

Input Arguments
nameOfConfiguration — Name of configuration that must be set as default
character vector | string

Name of configuration that must be set as default, specified as a character vector or string.
Example: "LinInterExpNoNoise"
Data Types: char | string

Examples
% Define the variant configuration data object
vcdataObj = Simulink.VariantConfigurationData;

% Add the LinInterExp variant configuration
vcdataObj.addConfiguration('LinInterExp',...
 'Linear Internal Experimental Plant Controller');

% Set the configuration LinInterExp as default
vcdataObj.setDefaultConfigurationName('LinInterExp');

 setDefaultConfigurationName

5-755

% Obtain the default variant configuration
dconfig = vcdataObj.getDefaultConfiguration

Version History
Introduced in R2013b

R2022b: setDefaultConfigurationName will be removed
Warns starting in R2022b

The setDefaultConfigurationName method will be removed in a future release. Scripts which
use this method continue to work with a warning.

Setting a default variant configuration for a variant configuration data object is not recommended. If
the variant configuration data object associated with your model has an existing default
configuration, you can convert it to the preferred variant configuration using the
convertDefaultToPreferred method.

See Also
Simulink.VariantConfigurationData | getDefaultConfiguration

5 Classes

5-756

setPreferredConfiguration
Class: Simulink.VariantConfigurationData
Package: Simulink

Set name of preferred variant configuration for variant configuration data object

Syntax
vcdataObj.setPreferredConfiguration(nameOfConfiguration)

Description

Note This method requires Variant Manager for Simulink.

vcdataObj.setPreferredConfiguration(nameOfConfiguration) sets the name of the
preferred variant configuration for the Simulink.VariantConfigurationData object vcdataObj
to nameOfConfiguration.

Input Arguments
nameOfConfiguration — Name of preferred variant configuration
character vector | string

Name of the preferred variant configuration, specified as a character vector or string.
Example: "LinInterExpNoNoise"
Data Types: char | string

Examples

Set Name of Preferred Variant Configuration

Open the model slexVariantManagement.

model = 'slexVariantManagement';
open_system(model);

Get the variant configuration data object associated with the model.

vcdataobj = Simulink.VariantManager.getConfigurationData(model);

Set the name of the preferred variant configuration for the variant configuration data object.

vcdataobj.setPreferredConfiguration("LinInterExpNoNoise");

Apply the preferred variant configuration and compile the model.

 setPreferredConfiguration

5-757

Simulink.VariantManager.applyConfiguration(model, 'Configuration', vcdataobj.getPreferredConfiguration());
set_param(model, 'SimulationCommand', 'Update');

Version History
Introduced in R2022b

See Also
getPreferredConfiguration | Simulink.VariantConfigurationData |
Simulink.VariantManager | Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”

5 Classes

5-758

validateModel
Class: Simulink.VariantConfigurationData
Package: Simulink

(To be removed) Validate and activate variant blocks in a model hierarchy

Note validateModel will be removed in a future release. Use
Simulink.VariantManager.activateModel instead.

Syntax
[valid,errors] = vcdataObj.validateModel(modelName)
[valid,errors] = vcdataObj.validateModel(modelName,configName)

Description
The validateModel method allows you to validate and activate a variant configuration on a model
hierarchy. You can activate a named variant configuration defined for the model or the global
workspace configuration (temporary configuration in the base workspace or data dictionary used by
the model).

The process validates if the variant elements in the model such as variant blocks, variant controls,
constraints, and the variant configuration are set up correctly. Activating a configuration:

• Checks if applicable constraints are satisfied
• Applies the variant control variable values defined in the configuration on the model
• Pushes the variant control variable values to the base workspace or data dictionary used by the

model, for use in simulation and code generation workflows

[valid,errors] = vcdataObj.validateModel(modelName), where vcdataObj is an object of
the Simulink.VariantConfigurationData class, returns the result of validating and activating
the global workspace configuration on the model hierarchy. The variant control variables must be
defined in the base workspace or data dictionary used by the model.

[valid,errors] = vcdataObj.validateModel(modelName,configName) returns the result
of validating and activating the specified named variant configuration on the model hierarchy.

Note Activation of a variant configuration performed by this method differs from the Simulink update
diagram process. See “Differences Between Variant Manager Activation and Update Diagram
Process”.

For more information on the types of variant configurations, see .

Input Arguments
modelName — Name of the model
character vector

 validateModel

5-759

Name of the model, specified as character vector.
Example: "slexVariantManagement"
Data Types: char

configName — Name of the variant configuration
character vector

Name of the variant configuration to be validated and activated, specified as character vector.
Example: "LinInterExpNoNoise"
Data Types: char

Output Arguments
valid — True or false result
1 | 0

True or false result, returned as a 1 or 0 of data type logical.

errors — List of errors
structure

List of errors, returned as an N*1 structure where N is the number of models with errors. The
structure has these fields:

Field Type Description
Model char Name of the model
Errors structure An M*1 structure where M is the number of errors in the

model. The structure has these fields:

• Message
• MessageID

Version History
Introduced in R2013b

R2022b: validateModel will be removed
Warns starting in R2022b

The validateModel will be removed in a future release. To validate and activate a variant
configuration on a model, use the Simulink.VariantManager.activateModel method. Scripts
which use this method continue to work with a warning.

R2022b: Change in the format of errors output argument

The fields Type, Source, PathInModel, and PathInHierarchy have been removed from the
structure named Errors within the second output argument, errors.

5 Classes

5-760

See Also
Simulink.VariantManager.activateModel | Simulink.VariantConfigurationData |
Simulink.VariantManager | Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”

 validateModel

5-761

Simulink.VariantControl class
Package: Simulink

Create a variant control variable object

Description
The Simulink.VariantControl class creates a variant control variable object to associate the
value of a variant control variable with a variant activation time. Use the
Simulink.VariantControl object to determine the active choices of variant blocks and variant
parameters during simulation.

Creation
variantControlVariable = Simulink.VariantControl creates a variant control variable
object with no value and 'ActivationTime' set to 'update diagram'.

variantControlVariable = Simulink.VariantControl(Name,Value) creates a variant
control variable object as specified by Name,Value pair arguments. Using this syntax, you create an
object and associate its value with a variant activation time.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Value', 1, 'ActivationTime', 'update diagram'

Value — Value of variant control variable object
scalar variable | enumerated type | Simulink.Parameter

Value of variant control variable object, specified as scalar variables, enumerated types, or
Simulink.Parameter object.
Example: 'Value', 1

ActivationTime — Activation time of active value
'update diagram' (default) | 'update diagram analyze all choices' | 'code compile' |
'startup'

Simulink can set active choice of the variant blocks or variant parameters at different stages of the
simulation and code generation workflow. Based on the stage you specify using this property,
Simulink determines if the generated code must contain only the active choice or both active and
inactive choices. The property also determines whether to analyze all the choices for incompatibilities
in signal attributes. For more information on variant activation time, see “Activate Variant During
Different Stages of Simulation and Code Generation Workflow”.

5 Classes

5-762

When you specify the variant activation time as:

• 'update diagram' –– Simulink does not analyze the choices for incompatibilities in signal
attributes. It generates code only for the active choice.

• 'update diagram analyze all choices' –– Simulink analyzes both active and inactive
choices for incompatibilities in signal attributes, however it generates code only for the active
choice.

• 'code compile' –– Simulink analyzes both active and inactive choices of variant blocks or
variant parameters for incompatibilities in signal attributes and it also generates code for both
active and inactive choices. The choices are enclosed in C preprocessor conditional statements
#if and #endif that are conditionally compiled when you compile the generated code.

• 'startup' –– Simulink analyzes both active and inactive choices of variant blocks and variant
parameters for incompatibilities in signal attributes and it also generates code for both active and
inactive choices. The choices are enclosed in regular if conditions inside the
model_initialize function of the generated code that are conditionally evaluated when you
run the executable that is built from the code.

Example: 'ActivationTime', 'code compile'

Methods
Specialized Operators and Functions

These methods specialize standard MATLAB operators and functions for objects in this class.

ne Compare if the inputs are not equal.
eq Compares if the inputs are equal.
not Returns logical NOT of input.

Examples

Simulink.VariantControl Variables for Coherent Switching of Choices in Variant Blocks

You can associate a variant control variable of type Simulink.VariantControl with a variant
activation time. Simulink.VariantControl variant control variables help you switch variant
elements such as blocks and parameters coherently.

Consider a group of blocks that represents a design choice, with each block having the same variant
control variable of type Simulink.VariantControl. If you set the variant activation time of these
blocks to inherit from Simulink.VariantControl, the blocks inherit the activation time from
the variant control variable. As a result, all the blocks have the same activation time and are
activated simultaneously to generate rational simulation results and valid code.

You can define Simulink.VariantControl type of control variables in storage locations as listed in
“Storage Locations for Variant Control Variables (Operands) in Variant Blocks”.

Open the slexVariantSubsystems model.

open_system('slexVariantSubsystems');

VSS_MODE = 2

 Simulink.VariantControl class

5-763

In the block parameters dialog box of the Controller block:

1. Specify the variant controls, V == 1 and V == 2.

set_param('slexVariantSubsystems/Controller/Linear Controller', 'VariantControl', 'V==1')
set_param('slexVariantSubsystems/Controller/Nonlinear Controller', 'VariantControl', 'V==2')

2. Set Variant activation time to inherit from Simulink.VariantControl to inherit the
activation time from V.

set_param('slexVariantSubsystems/Controller', 'VariantActivationTime', 'inherit from Simulink.VariantControl')

In the base workspace, define a Simulink.VariantControl object, V. Set its value to 1, variant
activation time to update diagram, and then simulate the model.

V = Simulink.VariantControl('Value', 1, 'ActivationTime', 'update diagram')

V =
 VariantControl with properties:

 Value: 1
 ActivationTime: 'update diagram'

During simulation, the Controller block inherits the update diagram activation time from V and
the Linear Controller block becomes active.

Double-click the Controller block to see the active choice.

sim ('slexVariantSubsystems');

If you change the value of V to 2, the Nonlinear Controller block becomes active during
simulation. You can change the value of V using this command or from Simulink.VariantControl
dialog box.

V.Value = 2;
sim ('slexVariantSubsystems');

5 Classes

5-764

If you change the variant activation time of V to update diagram analyze all choices, the
Controller block inherits the update diagram analyze all choices activation time from V.
You can observe the inherited activation time using CompiledVariantActivationTime.

V.ActivationTime = 'update diagram analyze all choices';
sim ('slexVariantSubsystems');
get_param('slexVariantSubsystems/Controller', 'CompiledVariantActivationTime')

ans =
'update diagram analyze all choices'

Numeric Variant Control Values for Rapid Prototyping of Variant Parameters

Numeric values allow you to rapidly prototype variant values when you are still building your model.
Numeric values help you focus more on building your variant values than on developing the
expressions that activate those choices.

You can define numeric control values in locations listed in “Storage Locations for Variant Control
Variables (Operands) in Variant Parameters”.

Open the slexVariantParameters model.

open_system('slexVariantParameters')

In the MATLAB Editor, specify variant choices in their simplest form as numeric values in
Simulink.VariantVariable objects K1 and K2.

K1 = Simulink.VariantVariable('Choices',{'V==1', 3.5, 'V==2', 8.5})

K1 =
VariantVariable with 2 choices:

Condition Value
_________ _____
V == 1 3.5000
V == 2 8.5000

Specification: ''

Bank: ''

Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices

K2 = Simulink.VariantVariable('Choices',{'V==1', 4.5, 'V==2', 9.5})

K2 =
VariantVariable with 2 choices:

Condition Value
_________ _____
V == 1 4.5000
V == 2 9.5000

Specification: ''

 Simulink.VariantControl class

5-765

Bank: ''

Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices

Once you successfully create the Simulink.VariantVariable objects, you can modify them by
using the methods described in “Public Methods” on page 5-811 or from the VariantVariable
dialog box.

Activate one of the variant values by defining a control variable, V, and setting its value to 1 in a
Simulink.VariantControl object.

V = Simulink.VariantControl('Value', 1, 'ActivationTime', 'update diagram')

V =
 VariantControl with properties:

 Value: 1
 ActivationTime: 'update diagram'

When you simulate the model, the condition V == 1 evaluates to true. K1 is assigned a value of 3.5
and K2 is assigned a value of 8.5.

sim ('slexVariantParameters')

If you change the value of V to 2, Simulink® sets the value of K1 and K2 to 4.5 and 9.5 during
simulation. You can change the value of V using this command or from Simulink.VariantControl
dialog box.

V.Value = 2;
sim ('slexVariantParameters')

5 Classes

5-766

Enumerated Types to Improve Code Readability of Variant Control Variables of Variant
Parameters

Use enumerated types to give meaningful names to integers used as variant control values.For more
information on enumerated type data, see “Use Enumerated Data in Simulink Models”.

In the MATLAB® Editor, define the classes that map enumerated values to meaningful names.

Open the slexVariantParameters model.

open_system('slexVariantParameters')

Specify the variant condition expressions V == EngType.Small and V == EngType.Big in
Simulink.VariantVariable objects K1 and K2.

K1 = Simulink.VariantVariable('Choices', {'V == EngType.Small',3.5,'V == EngType.Big',8.5})

K1 =
VariantVariable with 2 choices:

 Condition Value
__________________ _____
V == EngType.Big 8.5000
V == EngType.Small 3.5000

Specification: ''

Bank: ''

Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices

K2 = Simulink.VariantVariable('Choices', {'V == EngType.Small',4.5,'V == EngType.Big',9.5})

K2 =
VariantVariable with 2 choices:

 Condition Value
__________________ _____
V == EngType.Big 9.5000
V == EngType.Small 4.5000

Specification: ''

Bank: ''

Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices

Here, EngType is an integer-based enumeration class that is derived from the built-in data type,
int32. The class has two enumeration values, Small and Big. These enumerated values have
underlying integer values 1 and 2. In this example, the enumeration class is defined in the base
workspace. You can choose to define the class in other storage locations as listed in “Storage
Locations for Variant Control Variables (Operands) in Variant Blocks”.

type EngType.m

classdef EngType < Simulink.IntEnumType
 enumeration

 Simulink.VariantControl class

5-767

 Small (1)
 Big (2)
 end
methods (Static)
 function retVal = addClassNameToEnumNames()
 % ADDCLASSNAMETOENUMNAMES Specifies whether to add the class name
 % as a prefix to enumeration member names in generated code.
 % Return true or false.
 % If you do not define this method, no prefix is added.
 retVal = true;
 end
end
end

Once you successfully create the Simulink.VariantVariable objects, you can modify them by
using the methods described in “Public Methods” on page 5-811 or from the VariantVariable
dialog box.

Activate one of the variant values by defining the control variable V and setting its value to
EngType.Small in Simulink.VariantControl object V.

V = Simulink.VariantControl('Value',EngType.Small,'ActivationTime','code compile')

V =
 VariantControl with properties:

 Value: Small
 ActivationTime: 'code compile'

When you simulate the model, the condition V == 1 evaluates to true. K1 is assigned a value of 3.5,
and K2 is assigned a value of 8.5.

sim('slexVariantParameters')

5 Classes

5-768

If you change the value of V to 2, Simulink® sets the value of K1 and K2 to 4.5 and 9.5 during
simulation. You can change the value of V using this command or from Simulink.VariantControl
dialog box.

V.Value = 2

V =
 VariantControl with properties:

 Value: 2
 ActivationTime: 'code compile'

sim ('slexVariantParameters')

The code that you generate using enumerated types contains the names of the values rather than
integers.

% slexVariantParameters_private.h
% #if V == EngType_Big || V == EngType_Small
% /* Variable: K1 Referenced by: '<Root>/Gain' */
% #if V == EngType_Big
% #define rtCP_Gain_K1 (8.5)
% #elif V == EngType_Small
% #define rtCP_Gain_K1 (3.5)
% #endif
% #endif
%
% #if V == EngType_Big || V == EngType_Small
% /* Variable: K2 Referenced by: '<Root>/Gain1' */
% #if V == EngType_Big
% #define rtCP_Gain1_K2 (9.5)
% #elif V == EngType_Small
% #define rtCP_Gain1_K2 (4.5)
% #endif
% #endif
% #endif /* RTW_HEADER_slexVariantParameters_private_h_ */

Note that for variant parameters with “startup” activation time, only enumerations that are defined
using these techniques are supported:

• Using the function Simulink.defineIntEnumType
• By subclassing built-in integer data types int8, int16, int32, uint8, or uint16, or by

subclassing Simulink.IntEnumType

These enumerations are also supported when permanently stored in a Simulink® data dictionary. See
“Enumerations in Data Dictionary”.

Simulink.Parameter Type of Variant Control Variables for Code Generation of Variant
Parameters

If you intend to generate code for a model containing variant parameters, specify variant control
variables as Simulink.Parameter objects. Simulink.Parameter objects allow you to specify
other attributes, such as data type and storage class, and control the appearance and placement of
variant control variables in generated code.

 Simulink.VariantControl class

5-769

• You can define a variant control variable of type Simulink.Parameter only in the base
workspace or in a data dictionary. Defining Simulink.Parameter type of variant control
variables in the mask or model workspace is not supported. For more information on storage
locations for variant control variables, see “Storage Locations for Variant Control Variables
(Operands) in Variant Parameters”.

• Simulink.Parameter objects within structures and that have data types other than
Simulink.Bus objects are not supported.

Open the slexVariantParameters model.

open_system('slexVariantParameters')

In the MATLAB Editor, define a Simulink.Parameter object.

VSS_MODE = Simulink.Parameter;
VSS_MODE.Value = 1;
VSS_MODE.DataType = 'int32';
VSS_MODE.CoderInfo.StorageClass = 'Custom';
VSS_MODE.CoderInfo.CustomStorageClass = 'Define';
VSS_MODE.CoderInfo.CustomAttributes.HeaderFile ='demo_macros.h';

Variant control variables defined as Simulink.Parameter objects can have any of the storage
classes listed in “Storage Classes for Different Variant Activation Times” (Embedded Coder).

You can also convert a scalar variant control variable into a Simulink.Parameter object. For more
information, see “Convert Variant Control Variables into Simulink.Parameter Objects”.

Specify the object as a variant control in Simulink.VariantVariable objects K1 and K2.

K1 = Simulink.VariantVariable('Choices',{'V == 1', 3.5, 'V == 2', 8.5})

K1 =
VariantVariable with 2 choices:

Condition Value
_________ _____
V == 1 3.5000
V == 2 8.5000

Specification: ''

Bank: ''

Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices

K2 = Simulink.VariantVariable('Choices',{'V == 1', 4.5, 'V == 2', 9.5})

K2 =
VariantVariable with 2 choices:

Condition Value
_________ _____
V == 1 4.5000
V == 2 9.5000

Specification: ''

5 Classes

5-770

Bank: ''

Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices

Once you successfully create the Simulink.VariantVariable objects, you can modify them by
using the methods described in “Public Methods” on page 5-811 or from the VariantVariable
dialog box.

Activate one of the variant values by defining a control variable V and setting its value to VSS_MODE
in a Simulink.VariantControl object.

V = Simulink.VariantControl('Value',VSS_MODE,'ActivationTime','code compile')

V =
 VariantControl with properties:

 Value: [1x1 Simulink.Parameter]
 ActivationTime: 'code compile'

When you simulate the model, the condition V == 1 evaluates to true. K1 is assigned a value of 3.5,
and K2 is assigned a value of 8.5.

sim ('slexVariantParameters')

If you change the value of VSS_MODE to 2, Simulink® sets the value of K1 and K2 to 4.5 and 9.5
during simulation. You can change the value of V using this command or from
Simulink.VariantControl dialog box.

VSS_MODE.Value = 2;
V.Value = VSS_MODE;
sim ('slexVariantParameters')

Generate code from the model. For information on how to generate code, see “Generate Code Using
Embedded Coder” (Embedded Coder)

 Simulink.VariantControl class

5-771

The generated code contains both Linear and Nonlinear choices in preprocessor conditionals #if
and #elif because of the code compile activation time. The variant control variable V is defined
using a macro — #define directive — in the header file demo_macros.h. You can control the
appearance and placement of V in the generated code and prevent optimizations from eliminating
storage for V using the storage class property. For more information, see “Storage Classes for
Different Variant Activation Times” (Embedded Coder).

% demo_macros.h
% /* Exported data define */
%
% /* Definition for custom storage class: Define */
% #define V 2 /* Referenced by:
% * '<Root>/Gain'
% * '<Root>/Gain1'
% */
% #endif /* RTW_HEADER_demo_macros_h_ */
%
% /*

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For more information on code generation with variant parameters, see “Options to Represent Variant
Parameters in Generated Code” (Embedded Coder).

See Also
Simulink.VariantVariable

Topics
“Change Active Values and Activation Time of Variant Parameters”
“Compile Code Conditionally for All Values of Variant Parameters with Same and Different
Dimensions”
“Use Variant Parameters to Reuse Block Parameters with Different Values”
“Create a Simple Variant Parameter Model”

5 Classes

5-772

Simulink.VariantManager class
Package: Simulink

Access Variant Manager functionality programmatically

Description

Note This class requires Variant Manager for Simulink.

The variant manager class provides a set of methods to access Variant Manager functionality from the
MATLAB command line. Use an instance of Simulink.VariantManager class to:

• Apply a variant configuration to a model.
• Validate and activate a variant configuration in a model.
• Automatically generate all possible variant configurations for a model.
• Generate a reduced model for specified variant configurations.
• Get the VariantConfigurationData object associated with a model.
• Get the name of the preferred variant configuration for a model.
• Find variant control variables used in variant control expressions in a model.
• Convert a Variant Subsystem block to a Variant Assembly Subsystem block.
• Convert Subsystem or Model block to a Variant Subsystem block.
• Display or control the behavior of the variant condition legend.

Methods
Public Methods
Simulink.VariantManager.activateModel Validate and activate variant blocks

in model hierarchy
Simulink.VariantManager.applyConfiguration Apply specified variant

configuration to model
Simulink.VariantManager.convertToVariant Convert Subsystem or Model blocks

to Variant Subsystem block
Simulink.VariantManager.convertToVariantAssemblySubsystem Convert Variant Subsystem block to

Variant Assembly Subsystem block
Simulink.VariantManager.findVariantControlVars Find variables used in variant

control expressions
Simulink.VariantManager.generateConfigurations Generate variant configurations

automatically
Simulink.VariantManager.getConfigurationData Get variant configuration data

object associated with model
Simulink.VariantManager.getPreferredConfigurationName Get name of preferred variant

configuration for model

 Simulink.VariantManager class

5-773

Simulink.VariantManager.reduceModel Generate reduced model for
specified variant configurations

Simulink.VariantManager.variantLegend Display or control behavior of
variant condition legend

Examples

Find Variant Control Variables for Model

This example shows how to find the variant control variables used in a model.

Open the model slexVariantManagement.

model = 'slexVariantManagement';
open_system(model);

Find the variant control variables.

vars = Simulink.VariantManager.findVariantControlVars(model)

vars=6×1 struct array with fields:
 Name
 Value
 Exists
 Source
 SourceType

Version History
Introduced in R2016a

R2022b: New add-on required
Behavior changed in R2022b

You must install the Variant Manager for Simulink software support package to use this class. The
methods listed in the “Public Methods” on page 5-773 section except the convertToVariant,
convertToVariantAssemblySubsystem, and variantLegend methods need the support
package.

R2022b: New methods

The class has these new methods:

• Simulink.VariantManager.activateModel
• Simulink.VariantManager.applyConfiguration
• Simulink.VariantManager.generateConfigurations
• Simulink.VariantManager.getPreferredConfigurationName
• Simulink.VariantManager.getConfigurationData

5 Classes

5-774

See Also
Simulink.VariantConfigurationData | Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”
“Compatibility Considerations When Using Variant Manager for Simulink Support Package”

 Simulink.VariantManager class

5-775

Simulink.VariantManager.activateModel
Class: Simulink.VariantManager
Package: Simulink

Validate and activate variant blocks in model hierarchy

Syntax
Simulink.VariantManager.activateModel(modelName)
Simulink.VariantManager.activateModel(modelName,Configuration=configName)

Description

Note This method requires Variant Manager for Simulink.

The Simulink.VariantManager.activateModel method allows you to validate and activate a
variant configuration on the given model and any referenced components in the model hierarchy. You
can activate a named variant configuration defined for the model or the global workspace
configuration (temporary configuration in the base workspace or data dictionary used by the model).

The process validates if the variant elements in the model, such as variant blocks, variant controls,
constraints, and the variant configuration, are set up correctly. When you activate a configuration
using this method, it:

• Checks if applicable constraints are satisfied
• Pushes the variant control variable values to the base workspace or data dictionary used by the

model, for use in simulation and code generation workflows
• Reports an error if the activation fails

Simulink.VariantManager.activateModel(modelName) validates and activates the global
workspace configuration on the model hierarchy. The variant control variables must be defined in the
base workspace or data dictionary used by the model.

Simulink.VariantManager.activateModel(modelName,Configuration=configName)
validates and activates the specified named variant configuration on the model hierarchy.

Note Activation of a variant configuration performed by this method differs from the Simulink update
diagram process. See “Differences Between Variant Manager Activation and Update Diagram
Process”.

Input Arguments
modelName — Name of model
character vector | string

Name of the model, specified as a character vector or string.

5 Classes

5-776

Example: "slexVariantManagement"
Data Types: char | string

configName — Name of variant configuration
character vector | string

Name of the variant configuration to be validated and activated, specified as a character vector or
string.
Example: "LinInterExpNoNoise"
Data Types: char | string

Examples

Validate and Activate Variant Configurations

This example shows how to validate and activate a variant configuration programmatically.

To activate a variant configuration from Variant Manager, see “Create and Activate Variant
Configurations”.

Open the model slexVariantManagement.

open_system('slexVariantManagement');

Activate and validate the model using the variant control variables and their values currently present
in the base workspace or data dictionary used by the model.

Simulink.VariantManager.activateModel('slexVariantManagement')

Activate and validate the model using the variant configuration LinInterExpNoNoise.

Simulink.VariantManager.activateModel ...
('slexVariantManagement', Configuration = "LinInterExpNoNoise")

Version History
Introduced in R2022b

R2022b: Recommended over validateModel

The validateModel method will be removed in a future release. Use the
Simulink.VariantManager.activateModel method instead.

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”

 Simulink.VariantManager.activateModel

5-777

“Variant Configurations”

5 Classes

5-778

Simulink.VariantManager.applyConfiguration
Class: Simulink.VariantManager
Package: Simulink

Apply specified variant configuration to model

Syntax
Simulink.VariantManager.applyConfiguration(model,Configuration=configname)

Description

Note This method requires Variant Manager for Simulink.

Simulink.VariantManager.applyConfiguration(model,Configuration=configname)
applies the variant configuration specified by configname to the model model and any referenced
components in the model hierarchy.

The variant configuration named configname must be present in the VariantConfigurationData
object associated with model. The operation exports the variant control variables defined in the
specified configuration to the base workspace or data dictionary used by the model.

This method allows you to quickly switch the variant configuration for a model. The method does not
validate the configuration. To validate and activate a model using a specific configuration or using the
currently applied configuration, use the Simulink.VariantManager.activateModel method.

Input Arguments
model — Name of model
character vector | string

Name of the model to which the specified variant configuration must be applied, specified as a
character vector or string.
Example: "slexVariantManagement"
Data Types: char | string

configname — Name of variant configuration
character vector | string

Name of the variant configuration that must be applied to the model, specified as a character vector
or string.
Example: "Config1"
Data Types: char | string

Examples

 Simulink.VariantManager.applyConfiguration

5-779

Apply Variant Configuration to Model

Open the model slexVariantManagement.

model='slexVariantManagement';
open_system(model);

The model has multiple named variant configurations stored in the variant configuration data object
vcd associated with the model.

Apply the configuration LinInterExpNoNoise to the model.

Simulink.VariantManager.applyConfiguration(model,Configuration="LinInterExpNoNoise");

Version History
Introduced in R2022b

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”

5 Classes

5-780

Simulink.VariantManager.convertToVariantAssembl
ySubsystem
Class: Simulink.VariantManager
Package: Simulink

Convert Variant Subsystem block to Variant Assembly Subsystem block

Syntax
Simulink.VariantManager.convertToVariantAssemblySubsystem(blockPathOrHandle)
Simulink.VariantManager.convertToVariantAssemblySubsystem(blockPathOrHandle,
Name=Value)

Description
Simulink.VariantManager.convertToVariantAssemblySubsystem(blockPathOrHandle)
converts the Variant Subsystem block blockPathOrHandle to a Variant Assembly Subsystem block.
Use this syntax if the variant control mode of the Variant Subsystem block is label and has only
Model blocks and Subsystem Reference blocks as its variant choices.

Simulink.VariantManager.convertToVariantAssemblySubsystem(blockPathOrHandle,
Name=Value) converts the Variant Subsystem block blockPathOrHandle to a Variant Assembly
Subsystem block as specified by one or more Name-Value arguments. Use this syntax if the variant
control mode of the Variant Subsystem block is expression or has at least one Subsystem block as
its variant choice.

Input Arguments
blockPathOrHandle — Path or handle of Variant Subsystem block to convert
character vector | string scalar | double scalar

Path or handle of the Variant Subsystem block to convert to a Variant Assembly Subsystem block,
specified as a character vector or a string scalar (for a block path) or double scalar (for a handle).
Example: 'slexVariantSubsystem/Controller'
Data Types: char | string | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
Simulink.VariantManager.convertToVariantAssemblySubsystem('slexVariantAssembl
ySubsystem/Controller', VariantControlVariableName = 'EngType',
EnumerationClassFilePath = 'ControllerType.m', SubsystemFilesFolderPath =
'ControllerChoices') converts the Variant Subsystem block Controller to a Variant Assembly
Subsystem block.

 Simulink.VariantManager.convertToVariantAssemblySubsystem

5-781

VariantControlVariableName — Valid MATLAB variable name or structure field name
character vector | string scalar

Valid MATLAB variable name or structure field name to be created, specified as a string scalar or a
character vector. For the naming rules, see “Variable Names” and “Generate Field Names from
Variables”.

During simulation, Simulink uses the value of this parameter to determine the active variant choice of
the converted Variant Assembly Subsystem block.
Example: 'EngType'
Dependencies

Use this argument if VariantControlMode of the Variant Subsystem block is set to expression.
Data Types: char | string

EnumerationClassFilePath — Absolute or relative path to MATLAB class file
character vector | string scalar

Absolute or relative path to the MATLAB class file to be created, specified as a string scalar or a
character vector. During the block conversion, Simulink defines an enumeration class in the specified
enumeration class file with the variant choices of the converted Variant Assembly Subsystem block as
its members.
Example: 'ControllerType.m'
Dependencies

Use this argument if the VariantControlMode of the Variant Subsystem block is set to
expression.
Data Types: char | string

SubsystemFilesFolderPath — Absolute or relative folder path
character vector | string scalar

Absolute or relative folder path where the Subsystem Reference choices of the converted Variant
Assembly Subsystem block must be saved as subsystem files, specified as a string scalar or a
character vector.
Example: SubsystemFilesFolderPath = 'ControllerChoices'
Dependencies

Use this argument if the Variant Subsystem block has at least one Subsystem block as its variant
choice.
Data Types: char | string

Examples

Convert Variant Subsystem Block with Expressions to Variant Assembly Subsystem Block
Programmatically

This example explains how to convert a Variant Subsystem block to a Variant Assembly Subsystem
block using the Simulink.VariantManager.convertToVariantAssemblySubsystem method.

5 Classes

5-782

The Variant Assembly Subsystem block has the same variant choices as the Variant Subsystem block.
However, the subsystem choices are converted to Subsystem Reference choices and saved as
subsystem files during block conversion.

1. Consider the Controller block in the slexVariantSubsystems model. The Controller block
is a Variant Subsystem block that is to be converted to a Variant Assembly Subsystem block.

modelName = 'slexVariantSubsystems';
open_system(modelName);

VSS_MODE = 2

vssBlockPath = [modelName, '/Controller'];

2. Set the variant control mode of the Controller block to expression.

set_param(vssBlockPath, 'VariantControlMode', 'expression');

3. To convert the Controller block to a Variant Assembly Subsystem block, use the
convertToVariantAssemblySubsystem method. During the conversion,

• The subsystem choices Linear Controller and Nonlinear Controller are converted to
Subsystem Reference blocks because the Variant Assembly Subsystem block does not support
subsystem choices. The name of the Subsystem Reference blocks are the same as the subsystem
blocks and are saved in the subsystem files Linear_Controller.slx and
Nonlinear_Controller.slx in the folder that you specify. For more information on how
Simulink converts the subsystem blocks to Subsystem Reference blocks, see “Convert an Existing
Subsystem to a Referenced Subsystem”.

• An enumeration class controllerClass is created in the folder that you specify. The
controllerClass class has Linear_Controller and Nonlinear_Controller choices as its
members.

You may need to resolve any issues with the folders you specify for the enumeration class and
subsystem files.

• If either folder does not exist in the file system, Simulink creates the folder by using the mkdir
command and then adds it to the MATLAB path.

• If either folder contains files with the same names as the enumeration class or subsystem files,
Simulink overwrites them.

vcvName = 'EngType';
enumClassFilePath = 'controllerClass.m';
Simulink.VariantManager.convertToVariantAssemblySubsystem(vssBlockPath, VariantControlVariableName=vcvName, EnumerationClassFilePath=enumClassFilePath, SubsystemFilesFolderPath=pwd);

After successfully converting the Controller block to a Variant Assembly Subsystem block, observe
the expressions in Variant control expression for each variant choice. Simulink generates the
expressions with the “Variant control variable” on page 1-0 on the left side and the members of
the “Variant choices enumeration” on page 1-0 on the right side. Both sides of the expression are
related by ==. When an expression evaluates to true during simulation, the corresponding variant
choice becomes active.

4. Set Linear_Controller active by specifying the value of EngType to
controllerClass.Linear_Controller and simulate the model. During simulation, the control
expression EngType == controllerClass.Linear_Controller evaluates to true and
Linear_Controller becomes active.

 Simulink.VariantManager.convertToVariantAssemblySubsystem

5-783

EngType = controllerClass.Linear_Controller;
sim(modelName);

For information on how to use Variant Assembly Subsystem blocks, see “Add or Remove Variant
Choices of Variant Assembly Subsystem Blocks Using External Files”.

Convert Variant Subsystem Block with Labels to Variant Assembly Subsystem Block
Programmatically

This example explains how to convert a Variant Subsystem block to a Variant Assembly Subsystem
using the Simulink.VariantManager.convertToVariantAssemblySubsystem method. The
Variant Assembly Subsystem block has the same variant choices as the Variant Subsystem block.
However, the subsystem choices are converted to Subsystem Reference choices and saved as
subsystem files during block conversion.

1. Consider the Controller block in the slexVariantSubsystems model. The Controller block
is a Variant Subsystem block that is to be converted to a Variant Assembly Subsystem block.

modelName = 'slexVariantSubsystems';
open_system(modelName);

VSS_MODE = 2

vssBlockPath = [modelName, '/Controller'];

2. Set the variant control mode of the Controller block to label.

set_param(vssBlockPath, 'VariantControlMode', 'label');

3. To convert the Controller block to a Variant Assembly Subsystem block, use the
convertToVariantAssemblySubsystem method. During the conversion, the subsystem choices
Linear Controller and Nonlinear Controller are converted to Subsystem Reference blocks
because the Variant Assembly Subsystem block does not support subsystem choices. The name of the
newly created Subsystem Reference blocks are the same as the subsystem blocks and are saved in
the subsystem files Linear_Controller.slx and Nonlinear_Controller.slx in the folder
that you specify. For more information on how Simulink converts the subsystem blocks to Subsystem
Reference blocks, see “Convert an Existing Subsystem to a Referenced Subsystem”.

You may need to resolve any issues with the folders you specify for the subsystem files.

• If the specified folder does not exist in the file system, Simulink creates the folder by using mkdir
command.

• If the specified folder contains files with the same name as the new subsystem files, Simulink
overwrites them.

Simulink.VariantManager.convertToVariantAssemblySubsystem(vssBlockPath, SubsystemFilesFolderPath=pwd);

After successfully converting the Controller block to a Variant Assembly Subsystem block, observe
the expression in the “Variant choices specifier” on page 1-0 parameter. The expression is of the
form {'Linear_Controller', 'Nonlinear_Controller'}, where Linear_Controller and
Nonlinear_Controller are the variant choices of the converted block. To add or remove variant
choices from the Controller block, change the specifier as described in “Add or Remove Variant
Choices of Variant Assembly Subsystem Blocks Using External Files”.

5 Classes

5-784

4. To simulate the model for Linear_Controller, set the value of Label mode active choice to
Linear_Controller and simulate the model.

set_param(vssBlockPath, 'LabelModeActiveChoice', 'Linear_Controller');
sim(modelName);

Limitations
Only Variant Subsystem blocks with the Variant control mode set to label or expression can be
converted to a Variant Assembly Subsystem block.

Alternatives
You can convert a Variant Subsystem block to a Variant Assembly Subsystem block through the block
dialog. For more information, see “Convert Variant Subsystem to Variant Assembly Subsystem”.

Version History
Introduced in R2022b

R2023a: Support for expression mode added

You can convert a Variant Subsystem block in expression mode to a Variant Assembly Subsystem
block.

See Also
Variant Subsystem

Topics
“Add or Remove Variant Choices of Variant Assembly Subsystem Blocks Using External Files”

 Simulink.VariantManager.convertToVariantAssemblySubsystem

5-785

Simulink.VariantManager.convertToVariant
Class: Simulink.VariantManager
Package: Simulink

Convert Subsystem or Model blocks to Variant Subsystem block

Syntax
variant_subsystem = Simulink.VariantManager.convertToVariant(
blockPathOrHandle)

Description
variant_subsystem = Simulink.VariantManager.convertToVariant(
blockPathOrHandle) converts a Subsystem block or Model block to a Variant Subsystem block. A
Variant Subsystem can contain a combination of Subsystem blocks, Model blocks, or Subsystem
Reference blocks as choices.

Input Arguments
blockPathOrHandle — Subsystem or Model block to convert
block path | block handle

The Subsystem or Model block to convert to a Variant Subsystem block, specified as a block path or
handle. Specify a block path as a character vector and a block handle as a scalar.
Example: 'mdlVar1/VariantModelBlock1'

Output Arguments
variant_subsystem — Handle of Variant Subsystem block
scalar

The block handle of the Variant Subsystem block created by the conversion, returned as a scalar.

Examples

Convert Subsystem block or Model block to Variant Subsystem

Convert the Subsystem block Controller in the f14 model to a Variant Subsystem block.

open_system('f14');
Simulink.VariantManager.convertToVariant('f14/Controller');

Convert the Model block CounterA in the sldemo_mdlref_basic model to a Variant Subsystem
block.

5 Classes

5-786

openExample('simulink_features/ComponentBasedModelingWithModelReferenceExample');
Simulink.VariantManager.convertToVariant('sldemo_mdlref_basic/CounterA');

Limitations
The convertToVariant method does not support Subsystem blocks in a Simscape model that has
Editing Mode set to Restricted.

Alternatives
Simulink Editor

In the Simulink Editor, right-click the Subsystem or Model block and select Subsystems & Model
Reference > Convert to > Variant Subsystem.

Version History
Introduced in R2017b

See Also
Variant Subsystem

Topics
“Create a Simple Variant Model”
“Implement Variations in Separate Hierarchy Using Variant Subsystems”
“What Are Variants and When to Use Them”

 Simulink.VariantManager.convertToVariant

5-787

Simulink.VariantManager.findVariantControlVars
Class: Simulink.VariantManager
Package: Simulink

Find variables used in variant control expressions

Syntax
vars = Simulink.VariantManager.findVariantControlVars(model)
vars = Simulink.VariantManager.findVariantControlVars(model,
'SearchReferencedModels','off')

Description

Note This method requires Variant Manager for Simulink.

vars = Simulink.VariantManager.findVariantControlVars(model) returns the variant
control variables used by variant blocks and variant parameters in the model, Model. If the variant
control is a Simulink.Variant object, then the variables are retrieved from the variant condition
within the object.

vars = Simulink.VariantManager.findVariantControlVars(model,
'SearchReferencedModels','off') disables the search in referenced models. By default, this
search is enabled across the model hierarchy.

Input Arguments
model — Model name
character vector | string

Model name for which variant control variables must be found, specified as a character vector or
string.
Data Types: char | string

'SearchReferencedModels' — Option to search in referenced models
'on' (default) | 'off'

Option to search in referenced models within the given model, specified as 'on' or 'off'. By
default, search is enabled for referenced models.

Output Arguments
vars — Variant control variables for model
structure

Variant control variables for model, returned as an N-by-1 structure with the following fields:

5 Classes

5-788

• Name — Name of the variable used in the variant control expression.
• Value — Value of the variable. This field is 0 if the variable is not defined in the base workspace

or data dictionary used by the model.
• Exists — Logical value that indicates if the variable is defined in the base workspace or data

dictionary used by the model. If the variable is defined, this value is true; otherwise false.
• Source — Value is either base workspace or the name of the data dictionary where the variable

is stored.
• SourceType — Value is either base workspace or data dictionary depending on where the

variable is stored.

Examples

Find Variant Control Variables for Model

This example shows how to find the variant control variables used in a model.

Open the model slexVariantManagement.

model = 'slexVariantManagement';
open_system(model);

Find the variant control variables.

vars = Simulink.VariantManager.findVariantControlVars(model)

vars=6×1 struct array with fields:
 Name
 Value
 Exists
 Source
 SourceType

Version History
Introduced in R2015a

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Introduction to Variant Controls”
“Variant Manager for Simulink”

 Simulink.VariantManager.findVariantControlVars

5-789

Simulink.VariantManager.generateConfigurations
Class: Simulink.VariantManager
Package: Simulink

Generate variant configurations automatically

Syntax
vcdataobj = Simulink.VariantManager.generateConfigurations(modelName)
[vcdataobj,configsInfo] = Simulink.VariantManager.generateConfigurations(
modelName,Name=Value)

Description
vcdataobj = Simulink.VariantManager.generateConfigurations(modelName) generates
variant configurations for the given model . The method returns a variant configuration data object
vcdatamodelNameobj that contains the generated configurations.

[vcdataobj,configsInfo] = Simulink.VariantManager.generateConfigurations(
modelName,Name=Value) generates variant configurations for the given model modelName as
specified by optional Name=Value arguments.

If Precondition is specified and the AddPreconditionAsConstraint argument is set to true,
the corresponding condition is defined as a global constraint in the output object vcdataobj. The
optional configsInfo output contains information on the validity of the generated configurations.

Input Arguments
modelName — Name of the model
string | character vector

Name of the model, specified as a character vector or string.
Example: "slexVariantManagement"
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
vcdataobj=Simulink.VariantManager.generateConfigurations("slexVariantManageme
nt", Precondition={'Ctrl == ControllerType.Linear', 'PlantLoc ==
PlantLocation.Internal'}, AddPreconditionAsConstraint=true, Validity="valid")

Precondition — Conditions that must be satisfied by generated configurations
character vector | cell array of character vectors

5 Classes

5-790

Conditions that must be satisfied by the generated configurations, specified as a character vector or
cell array of character vectors containing valid Boolean expressions. You can use preconditions to
limit the combinations of control variables to consider at a time or to apply constraints based on
requirements.
Example: {'Ctrl == ControllerType.Linear', 'PlantLoc ==
PlantLocation.Internal'}

Data Types: char | cell

AddPreconditionAsConstraint — Option to export preconditions as constraints
false or 0 (default) | true or 1

Option to export preconditions as constraints in the output variant configuration data object
vcdataobj specified as a numeric or logical 1 (true) or 0 (false). If false, the predicate
conditions are not added to vcdataobj. If true, the conditions are added as constraints that must
be satisfied by all configurations in vcdataobj.

Validity — Type of configurations to include in the output
"valid-unique" (default) | "valid" | "all"

Type of configurations to include in the output, specified as valid-unique, valid, or all.

The configurations generated by this method can include invalid configurations that might result in
compilation errors or duplicate configurations that are functionally equivalent and hence produce
similar results. Use this argument to specify which of these configurations to retain in the output.

• valid-unique — Include only valid configurations without any duplicates that are functionally
equivalent. Two variant configurations are functionally equivalent if they result in same set of
active blocks in the model. This option generates a minimal set of configurations with maximum
coverage.

If a configuration has functional equivalents, this option lists one of those equivalent
configurations also in the result with the Validity Status value as EquivalentK. K is an
annotation to identify a group of equivalent configurations, for example, Equivalent1.

• valid — Include only valid configurations.

These configurations might include duplicate configurations that are functionally equivalent.
Functional duplicates might occur due to the structure of a model resulting in the same variant
paths being active for different variant control values. This option generates the full set of
configurations with repetitive coverage.

• all — Include valid, invalid, and duplicate configurations.

An invalid configuration violates variant semantics and causes an error during the update diagram
process. For example, you have a configuration that deactivates all choices in an inline variant
block. However, this block has the Allow zero variant control set to off, which contradicts the
deactivation and causes an error.

For any validity option, the method generates only those configurations that satisfy the specified
preconditions.
Example: "valid"

ExcludeVariantConfigurationData — Configurations and constraints that do not need to
be generated
character vector

 Simulink.VariantManager.generateConfigurations

5-791

Name of a variant configuration data object of type Simulink.VariantConfigurationData that
contains the configurations that do not need to be generated, specified as a character vector. This
also excludes any constraints present in the variant configuration data object. Use this option to
augment existing configurations for a model or to generate configurations incrementally.
Example: 'vcataObjIgnore'

Output Arguments
vcdataobj — Variant configuration data object
Simulink.VariantConfigurationData

Variant configuration data object that contains the generated variant configurations for the given
model, returned as an object of type Simulink.VariantConfigurationData. if Precondition is
provided and AddPreconditionAsConstraint is set to true, the corresponding conditions are
defined as model-wide constraints in this object.

configsInfo — Name and validity of configurations
structure array

Name and validity of generated configurations, returned as a structure array with the fields:

• Name — Name of the generated configuration
• ValidityStatus — Validity of the generated configuration that indicates whether a
configuration is unique, a functional equivalent, or an invalid one, specified as one of these values:

• Unique — Configuration is valid and unique without any functional duplicates.
• EquivalentK — Configuration is valid and is a functional equivalent of another configuration.

K is an annotation to identify a group of equivalent configurations, for example, Equivalent1.
• Invalid — Configuration is not valid.

For example, consider a variant configuration object vcdataobj with six generated configurations.
The generated configurations have validity as follows:

• VConfig1 is valid and has no functional duplicates.
• VConfig3 is invalid.
• VConfig2 and VConfig5 are valid and equivalent.
• VConfig4 and VConfig6 are valid and equivalent.

Then, configsInfo is a 1-by-6 structure array:

'VConfig1' 'Unique'
'VConfig2' 'Equivalent1'
'VConfig3' 'Invalid'
'VConfig4' 'Equivalent2'
'VConfig5' 'Equivalent1'
'VConfig6' 'Equivalent2'

Data Types: struct

5 Classes

5-792

Limitations
• The auto-generation process supports only ==, ~=, &&, ||, and ~ operators in the variant control

expressions of variant blocks and in the preconditions. If the variant control expressions use other
operators such as arithmetic or relational operators, the configurations that can activate those
variant choices might not get generated.

• The process does not support generating variant configurations for these modeling elements:

• Variant blocks with a Variant control expression that contains noninteger double values,
structure fields, or Simulink.Parameter objects with value set to an expression of type
slexpr

• Variant parameter objects of type Simulink.VariantVariable
• Model that represents a library or subsystem

• For variant blocks with the Variant control mode parameter set to label, the variant control
labels are strings, not variables. Hence they are not present in the generated configurations.

• For Variant Subsystem blocks, these conditions also apply:

• If the Variant control mode parameter is set to label, only the variations present in the
active label path are considered when you generate configurations.

Consider this model hierarchy for a model with a Variant Subsystem block in label mode. The
active choice for the variant subsystem is the Subsystem block, which has its variant control
set to a label, SUB1. The variant control variable A is used by the active choice and is
considered when you generate configurations. The process does not consider the control
variable B because it is in the inactive choice of the variant subsystem.

Here is the list of all generated configurations.

 Simulink.VariantManager.generateConfigurations

5-793

• If the Variant control mode parameter is set to sim codegen switching, only the
variations present in the sim choice are considered when you generate configurations. For the
variant controls present in the codegen hierarchy, only the default values are included in the
generated configurations.

Consider this model hierarchy for a model with a Variant Subsystem block in sim codegen
switching mode. The sim choice for the variant subsystem is the Subsystem block. The
variant control variable B present in this choice is considered when you generate
configurations. The process only considers the default value for the control variable C because
it is in the codegen choice of the variant subsystem.

Here is the list of all generated configurations.

• If the Variant activation time is set to update diagram, only the variations in the active
choice are considered for generating configurations.

5 Classes

5-794

Examples

Generate Variant Configurations Programmatically

This example shows how to generate variant configurations for a model programmatically.

To generate variant configurations from Variant Manager, see “Generate Variant Configurations
Automatically”.

This command returns valid variant configurations for the model slexVariantManagement that
satisfy the conditions specified on the variant control variables Ctrl and PlantLoc.

model = "slexVariantManagement";
open_system(model);
[vcdataobj,configsInfo] = Simulink.VariantManager.generateConfigurations ...
 (model, Precondition = {'Ctrl == ControllerType.Linear', 'PlantLoc == PlantLocation.Internal'}, ...
 AddPreconditionAsConstraint = true, Validity = "valid");

Activating the model for the current state of the model.
An update diagram operation is required to generate variant configurations.
Performing update diagram for the model.
Evaluating 96 potential combinations to generate...
Number of generated configurations: 16
Created snapshot of the model at 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\23\tp4d276709\simulink_variants-ex51080552\slexVariantManagement_vmgrsnap\20230303_130649'.

The variant configuration data object vcdataobj stores all the valid configurations. The structure
array configsInfo provides information on the validity status of generated configurations.

To return only valid and functionally unique configurations, set Validity to valid-unique.

[vcdataobj,configsInfo] = Simulink.VariantManager.generateConfigurations(model,...
 Precondition = {'Ctrl == ControllerType.Linear', 'PlantLoc == PlantLocation.Internal'}, ...
 AddPreconditionAsConstraint = true, Validity = "valid-unique");

Activating the model for the current state of the model.
An update diagram operation is required to generate variant configurations.
Performing update diagram for the model.
Evaluating 96 potential combinations to generate...
Number of generated configurations: 3
Created snapshot of the model at 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\23\tp4d276709\simulink_variants-ex51080552\slexVariantManagement_vmgrsnap\20230303_130654'.

To return all generated configurations, including invalid configurations, set Validity to all.

[vcdataobj,configsInfo] = Simulink.VariantManager.generateConfigurations(model,...
 Precondition = {'Ctrl == ControllerType.Linear', 'PlantLoc == PlantLocation.Internal'}, ...
 AddPreconditionAsConstraint = true, Validity = "all");

Activating the model for the current state of the model.
An update diagram operation is required to generate variant configurations.
Performing update diagram for the model.
Evaluating 96 potential combinations to generate...
Number of generated configurations: 16
Created snapshot of the model at 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\23\tp4d276709\simulink_variants-ex51080552\slexVariantManagement_vmgrsnap\20230303_130658'.

 Simulink.VariantManager.generateConfigurations

5-795

Tips
You can use the intersect, setdiff, union, and unique methods in the
Simulink.VariantConfigurationData class to perform set operations on variant configuration
data objects. See “Specialized Operators and Functions” on page 5-711.

Version History
Introduced in R2022b

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”
“Generate Variant Configurations Automatically”

5 Classes

5-796

Simulink.VariantManager.getConfigurationData
Class: Simulink.VariantManager
Package: Simulink

Get variant configuration data object associated with model

Syntax
vcdo = Simulink.VariantManager.getConfigurationData(model)

Description

Note This method requires Variant Manager for Simulink.

vcdo = Simulink.VariantManager.getConfigurationData(model) returns the variant
configuration data object associated with the model model.

Input Arguments
model — Name of model
character vector | string

Name of the model, specified as a character vector or string.
Example: "slexVariantManagement"
Data Types: char | string

Output Arguments
vcdo — Variant configuration data object
Simulink.VariantConfigurationData object

Variant configuration data object associated with the model, returned as an object of the
Simulink.VariantConfigurationData class.

Examples

Get Variant Configuration Object for Model

Open the model slexVariantManagement.

model = 'slexVariantManagement';
open_system(model);

Get the existing variant configuration object for the model.

Simulink.VariantManager.getConfigurationData(model)

 Simulink.VariantManager.getConfigurationData

5-797

ans =
 VariantConfigurationData with properties:

 Configurations: [1x6 struct]
 Constraints: [1x1 struct]
 PreferredConfiguration: ''

Get the name of variant configuration object associated with the model.

get_param(model, 'VariantConfigurationObject')

ans =
'vcd'

Version History
Introduced in R2022b

R2022b: Recommended over getFor

The getFor method will be removed in a future release. Use the
Simulink.VariantManager.getConfigurationData method instead.

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”

5 Classes

5-798

Simulink.VariantManager.getPreferredConfiguratio
nName
Class: Simulink.VariantManager
Package: Simulink

Get name of preferred variant configuration for model

Syntax
configname = Simulink.VariantManager.getPreferredConfigurationName(model)

Description

Note This method requires Variant Manager for Simulink.

configname = Simulink.VariantManager.getPreferredConfigurationName(model)
returns the name of the preferred variant configuration for the model model.

Input Arguments
model — Name of model
character vector | string

Name of the model, specified as a character vector or string.
Example: "slexVariantManagement"
Data Types: char

Output Arguments
configname — Name of preferred variant configuration
character vector

Name of the preferred variant configuration, returned as a character vector.

Examples

Get Name of Preferred Variant Configuration for Model

Open the model slexVariantManagement.

model = 'slexVariantManagement';
open_system(model);

Get the name of the preferred variant configuration for the variant configuration data object
associated with this model.

 Simulink.VariantManager.getPreferredConfigurationName

5-799

configname = Simulink.VariantManager.getPreferredConfigurationName(model);

Version History
Introduced in R2022b

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”

5 Classes

5-800

Simulink.VariantManager.reduceModel
Class: Simulink.VariantManager
Package: Simulink

Generate reduced model for specified variant configurations

Syntax
Simulink.VariantManager.reduceModel(model)
Simulink.VariantManager.reduceModel(model,Name,Value)

Description

Note This method requires Variant Manager for Simulink.

Simulink.VariantManager.reduceModel(model) generates a reduced model from the input
model model.

By default, the current values of variant control variables in the base workspace or data dictionary of
the input model are used for reduction. The reduction process retains the variant configurations
corresponding to these values and removes the inactive model components. The reduced artifacts are
generated in a folder named ./reducedModel within the input model folder. The name of the
reduced model and any reduced referenced model is the original model name suffixed with _r, by
default.

Simulink.VariantManager.reduceModel(model,Name,Value) allows you to specify additional
reduction options using one or more Name,Value arguments.

Input Arguments
model — Name of model to be reduced
string | character vector

Name of the model to be reduced, specified as a string or character vector.

Name-Value Pair Arguments

Specify optional Name,Value arguments. Name is the argument name and Value is the
corresponding value. You can specify several name and value arguments in any order as
Name1,Value1,...,NameN,ValueN.

NamedConfigurations — Names of variant configurations to be retained
string | character vector | cell array of strings | cell array of character vectors

Names of variant configurations to be retained in the reduced model, specified as a string, a
character vector, a cell array of strings, or a cell array of character vectors . These named variant
configurations must be present in the variant configuration data object (of type
Simulink.VariantConfigurationData) associated with the model.

 Simulink.VariantManager.reduceModel

5-801

Example: 'NamedConfigurations', 'C1'
Example: 'NamedConfigurations', {'C2'}
Data Types: char | string | cell

VariableGroups — Groups of variant control variables and their values
cell array

Variant control variables and their values that must be used for reduction, specified as a cell array
containing the variable names and values.

Note Specifying both VariableGroups and NamedConfigurations is not supported.

You can create multiple named variable groups for a model. To specify names for the variable groups,
specify a struct array with the fields Name and VariantControls. Name denotes the name of the
variable group, and VariantControls must be a cell array with variant control variable names and
their corresponding values. For example:
 Simulink.VariantManager.reduceModel('slexVariantReducer',...
 'VariableGroups', struct('Name', 'Group1', 'VariantControls', {{'V',1,'W',[1 2]}}));

Example: 'VariableGroups', {{'V',1,'W',1},{'V',2,'W',2}}
Data Types: cell

FullRangeVariables — Variables for which full range must be considered for reduction
cell array

Variables for which their full range must be considered for reduction, specified as a cell array of
variant control variable names and their corresponding values. This option allows you to reduce a
model for all valid values of the specified variant control variables. You must also provide a reference
value for this variant control variable for which the model compiles successfully.

For example, consider a variant control variable, W, that is specified as a full-range variant control
variable. W uses a reference value of 1. The reduction process considers V=1 and all valid values of W.
To perform full-range analysis, Variant Reducer compiles the model once using the values
{'V',1,'W',1}.

Simulink.VariantManager.reduceModel('slexVariantReducer',...
 'VariableGroups',{'V',1},...
 'FullRangeVariables',{'W',1});

Data Types: cell

CompileMode — Compilation mode
'sim' (default) | 'codegen'

Compilation mode, specified as 'sim' or 'codegen'. These options indicate whether the model
should be compiled for simulation or code generation mode, respectively, as part of reduction. If the
model contains variant blocks with the Variant control mode parameter set to sim codegen
switching, you can specify the value as codegen to retain the code generation branches of the
blocks in the reduced model. For the default value sim, Variant Reducer compiles and retains the
simulation branches in the top-level model.

ExcludeFiles — List of files to exclude during reduction
cell array of character vectors

5 Classes

5-802

List of any dependent Simulink data dictionary files (*.sldd) and MAT-files (*.mat) outside the
MATLAB root folder to exclude during reduction, specified as a cell array of character vectors.

You can also provide wildcard characters, for example {'*.sldd'}.
Example: {'topData.sldd'}
Data Types: cell

OutputFolder — Folder to place reduced model and related artifacts
string | character vector

Folder to place the reduced models and related artifacts, specified as a character vector or string. By
default, the reduced models are generated in a folder named ./reducedModel within the original
model folder.

PreserveSignalAttributes — Option to preserve signal attributes in reduced model
true or 1 (default) | false or 0

Option to preserve signal attributes in the reduced model, specified as a numeric or logical 1 (true)
or 0 (false). When the value is true, Variant Reducer preserves the compiled signal attributes from
the original model by adding signal specification blocks at appropriate block ports in the reduced
model. Compiled signal attributes include signal data types, signal dimensions, and compiled sample
times.

Verbose — Option to display detailed reduction steps
false or 0 (default) | true or 1

Option to display detailed reduction steps, specified as a numeric or logical1 (true) or 0 (false).
When the value is true, Variant Reducer displays details of the steps performed during model
reduction.

ModelSuffix — Suffix to append to name of reduced model
'_r' (default) | character vector

Suffix to append to the name of the reduced model and the related artifacts, specified as a character
vector.

GenerateSummary — Option to generate summary HTML file
false or 0 (default) | true or 1

Option to generate a summary HTML file, specified as a numeric or logical1 (true) or 0 (false).
When the value is true, Variant Reducer generates an HTML file with details about the reduced
model and any modifications that may be required for masks and callbacks.

Note To generate a summary, you must have a Simulink Report Generator™ license.

Limitations
For information on modifications made to model components during reduction and limitations of the
reduction process, see “Considerations and Limitations for Variant Reduction”.

 Simulink.VariantManager.reduceModel

5-803

Examples

Reduce Variant Model Programmatically

Open the models slexVariantReducer and sldemo_variant_subsystems.

open_system('slexVariantReducer');
open_system('sldemo_variant_subsystems');

Reduce the sldemo_variant_subsystems model based on the variant control variable values in
the base workspace.

Simulink.VariantManager.reduceModel('sldemo_variant_subsystems');

Successfully created reduced model
'C:\TEMP\Bdoc23a_2213998_3568\ib570499\23\tp4d276709\simulink_variants-ex20490563\reducedModel\sldemo_variant_subsystems_r.slx'.

Reduce the model based on the variant control variable values in the base workspace, and place the
reduced model in the specified output directory.

Simulink.VariantManager.reduceModel('sldemo_variant_subsystems', ...
 'OutputFolder', 'outdir1');

Successfully created reduced model
'C:\TEMP\Bdoc23a_2213998_3568\ib570499\23\tp4d276709\simulink_variants-ex20490563\outdir1\sldemo_variant_subsystems_r.slx'.

Reduce the model by specifying named variant configurations present in the variant configuration
data object associated with the model.

Simulink.VariantManager.reduceModel('slexVariantReducer',...
 'NamedConfigurations', {'config1', 'config2'});

Successfully created reduced model
'C:\TEMP\Bdoc23a_2213998_3568\ib570499\23\tp4d276709\simulink_variants-ex20490563\reducedModel\slexVariantReducer_r.slx'.

Reduce the model by specifying variant control variables and their values.

This syntax specifies two configurations for reduction corresponding to {V==1,W==1} and
{V==2,W==2}.

Simulink.VariantManager.reduceModel('slexVariantReducer',...
 'VariableGroups', {{'V', 1,'W', 1},{'V', 2, 'W', 2}});

Successfully created reduced model
'C:\TEMP\Bdoc23a_2213998_3568\ib570499\23\tp4d276709\simulink_variants-ex20490563\reducedModel\slexVariantReducer_r.slx'.

Reduce the model by specifying configurations in the form of a structure of variant control variables.

This syntax specifies four configurations for reduction corresponding to {V==1, W==1}, {V==1,
W==2}, {V==2, W==1}, and {V==2, W==2}.

Simulink.VariantManager.reduceModel('slexVariantReducer',...
 'VariableGroups',{'V', [1 2], 'W', [1 2]});

Successfully created reduced model
'C:\TEMP\Bdoc23a_2213998_3568\ib570499\23\tp4d276709\simulink_variants-ex20490563\reducedModel\slexVariantReducer_r.slx'.

Reduce the model by specifying names for variable groups.

5 Classes

5-804

This syntax specifies two named variable groups, Group1 and Group2.

The reduced model has named configurations with the same name as the named variable groups,
along with a suffix. In this case, the reduced model has three configurations named Group1_1,
Group1_2, and Group2_1 corresponding to {V==1, W==1}, {V==1, W==2}, and {V==2, W==1},
respectively.

Simulink.VariantManager.reduceModel('slexVariantReducer',...
 'VariableGroups', [struct('Name', 'Group1', 'VariantControls', {{'V', 1, 'W', [1 2]}}),...
 struct('Name', 'Group2', 'VariantControls', {{'V', 2, 'W', 2}})]);

Successfully created reduced model
'C:\TEMP\Bdoc23a_2213998_3568\ib570499\23\tp4d276709\simulink_variants-ex20490563\reducedModel\slexVariantReducer_r.slx'.

Reduce the model by specifying a variant control variable as a full-range variable.

This syntax specifies W as a full-range variant control variable with a reference value of 1. The
reduction process considers four configurations corresponding to {V==1, W==1}, {V==1, W==2},
{V==1, W==3}, and {V==1, W==0}.

Simulink.VariantManager.reduceModel('slexVariantReducer',...
 'VariableGroups', {'V', 1},...
 'FullRangeVariables', {'W', 1});

Successfully created reduced model
'C:\TEMP\Bdoc23a_2213998_3568\ib570499\23\tp4d276709\simulink_variants-ex20490563\reducedModel\slexVariantReducer_r.slx'.

Reduce the model by specifying the compilation mode as code generation.

Simulink.VariantManager.reduceModel...
 ('slexVariantReducer', 'NamedConfigurations', {'config1'},...
 'CompileMode', 'codegen');

Successfully created reduced model
'C:\TEMP\Bdoc23a_2213998_3568\ib570499\23\tp4d276709\simulink_variants-ex20490563\reducedModel\slexVariantReducer_r.slx'.

Reduce the model and generate a variant reducer summary report after reduction. This operation
requires a Simulink® Report Generator™ license.

This command generates the summary and saves it to the path outdir2\variantReducerRpt.

Simulink.VariantManager.reduceModel...
 ('slexVariantReducer','NamedConfigurations', {'config1'},...
 'GenerateSummary', true, 'OutputFolder', 'outdir2');

Successfully created reduced model
'C:\TEMP\Bdoc23a_2213998_3568\ib570499\23\tp4d276709\simulink_variants-ex20490563\outdir2\slexVariantReducer_r.slx'.

Version History
Introduced in R2016a

R2022b: Exclude dependent files during reduction

The ExcludeFiles argument allows you to exclude Simulink data dictionary files (*.sldd) and
MAT-files (*.mat) outside the MATLAB root folder during reduction.

 Simulink.VariantManager.reduceModel

5-805

R2022b: Simulink Design Verifier license requirement removed
Behavior changed in R2022b

The reduceModel method no longer requires a Simulink Design Verifier license. The functionality is
available as part of the Variant Manager for Simulink support package.

See Also
Simulink.VariantConfigurationData | Simulink.VariantManager |
Simulink.VariantConfigurationAnalysis

Topics
“Variant Manager for Simulink”
“Variant Configurations”
“Reduce Variant Models Using Variant Reducer”
“Reduce Model Containing Variant Parameters”

5 Classes

5-806

Simulink.VariantManager.variantLegend
Class: Simulink.VariantManager
Package: Simulink

Display or control behavior of variant condition legend

Syntax
Simulink.VariantManager.variantLegend(modelName,action)

Description
Simulink.VariantManager.variantLegend(modelName,action) displays or performs a
specified action on the variant condition legend.

Input Arguments
modelName — Model for which the variant legend is displayed
character vector | string

Model for which the variant legend is displayed, specified as a character vector or a string.

action — Task to be performed on the variant legend
'open' | 'print' | 'showCodeConditions' | 'close'

Task to be performed on the variant condition legend for the model, specified as:

• 'open' — Displays the variant condition legend for a model. The model must be open. If the
legend is opened for the first time, the model is updated.

• 'print' — Prints the data in the variant condition legend. The legend must be open. There is no
preview before printing the legend.

• 'showCodeConditions' — Displays code generation conditions column in the variant condition
legend. The legend must be open. showCodeConditions is used as a name-value pair and
accepts 'on' or 'off' as its values.

• 'close' — Closes the variant condition legend belonging to the specified model.

Examples

Open Variant Legend

Open the sldemo_variant_subsystems model.

model = 'sldemo_variant_subsystems';
open_system(model);

Display the variant condition legend for the model.

Simulink.VariantManager.variantLegend(model,'open');

 Simulink.VariantManager.variantLegend

5-807

Display the code generation conditions column in the variant condition legend.

Simulink.VariantManager.variantLegend(model,'showCodeConditions','on');

Version History
Introduced in R2017b

See Also
Simulink.VariantConfigurationData | Simulink.VariantConfigurationAnalysis

Topics
“Create a Simple Variant Model”
“What Are Variants and When to Use Them”
“Visualize Propagated Variant Conditions Using Variant Conditions Legend”

5 Classes

5-808

Simulink.VariantVariable class
Package: Simulink

Create a variant parameter object

Description
The Simulink.VariantVariable class creates a variant parameter object. Variant parameter
objects enable you to vary the values of block parameters in a Simulink model conditionally.

You can specify multiple values for a variant parameter object. You can also specify properties such as
dimension, data type, and so on. Each value of the variant parameter object is associated with a
variant condition expression. After creating the object, you can use it to set the value of block
parameters in a model, such as the Gain parameter of a Gain block. During simulation, the value
associated with the variant condition that evaluates to true becomes the active value of that
parameter. The values associated with the conditions that evaluate to false become inactive.

Before you create a new Simulink.VariantVariable object, create a
Simulink.VariantControl object representing the variant control variable to be used in the
Simulink.VariantVariable object.

Note You can create the variant parameter object only in the base workspace or in a data dictionary.

To edit a variant parameter object, you can double-click the object from the workspace or data
dictionary to open the Simulink.VariantVariable dialog box.

Variant Conditions Legend does not display the variant conditions for variant parameters. Use the
Variant Parameters tab in the Variant Manager window to view the variant parameters present in
the base workspace or data dictionaries associated with the model and to edit the variant condition
and value of the choices.

Creation
P= Simulink.VariantVariable creates an empty variant parameter object.

P= Simulink.VariantVariable(Name,Value) creates a variant parameter object and sets
Properties using one or more Name,Value arguments. Using this syntax, you can specify multiple
values for the object and associate each value with a variant condition expression. You can also
specify other properties of the object such as data types, storage class, dimensions, and so on.

Properties
Specification — Properties of variant parameter object
Simulink.Parameter object name

Properties of variant parameter object such as data type, dimensions, storage class, and so on,
specified as the Simulink.Parameter object. The default storage class of a Simulink.Parameter
object is Auto. If you specify the storage class as Auto, the value of the object is inlined to the literal

 Simulink.VariantVariable class

5-809

value in the generated code. If you specify the storage class of the object anything other than Auto,
the object is represented as tunable parameters using symbolic names in the generated code. For
more information, see “Options to Represent Variant Parameters in Generated Code” (Embedded
Coder).

Note Specifying storage class using the Specification property is not supported if the
Simulink.VariantVariable object is part of a variant parameter bank
(Simulink.VariantBank).

Example: 'Specification', 'Pspec'

Attributes:

GetAccess public
SetAccess public

Choices — Variant conditions and values
cell array

Variant conditions and values, specified as a cell array. During simulation, when a variant condition
evaluates to true, its associated value becomes active. When a variant condition evaluates to false,
its associated value becomes inactive. No two values of the same variant parameter must be
associated with the same variant condition.

You can specify the variant condition as boolean MATLAB expressions that contain one or more
operands and operators. See “Types of Variant Control Variables (Operands) in Variant Parameters”
and “Types of Operators in Variant Parameters”.

You can specify values of numeric, enumerated, or Simulink.Parameter type. See, “Numeric
Variant Control Values for Rapid Prototyping of Variant Parameters”, “Improve Code Readability of
Variant Parameters Using Enumerated Types”, and “Reuse Variant Parameter Values from
Handwritten Code Using Simulink.Parameter Variables”.

You can specify one of the choice values as a default value for the variant parameter by setting its
variant condition as (default). Simulink uses the default value for the variant parameter when
none of the other variant conditions evaluate to true.
Example: 'Choices', {'V == 1', 4.5, 'V==2', 9.5}
Example: 'Choices', {'V == 1', 3, '(default)', 6}

Attributes:

GetAccess private
SetAccess private

Bank — Name of variant parameter bank
'' (default) | string | character vector

Name of variant parameter bank (Simulink.VariantBank) object, specified as a string or character
vector.

With Embedded Coder, you can group variant parameters in the generated code by adding them to
the same variant parameter bank. The variant parameters must have startup activation time and

5 Classes

5-810

must have the same set of variant conditions. Use the Simulink.VariantBank class to create a
variant parameter bank object and set the Bank property of the Simulink.VariantVariable object to
the name of the variant parameter bank. For more information, see Simulink.VariantBank.
Example: 'Bank', 'EngineParams'

Attributes:

GetAccess public
SetAccess public

Data Types: string | char

Methods
Public Methods
addChoice Add choices to variant parameter object
getChoice Return choices of variant parameter object
setChoice Modify existing choices of variant parameter object
removeChoice Remove choices from variant parameter object

Specialized Operators and Functions

These methods specialize standard MATLAB operators and functions for objects in this class.

bitcmp Performs bit-wise complement on input.
eq Compares if the inputs are equal.
gt Compares if the first input is greater than the

second input.
mrdivide Divides the first input by the second input.
or Performs a logical OR on inputs.
uminus Negates the input.
bitor Performs bit-wise OR on inputs.
ge Compares if the first input is greater than or

equal to the second input.
le Compares if the first input is less than or equal to

the second input.
mtimes Multiplies the inputs.
plus Adds the inputs.
uplus Returns the value of the input.
and Performs logical AND on inputs.
bitshift Shift bits by specified number of places.
lt Compares if the first input is less than the second

input.
ne Compares if the inputs are not equal.
bitand Performs bit-wise AND on inputs.

 Simulink.VariantVariable class

5-811

bitxor Performs bit-wise XOR on inputs.
minus Subtracts the second input from the first input.
not Returns logical NOT of input.

Examples

Numeric Variant Control Values for Rapid Prototyping of Variant Parameters

Numeric values allow you to rapidly prototype variant values when you are still building your model.
Numeric values help you focus more on building your variant values than on developing the
expressions that activate those choices.

You can define numeric control values in locations listed in “Storage Locations for Variant Control
Variables (Operands) in Variant Parameters”.

Open the slexVariantParameters model.

open_system('slexVariantParameters')

In the MATLAB Editor, specify variant choices in their simplest form as numeric values in
Simulink.VariantVariable objects K1 and K2.

K1 = Simulink.VariantVariable('Choices',{'V==1', 3.5, 'V==2', 8.5})

K1 =
VariantVariable with 2 choices:

Condition Value
_________ _____
V == 1 3.5000
V == 2 8.5000

Specification: ''

Bank: ''

Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices

K2 = Simulink.VariantVariable('Choices',{'V==1', 4.5, 'V==2', 9.5})

K2 =
VariantVariable with 2 choices:

Condition Value
_________ _____
V == 1 4.5000
V == 2 9.5000

Specification: ''

Bank: ''

Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices

5 Classes

5-812

Once you successfully create the Simulink.VariantVariable objects, you can modify them by
using the methods described in “Public Methods” on page 5-811 or from the VariantVariable
dialog box.

Activate one of the variant values by defining a control variable, V, and setting its value to 1 in a
Simulink.VariantControl object.

V = Simulink.VariantControl('Value', 1, 'ActivationTime', 'update diagram')

V =
 VariantControl with properties:

 Value: 1
 ActivationTime: 'update diagram'

When you simulate the model, the condition V == 1 evaluates to true. K1 is assigned a value of 3.5
and K2 is assigned a value of 8.5.

sim ('slexVariantParameters')

If you change the value of V to 2, Simulink® sets the value of K1 and K2 to 4.5 and 9.5 during
simulation. You can change the value of V using this command or from Simulink.VariantControl
dialog box.

V.Value = 2;
sim ('slexVariantParameters')

Simulink.Parameter Type of Variant Control Variables for Code Generation of Variant
Parameters

If you intend to generate code for a model containing variant parameters, specify variant control
variables as Simulink.Parameter objects. Simulink.Parameter objects allow you to specify

 Simulink.VariantVariable class

5-813

other attributes, such as data type and storage class, and control the appearance and placement of
variant control variables in generated code.

• You can define a variant control variable of type Simulink.Parameter only in the base
workspace or in a data dictionary. Defining Simulink.Parameter type of variant control
variables in the mask or model workspace is not supported. For more information on storage
locations for variant control variables, see “Storage Locations for Variant Control Variables
(Operands) in Variant Parameters”.

• Simulink.Parameter objects within structures and that have data types other than
Simulink.Bus objects are not supported.

Open the slexVariantParameters model.

open_system('slexVariantParameters')

In the MATLAB Editor, define a Simulink.Parameter object.

VSS_MODE = Simulink.Parameter;
VSS_MODE.Value = 1;
VSS_MODE.DataType = 'int32';
VSS_MODE.CoderInfo.StorageClass = 'Custom';
VSS_MODE.CoderInfo.CustomStorageClass = 'Define';
VSS_MODE.CoderInfo.CustomAttributes.HeaderFile ='demo_macros.h';

Variant control variables defined as Simulink.Parameter objects can have any of the storage
classes listed in “Storage Classes for Different Variant Activation Times” (Embedded Coder).

You can also convert a scalar variant control variable into a Simulink.Parameter object. For more
information, see “Convert Variant Control Variables into Simulink.Parameter Objects”.

Specify the object as a variant control in Simulink.VariantVariable objects K1 and K2.

K1 = Simulink.VariantVariable('Choices',{'V == 1', 3.5, 'V == 2', 8.5})

K1 =
VariantVariable with 2 choices:

Condition Value
_________ _____
V == 1 3.5000
V == 2 8.5000

Specification: ''

Bank: ''

Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices

K2 = Simulink.VariantVariable('Choices',{'V == 1', 4.5, 'V == 2', 9.5})

K2 =
VariantVariable with 2 choices:

Condition Value
_________ _____
V == 1 4.5000

5 Classes

5-814

V == 2 9.5000

Specification: ''

Bank: ''

Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices

Once you successfully create the Simulink.VariantVariable objects, you can modify them by
using the methods described in “Public Methods” on page 5-811 or from the VariantVariable
dialog box.

Activate one of the variant values by defining a control variable V and setting its value to VSS_MODE
in a Simulink.VariantControl object.

V = Simulink.VariantControl('Value',VSS_MODE,'ActivationTime','code compile')

V =
 VariantControl with properties:

 Value: [1x1 Simulink.Parameter]
 ActivationTime: 'code compile'

When you simulate the model, the condition V == 1 evaluates to true. K1 is assigned a value of 3.5,
and K2 is assigned a value of 8.5.

sim ('slexVariantParameters')

If you change the value of VSS_MODE to 2, Simulink® sets the value of K1 and K2 to 4.5 and 9.5
during simulation. You can change the value of V using this command or from
Simulink.VariantControl dialog box.

VSS_MODE.Value = 2;
V.Value = VSS_MODE;
sim ('slexVariantParameters')

 Simulink.VariantVariable class

5-815

Generate code from the model. For information on how to generate code, see “Generate Code Using
Embedded Coder” (Embedded Coder)

The generated code contains both Linear and Nonlinear choices in preprocessor conditionals #if
and #elif because of the code compile activation time. The variant control variable V is defined
using a macro — #define directive — in the header file demo_macros.h. You can control the
appearance and placement of V in the generated code and prevent optimizations from eliminating
storage for V using the storage class property. For more information, see “Storage Classes for
Different Variant Activation Times” (Embedded Coder).

% demo_macros.h
% /* Exported data define */
%
% /* Definition for custom storage class: Define */
% #define V 2 /* Referenced by:
% * '<Root>/Gain'
% * '<Root>/Gain1'
% */
% #endif /* RTW_HEADER_demo_macros_h_ */
%
% /*

Simulink.Variant Objects for Variant Condition Reuse of Variant Parameters

After identifying the variant values that your model requires, you can construct complex variant
conditions to control the activation of your variant parameter values by defining variant conditions as
Simulink.Variant objects. Simulink.Variant objects enable you to reuse common variant
conditions across models and help you encapsulate complex variant condition expressions.

• You can define a variant control variable of type Simulink.Variant only in the base workspace
or in a data dictionary. Defining Simulink.Variant type of variant control variables in the mask
or model workspace is not supported. For more information on storage locations for variant
control variables, see “Storage Locations for Variant Control Variables (Operands) in Variant
Parameters”.

• Simulink.Variant within structures are not supported.

Open the slexVariantParameters model.

open_system('slexVariantParameters')

In the MATLAB® Editor, encapsulate variant control expressions as Simulink.Variant objects.

LinearController=Simulink.Variant('V==1');
NonLinearController=Simulink.Variant('V==2');

Specify the Simulink.Variant objects as the variant controls in a Simulink.VariantVariable
objects K1 and K2.

K1 = Simulink.VariantVariable('Choices',{'LinearController',3.5,'NonLinearController',8.5})

K1 =
VariantVariable with 2 choices:

 Condition Value

5 Classes

5-816

___________________ _____
LinearController 3.5000
NonLinearController 8.5000

Specification: ''

Bank: ''

Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices

K2 = Simulink.VariantVariable('Choices',{'LinearController',4.5,'NonLinearController',9.5})

K2 =
VariantVariable with 2 choices:

 Condition Value
___________________ _____
LinearController 4.5000
NonLinearController 9.5000

Specification: ''

Bank: ''

Use getChoice, setChoice, addChoice, removeChoice to access, modify, add or remove choices

Once you successfully create the Simulink.VariantVariable objects, you can modify them by
using the methods described in “Public Methods” on page 5-811 or from the VariantVariable
dialog box.

Activate one of the variant values by defining a Simulink.VariantControl object V and setting its
value to 1.

V = Simulink.VariantControl('Value',1,'ActivationTime','update diagram')

 Simulink.VariantVariable class

5-817

V =
 VariantControl with properties:

 Value: 1
 ActivationTime: 'update diagram'

When you simulate the model, the condition V == 1 evaluates to true. K1 is assigned a value of 3.5,
and K2 is assigned a value of 8.5.

sim('slexVariantParameters')

If you change the value of V to 2, Simulink® sets the value of K1 and K2 to 4.5 and 9.5 during
simulation. You can change the value of V using this command or from Simulink.VariantControl
dialog box.

V.Value = 2;
sim ('slexVariantParameters')

Using this approach, you can develop complex variant condition expressions that are reusable.

Limitations
• Variant parameters that are part of a variant parameter bank do not support AUTOSAR code

generation.

Version History
Introduced in R2021a

R2023a: New Bank property

You can use the Bank property to add a Simulink.VariantVariable object to a variant parameter bank
(Simulink.VariantBank).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• For variant parameters associated with the startup activation time, you can generate code for
both active and inactive choices by installing Simulink Coder or Embedded Coder.

• For variant parameters associated with the code compile activation time:

• You must install Simulink Coder to generate code for only active values of variant parameters.
Generating code using Simulink Coder is supported only if values of a variant parameter have
same dimension.

• You must install Embedded Coder to generate code for both active and inactive values of
variant parameters. Generating code using Embedded Coder is supported for variant
parameters values having same and different dimensions.

5 Classes

5-818

• When you generate code using Embedded Coder, you can group variant parameters that have the
same set of variant conditions and use startup activation time into a structure array in the
generated code. Use the Simulink.VariantBank class to group variant parameters into a
variant parameter bank and use the Simulink.VariantBankCoderInfo class to specify code
generation properties for the variant parameter bank.

For more information on code generation with variant parameters, see “Options to Represent Variant
Parameters in Generated Code” (Embedded Coder).

See Also
Simulink.VariantBank | Simulink.VariantBankCoderInfo | Simulink.VariantControl

Topics
“Change Active Values and Activation Time of Variant Parameters”
“Use Variant Parameters to Reuse Block Parameters with Different Values”
“Create a Simple Variant Parameter Model”
“Options to Represent Variant Parameters in Generated Code” (Embedded Coder)

 Simulink.VariantVariable class

5-819

SubsystemReference class
Control subsystem reference programmatically

Description
Use the methods of Simulink.SubsystemReference to query and control the subsystem reference
blocks.

Methods
Public Methods
convertAllSubsystemReferenceBlockToSubsystem Converts all subsystem

reference blocks to regular
Subsystem blocks

convertSubsystemReferenceBlockToSubsystem Converts a subsystem
reference block to a regular
Subsystem block

convertSubsystemToSubsystemReference Converts a Subsystem block
to subsystem reference

getActiveInstances Returns all the active
instances of subsystem
references

getAllDirtyInstances Returns child Subsystem
block diagrams that are
referred in the given block
diagram and are also being
edited

getAllInstances Returns all subsystem
reference blocks inside a
block diagram

getAllReferencedSubsystemBlockDiagrams Returns all the child
Subsystem block diagrams for
a given block diagram

getNearestParentSubsystemReferenceBlock Returns the nearest parent
subsystem reference for a
block

getSystemOwningTheLock Returns the system that has
acquired the lock for editing

isSystemLocked Checks if the system is locked
due to an edit or update to the
subsystem reference

Simulink.SubsystemReference.generateSignatures Generate unit test signatures
of subsystem file

Simulink.SubsystemReference.getUnitTestNames Return names of unit tests of
subsystem file

5 Classes

5-820

Simulink.SubsystemReference.removeSignatures Remove previously generated
unit test signatures of
subsystem file

Simulink.SubsystemReference.showSignatureDiffDialogForSS Open dialog to show
difference in signatures of two
subsystem blocks

Simulink.SubsystemReference.showSignatureDiffDialogForUnitTests Open dialog to show
difference in signatures of
subsystem reference instance
with unit test signatures

Version History
Introduced in R2022a

See Also
“Subsystem Reference” on page 1-2223

 SubsystemReference class

5-821

Simulink.Mask.CrossPortConstraint class
Package: Simulink

Creates cross-port constraint among ports of the same masked block

Description
Use an instance of Simulink.Mask.CrossPortConstraint to create a cross-port constraint
among ports of same masked block.

Properties
Name — Name of cross-port constraint
character vector (default)

Name of the cross-port constraint, specified as a character vector.
Data Types: char | string

Rule — Rule for constraint
Same Dimension (default) | Same Datatype

Rule for the cross-port constraint, specified as a character vector.
Data Types: char | string

ParameterConditions — Parameter conditions for cross-port constraint
Simulink.Mask.ParameterCondition object (default)

Mask parameter conditions, specified as an object of Simulink.Mask.ParameterCondition.
Data Types: char | string

Associations — Associate port identifiers to the cross-port constraints
cell array (default)

Associate port identifiers with cross-port constraints, specified as a cell array. Separate identifiers
with commas.
Data Types: cell

DiagnosticLevel — Type of diagnostic message
error (default) | warning

Type of diagnostic message displayed when validation condition fails, specified as error or warning.
Data Types: char | string

DiagnosticMessage — Diagnostic message
error (default) | warning

Diagnostic message to display when validation fails, specified as character vector.
Data Types: char | string

5 Classes

5-822

Methods
Public Methods
addCrossPortConstraint Create cross-port constraint among ports of the same masked block
getCrossPortConstraint Display attributes of cross-port constraint
removeCrossPortConstraint Remove cross-port constraint
removeAllCrossPortConstraints Remove all cross-port constraints from mask object

Version History
Introduced in R2023a

See Also
Simulink.Mask.PortConstraint | Simulink.Mask.PortConstraintRule |
Simulink.Mask.PortIdentifier | Simulink.Mask.ParameterCondition

Topics
“Validate Port Signals Among Ports of the Same Masked Block”

 Simulink.Mask.CrossPortConstraint class

5-823

Simulink.SharedConstraintFile class
Package: Simulink

Constraints that needs to be saved in an XML file

Description
Use an instance of Simulink.Mask.SharedConstraintFile to create constraint in an XML file.
You can create constraints in a file and share it across multiple parameters.

Properties
Public Properties

FileName — Name of file
empty (default)

Name of the XML file where the constraints are stored, specified as a character vector.
Data Types: char | string

Constraints — Object of Simulink.Mask.Constraints
Simulink.Mask.Constraints object (default)

Create shared constraints in an XML file, specified as an object of Simulink.Mask.Constraints.
Data Types: cell array

Methods
Public Methods
addConstraint Add constraint to XML file
saveConstraint Saves the constraint in the XML file
removeConstraint Remove specified constraint from XML file

Version History
Introduced in R2023a

See Also
Simulink.Mask.Constraints.convertMatToXML | addConstraint | saveConstraint |
removeConstraint

Topics
“Share Parameter Constraints Across Multiple Block Masks”

5 Classes

5-824

Model and Block Parameters

• “Programmatic Model Editor Appearance Parameters” on page 6-2
• “Internal Programmatic Model Settings” on page 6-9
• “Common Block Properties” on page 6-12
• “Block-Specific Parameters” on page 6-24
• “Mask Parameters” on page 6-128

6

Programmatic Model Editor Appearance Parameters
Use the following parameters to control how your model appears in the Simulink editor. To query
and/or modify the value of a parameter, use get_param or set_param.

6 Model and Block Parameters

6-2

Model Appearance Parameters

Parameter Description Values
BlockNameDataTip Specifies whether to display the

block name as a data tip. In the
Simulink Editor, in the Debug tab,
select Information Overlays >
Name in Tooltip.

'on' | {'off'}

BlockParametersDataTip Specifies whether to display a block
parameter in a data tip.

In the Simulink Editor, in the
Debug tab, select Information
Overlays > Parameters in
Tooltip.

'on' | {'off'}

BlockDescription‐
StringDataTip

Specifies whether to display the
user description for a block as a
data tip.

In the Simulink Editor, in the
Debug tab, select Information
Overlays > Description in
Tooltip.

'on' | {'off'}

BrowserLookUnderMasks Show masked subsystems in the
Model Browser.

On the Modeling tab, select
Environment > Model Browser.
In the Model Browser pane, click

 and select Systems with Mask
Parameters.

'on' | {'off'}

BrowserShowLibraryLinks Show library links in the Model
Browser.

On the Modeling tab, select
Environment > Model Browser.
In the Model Browser pane, click

 and select Library Links.

'on' | {'off'}

CompiledModelBlockNormalMod
eVisibility

For a top model that is being
simulated or that is in a compiled
state, return information about
which Model blocks have normal
mode visibility enabled.

Return values indicate which Model
blocks have normal mode visibility
enabled.

 Programmatic Model Editor Appearance Parameters

6-3

Parameter Description Values
DefaultAnnotationFontName

DefaultBlockFontName

DefaultLineFontName

Name of font to use for new
annotation text, block text, or signal
line labels and on existing
annotations, block names, or signal
lines whose FontName property is
set to 'auto'.

To set, on the Format tab, click the
Font Properties button arrow, then
click Fonts for Model.

character vector

DefaultAnnotationFontSize

DefaultBlockFontSize

DefaultLineFontSize

Size of font to use for new
annotation text, block text, or signal
line labels and on existing
annotations, blocks, or signal lines
whose FontSize property is set to
-1.

To set, on the Format tab, click the
Font Properties button arrow, then
click Fonts for Model.

positive integer

DefaultAnnotationFontAngle

DefaultBlockFontAngle

DefaultLineFontAngle

Angle of font for new annotation
text, block text, or signal line labels
and on existing annotations, blocks,
or signal lines whose FontAngle
property is set to 'auto'.

To set, on the Format tab, click the
Font Properties button arrow, then
click Fonts for Model.

{'normal'} | 'italic'

DefaultAnnotationFontWeight

DefaultBlockFontWeight

DefaultLineFontWeight

Weight of font for new annotation
text, block text, or signal line labels
and on existing annotations, blocks,
or signal lines whose FontWeight
property is set to 'auto'.

To set, on the Format tab, click the
Font Properties button arrow, then
click Fonts for Model.

{'normal'} | 'bold'

HideAutomaticNames Hides block names given
automatically by the Simulink
Editor. See “Hide or Display Block
Names”.

{'on'} | 'off'

6 Model and Block Parameters

6-4

Parameter Description Values
LineUpdate Specifies when to update line

routing to avoid overlapping lines
and obstacles in the model.

When set to the default
'deferred', scripts postpone line
routing until they pause or
complete. To perform deferred line
routing within a script, you can use
function
Simulink.BlockDiagram.route
Line.

{'deferred'} | 'none' |
'immediate'

ModelBrowserVisibility Show the Model Browser.

In the Simulink Editor, in the
Modeling tab, select Environment
> Model Browser.

'on' | {'off'}

ModelBrowserWidth Width of the Model Browser pane in
the model window. To display the
Model Browser pane, see the
ModelBrowserVisibility
parameter.

integer — {200}

ModelBlockNormalModeVisibil
ity

Use with set_param to set normal
mode visibility on for the specified
Model blocks.

You can set this parameter with the
Model Block Normal Mode Visibility
dialog box. For details, see “Specify
the Instance Having Normal Mode
Visibility”.

With set_param, use an array of
Simulink.BlockPath objects or
cell array of cell arrays of character
vectors of paths to blocks or
models.

With set_param, an empty array
specifies to use the Simulink default
selection for the instance to have
normal mode visibility enabled.

ModelBlockNormaModeVisiblit
yBlockPath

Return information about which
Model blocks have normal mode
visibility enabled. Use with a model
that you are editing.

Return values indicate which Model
blocks have normal mode visibility
enabled. See “Simulate Multiple
Referenced Model Instances in
Normal Mode”.

PortDataTypeDisplayFormat When you display port data types in
a model, choose whether to display
data type aliases, base data types,
or both.

In the Simulink Editor, in the
Debug tab, set by Information
Overlays > Base Data Types and
Information Overlays > Alias
Data Types.

{'AliasTypeOnly'} |
'BaseTypeOnly' |
'BaseAndAliasTypes'

 Programmatic Model Editor Appearance Parameters

6-5

Parameter Description Values
ReqHilite Highlights all the blocks in the

Simulink diagram that have
requirements associated with them.

In the Simulink Editor, in the Apps
tab, under Verification,
Validation, and Test, click
Requirements Viewer. The
Requirements Viewer tab
appears. Click Highlight Links.

'on' | {'off'}

SampleTimeAnnotations In the Simulink Editor, in the
Debug tab, select Information
Overlays > Text.

'on' | {'off'}

SampleTimeColors In the Simulink Editor, in the
Debug tab, select Information
Overlays > Colors.

'on' | {'off'}

ScreenColor Background color of the model
window.

In the Simulink Editor, on the
Format tab, set Background.

'black' | {'white'} | 'red'
| 'green' | 'blue' | 'cyan'
| 'magenta' | 'yellow' |
'gray' | 'lightBlue' |
'orange' | 'darkGreen' |
[r,g,b,a] where r, g, b, and a
are the red, green, blue, and alpha
values of the color normalized to the
range 0.0 to 1.0. The alpha value is
ignored.

ShowLinearization‐
Annotations

Toggles linearization icons in the
model.

{'on'} | 'off'

ShowLineDimensions Show signal dimensions on this
model's block diagram.

In the Simulink Editor, on the
Debug tab, select Information
Overlays > Signal Dimensions.

'on' | {'off'}

ShowLoopsOnError Highlight invalid loops graphically. {'on'} | 'off'
ShowModelReferenceBlockIO Toggles display of I/O mismatch on

block.

In the Simulink Editor, in the
Debug tab, select Information
Overlays > Ref. Model I/O
Mismatch.

'on' | {'off'}

ShowModelReference‐
BlockVersion

Toggles display of version on block.

In the Simulink Editor, in the
Debug tab, select Information
Overlays > Ref. Model Version.

'on' | {'off'}

6 Model and Block Parameters

6-6

Parameter Description Values
ShowPageBoundaries Toggles display of page boundaries

on the Simulink Editor canvas.

In the Simulink Editor, in the
Simulation tab, select Print >
Show Page Boundaries.

'on' | {'off'}

ShowPortDataTypes Show data types of ports on this
model's block diagram.

In the Simulink Editor, in the
Debug tab, select Information
Overlays > Base Data Types.

'on' | {'off'}

ShowPortUnits Show units of ports, subsystem, and
model block icons on the model
block diagram.

In the Simulink Editor, in the
Debug tab, select Information
Overlays > Port Units.

'on' | {'off'}

ShowStorageClass Show storage classes of signals on
this model's block diagram.

In the Simulink Editor, in the
Debug tab, select Information
Overlays > Storage Class.

'on' | {'off'}

ShowTestPointIcons Show test point icons on this
model's block diagram.

In the Simulink Editor, in the
Debug tab, select Information
Overlays > Log & Testpoint.

{'on'} | 'off'

ShowViewerIcons Show viewer icons on this model's
block diagram.

In the Simulink Editor, in the
Debug tab, select Information
Overlays > Viewers.

{'on'} | 'off'

ZoomFactor Zoom factor of the Simulink Editor
window expressed as a percentage
of normal (100%) or by the
keywords FitSystem or
FitSelection.

In the Simulink Editor, on the
Modeling tab, select one of the
options under Environment >
Zoom.

{'100'} | 'FitSystem' |
'FitSelection'

 Programmatic Model Editor Appearance Parameters

6-7

Parameter Description Values
WideLines Draws lines that carry vector or

matrix signals wider than lines that
carry scalar signals.

In the Simulink Editor, on the
Debug tab, select Information
Overlays > Nonscalar Signals.

'on' | {'off'}

See Also
set_param | get_param

6 Model and Block Parameters

6-8

Internal Programmatic Model Settings

The following model parameters are reserved for MathWorks internal use only.

 Internal Programmatic Model Settings

6-9

Internal Model Parameters

CurrentBlock
CurrentOutputPort
DiscreteInheritContinuousMsg
DisplayBdSearchResults
DisplayBlockIO
DisplayCallgraphDominators
DisplayCompileStats
DisplayCondStIdTree
DisplayErrorDirections
DisplayInvisibleSources
DisplaySortedLists
DisplayVectorAndFunctionCounts
DisplayVectPropagationResults
FixPtInfo
ForceArrayBoundsChecking
ForceConsistencyChecking
ForceModelCoverage
ForwardingTableString
HiliteAncestors
IgnoreBidirectionalLines
Jacobian
LibraryType
LinearizationMsg
Lines
Location
MinMaxOverflowArchiveData
ModelDataFile
ModelReferenceTargetType
Open
ParamWorkspaceSource
RequirementInfo
SaveDefaultBlockParams
ScrollbarOffset
ShowLineDimensionsOnError
Shown
ShowPortDataTypesOnError

6 Model and Block Parameters

6-10

UseAnalysisPorts
ZeroCross

 Internal Programmatic Model Settings

6-11

Common Block Properties

This table lists the properties common to all Simulink blocks, including block callback properties (see
“Customize Model Behavior with Callbacks”). Examples of commands that change these properties
follow this table (see “Examples of Setting Block Properties” on page 6-23).

6 Model and Block Parameters

6-12

Common Block Properties

Property Description Values
AncestorBlock Name of the library block that the block is

linked to (for blocks with a disabled link).
character vector

AttributesFormat
String

Block annotation text (corresponds to block
properties).

character vector

BackgroundColor Block background color. color value |'[r,g,b]' | '[r,g,b,a]'

r, g, and b, are the red, green, blue values
of the color in the range 0.0 to 1.0. If
specified, the alpha value (a) is ignored.

Possible color values are 'black',
'white', 'red', 'green', 'blue',
'cyan', 'magenta', 'yellow', 'gray',
'lightBlue', 'orange', 'darkGreen'.

BlockDescription Block description shown at the top of the
block parameters dialog box or property
inspector.

character array

BlockType Block type (read-only). character array
BlockKeywords Associates one or more keywords with a

custom library block.
character vector | string scalar | string
array

ClipboardFcn Function called when block is copied to the
clipboard (Ctrl+C) or when the menu item
Copy is selected.

function | character vector

CloseFcn Function called when close_system is
run on block.

function | character vector

Commented Exclude block from simulation. {'off'} | 'on' | 'through'
CompiledBusType Returns whether the signal connected to a

port is not a bus, is a virtual, or is a
nonvirtual bus (read-only).

Specify a port or line handle when using
get_param. For example:

ports = get_param(gcb,'PortHandles');
feval(gcs,[],[],[],'compile');
bt = get_param(ports.Outport,'CompiledBusType')

See “Display Bus Information”.

'NOT_BUS' | 'VIRTUAL_BUS' |
'NON_VIRTUAL_BUS'

 Common Block Properties

6-13

Property Description Values
CompiledIsActive Specifies whether the block status is active

at compile time.

CompiledIsActive returns off if any one
of these conditions is true at compile time:

• Block is an inactive path of an inline
variant.

• Block is an inactive choice of a variant
subsystem.

• Block is in a subsystem that is
commented out.

• Block is inactive due to a condition
propagated from a variant subsystem.

CompiledisActive returns off for
inactive choices and returns on for active
choices of a variant subsystem.

'off' | 'on'

CompiledPort‐
ComplexSignals

Complexity of port signals after updating
diagram. You must compile the model
before querying this property. For example:

vdp([],[],[],'compile');
d = get_param(gcb,'CompiledPortComplexSignals');
vdp([],[],[],'term');

structure array

CompiledPortData
Types

Data types of port signals after updating
diagram. You must compile the model
before querying this property. See
CompiledPortComplexSignals .

structure array

CompiledPortDesi
gnMin

Design minimum of port signals after
updating diagram. You must compile the
model before querying this property. For
example:

feval(gcs, [],[],[],'compile');
ports = get_param(gcb,'PortHandles');
min = get_param(ports.Outport, 'CompiledPortDesignMin')
feval(model, [],[],[],'term');

structure array

CompiledPortDesi
gnMax

Design maximum of port signals at compile
time. You must compile the model before
querying this property. For example:

feval(gcs, [],[],[],'compile');
ports = get_param(gcb,'PortHandles');
max = get_param(ports.Outport, 'CompiledPortDesignMax')
feval(model, [],[],[],'term');

structure array

CompiledPortDime
nsions

Dimensions of port signals after updating
diagram. You must compile the model
before querying this property. For details,
see “Get Compiled Port Dimensions”.

numeric array

6 Model and Block Parameters

6-14

Property Description Values
CompiledPortDime
nsionsMode

Indication whether the port signal has a
variable size (after updating diagram). You
must compile the model before querying
this property. See “Determine Whether
Signal Line Has Variable Size”.

double number. 0 indicates the signal does
not have a variable size. 1 indicates the
signal has a variable size.

CompiledPortFram
eData

Frame mode of port signals after updating
diagram. You must compile the model
before querying this property.

structure array

CompiledPortUnit
s

Structure array of block port units (after
updating diagram). You must compile the
model before querying this property.

structure array

CompiledPortWidt
hs

Structure of port widths after updating
diagram. You must compile the model
before querying this property.

structure array

CompiledSampleTi
me

Block sample time after updating diagram.
You must compile the model before
querying this property.

vector [sample time, offset time]

or

cell {[sample time 1, offset time 1];
[sample time 2, offset time 2];.....
[sample time n, offset time n]}

ContinueFcn Function called at the restart of a
simulation (after a pause).

function | character vector

CopyFcn Function called when block is copied. See
“Block Callbacks” for details.

function | character vector

DataTypeOverride
Compiled

For internal use.

DeleteFcn Function called when block is deleted. See
“Block Callbacks” for details.

MATLAB expression

DestroyFcn Function called when block is destroyed.
See “Block Callbacks” for details.

MATLAB expression

Description Description of block. Set by the
Description field in the General pane of
the Block Properties dialog box.

text and tokens

Diagnostics For internal use.
DialogParameters List of names/attributes of block-specific

parameters for an unmasked block, or mask
parameters for a masked block.

structure

DropShadow Display drop shadow. {'off'} | 'on'
ExtModeLogging‐
Supported

Enable a block to support uploading of
signal data in external mode, for example,
with a scope block.

{'off'} | 'on'

ExtModeLogging‐
Trig

Enable a block to act as the trigger block
for external mode signal uploading.

{'off'} | 'on'

 Common Block Properties

6-15

Property Description Values
ExtModeUploadOpt
ion

Enable a block to upload signal data in
external mode when the Select all check
box on the External Signal & Triggering
dialog box is not selected. A value of log
indicates the block uploads signals. A value
of none indicates the block does not upload
signals. The value monitor is currently not
in use. If the Select all check box on the
External Signal & Triggering dialog box is
selected, it overrides this parameter
setting.

{'none'} | 'log' | 'monitor'

FontAngle Font angle. 'normal' | 'italic' | 'oblique' |
{'auto'}

FontName Font name. character array
FontSize Font size. A value of -1 specifies that this

block inherits the font size specified by the
DefaultBlockFontSize model
parameter.

real {'-1'}

FontWeight Font weight. 'light' | 'normal' | 'demi' |
'bold' | {'auto'}

ForegroundColor Foreground color of block icon. color value |'[r,g,b]' | '[r,g,b,a]'

r, g, and b, are the red, green, blue values
of the color in the range 0.0 to 1.0. The
value changes if it is too similar to the
canvas color (ScreenColor parameter).
Use get_param to return the actual value.
If specified, the alpha value (a) is ignored.

Possible color values are 'black',
'white', 'red', 'green', 'blue',
'cyan', 'magenta', 'yellow', 'gray',
'lightBlue', 'orange', 'darkGreen'.

Handle Block handle. real
HideAutomaticNam
e

Specify whether the block name given
automatically by the Simulink Editor
displays in the model. To hide automatic
names, use the default setting of 'on'.
(The HideAutomaticNames parameter for
the model must also be set to 'on'.) Set to
'off' to display the name, and also set the
block ShowName parameter to 'on'. Blocks
whose ShowName parameter is 'off' are
hidden regardless of this setting. For more
information on how the parameters
interact, see “Hide or Display Block
Names”.

{'on'} | 'off'

6 Model and Block Parameters

6-16

Property Description Values
HiliteAncestors For internal use.
InitFcn Initialization function for a block. Created

on the Callbacks pane of the Model
Properties dialog box. For more
information, see “Create Model Callbacks”.

On non-masked blocks, updating the
diagram or running the simulation call this
function.

MATLAB expression

InputSignalNames Names of input signals. cell array
IntrinsicDialogP
arameters

List of names/attributes of block-specific
parameters (regardless of whether the
block is masked or unmasked). Use instead
of DialogParameters if you want block-
specific parameters for masked or
unmasked blocks.

structure

IOSignalStrings Block paths to objects that are connected to
the Viewers & Generators Manager.
Simulink software saves these paths when
the model is saved.

list

IOType Viewers & Generators Manager type. For
internal use.

IsStateOwnerBloc
k

Indicates whether the block is a supported
state owner block that can be used with the
State Reader and State Writer blocks (read-
only). See State Reader and State Writer.

'off' | 'on'

LibraryVersion For a linked block, the initial value of this
property is the ModelVersion of the
library at the time the link was created. The
value updates with increments in the model
version of the library.

character vector — {'1.1'}

LineHandles Handles of lines connected to block. structure
LinkData Array of details about changes to the blocks

inside the link that differ between a
parameterized link and its library, listing
the block names and parameter values. Use
[] to reset to deparameterized, for
example, set_param(gcb,'linkData',
[]).

cell array

LinkStatus Link status of block. Updates out-of-date
linked blocks when queried using
get_param.

See “Control Linked Block
Programmatically”.

'none' | 'resolved' |
'unresolved' | 'implicit' |
'inactive' | 'restore' |
'propagate' |
'propagateHierarchy' |
'restoreHierarchy'

LoadFcn Function called when block is loaded. MATLAB expression

 Common Block Properties

6-17

Property Description Values
MinMaxOverflow‐
Logging_Compiled

For internal use.

ModelCloseFcn Function called when model is closed. The
ModelCloseFcn is called prior to the block
DeleteFcn and DestroyFcn callbacks, if
either are set.

MATLAB expression

ModelParamTable‐
Info

For internal use.

MoveFcn Function called when block is moved. MATLAB expression
Name Block or signal name.

To specify a signal name, use the
corresponding port or line handle.

ports = get_param(gcb,'PortHandles');
set_param(ports.Outport(1),'Name','NewName');

To propagate the signal name, compile the
model. In the Simulink Toolstrip, on the
Modeling tab, click Update Model.

Alternatively, to name an output signal of a
block, you can use
SignalNameFromLabel.

character vector

NameChangeFcn Function called when block name is
changed.

MATLAB expression

NamePlacement Position of block name. {'normal'} | 'alternate'
ObjectParameters Names/attributes of block parameters. structure
OpenFcn Function called when this Block Parameters

dialog box opens.
MATLAB expression

Orientation Where block faces. {'right'} | 'left' | 'up' |
'down'

OutputSignalName
s

Names of output signals. cell array

Parent Name of the system that owns the block. character vector {'untitled'}
ParentCloseFcn Function called when parent subsystem is

closed. The ParentCloseFcn of blocks at
the root model level is not called when the
model is closed.

MATLAB expression

PauseFcn Function called at the pause of a
simulation.

function | character vector

6 Model and Block Parameters

6-18

Property Description Values
PortConnectivity The value of this property is an array of

structures, each of which describes one of
the block input or output ports. Each port
structure has the following fields:

• Type

Specifies the port type and/or number.
The value of this field can be:

• n, where n is the number of the port
for data ports

• 'enable' if the port is an enable
port

• 'trigger' if the port is a trigger
port

• 'state' for state ports
• 'ifaction' for action ports
• 'LConn#' for a left connection port

where # is the port number
• 'RConn#' for a right connection

port where # is the port number
• 'event' for reinitialize event ports

of subsystems
• Position

The value of this field is a two-element
vector, [x y], that specifies the port
position.

• SrcBlock

Handle of the block connected to this
port. This field is null for output ports
and -1 for unconnected input ports.
SrcBlock property is a valid source
handle for Variant Subsystem blocks.

• SrcPort

Number of the port connected to this
port, starting at zero. This field is null
for both output ports and unconnected
input ports.

• DstBlock

Handle of the block to which this port is
connected. This field is null for input
ports and contains a 1-by-0 empty
matrix for unconnected output ports.

structure array

 Common Block Properties

6-19

Property Description Values
• DstPort

Number of the port to which this port is
connected, starting at zero. This field is
null for input ports and contains a 1-
by-0 empty matrix for unconnected
output ports. For Simscape blocks, the
field contains port handles.

PortHandles The value of this property is a structure
that specifies the handles of the block
ports. The structure has the following
fields:

• Inport

Handles of the input ports.
• Outport

Handles of the output ports.
• Enable

Handle of the enable port.
• Trigger

Handle of the trigger port.
• State

Handle of the state port.
• LConn

Handles of the left connection ports (for
blocks that support Physical Modeling
tools).

• RConn

Handles of the right connection ports
(for blocks that support Physical
Modeling tools).

• Ifaction

Handle of the action port.
• Reset

Handle of the reset port.
• Event

Handles of the subsystem reinitialize
event ports.

structure array

6 Model and Block Parameters

6-20

Property Description Values
PortRotationType Type of port rotation used by this block

(read-only).
'default' | 'physical'

Ports A vector that specifies the number of each
kind of port this block has. The order of the
vector elements corresponds to the
following port types:

• Inport
• Outport
• Enable
• Trigger
• State
• LConn
• RConn
• Ifaction
• Reset
• Event

vector

Position Position of block in model window.

To help with block alignment, the position
you set can differ from the actual block
position by a few pixels. Use get_param to
return the actual position.

vector of coordinates, in pixels: [left top
right bottom]

The origin is the upper-left corner of the
Simulink Editor canvas before any canvas
resizing. Supported coordinates are
between -1073740824 and 1073740823,
inclusive. Positive values are to the right of
and down from the origin. Negative values
are to the left of and up from the origin.

PostSaveFcn Function called after the block is saved. MATLAB expression
PreCopyFcn Function called before the block is copied.

See “Block Callbacks” for details.
MATLAB expression

PreDeleteFcn Function called before the block is deleted.
See “Block Callbacks” for details.

MATLAB expression

PreSaveFcn Function called before the block is saved.
See “Block Callbacks” for details.

MATLAB expression

Priority Specifies the block order of execution
relative to other blocks in the same model.
Set by the Priority field on the General
pane of the Block Properties dialog box.

character vector {''}

ReferenceBlock Name of the library block to which this
block links.

character vector {''}

RequirementInfo For internal use.

 Common Block Properties

6-21

Property Description Values
RTWData User specified data, used by Simulink

Coder software. Intended only for use with
user written S-functions. See the section
“S-Function RTWdata” (Simulink Coder) for
details.

SampleTime Value of the sample time parameter. See
“Specify Sample Time” for more details.

character vector

Selected Status of whether or not block is selected. {'on'} | 'off'
ShowName Display or hide block name.

To display a block name given by the
Simulink Editor (automatic names), set the
block 'HideAutomaticName' parameter
to 'off' and ShowName to 'on'. To hide
an automatic block name given by the
Editor, set ShowName to 'on',
HideAutomaticName to 'on', and
HideAutomaticNames on the model to
'on'. For more information on how the
parameters interact, see “Hide or Display
Block Names”.

{'on'} | 'off'

SignalHierarchy If the signal is a bus, returns the name and
hierarchy of the signals in the bus (read-
only).

Specify a port or line handle when using
get_param. For example:

ports = get_param(gcb,'PortHandles');
feval(gcs,[],[],[],'compile');
sh = get_param(ports.Outport,'SignalHierarchy')

See “Display Bus Information”.

values reflect the structure of the signal
that you specify

StartFcn Function called at the start of a simulation. MATLAB expression
StatePerturbatio
nForJacobian

State perturbation size to use during
linearization. See “Change Perturbation
Level of Blocks Perturbed During
Linearization” (Simulink Control Design)
for details.

character vector

StaticLinkStatus Link status of block. Does not update out-
of-date linked blocks when queried using
get_param. See also LinkStatus.

'none' | 'resolved' |
'unresolved' | 'implicit' |
'inactive' | 'restore' |
'propagate' |
'propagateHierarchy' |
'restoreHierarchy'

StopFcn Function called at the termination of a
simulation.

MATLAB expression

6 Model and Block Parameters

6-22

Property Description Values
Tag Text that appears in the block label that

Simulink software generates. Set by the
Tag field on the General pane of the Block
Properties dialog box.

character vector {''}

Type Simulink object type (read-only). 'block'
UndoDeleteFcn Function called when block deletion is

undone.
MATLAB expression

UserData User-specified data that can have any
MATLAB data type.

{'[]'}

UserDataPersiste
nt

Status of whether or not UserData will be
saved in the model file.

'on' | {'off'}

VariantConfigura
tionObject

Specifies the variant configuration object
that is associated with the model. See
“Save and Reuse Variant Configurations
Using Variant Configuration Data Object”.

{''}
The value is an empty character vector if no
configuration object is associated;
otherwise, it is the name of a
Simulink.VariantConfigurationData
object.

Examples of Setting Block Properties
These examples illustrate how to change common block properties.

This command changes the orientation of the Gain block in the mymodel system so it faces the
opposite direction (right to left).

set_param('mymodel/Gain','Orientation','left')

This command associates an OpenFcn callback with the Gain block in the mymodel system.

set_param('mymodel/Gain','OpenFcn','my_open_cb')

This command sets the Position property of the Gain block in the mymodel system. The block is 75
pixels wide by 25 pixels high.

set_param('mymodel/Gain','Position',[50 250 125 275])

See Also
set_param | get_param

Related Examples
• “Customize Model Behavior with Callbacks”

 Common Block Properties

6-23

Block-Specific Parameters
To write scripts that create and modify models, you can use the get_param and set_param
functions to query and modify the properties and parameters of a block or diagram. Use the tables to
determine the programmatic name of a parameter or property in a block dialog box.

• Continuous Library Block Parameters on page 6-26
• Discontinuities Library Block Parameters on page 6-29
• Discrete Library Block Parameters on page 6-32
• Logic and Bit Operations Library Block Parameters on page 6-44
• Lookup Tables Library Block Parameters on page 6-47
• Math Operations Library Block Parameters on page 6-55
• Model Verification Library Block Parameters on page 6-72
• Model-Wide Utilities Library Block Parameters on page 6-75
• Ports & Subsystems Library Block Parameters on page 6-77
• Signal Attributes Library Block Parameters on page 6-101
• Signal Routing Library Block Parameters on page 6-106
• Sinks Library Block Parameters on page 6-113
• Sources Library Block Parameters on page 6-117
• User-Defined Functions Library Block Parameters on page 6-124
• Additional Discrete Library Block Parameters on page 6-125
• Additional Math: Increment - Decrement Library Block Parameters on page 6-127

Programmatic Parameters of Blocks and Models
Programmatic parameters that describe a model are model parameters. Parameters that describe a
block are block parameters. Parameters that are common to all Simulink blocks are common block
parameters (see “Common Block Properties” on page 6-12). Many blocks also have unique block-
specific parameters. A masked block can have mask parameters (see “Mask Parameters” on page 6-
128).

The model and block properties also include callbacks, which are commands that execute when a
certain model or block event occurs. These events include opening a model, simulating a model,
copying a block, opening a block, etc. See “Model, Block, and Port Callbacks”.

Tip For block parameters that accept array values, the number of elements in the array cannot
exceed what int_T can represent. This limitation applies to both simulation and Simulink Coder code
generation.

The maximum number of characters that a parameter edit field can contain is 49,000.

Block-Specific Parameters and Programmatic Equivalents
The tables list block-specific parameters for Simulink blocks. The type of the block appears in
parentheses after the block name. Some Simulink blocks work as masked subsystems. The tables
indicate masked blocks by adding the designation "masked subsystem" after the block type.

6 Model and Block Parameters

6-24

The type listed for nonmasked blocks is the value of the BlockType parameter (see “Common Block
Properties” on page 6-12). The type listed for masked blocks is the value of the MaskType parameter
(see “Mask Parameters” on page 6-128).

The Dialog Box Prompt column indicates the text of the prompt for the parameter in the block
dialog box. The Values column shows the type of value required (scalar, vector, variable), the possible
values (separated with a vertical line), and the default value (enclosed in braces).

 Block-Specific Parameters

6-25

Continuous Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Derivative (Derivative)
 CoefficientInTFapproximati
on

Coefficient c in the transfer function
approximation s/(c*s+1) used for
linearization

{'inf'}

Integrator (Integrator)
 ExternalReset External reset {'none'} | 'rising' |

'falling' | 'either' |
'level' | 'level hold'

 InitialConditionSource Initial condition source {'internal'} | 'external'
 InitialCondition Initial condition scalar or vector — {'0'}
 LimitOutput Limit output {'off'} | 'on'
 UpperSaturationLimit Upper saturation limit scalar or vector — {'inf'}
 LowerSaturationLimit Lower saturation limit scalar or vector — {'-inf'}
 ShowSaturationPort Show saturation port {'off'} | 'on'
 ShowStatePort Show state port {'off'} | 'on'
 AbsoluteTolerance Absolute tolerance character vector, scalar, or vector —

{'auto'} | {'–1'} | any real
scalar or vector

 IgnoreLimit Ignore limit and reset when
linearizing

{'off'} | 'on'

 ZeroCross Enable zero–crossing detection 'off' | {'on'}
 ContinuousStateAttributes State Name {''} | user-defined
 WrapState Wrap state {'off'} | 'on'
 WrappedStateUpperValue Upper value of wrapped state scalar or vector — {'pi'}
 WrappedStateLowerValue Lower value of wrapped state scalar or vector — {'-pi'}
Second-Order Integrator (SecondOrderIntegrator)
 ICSourceX Initial condition source x {'internal'} | 'external'
 ICX Initial condition x scalar or vector — {'0'}
 LimitX Limit x {'off'} | 'on'
 UpperLimitX Upper limit x scalar or vector — {'inf'}
 LowerLimitX Lower limit x scalar or vector — {'-inf'}
 WrapStateX Enable wrapping of x {'off'} | 'on'
 WrappedUpperValueX Upper value for wrapping x scalar or vector — {'pi'}
 WrappedLowerValueX Lower value for wrapping x scalar or vector — {'-pi'}
 AbsoluteToleranceX Absolute tolerance x character vector, scalar, or vector —

{'auto'} | {'–1'} | any real
scalar or vector

 StateNameX State name x {} | user-defined

6 Model and Block Parameters

6-26

Block (Type)/Parameter Dialog Box Prompt Values
 ICSourceDXDT Initial condition source dx/dt {'internal'} | 'external'
 ICDXDT Initial condition dx/dt scalar or vector — {'0'}
 LimitDXDT Limit dx/dt {'off'} | 'on'
 UpperLimitDXDT Upper limit dx/dt scalar or vector — {'inf'}
 LowerLimitDXDT Lower limit dx/dt scalar or vector — {'-inf'}
 AbsoluteToleranceDXDT Absolute tolerance dx/dt character vector, scalar, or vector —

{'auto'} | {'–1'} | any real
scalar or vector

 StateNameDXDT State name dx/dt {} | user-defined
 ExternalReset External reset {'none'} | 'rising' |

'falling' | 'either'
 ZeroCross Enable zero-crossing detection {'on'} | 'off'
 ReinitDXDTwhenXreachesSatu
ration

Reinitialize dx/dt when x reaches
saturation

{'off'} | 'on'

 IgnoreStateLimitsAndResetF
orLinearization

Ignore state limits and the reset for
linearization

{'off'} | 'on'

 ShowOutput Show output {'both'} | 'x' | 'dxdt'
State-Space (StateSpace)
 A A matrix — {'1'}
 B B matrix — {'1'}
 C C matrix — {'1'}
 D D matrix — {'1'}
 InitialCondition Initial conditions vector — {'0'}
 AbsoluteTolerance Absolute tolerance character vector, scalar, or vector —

{'auto'} | {'–1'} | any real
scalar or vector

 ContinuousStateAttributes State Name {''} | user-defined
Transfer Fcn (TransferFcn)
 Numerator Numerator coefficients vector or matrix — {'[1]'}
 Denominator Denominator coefficients vector — {'[1 1]'}
 AbsoluteTolerance Absolute tolerance character vector, scalar, or vector —

{'auto'} | {'–1'} | any real
scalar or vector

 ContinuousStateAttributes State Name {''} | user-defined
Transport Delay (TransportDelay)
 DelayTime Time delay scalar or vector — {'1'}
 InitialOutput Initial output scalar or vector — {'0'}
 BufferSize Initial buffer size scalar — {'1024'}
 FixedBuffer Use fixed buffer size {'off'} | 'on'

 Block-Specific Parameters

6-27

Block (Type)/Parameter Dialog Box Prompt Values
 TransDelayFeedthrough Direct feedthrough of input during

linearization
{'off'} | 'on'

 PadeOrder Pade order (for linearization) {'0'}
Variable Time Delay (VariableTimeDelay)
 VariableDelayType Select delay type 'Variable transport delay'

| {'Variable time delay'}
 MaximumDelay Maximum delay scalar or vector — {'10'}
 InitialOutput Initial output scalar or vector — {'0'}
 MaximumPoints Initial buffer size scalar — {'1024'}
 FixedBuffer Use fixed buffer size {'off'} | 'on'
 ZeroDelay Handle zero delay {'off'} | 'on'
 TransDelayFeedthrough Direct feedthrough of input during

linearization
{'off'} | 'on'

 PadeOrder Pade order (for linearization) {'0'}
 ContinuousStateAttributes State Name {''} | user-defined
Variable Transport Delay (VariableTransportDelay)
 VariableDelayType Select delay type {'Variable transport

delay'} | 'Variable time
delay'

 MaximumDelay Maximum delay scalar or vector — {'10'}
 InitialOutput Initial output scalar or vector — {'0'}
 MaximumPoints Initial buffer size scalar — {'1024'}
 FixedBuffer Use fixed buffer size {'off'} | 'on'
 TransDelayFeedthrough Direct feedthrough of input during

linearization
{'off'} | 'on'

 PadeOrder Pade order (for linearization) {'0'}
 AbsoluteTolerance Absolute tolerance character vector, scalar, or vector —

{'auto'} | {'–1'} | any positive
real scalar or vector

 ContinuousStateAttributes State Name {''} | user-defined
Zero-Pole (ZeroPole)
 Zeros Zeros vector — {'[1]'}
 Poles Poles vector — {'[0 -1]'}
 Gain Gain vector — {'[1]'}
 AbsoluteTolerance Absolute tolerance character vector, scalar, or vector —

{'auto'} | {'–1'} | any positive
real scalar or vector

 ContinuousStateAttributes State Name {''} | user-defined

6 Model and Block Parameters

6-28

Discontinuities Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Backlash (Backlash)
 BacklashWidth Deadband width scalar or vector — {'1'}
 InitialOutput Initial output scalar or vector — {'0'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Coulomb & Viscous Friction (Coulombic and Viscous Friction) (masked subsystem)
 offset Coulomb friction value (Offset) {'[1 3 2 0]'}
 gain Coefficient of viscous friction (Gain) {'1'}
Dead Zone (DeadZone)
 LowerValue Start of dead zone scalar or vector — {'-0.5'}
 UpperValue End of dead zone scalar or vector — {'0.5'}
 SaturateOnIntegerOverflow Saturate on integer overflow 'off' | {'on'}
 LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Dead Zone Dynamic (Dead Zone Dynamic) (masked subsystem)
Hit Crossing (HitCross)
 HitCrossingOffset Hit crossing offset scalar or vector — {'0'}
 HitCrossingDirection Hit crossing direction 'rising' | 'falling' |

{'either'}
 ShowOutputPort Show output port 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Quantizer (Quantizer)
 QuantizationInterval Quantization interval scalar or vector — {'0.5'}
 LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Rate Limiter (RateLimiter)
 RisingSlewLimit Rising slew rate {'1'}
 FallingSlewLimit Falling slew rate {'-1'}
 SampleTimeMode Sample time mode 'continuous' |

{'inherited'}
 InitialCondition Initial condition {'0'}
 LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}
Rate Limiter Dynamic (Rate Limiter Dynamic) (masked subsystem)
Relay (Relay)

 Block-Specific Parameters

6-29

Block (Type)/Parameter Dialog Box Prompt Values
 OnSwitchValue Switch on point {'eps'}
 OffSwitchValue Switch off point {'eps'}
 OnOutputValue Output when on {'1'}
 OffOutputValue Output when off {'0'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via back

propagation' | {'Inherit:
All ports same datatype'} |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

Saturation (Saturate)
 UpperLimit Upper limit scalar or vector — {'0.5'}
 LowerLimit Lower limit scalar or vector — {'-0.5'}
 LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via back

propagation' | {'Inherit:
Same as input'} | 'double'
| 'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

6 Model and Block Parameters

6-30

Block (Type)/Parameter Dialog Box Prompt Values
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |

{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

Saturation Dynamic (Saturation Dynamic) (masked subsystem)
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Same as second

input'} | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutputDataTypeScalingMode Deprecated in R2007b
 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate on integer overflow {'off'} | 'on'
Wrap To Zero (Wrap To Zero) (masked subsystem)
 Threshold Threshold {'255'}

 Block-Specific Parameters

6-31

Discrete Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Delay (Delay)
 DelayLengthSource Delay length > Source {'Dialog'} | 'Input port'
 DelayLength Delay length > Value {'2'}
 DelayLengthUpperLimit Delay length > Upper limit {'100'}
 InitialConditionSource Initial condition > Source {'Dialog'} | 'Input port'
 InitialCondition Initial condition > Value {'0.0'}
 ExternalReset External reset {'None'} | 'Rising' |

'Falling' | 'Either' |
'Level' | 'Level hold'

 InputProcessing Input processing 'Columns as channels (frame
based)' | {'Elements as
channels (sample based)'} |
'Inherited'

 UseCircularBuffer Use circular buffer for state {'off'} | 'on'
 PreventDirectFeedthrough Prevent direct feedthrough {'off'} | 'on'
 RemoveDelayLengthCheckInGe
neratedCode

Remove delay length check in
generated code

{'off'} | 'on'

 DiagnosticForDelayLength Diagnostic for delay length {'None'} | 'Warning' |
'Error'

 SampleTime Sample time (–1 for inherited) {'-1'}
 StateName State name {''}
 StateMustResolveToSignalOb
ject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model default'
| 'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer' |
'Custom'

 CodeGenStateStorageTypeQua
lifier

Code generation storage type
qualifier

{''}

Difference (Difference) (masked subsystem)
 ICPrevInput Initial condition for previous input {'0.0'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

6 Model and Block Parameters

6-32

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutputDataTypeScalingMode Deprecated in R2007b
 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Discrete Derivative (Discrete Derivative) (masked subsystem)
 gainval Gain value {'1.0'}
 ICPrevScaledInput Initial condition for previous

weighted input K*u/Ts
{'0.0'}

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutputDataTypeScalingMod
e

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b

 Block-Specific Parameters

6-33

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock output data type setting

against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Discrete FIR Filter (Discrete FIR Filter)
 CoefSource Coefficient source {'Dialog parameters'} |

'Input port'
 FilterStructure Filter structure {'Direct form'} | 'Direct

form symmetric' | 'Direct
form antisymmetric' |
'Direct form transposed' |
'Lattice MA'

Note You must have a DSP System
Toolbox license to use a filter
structure other than Direct form.

 Coefficients Coefficients vector — {'[0.5 0.5]'}
 InputProcessing Input processing 'Columns as channels (frame

based)' | {'Elements as
channels (sample based)'}

 InitialStates Initial states scalar or vector — {'0'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 CoefMin Coefficients minimum {'[]'}
 CoefMax Coefficients maximum {'[]'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 TapSumDataTypeStr Tap sum data type {'Inherit: Same as input'}

| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)'

 CoefDataTypeStr Coefficients data type {'Inherit: Same word length
as input'} | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)'

6 Model and Block Parameters

6-34

Block (Type)/Parameter Dialog Box Prompt Values
 ProductDataTypeStr Product output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Same as input' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'fixdt(1,16,0)'

 AccumDataTypeStr Accumulator data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as input' | 'Inherit:
Same as product output' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16,0)'

 StateDataTypeStr State data type 'Inherit: Same as input' |
{'Inherit: Same as
accumulator'} | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'fixdt(1,16,0)'

 OutDataTypeStr Output data type 'Inherit: Same as input' |
{'Inherit: Same as
accumulator'} | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16)' |
'fixdt(1,16,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnIntegerOverflow Saturate on integer overflow {'off'} | 'on'
Discrete Filter (DiscreteFilter)
 Numerator Numerator coefficients vector — {'[1]'}
 Denominator Denominator coefficients vector — {'[1 0.5]'}
 IC Initial states {'0'}
 SampleTime Sample time (-1 for inherited) {'1'}
 a0EqualsOne Optimize by skipping divide by

leading denominator coefficient (a0)
{'off'} | 'on'

 NumCoefMin Numerator coefficient minimum {'[]'}
 NumCoefMax Numerator coefficient maximum {'[]'}
 DenCoefMin Denominator coefficient minimum {'[]'}

 Block-Specific Parameters

6-35

Block (Type)/Parameter Dialog Box Prompt Values
 DenCoefMax Denominator coefficient maximum {'[]'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 StateDataTypeStr State data type {'Inherit: Same as input'}

| 'int8' | 'int16' |
'int32' | 'fixdt(1,16,0)'

 NumCoefDataTypeStr Numerator coefficient data type {'Inherit: Inherit via
internal rule'} | 'int8' |
'int16' | 'int32' |
'fixdt(1,16)' |
'fixdt(1,16,0)'

 DenCoefDataTypeStr Denominator coefficient data type {'Inherit: Inherit via
internal rule'} | 'int8' |
'int16' | 'int32' |
'fixdt(1,16)' |
'fixdt(1,16,0)'

 NumProductDataTypeStr Numerator product output data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as input' | 'int8' |
'int16' | 'int32' |
'fixdt(1,16,0)'

 DenProductDataTypeStr Denominator product output data
type

{'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as input' | 'int8' |
'int16' | 'int32' |
'fixdt(1,16,0)'

 NumAccumDataTypeStr Numerator accumulator data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as input' | 'Inherit:
Same as product output' |
'int8' | 'int16' | 'int32'
| 'fixdt(1,16,0)'

 DenAccumDataTypeStr Denominator accumulator data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as input' | 'Inherit:
Same as product output' |
'int8' | 'int16' | 'int32'
| 'fixdt(1,16,0)'

 OutDataTypeStr Output data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as input' | 'int8' |
'int16' | 'int32' |
'fixdt(1,16,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

6 Model and Block Parameters

6-36

Block (Type)/Parameter Dialog Box Prompt Values
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |

{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnIntegerOverflow Saturate on integer overflow {'off'} | 'on'
 StateName State name {''}
 StateMustResolveToSignal
Object

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model default'
| 'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer' |
'Custom'

 RTWStateStorageTypeQualif
ier

Code generation storage type
qualifier

{''}

Discrete State-Space (DiscreteStateSpace)
 A A matrix — {'1'}
 B B matrix — {'1'}
 C C matrix — {'1'}
 D D matrix — {'1'}
 InitialCondition Initial conditions vector — {'0'}
 SampleTime Sample time (-1 for inherited) {'1'}
 StateName State name {''}
 StateMustResolveToSignal
Object

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model default'
| 'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer' |
'Custom'

 RTWStateStorageTypeQuali
fier

Code generation storage type
qualifier

{''}

Discrete Transfer Fcn (DiscreteTransferFcn)
 Numerator Numerator coefficients vector — {'[1]'}

 Block-Specific Parameters

6-37

Block (Type)/Parameter Dialog Box Prompt Values
 Denominator Denominator coefficients vector — {'[1 0.5]'}
 InitialStates Initial states {'0'}
 SampleTime Sample time (-1 for inherited) {'1'}
 a0EqualsOne Optimize by skipping divide by

leading denominator coefficient (a0)
{'off'} | 'on'

 NumCoefMin Numerator coefficient minimum {'[]'}
 NumCoefMax Numerator coefficient maximum {'[]'}
 DenCoefMin Denominator coefficient minimum {'[]'}
 DenCoefMax Denominator coefficient maximum {'[]'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 StateDataTypeStr State data type {'Inherit: Same as input'}

| 'int8' | 'int16' |
'int32' | 'fixdt(1,16,0)'

 NumCoefDataTypeStr Numerator coefficient data type {'Inherit: Inherit via
internal rule'} | 'int8' |
'int16' | 'int32' |
'fixdt(1,16,0)'

 DenCoefDataTypeStr Denominator coefficient data type {'Inherit: Inherit via
internal rule'} | 'int8' |
'int16' | 'int32' |
'fixdt(1,16,0)'

 NumProductDataTypeStr Numerator product output data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as input' | 'int8' |
'int16' | 'int32' |
'fixdt(1,16,0)'

 DenProductDataTypeStr Denominator product output data
type

{'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as input' | 'int8' |
'int16' | 'int32' |
'fixdt(1,16,0)'

 NumAccumDataTypeStr Numerator accumulator data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as input' | 'Inherit:
Same as product output' |
'int8' | 'int16' | 'int32'
| 'fixdt(1,16,0)'

 DenAccumDataTypeStr Denominator accumulator data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as input' | 'Inherit:
Same as product output' |
'int8' | 'int16' | 'int32'
| 'fixdt(1,16,0)'

6 Model and Block Parameters

6-38

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Same as input' | 'int8' |
'int16' | 'int32' |
'fixdt(1,16,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnIntegerOverflow Saturate on integer overflow {'off'} | 'on'
 StateName State name {''}
 StateMustResolveToSignalOb
ject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model default'
| 'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer' |
'Custom'

 RTWStateStorageTypeQualif
ier

Code generation storage type
qualifier

{''}

Discrete Zero-Pole (DiscreteZeroPole)
 Zeros Zeros vector — {'[1]'}
 Poles Poles vector — {'[0 0.5]'}
 Gain Gain {'1'}
 SampleTime Sample time (-1 for inherited) {'1'}
 StateName State name {''}
 StateMustResolveToSignalO
bject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model default'
| 'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer' |
'Custom'

 Block-Specific Parameters

6-39

Block (Type)/Parameter Dialog Box Prompt Values
 RTWStateStorageType
 Qualifier

Code generation storage type
qualifier

{''}

Discrete-Time Integrator (DiscreteIntegrator)
 IntegratorMethod Integrator method {'Integration: Forward

Euler'} | 'Integration:
Backward Euler' |
'Integration: Trapezoidal'
| 'Accumulation: Forward
Euler' | 'Accumulation:
Backward Euler' |
'Accumulation: Trapezoidal'

 gainval Gain value {'1.0'}
 ExternalReset External reset {'none'} | 'rising' |

'falling' | 'either' |
'level' | 'sampled level'

 InitialConditionSource Initial condition source {'internal'} | 'external'
 InitialCondition Initial condition scalar or vector — {'0'}
 InitialConditionSetting Initial condition setting {'State (most efficient)'}

| 'Output' |
'Compatibility'

 SampleTime Sample time (-1 for inherited) {'1'}
 LimitOutput Limit output {'off'} | 'on'
 UpperSaturationLimit Upper saturation limit scalar or vector — {'inf'}
 LowerSaturationLimit Lower saturation limit scalar or vector — {'-inf'}
 ShowSaturationPort Show saturation port {'off'} | 'on'
 ShowStatePort Show state port {'off'} | 'on'
 IgnoreLimit Ignore limit and reset when

linearizing
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

6 Model and Block Parameters

6-40

Block (Type)/Parameter Dialog Box Prompt Values
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |

{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 StateName State name {''}
 StateMustResolveTo
 SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model default'
| 'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer' |
'Custom'

 RTWStateStorageType
 Qualifier

Code generation storage type
qualifier

{''}

First-Order Hold (First-Order Hold) (masked subsystem)
 Ts Sample time {'1'}
Memory (Memory)
 InitialCondition Initial condition scalar or vector — {'0'}
 InheritSampleTime Inherit sample time {'off'} | 'on'
 LinearizeMemory Direct feedthrough of input during

linearization
{'off'} | 'on'

 LinearizeAsDelay Treat as a unit delay when
linearizing with discrete sample
time

{'off'} | 'on'

 StateName State name {''}
 StateMustResolveTo
 SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model default'
| 'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer' |
'Custom'

 RTWStateStorageType
 Qualifier

Code generation storage type
qualifier

{''}

 Block-Specific Parameters

6-41

Block (Type)/Parameter Dialog Box Prompt Values
Tapped Delay (S-Function) (Tapped Delay Line) (masked subsystem)
 vinit Initial condition {'0.0'}
 samptime Sample time {'-1'}
 NumDelays Number of delays {'4'}
 DelayOrder Order output vector starting with {'Oldest'} | 'Newest'
 includeCurrent Include current input in output

vector
{'off'} | 'on'

Transfer Fcn First Order (First Order Transfer Fcn) (masked subsystem)
 PoleZ Pole (in Z plane) {'0.95'}
 ICPrevOutput Initial condition for previous output {'0.0'}
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |

{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Transfer Fcn Lead or Lag (Lead or Lag Compensator) (masked subsystem)
 PoleZ Pole of compensator (in Z plane) {'0.95'}
 ZeroZ Zero of compensator (in Z plane) {'0.75'}
 ICPrevOutput Initial condition for previous output {'0.0'}
 ICPrevInput Initial condition for previous input {'0.0'}
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |

{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Transfer Fcn Real Zero (Transfer Fcn Real Zero) (masked subsystem)
 ZeroZ Zero (in Z plane) {'0.75'}
 ICPrevInput Initial condition for previous input {'0.0'}
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |

{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Unit Delay (UnitDelay)
 InitialCondition Initial condition scalar or vector — {'0'}

6 Model and Block Parameters

6-42

Block (Type)/Parameter Dialog Box Prompt Values
 InputProcessing Input processing 'Columns as channels (frame

based)' | {'Elements as
channels (sample based)'} |
'Inherited'

 SampleTime Sample time (-1 for inherited) {'-1'}
 StateName State name {''}
 StateMustResolveTo
 SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

 StateSignalObject Signal object class

Code generation storage class

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StateStorageClass Code generation storage class {'Auto'} | 'Model default'
| 'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer' |
'Custom'

 CodeGenStateStorageType
 Qualifier

Code generation storage type
qualifier

{''}

Zero-Order Hold (ZeroOrderHold)
 SampleTime Sample time (-1 for inherited) {'1'}

 Block-Specific Parameters

6-43

Logic and Bit Operations Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Bit Clear (Bit Clear) (masked subsystem)
 iBit Index of bit (0 is least significant) {'0'}
Bit Set (Bit Set) (masked subsystem)
 iBit Index of bit (0 is least significant) {'0'}
Bitwise Operator (S-Function) (Bitwise Operator) (masked subsystem)
 logicop Operator {'AND'} | 'OR' | 'NAND' |

'NOR' | 'XOR' | 'NOT'
 UseBitMask Use bit mask ... 'off' | {'on'}
 NumInputPorts Number of input ports {'1'}
 BitMask Bit Mask {'bin2dec('11011001')'}
 BitMaskRealWorld Treat mask as 'Real World Value' |

{'Stored Integer'}
Combinatorial Logic (CombinatorialLogic)
 TruthTable Truth table {'[0 0;0 1;0 1;1 0;0 1;1

0;1 0;1 1]'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Compare To Constant (Compare To Constant) (masked subsystem)
 relop Operator '==' | '~=' | '<' | {'<='}

| '>=' | '>'
 const Constant value {'3.0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
Compare To Zero (Compare To Zero) (masked subsystem)
 relop Operator '==' | '~=' | '<' | {'<='}

| '>=' | '>'
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
Detect Change (Detect Change) (masked subsystem)
 vinit Initial condition {'0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Detect Decrease (Detect Decrease) (masked subsystem)
 vinit Initial condition {'0.0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Detect Fall Negative (Detect Fall Negative) (masked subsystem)
 vinit Initial condition {'0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Detect Fall Nonpositive (Detect Fall Nonpositive) (masked subsystem)

6 Model and Block Parameters

6-44

Block (Type)/Parameter Dialog Box Prompt Values
 vinit Initial condition {'0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Detect Increase (Detect Increase) (masked subsystem)
 vinit Initial condition {'0.0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Detect Rise Nonnegative (Detect Rise Nonnegative) (masked subsystem)
 vinit Initial condition {'0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Detect Rise Positive (Detect Rise Positive) (masked subsystem)
 vinit Initial condition {'0'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Extract Bits (Extract Bits) (masked subsystem)
 bitsToExtract Bits to extract {'Upper half'} | 'Lower

half' | 'Range starting
with most significant bit'
| 'Range ending with least
significant bit' | 'Range
of bits'

 numBits Number of bits {'8'}
 bitIdxRange Bit indices ([start end], 0-based

relative to LSB)
{'[0 7]'}

 outScalingMode Output scaling mode {'Preserve fixed-point
scaling'} | 'Treat bit
field as an integer'

Interval Test (Interval Test) (masked subsystem)
 IntervalClosedRight Interval closed on right 'off' | {'on'}
 uplimit Upper limit {'0.5'}
 IntervalClosedLeft Interval closed on left 'off' | {'on'}
 lowlimit Lower limit {'-0.5'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Interval Test Dynamic (Interval Test Dynamic) (masked subsystem)
 IntervalClosedRight Interval closed on right 'off' | {'on'}
 IntervalClosedLeft Interval closed on left 'off' | {'on'}
 OutDataTypeStr Output data type {'boolean'} | 'uint8'
Logical Operator (Logic)
 Operator Operator {'AND'} | 'OR' | 'NAND' |

'NOR' | 'XOR' | 'NXOR' |
'NOT'

 Inputs Number of input ports {'2'}

 Block-Specific Parameters

6-45

Block (Type)/Parameter Dialog Box Prompt Values
 IconShape Icon shape {'rectangular'} |

'distinctive'
 SampleTime Sample time (-1 for inherited) {'-1'}
 AllPortsSameDT Require all inputs and output to

have the same data type
{'off'} | 'on'

 OutDataTypeStr Output data type 'Inherit: Logical (see
Configuration Parameters:
Optimization)' |
{'boolean'} | 'fixdt(1,16)'

Relational Operator (RelationalOperator)
 Operator Relational operator '==' | '~=' | '<' | {'<='}

| '>=' | '>' | 'isInf' |
'isNaN' | 'isFinite'

 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have the same

data type
{'off'} | 'on'

 OutDataTypeStr Output data type 'Inherit: Logical (see
Configuration Parameters:
Optimization)' |
{'boolean'} | 'fixdt(1,16)'

Shift Arithmetic (ArithShift)
 BitShiftNumberSource Bits to shift > Source {'Dialog'} | 'Input port'
 BitShiftDirection Bits to shift > Direction 'Left' | 'Right' |

{'Bidirectional'}
 BitShiftNumber Bits to shift > Number {'8'}
 BinPtShiftNumber Binary points to shift > Number {'0'}
 DiagnosticForOORShift Diagnostic for out-of-range shift

value
{'None'} | 'Warning' |
'Error'

 CheckOORBitShift Check for out-of-range 'Bits to shift'
in generated code

{'off'} | 'on'

 nBitShiftRight Deprecated in R2011a
 nBinPtShiftRight Deprecated in R2011a

6 Model and Block Parameters

6-46

Lookup Table Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Cosine (Cosine) (masked subsystem)
 Formula Output formula 'sin(2*pi*u)' | {'cos(2*pi*u)'}

| 'exp(j*2*pi*u)' | 'sin(2*pi*u)
and cos(2*pi*u)'

 NumDataPoints Number of data points for
lookup table

{'(2^5)+1'}

 OutputWordLength Output word length {'16'}
 InternalRulePriority Internal rule priority for lookup

table
{'Speed'} | 'Precision'

Direct Lookup Table (n-D) (LookupNDDirect)
 NumberOfTableDimensions Number of table dimensions '1' | {'2'} | '3' | '4'
 InputsSelectThisObjectFro
mTable

Inputs select this object from
table

{'Element'} | 'Vector' | '2-D
Matrix'

 TableIsInput Make table an input {'off'} | 'on'
 Table Table data {'[4 5 6;16 19 20;10 18 23]'}
 DiagnosticForOutOfRangeIn
put

Diagnostic for out-of-range
input

'None' | {'Warning'} | 'Error'

 SampleTime Sample time (-1 for inherited) {'-1'}
 TableMin Table minimum {'[]'}
 TableMax Table maximum {'[]'}
 TableDataTypeStr Table data type {'Inherit: Inherit from 'Table

data''} | 'double' | 'single' |
'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' |
'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings against
changes by the fixed-point
tools

{'off'} | 'on'

 maskTabDims Deprecated in R2009b
 explicitNumDims Deprecated in R2009b
 outDims Deprecated in R2009b
 tabIsInput Deprecated in R2009b
 mxTable Deprecated in R2009b
 clipFlag Deprecated in R2009b
 samptime Deprecated in R2009b
Interpolation Using Prelookup (Interpolation_n-D)
 NumberOfTableDimensions Number of table dimensions '1' | {'2'} | '3' | '4'

 Block-Specific Parameters

6-47

Block (Type)/Parameter Dialog Box Prompt Values
 Table Table data > Value {'sqrt([1:11]' * [1:11])'}
 TableSource Table data > Source {'Dialog'} | 'Input port'
 TableSpecification Specification {'Explicit values'} | | 'Lookup

table object'

To set this parameter from 'Explicit
values' to 'Lookup table object',
use the same call to set_param to set the
parameter LookupTableObject. For
example:

set_param('myModel/myInterpBlock',...
'TableSpecification',...
'Lookup table object',...
'LookupTableObject','myLUTObject')

 LookupTableObject Name of lookup table object {''}
 InterpMethod Interpolation method 'Flat' | {'Linear point-slope'}

| 'Nearest' | 'Linear Lagrange'
 ExtrapMethod Extrapolation method 'Clip' | {'Linear'}
 ValidIndexMayReachLast Valid index input may reach

last index
{'off'} | 'on'

 DiagnosticForOutOfRange
 Input

Diagnostic for out-of-range
input

{'None'} | 'Warning' | 'Error'

 RemoveProtectionIndex Remove protection against out-
of-range index in generated
code

{'off'} | 'on'

 NumSelectionDims Number of sub-table selection
dimensions

{'0'}

 SampleTime Sample time (-1 for inherited) {'-1'}
 TableDataTypeStr Table data > Data Type 'Inherit: Inherit from 'Table

data'' | {'Inherit: Same as
output'} | 'double' | 'single' |
'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' |
'fixdt(1,16)' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 TableMin Table data > Minimum {'[]'}
 TableMax Table data > Maximum {'[]'}
 IntermediateResultsDataTy
peStr

Intermediate results > Data
Type

{'Inherit: Inherit via internal
rule'} | 'Inherit: Same as
output' | 'double' | 'single' |
'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

6 Model and Block Parameters

6-48

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output > Data Type 'Inherit: Inherit via back

propagation' | {'Inherit:
Inherit from table data'} |
'double' | 'single' | 'int8' |
'uint8' | 'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutMin Output > Minimum {'[]'}
 OutMax Output > Maximum {'[]'}
 InternalRulePriority Internal rule priority {'Speed'} | 'Precision'
 LockScale Lock data type settings against

changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' | 'Round'
| 'Simplest' | 'Zero'

 SaturateOnIntegerOverflow Saturate on integer overflow {'off'} | 'on'
 CheckIndexInCode Deprecated in R2011a
n-D Lookup Table, 1-D Lookup Table, 2-D Lookup Table (Lookup_n-D)
 NumberOfTableDimensions Number of table dimensions '1' | '2' | '3' | '4'. Default is ‘1’

for 1-D Lookup Table, ‘2’ for 2-D Lookup
Table, ‘3’ for n-D Lookup Table.

 DataSpecification (n-D Lookup Table) Data
specification

{'Table and breakpoints'} |
'Lookup table object'

To set this parameter from 'Table and
breakpoints' to 'Lookup table
object', use the same call to set_param
to set the parameter
LookupTableObject. For example:

set_param('myModel/myLookupBlock',...
'DataSpecification','Lookup table...
object',...
'LookupTableObject','myLUTObject')

 LookupTableObject Name of lookup table object. {''}
 Table Table data {'reshape(repmat([4 5 6;16 19

20;10 18 23],1,2),[3,3,2])'}
 BreakpointsSpecification Breakpoints specification {'Explicit values'} | 'Even

spacing'
 BreakpointsFor‐
Dimension1FirstPoint

First point {'1'}

 BreakpointsFor‐
Dimension2FirstPoint

First point {'1'}

 Block-Specific Parameters

6-49

Block (Type)/Parameter Dialog Box Prompt Values
 BreakpointsFor‐
Dimension3FirstPoint

First point {'1'}

 BreakpointsFor‐
Dimension30FirstPoint

First point {'1'}

 BreakpointsFor‐
Dimension1Spacing

Spacing {'1'}

 BreakpointsFor‐
Dimension2Spacing

Spacing {'1'}

 BreakpointsFor‐
Dimension3Spacing

Spacing {'1'}

 BreakpointsFor‐
Dimension30Spacing

Spacing {'1'}

 BreakpointsForDimension1 Breakpoints 1 {'[10,22,31]'}
 BreakpointsForDimension2 Breakpoints 2 {'[10,22,31]'}
 BreakpointsForDimension3 Breakpoints 3 {'[5, 7]'}

 BreakpointsForDimension30 Breakpoints 30 {'[1:3]'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InterpMethod Interpolation method 'Flat' | 'Nearest' | {'Linear

point-slope'} | 'Linear
Lagrange' | 'Cubic spline'

 ExtrapMethod Extrapolation method 'Clip' | {'Linear'} | 'Cubic
spline'

 UseLastTableValue Use last table value for inputs
at or above last breakpoint

{'off'} | 'on'

 DiagnosticForOutOfRange
 Input

Diagnostic for out-of-range
input

{'None'} | 'Warning' | 'Error'

 RemoveProtectionInput Remove protection against out-
of-range input in generated
code

{'off'} | 'on'

 IndexSearchMethod Index search method 'Evenly spaced points' | 'Linear
search' | {'Binary search'}

 BeginIndexSearchUsing
 PreviousIndexResult

Begin index search using
previous index result

{'off'} | 'on'

 UseOneInputPortForAll
 InputData

Use one input port for all input
data

{'off'} | 'on'

 SupportTunableTableSize Support tunable table size in
code generation

{'off'} | 'on'

6 Model and Block Parameters

6-50

Block (Type)/Parameter Dialog Box Prompt Values
 MaximumIndicesForEach
 Dimension

Maximum indices for each
dimension

{'[]'}

 TableDataTypeStr Table data > Data Type 'Inherit: Inherit from 'Table
data'' | {'Inherit: Same as
output'} | 'double' | 'single' |
'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' |
'fixdt(1,16)' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 TableMin Table data > Minimum {'[]'}
 TableMax Table data > Maximum {'[]'}
 BreakpointsForDimension1
 DataTypeStr

Breakpoints 1 > Data Type {'Inherit: Same as corresponding
input'} | 'Inherit: Inherit from
'Breakpoint data'' | 'double' |
'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 BreakpointsForDimension1
 Min

Breakpoints 1 > Minimum {'[]'}

 BreakpointsForDimension1
 Max

Breakpoints 1 > Maximum {'[]'}

 BreakpointsForDimension2
 DataTypeStr

Breakpoints 2 > Data Type {'Inherit: Same as corresponding
input'} | 'Inherit: Inherit from
'Breakpoint data'' | 'double' |
'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 BreakpointsForDimension2
 Min

Breakpoints 2 > Minimum {'[]'}

 BreakpointsForDimension2
 Max

Breakpoints 2 > Maximum {'[]'}

 BreakpointsForDimension30
 DataTypeStr

Breakpoints 30 > Data Type {'Inherit: Same as corresponding
input'} | 'Inherit: Inherit from
'Breakpoint data'' | 'double' |
'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 Block-Specific Parameters

6-51

Block (Type)/Parameter Dialog Box Prompt Values
 BreakpointsForDimension30
 Min

Breakpoints 30 > Minimum {'[]'}

 BreakpointsForDimension30
 Max

Breakpoints 30 > Maximum {'[]'}

 FractionDataTypeStr Fraction > Data Type {'Inherit: Inherit via internal
rule'} | 'double' | 'single' |
'fixdt(1,16,0)'

 IntermediateResults
 DataTypeStr

Intermediate results > Data
Type

'Inherit: Inherit via internal
rule' | {'Inherit: Same as
output'} | 'double' | 'single' |
'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutDataTypeStr Output > Data Type 'Inherit: Inherit via back
propagation' | 'Inherit: Inherit
from table data' | {'Inherit:
Same as first input'} | 'double'
| 'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' |
'uint32' | 'int64' | 'uint64' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutMin Output > Minimum {'[]'}
 OutMax Output > Maximum {'[]'}
 InternalRulePriority Internal rule priority {'Speed'} | 'Precision'
 InputSameDT Require all inputs to have the

same data type
'off' | {'on'}

 LockScale Lock data type settings against
changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
'Floor' | 'Nearest' | 'Round' |
{'Simplest'} | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 ProcessOutOfRangeInput Deprecated in R2009b
Lookup Table Dynamic (Lookup Table Dynamic) (masked subsystem)
 LookUpMeth Lookup Method 'Interpolation-Extrapolation' |

{'Interpolation-Use End Values'}
| 'Use Input Nearest' | 'Use
Input Below' | 'Use Input Above'

6 Model and Block Parameters

6-52

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {'fixdt('double')'} | 'Inherit:

Inherit via back propagation' |
'double' | 'single' | 'int8' |
'uint8' | 'int16' | 'uint16' |
'int32' | 'uint32' | 'int64' |
'uint64' | 'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutputDataTypeScaling
 Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' | 'Round'|
'Simplest' | 'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Prelookup (PreLookup)
 BreakpointsSpecification Specification {'Explicit values'} | 'Even

spacing' | 'Breakpoint object'

To set this parameter from 'Explicit
values' or 'Even spacing' to
'Breakpoint object', use the same
call to set_param to set the parameter
BreakpointObject. For example:

set_param('myModel/myPrelookupBlock',...
'BreakpointsSpecification',...
'Breakpoint object',...
'BreakpointObject','myBPObject')

 BreakpointObject Name of breakpoint object {''}
 BreakpointsFirstPoint First point {'10'}
 BreakpointsSpacing Spacing {'10'}
 BreakpointsNumPoints Number of points {'11'}
 BreakpointsData Value {'[10:10:110]'}
 BreakpointsDataSource Source {'Dialog'} | 'Input port'
 IndexSearchMethod Index search method 'Evenly spaced points' | 'Linear

search' | {'Binary search'}
 BeginIndexSearchUsing
 PreviousIndexResult

Begin index search using
previous index result

{'off'} | 'on'

 Block-Specific Parameters

6-53

Block (Type)/Parameter Dialog Box Prompt Values
 OutputOnlyTheIndex Output only the index {'off'} | 'on'
 ExtrapMethod Extrapolation method 'Clip' | {'Linear'}
 UseLastBreakpoint Use last breakpoint for input at

or above upper limit
{'off'} | 'on'

 DiagnosticForOutOfRange
 Input

Diagnostic for out-of-range
input

{'None'} | 'Warning' | 'Error'

 RemoveProtectionInput Remove protection against out-
of-range input in generated
code

{'off'} | 'on'

 SampleTime Sample time (-1 for inherited) {'-1'}
 BreakpointDataTypeStr Breakpoint > Data Type {'Inherit: Same as input'} |

'Inherit: Inherit from
'Breakpoint data'' | 'double' |
'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 BreakpointMin Breakpoint > Minimum {'[]'}
 BreakpointMax Breakpoint > Maximum {'[]'}
 IndexDataTypeStr Index > Data Type 'int8' | 'uint8' | 'int16' |

'uint16' | 'int32' | {'uint32'}
| 'fixdt(1,16)'

 FractionDataTypeStr Fraction > Data Type {'Inherit: Inherit via internal
rule'} | 'double' | 'single' |
'fixdt(1,16,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' | 'Round'
| 'Simplest' | 'Zero'

 ProcessOutOfRangeInput Deprecated in R2011a
Sine (Sine) (masked subsystem)
 Formula Output formula {'sin(2*pi*u)'} | 'cos(2*pi*u)'

| 'exp(j*2*pi*u)' | 'sin(2*pi*u)
and cos(2*pi*u)'

 NumDataPoints Number of data points for
lookup table

{'(2^5)+1'}

 OutputWordLength Output word length {'16'}
 InternalRulePriority Internal rule priority for lookup

table
{'Speed'} | 'Precision'

6 Model and Block Parameters

6-54

Math Operations Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Abs (Abs)
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via

internal rule' | 'Inherit:
Inherit via back
propagation' | {'Inherit:
Same as input'} | 'double'
| 'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Add (Sum)
 IconShape Icon shape {'rectangular'} | 'round'
 Inputs List of signs {'++'}
 CollapseMode Sum over {'All dimensions'} |

'Specified dimension'
 CollapseDim Dimension {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have the same

data type
{'off'} | 'on'

 AccumDataTypeStr Accumulator data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as first input' |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 Block-Specific Parameters

6-55

Block (Type)/Parameter Dialog Box Prompt Values
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'Inherit:
Same as first input' |
'Inherit: Same as
accumulator' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Algebraic Constraint (Algebraic Constraint)
 Constraint Constraint on input signal {'f(z) = 0'} | 'f(z) = z'
 Solver Algebraic Loop Solver {'auto'} | 'Trust Region' |

'Line Search'
 Tolerance Solver Tolerance {'auto'}
 InitialGuess Initial guess {'0'}
Assignment (Assignment)
 NumberOfDimensions Number of output dimensions {'1'}
 IndexMode Index mode 'Zero-based' | {'One-

based'}
 OutputInitialize Initialize output (Y) {'Initialize using input

port <Y0>'} | 'Specify size
for each dimension in
table'

 IndexOptionArray Index Option 'Assign all' | {'Index
vector (dialog)'} | 'Index
vector (port)' | 'Starting
index (dialog)' | 'Starting
index (port)'

 IndexParamArray Index cell array
 OutputSizeArray Output Size cell array

6 Model and Block Parameters

6-56

Block (Type)/Parameter Dialog Box Prompt Values
 DiagnosticForDimensions Action if any output element is not

assigned
'Error' | 'Warning' |
{'None'}

 SampleTime Sample time (-1 for inherited) {'-1'}
 IndexOptions See the IndexOptionArray

parameter for more information.

 Indices See the IndexParamArray
parameter for more information.

 OutputSizes See the OutputSizeArray
parameter for more information.

Bias (Bias)
 Bias Bias {'0.0'}
 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Complex to Magnitude-Angle (ComplexToMagnitudeAngle)
 Output Output 'Magnitude' | 'Angle' |

{'Magnitude and angle'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Complex to Real-Imag (ComplexToRealImag)
 Output Output 'Real' | 'Imag' | {'Real

and imag'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Divide (Product)
 Inputs Number of inputs {'*/'}
 Multiplication Multiplication {'Element-wise(.*)'} |

'Matrix(*)'
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have same data

type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'Inherit:
Same as first input' |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 Block-Specific Parameters

6-57

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock output data type setting

against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Dot Product (DotProduct)
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have same data

type
'off' | {'on'}

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'Inherit:
Same as first input' |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 OutputDataTypeScaling
 Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Find (Find)
 IndexOutputFormat Index output format {'Linear indices'} |

'Subscripts'
 NumberOfInputDimensions Number of input dimensions integer — {'1'}

6 Model and Block Parameters

6-58

Block (Type)/Parameter Dialog Box Prompt Values
 IndexMode Index mode {'Zero-based'} | 'One-

based'
 ShowOutputForNonzero
InputValues

Show output port for nonzero input
values

{'off'} | 'on'

 SampleTime Sample time (–1 for inherited) {'-1'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16)'

Gain (Gain)
 Gain Gain {'1'}
 Multiplication Multiplication {'Element-wise(K.*u)'} |

'Matrix(K*u)' |
'Matrix(u*K)' |
'Matrix(K*u) (u vector)'

 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'Inherit:
Same as input' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 ParamMin Parameter minimum {'[]'}
 ParamMax Parameter maximum {'[]'}

 Block-Specific Parameters

6-59

Block (Type)/Parameter Dialog Box Prompt Values
 ParamDataTypeStr Parameter data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Same as input' | 'Inherit:
Inherit from 'Gain'' |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

Magnitude-Angle to Complex (MagnitudeAngleToComplex)
 Input Input 'Magnitude' | 'Angle' |

{'Magnitude and angle'}
 ConstantPart Magnitude or Angle {'0'}
 ApproximationMethod Approximation method {'None'} | 'CORDIC'
 NumberOfIterations Number of iterations {'11'}
ScaleReciprocalGainFactor Scale output by reciprocal of gain

factor
'off' | {'on'}

 SampleTime Sample time (-1 for inherited) {'-1'}
Math Function (Math)
 Operator Function {'exp'} | 'log' | '10^u' |

'log10' | 'magnitude^2' |
'square' | 'pow' | 'conj' |
'reciprocal' | 'hypot' |
'rem' | 'mod' | 'transpose'
| 'hermitian'

 OutputSignalType Output signal type {'auto'} | 'real' |
'complex'

 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via

internal rule' | 'Inherit:
Inherit via back
propagation' | {'Inherit:
Same as first input'} |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

6 Model and Block Parameters

6-60

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock output data type setting

against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow 'off' | {'on'}

Matrix Concatenate (Concatenate)
 NumInputs Number of inputs {'2'}
 Mode Mode 'Vector' |

{'Multidimensional array'}
 ConcatenateDimension Concatenate dimension {'2'}
MinMax (MinMax)
 Function Function {'min'} | 'max'
 Inputs Number of input ports {'1'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have the same

data type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

MinMax Running Resettable (MinMax Running Resettable) (masked subsystem)

 Block-Specific Parameters

6-61

Block (Type)/Parameter Dialog Box Prompt Values
 Function Function {'min'} | 'max'
 vinit Initial condition {'0.0'}
Permute Dimensions (PermuteDimensions)
 Order Order {'[2,1]'}
Polynomial (Polyval)
 coefs Polynomial Coefficients {'[+2.081618890e-019,

-1.441693666e-014,
+4.719686976e-010,
-8.536869453e-006,
+1.621573104e-001,
-8.087801117e+001]'}

Product (Product)
 Inputs Number of inputs {'2'}
 Multiplication Multiplication {'Element-wise(.*)'} |

'Matrix(*)'
 CollapseMode Multiply over {'All dimensions'} |

'Specified dimension'
 CollapseDim Dimension {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have same data

type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'Inherit:
Same as first input' |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
'Floor' | 'Nearest' |
'Round' | 'Simplest' |
{'Zero'}

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

6 Model and Block Parameters

6-62

Block (Type)/Parameter Dialog Box Prompt Values
Product of Elements (Product)
 Inputs Number of inputs {'*'}
 Multiplication Multiplication {'Element-wise(.*)'} |

'Matrix(*)'
 CollapseMode Multiply over {'All dimensions'} |

'Specified dimension'
 CollapseDim Dimension {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have same data

type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'Inherit:
Same as first input' |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Real-Imag to Complex (RealImagToComplex)
 Input Input 'Real' | 'Imag' | {'Real

and imag'}
 ConstantPart Real part or Imag part {'0'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Reciprocal Sqrt (Sqrt)
 Operator Function 'sqrt' | 'signedSqrt' |

{'rSqrt'}
 OutputSignalType Output signal type {'auto'} | 'real' |

'complex'

 Block-Specific Parameters

6-63

Block (Type)/Parameter Dialog Box Prompt Values
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via

internal rule' | 'Inherit:
Inherit via back
propagation' | {'Inherit:
Same as first input'} |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow 'off' | {'on'}

 IntermediateResults
 DataTypeStr

Intermediate results data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Inherit from input' |
'Inherit: Inherit from
output' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 AlgorithmType Method 'Exact' | {'Newton-
Raphson'}

 Iterations Number of iterations {'3'}
Reshape (Reshape)
 OutputDimensionality Output dimensionality {'1-D array'} | 'Column

vector (2-D)' | 'Row vector
(2-D)' | 'Customize' |
'Derive from reference
input port'

 OutputDimensions Output dimensions {'[1,1]'}
Rounding Function (Rounding)

6 Model and Block Parameters

6-64

Block (Type)/Parameter Dialog Box Prompt Values
 Operator Function {'floor'} | 'ceil' |

'round' | 'fix'
 SampleTime Sample time (-1 for inherited) {'-1'}
Sign (Signum)
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Signed Sqrt (Sqrt)
 Operator Function 'sqrt' | {'signedSqrt'} |

'rSqrt'
 OutputSignalType Output signal type {'auto'} | 'real' |

'complex'
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via

internal rule' | 'Inherit:
Inherit via back
propagation' | {'Inherit:
Same as first input'} |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow 'off' | {'on'}

 IntermediateResults
 DataTypeStr

Intermediate results data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Inherit from input' |
'Inherit: Inherit from
output' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 Block-Specific Parameters

6-65

Block (Type)/Parameter Dialog Box Prompt Values
 AlgorithmType Method {'Exact'} | 'Newton-

Raphson'
 Iterations Number of iterations {'3'}
Sine Wave Function (Sin)
 SineType Sine type {'Time based'} | 'Sample

based'
 TimeSource Time 'Use simulation time' |

{'Use external signal'}
 Amplitude Amplitude {'1'}
 Bias Bias {'0'}
 Frequency Frequency {'1'}
 Phase Phase {'0'}
 Samples Samples per period {'10'}
 Offset Number of offset samples {'0'}
 SampleTime Sample time {'0'}
 VectorParams1D Interpret vector parameters as 1-D 'off' | {'on'}
Slider Gain (Slider Gain) (masked subsystem)
 low Low {'0'}
 gain Gain {'1'}
 high High {'2'}
Sqrt (Sqrt)
 Operator Function {'sqrt'} | 'signedSqrt' |

'rSqrt'
 OutputSignalType Output signal type {'auto'} | 'real' |

'complex'
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via

internal rule' | 'Inherit:
Inherit via back
propagation' | {'Inherit:
Same as first input'} |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

6 Model and Block Parameters

6-66

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock output data type setting

against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow 'off' | {'on'}

 IntermediateResults
 DataTypeStr

Intermediate results data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Inherit from input' |
'Inherit: Inherit from
output' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 AlgorithmType Method {'Exact'} | 'Newton-
Raphson'

 Iterations Number of iterations {'3'}
Squeeze (Squeeze) (masked subsystem)
 None None None
Subtract (Sum)
 IconShape Icon shape {'rectangular'} | 'round'
 Inputs List of signs {'+-'}
 CollapseMode Sum over {'All dimensions'} |

'Specified dimension'
 CollapseDim Dimension {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have the same

data type
{'off'} | 'on'

 AccumDataTypeStr Accumulator data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as first input' |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

 Block-Specific Parameters

6-67

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'Inherit:
Same as first input' |
'Inherit: Same as
accumulator' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Sum (Sum)
 IconShape Icon shape 'rectangular' | {'round'}
 Inputs List of signs {'|++'}
 CollapseMode Sum over {'All dimensions'} |

'Specified dimension'
 CollapseDim Dimension {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have the same

data type
{'off'} | 'on'

 AccumDataTypeStr Accumulator data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as first input' |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

6 Model and Block Parameters

6-68

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'Inherit:
Same as first input' |
'Inherit: Same as
accumulator' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Sum of Elements (Sum)
 IconShape Icon shape {'rectangular'} | 'round'
 Inputs List of signs {'+'}
 CollapseMode Sum over {'All dimensions'} |

'Specified dimension'
 CollapseDim Dimension {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all inputs to have the same

data type
{'off'} | 'on'

 AccumDataTypeStr Accumulator data type {'Inherit: Inherit via
internal rule'} | 'Inherit:
Same as first input' |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

 Block-Specific Parameters

6-69

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back
propagation' | 'Inherit:
Same as first input' |
'Inherit: Same as
accumulator' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock data type settings against
changes by the fixed-point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Trigonometric Function (Trigonometry)
 Operator Function {'sin'} | 'cos' | 'tan' |

'asin' | 'acos' | 'atan' |
'atan2' | 'sinh' | 'cosh' |
'tanh' | 'asinh' | 'acosh'
| 'atanh' | 'sincos' | 'cos
+ jsin'

 ApproximationMethod Approximation method {'None'} | 'CORDIC'
 NumberOfIterations Number of iterations {'11'}
 OutputSignalType Output signal type {'auto'} | 'real' |

'complex'
 SampleTime Sample time (-1 for inherited) {'-1'}
Unary Minus (UnaryMinus)
 SampleTime Sample time (-1 for inherited) {'-1'}
 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

Vector Concatenate (Concatenate)
 NumInputs Number of inputs {'2'}
 Mode Mode {'Vector'} |

'Multidimensional array'
Weighted Sample Time Math (SampleTimeMath)
 TsampMathOp Operation {'+'} | '-' | '*' | '/' |

'Ts Only' | '1/Ts Only'

6 Model and Block Parameters

6-70

Block (Type)/Parameter Dialog Box Prompt Values
 weightValue Weight value {'1.0'}
 TsampMathImp Implement using {'Online Calculations'} |

'Offline Scaling
Adjustment'

 OutDataTypeStr Output data type {'Inherit via internal
rule'} | 'Inherit via back
propagation'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 OutputDataTypeScaling
 Mode

Deprecated in R2009b

 DoSatur Deprecated in R2009b

 Block-Specific Parameters

6-71

Model Verification Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Assertion (Assertion)
 Enabled Enable assertion 'off' | {'on'}
 AssertionFailFcn Simulation callback when assertion

fails
{''}

 StopWhenAssertionFail Stop simulation when assertion fails 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Check Dynamic Gap (Checks_DGap) (masked subsystem)
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when assertion

fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion fails 'off' | {'on'}
 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Dynamic Range (Checks_DRange) (masked subsystem)
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when assertion

fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion fails 'off' | {'on'}
 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Static Gap (Checks_SGap) (masked subsystem)
 max Upper bound {'100'}
 max_included Inclusive upper bound 'off' | {'on'}
 min Lower bound {'0'}
 min_included Inclusive lower bound 'off' | {'on'}
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when assertion

fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion fails 'off' | {'on'}
 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Static Range (Checks_SRange) (masked subsystem)
 max Upper bound {'100'}
 max_included Inclusive upper bound 'off' | {'on'}
 min Lower bound {'0'}
 min_included Inclusive lower bound 'off' | {'on'}

6 Model and Block Parameters

6-72

Block (Type)/Parameter Dialog Box Prompt Values
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when assertion

fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion fails 'off' | {'on'}
 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Discrete Gradient (Checks_Gradient) (masked subsystem)
 gradient Maximum gradient {'1'}
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when assertion

fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion fails 'off' | {'on'}
 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Dynamic Lower Bound (Checks_DMin) (masked subsystem)
 Enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when assertion

fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion fails 'off' | {'on'}
 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Dynamic Upper Bound (Checks_DMax) (masked subsystem)
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when assertion

fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion fails 'off' | {'on'}
 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Input Resolution (Checks_Resolution) (masked subsystem)
 resolution Resolution {'1'}
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when assertion

fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion fails 'off' | {'on'}
 export Output assertion signal {'off'} | 'on'
Check Static Lower Bound (Checks_SMin) (masked subsystem)
 min Lower bound {'0'}
 min_included Inclusive boundary 'off' | {'on'}

 Block-Specific Parameters

6-73

Block (Type)/Parameter Dialog Box Prompt Values
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when assertion

fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion fails 'off' | {'on'}
 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'
Check Static Upper Bound (Checks_SMax) (masked subsystem)
 max Upper bound {'0'}
 max_included Inclusive boundary 'off' | {'on'}
 enabled Enable assertion 'off' | {'on'}
 callback Simulation callback when assertion

fails (optional)
{''}

 stopWhenAssertionFail Stop simulation when assertion fails 'off' | {'on'}
 export Output assertion signal {'off'} | 'on'
 icon Select icon type {'graphic'} | 'text'

6 Model and Block Parameters

6-74

Model-Wide Utilities Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Block Support Table (Block Support Table) (masked subsystem)
DocBlock (DocBlock) (masked subsystem)
 ECoderFlag Embedded Coder Flag {''}
 DocumentType Document Type {'Text'} | 'RTF' | 'HTML'
Model Info (CMBlock) (masked subsystem)
 InitialSaveTempField InitialSaveTempField {''}
 InitialBlockCM InitialBlockCM {'None'}
 BlockCM BlockCM {'None'}
 Frame Show block frame 'off' | {'on'}
 SaveTempField SaveTempField {''}
 DisplayStringWithTags DisplayStringWithTags {'Model Info'}
 MaskDisplayString MaskDisplayString {'Model Info'}
 HorizontalTextAlignment Horizontal text alignment {'Center'}
 LeftAlignmentValue LeftAlignmentValue {'0.5'}
 SourceBlockDiagram SourceBlockDiagram {'untitled'}
 TagMaxNumber TagMaxNumber {'20'}
 CMTag1 CMTag1 {''}
 CMTag2 CMTag2 {''}
 CMTag3 CMTag3 {''}
 CMTag4 CMTag4 {''}
 CMTag5 CMTag5 {''}
 CMTag6 CMTag6 {''}
 CMTag7 CMTag7 {''}
 CMTag8 CMTag8 {''}
 CMTag9 CMTag9 {''}
 CMTag10 CMTag10 {''}
 CMTag11 CMTag11 {''}
 CMTag12 CMTag12 {''}
 CMTag13 CMTag13 {''}
 CMTag14 CMTag14 {''}
 CMTag15 CMTag15 {''}
 CMTag16 CMTag16 {''}
 CMTag17 CMTag17 {''}
 CMTag18 CMTag18 {''}
 CMTag19 CMTag19 {''}

 Block-Specific Parameters

6-75

Block (Type)/Parameter Dialog Box Prompt Values
 CMTag20 CMTag20 {''}
Timed-Based Linearization (Timed Linearization) (masked subsystem)
 LinearizationTime Linearization time {'1'}
 SampleTime Sample time (of linearized model) {'0'}
Trigger-Based Linearization (Triggered Linearization) (masked subsystem)
 TriggerType Trigger type {'rising'} | 'falling' |

'either' | 'function-call'
 SampleTime Sample time (of linearized model) {'0'}

6 Model and Block Parameters

6-76

Ports & Subsystems Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Action Port (ActionPort)
 InitializeStates States when execution is resumed {'held'} | 'reset'
 PropagateVarSize Propagate sizes of variable-size

signals
{'Only when execution is
resumed'} | 'During
execution'

Atomic Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and 'on'
are for backward compatibility only
and should not be used in new
models or when updating existing
models.

'none' | {'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' | 'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} | 'ReadOnly'

| 'NoReadOrWrite'
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly' |
'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 TreatAsGroupedWhenPropagat
ingVariantConditions

Treat as grouped when propagating
variant conditions

'off' | {'on'}

 MinAlgLoopOccurrences Minimize algebraic loop
occurrences

{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use subsystem
name' | 'User specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options {'Auto'} | 'Use subsystem

name' | 'Use function name'
| 'User specified'

 RTWFileName File name (no extension) {''}

 Block-Specific Parameters

6-77

Block (Type)/Parameter Dialog Box Prompt Values
 FunctionInterfaceSpec Function interface

This parameter requires a license
for Embedded Coder software and
an ERT-based system target file.

{'void_void'} | 'Allow
arguments (Optimized)' |
'Allow arguments (Match
graphical interface)'

 FunctionWithSeparateData “Function with separate data” on
page 1-0

This parameter requires a license
for Embedded Coder software and
an ERT-based system target file.

{'off'} | 'on'

 RTWMemSecFuncInitTerm “Memory section for initialize/
terminate functions” on page 1-0

This parameter requires a license
for Embedded Coder software and
an ERT-based system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecFuncExecute “Memory section for execution
functions” on page 1-0

This parameter requires a license
for Embedded Coder software and
an ERT-based system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecDataConstants “Memory section for constants” on
page 1-0

This parameter requires a license
for Embedded Coder software and
an ERT-based system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecDataInternal “Memory section for internal data”
on page 1-0

This parameter requires a license
for Embedded Coder software and
an ERT-based system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecDataParameters “Memory section for parameters”
on page 1-0

This parameter requires a license
for Embedded Coder software and
an ERT-based system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 DataTypeOverride No dialog box prompt

Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

6 Model and Block Parameters

6-78

Block (Type)/Parameter Dialog Box Prompt Values
 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'

 SimViewingDevice No dialog box prompt

If set to 'on', designates the block
as a Signal Viewing Subsystem —
an atomic subsystem that
encapsulates processing and
viewing of signals received from the
target system in External mode. For
more information, see “Signal
Viewing Subsystems” (Simulink
Coder).

{'off'} | 'on'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Code Reuse Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and 'on'
are for backward compatibility only
and should not be used in new
models or when updating existing
models.

'none' | {'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' | 'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} | 'ReadOnly'

| 'NoReadOrWrite'
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly' |
'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}

 Block-Specific Parameters

6-79

Block (Type)/Parameter Dialog Box Prompt Values
 RTWSystemCode Function packaging 'Auto' | 'Inline' |

'Nonreusable function' |
{'Reusable function'}

 RTWFcnNameOpts Function name options 'Auto' | {'Use subsystem
name'} | 'User specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options 'Auto' | {'Use subsystem

name'} | 'Use function
name' | 'User specified'

 RTWFileName File name (no extension) {''}
 RTWMemSecFuncInitTerm “Memory section for initialize/

terminate functions” on page 1-0

This parameter requires a license
for Embedded Coder software and
an ERT-based system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecFuncExecute “Memory section for execution
functions” on page 1-0

This parameter requires a license
for Embedded Coder software and
an ERT-based system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecDataConstants “Memory section for constants” on
page 1-0

This parameter requires a license
for Embedded Coder software and
an ERT-based system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecDataInternal “Memory section for internal data”
on page 1-0

This parameter requires a license
for Embedded Coder software and
an ERT-based system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 RTWMemSecDataParameters “Memory section for parameters”
on page 1-0

This parameter requires a license
for Embedded Coder software and
an ERT-based system target file.

{'Inherit from model'} |
'Default' | list of memory
sections from model's package

 DataTypeOverride No dialog box prompt

Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

6 Model and Block Parameters

6-80

Block (Type)/Parameter Dialog Box Prompt Values
 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Configurable Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and 'on'
are for backward compatibility only
and should not be used in new
models or when updating existing
models.

'none' | {'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' | 'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {'self'}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} | 'ReadOnly'

| 'NoReadOrWrite'
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly' |
'None'

 TreatAsAtomicUnit Treat as atomic unit {'off'} | 'on'
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use subsystem
name' | 'User specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options {'Auto'} | 'Use subsystem

name' | 'Use function name'
| 'User specified'

 RTWFileName File name (no extension) {''}

 Block-Specific Parameters

6-81

Block (Type)/Parameter Dialog Box Prompt Values
 DataTypeOverride No dialog box prompt

Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'

 SimViewingDevice No dialog box prompt

If set to 'on', designates the block
as a Signal Viewing Subsystem —
an atomic subsystem that
encapsulates processing and
viewing of signals received from the
target system in External mode. For
more information, see “Signal
Viewing Subsystems” (Simulink
Coder).

{'off'} | 'on'

 DataTypeOverride No dialog box prompt

Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'

 IsSubsystemVirtual No dialog box prompt boolean — {'on'} | 'off'

Read-only
Enable (EnablePort)
 StatesWhenEnabling States when enabling {'held'} | 'reset'
 PropagateVarSize Propagate sizes of variable-size

signals
{'Only when enabling'} |
'During execution'

 ShowOutputPort Show output port {'off'} | 'on'
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
Enabled and Triggered Subsystem (SubSystem)

6 Model and Block Parameters

6-82

Block (Type)/Parameter Dialog Box Prompt Values
 ShowPortLabels Show port labels

Note The values 'off' and 'on'
are for backward compatibility only
and should not be used in new
models or when updating existing
models.

'none' | {'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' | 'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} | 'ReadOnly'

| 'NoReadOrWrite'
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly' |
'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use subsystem
name' | 'User specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options {'Auto'} | 'Use subsystem

name' | 'Use function name'
| 'User specified'

 RTWFileName File name (no extension) {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'

 Block-Specific Parameters

6-83

Block (Type)/Parameter Dialog Box Prompt Values
 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Enabled Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and 'on'
are for backward compatibility only
and should not be used in new
models or when updating existing
models.

'none' | {'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' | 'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} | 'ReadOnly'

| 'NoReadOrWrite'
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly' |
'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use subsystem
name' | 'User specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options {'Auto'} | 'Use subsystem

name' | 'Use function name'
| 'User specified'

 RTWFileName File name (no extension) {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

6 Model and Block Parameters

6-84

Block (Type)/Parameter Dialog Box Prompt Values
 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
For Each(ForEach)
 InputPartition Partition cell array of character vectors
 InputPartitionDimension Partition dimension for input signal cell array of character vectors
 InputPartitionWidth Width of partition for input signal cell array of character vectors
 OutputConcatenationDimensi
on

Concatenation dimension of output
signal

cell array of character vectors

For Iterator (ForIterator)
 ResetStates States when starting {'held'} | 'reset'
 IterationSource Iteration limit source {'internal'} | 'external'
 IterationLimit Iteration limit {'5'}
 ExternalIncrement Set next i (iteration variable)

externally
{'off'} | 'on'

 ShowIterationPort Show iteration variable 'off' | {'on'}
 IndexMode Index mode 'Zero-based' | {'One-

based'}
 IterationVariable
 DataType

Iteration variable data type {'int32'} | 'int16' |
'int8' | 'double'

For Iterator Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and 'on'
are for backward compatibility only
and should not be used in new
models or when updating existing
models.

'none' | {'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' | 'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} | 'ReadOnly'

| 'NoReadOrWrite'
 ErrorFcn Name of error callback function {''}

 Block-Specific Parameters

6-85

Block (Type)/Parameter Dialog Box Prompt Values
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly' |
'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use subsystem
name' | 'User specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options {'Auto'} | 'Use subsystem

name' | 'Use function name'
| 'User specified'

 RTWFileName File name (no extension) {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation . Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Function-Call Generator (Function-Call Generator) (masked subsystem)
 sample_time Sample time {'1'}
 numberOfIterations Number of iterations {'1'}
Function-Call Subsystem (SubSystem)

6 Model and Block Parameters

6-86

Block (Type)/Parameter Dialog Box Prompt Values
 ShowPortLabels Show port labels

Note The values 'off' and 'on'
are for backward compatibility only
and should not be used in new
models or when updating existing
models.

'none' | {'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' | 'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} | 'ReadOnly'

| 'NoReadOrWrite'
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly' |
'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use subsystem
name' | 'User specified'

 RTWFcnName Function name {''}
 RTWFileNameOpts File name options {'Auto'} | 'Use subsystem

name' | 'Use function name'
| 'User specified'

 RTWFileName File name (no extension) {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'

 Block-Specific Parameters

6-87

Block (Type)/Parameter Dialog Box Prompt Values
 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
If (If)
 NumInputs Number of inputs {'1'}
 IfExpression If expression (e.g., u1 ~= 0) {'u1 > 0'}
 ElseIfExpressions Elseif expressions (comma-

separated list, e.g., u2 ~= 0, u3(2)
< u2)

{''}

 ShowElse Show else condition 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
If Action Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and 'on'
are for backward compatibility only
and should not be used in new
models or when updating existing
models.

'none' | {'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' | 'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} | 'ReadOnly'

| 'NoReadOrWrite'
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly' |
'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Function name options {'Auto'} | 'Use subsystem
name' | 'User specified'

 RTWFcnName Function name {''}

6 Model and Block Parameters

6-88

Block (Type)/Parameter Dialog Box Prompt Values
 RTWFileNameOpts File name options {'Auto'} | 'Use subsystem

name' | 'Use function name'
| 'User specified'

 RTWFileName File name (no extension) {''}
 DataTypeOverride No dialog box prompt

Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'Off'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
In1 (Inport)
 Port Port number {'1'}
 IconDisplay Icon display 'Signal name' | {'Port

number'} | 'Port number and
signal name'

 LatchByDelaying
 OutsideSignal

Latch input by delaying outside
signal

{'off'} | 'on'

 LatchInputFor
 FeedbackSignals

Latch input for feedback signals of
function-call subsystem outputs

{'off'} | 'on'

 Interpolate Interpolate data 'off' | {'on'}
 UseBusObject Specify properties via bus object {'off'} | 'on'
 BusObject Bus object for specifying bus

properties
{'BusObject'}

 BusOutputAsStruct Output as nonvirtual bus {'off'} | 'on'
 PortDimensions Port dimensions (-1 for inherited) {'-1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}

 Block-Specific Parameters

6-89

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 Unit Specify physical unit of the input
signal to the block.

{'inherit'}| '<Enter unit>'

 UnitNoProp Specify physical unit of the input
signal to the block without
propagation. For a list of acceptable
units, see Allowed Units.

'<Enter unit>'

 SignalType Signal type {'auto'} | 'real' |
'complex'

Model (ModelReference)
 ModelNameDialog The name of the referenced model

exactly as you typed it in, with any
surrounding white space removed.
When you set ModelNameDialog
programmatically or interactively,
Simulink automatically sets the
values of ModelName and
ModelFile based on the value of
ModelNameDialog.

{'<Enter Model Name>'}

 ModelName The value of ModelNameDialog
stripped of any file name extension
that you provided. For backward
compatibility, setting ModelName
programmatically actually sets
ModelNameDialog, which then
sets ModelName as described. You
cannot use get_param to obtain
the ModelName of a protected
model, because the name without a
suffix would be ambiguous. Use
get_param on ModelFile instead.
You can test ProtectedModel to
determine programmatically
whether a referenced model is
protected.

character vector — Set
automatically when
ModelNameDialog is set.

6 Model and Block Parameters

6-90

matlab:showunitslist

Block (Type)/Parameter Dialog Box Prompt Values
 ModelFile The value of ModelNameDialog

with a file name extension. The
suffix of the first match Simulink
finds becomes the suffix of
ModelFile. Setting ModelFile
programmatically actually sets
ModelNameDialog, which then
sets ModelFile as described.

character vector — Set
automatically when
ModelNameDialog is set.

 ProtectedModel Read-only boolean indicating
whether the model referenced by
the block is protected (on) or
unprotected (off).

boolean — 'off' | 'on' — Set
automatically when
ModelNameDialog is set.

 InstanceParameters Structure array of instance-specific
parameters on the Model block.

structure with fields: Name, Value,
Path, and Argument.

 ParameterArgumentNames Names of instance-specific
parameters that the referenced
model defines. Corresponds to the
Name column in the table on the
Instance parameters tab.

{''}

 ParameterArgumentValues Values for model arguments.
Corresponds to the Value column in
the table on the Instance
parameters tab.

structure with no fields

 SimulationMode Specifies whether to simulate the
model by generating and executing
code or by interpreting the model in
Simulink software.

{'Normal'} | 'Accelerator'
| 'Software-in-the-loop
(SIL)' | 'Processor-in-the-
loop (PIL)'

 DefaultDataLogging {'off'} | 'on'
Out1 (Outport)
 Port Port number {'1'}
 IconDisplay Icon display 'Signal name' | {'Port

number'} | 'Port number and
signal name'

 UseBusObject Specify properties via bus object {'off'} | 'on'
 BusObject Bus object for validating input bus {'BusObject'}
 BusOutputAsStruct Output as nonvirtual bus in parent

model
{'off'} | 'on'

 PortDimensions Port dimensions (-1 for inherited) {'-1'}
 VarSizeSig Variable-size signal {'Inherit'} | 'No' | 'Yes'
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}

 Block-Specific Parameters

6-91

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>' |
'Bus: <object name>'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 Unit Specify physical unit of the input
signal to the block. For a list of
acceptable units, see Allowed Units.

{'inherit'}| '<Enter unit>'

 UnitNoProp Specify physical unit of the input
signal to the block without
propagation. For a list of acceptable
units, see Allowed Units.

'<Enter unit>'

 SignalObject This parameter does not appear in
the block dialog box. Use the Model
Data Editor instead. See “Design
Data Interface by Configuring
Inport and Outport Blocks”
(Simulink Coder).

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StorageClass This parameter does not appear in
the block dialog box. Use the Model
Data Editor instead. See “Design
Data Interface by Configuring
Inport and Outport Blocks”
(Simulink Coder).

{'Auto'} | 'Model default'
| 'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer' |
'Custom'

 SignalName Signal name character vector
 SignalType Signal type {'auto'} | 'real' |

'complex'
 OutputWhenDisabled Output when disabled {'held'} | 'reset'
 InitialOutput Initial output {'[]'}
 MustResolveToSignalObject This parameter does not appear in

the block dialog box. Use the Model
Data Editor instead. See “For
Signals”.

{'off'} | 'on'

Subsystem (SubSystem)

6 Model and Block Parameters

6-92

matlab:showunitslist
matlab:showunitslist

Block (Type)/Parameter Dialog Box Prompt Values
 ShowPortLabels Show port labels

Note The values 'off' and 'on'
are for backward compatibility only
and should not be used in new
models or when updating existing
models.

'none' | {'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' | 'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} | 'ReadOnly'

| 'NoReadOrWrite'
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly' |
'None'

 TreatAsAtomicUnit Treat as atomic unit {'off'} | 'on'
 TreatAsGroupedWhenPropagat
ingVariantConditions

Treat as grouped when propagating
variant conditions

'off' | {'on'}

 VariantControl Variant control {'Variant'} | '(default)'
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Code generation function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Code generation function name
options

{'Auto'} | 'Use subsystem
name' | 'User specified'

 RTWFcnName Code generation function name {''}
 RTWFileNameOpts Code generation file name options {'Auto'} | 'Use subsystem

name' | 'Use function name'
| 'User specified'

 RTWFileName Code generation file name (no
extension)

{''}

 DataTypeOverride Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

 Block-Specific Parameters

6-93

Block (Type)/Parameter Dialog Box Prompt Values
 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'

 IsSubsystemVirtual boolean — {'on'} | 'off'

Read-only
 Virtual For internal use
Switch Case (SwitchCase)
 CaseConditions Case conditions (e.g., {1,[2,3]}) {'{1}'}
 ShowDefaultCase Show default case 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 CaseShowDefault Deprecated in R2009b
Switch Case Action Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and 'on'
are for backward compatibility only
and should not be used in new
models or when updating existing
models.

'none' | {'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' | 'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} | 'ReadOnly'

| 'NoReadOrWrite'
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly' |
'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Code generation function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

6 Model and Block Parameters

6-94

Block (Type)/Parameter Dialog Box Prompt Values
 RTWFcnNameOpts Code generation function name

options
{'Auto'} | 'Use subsystem
name' | 'User specified'

 RTWFcnName Code generation function name {''}
 RTWFileNameOpts Code generation file name options {'Auto'} | 'Use subsystem

name' | 'Use function name'
| 'User specified'

 RTWFileName Code generation file name (no
extension)

{''}

 DataTypeOverride No dialog box prompt

Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Trigger (TriggerPort)
 TriggerType Trigger type {'rising'} | 'falling' |

'either' | 'function-call'
 IsSimulinkFunction Configure the Function-call

subsystem to be a Simulink
Function

{'off'} | 'on'

 StatesWhenEnabling States when enabling {'held'} | 'reset' |
'inherit'

 PropagateVarSize Propagate sizes of variable-size
signals

{'During execution'} |
'Only when enabling'

 ShowOutputPort Show output port {'off'} | 'on'
 OutputDataType Output data type {'auto'} | 'double' |

'int8'
 SampleTimeType Sample time type {'triggered'} | 'periodic'
 SampleTime Sample time {'1'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 PortDimensions Port dimensions (-1 for inherited) {'-1'}
 TriggerSignalSampleTime Trigger signal sample time {'-1'}
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}

 Block-Specific Parameters

6-95

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 Interpolate Interpolate data 'off' | {'on'}
Triggered Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and 'on'
are for backward compatibility only
and should not be used in new
models or when updating existing
models.

'none' | {'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' | 'on'

 BlockChoice Block choice {''}
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} | 'ReadOnly'

| 'NoReadOrWrite'
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly' |
'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Code generation function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Code generation function name
options

{'Auto'} | 'Use subsystem
name' | 'User specified'

 RTWFcnName Code generation function name {''}
 RTWFileNameOpts Code generation file name options {'Auto'} | 'Use subsystem

name' | 'Use function name'
| 'User specified'

6 Model and Block Parameters

6-96

Block (Type)/Parameter Dialog Box Prompt Values
 RTWFileName Code generation file name (no

extension)
{''}

 DataTypeOverride No dialog box prompt

Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Unit Conversion
 OutDataTypeStr Output data type {'Inherit via internal

rule'} | 'Inherit via back
propagation'

Unit System Configuration
 AllowAllUnitSystems Allow or restrict unit systems. boolean — {'on'} | 'off'
 UnitSystems Displays allowed unit system. cell array of character vectors —

{'SI','English',SI
(extended)','CGS'}

While Iterator (WhileIterator)
 MaxIters Maximum number of iterations (-1

for unlimited)
{'5'}

 WhileBlockType While loop type {'while'} | 'do-while'
 ResetStates States when starting {'held'} | 'reset'
 ShowIterationPort Show iteration number port {'off'} | 'on'
 OutputDataType Output data type {'int32'} | 'int16' |

'int8' | 'double'
While Iterator Subsystem (SubSystem)
 ShowPortLabels Show port labels

Note The values 'off' and 'on'
are for backward compatibility only
and should not be used in new
models or when updating existing
models.

'none' | {'FromPortIcon'} |
'FromPortBlockName' |
'SignalName' | 'off' | 'on'

 BlockChoice Block choice {''}

 Block-Specific Parameters

6-97

Block (Type)/Parameter Dialog Box Prompt Values
 TemplateBlock Template block {''}
 MemberBlocks Member blocks {''}
 Permissions Read/Write permissions {'ReadWrite'} | 'ReadOnly'

| 'NoReadOrWrite'
 ErrorFcn Name of error callback function {''}
 PermitHierarchical
 Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly' |
'None'

 TreatAsAtomicUnit Treat as atomic unit 'off' | {'on'}
 MinAlgLoopOccurrences Minimize algebraic loop

occurrences
{'off'} | 'on'

 CheckFcnCallInp
 InsideContextMsg

Warn if function-call inputs are
context-specific

{'off'} | 'on'

 SystemSampleTime Sample time (-1 for inherited) {'-1'}
 RTWSystemCode Code generation function packaging {'Auto'} | 'Inline' |

'Nonreusable function' |
'Reusable function'

 RTWFcnNameOpts Code generation function name
options

{'Auto'} | 'Use subsystem
name' | 'User specified'

 RTWFcnName Code generation function name {''}
 RTWFileNameOpts Code generation file name options {'Auto'} | 'Use subsystem

name' | 'Use function name'
| 'User specified'

 RTWFileName Code generation file name (no
extension)

{''}

 DataTypeOverride No dialog box prompt

Specifies data type used to override
fixed-point data types. Set by Data
type override on the Fixed-Point
Tool.

{'UseLocalSettings'} |
'ScaledDouble' | 'Double' |
'Single' | 'Off'

 MinMaxOverflowLogging No dialog box prompt

Setting for fixed-point
instrumentation. Set by Fixed-
point instrumentation mode on
the Fixed-Point Tool.

{'UseLocalSettings'} |
'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'

 IsSubsystemVirtual boolean — {'off'} | 'on'

Read-only
Variant Subsystem (Subsystem)
Variant No dialog box prompt

Check if the subsystem is a Variant
Subsystem block.

boolean — {'off'} | 'on'

Read-only

6 Model and Block Parameters

6-98

Block (Type)/Parameter Dialog Box Prompt Values
VariantChoices No dialog box prompt

List of variant choices in a Variant
Subsystem block.

{''}

The value is an empty structure
array if the block is not a Variant
Subsystem block. Otherwise, the
value is a structure array with
fields: Name and BlockName.

Read-only
VariantControl Variant control for the choice block

of a Variant Subsystem block.
{''}

The value is an empty character
vector if the block is not a variant
choice. Otherwise, the value is the
variant control for the choice block.

VariantControlMode Specifies the mode used to
determine the active variant choice.

{'expression'} | 'label' |
'sim codegen switching'

LabelModeActiveChoice Specifies the variant control label of
the active choice for the Variant
Subsystem block when
VariantControlMode is specified
as label.

{''}

The value is an empty character
vector if the VariantControlMode
for the Variant Subsystem block is
not label. Otherwise, the value is
the variant control label for the
active choice.

TreatAsGroupedWhenPropagati
ngVariantConditions

No dialog box prompt

Specifies if the subsystem is treated
as a group when propagating
variant conditions.

boolean — {'on'} | 'off'

GeneratePreprocessorConditi
onals

No dialog box prompt

Specifies if all the choices are to be
analyzed and if preprocessor
conditionals should be generated.

boolean — {'off'} | 'on'

PropagateVariantConditions Specifies if variant conditions on the
ports inside the Variant Subsystem
block should be propagated outside
the block.

Note Use the “Propagate
conditions outside of variant
subsystem” on page 1-0
parameter instead.

boolean — {'off'} | 'on'

AllowZeroVariantControls Specifies if the Variant Subsystem
block is allowed to have no active
choices.

boolean — {'off'} | 'on'

 Block-Specific Parameters

6-99

Block (Type)/Parameter Dialog Box Prompt Values
Variant Activation Time Specifies when the active choice of

a Variant Subsystem block is set.

The Variant activation time
parameter is available only when
you set the Variant control mode
parameter to expression or sim
codegen switching.

{'update diagram'} |
'update diagram analyze all
choices' | 'code compile'

6 Model and Block Parameters

6-100

Signal Attributes Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Bus to Vector (BusToVector)
Data Type Conversion (DataTypeConversion)
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via back

propagation'} | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'boolean' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 ConvertRealWorld Input and output to have equal {'Real World Value (RWV)'}
| 'Stored Integer (SI)'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 SampleTime Sample time (-1 for inherited) {'-1'}
Data Type Conversion Inherited (Conversion Inherited) (masked subsystem)
 ConvertRealWorld Input and Output to have equal {'Real World Value'} |

'Stored Integer'
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |

{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Data Type Duplicate (DataTypeDuplicate)
 NumInputPorts Number of input ports {'2'}
Data Type Propagation (Data Type Propagation) (masked subsystem)
 PropDataTypeMode 1. Propagated data type 'Specify via dialog' |

{'Inherit via propagation
rule'}

 PropDataType 1.1. Propagated data type (e.g.,
fixdt(1,16), fixdt('single'))

{'fixdt(1,16)'}

 Block-Specific Parameters

6-101

Block (Type)/Parameter Dialog Box Prompt Values
 IfRefDouble 1.1. If any reference input is double,

output is
{'double'} | 'single'

 IfRefSingle 1.2. If any reference input is single,
output is

'double' | {'single'}

 IsSigned 1.3. Is-Signed 'IsSigned1' | 'IsSigned2' |
{'IsSigned1 or IsSigned2'}
| 'TRUE' | 'FALSE'

 NumBitsBase 1.4.1. Number-of-Bits: Base 'NumBits1' | 'NumBits2' |
{'max([NumBits1
NumBits2])'} |
'min([NumBits1 NumBits2])'
| 'NumBits1+NumBits2'

 NumBitsMult 1.4.2. Number-of-Bits: Multiplicative
adjustment

{'1'}

 NumBitsAdd 1.4.3. Number-of-Bits: Additive
adjustment

{'0'}

 NumBitsAllowFinal 1.4.4. Number-of-Bits: Allowable
final values

{'1:128'}

 PropScalingMode 2. Propagated scaling 'Specify via dialog' |
{'Inherit via propagation
rule'} | 'Obtain via best
precision'

 PropScaling 2.1. Propagated scaling: Slope or
[Slope Bias] ex. 2^-9

{'2^-10'}

 ValuesUsedBestPrec 2.1. Values used to determine best
precision scaling

{'[5 -7]'}

 SlopeBase 2.1.1. Slope: Base 'Slope1' | 'Slope2' |
'max([Slope1 Slope2])' |
{'min([Slope1 Slope2])'} |
'Slope1*Slope2' | 'Slope1/
Slope2' | 'PosRange1' |
'PosRange2' |
'max([PosRange1
PosRange2])' |
'min([PosRange1
PosRange2])' |
'PosRange1*PosRange2' |
'PosRange1/PosRange2'

 SlopeMult 2.1.2. Slope: Multiplicative
adjustment

{'1'}

 SlopeAdd 2.1.3. Slope: Additive adjustment {'0'}

6 Model and Block Parameters

6-102

Block (Type)/Parameter Dialog Box Prompt Values
 BiasBase 2.2.1. Bias: Base {'Bias1'} | 'Bias2' |

'max([Bias1 Bias2])' |
'min([Bias1 Bias2])' |
'Bias1*Bias2' | 'Bias1/
Bias2' | 'Bias1+Bias2' |
'Bias1-Bias2'

 BiasMult 2.2.2. Bias: Multiplicative
adjustment

{'1'}

 BiasAdd 2.2.3. Bias: Additive adjustment {'0'}
Data Type Scaling Strip (Scaling Strip) (masked subsystem)
IC (InitialCondition)
 Value Initial value {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Probe (Probe)
 ProbeWidth Probe width 'off' | {'on'}
 ProbeSampleTime Probe sample time 'off' | {'on'}
 ProbeComplexSignal Detect complex signal 'off' | {'on'}
 ProbeSignalDimensions Probe signal dimensions 'off' | {'on'}
 ProbeFramedSignal Detect framed signal 'off' | {'on'}
 ProbeWidthDataType Data type for width {'double'} | 'single' |

'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'Same as input'

 ProbeSampleTimeDataType Data type for sample time {'double'} | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'Same as input'

 ProbeComplexityDataType Data type for signal complexity {'double'} | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'boolean' |
'Same as input'

 ProbeDimensionsDataType Data type for signal dimensions {'double'} | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'Same as input'

 ProbeFrameDataType Data type for signal frames {'double'} | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'boolean' |
'Same as input'

Rate Transition (RateTransition)

 Block-Specific Parameters

6-103

Block (Type)/Parameter Dialog Box Prompt Values
 Integrity Ensure data integrity during data

transfer
'off' | {'on'}

 Deterministic Ensure deterministic data transfer
(maximum delay)

'off' | {'on'}

 InitialCondition Initial conditions {'0'}
 OutPortSampleTimeOpt Output port sample time options {'Specify'} | 'Inherit' |

'Multiple of input port
sample time'

 OutPortSampleTimeMultiple Sample time multiple (>0) {'1'}
 OutPortSampleTime Output port sample time {'-1'}
Signal Conversion (SignalConversion)
 ConversionOutput Output {'Signal copy'} | 'Virtual

bus' | 'Nonvirtual bus'
 OutDataTypeStr Data type {'Inherit: auto'} | 'Bus:

<object name>'
 OverrideOpt Exclude this block from 'Block

reduction' optimization
{'off'} | 'on'

Signal Specification (SignalSpecification)
 Dimensions Dimensions (-1 for inherited) {'-1'}
 VarSizeSig Variable-size signal {'Inherit'} | 'No' | 'Yes'
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>' |
'Bus: <object name>'

 BusOutputAsStruct Require nonvirtual bus {'off'} | 'on'
 Unit Specify physical unit of the input

signal to the block. For a list of
acceptable units, see Allowed Units.

{'inherit'}| '<Enter unit>'

 UnitNoProp Specify physical unit of the input
signal to the block without
propagation. For a list of acceptable
units, see Allowed Units.

'<Enter unit>'

6 Model and Block Parameters

6-104

matlab:showunitslist
matlab:showunitslist

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock output data type setting

against changes by the fixed-point
tools

{'off'} | 'on'

 SignalType Signal type {'auto'} | 'real' |
'complex'

Weighted Sample Time (SampleTimeMath)
 TsampMathOp Operation '+' | '-' | '*' | '/' |

{'Ts Only'} | '1/Ts Only'
 weightValue Weight value {'1.0'}
 TsampMathImp Implement using {'Online Calculations'} |

'Offline Scaling
Adjustment'

 OutDataTypeStr Output data type {'Inherit via internal
rule'} | 'Inherit via back
propagation'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 OutputDataTypeScaling
 Mode

Deprecated in R2009b

 DoSatur Deprecated in R2009b
Width (Width)
 OutputDataTypeScaling
 Mode

Output data type mode {'Choose intrinsic data
type'} | 'Inherit via back
propagation' | 'All ports
same datatype'

 DataType Output data type {'double'} | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32'

 Block-Specific Parameters

6-105

Signal Routing Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Bus Assignment (BusAssignment)
 AssignedSignals Elements that are being assigned {''}
 InputSignals Elements in the bus matrix — {'{}'}
Bus Creator (BusCreator)
 InheritFromInputs Use names from inputs instead of

from bus object
{'on'} | 'off'

If set to 'on', overrides bus signal
names from inputs. Otherwise, inherits
bus signal names from a bus object.

 Inputs Number of inputs {'2'}
 DisplayOption 'none' | 'signals' | {'bar'}
 NonVirtualBus Output as nonvirtual bus {'off'} | 'on'
 OutDataTypeStr Data type {'Inherit: auto'} | 'double' |

'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' |
'uint32' | 'int64' | 'uint64'
| 'boolean' | 'fixdt(1,16,0)'
| 'fixdt(1,16,2^0,0)' | 'Enum:
<class name>' | 'Bus: <object
name>'

Bus Selector (BusSelector)
 OutputSignals Selected elements character vector — in the form

'signal1,signal2'
 OutputAsBus Output as bus {'off'} | 'on'
 InputSignals Signals in bus matrix — {'{}'}
Data Store Memory (DataStoreMemory)
 DataStoreName Data store name {'A'}
 ReadBeforeWriteMsg Detect read before write 'none' | {'warning'} | 'error'
 WriteAfterWriteMsg Detect write after write 'none' | {'warning'} | 'error'
 WriteAfterReadMsg Detect write after read 'none' | {'warning'} | 'error'
 InitialValue Initial value {'0'}
 StateMustResolveTo
 SignalObject

Data store name must resolve to
Simulink signal object

{'off'} | 'on'

 DataLogging Log Signal Data 'off' | {'on'}
 DataLoggingNameMode Logging Name {'SignalName'} | 'Custom'
 DataLoggingName Logging Name {''}
 DataLoggingLimit
 DataPoints

Limit data points to last 'off' | {'on'}

 DataLoggingMaxPoints Limit data points to last non-zero integer {5000}

6 Model and Block Parameters

6-106

Block (Type)/Parameter Dialog Box Prompt Values
 DataLoggingDecimateData Decimation 'off' | {'on'}
 DataLoggingLimit
 DataPoints

Decimation non-zero integer {2}

 StateStorageClass Storage class {'Auto'} | 'Model default' |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer' |
'Custom'

 StateSignalObject Signal object class

Storage class

Simulink.Signal object

Object of a class that is derived from
Simulink.Signal

 RTWStateStorageType
 Qualifier

Code generation type qualifier {''}

 VectorParams1D Interpret vector parameters as 1-
D

'off' | {'on'}

 ShowAdditionalParam Show additional parameters {'off'} | 'on'
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}
 OutDataTypeStr Data type {'Inherit: auto'} | 'double' |

'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32' |
'uint32' | 'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | 'Enum:
<class name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 SignalType Signal type {'auto'} | 'real' | 'complex'
Data Store Read (DataStoreRead)
DataStoreElements Corresponds to the parameters

on the Element Selection tab of
the block dialog box. See
“Specification using the
command line”.

 DataStoreName Data store name {'A'}
 SampleTime Sample time {'0'}
Data Store Write (DataStoreWrite)
DataStoreElements Corresponds to the parameters

on the Element Assignment tab
of the block dialog box. See
“Specification using the
command line”.

 Block-Specific Parameters

6-107

Block (Type)/Parameter Dialog Box Prompt Values
 DataStoreName Data store name {'A'}
 SampleTime Sample time (-1 for inherited) {'-1'}
Demux (Demux)
 Outputs Number of outputs {'2'}
 DisplayOption Display option 'none' | {'bar'}
Environment Controller (Environment Controller) (masked subsystem)
From (From)
 GotoTag Goto tag {'A'}
 IconDisplay Icon display 'Signal name' | {'Tag'} | 'Tag

and signal name'
Goto (Goto)
 GotoTag Goto tag {'A'}
 IconDisplay Icon display 'Signal name' | {'Tag'} | 'Tag

and signal name'
 TagVisibility Tag visibility {'local'} | 'scoped' |

'global'
Goto Tag Visibility (GotoTagVisibility)
 GotoTag Goto tag {'A'}
Index Vector (MultiPortSwitch)
 DataPortOrder Data port order {'Zero-based contiguous'} |

'One-based contiguous' |
'Specify indices'

 Inputs Number of data ports {'1'}
 zeroidx Deprecated in R2010a
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all data port inputs to

have the same data type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back propagation'
| 'double' | 'single' | 'int8'
| 'uint8' | 'int16' | 'uint16'
| 'int32' | 'uint32' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

6 Model and Block Parameters

6-108

Block (Type)/Parameter Dialog Box Prompt Values
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |

{'Floor'} | 'Nearest' |
'Round' | 'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 AllowDiffInputSizes Allow different data input sizes
(Results in variable-size output
signal)

{'off'} | 'on'

Manual Switch (Manual Switch) (masked subsystem)
 varsize Allow different input sizes

(Results in variable-size output
signal)

{'off'} | 'on'

 SampleTime Sample time (-1 for inherited) {'-1'}
Merge (Merge)
 Inputs Number of inputs {'2'}
 InitialOutput Initial output {'[]'}
 AllowUnequalInput
 PortWidths

Allow unequal port widths {'off'} | 'on'

 InputPortOffsets Input port offsets {'[]'}
Multiport Switch (MultiPortSwitch)
 DataPortOrder Data port order 'Zero-based contiguous' |

{'One-based contiguous'} |
'Specify indices'

 Inputs Number of data ports {'3'}
 zeroidx Deprecated in R2010a
 DataPortIndices Data port indices {'{1,2,3}'}
 DataPortForDefault Data port for default case {'Last data port'} |

'Additional data port'
 DiagnosticForDefault Diagnostic for default case 'None' | 'Warning' | {'Error'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 InputSameDT Require all data port inputs to

have the same data type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back propagation'
| 'double' | 'single' | 'int8'
| 'uint8' | 'int16' | 'uint16'
| 'int32' | 'uint32' | 'int64'
| 'uint64' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 Block-Specific Parameters

6-109

Block (Type)/Parameter Dialog Box Prompt Values
 LockScale Lock output data type setting

against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 AllowDiffInputSizes Allow different data input sizes
(Results in variable-size output
signal)

{'off'} | 'on'

Mux (Mux)
 Inputs Number of inputs {'2'}
 DisplayOption Display option 'none' | 'signals' | {'bar'}
 UseBusObject For internal use
 BusObject For internal use
 NonVirtualBus For internal use
Selector (Selector)
 NumberOfDimensions Number of input dimensions {'1'}
 IndexMode Index mode 'Zero-based' | {'One-based'}
 IndexOptionArray Index Option 'Select all' | {'Index vector

(dialog)'} | 'Index vector
(port)' | 'Starting index
(dialog)' | 'Starting index
(port)'

 IndexParamArray Index cell array
 OutputSizeArray Output Size cell array
 InputPortWidth Input port size {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 IndexOptions See the IndexOptionArray

parameter for more information.

 Indices See the IndexParamArray
parameter for more information.

 OutputSizes See the IndexParamArray
parameter for more information.

Switch (Switch)
 Criteria Criteria for passing first input {'u2 >= Threshold'} | 'u2 >

Threshold' | 'u2 ~= 0'
 Threshold Threshold {'0'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}

6 Model and Block Parameters

6-110

Block (Type)/Parameter Dialog Box Prompt Values
 InputSameDT Require all data port inputs to

have the same data type
{'off'} | 'on'

 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit via

internal rule'} | 'Inherit:
Inherit via back propagation'
| 'double' | 'single' | 'int8'
| 'uint8' | 'int16' | 'uint16'
| 'int32' | 'uint32' | 'int64'
| 'uint64' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | 'Enum:
<class name>'

 LockScale Lock output data type setting
against changes by the fixed-
point tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' | 'Zero'

 SaturateOnInteger
 Overflow

Saturate on integer overflow {'off'} | 'on'

 AllowDiffInputSizes Allow different input sizes
(Results in variable-size output
signal)

{'off'} | 'on'

Variant Source (VariantSource)
 VariantControls Variant control {'Variant'} | '(default)'
 LabelModeActiveChoice Label mode active choice {''}
 AllowZeroVariantControls Allow zero active variant controls {'off'} | 'on'
 ShowConditionOnBlock Show variant condition on block {'off'} | 'on'
 VariantActivationTime Variant activation time 'update diagram' | 'update

diagram analyze all choices' |
'code compile'

 CompiledActiveVariantCont
rol

 string — {''}

The value is a empty string if no variant
is active; or the name of the active
variant. Compile the model before
querying this property.

 CompiledActiveVariantPort string — {'-1'}

The value is -1 if no variant is active; or
the index of the active variant. Compile
the model before querying this property.

Variant Sink (VariantSink)

 Block-Specific Parameters

6-111

Block (Type)/Parameter Dialog Box Prompt Values
 VariantControls Variant control {'Variant'} | '(default)'
 LabelModeActiveChoice Label mode active choice {''}
 AllowZeroVariantControls Allow zero active variant controls {'off'} | 'on'
 ShowConditionOnBlock Show variant condition on block {'off'} | 'on'
 VariantActivationTime Variant activation time 'update diagram' | 'update

diagram analyze all choices' |
'code compile'

 CompiledActiveVariantCont
rol

 string — {''}

The value is a empty string if no variant
is active; or the name of the active
variant. Compile the model before
querying this property.

 CompiledActiveVariantPort string — {'-1'}

The value is -1 if no variant is active; or
the index of the active variant. Compile
the model before querying this property.

Vector Concatenate (Concatenate)
 NumInputs Number of inputs {'2'}
 Mode Mode {'Vector'} | 'Multidimensional

array'

6 Model and Block Parameters

6-112

Sinks Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Display (Display)
 Numeric display format Format {'short'} | 'long' |

'short_e' | 'long_e' |
'bank' | 'hex (Stored
Integer)' | 'binary (Stored
Integer)' | 'decimal
(Stored Integer)' | 'octal
(Stored Integer)'

 Decimation Decimation {'1'}
 Floating Floating display {'off'} | 'on'
 SampleTime Sample time (-1 for inherited) {'-1'}
Floating Scope (Scope)
 Floating 'off' | {'on'}
 Location vector — {'[376 294 700

533]'}
 Open {'off'} | 'on'
 NumInputPorts Do not change this parameter with

the command-line. To add inputs,

use the signal selector button .
 TickLabels 'on' | 'off' |

{'OneTimeTick'}
 ZoomMode {'on'} | 'xonly' | 'yonly'
 AxesTitles character vector
 Grid 'off' | {'on'} | 'xonly' |

'yonly'
 TimeRange {'auto'}
 YMin {'-5'}
 YMax {'5'}
 SaveToWorkspace {'off'} | 'on'
 SaveName {'ScopeData'}
 DataFormat {'StructureWithTime'} |

'Structure' | 'Array'
 LimitDataPoints 'off' | {'on'}
 MaxDataPoints {'5000'}
 Decimation {'1'}
 SampleInput {'off'} | 'on'
 SampleTime {'0'}
Out1 (Outport)

 Block-Specific Parameters

6-113

Block (Type)/Parameter Dialog Box Prompt Values
 Port Port number {'1'}
 IconDisplay Icon display 'Signal name' | {'Port

number'} | 'Port number and
signal name'

 BusOutputAsStruct Output as nonvirtual bus in parent
model

{'off'} | 'on'

 PortDimensions Port dimensions (-1 for inherited) {'-1'}
 VarSizeSig Variable-size signal {'Inherit'} | 'No' | 'Yes'
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>' |
'Bus: <object name>'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 SignalObject This parameter does not appear in
the block dialog box. Use the Model
Data Editor instead. See “Design
Data Interface by Configuring
Inport and Outport Blocks”
(Simulink Coder).

Simulink.Signal object

Object of a class that is derived
from Simulink.Signal

 StorageClass This parameter does not appear in
the block dialog box. Use the Model
Data Editor instead. See “Design
Data Interface by Configuring
Inport and Outport Blocks”
(Simulink Coder).

{'Auto'} | 'Model default'
| 'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer' |
'Custom'

 SignalName Signal name character vector
 SignalType Signal type {'auto'} | 'real' |

'complex'
 OutputWhenDisabled Output when disabled {'held'} | 'reset'
 InitialOutput Initial output {'[]'}

6 Model and Block Parameters

6-114

Block (Type)/Parameter Dialog Box Prompt Values
 MustResolveToSignalObject This parameter does not appear in

the block dialog box. Use the Model
Data Editor instead. See “For
Signals”.

{'off'} | 'on'

Scope (Scope)
 Floating {'off'} | 'on'
 Location vector — {'[188 390 512

629]'}
 Open {'off'} | 'on'
 NumInputPorts Do not change this parameter with

the set_param command. Instead,
use the
TimeScopeConfiguration object
or Number of Input Ports
parameter in the Scope block.

 TickLabels 'on' | 'off' |
{'OneTimeTick'}

 ZoomMode {'on'} | 'xonly' | 'yonly'
 AxesTitles character vector
 Grid 'off' | {'on'} | 'xonly' |

'yonly'
 TimeRange {'auto'}
 YMin {'-5'}
 YMax {'5'}
 SaveToWorkspace {'off'} | 'on'
 SaveName {'ScopeData1'}
 DataFormat {'StructureWithTime'} |

'Structure' | 'Array'
 LimitDataPoints 'off' | {'on'}
 MaxDataPoints {'5000'}
 Decimation {'1'}
 SampleInput {'off'} | 'on'
 SampleTime {'0'}
Stop Simulation
Terminator
To File (ToFile)
 FileName File name {'untitled.mat'}
 MatrixName Variable name {'ans'}
 SaveFormat Save format {'Timeseries'} | 'Array'
 Decimation Decimation {'1'}

 Block-Specific Parameters

6-115

Block (Type)/Parameter Dialog Box Prompt Values
 SampleTime Sample time (-1 for inherited) {'-1'}
To Workspace (ToWorkspace)
 VariableName Variable name {'simout'}
 MaxDataPoints Limit data points to last {'inf'}
 Decimation Decimation {'1'}
 SampleTime Sample time (-1 for inherited) {'-1'}
 SaveFormat Save format {'Timeseries'} | 'Structure

With Time' | 'Structure' |
'Array'

 FixptAsFi Log fixed-point data as a fi object {'off'} | 'on'

6 Model and Block Parameters

6-116

Sources Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Band-Limited White Noise (Band-Limited White Noise) (masked subsystem)
 Cov Noise power {'[0.1]'}
 Ts Sample time {'0.1'}
 seed Seed {'[23341]'}
 VectorParams1D Interpret vector parameters as 1-D 'off' | {'on'}
Chirp Signal (chirp) (masked subsystem)
 f1 Initial frequency {'0.1'}
 T Target time {'100'}
 f2 Frequency at target time {'1'}
 VectorParams1D Interpret vectors parameters as 1-D 'off' | {'on'}
Clock (Clock)
 DisplayTime Display time {'off'} | 'on'
 Decimation Decimation {'10'}
Constant (Constant)
 Value Constant value {'1'}
 VectorParams1D Interpret vector parameters as 1-D 'off' | {'on'}
 SampleTime Sampling time {'Sample based'} | 'Frame

based'
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type {'Inherit: Inherit from

'Constant value''} |
'Inherit: Inherit via back
propagation' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 SampleTime Sample time {'inf'}
 FramePeriod Frame period {'inf'}
Counter Free-Running (Counter Free-Running) (masked subsystem)
 NumBits Number of Bits {'16'}

 Block-Specific Parameters

6-117

Block (Type)/Parameter Dialog Box Prompt Values
 tsamp Sample time {'-1'}
Counter Limited (Counter Limited) (masked subsystem)
 uplimit Upper limit {'7'}
 tsamp Sample time {'-1'}
Digital Clock (DigitalClock)
 SampleTime Sample time {'1'}
Enumerated Constant (Enumerated Constant) (masked subsystem)
 OutDataTypeStr Output data type {'Enum: SlDemoSign'}
 Value Value {'SlDemoSign.Positive'} |

'SlDemoSign.Zero' |
'SlDemoSign.Negative'

 SampleTime Sample time {'inf'}
From File (FromFile)
 FileName File name {'untitled.mat'}
 ExtrapolationBeforeFirstDa
taPoint

Data extrapolation before first data
point

{'Linear extrapolation'} |
'Hold first value' |
'Ground value'

 InterpolationWithinTimeRan
ge

Data interpolation within time
range

{'Linear interpolation'} |
'Zero order hold'

 ExtrapolationAfterLastData
Point

Data extrapolation after last data
point

{'Linear extrapolation'} |
'Hold last value' | 'Ground
value'

 SampleTime Sample time {'0'}
From Workspace (FromWorkspace)
 VariableName Data {'simin'}
 OutDataTypeStr Output Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>' |
'Bus: <object name>'

 SampleTime Sample time {'0'}
 Interpolate Interpolate data 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
 OutputAfterFinalValue Form output after final data value

by
{'Extrapolation'} |
'Setting to zero' |
'Holding final value' |
'Cyclic repetition'

6 Model and Block Parameters

6-118

Block (Type)/Parameter Dialog Box Prompt Values
Ground
In1 (Inport)
 Port Port number {'1'}
 IconDisplay Icon display 'Signal name' | {'Port

number'} | 'Port number and
signal name'

 BusOutputAsStruct Output as nonvirtual bus {'off'} | 'on'
 PortDimensions Port dimensions (-1 for inherited) {'-1'}
 VarSizeSig Variable-size signal {'Inherit'} | 'No' | 'Yes'
 SampleTime Sample time (-1 for inherited) {'-1'}
 OutMin Minimum {'[]'}
 OutMax Maximum {'[]'}
 OutDataTypeStr Data type {'Inherit: auto'} |

'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'boolean' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>' |
'Bus: <object name>'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 Unit Specify physical unit of the input
signal to the block. For a list of
acceptable units, see Allowed Units.

{'inherit'}| '<Enter unit>'

 UnitNoProp Specify physical unit of the input
signal to the block without
propagation. For a list of acceptable
units, see Allowed Units.

'<Enter unit>'

 SignalType Signal type {'auto'} | 'real' |
'complex'

 LatchByDelaying
 OutsideSignal

Latch input by delaying outside
signal

{'off'} | 'on'

 LatchInputFor
 FeedbackSignals

Latch input for feedback signals of
function-call subsystem outputs

{'off'} | 'on'

 OutputFunctionCall

Output a function-call trigger signal {'off'} | 'on'

 Interpolate Interpolate data 'off' | {'on'}
Pulse Generator (DiscretePulseGenerator)

 Block-Specific Parameters

6-119

matlab:showunitslist
matlab:showunitslist

Block (Type)/Parameter Dialog Box Prompt Values
 PulseType Pulse type {'Time based'} | 'Sample

based'
 TimeSource Time (t) {'Use simulation time'} |

'Use external signal'
 Amplitude Amplitude {'1'}
 Period Period {'10'}
 PulseWidth Pulse width {'5'}
 PhaseDelay Phase delay {'0'}
 SampleTime Sample time {'1'}
 VectorParams1D Interpret vector parameters as 1-D 'off' | {'on'}
Ramp (Ramp) (masked subsystem)
 slope Slope {'1'}
 start Start time {'0'}
 InitialOutput Initial output {'0'}
 VectorParams1D Interpret vector parameters as 1-D 'off' | {'on'}
Random Number (RandomNumber)
 Mean Mean {'0'}
 Variance Variance {'1'}
 Seed Seed {'0'}
 SampleTime Sample time {'0.1'}
 VectorParams1D Interpret vector parameters as 1-D 'off' | {'on'}
Repeating Sequence (Repeating table) (masked subsystem)
 rep_seq_t Time values {'[0 2]'}
 rep_seq_y Output values {'[0 2]'}
Repeating Sequence Interpolated (Repeating Sequence Interpolated) (masked subsystem)
 OutValues Vector of output values {'[3 1 4 2 1].''}
 TimeValues Vector of time values {'[0 0.1 0.5 0.6 1].''}
 LookUpMeth Lookup Method {'Interpolation-Use End

Values'} | 'Use Input
Nearest' | 'Use Input
Below' | 'Use Input Above'

 tsamp Sample time {'0.01'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}

6 Model and Block Parameters

6-120

Block (Type)/Parameter Dialog Box Prompt Values
 OutDataTypeStr Output data type 'Inherit: Inherit via back

propagation' | {'double'} |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 OutputDataTypeScaling
 Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-point
tools

{'off'} | 'on'

Repeating Sequence Stair (Repeating Sequence Stair) (masked subsystem)
 OutValues Vector of output values {'[3 1 4 2 1].''}
 tsamp Sample time {'-1'}
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via back

propagation' | {'double'} |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32' |
'int64' | 'uint64' |
'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' |
'Enum: <class name>'

 OutputDataTypeScaling
 Mode

Deprecated in R2007b

 OutDataType Deprecated in R2007b
 ConRadixGroup Deprecated in R2007b
 OutScaling Deprecated in R2007b
 LockScale Lock output data type setting

against changes by the fixed-point
tools

{'off'} | 'on'

Signal Builder (Sigbuilder block) (masked subsystem)
Signal Editor (SignalEditor)
 Filename File name {'untitled.mat'}
 ActiveScenario Active scenario {'Scenario'}

 Block-Specific Parameters

6-121

Block (Type)/Parameter Dialog Box Prompt Values
 ActiveSignal Signals {'Signal 1'}
 IsBus Output a bus signal 'on' | {'off'}
 OutputBusObjectStr Select bus object {'Bus: BusObject'}
 SampleTIme Sample time {'0'}
 Interpolate Interpolate data {'off'} | 'on'
 ZeroCross Enable zero-crossing detection {'off'} | 'on'
 OutputAfterFinalValue Form output after final data value

by
{'Setting to zero'} |
'Extrapolation' | 'Holding
final value'

 Unit Unit {'inherit'}
 PreserveSignalName — boolean — {'off'} | 'on'
 NumberOfScenarios — Read-only. Use get_param to get

this value.
 NumberOfSignals — Read-only. Use get_param to get

this value.
Signal Generator (SignalGenerator)
 WaveForm Wave form {'sine'} | 'square' |

'sawtooth' | 'random'
 TimeSource Time (t) {'Use simulation time'} |

'Use external signal'
 Amplitude Amplitude {'1'}
 Frequency Frequency {'1'}
 Units Units 'rad/sec' | {'Hertz'}
 VectorParams1D Interpret vector parameters as 1-D 'off' | {'on'}
Sine Wave (Sin)
 SineType Sine type {'Time based'} | 'Sample

based'
 TimeSource Time {'Use simulation time'} |

'Use external signal'
 Amplitude Amplitude {'1'}
 Bias Bias {'0'}
 Frequency Frequency {'1'}
 Phase Phase {'0'}
 Samples Samples per period {'10'}
 Offset Number of offset samples {'0'}
 SampleTime Sample time {'0'}
 VectorParams1D Interpret vector parameters as 1-D 'off' | {'on'}
Step (Step)
 Time Step time {'1'}

6 Model and Block Parameters

6-122

Block (Type)/Parameter Dialog Box Prompt Values
 Before Initial value {'0'}
 After Final value {'1'}
 SampleTime Sample time {'0'}
 VectorParams1D Interpret vector parameters as 1-D 'off' | {'on'}
 ZeroCross Enable zero-crossing detection 'off' | {'on'}
Uniform Random Number (UniformRandomNumber)
 Minimum Minimum {'-1'}
 Maximum Maximum {'1'}
 Seed Seed {'0'}
 SampleTime Sample time {'0.1'}
 VectorParams1D Interpret vector parameters as 1-D 'off' | {'on'}
Waveform Generator (WaveformGenerator)
 OutMin Output minimum {'[]'}
 OutMax Output maximum {'[]'}
 OutDataTypeStr Output data type 'Inherit: Inherit via back

propagation' | {'Inherit:
Inherit from table data'} |
'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'int64' |
'uint64' | 'boolean' |
'fixdt(1,16)' |
'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)'

 LockScale Lock output data type setting
against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
'Floor' | {'Nearest'} |
'Round' | 'Simplest' |
'Zero'

 SaturateOnIntegerOverflow Saturate on integer overflow {'off'} | 'on'
 SelectedSignal Output signal {'1'}
 SampleTime Sample time {'0'}

 Block-Specific Parameters

6-123

User-Defined Functions Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
MATLAB Function (Stateflow) (masked subsystem)
MATLAB System (MATLABSystem)
 System System object class name {''}
Level-2 MATLAB S-Function (M-S-Function)
 FunctionName S-function name {'mlfile'}
 Parameters Arguments {''}
Interpreted MATLAB Function (MATLABFcn)
 MATLABFcn MATLAB function {'sin'}
 OutputDimensions Output dimensions {'-1'}
 OutputSignalType Output signal type {'auto'} | 'real' | 'complex'
 Output1D Collapse 2-D results to 1-D 'off' | {'on'}
 SampleTime Sample time (-1 for inherited) {'-1'}
S-Function (S-Function)
 FunctionName S-function name {'system'}
 Parameters S-function parameters {''}
 SFunctionModules S-function modules {''}
S-Function Builder (S-Function Builder) (masked subsystem)
 FunctionName S-function name {'system'}
 Parameters S-function parameters {''}
 SFunctionModules S-function modules {''}

6 Model and Block Parameters

6-124

Additional Discrete Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Fixed-Point State-Space (Fixed-Point State-Space) (masked subsystem)
 A State Matrix A {'[2.6020 -2.2793 0.6708; 1

0 0; 0 1 0]'}
 B Input Matrix B {'[1; 0; 0]'}
 C Output Matrix C {'[0.0184 0.0024 0.0055]'}
 D Direct Feedthrough Matrix D {'[0.0033]'}
 InitialCondition Initial condition for state {'0.0'}
 InternalDataType Data type for internal calculations {'fixdt('double')'}
 StateEqScaling Scaling for State Equation AX+BU {'2^0'}
 OutputEqScaling Scaling for Output Equation CX+DU {'2^0'}
 LockScale Lock output data type setting

against changes by the fixed-point
tools

{'off'} | 'on'

 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |
{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Transfer Fcn Direct Form II (Transfer Fcn Direct Form II) (masked subsystem)
 NumCoefVec Numerator coefficients {'[0.2 0.3 0.2]'}
 DenCoefVec Denominator coefficients excluding

lead (which must be 1.0)
{'[-0.9 0.6]'}

 vinit Initial condition {'0.0'}
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |

{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Transfer Fcn Direct Form II Time Varying (Transfer Fcn Direct Form II Time Varying) (masked
subsystem)
 vinit Initial condition {'0.0'}
 RndMeth Integer rounding mode 'Ceiling' | 'Convergent' |

{'Floor'} | 'Nearest' |
'Round' | 'Simplest' |
'Zero'

 DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Unit Delay Enabled (Unit Delay Enabled) (masked subsystem)

 Block-Specific Parameters

6-125

Block (Type)/Parameter Dialog Box Prompt Values
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay Enabled External IC (Unit Delay Enabled External Initial Condition) (masked
subsystem)
 tsamp Sample time {'-1'}
Unit Delay Enabled Resettable (Unit Delay Enabled Resettable) (masked subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay Enabled Resettable External IC (Unit Delay Enabled Resettable External Initial
Condition) (masked subsystem)
 tsamp Sample time {'-1'}
Unit Delay External IC (Unit Delay External Initial Condition) (masked subsystem)
 tsamp Sample time {'-1'}
Unit Delay Resettable (Unit Delay Resettable) (masked subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay Resettable External IC (Unit Delay Resettable External Initial Condition) (masked
subsystem)
 tsamp Sample time {'-1'}
Unit Delay With Preview Enabled (Unit Delay With Preview Enabled) (masked subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay With Preview Enabled Resettable (Unit Delay With Preview Enabled Resettable) (masked
subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay With Preview Enabled Resettable External RV (Unit Delay With Preview Enabled
Resettable External RV) (masked subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay With Preview Resettable (Unit Delay With Preview Resettable) (masked subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}
Unit Delay With Preview Resettable External RV (Unit Delay With Preview Resettable External RV)
(masked subsystem)
 vinit Initial condition {'0.0'}
 tsamp Sample time {'-1'}

6 Model and Block Parameters

6-126

Additional Math: Increment - Decrement Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values
Decrement Real World (Real World Value Decrement) (masked subsystem)
Decrement Stored Integer (Stored Integer Value Decrement) (masked subsystem)
Decrement Time To Zero (Decrement Time To Zero) (masked subsystem)
Decrement To Zero (Decrement To Zero) (masked subsystem)
Increment Real World (Real World Value Increment) (masked subsystem)
Increment Stored Integer (Stored Integer Value Increment) (masked subsystem)

 Block-Specific Parameters

6-127

Mask Parameters

About Mask Parameters
This section lists parameters that describe masked blocks. You can use these descriptive parameters
with get_param and set_param to obtain and specify the properties of a block mask.

The descriptive mask parameters listed in this section apply to all masks, and provide access to all
mask properties. Be careful not to confuse these descriptive mask parameters with the mask-specific
parameters defined for an individual mask in the Mask Editor Parameters pane.

See “Masking Fundamentals” and “Mask Editor Overview” for information about block masks and the
Mask Editor.

6 Model and Block Parameters

6-128

Mask Parameters

Parameter Description/Prompt Values
Mask Turns mask on or off. {'on'} | 'off'
MaskCallbackString Mask parameter callbacks that are

executed when the respective
parameter is changed on the dialog.
Set by the Dialog callback field on
the Parameters pane of the Mask
Editor dialog box.

For more information, see “Mask
Callback Code”.

pipe-delimited character vector
{''}

MaskCallbacks Cell array version of
MaskCallbackString.

cell array {'[]'}

MaskDescription Block description. Set by the Mask
description field on the
Documentation pane of the Mask
Editor dialog box.

character vector {''}

MaskDisplay Drawing commands for the block
icon. Set by the Icon Drawing
commands field on the Icon &
Ports pane of the Mask Editor
dialog box.

character vector {''}

MaskEditorHandle For internal use only.
MaskEnableString Option that determines whether a

parameter is greyed out in the
dialog. Set by the Enable
parameter check box on the
Parameters pane of the Mask
Editor dialog box.

pipe-delimited character vector
{''}

MaskEnables Cell array version of
MaskEnableString.

cell array of character vectors, each
either 'on' or ''off' {'[]'}

MaskHelp Block help. Set by the Mask help
field on the Documentation pane
of the Mask Editor dialog box.

character vector {''}

MaskIconFrame Set the visibility of the icon frame
(Visible is on, Invisible is off). Set
by the Block Frame option on the
Icon & Ports pane of the Mask
Editor dialog box.

{'on'} | 'off'

MaskIconOpaque Set the transparency of the icon.
Set by the Icon Transparency
option on the Icon & Ports pane of
the Mask Editor dialog box.

{'opaque'} | 'transparent'
| 'opaque-with-ports'

 Mask Parameters

6-129

Parameter Description/Prompt Values
MaskIconRotate Set the rotation of the icon (Rotates

is on, Fixed is off). Set by the Icon
Rotation option on the Icon &
Ports pane of the Mask Editor
dialog box.

'on' | {'off'}

MaskIconUnits Set the units for the drawing
commands. Set by the Icon Units
option on the Icon & Ports pane of
the Mask Editor dialog box.

'pixel' | {'autoscale'} |
'normalized'

MaskInitialization Initialization commands. Set by the
Initialization commands field on
the Initialization pane of the Mask
Editor dialog box.

MATLAB command {''}

MaskNames Cell array of mask dialog parameter
names. Set inside the Variable
column in the Parameters pane of
the Mask Editor dialog box.

matrix {'[]'}

MaskPortRotate Specify the port rotation policy for
the masked block. Set in the Port
Rotation area on the Icon & Ports
pane of the Mask Editor dialog box.

For more information, see
“Configure Model Layout”.

{'default} | 'physical'

MaskPrompts List of dialog parameter prompts
(see below). Set inside the Dialog
parameters area on the
Parameters pane of the Mask
Editor dialog box.

cell array of character vectors
{'[]'}

MaskPromptString List of dialog parameter prompts
(see below). Set inside the Dialog
parameters area on the
Parameters pane of the Mask
Editor dialog box.

character vector {''}

MaskPropertyName Pipe-delimited version of
MaskNames.

character vector {''}

MaskRunInitForIconRedraw Specifies whether Simulink must
run mask initialization before
executing the mask icon commands.

{'auto'}|'on' |'off'

MaskSelfModifiable Indicates that the block can modify
itself. Set by the Allow library
block to modify its contents
check box on the Initialization
pane of the Mask Editor dialog box.

'on' | {'off'}

6 Model and Block Parameters

6-130

Parameter Description/Prompt Values
MaskStyles Determines whether the dialog

parameter is a check box, edit field,
or pop-up list. Set by the Type
column in the Parameters pane of
the Mask Editor dialog box.

cell array {'[]'}

edit, checkbox, popup, combobox,
radiobutton, slider, dial, spinbox,
unit, textarea, customtable, unidt,
min, max.

MaskStyleString Comma-separated version of
MaskStyles.

character vector {''}

MaskTabNameString For internal use only.
MaskTabNames For internal use only.
MaskToolTipsDisplay Determines which mask dialog

parameters to display in the tooltip
for this masked block. Specify as a
cell array of 'on' or 'off' values,
each of which indicates whether to
display the parameter named at the
corresponding position in the cell
array returned by MaskNames.

cell array of 'on' and 'off' {''}

MaskToolTipString Comma-delimited version of
MaskToolTipsDisplay.

character vector {''}

MaskTunableValues Allows the changing of mask dialog
values during simulation. Set by the
Tunable column in the Parameters
pane of the Mask Editor dialog box.

cell array of character vectors
{'[]'}

MaskTunableValueString Comma-delimited character vector
version of MaskTunableValues.

delimited character vector {''}

MaskType Mask type. Set by the Mask type
field on the Documentation pane
of the Mask Editor dialog box.

character vector {'Stateflow'}

MaskValues Dialog parameter values. cell array {'[]'}
MaskValueString Delimited character vector version

of MaskValues.
delimited character vector {''}

MaskVarAliases Specify aliases for a block's mask
parameters. The aliases must
appear in the same order as the
parameters appear in the block's
MaskValues parameter.

cell array {'[]'}

MaskVarAliasString For internal use only.
MaskVariables List of the dialog parameters'

variables (see below). Set inside the
Dialog parameters area on the
Parameters pane of the Mask
Editor dialog box.

character vector {''}

 Mask Parameters

6-131

Parameter Description/Prompt Values
MaskVisibilities Specifies visibility of parameters.

Set with the Show parameter
check box in the Options for
selected parameter area on the
Parameters pane of the Mask
Editor dialog box.

matrix {'[]'}

MaskVisibilityString Delimited character vector version
of MaskVisibilities.

character vector {''}

MaskWSVariables List of the variables defined in the
mask workspace (read only).

matrix {'[]'}

See Control Masks Programmatically, for more information on setting the mask parameters from the
MATLAB command line.

6 Model and Block Parameters

6-132

Tools and Apps

7

Breakpoints List
View, configure, and manage breakpoints for debugging models

Description
The Breakpoints List provides information about all breakpoints configured in your model, including
breakpoints in Stateflow charts and source code for MATLAB Function blocks. The Breakpoints List
displays breakpoints configured throughout the model hierarchy.

Using the Breakpoints List, you can:

• View all breakpoints in the model along with breakpoint information, such as the breakpoint
source.

• Navigate to the location of each breakpoint in the model hierarchy.
• Enable and disable individual breakpoints or all breakpoints.
• Delete breakpoints.
• Specify when the simulation pauses after encountering the condition for a breakpoint.

By default, the simulation pauses within a time step as soon as the condition for a breakpoint is met.
When you pause within time steps, you can step through the simulation one block at a time. Pausing
within a time step gives you more granular control over how to progress the simulation and facilitates
debugging iterative subsystems.

Breakpoints are not saved as part of the model.

Open the Breakpoints List
• Simulink Toolstrip: On the Debug tab, click Breakpoints List.
• Simulink Editor: Click the breakpoint icon on a signal that has a breakpoint.

When you open the Breakpoints List by clicking a breakpoint, the row for the breakpoint you
clicked is highlighted purple in the table.

7 Tools and Apps

7-2

Examples

Add Signal Breakpoints

A signal breakpoint causes the simulation to pause when the signal value satisfies the specified
condition.

Add a signal breakpoint using the Simulink Toolstrip.

1 Select a signal in your model.
2 On the Debug tab, click Add Breakpoint.
3 In the Add Breakpoint dialog box, specify the condition for the breakpoint. From the drop-down

list, select the relational operator for the condition. Then, in the text box, specify the value.

For example, to pause the simulation when the signal value is equal to 0, select the equals (=)
relational operator and enter 0 in the text box.

4 Click OK.

The red circle on the signal line indicates that a breakpoint is configured for that signal.

Add another breakpoint using the context menu for the signal.

1 Select a signal in the model.
2 Right-click the selected signal.
3 From the context menu, select Add Breakpoint
4 In the Add Breakpoint dialog box, specify the condition for the breakpoint.

For example, to pause the simulation when the signal value is greater than 5, select the greater
than (>) relational operator and enter 5 in the text box.

5 Click OK.

View and Manage Breakpoints

After adding breakpoints to your model, you can use the Breakpoints List to view and manage the
breakpoints throughout your model.

To open the Breakpoints List, on the Debug tab, click Breakpoints List. The Breakpoints List opens
docked at the bottom of the Simulink Editor. The table lists all the breakpoints configured in the
model hierarchy, including breakpoints in Stateflow charts, along with information about each
breakpoint.

 Breakpoints List

7-3

Using the Breakpoints List, you can enable and disable individual breakpoints or all breakpoints. The
simulation pauses when the condition for an enabled breakpoint is met and ignores disabled
breakpoints. You can enable and disable breakpoints during and between debugging sessions. To
enable or disable an individual breakpoint, use the check box in the Enabled column of the table. To
enable or disable all breakpoints in the model hierarchy, click Enable or disable all breakpoints .

The table summarizes how a breakpoint appears in the block diagram based on its status.

Breakpoin
t
Appearan
ce

Breakpoint Status

Enabled

Hit
Disabled

Invalid

You can also delete breakpoints.

• To delete an individual breakpoint, pause on the row for the breakpoint, then click Delete
breakpoint .

• To delete multiple breakpoints, select the breakpoints to delete in the table. Then, click Delete
selected breakpoints .

• To delete all breakpoints, click the Delete selected breakpoints button arrow and select Delete all
breakpoints.

Breakpoints are not saved as part of the model.

Navigate to Breakpoints in Model

Using the Breakpoints List, you can navigate easily to each breakpoint in the model and determine
which row of the Breakpoints List contains information about a given breakpoint.

7 Tools and Apps

7-4

To navigate to a specific breakpoint from the Breakpoints List, click the hyperlink for the breakpoint
in the table. A new tab opens in the Simulink Editor to show the component that contains the
breakpoint. The source for the breakpoint is highlighted purple.

To get more information about a breakpoint you find as you navigate through your model, click the
breakpoint . The row for that breakpoint in the Breakpoints List is highlighted purple.

• “Debug Simulation Using Signal Breakpoints”
• “Debug Simulation of Iterator Subsystem”
• “Step Through Simulation”
• “Display Port Values for Debugging”
• “How Fast Restart Improves Iterative Simulations”

Parameters
Debugging Behavior

Pause within time step — Option to disable low-level debugging
on (default) | off

 Breakpoints List

7-5

By default, models are configured to enable low-level debugging, where the simulation pauses within
a time step, as soon as the condition for a breakpoint is met. When you clear this parameter, the
simulation pauses at the end of the time step where the condition for a breakpoint is met.

Low-level debugging is supported only for normal mode simulations. This option has no effect on
accelerator and rapid accelerator simulations.

When you enable low-level debugging, you have more options on the Debug tab for controlling how
to step through the simulation.

Stepping Option Description Availability
Continue Run until breakpoint pauses

simulation.
Always available

Step Forward Progress simulation to the end
of the next time step.

Step Back Step simulation to the start of
the previous time step.

To use this option, you must
enable stepping back before
starting the simulation. For
more information, see
Simulation Stepping Options.

Available only when you enable
stepping back using the
Simulation Stepping Options

Step Over Step simulation to just before
the next block output method
executes.

Available only when paused
within a time step

Step In Step into Model block, atomic
subsystem, MATLAB Function
block, or Stateflow chart.

When the next block to execute
is not a Model block, atomic
subsystem, or MATLAB Function
block and the simulation is not
paused on a Stateflow chart, the
Step In button takes the same
action as the Step Over button.

7 Tools and Apps

7-6

Stepping Option Description Availability
Step Out Steps out of Model block,

atomic subsystem, or Stateflow
chart.

When the next block to execute
is not a Model block or atomic
subsystem and the simulation is
not paused on a Stateflow chart,
the Step In button takes the
same action as the Step Over
button.

Active breakpoints — Option to enable and disable breakpoints
on (default) | off

Using the check box next to each breakpoint in the Breakpoints List, you can enable and disable
individual breakpoints during and between debugging sessions. When the check box is selected, the
breakpoint is active, and the simulation pauses when the condition for the breakpoint is met. When
the check box is cleared, the breakpoint is inactive, and the simulation does not pause because of that
breakpoint.

To enable or disable all breakpoints configured in the model, click Enable or disable all breakpoints
.

Signal Breakpoints

Signal breakpoint — Breakpoints configured for one or more signals in model
Simulink signal breakpoint

The Breakpoints List contains a row for each signal breakpoint you configure in the model. Each
signal breakpoint has a condition, and the simulation pauses when the signal value satisfies that
condition. The condition consists of a relational operator, such as equals (=) or greater than (>), and a
value. For example, for a signal breakpoint condition of > 1, the simulation pauses when the signal
value is greater than one.

Signal breakpoints are supported for only Simulink signals and are not supported for other types of
signals, such as Simscape signals.

Signal breakpoints are supported only for real scalar signals with these data types:

• double
• single
• int
• Boolean
• Fixed-point

For fixed-point signals, the software uses the converted double signal value to check for the
breakpoint condition.

These additional limitations for port value labels also apply for signal breakpoints “Port Value Label
Limitations”.

 Breakpoints List

7-7

Model Breakpoints

Zero crossing — Option to pause simulation when zero crossing detected
off (default) | on

By default, no model breakpoints are configured for a model. To add the zero-crossing breakpoint to a
model, on the Debug tab, click the button arrow next to Add Breakpoint and select Zero Crossing.
After you add the zero-crossing breakpoint, you can enable and disable the zero-crossing breakpoint
from the Breakpoints List during and between debugging sessions for the model.

When the simulation pauses due to an active zero-crossing breakpoint, the Simulink Editor opens a
tab to display the subsystem or model that contains the block where the zero crossing occurred and
highlights the block in green.

NaN or Inf Value — Option to pause simulation when nonfinite value computed
off (default) | on

By default, no model breakpoints are configured for a model. To add the NaN or Inf value breakpoint
to a model, on the Debug tab, click the button arrow next to Add Breakpoint and select NaN or Inf
Value. After you add the NaN or Inf value breakpoint, you can enable and disable the NaN or Inf
value breakpoint from the Breakpoints List during and between debugging sessions for the model.

When the NaN or Inf value breakpoint is enabled for a model, the simulation pauses when a
computation results in a NaN or Inf value. NaN or Inf values can occur when the computation result
is infinite or outside of the range of values supported by the machine running the simulation.

When the simulation pauses due to an active NaN or Inf breakpoint, the Simulink Editor opens a tab
to display the subsystem or model that contains the block where the NaN or Inf value occurred and
highlights the block in green.

Use the NaN or Inf value breakpoint to help locate the site of computational errors in a model.

Tips
• For debugging in simulation, use normal mode.
• To view signal values in the model while debugging, use port value labels. To add a port value

label for a signal, select the signal. Then, on the Debug tab, in the Tools section, next to Output
Values, click Show Output Value of selected signal . For more information, see “Display Port
Values for Debugging”.

• To save time when iteratively debugging, consider enabling fast restart. With fast restart enabled,
the model compiles only the first time you simulate. Subsequent simulations take less time by
skipping the compilation phase. While fast restart is enabled, you can modify the model only in
ways that do not require compiling the model. For more information, see “How Fast Restart
Improves Iterative Simulations”.

• While paused within a time step, you can use some of the programmatic debugging functions,
including the disp function, to get more information about the system behavior.

• By default, the Breakpoints List opens as a pane at the bottom of the Simulink Editor. You can
reposition the Breakpoints List to suit your workflow.

• To dock the Breakpoints List to a different part of the Simulink Editor, drag the pane to another
part of the window.

7 Tools and Apps

7-8

• To minimize the Breakpoints List, click the arrow in the upper right and select Minimize.
• To use the Breakpoints List as a separate window, drag the pane out of the Simulink Editor or

click the arrow in the upper right and select Undock.
• The stepping and breakpoint options in the Simulink Editor do not have a programmatic

equivalent available in the software. The Simulink debugging programmatic interface includes
options for setting breakpoints and stepping through simulations. However, the behavior of these
functions is not identical to the behavior of the stepping options in the Simulink Editor. For more
information about programmatic debugging, see “Simulink Debugging Programmatic Interface”.

Version History
Introduced in R2022a

See Also
Simulation Stepping Options

Topics
“Debug Simulation Using Signal Breakpoints”
“Debug Simulation of Iterator Subsystem”
“Step Through Simulation”
“Display Port Values for Debugging”
“How Fast Restart Improves Iterative Simulations”

 Breakpoints List

7-9

Create Signal
Create signal in Live Editor

Description
The Create Signal task lets you create numerical, logical, and enumeration data. The task
automatically generates MATLAB code for your live script.

Using this task, you can interactively draw and refine numerical data values for vectors, timeseries,
timetables, and data arrays using:

• Pointer
• Keyboard
• Touchscreen

By default, the live task creates a workspace variable, createdSignal.

For general information about Live Editor tasks, see “Add Interactive Tasks to a Live Script”.

7 Tools and Apps

7-10

Open the Task
To add the Create Signal task to a live script in the MATLAB Editor:

• On the Live Editor tab, select Task > Create Signal.
• In a code block in the script, type a relevant keyword, such as create signal, vector,

timeseries, timetable, input, signal, or source. From the selected completions, select
Create Signal.

 Create Signal

7-11

Parameters
Select type of signal — Type of data to create
Numerical | Logical | Enumeration

Type of data to create, specified as Numerical, Logical, or Enumeration.

Select output format — Type of created data
Timeseries (default) | Data array | Timeseries | Timetable | Vector

Data type of the created data, specified as Timeseries, Data array, Timeseries, and
Timetable.

Create signal values — Options to interactively create signals
palette of mouse and touchscreen actions

Interactively create signals using the palette of mouse and touchscreen actions. The interactively
created data is plotted in the plot area. You can refine this data or create new data by:

• Editing the data in the Time Data table using the keyboard
• Manipulating the points in the plot using the pointer or touchscreen

Action Keyboard Pointer Multi-Touch
Insert point Ctrl+P

Click
Tap

Insert line Ctrl+L
Click

Pan and pinch

Select a point Ctrl+T
Click , then click
and select point or area

To select all areas,
double-click

Pan and pinch

To select all areas,
double-tap

Move a point Ctrl+M
Click and drag

Tap and move

Continuously delete
points on a line

 Click

7 Tools and Apps

7-12

Action Keyboard Pointer Multi-Touch
Draw

Click
Pan

Zoom in, zoom out Click or

.

Home Click

.

Pan in x-axis, y, and x-
and y-axes

 Click

.

Expand along x-axis Ctrl+pointer pan Pry x-axis
Expand along y-axis Shift+pointer pan Pry y-axis
Snap X or Y to tick
Snap X or Y to grid

Advanced properties — Advanced properties for data
Row | Column | variable name | time unit | enumeration

Set up the properties for your data. The data properties depend on the Select type of signal and
Select output format settings. Depending on these settings, you can set properties such as:

• Vector type
• Data type
• Variable names
• Time units

Plot — Option to plot data
off | on

To plot the data, select the Plot check box. The plot displays to the right.

Examples

Create Signals Using Live Editor Task

This example shows how to use the Create Signal Live Editor task to create numerical data by
drawing an arc. By default, Create Signal creates a variable named createdSignal in the
workspace with a numerical signal type and outputs data in the timeseries format.

In the Create signal values section, click , then left-click and drag to create a line of data points.

 Create Signal

7-13

To the right of the window, observe the time and data points that result from the drawing.

To view a plot of the line, in the Display results section, click Plot. The plot displays to the right.

To see the code that this task generates, expand the task display by clicking at the bottom of the
task parameter area.

7 Tools and Apps

7-14

You can use the createdSignal timeseries object data in many of the cases where you want to input
data, for example, to import to Root Inport Mapper or to work with source blocks. To save this task,
save the live script.

Create Signals Using Live Editor Task for Input Port

This example shows how to use the Create Signal Live Editor task to create numerical data for an
inport port in a model. by drawing an arc. By default, Create Signal creates a variable named
createdSignal in the workspace with a numerical signal type and outputs data in the timeseries
format.

In the Create signal values section, click , then left-click and drag to create a line of data points.

To the right of the window, observe the time and data points that result from the drawing.

 Create Signal

7-15

To view a plot of the line, in the Display results section, click Plot. The plot displays to the right.

At the bottom of the live task, add the code to open the CreateSignalInport model, set the
createdSignal variable to the input, load the input from the workspace, and simulate the model.

In the live task, click Run.

7 Tools and Apps

7-16

In the model, open the Scope block.

• “Add Interactive Tasks to a Live Script”

Version History
Introduced in R2022b

Topics
“Add Interactive Tasks to a Live Script”

 Create Signal

7-17

MATLAB Function Block Editor
Create, edit, and debug MATLAB code in MATLAB Function blocks

Description
The MATLAB Function Block Editor allows you to view, edit, and create the MATLAB functions for
a MATLAB Function block. When you update the MATLAB code, the software updates the MATLAB
Function block with input and output ports that match the input and output arguments in the
MATLAB function. The MATLAB Function Block Editor opens in the Simulink Editor.

Open the MATLAB Function Block Editor
• Double-click a MATLAB Function block.
• Select a MATLAB Function block and, in the Function tab, click Open in Simulink.

Examples

7 Tools and Apps

7-18

Open and Use the MATLAB Function Block Editor

Add a MATLAB Function to your model to open the MATLAB Function Block Editor.

1 In the Simulation tab, click Library Browser. Select Simulink > User-Defined Functions.
Drag a MATLAB Function block to the Simulink canvas.

2 Double-click the block to open the MATLAB Function Block Editor. Replace the function body
code with the following:

y = 2*u;
3

Return to the model by clicking the Up to Parent button . Add a Sine Wave block as the input
signal and add a Scope block to capture the input and output of the MATLAB Function block.

4 Run the simulation and open the Scope block to see the effects of the code.

Redefine the Function Header

Rename the default function and adjust function arguments to automatically update the block inports,
outports, and block icon.

1 Create a new MATLAB Function block and open the MATLAB Function Block Editor.
2 In the function header, change the text to:

function [x y] = test_function(u1, u2)
3 Return to the model window. The name on the block icon is now test_function, and the block

has two input ports for u1 and u2, and two output ports x and y.

Add Variables with the Symbols Pane

Add function arguments and content to the MATLAB Function block by using the Symbols pane.

1 Create a new MATLAB Function block and double-click the block to open the MATLAB Function
Block Editor.

2 Open the Symbols pane and Property Inspector. In the Function tab, click Edit Data.
3

In the Symbols pane, click the Create Data button .
4 Select the new data and adjust the properties in the Property Inspector.

For more information, see “Create and Define MATLAB Function Block Variables”.

 MATLAB Function Block Editor

7-19

Add Breakpoints to Debug a Function

You can add breakpoints to debug MATLAB Function blocks.

1 Create a new MATLAB Function block and open the MATLAB Function Block Editor.
2 Enter the following code:

function [mult,add,subtract] = number_operations(u1,u2)

add = u1 + u2;
subtract = u1 - u2;
mult = u1 * u2;

3 Click line numbers 3 and 4 to add two breakpoints. The line numbers highlight in red.
4 Run the simulation. The simulation stops at the first breakpoint. Click the Continue button to

simulate until the next breakpoint. If the last breakpoint has been reached, click Continue to
advance to the next time step.

Investigate Code by Running a Report

Run a report on your MATLAB function code to find information on variables and help detect
warnings and errors.

1 Create a new MATLAB Function block and open the MATLAB Function Block Editor.
2 Enter the following code:

function [mult,add,subtract] = number_operations(u1,u2)

add = u1 + u2;
subtract = u1 - u2;
mult = u1 * u2;

3
Click the Function Report button .

4 The report lists variables in the Variables tab at the bottom. Click any of the variable names to
highlight instances where the variable appears in the code.

5 In the function code, point to or click any variable or expression to see a dialog box with more
information.

• “Debug MATLAB Function Blocks”
• “Implement MATLAB Functions in Simulink with MATLAB Function Blocks”
• “Call MATLAB Function Files in MATLAB Function Blocks”

Parameters
Prepare

Edit Data — Opens the Symbols pane and Property Inspector
button

Opens the Symbols pane and the Property Inspector. Click the button to define function variables
and edit properties.

7 Tools and Apps

7-20

Navigate

Go To — Goes to specified code
button

Goes to specified code, including functions and line numbers.

Find — Finds and replaces code in function
button

Finds specified text written in the MATLAB Function Block Editor. You can also use the Ctrl+F
keyboard shortcut. If you want to find and replace code, use the Ctrl+H keyboard shortcut. This
parameter has the same functionality as the MATLAB Editor. For more information, see “Find and
Replace Text in Files and Go to Location”.

Code

Refactor — Converts selected code to a function
button

Converts selected code to a function. Use this feature on code that is not already contained in a
function. You can create a separate file for the function code or you can convert code into a local
function.

1 To convert code and save it in a separate m-file, select the code and click Refactor > Convert to
Function. The code saves as a m-file and the MATLAB Function Block Editor calls the code by
the name you specify. To run the model without error, the m-file must be on the path.

2 To convert code into a local function, select the code and click Refactor > Convert to Local
Function. The MATLAB Function Block Editor creates a local function at the bottom of the
code and replaces the selected code with a function call to the local function.

Comment — Comments out code
button

Comments out code. Select the lines you want to comment and click the Comment button . The
button adds one % to the selected lines each time you press it. You can also select the code and use
the Ctrl+R keyboard shortcut.

Uncomment — Removes comments from code
button

Removes comments from code. Select the lines you want to uncomment and click the Uncomment

button . The button removes one % from the selected lines each time you press it. You can also
select the code and use the Ctrl+T keyboard shortcut.

Wrap Comments — Wraps comments
button

Wraps comments. Select the lines you want to comment and click the Wrap comments button .

The MATLAB Function Block Editor does not wrap comments with:

 MATLAB Function Block Editor

7-21

1 Code section titles (comments that begin with %%).
2 Long contiguous text, such as URLs.
3 Bulleted list items (text that begins with * or #) onto the preceding line.

Smart Indent — Formats code with smart indenting
button

Formats code with smart Indenting. Smart indenting automatically formats code to improve code
readability, such as when you use functions or logical statements. To manually deploy smart

indenting, select the lines of code and click the Smart Indent button . By default, the MATLAB
Function Block Editor automatically uses smart indenting. For more information, see “Edit and
Format Code”.

Increase Indent — Increases the code indent
button

Increases the code indent by one tab indent. To increase the indent, select the lines of code and click

the Increase Indent button .

Decrease Indent — Decreases the code indent
button

Decreases the code indent by one tab indent if the code is indented. To decrease the indent, select

the lines code and click the Decrease Indent button .

Specify fixed-point data — Builds fi object constructors
button

Builds fi object constructors with a user interface. To open the interface, click the Specify fixed-point
data button . Click the arrow next to the icon to select additional fi constructors. For more
information, see “Building fimath Object Constructors in a GUI” (Fixed-Point Designer). This features
requires a Fixed-Point Designer license.

Compile

Update Model — Updates the model and checks for errors
button

Updates the model and checks for errors. Expand the menu under Update Model to select from two
options.

• Update Model: Compiles the model and checks for static errors.
• Refresh blocks: Updates the model blocks to reflect changes made.

You can also use the Ctrl+Shift+D keyboard shortcut to update the model. For more information,
see “Simulation Phases in Dynamic Systems”.

Simulate

Stop Time — Specifies the simulation stop time
10 (default) | scalar

7 Tools and Apps

7-22

Specifies the simulation stop time.

Simulation Mode — Changes the simulation mode
menu item

Changes the simulation mode. You can select from Normal, Accelerator or Rapid Accelerator. For
more information, see “Choosing a Simulation Mode”.

Fast Restart — Enables fast restart
"off" (default) | "on"

Enables fast restart for model simulation. Fast restart can improve performance by preventing
compiling. For more information, see “Get Started with Fast Restart”.

Step Back — Steps back in simulation
button

Steps back in simulation. You must enable this option using the Simulation Stepping Options dialog
box. If you have not enabled stepping back, the button opens the Simulation Stepping Options dialog
box. For more information, see Simulation Stepping Options.

Run — Runs the simulation
button

Runs the simulation. You can run a single simulation, or run multiple simulations by creating design
studies with Multiple Simulations and selecting Run All from the drop down. Adjust the time
pacing by selecting Simulation Pacing from the drop down.

Step Forward — Step forward in simulation
button

Steps forward in simulation. For more information, see “How Stepping Through Simulation Works”.

Stop — Stops the simulation
button

Stops the simulation.

Debug Code

Step over — Steps over the breakpoint during debugging
button

Steps over the breakpoint during debugging in the MATLAB Function block. When you press the
button, the debugger steps past function calls and does not enter called functions for line-by-line
execution. You can use this button only after simulation stops at a breakpoint.

Step In — Goes to next line of code during debugging
button

Goes to next line of code during debugging in the MATLAB Function block. If the line calls a local
function, step into the first line of the local function. You can use this button only after simulation
stops at a breakpoint.

Step out — Exits line-by-line function execution during debugging
button

 MATLAB Function Block Editor

7-23

Exits line-by-line function execution during debugging of the current function or local function. If in a
local function, the debugger continues to the line following the call to this local function. You can use
this button only after simulation stops at a breakpoint.

Report

Function Report — Opens a report
button

Opens a report that contains information about the MATLAB Function. You can use this report to find
information about variables and expressions in the code. For more information, see “MATLAB
Function Reports”.

Version History
Introduced in R2011a

R2022a: Symbols pane replaces Ports and Data Manager
Behavior changed in R2022a

The Ports and Data Manager has been removed. To manage variables, function call outputs, and input
triggers in MATLAB Function blocks, use the Symbols pane and the Property Inspector.

R2021b: MATLAB Function Block Editor in Simulink window

The MATLAB Function Block Editor opens in the same Simulink window as the parent model of
the MATLAB Function block. Previously, when you opened a function in the MATLAB Function
Block Editor, the editor opened in the MATLAB window.

See Also
Simulink Editor | Model Explorer | function

Topics
“Debug MATLAB Function Blocks”
“Implement MATLAB Functions in Simulink with MATLAB Function Blocks”
“Call MATLAB Function Files in MATLAB Function Blocks”

7 Tools and Apps

7-24

Finder
Find and optionally replace values in Simulink models, libraries, and subsystems

Description
Use the Finder to search Simulink models, libraries, and subsystems for elements that contain the
search string that you enter.

The search can match the string anywhere in the element, such as in the name or in the parameter
values. You can customize the search to look only in certain types of elements or for elements with
specific parameter settings.

From the search results, you can select and navigate to elements. You can also replace found
instances of the search string with another string.

By default, the Finder searches all model elements in the current system, its referenced models, its
linked blocks, and its masked systems for case-insensitive partial or full matches.

Open the Finder
• In the Simulink Toolstrip, on the Modeling tab, click Find.
•

In the Simulink quick access toolbar, click the Find button .

 Finder

7-25

If the Find button is not in the quick access toolbar, click the Common Controls button
and select the Find check box.

• With the Simulink Editor selected, press Ctrl+F.

Examples

Search One Level of Model

In this example, you search the top level of the sldemo_fuelsys model for any model element that
contains the number 2.

1 Open the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys.
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
sldemo_fuelsys

2 Open the Finder. On the Modeling tab, click Find.
3

Click the Change the search scope button arrow and select Search this level
only.

4 In the search box, enter 2.

Model elements that contain the search string appear in a table. The first element in the table is
selected.

5
To move to the next element, click the down arrow .

6 Use the up and down arrows to move through the rest of the found elements. Alternatively, scroll
through the table and click an element to select it.

Perform Advanced Search

When a search returns too many results, use the advanced search settings to narrow your search.

The advanced search settings allow you to:

• Include only the elements you are interested in, such as blocks, annotations, or signals.
• Omit block parameter values from the search.
• Search for case-sensitive matches.
• Search for exact matches.
• Search using regular expressions.
• Omit masked systems, linked blocks, and referenced models from the search.
• Search based on property values such as BlockDescription or BlockType.

In this example, you search the sldemo_fuelsys model for all elements that contain the string
speed. You then use the Advanced settings pane to refine your results.

1 Open the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys.

7 Tools and Apps

7-26

openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
sldemo_fuelsys

2 Open the Finder. On the Modeling tab, click Find.
3 Enter the search string. For example, enter speed.

Model elements that contain the search string appear in a table. The first element in the table is
selected.

Alternatively, you can enter the search string after you specify the search settings
4

Click the Advanced settings button .

The Advanced Settings pane opens.

5 Specify the advanced settings you want. For example, in the Property:Value section, change
BlockDescription to BlockType. In the corresponding text box, type Constant and click the

Add property and value button .

Note In the Property:Value section, if you want to search based on a property that is not in the
list, select Other, then enter the full programmatic name of the property. To find the
programmatic name, in the Property Inspector, pause on the property. You cannot use regular
expressions or partial matches for the property name.

 Finder

7-27

6 Click Find to find results that match the updated search criteria.

To restore the default advanced settings, click Reset.

Find and Replace Text

You can find and replace text using the Finder.

For search results to support replacement:

• You must have write access for the field.
• The field value must be the same as when you performed the search.
• The text formatting must be plain.

In this example, you search the sldemo_fuelsys model for the string rad and replace rad with
deg.

1 Open the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys.
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
sldemo_fuelsys

2 Open the Finder. On the Modeling tab, click Find.
3 In the search box, enter the search string. For example, enter rad.

Model elements that contain the search string appear in a table.
4 To the left of the search box, click the Find button arrow, and select Replace.

Replace options appear in the Finder.
5 In the text box next to the Replace button, enter the replacement string. For example, enter deg.
6 Select the instance you want to replace, then click Replace.

Alternatively, replace all instances of the found string by clicking Replace > Replace All.

Note If you stop the replacement operation before it completes, the completed replacements do
not revert.

7 Tools and Apps

7-28

7 To view a replacement in the model, double-click the row that corresponds to the replaced
element.

If you want to revert replacements, you must revert them before you perform another search or close
the Finder. To revert replacements, select the instance to revert, then click Revert. Alternatively,
click the Revert button arrow and select Revert All. The Finder applies the inverse replacements to
restore the original values.

• Model Data Editor

Limitations
You cannot use the Finder to replace code in a Test Sequence block.

Tips
• To select the starting point for your search, use the Model Browser.
• To go to and select the element in the model, double-click an item in the list.
• To search for any model elements that match the search criteria, enter an asterisk (*) in the

search box.
• To search for a string that contains a colon, escape the colon using a backslash (for example,

Earth\: a planet), or use single or double quotes around the expression (for example,
'Earth: a planet' or "Earth: a planet").

• You can interact with search results while the search runs. However, you can sort the results only
after the search is complete.

• To stop a search and view partial search results, in the Finder, click the Stop button.
• For table display options, pause on the Name heading and click the arrow that appears. The menu

provides options to expand, collapse, and sort results. To sort the table based on another column,
pause on the corresponding table heading and click the arrow that appears.

Version History
Introduced in R2016b

See Also
Tools
Model Explorer

Functions
hilite_system | find_system | Simulink.FindOptions | Simulink.findTemplates |
Simulink.allBlockDiagrams | Simulink.findBlocks | Simulink.findBlocksOfType |
replace_block

Topics
Model Data Editor

 Finder

7-29

Instrumentation Properties
View and edit logging and visualization properties for logged signal

Description
Use the Instrumentation Properties dialog box to configure logging and visualization settings for
logged signals, including a data access callback function to process logged data during simulation
and logging sample time.

Open the Instrumentation Properties
• Right-click the logging badge on a signal that is marked for logging and select Properties.

7 Tools and Apps

7-30

Parameters
Logging and Visualization

Use custom name — Signal logging name
string | character vector

Select this option to specify a name for logged signal data that is different from the name of the
signal in the model. By default, logged signal data uses the name of the signal specified in the model.

The Use custom name property is the same as the Logging name property that you configure
using the Signal Properties dialog box.

Programmatic Use

To specify the logging name programmatically, use the set_param function to configure the
DataLoggingNameMode and DataLoggingName parameters for the port handle that corresponds to
the block output port that produces the signal. For an example, see “Name a Signal
Programmatically”.
Parameter: DataLoggingNameMode
Value: 'SignalName' | 'Custom'
Default: 'SignalName'
Parameter: DataLoggingName
Type: string | character vector

Decimate data — Option to log every nth sample value
'off' (default) | 'on'

When you want to reduce the effective sample rate for logged data, select Decimate data and
specify the desired decimation factor in the text box. For example, if you specify a decimation factor
of 2, every other signal value is logged.

Consider data requirements for each signal before reducing the number of data points logged in
simulation. Decimation can cause aliasing if the effective sample rate is too low.

For more information, see “Specify Signal Values to Log” and “Limit the Size of Logged Data”.

Programmatic Use

To configure this option programmatically, use the set_param function to configure the
DataLoggingDecimateData and DataLoggingDecimation parameters for the port handle that
corresponds to the block output port that produces the signal.
Parameter: DataLoggingDecimateData
Value: 'on' | 'off'
Default: 'off'
Parameter: DataLoggingDecimation
Value: numeric scalar
Type: string | character vector
Default: '2'

Limit data points to last — Option to log only last n data points
'off' (default) | 'on'

 Instrumentation Properties

7-31

When you only want to save or analyze the data from the end of a simulation, you can configure
logging to capture only the last n signal values. Select Limit data points to last and specify the
number of data points you want to log.

When you only log the last simulation values, dashboard blocks and the Simulation Data Inspector do
not display data during simulation. Consider data requirements for each signal before you reduce the
number of data points logged in simulation.

For more information, see “Specify Signal Values to Log” and “Limit the Size of Logged Data”.

Programmatic Use

To configure this option programmatically, use the set_param function to specify the
DataLoggingLimitDataPoints and DataLoggingMaxPoints parameters for the port handle that
corresponds to the block output port that produces the signal.
Parameter: DataLoggingLimitDataPoints
Value: 'on' | 'off'
Default: 'off'
Parameter: DataLoggingMaxPoints
Value: numeric scalar
Type: string | character vector
Default: '5000'

Logging sample time — Sample time for logged signal data
-1 (default) | scalar

Specify the sample time to use for logging the data for the selected signal. By default, the logging
sample time is inherited (-1) from the block that produces the signal. For continuous logging sample
time, specify the value as 0. To use a discrete sample time for logging data, specify the sampling
interval as a scalar.

Setting the sample time for a logged signal in the Signal Properties dialog box:

• Separates design and testing because you do not need to insert a Rate Transition block to have a
consistent sample time for logged signals

• Reduces the amount of logged data for a continuous time signal, for which setting decimation is
not relevant

• Eliminates the need to post-process logged signal data for signals with different sample times

Specifying a logging sample time may add a new sample time to the model. When you specify a
logging sample time, the model calculates a value for the exact time hits. When you use a fixed-step
solver, the logging sample time you specify must be a multiple of the base rate for the model.

Specifying a sample time for signal logging does not affect the simulation result. However, it is
possible that the signal logging output for a logged signal varies depending on whether you specify a
sample rate. For example, the interpolation method can differ depending on whether you specify a
sample time for signal logging.

If you simulate in software-in-the-loop (SIL) mode, signal logging ignores the sample time you specify
for logged signals.

Do not specify a sample time for:

• Frame-based signals

7 Tools and Apps

7-32

• Signals inside conditional subsystems or conditional referenced models

The Logging sample time property is the same as the Sample time property you configure using
the Signal Properties dialog box.
Programmatic Use

To configure this option programmatically, use the set_param function to configure the
DataLoggingSampleTime parameter for the port handle that corresponds to the block output port
that produces the signal.
Parameter: DataLoggingSampleTime
Value: numeric scalar
Type: string | character vector
Default: '-1'

Input processing — Option to log data as samples or as frames
Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify how multidimensional data is logged and interpreted by the Simulation Data Inspector. By
default, signals are logged as sample-based, with each element in a multidimensional sample treated
as a channel.

When logging a frame-based signal, set Input processing to Columns as channels (frame
based). A frame-based signal buffers a batch of samples to create a frame of data. When you log the
data as frame-based, each column in a sample is treated as a channel, and the row dimension is
treated as evenly-spaced samples within the channel.

You can also remove the buffering from a frame-based signal after simulation using the Simulation
Data Inspector. For more information, see “Convert Representation of Frame-Based Data”.
Programmatic Use

To programmatically configure or access the Input processing property for a logged signal, use the
Simulink.sdi.setSignalInputProcessingMode function and the
Simulink.sdi.getSignalInputProcessingMode function.

Complex format — Option to specify how complex signal is displayed in Simulation Data Inspector
Real-Imaginary (default) | Magnitude-Phase | Magnitude | Phase

Complex signal data is logged as a single signal. Use the Complex format property to specify how to
display a complex signal in the Simulation Data Inspector. By specifying the complex format in the
Instrumentation Properties, you save the preference in the model so logged data is displayed
consistently for each simulation. You can also modify the complex format for a signal in the
Simulation Data Inspector, after data is logged from simulation or imported.

For all complex formats, you plot the complex signal as one signal. Some formats display components
of the plotted signal as separate traces.

• Real-Imaginary — Plot real and imaginary components as separate traces.

The signal line color specifies the color of the real component. The imaginary component uses a
different shade of the specified line color.

• Magnitude-Phase — Plot magnitude and phase components as separate traces.

The signal line color specifies the color of the magnitude component. The phase component uses a
different shade of the specified line color.

 Instrumentation Properties

7-33

• Magnitude — Plot only the magnitude component.
• Phase — Plot only the phase component.

Subplots — Option to plot signals in Simulation Data Inspector from model
scalar between 1 and 64

When you specify a value for the Subplots property, the signal is plotted on the corresponding
subplot or subplots in the Simulation Data Inspector. You can use this property to save a plotting
configuration in the model. However, the property does not affect the subplot layout in the Simulation
Data Inspector or clear signals that are already plotted.

Custom style and color — Option to configure signal line style and color in model
'off' (default) | 'on'

When enabled, you can configure the line style and color used to display the signal in the Simulation
Data Inspector and on Dashboard Scope blocks and save the preference in the model so the signal is
displayed consistently across MATLAB sessions.

Specifying the line style and color in the model does not prevent you from changing the line style and
color in the Simulation Data Inspector. The Dashboard Scope block and the Simulation Data Inspector
always display a signal using the line style and color specified in the logged signal properties, as
displayed in the Properties pane in the Simulation Data Inspector.

Line — Line style, color, and width for Simulation Data Inspector and Dashboard Scope blocks
line style, width, and color

Set the line style, width, and color used to display the signal on Dashboard Scope blocks and in the
Simulation Data Inspector.

Specifying the line style and color in the model does not prevent you from changing the line style and
color in the Simulation Data Inspector. The Dashboard Scope block and the Simulation Data Inspector
always display a signal using the line style and color specified in the logged signal properties, as
displayed in the Properties pane in the Simulation Data Inspector.

Dependencies

To enable the Line property, select Custom style and color.

Data Access

Enable run-time data access — Option to stream signal data to MATLAB function during
simulation
'on' (default) | 'off'

When enabled, you can specify a data access callback function that processes or visualizes the logged
signal data during simulation. The function receives data in packets asynchronously throughout the
simulation, and the function executes each time it receives new data. For more information, see
“Access Data in a MATLAB Function During Simulation”.

Function name — MATLAB function that receives signal data during simulation
name of MATLAB function

Name of the data access callback function that processes or visualizes signal data during simulation.
The data access callback function always receives signal data as the first argument and may also
receive simulation time and a function parameter as additional arguments. When the function

7 Tools and Apps

7-34

receives all three arguments, simulation time is the second argument. For more information, see
“Access Data in a MATLAB Function During Simulation”.

For more information about writing MATLAB functions, see “Create Functions in Files”.

Dependencies

To enable the Function name property, select Enable run-time data access.

Include simulation time — Option to send simulation time to MATLAB function
'on' (default) | 'off'

Option to send simulation time along with signal data to the data access callback function during
simulation. The data access callback function always receives signal data as the first argument and
may also receive simulation time and a function parameter as additional arguments. When a function
receives all three arguments, simulation time is the second argument. For more information, see
“Access Data in a MATLAB Function During Simulation”.

Dependencies

To enable the Include simulation time property, select Enable run-time data access.

Function parameter — Option to use parameter to identify data source
numeric | text

When you specify a value for the Function parameter, the data access callback receives the
specified value as a second or third argument depending on whether time is included with data sent
to the callback function. When you use the same data access callback function to process data for
more than one signal, specify a function parameter to identify which signal data the function receives
in a given call. For more information, see “Access Data in a MATLAB Function During Simulation”.

Dependencies

To enable the Function parameter property, select Enable run-time data access.

Version History
Introduced in R2018a

See Also
Functions
set_param | Simulink.sdi.setSignalInputProcessingMode |
Simulink.sdi.getSignalInputProcessingMode

Tools
Signal Properties | Simulation Data Inspector

Topics
“Access Data in a MATLAB Function During Simulation”
“Specify Signal Values to Log”
“Limit the Size of Logged Data”

 Instrumentation Properties

7-35

Library Browser
Find and add blocks to model

Description
The Library Browser displays a tree view of the Simulink libraries on your system. Use the Library
Browser to add blocks and annotations to your model. To browse the items that you can add to your
model, expand the libraries in the tree. To search for a library item with key words or phrases, use
the search box at the top of the Library Browser. To add an item to your model, drag it into your
model, or right-click it and select the option to add it to your model.

By default, the Library Browser is docked as a panel in the Simulink window so that the Library
Browser window stays to one side of the model and does not cover areas in the model canvas where
you want to add items. When you have multiple Simulink windows open, you can open a Library
Browser in each one.

You can use the Library Browser in docked mode or in standalone mode.

A Library Browser that is not docked is in standalone mode.

Use standalone mode to:

• Add the same items to many Simulink windows.
• View the Library Browser in full-screen mode.

7 Tools and Apps

7-36

• Open, close, hide, or position the Library Browser programmatically.
• Browse the libraries without opening a Simulink model.

To open a Library Browser in standalone mode, on the Library Browser in docked mode, click the

Launch standalone library browser button .

For information on standalone mode, see Library Browser in Standalone Mode.

Open the Library Browser
In the Simulink Toolstrip, on the Simulation tab, click Library Browser. The Library Browser opens
in docked mode.

Note

• If you have multiple Simulink windows open, you can open a Library Browser in each one by
clicking Library Browser in the toolstrip of the respective window.

• To open or close the Library Browser programmatically, open the Library Browser in standalone
mode. The slLibraryBrowser function does not act on the Library Browser in docked mode.

Examples

Library Browser Keyboard Shortcuts

You can use these keyboard shortcuts to interact with the Library Browser in docked mode.

 Library Browser

7-37

Task Shortcut
Open Library Browser in docked mode Select the Simulink window, then press

Ctrl+Shift+L
Find a block Ctrl+F or F3
Open Search Results tab and move to page you visited
before current page

Alt+left arrow

Open Search Results tab and move to page you visited
after current page

Alt+right arrow

Insert selected block in model that Library Browser is
docked to

Ctrl+I

Refresh libraries F5

Note When you use the keyboard shortcuts on a Mac:

• Press command (⌘) instead of Ctrl.
• Press option instead of Alt.

Navigate Levels of Library Browser Tree

To navigate the Library Browser in docked mode, expand the hierarchy of libraries in the tree on the
libraries pane.

You can have multiple libraries expanded at once.

When you expand a library, the library contents appear in the tree underneath the library name.

Library contents can be any combination of blocks, annotations, and sublibraries.

Search for Library Items by Keyword

To search for a library item using key words or phrases, use the search box at the top of the Library
Browser.

1 In the search box, type the search term or select it from the list of recent search terms.

To search for an annotation, type any of the text from the annotation or its description.
2 To use regular expressions, case-sensitive search, or whole-word search, click the Search for

subsystems, blocks, and annotations button and select the search options you want to use.

7 Tools and Apps

7-38

3 Press Enter to start the search. The Search Results tab displays the search results, grouped by
library.

If there are more than 100 search results, the results take up multiple pages in the blocks pane.
To navigate to the previous or next page of results, use the arrows in the upper left corner of the
Library Browser window.

To see where the search string matches, pause on a block.

To return to browsing the library tree, click the Library tab.

As an example, search for the customizable Knob block.

1 In the search box at the top of the Library Browser, enter the keyword knob.
2 Press Enter. The Search Results tab opens and shows two Knob blocks.
3 Pause over the two blocks to find out which is the customizable Knob block. When you pause over

the customizable Knob block, this text appears: simulink_hmi_customizable_blocks/Knob.

View Library Item Documentation or Block Parameters

To see a description of the functionality of a library item, pause on the item.

To open the help documentation for an item, right-click the item icon and select Help for the item.

 Library Browser

7-39

To preview the parameters of a library block before you add it to your model, right-click the block
icon and select Block Parameters. The Block Parameters dialog box opens.

Note You cannot set values for any of the parameters when you open the Block Parameters dialog
box from the Library Browser. To set values, add the block to your model and then double-click the
block in the canvas.

As an example, open the Block Parameters dialog box of the Circular Gauge block.

1 In the Library Browser tree, expand the Simulink library.
2 In the Simulink library, expand the Dashboard sublibrary.
3 In the Dashboard sublibrary, expand the Customizable Blocks sublibrary.
4 In the Customizable Blocks sublibrary, right-click the Circular Gauge block icon and select

Block Parameters. In the Block Parameters dialog box, you can see which parameters you can
set. For example, you can customize the maximum, minimum, and tick interval on the scale of the
Circular Gauge block.

7 Tools and Apps

7-40

Add Blocks and Annotations to Model from Library Browser

To add blocks and annotations from the Library Browser to an open model, drag the block or
annotation from the Library Browser to the Simulink canvas.

As an example, add a customizable Vertical Gauge block to an open model.

1 In the search box at the top of the Library Browser, enter vertical gauge.
2 Press Enter. The Search Results tab opens and shows the Vertical Gauge block.
3 Click and drag the Vertical Gauge block to the canvas.

Customize Library Browser Appearance

When you resize the Library Browser, the library contents flow to match the width of the window.

Use the layout button to switch between viewing the blocks in a single column or in a responsive

layout that adapts the number of columns to the browser width .

 Library Browser

7-41

You can also programmatically customize the appearance of the Library Browser.

• Set the sort priority to change the order of the libraries in the tree.
• Hide libraries.
• Deactivate libraries.
• Expand or collapse libraries in the tree.
• For more information, see “Customize Library Browser Appearance”.

Sort Libraries and Library Contents

The libraries and library contents are first sorted by sort priority and then by sorting order.

Libraries appear in ascending order of sort priority. By default, the Simulink library has a sort
priority of -1, and all other libraries have a sort priority of 0. For more information about sort priority,
see “Customize Library Browser Appearance”.

By default, the sorting order is alphabetical. Sublibraries appear first, then subsystems, then blocks,
and then annotations.

You can change the sorting order of library items to model order, which is the order set by the library
developer. Typically, model order sorts the contents according to functionality and groups related
blocks together.

Note In docked mode, you can only change the sorting order of the library items. For libraries and
sublibraries, the sorting order is always alphabetical.

7 Tools and Apps

7-42

To switch from alphabetical order to model order in docked mode, right-click the item icon in the tree
and select Sort in library model order. This setting is preserved from session to session.

To return to the alphabetical order, right-click the item icon in the tree and select Sort in
alphabetical order.

Some libraries do not follow the sorting order. For example, in the Simulink library, the Quick Insert
library appears as the last item regardless of the sorting option you choose.

As an example, sort the contents of the Commonly Used Blocks sublibrary in model order.

1 In the Library Browser tree, expand the Simulink library.
2 In the Simulink library, expand the Commonly Used Blocks sublibrary.
3 In the Commonly Used Blocks sublibrary, right-click the icon of any item, for example the Bus

Creator block icon, and select Sort in library model order. The order of the library changes to
model order. In model order, related blocks are grouped together. For example, the In1 and Out1
blocks are far apart when the Commonly Used Blocks sublibrary is in alphabetical order but
follow each other when the sublibrary is in model order.

 Library Browser

7-43

Position the Library Browser

In docked mode, the default position of the Library Browser is on the left side of the Simulink
window.

You can position the Library Browser on the left side, the right side, or the bottom of a Simulink
window.

To move the Library Browser to a different position, click and drag the top of the Library Browser
window to the left, right, or bottom of the Simulink window. Release the Library Browser over the
blue area that appears.

Minimize Library Browser

To minimize the Library Browser in docked mode, click the Minimize button arrow at the top
right of the Library Browser window and select Minimize.

To temporarily expand the Library Browser when it is minimized, at the left edge of the Simulink
window, click the Library Browser tab. The Library Browser expands. If you click the canvas, the
Library Browser minimizes again.

To restore the expanded view, click the Restore button arrow at the top right of the Library
Browser window and select Restore. The Library Browser no longer minimizes when you click the
canvas.

7 Tools and Apps

7-44

As an example, minimize the Library Browser, temporarily expand the Library Browser to add a
Constant block to the model, and then minimize the Library Browser again.

1
To minimize the Library Browser, click the Minimize button arrow at the top right of the
Library Browser window and select Minimize. The Library Browser window disappears.

2 To temporarily expand the Library Browser, at the left edge of the Simulink window, click the
Library Browser tab. The Library Browser window reappears.

3 In the tree, expand the Simulink library and the Commonly Used Blocks sublibrary.
4 From the Commonly Used Blocks sublibrary, click and drag the Constant block to the canvas.
5 To minimize the Library Browser, click anywhere in the canvas.

Create Custom Libraries

You can create your own libraries and, optionally, have them appear in the Library Browser.

For more information, see “Create Custom Library”.

For an example of how to create a custom block library and a custom block sublibrary, see “Add
Libraries to Library Browser”.

Refresh Library Browser

Refresh your Library Browser if you:

• Modify existing libraries or resave them in .slx file format.
• Move or delete your library files.

 Library Browser

7-45

• Add a library.
• Change your Library Browser customizations. See “Customize Library Browser Appearance”.

To refresh the libraries displayed in the Library Browser after you have added, deleted, resaved, or
modified the contents of libraries, right-click in the libraries pane and select Refresh Library
Browser. The Library Browser updates to display any libraries or blocks added to or deleted from the
MATLAB path since the Library Browser was last opened or refreshed.

To refresh the libraries displayed in the Library Browser after you have changed your Library
Browser customizations, enter this command in the MATLAB Command Window:

sl_refresh_customizations

For an example of how to refresh the Library Browser after adding a new library, see “Customize
Library Browser Appearance”.

Limitations
These functions do not act on a docked Library Browser:

• getPosition
• hide
• LibraryBrowser.LibraryBrowser2
• setPosition
• show
• slLibraryBrowser

You cannot use the LibraryBrowser.LBStandalone object to act on a docked Library Browser.

To use these functions and the LibraryBrowser.LBStandalone object, open the Library Browser
in Standalone Mode.

Version History
Introduced before R2006a

R2022b: Docked Simulink Library Browser

Starting in R2022b, the Library Browser button in the Simulink Toolstrip opens a Library Browser
that is docked as a panel in the Simulink window. The Library Browser is docked so that the Library
Browser window stays to one side of the model and does not cover areas in the model canvas where
you want to add items.

When you have multiple Simulink windows open, you can open a docked Library Browser in each one
by clicking the Library Browser button of the respective window.

See Also
Topics
Library Browser in Standalone Mode

7 Tools and Apps

7-46

“Add Blocks to Models Using Library Browser”
“Keyboard Shortcuts and Mouse Actions for Simulink Modeling”

 Library Browser

7-47

Library Browser in Standalone Mode
Use standalone Library Browser to find and add blocks to model

Description
You can use the Library Browser in docked mode or in standalone mode. By default, the Library
Browser is in docked mode, so the Library Browser window stays to one side of the model and does
not cover areas in the model canvas where you want to add items. A Library Browser that is not
docked is in standalone mode.

Use standalone mode to:

• Add the same items to many Simulink windows.
• View the Library Browser in full-screen mode.
• Open, close, hide, or position the Library Browser programmatically.
• Browse the libraries without opening a Simulink model.

For an introduction to the Library Browser and more information about docked mode, see Library
Browser.

7 Tools and Apps

7-48

Open the Library Browser in Standalone Mode
• Open from Library Browser in docked mode: Click the Launch standalone library browser button

.
• Open from MATLAB Command Window: Enter slLibraryBrowser('open').

Note You can only open one Library Browser in standalone mode.

Examples

Library Browser Keyboard Shortcuts

You can use these keyboard shortcuts to interact with the Library Browser in standalone mode.

Task Shortcut
Move selection down Down arrow
Move selection up Up arrow
Expand a library Right arrow
Collapse a library Left arrow
Navigate to parent library Esc
Move to page you visited before current page Alt+left arrow
Move to page you visited after current page Alt+right arrow

 Library Browser in Standalone Mode

7-49

Task Shortcut
Insert selected block in active model

Note If no model is open, Add block to a new model creates
new model and adds the selected block to it.

Ctrl+I

Find a block Ctrl+F or F3
Navigate from search result to library containing block Ctrl+R
Refresh libraries F5
Increase zoom Ctrl+Plus (+)
Decrease zoom Ctrl+Minus (-)
Reset zoom to default Alt+1
Close Library Browser Ctrl+W

Note When you use the keyboard shortcuts on a Mac:

• Press command (⌘) instead of Ctrl.
• Press option instead of Alt.

Navigate Levels of Library Browser Tree

To navigate the Library Browser in standalone mode, expand the hierarchy of libraries in the tree on
the libraries pane.

You can have multiple libraries expanded at once.

To view the contents of a library, click the library name in the tree. The library contents appear in the
blocks pane of the Library Browser window.

Library contents can be any combination of blocks, annotations, and libraries that are at a lower level
in the hierarchy.

To select the parent library of the open library, right-click on any item in the open library and click Go
to parent.

Search for Library Items by Keyword

To search for a library item using key words or phrases, use the search box at the top of the Library
Browser.

1 In the search box, type the search term or select it from the list of recent search terms.

7 Tools and Apps

7-50

To search for an annotation, type any of the text from the annotation or its description.
2 To use regular expressions, case-sensitive search, or whole-word search, click the Search for

subsystems, blocks, and annotations button and select the search options you want to use.

3 Press Enter to start the search. The blocks pane displays the search results, grouped by library.

If there are more than 100 search results, the results take up multiple pages in the blocks pane.
To navigate to the previous or next page of results, use the arrows in the upper left corner of the
Library Browser window.

To see where the search string matches, pause on a block.

To navigate to the library that contains an item in the search results, right-click the item and
select Select in library view.

As an example, search for the customizable Knob block.

1 In the search box at the top of the Library Browser, enter the keyword knob.
2 Press Enter. The blocks pane shows the search results, which are two Knob blocks.
3 Pause over the two blocks to find out which is the customizable Knob block. When you pause over

the customizable Knob block, this text appears: simulink_hmi_customizable_blocks/Knob.

 Library Browser in Standalone Mode

7-51

Add Blocks and Annotations to Model from Library Browser

To add blocks and annotations from the Library Browser to an open model, right-click the block or
annotation and select Add block to model or Add block to a new model. If no model is open, the
Add block to a new model creates a model and adds the block to it.

Blocks that you have recently added to your model from the Library Browser appear in the Recently
Used library at the bottom of the tree.

As an example, add a customizable Vertical Gauge block to an open model.

1 In the search box at the top of the Library Browser, enter vertical gauge.
2 Press Enter. The block pane shows the Vertical Gauge block.
3 Right-click the Vertical Gauge block and select Add block to model.

7 Tools and Apps

7-52

Customize Library Browser Appearance

When you resize the libraries panel, the library contents flow to match the width of the window.

You can also programmatically customize the appearance of the Library Browser.

• Set the sort priority to change the order of the libraries in the tree.
• Hide libraries.
• Deactivate libraries.
• Expand or collapse libraries in the tree.

For more information and examples, see “Customize Library Browser Appearance”.

Sort Libraries and Library Contents

The libraries and library contents are first sorted by sort priority and then by sorting order.

 Library Browser in Standalone Mode

7-53

Libraries appear in ascending order of sort priority. By default, the Simulink library has a sort priority
of -1, and all other libraries have a sort priority of 0. For more information about sort priority, see
“Customize Library Browser Appearance”.

By default, the sorting order is alphabetical. Sublibraries appear first, then subsystems, then blocks,
and then annotations.

You can change the sorting order to model order, the order set by the library developer. Typically,
model order sorts the contents according to functionality and group related blocks together.

Note In standalone mode, you can only change the sorting order in the blocks pane. The sorting
order of the tree is always alphabetical.

To switch from alphabetical order to model order in standalone mode, right-click the blocks pane or a
library item in the blocks pane and select Sort in library model order. This setting is preserved
from session to session.

To return to the alphabetical order, right-click the blocks pane or a library item in the blocks pane
and select Sort in alphabetical order.

Some libraries do not follow the sorting order. For example, in the Simulink library, the Quick Insert
library appears as the last item regardless of the sorting option you choose.

As an example, sort the contents of the Simulink library in model order.

1 In the Library Browser tree, select the Simulink library.
2 In the Simulink library, right-click any sublibrary, for example the Dashboard library, and select

Sort in library model order. The order of the library changes to model order. In model order,
related libraries are grouped together. For example, the Continuous and Discrete sublibraries
have two other sublibraries between them when the Simulink library is in alphabetical order but
follow each other when the sublibrary is in model order.

7 Tools and Apps

7-54

Keep Library Browser in Front of Other Windows

To keep the Library Browser in front of other Simulink windows, in the Library Browser toolbar, click

Stay on Top .

To turn off this setting, click Stay on Top again.

 Library Browser in Standalone Mode

7-55

For information on how to turn on this setting programmatically, see “Keep Library Browser in Front
of Other Windows” on page 2-344.

Programmatic Use
libraryhandle = slLibraryBrowser creates the Library Browser object
LibraryBrowser.LBStandalone and returns the object handle.

When you use slLibraryBrowser to get the object handle:

• If the Library Browser is open in standalone mode, the Library Browser window moves in front of
all other Simulink windows.

• If the Library Browser is not open in standalone mode, the Library Browser opens in standalone
mode.

slLibraryBrowser('close') closes the Library Browser in standalone mode.

slLibraryBrowser('open') opens the Library Browser in standalone mode.

slLibraryBrowser('noshow') loads the Library Browser in memory without making it visible.
Use this command to quickly open the Library Browser programmatically in standalone mode.

Version History
Introduced before R2006a

R2022b: Docked Simulink Library Browser

Starting in R2022b, the Library Browser button in the Simulink Toolstrip opens a Library Browser
that is docked as a panel in the Simulink window. The Library Browser is docked so that the Library
Browser window stays to one side of the model and does not cover areas in the model canvas where
you want to add items.

When you have multiple Simulink windows open, you can open a docked Library Browser in each one
by clicking the Library Browser button of the respective window.

See Also
Functions
getPosition | hide | LibraryBrowser.LibraryBrowser2 | refresh | setPosition | show |
slLibraryBrowser

Objects
LibraryBrowser.LBStandalone

Topics
Library Browser
“Add Blocks to Models Using Library Browser”
“Keyboard Shortcuts and Mouse Actions for Simulink Modeling”

7 Tools and Apps

7-56

Model Data Editor
Inspect and edit data items (signals, parameters, and states) in a table that you can sort, group, and
filter

Description
The Model Data Editor enables you to inspect and edit data items such as signals, block parameters
(for example, the Gain parameter of a Gain block), and data stores in a list that you can sort, group,
and filter. You can then configure properties and parameters, such as data types and dimensions,
without having to locate the items in the block diagram.

Use the Model Data Editor to configure multiple signals, states, and algorithmic parameters. The
Model Data Editor can set only certain parameters and properties such as data types, initial values,
and physical units. To work with one model element at a time, open the Property Inspector. To
perform batch operations, open the Model Data Editor.

For information about setting block properties and parameters, see “Signal Properties”.

When creating and debugging a model, you can configure multiple data items at once by selecting the
corresponding signals and blocks in the block diagram. Work with the selected items in the Model
Data Editor instead of opening individual dialog boxes. Use this technique to more quickly view and
compare properties of multiple signals that are close to each other in the diagram, for example, in a
subsystem.

Use the Model Data Editor to configure:

• Instrumentation for signals and data stores, which allows you to view and collect the simulation
values. For example, you can log signals to compare data in the Simulation Data Inspector.

• Design attributes such as data type, minimum and maximum value, and physical units. You can
use these attributes to:

• Specify the values of numeric block parameters.
• Control the interaction (interface) between components through Inport and Outport blocks and

data stores (see “Configure Data Interfaces”).
• Specify the dimensions of nonscalar signals in a model.

Note The Model Data Editor does not show information about data items in referenced models
(which you reference with Model blocks). To work with data items in a referenced model, open the
Model Data Editor in that model.

Columns in the Data Table

Use this table to find more information about the purpose of the columns in the Model Data Editor.

 Model Data Editor

7-57

Column Name Purpose and More Information
Source Shows the name of the block that defines the data

item. For signals, also shows the number of the
block port that generates the signal.

For workspace variables, shows the name of the
workspace or data dictionary that contains the
variable.

Signal Name or Name Sets the name of the signal, state, or data store.
For information about naming signals, see “Signal
Names and Labels”.

For parameters, displays the programmatic name
of each parameter.

For workspace variables, sets the name of the
variable.

Data Type “Control Data Types of Signals” and “Control
Block Parameter Data Types”

Min and Max “Specify Signal Ranges” and “Specify Minimum
and Maximum Values for Block Parameters”

Dimensions “Determine Signal Dimensions”
Complexity Sets the numeric complexity of the data item.
Sample Time “What Is Sample Time?”
Unit “Unit Specification in Simulink Models”
Test Point “Configure Signals as Test Points”
Log Data “Iterate Model Design Using the Simulation Data

Inspector”
Resolve Corresponds to the Signal name must resolve

to Simulink signal object check box in the
Signal Properties dialog box and similar check
boxes in block dialog boxes for states and data
stores. See “Use Signal Objects”.

Shared Corresponds to the Share across model
instances parameter of the Data Store Memory
block. See Data Store Memory.

Initial Value Sets the initial value of the state or data store.
See “Initialize Signal Values”.

Value “Set Block Parameter Values”
Argument Configures a variable in a model workspace as a

model argument. See “Parameterize Instances of
a Reusable Referenced Model”.

Path Shows the location of the block in the model and
provides a link to the block in the Simulink
Editor. Visible when you click the Change Scope
button.

7 Tools and Apps

7-58

Two Entries Per Cell in the Data Table

When a cell contains two entries (for instance, in the Data Type column), the entry on the right side
of the cell indicates compiled information. The compiled information shows you the value that the
data item uses for simulation.

For example, the default data type setting for most signals in a model is Inherit: Inherit via
internal rule. With this setting, after you update the block diagram, Simulink chooses a specific
data type, such as single, for the signal to use for simulation. In the Model Data Editor, the cell in
the Data Type column shows Inherit: Inherit via internal rule on the left side and
single on the right side.

Open the Model Data Editor
• In the Simulink Toolstrip, on the Modeling tab, click Model Data Editor.
• While in the Simulink Editor, press Ctrl+Shift+E.

Examples

Configure Distant Data Items

In this example, use the Model Data Editor to log signals in different subsystems and referenced
models so you can inspect their data using the Simulation Data Inspector.

The “Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139 example
model sldemo_fuelsys_dd represents the fueling system of a vehicle engine. The referenced model
sldemo_fuelsys_dd_controller controls the rate of fuel flow to the engine.

First, explore the example models.

1 Open the example model sldemo_fuelsys_dd and the referenced model
sldemo_fuelsys_dd_controller.

openExample('simulink_automotive/UseDDForFuelContSysExample')
sldemo_fuelsys_dd
sldemo_fuelsys_dd_controller

2 Navigate to the airflow_calc subsystem.

 Model Data Editor

7-59

The Pumping Constant block contains a lookup table that describes the performance of a fuel
pump. You can stream the output of this block to the Simulation Data Inspector.

3 Navigate to the root of the model and into the fuel_calc subsystem.
4 Navigate into the feedforward_fuel_rate subsystem.

The Outport block named ff_fuel_rate passes feedforward information to the fuel rate control
algorithm.

5 Navigate back to the fuel_calc subsystem and into the switchable_compensation
subsystem.

The Inport block named ff_fuel_rate carries the feedforward information. You can stream the
output of this Inport block.

Then, log signals for data inspection.

1 Navigate to the root of the sldemo_fuelsys_dd_controller model.
2 In the Model Data Editor, inspect the Signals tab.
3 Set the Change view drop-down to Instrumentation.
4

Activate the Change scope button to display the contents of the subsystems.

The Model Data Editor identifies all the signals in the model. The Path column appears.
5 In the Filter Contents box, type ff_fuel_rate.

The Model Data Editor updates the list of signals to include only those named ff_fuel_rate.
You can click the link in the Path column to view where the signal resides within the model.

6 Select the Log Data check box for the signal whose path is
sldemo_fuelsys_dd_controller/fuel_calc/switchable_compensation.

This instructs Simulink to send the data for the logged signals to the Simulation Data Inspector.
7 Filter the signals again using the text Pumping Constant.

The table contains one row that corresponds to the output of the Pumping Constant block.
8 Select the Log Data check box for the Pumping Constant signal.
9 Simulate the system model, sldemo_fuelsys_dd. During the simulation, double-click a Manual

Switch block, such as Engine Speed Selector, to disturb the fuel control system.
10

When the simulation finishes, the Simulation Data Inspector button is highlighted. This
indicates that there is data to inspect and compare. Click the Simulation Data Inspector
button.

11 In the left pane, expand the Run node that corresponds to the simulation run and select the
check boxes for the signals whose data you want to inspect and compare.

The Simulation Data Inspector presents the values for the selected signals on the same graph.

7 Tools and Apps

7-60

Find and Organize Data by Filtering, Sorting, and Grouping

In the example model sldemo_fuelsys_dd_controller, variables and parameter objects set the
values of block parameters. The variables and objects reside in a data dictionary. Use the Model Data
Editor to display these dictionary entries together in a group.

1 Open the sldemo_fuelsys_dd_controller model.
2 In the example model, open the Model Data Editor and select the Parameters tab.
3 Activate the Change scope button to display the contents of the subsystems.
4 Click the Show/refresh additional information button to display rows that correspond to the

dictionary entries.
5 Right-click the Source column header and select Group by This Column.

The Model Data Editor groups the list by block or workspace (including a group for the
dictionary entries).

6 Find the group labeled Source: Dictionary. Now, you can use the Model Data Editor to inspect
and modify the attributes of the variables and objects in the dictionary.

The Model Data Editor allows you to filter a list of data items by using one or a combination of these
methods:

• To filter the data table through a text search, use the Filter contents box.
• To filter based on the blocks or signals that you select in the model, next to the Filter contents

box, click the Filter using selection button. Then, as you click blocks and signals in the model,
the Model Data Editor shows you only the rows that are relevant to that block or signal. If you
lasso multiple blocks or signals, the Model Data Editor shows only the rows that are relevant to
those model elements.

•
To filter based on column-specific criteria, point to a column header and click the filter icon .
As you type in the text box, the editor applies a substring filter to the column contents. After the
filter is applied, the column displays a smaller filter icon next to the column header. To edit a
filter, remove a filter, or remove all column filters, click this icon.

Select Multiple Data Items from Block Diagram

In the example model sldemo_househeat, use the Model Data Editor to log the signals in the
Heater subsystem for inspection using the Simulation Data Inspector.

 Model Data Editor

7-61

1 Open the sldemo_househeat model.
2 In the sldemo_househeat model, open the Heater subsystem.
3 Open the Model Data Editor and select the Signals tab.

The Model Data Editor identifies all the signals in the subsystem.
4 In the Model Data Editor, set the Change view drop-down list to Instrumentation.
5 Using the Simulink Editor, select all the signals in the subsystem. Optionally, do not select the

output of the Constant block because the signal value does not change during the simulation.

In response, the Model Data Editor highlights the rows that correspond to the signals you
selected.

6 In the Model Data Editor, for any of the signals, click the check box in the Log Data column.

The Model Data Editor selects the check box for all of the selected signals.
7 Simulate the model.
8 Open the Simulation Data Inspector and, in the leftmost pane, expand the Run node that

corresponds to the simulation run. Select the check boxes for the signals whose values you want
to inspect and compare.

Interact with a Model That Uses Workspace Variables

When you use workspace variables (such as numeric MATLAB variables and Simulink.AliasType
objects) to share settings between data items, you can interact with those variables through the
Model Data Editor. You do not need to work outside the Editor to configure the data items. In the
Editor, click the Show/refresh additional information button, which finds variables that the model
uses by updating the block diagram.

This example shows how to work with objects that a model uses to set block parameter values. You
modify the value of a variable that the model sldemo_fuelsys uses.

1 Open the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys.
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
sldemo_fuelsys

2 Open the Model Data Editor Parameters tab.
3 In the Model Data Editor, click the Show/refresh additional information button.

The data table now contains rows that correspond to variables and objects that the model uses.
4 In the model, navigate into the fuel_rate_control subsystem and then the airflow_calc

subsystem.
5 In the Model Data Editor, next to the Filter contents box, select the Filter using selection

button.

With this button selected, when you select a block or signal in the block diagram, the data table
shows only the data items and workspace variables that are relevant to that block or signal.

6 In the model, click the lookup table block labeled Pumping Constant.

The Model Data Editor shows that the block uses three workspace variables. The block acquires
some breakpoint values from the variable SpeedVect.

7 Tools and Apps

7-62

Now, you can use the columns in the Model Data Editor to configure the properties of SpeedVect.

You can further interact with a variable to:

• Configure other properties that the columns do not represent:

1 In the model, open the Property Inspector. On the Modeling tab, under Design, click
Property Inspector.

2 In the Model Data Editor, select the row that corresponds to the target variable or object. If
the Property Inspector does not respond, select a different row and then select the target row
again.

3 Use the Property Inspector to configure the target properties.
• Move the variable between workspaces and data dictionaries and configure the variable alongside

other variables. Use the Model Explorer. To open the Model Explorer, in the Model Data Editor
data table, double-click the icon in the leftmost column. For more information about using the
Model Explorer, see “Edit and Manage Workspace Variables by Using Model Explorer”.

• Rename a variable everywhere it is used by blocks in Simulink models. In the Model Data Editor,
right-click the variable and select Rename All. You can rename only variables that the function
Simulink.findVars supports.

• Find blocks that use a specific variable. In the Model Data Editor, right-click the variable and
select Find Where Used.

Inspect Individual Data Item

To focus on an individual data item, use one of these techniques:

• In the Model Data Editor, next to the Filter contents box, select the Filter using selection
button. Then, in the model, click the block or signal that corresponds to the data item.

Use this technique to configure the item by using the columns in the data table.
• In the model, open the Property Inspector. On the Modeling tab, under Design, click Property

Inspector. Then, in the data table, click the target row. The Property Inspector shows the
properties of the data item. If the Property Inspector does not respond when you click the target
row, click a different row and then click the target row again.

Use this technique to inspect all of the properties that the Model Data Editor can access at once
(in other words, the union of the columns available in the Design and Instrumentation views).

• In the model, open the Property Inspector. Then, in the data table, for the target row, double-click
the cell in the leftmost column (the icon). In the model, select the highlighted block or signal.

Use this technique to inspect all properties, including those that the Model Data Editor cannot
access.

Navigate from Model Data Editor to Block Diagram

To navigate from a data item in the Model Data Editor to the block in the diagram that owns the data
item, double-click the icon in the left-most column. The Simulink Editor then focuses on the relevant

 Model Data Editor

7-63

block. Use this technique to navigate to blocks when you select Change scope to view the contents
of subsystems below the current system.

• “Use the Model Data Editor for Batch Editing”
• “Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139

Limitations
• You cannot access these attributes by using the Model Data Editor:

• Any settings related to code generation. Instead, use the Code Mappings editor or code
mappings API.

• For mask parameters:

• Any settings for tunable mask parameters other than the parameter value.
• Any settings for nontunable mask parameters.

Note that some built-in blocks are masked and can have tunable or nontunable mask
parameters.

• Any settings for parameters of Simscape blocks.
• Any settings for data items in referenced models. Instead, open the Model Data Editor in the

referenced models.
• Any settings for variables that are not defined in the base workspace, a model workspace, or a

data dictionary. For example, you cannot access the attributes of variables created by mask
initialization code.

• On the Parameters tab, the data type, minimum value, and maximum value of a Constant
block. Use the Signals tab instead.

For some settings that you cannot access with the Model Data Editor, you can use the Property
Inspector instead. Open the Property Inspector and select the target data item in the model, not
in the Model Data Editor. For mask parameters, use the mask dialog box or the Mask Editor as
described in “Masking Fundamentals”.

• The Model Data Editor does not show Stateflow data. However, the Model Data Editor shows the
data for Simulink functions that you define inside Stateflow charts.

To manage Stateflow data, events, and messages in a chart, see “Manage Symbols in the Stateflow
Editor” (Stateflow).

• On the Parameters tab, these variables are not available:

• Variables used by non-tunable block parameters. For example, the minimum and maximum
parameters on a Gain block or the Sample time on a Constant block.

• Variant control variables
• Variables used for symbolic dimensions

Version History
Introduced in R2016b

7 Tools and Apps

7-64

See Also
Property Inspector | Model Explorer

Topics
“Use the Model Data Editor for Batch Editing”
“Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139
“Configure Data Interfaces”
“Design Data Interface by Configuring Inport and Outport Blocks” (Simulink Coder)
“Decide How to Visualize Simulation Data”
“Configure Generated Code According to Interface Control Document Specifications” (Embedded
Coder)

 Model Data Editor

7-65

Model Explorer
View, modify, and add elements of Simulink models, Stateflow charts, and workspace variables

Description
Use the Model Explorer to view, modify, and add elements of Simulink models, Stateflow charts, and
workspace variables.

The Model Explorer lets you focus on specific elements (for example, blocks, signals, and properties)
without navigating through the model or chart.

Use the Model Explorer to search for:

• Variables in workspaces and data dictionaries
• Variable usage in a model
• Instances of a type of block
• Block parameters and parameter values

You can combine search criteria and iteratively refine the results. Search in the Model Explorer for
model elements, starting with the node you select in the model hierarchy. You can search the entire
model, in a particular system, or in a system and all the systems below it in the hierarchy. Using your
search results, you can apply changes to multiple elements at once.

To manipulate model data (block parameters, signals, and states) in a searchable, sortable table,
consider using the Model Data Editor. You can specify data attributes such as parameter values,
signal names, and initial values for states.

To create, modify, and view the entries in a data dictionary, use the Model Explorer. See “Edit and
Manage Workspace Variables by Using Model Explorer” and “View and Revert Changes to Dictionary
Data”.

7 Tools and Apps

7-66

Open the Model Explorer
• In the Simulink Toolstrip, on the Modeling tab, click Model Explorer.
• In an open model in the Simulink Editor, right-click a block and select Explore.
• In an open Stateflow chart, right-click the drawing area and select Explore.

Examples

Add Objects to a Model, Chart, or Workspace

You can use the Model Explorer to add many kinds of objects to a model, chart, or workspace. The
types of objects that you can add depend on the node that you select in the Model Hierarchy pane.

Use toolbar buttons or the Add menu to add objects. The Add menu lists the types of objects you can
add.

Cut, Copy, and Paste Objects Between Workspaces

You can cut, copy, and paste objects from one workspace into another workspace.

1 In the Contents pane, perform one of these actions:

• Right-click the workspace object you want to cut or copy. Select Cut or Copy.
• Click the workspace object you want to cut or copy. In the Edit menu, select Cut or Copy.
•

Click the workspace object you want to cut or copy. In the toolbar, click the Cut button or

Copy button .
2 To paste the workspace object that you cut or copied, in the Model Hierarchy pane:

• Right-click the workspace into which you want to paste the object, and select Paste.
• Click the workspace into which you want to paste the object. In the Edit menu, select Paste.
• Click the workspace into which you want to paste the object. In the toolbar, click the Paste

button .

When you copy and paste (or drag and drop), you can manage the resolution of name conflicts. In the
dialog box, choose an action for each item whose name conflicts with an existing item.

• Skip — Default action when the conflicting items have the same value.
• Replace — Default action when the conflicting items have different values.
• Keep both — Preserve both copies. The name given to the copied item follows the naming rules

that are used in the MATLAB workspace.

If the source and destination are the same, the software resolves the name conflict by following the
naming rules that are used in the MATLAB workspace.

You can also cut, copy, and paste by selecting an object and performing drag and drop operations.

 Model Explorer

7-67

Edit Object Properties

You can edit object properties in the Model Explorer.

In the Contents pane, first select the row that contains the value, and then click the value. Change
the value of the selected property by typing or selecting a new value.

To assign the same property value to multiple objects in the Contents pane, select the objects and
then change one of the values of the selected objects. The Model Explorer assigns the new property
value to all of the selected objects.

Alternatively, you can edit values for model elements in the Dialog pane. To display the Dialog pane,
click View > Show Dialog Pane.

To edit workspace variables, such as arrays or structures, you can use the Variable Editor.

To open a properties dialog box for an object, in the Model Hierarchy pane, right-click the object
and select Properties. Alternatively, click an object and from the Edit menu, select Properties.

Search and Refine Search Results

To find objects that might not be currently displayed, search.

In this example, you search for elements that have an Integer rounding mode parameter. You then
refine the results to include only n-D Lookup table blocks. You can use the search results to find out
more about how these values are set or make batch changes to the elements found by the search.

1 Open the “Model a Fault-Tolerant Fuel Control System” on page 13-124 example model
sldemo_fuelsys.
openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample')
sldemo_fuelsys

2 On the Modeling tab, click Model Explorer.
3 To specify the scope of the search, use the Model Hierarchy pane in combination with the View

> Show Current System and Below setting. For example, to search the current system and
loaded systems below it, select the sldemo_fuelsys node and enable View > Show Current
System and Below.

4 Display the search bar by enabling View > Toolbars > Search Bar.
5 In the search bar, set:

• Search to by Property Name
• Property to Rounding

Rounding is the programmatic name for the Integer rounding mode parameter. Block
reference pages list the programmatic name for a parameter in the parameter description.

6 Click Search. In the Search Results box, results appear. You can go to an item by clicking the
link to the path.

7
Refine the search. In the search bar, click the Search Options button and select Refine
Search.

7 Tools and Apps

7-68

The search button label changes to Refine. Additional search criteria act on the previous set of
results.

8 Set Search to by Block Type and set Type to Lookup_n-D. Click Refine.
9 To work further with the values, click Show Details.

Suppose the property you are interested in learning more about or acting on is Rounding. First,
add a column for it. Select Rounding from the list (you can enter it in the Find Properties box

to locate it quickly), and click the Display property as column in view button .

A column for Rounding appears in the search results. For any column, you can view, sort, and
change values for multiple items. For example, to change the Rounding values on all of the n-D
Lookup Table blocks in this search, select all the items in the list. In the Rounding column, click
any cell and select a new value from the list (for example, Floor).

Tip To view a summary of the search options that you used, expand the Number of objects found

box by clicking the Show Search Details button .

You can use the Model Explorer to create, modify, and view the entries in a data dictionary. See “Edit
and Manage Workspace Variables by Using Model Explorer” and “View and Revert Changes to
Dictionary Data”.

 Model Explorer

7-69

Display Partial or Whole Model Hierarchy Contents

By default, the Model Explorer displays objects for the system that you select in the Model
Hierarchy pane. It does not display data for child systems. You can override that setting, so that the
Model Explorer displays objects for the whole hierarchy of the currently selected system.

To toggle between displaying only the current system and displaying the whole system hierarchy of
the current system, use one of these techniques:

• Select View > Show Current System and Below.
•

Click the Show contents of current system and below button at the top of the Contents
pane.

When you select the Show Current System and Below option:

• The Model Hierarchy pane highlights the current system and its child systems.
• After the path in the Contents pane, the text (and below) appears.

Loading very large models for the current system and below can be slow. To stop the loading process
at any time, either click the Show contents of current system only button or click another node in
the tree hierarchy.

If you show the current system and below, you might want to change the view to better reflect the
displayed system contents.

The setting for the Show Current System and Below option is persistent across Simulink sessions.

Note To open a graphical object (for example, a model, subsystem, or chart) in a Simulink Editor
window from the Model Explorer, right-click the object in the Model Hierarchy pane, then select
Open.

Display Linked Library Subsystems and Masked Subsystems

By default, the Model Explorer does not display the contents of linked library subsystems or masked
subsystems in the Model Hierarchy pane.

To display the contents of linked library subsystems or masked subsystems, use one of these
approaches:

•
At the top of the Model Hierarchy pane, click the Show/Hide Library Links button or the

Show/Hide Masked Subsystems button .
• From the View menu, select Show Library Links or Show Masked Subsystems.

Linked subsystems and masked subsystems are visible in the Contents pane, regardless of how you
configure the Model Hierarchy pane.

Note Search does not find elements in linked library or masked subsystems that are not displayed in
the Model Hierarchy pane.

7 Tools and Apps

7-70

For subsystems that are both linked and masked, how you set the linked subsystems and masked
subsystems options affects which subsystems appear in the Model Hierarchy pane, as described in
the following table.

Settings Subsystems Displayed in the Model
Hierarchy Pane

Show Library Links

Hide Masked Subsystems

Only library-linked, unmasked subsystems

Hide Library Links

Show Masked Subsystems

Only masked subsystems that are not library-
linked subsystems

Show Library Links

Show Masked Subsystems

All library-linked or masked subsystems

Expand and Edit Referenced Models

To browse a model that includes Model blocks, you can expand the Model Hierarchy pane nodes of
the Model blocks.

To browse a model referenced by a Model block:

1 Right-click the referenced model node in the Model Hierarchy pane.
2 Select Open Model.

The referenced model opens as a top model and appears as a separate node in the Model
Hierarchy pane. While you can expand the Model block node and display the corresponding
contents, you must use the node that corresponds to the referenced model to edit them.

For example, the sldemo_mdlref_depgraph model includes Model blocks that reference other
models. If you open the sldemo_mdlref_depgraph model and expand that model node in the
Model Hierarchy pane, you see that the model contains several Model blocks, including
heat2cost.

If you right-click the heat2cost Model block node and select Open Model, the Contents pane
displays the objects in the heat2cost Model block. You can expand the heat2cost node.

 Model Explorer

7-71

You can browse the contents of the referenced model, but you cannot edit the objects in the Model
block.

To edit the referenced model, expand the referenced model node in the Model Hierarchy pane, and
then access the properties of objects in the referenced model. For example, expand the
sldemo_mdlref_heat2cost node.

7 Tools and Apps

7-72

For information about referenced models, see “Model Reference Basics”.

Change Font Size

You can change the font size in the Model Explorer panes.

To increase the font size, press Ctrl+Plus (+). Alternatively, from the Model Explorer View menu,
select Increase Font Size.

To decrease the font size, press Ctrl+Minus (-). Alternatively, from the Model Explorer View menu,
select Decrease Font Size.

The changes remain in effect for the Model Explorer and in Simulink dialog boxes across Simulink
sessions.

Create Views

If a default view that ships with the Model Explorer does not meet your needs, you can modify or
create a view.

To open the View Manager dialog box, select View > Column View > Manage Views.

To copy and rename an existing view:

 Model Explorer

7-73

1 In the View Manager dialog box, select the view that you want to use as the starting point for
your new view.

2 Click the Copy button.

A new row appears at the bottom of the View Manager table. The new row contains the name of
the view you copied, followed by a number in parentheses. For example, if you copy the
Stateflow view, the initial name of the copied view is Stateflow (1).

To create a new view, in the View Manager dialog box, click the New button. A new view row appears
at the bottom of the View Manager table.

After you create a view, you can name and describe the view:

1 Double-click the name of the view in the View column and enter a name for the view.
2 Double-click the text in the Description column and enter a description for the view.
3 Click OK.

Customize Views and Filter Contents

You can control the information the Contents pane displays and directly manipulate column
headings.

To control which property columns to display, use the View > Column View option.

To control which types of objects to display, use the View > Row Filter option.

To focus on specific objects in the Contents pane, based on a search string, filter contents.

As you customize the table represented by the current view, you change the current view definition.
The Model Explorer saves the following changes to the table as part of the column view definition:

• Grouping by property
• Sorting in a column
• Changing the order of property columns
• Adding a property column
• Hiding and removing property columns

When you change from one view to another view, the Model Explorer saves any customizations that
you have made to the previous view.

For example, suppose you set Column View to Block Data Types view and you hide the
LockScale property column. If you then switch to use the Data Objects view, and later use the
Block Data Types view again, the Block Data Types view no longer includes the LockScale
column that you hid.

At the end of a Simulink session, the Model Explorer saves the view customizations that you made
during that session. When you reopen the Model Explorer, Simulink uses the customized view, and
maintains any changes that you made to the view in the previous session.

7 Tools and Apps

7-74

If you modify a default view that ships with the Model Explorer, you can reset it to factory settings.
With the default view as the current view, in the Contents pane, click Show Details, then click
Options > Reset This View to Factory Settings.

To reset the factory settings for all default views in one step, in the View Manager dialog box, click
the Options > Reset All Views to Factory Settings.

Note When you reset all views, the Model Explorer removes all the custom views you have created.
Before you reset views to factory settings, export any views that you will want to use in the future.
For more information, see “Manage Views” on page 7-75.

Manage Views

In the View Manager, you can delete, reposition, export, and import views for use by the Model
Explorer.

To open the View Manager, select View > Column View > Manage Views.

To delete a view from the Column View list of views:

1 In the View Manager dialog box, select one or more views that you want to remove from the list.
2 Click the Delete button or press the Delete key.
3 Click OK.

Deleting a view using the View Manager dialog box permanently deletes that view from the
Model Explorer interface. If you think you or someone else might want to use a view again,
consider exporting the view before you delete it.

To change the position of a view in the Column View list:

1 In the View Manager dialog box, select one or more views that you wish to move up or down in
the table of views.

2 Click the up or down arrow buttons to the right of the table. Repeat this step until the view
appears where you want it to be in the table.

3 Click OK.

To export views that you or others can then import:

1 In the View Manager dialog box, select one or more views that you want to export.
2 Click the Export button. The Export Views dialog box opens with check marks next to the views

that you selected.
3 Click OK. An Export to File Name dialog box opens.

Navigate to the folder where you want to export the view. By default, the Model Explorer exports
views to the current folder in MATLAB.

4 Specify the file name for the exported view. The file is saved as a .mat file.
5 Click OK.

To import view files for use by the Model Explorer:

 Model Explorer

7-75

1 In the View Manager dialog box, click Import. The Select .mat File to Import dialog box opens.
2 Navigate to the folder that contains the view you want to import.
3 Select the MAT-file containing the view that you want to import and click Open. A confirmation

dialog box opens. Click OK to import the view.

The imported views are added at the bottom of the View Manager table. The Model Explorer
automatically renames the view if a name conflict occurs.

• Model Data Editor

Parameters
Search Bar

Search — Specify the type of objects or properties to include in the search
by Name | by Property Name | by Property Value | by Block Type | ...

Open the search bar by selecting View > Toolbars > Search Bar.

Use the Search setting to specify the type of objects or properties to include in the search.

Search Type Option Description
by Name Searches a model or chart for all objects that have the

specified string in the name of the object.
by Property Name Searches for objects that have a specified property. Specify

the target property name from a list of properties that objects
in the search domain can have.

by Property Value Searches for objects with a property value that matches the
value you specify. Specify the name of the property, the value
to be matched, and the type of match (for example, equals,
less than, or greater than).

by Block Type Searches for blocks of a specified block type. Select the
target block type from the list of types contained in the
currently selected model.

by Stateflow Type Searches for Stateflow objects of a specified type.
for Variable Usage Searches for blocks that use variables defined in a workspace.

Select the base workspace or a model workspace (model
name) and, optionally, the name of a variable.

for Referenced Variables Searches for variables that a model or block uses. Specify the
name of the model or block in the by System field. The model
or block must be in the Model Hierarchy pane.

for Unused Variables Searches for variables that are defined in a workspace but not
used by any model or block. Select the name of the workspace
from the drop-down list for the in Workspace field.

for Library Links Searches for library links in the current model.
by Class Searches for Simulink objects of a specified class.

7 Tools and Apps

7-76

Search Type Option Description
for Fixed Point Capable Searches a model for all blocks that support fixed-point

computations.
for Model References Searches a model for references to other models.
by Dialog Prompt Searches a model for all objects whose dialogs contain the

prompt you specify.
by String Searches a model for all objects in which the string you

specify occurs.

Search Options — Specify search strings
name | property | type | variables | ...

Use search option settings to specify the scope of the search.

Search Option Description
Match Whole String Do not allow partial string matches (for example,

do not allow sub to match substring).
Match Case Considers case when matching strings (for

example, Gain does not match gain).
Regular Expression Considers a string to be matched as a regular

expression.
Evaluate Property Values During Search This option applies only for searches by property

value. If enabled, Model Explorer evaluates the
value of each property as a MATLAB expression
and compares the result to the search value. If
this option is disabled, the Model Explorer
compares the unevaluated property value to the
search value.

Refine Search Enables you to search the initial search results.
The second search operation searches for objects
that meet both the original and the new search
criteria.

By default, search strings are case-insensitive and are treated as regular expressions. The search
allows partial string matches. You cannot use wildcard characters in search strings. For example, if
you enter *1 as a name search string, you get no search results unless there is an item whose name
starts with the characters *1. If there is an out1 item, the search results do not include that item.

Model Hierarchy Pane

Simulink Root — Display display nodes representing the MATLAB workspace, Simulink models, and
Stateflow charts

node structure

Expand Simulink Root to display nodes representing the MATLAB workspace, Simulink models, and
Stateflow charts that are in the current session.

Base Workspace — MATLAB workspace

 Model Explorer

7-77

node structure

Base Workspace represents the MATLAB workspace. The MATLAB workspace is the base workspace
for Simulink models and Stateflow charts. Variables defined in this workspace are visible to all open
models and charts.

Expanding a model or chart node in the Model Hierarchy pane displays nodes representing the
following elements, as applicable, for the models and charts you have open.

Node Description
Configurations Select the Configurations node to show the model's configuration sets

and configuration references in the Contents pane. For information
about adding, deleting, saving, and moving configuration sets, see
“Manage Configuration Sets for a Model”.

Model Workspace For information about how to use the Model Explorer to work with model
workspace variables, see these topics:

• “Edit and Manage Workspace Variables by Using Model Explorer”
• “Model Workspaces”

External data Expand the External Data node to display external data sources for the
model, including the base workspace (if access is enabled), and data
dictionaries.

Top-level subsystems Expand a node representing a subsystem to display underlying
subsystems.

Model blocks Expand model blocks to show contents of referenced models.
Stateflow charts • Expand a node representing a Stateflow chart to display the top-level

states of the chart.
• Expand a node representing a state to display its substates.

Contents Pane

Contents Pane — Describe contents of node
table

The Contents pane displays one of two tables containing information about models and charts,
depending on the tab that you select:

• The Contents tab displays an object property table for the node that you select in the Model
Hierarchy pane.

• The Search Results tab displays the search results table.

You can also click Show Details to add and modify the columns that appear in the tables.

The Contents pane displays a table of model and chart object data.

In the Contents tab and in the Search Results tab:

• Table columns correspond to object properties (for example, Name and BlockType).

The table displays the first two columns (the object icon and the Name property) persistently, so
that these columns remain visible regardless of how far you scroll to the right.

7 Tools and Apps

7-78

• Table rows correspond to objects (for example, blocks, and states).

The objects and properties displayed in the Contents pane depend on:

• The column view that you select in the Column View menu
• The node that you select in the Model Hierarchy pane
• The kind of object (for example, subsystem or chart) that you select in the Model Hierarchy pane
• The View > Row Filter options that you select

The link next to Contents of at the top of the Contents pane links to the currently selected node in
the Model Hierarchy pane. The model data displayed in the Contents pane reflects the setting of
the Current System and Below option.

Column View — Named set of properties

properties

The Model Explorer uses views to specify sets of property columns to display in the Contents pane.

Each kind of node in the Model Hierarchy pane displays specific properties in the Contents pane.
For example, a Simulink model or subsystem node displays properties such as:

• BlockType (block type)
• OutDataTypeStr (output data type)
• OutMin (minimum value for the block output)

Generally, a column view does not contain the total set of properties for all the objects in a node.
Specifying a subset of properties to display can streamline the task of exploring and editing model
and chart object properties and increase the density of the data displayed in the Contents pane.

You can use a view to capture the following characteristics of the model information to show in the
Model Explorer:

• Properties that you want to display in the Contents pane
• The layout of the Contents pane (for example, grouping by property, the order of property

columns, and sorting)

You can use views in the following ways:

• Use the standard views that ship with the Model Explorer
• Customize the standard views
• Create your own views

The first time you open the Model Explorer, Simulink automatically applies one of the standard views
to the node you select in the Model Hierarchy pane. The Model Explorer applies a view based on the
kind of node you select.

The Model Explorer assigns one of four categories of nodes in the Model Hierarchy pane. The
Model Explorer initially associates a default view with each node category. The node categories are:

 Model Explorer

7-79

Node Category Kinds of Hierarchy Nodes
Included

Initial Associated View

Simulink Models, subsystems, and root
level models

Block Data Types

Workspace Base and model workspace
objects

Data Objects

Stateflow Stateflow charts and states Stateflow
Configurations Configurations section node Configurations
Other Objects that do not fit into one

of the first three categories; for
example, configuration sets

Default

The Column View field at the top of the Contents pane displays the view that the Model Explorer is
currently using.

In the Contents pane, from the Column View list, you can select a different view. If you select a
different view, then the Model Explorer associates that view with the category of the current node.
For example, suppose the selected node in the Model Hierarchy pane is a Simulink model, and the
current view is Data Objects. If you change the view to Signals, then when you select another
Simulink model node, the Model Explorer uses the Signals view.

By default, the Model Explorer automatically applies a view based on the category of node that you
select and the last view used for that node. You can manually select a view from the Column View
list that better meets your current task.

You can shift from the default mode of having the Model Explorer automatically apply views to a
mode in which you must manually select a view to change views.

To enable the manual view selection mode:

1 Select View > Column View > Manage Views.

The View Manager dialog box opens.
2 In the View Manager dialog box, click the Options button and clear Change View

Automatically.

In the manual view selection mode, if you switch to a different kind of node in the Model Hierarchy
pane that has a different view associated with it, the Contents pane displays a yellow informational
bar suggesting a view to use.

You can manage views (for example, create a new view or export a view) using the View Manager
dialog box. To open the View Manager dialog box, select the Manage Views option from either:

• The View > Column View menu
• The options listed when you click the Options button in the column view details section

The View Manager dialog box displays a list of defined views and provides tools for you to manage
views.

You can manage views in several ways, including creating, deleting, reordering, exporting, importing,
and resetting views.

7 Tools and Apps

7-80

Tip Interface — Display or hide tips
tip field

The tip interface appears immediately above the table in the Contents pane. It does not appear if, in
the View Manager dialog box, you clear Options > Change View Automatically. The tip interface
displays a link for changing the current view to a suggested view. To choose the suggested view
displayed in the tip bar, click the link. To hide the currently displayed tip, from the menu button on
the right side of the tip bar, select Hide This Tip.

Initially, the suggested view is the default view associated with a node. If you associate a different
view with a node category, then the tip suggests the most recently selected view when you select
similar nodes.

To change from manual specification of views to automatic specification, from the tip interface, select
the down arrow and Change View Automatically.

To enable the tip interface, in the View menu, select Column View > Manage Views. In the View
Manager, enable Options > Change View Automatically.

Dialog Pane

Dialog Pane — Display properties of objects
dialog pane

Use the Dialog pane to view and change properties of objects that you select in the Model
Hierarchy pane or in the Contents pane.

By default, the Dialog pane appears to the right of the Contents pane. To show or hide the Dialog
pane, use one of these approaches:

• From the View menu, select Show Dialog Pane.
• From the main toolbar, click the Dialog View button .

To edit property values using the Dialog pane:

1 In the Contents pane, select an object (such as a block or signal). The Dialog pane displays the
properties of the object you selected.

2 Change a property (for example, the port number of an Outport block).
3 Click Apply to accept the change, or click Revert to return to the original value.

By default, clicking outside the Dialog pane when a field has unapplied changes causes the Apply
Changes dialog box to appear. Click Apply to accept the changes or Ignore to revert to the original
settings.

To prevent the Apply Changes dialog box from displaying:

1 In the dialog box, click the In the future Apply or Ignore (whichever I select) without
asking check box.

2 If you want Simulink to apply changes without warning you, press Apply. If you want Simulink to
ignore changes without warning you, press Ignore.

To restore the Apply Changes dialog box, from the Tools menu, select Prompt if dialog has
unapplied changes.

 Model Explorer

7-81

When you select a numeric MATLAB variable or a Simulink.Parameter object in a model
workspace, the Argument check box appears in the Dialog pane. This check box configures the
variable or object as a model argument. See “Parameterize Instances of a Reusable Referenced
Model”.

Programmatic Use
daexplr opens the Model Explorer.

See Also
Simulink Editor

Topics
Model Data Editor

7 Tools and Apps

7-82

Model Reference Conversion Advisor
Convert subsystems to referenced models

Description
The Model Reference Conversion Advisor converts subsystems, including conditional and referenced
subsystems, to referenced models.

Converting subsystems to referenced models is beneficial for modeling large, complex systems and
for team-based development. Many large models use a combination of subsystems and referenced
models. To decide whether to convert a subsystem to a referenced model, see “Choose Among Types
of Model Components”.

When the conversion encounters an issue, the Model Reference Conversion Advisor helps you review
and fix the issue. Preparing the contents of a Subsystem block can eliminate or reduce the number of
issues. Addressing these issues in the model editing environment can be more efficient than
switching repeatedly between the Model Reference Conversion Advisor and the Simulink Editor.

 Model Reference Conversion Advisor

7-83

Open the Model Reference Conversion Advisor
• In the Simulink Editor, select a Subsystem block. In the Simulink Toolstrip, perform one of these

actions.

• On the Subsystem Block tab, select Convert > Model Block.
• On the Modeling tab, in the Component gallery, select Convert to Model Block.

• In the MATLAB Command Window, use the Simulink.SubSystem.convertToModelReference
function with the 'UseConversionAdvisor' argument set to true.

Examples

Set Subsystem Conversion Options

Specify input parameters that determine the output of the conversion and control whether the
advisor automatically attempts to fix conversion errors.

When you open the advisor, in the left pane, the top node is selected. This node identifies the
Subsystem block that the advisor will convert to a referenced model and provides conversion input
parameters. You can use the default parameter values or change the values to customize the
conversion.

For information about specific parameters, see “Parameters” on page 7-0 .

Automatically Convert Subsystem to Referenced Model

The Model Reference Conversion Advisor can step through each check automatically.

1 After you configure the subsystem conversion options, click Convert.

The Model Reference Conversion Advisor steps through each check automatically.
2 Address any issues that the advisor reports. The advisor provides a Fix button for any issues it

can fix automatically.
3 After you address the reported issues, click Continue.

After the Model Reference Conversion Advisor successfully runs all checks, it completes the
conversion.

Check Conversion Input Parameters

Verify that all conversion input parameters are valid.

For information about specific parameters, see “Parameters” on page 7-0 .

1 In the left pane, select the Check conversion input parameters node.
2 Click the Run This Task button.
3 Address any issues that the advisor reports. The advisor provides a Fix button for any issues it

can fix automatically.

7 Tools and Apps

7-84

4 After you address the reported issues, click Continue.

Check Model Configurations

Verify that the model configurations meet model referencing requirements. This check identifies
model configuration parameter settings that are not valid for model references.

1 In the left pane, select the Check model configurations node.
2 Click the Run This Task button.
3 Address any issues that the advisor reports. The advisor provides a Fix button for any issues it

can fix automatically.
4 After you address the reported issues, click Continue.

Check Subsystem Interface

Verify whether the subsystem interface meets model reference requirements.

1 In the left pane, select the Check subsystem interface node.
2 Click the Run This Task button.

The advisor verifies that the type of subsystem is one that the advisor can convert. Then, it
verifies that the interfaces to specific types of subsystems, such as masked subsystems, meet
conversion requirements.

3 Address any issues that the advisor reports. The advisor provides a Fix button for any issues it
can fix automatically.

4 After you address the reported issues, click Continue.

Check Subsystem Content

Verify whether the subsystem content meets model reference requirements.

1 In the left pane, select the Check subsystem content node.
2 Click the Run This Task button.

The advisor checks whether the model compiles successfully. Upon successful compilation, the
advisor checks whether the blocks in the subsystem meet the requirements for conversion.

3 Address any issues that the advisor reports. The advisor provides a Fix button for any issues it
can fix automatically.

4 After you address the reported issues, click Continue.

Complete Conversion

After all checks run successfully, complete the conversion.

 Model Reference Conversion Advisor

7-85

1 In the left pane, select the Complete conversion node.
2 Click the Run This Task button.

The Model Reference Conversion Advisor:

• Creates a referenced model from the subsystem.
• Creates the Simulink.Bus objects, Simulink.Signal objects, and tunable parameters that

the referenced model requires.
• By default, replaces the Subsystem block with a Model block that references the new model.
• Inserts the Model block in a Subsystem block if the automatic fixes added ports to the Model

block interface.
• Creates an HTML conversion summary report in the slprj folder. This report summarizes

the results of the conversion process, including the results of the fixes that the advisor
performed. This report also describes the elements that the advisor copies.

• Optionally checks the consistency of simulation results before and after conversion.
• Copies the following elements from the original model to the new referenced model.

• Configuration set — If the parent model uses:

• A configuration set that is not a referenced configuration set, the advisor copies the
entire configuration set to the referenced model

• A referenced configuration set, then both the parent and referenced models use the
same referenced configuration set

• Variables — The advisor copies only the model workspace variables that the subsystem
used in the original model to the model workspace of the referenced model. If the model
that contained the subsystem uses a data dictionary, then the referenced model uses the
same data dictionary.

• Requirements links — The advisor copies requirements links created with Requirements
Toolbox™ software to the Model block from the original Subsystem block.

If you are not satisfied with the conversion results, you can restore the model to its initial state. After
you successfully run the Complete conversion check, use the Click here to restore the original
model link.

If you selected Check simulation results after conversion, you can view the results by using the
Click here to view the comparison results link.

Compare Simulation Results Before and After Conversion

If you selected Check simulation results after conversion, the Model Reference Conversion
Advisor provides a comparison of top-model simulation results before and after conversion.

After you successfully run the Complete conversion check, click Click here to view the
comparison results. The results display in the Simulation Data Inspector. A green check mark
indicates that simulation results are within tolerance between the baseline model and the model with
the new referenced model.

7 Tools and Apps

7-86

For more information, see “Compare Simulation Data”.

• “Convert Subsystem to Referenced Model” on page 13-427

Parameters
New model name — Unique name for model file
text

The default new model name is a unique name on the MATLAB path that is based on the Subsystem
block name.

The model name cannot exceed 59 characters. For more information, see “Choose Valid Model File
Names”.
Tips

If you receive an error that the referenced model exists, use this parameter to specify a new model
name.

Conversion data file name — Unique name for conversion data file
text

 Model Reference Conversion Advisor

7-87

The conversion data file stores any variables or objects created during the conversion.

By default, the filename begins with the model name and ends with _conversion_data.mat. For
example, for a subsystem in a model named myModel, the default conversion filename is
myModel_conversion_data.mat.

You can save the conversion data in a MAT file (.mat) or a script (.m). If you use a .m file extension,
the file serializes all variables.

Dependencies

To enable this parameter, the top model must not use a data dictionary.

Fix errors automatically (if possible) — Option to apply available fixes
off (default) | on

By default, if an advisor check finds an error that the advisor can fix, the advisor provides a Fix
button. Click it to have the advisor fix the issue.

Select this parameter to have the advisor fix all the conversion errors it can without displaying the
Fix button.

Replace the content of a subsystem with a Model block — Option to replace subsystem
with referenced model
on (default) | off

By default, the advisor updates the original model by inserting a Model block. The advisor action
depends on whether you use the automatic fix options.

• If you use the automatic fixes, then the advisor replaces the Subsystem block with a Model block
unless the automatic fixes change the input or output ports. If the ports change, the advisor
includes the contents of the subsystem in a Model block and inserts it into the Subsystem block.

• If you do not use the automatic fixes, then the advisor replaces the Subsystem block with a Model
block.

Clear this parameter to have the advisor open a new Simulink Editor window that contains only a
Model block that references the newly created model. The advisor does not update the original model
in the other Simulink Editor window.

Copy code mappings — Option to copy code mapping information to new model
off (default) | on

Select this parameter to copy the code mapping information from the parent model to the new,
converted referenced model.

Code mapping information includes configurations of model data elements for code generation. This
parameter does not affect simulation.

For more information, see “Convert Subsystem to Referenced Model and Generate Code” (Simulink
Coder).

Model block simulation mode — Simulation mode for model reference instance
Normal (default) | Accelerator | Software-in-the-loop (SIL)

7 Tools and Apps

7-88

The Model block simulation mode controls the simulation mode for the corresponding instance of the
referenced model. Another Model block that references the same model can specify a different
simulation mode for its instance of the referenced model.

• Normal — Execute the referenced model interpretively, as if the referenced model is an atomic
subsystem implemented directly within the parent model.

• Accelerator — Create a MEX file for the referenced model. Then, execute the referenced model
by running the S-function.

• Software-in-the-loop (SIL) — This option requires an Embedded Coder license. Generate
production code based on the Model block Code interface parameter setting. The code is
compiled for and executed on the host platform.

The corners of the Model block indicate the simulation mode of the Model block. For normal mode,
the corners have empty triangles. For accelerator mode, the corner triangles are filled in. For SIL
mode, the corners are filled in and the word (SIL) appears on the block icon.

The simulation mode of a parent model can override the simulation mode of a Model block. For more
information, see “Choose Simulation Modes for Model Hierarchies”.

Check simulation results after conversion — Comparison of top-model simulation results
before and after conversion
off (default) | on

Select this parameter to compare top-model simulation results before and after conversion.

To see the results after the conversion is complete, click View comparison results. The Simulation
Data Inspector displays the results of the comparison.

For more information, see “Compare Simulation Results Before and After Conversion”.
Tips

Before you perform the conversion:

• Enable signal logging for the subsystem output signals of interest.
• Set the Model block simulation mode option in the advisor to the same simulation mode as the

original model.
• Specify the Stop time, Absolute tolerance, and Relative tolerance.

Dependencies

To enable this option, select Replace the content of a subsystem with a Model block.

Stop time — Simulation stop time
positive scalar

By default, the advisor uses the stop time of the top model, unless the stop time of the top model is
inf. If the stop time of the top model is inf, the advisor uses a default stop time of 10.
Dependencies

To enable this parameter, select Check simulation results after conversion.

Absolute tolerance — Absolute tolerance for simulation comparison
1e-06 (default) | positive scalar

 Model Reference Conversion Advisor

7-89

The absolute tolerance is the largest acceptable solver error, as the value of the measured signal
approaches zero. The simulation results before conversion establish the baseline. The simulation
results after conversion must be within the tolerance.

Dependencies

To enable this parameter, select Check simulation results after conversion.

Relative tolerance — Relative tolerance for simulation comparison
0.001 (default) | positive scalar

The relative tolerance is the largest acceptable solver error, relative to the size of each signal during
each time step. The simulation results before conversion establish the baseline. The simulation
results after conversion must be within the tolerance.

The default value (0.001) means that the compared signal is accurate to within 0.1% of the baseline
signal.

Dependencies

To enable this parameter, select Check simulation results after conversion.

Show report after run — Option to open conversion report upon completion
off (default) | on

After the conversion completes, the HTML conversion summary report appears in the slprj folder.
This report summarizes the conversion setup and results, including the results of the fixes that the
advisor performed. This report also describes the elements that the advisor copies.

Select this parameter to open the conversion report after the conversion completes.

Limitations
The Model Reference Conversion Advisor does not support conversion for some types of subsystems.
For example:

• Subsystem blocks with Simscape Multibody components that cross the subsystem boundary
• Asynchronous subsystems — To convert asynchronous subsystems to referenced models that

accept asynchronous function calls, see “Asynchronous Support Limitations” (Simulink Coder).

Version History
Introduced in R2014a

R2020b: Copy code mappings from parent model to referenced model

Starting in R2020b, you can copy code mappings from the parent model to the newly created
referenced model. To copy the code mappings, select the Copy code mappings parameter in the
Model Reference Conversion Advisor.

R2023a: Copy service interface code mappings from parent model to referenced model

7 Tools and Apps

7-90

Service interface code mappings were introduced in R2022b. Starting in R2023a, you can copy
service interface code mappings from the parent model to the newly created referenced model. To
copy the mappings, select the Copy code mappings parameter in the Model Reference
Conversion Advisor. To learn more about service interface code mappings, see “C Service
Interfaces” (Embedded Coder). To learn more about code mapping configurations, see “Define
Service Interfaces, Storage Classes, Memory Sections, and Function Templates for Software
Architecture” (Embedded Coder).

See Also
Functions
Simulink.SubSystem.convertToModelReference

Blocks
Subsystem | Model

Topics
“Convert Subsystem to Referenced Model” on page 13-427
“Convert Subsystems to Referenced Models”
“Choose Among Types of Model Components”
“Model Reference Requirements and Limitations”
“Convert Subsystem to Referenced Model and Generate Code” (Simulink Coder)

 Model Reference Conversion Advisor

7-91

Multiple Simulations
Run multiple simulations from the Simulink Editor

Description
Multiple Simulations panel allows you to setup multiple simulations for a block parameter that you
want to vary, for example, for a parameter sweep, or Monte-Carlo simulations. You can pick the block
parameter of interest from the model canvas and specify values that you want to use for the
simulations. You can also specify variables for the simulations. With the Multiple Simulations panel,
you can provide configurations such as Use Parallel to run your simulations in parallel. To run the
simulations that you have set up, first, select the design study, then click the Run All button in the
Simulation section on the Simulink toolstrip. Once the simulations are complete, you can view and
manage the results in Simulation Manager.

7 Tools and Apps

7-92

Open the Multiple Simulations
• To open the Multiple Simulations panel, navigate to the Prepare section on the Simulink

toolstrip. In the Inputs & Parameter Tuning section, click Multiple Simulations

Examples
• “Multiple Simulations Panel: Simulate for Different Values of Stiffness for a Vehicle Dynamics

System”

Programmatic Use
parsim(in) is the command line equivalent syntax for the command line.

More About
Design Study

In the panel, you can click the right most button to create a new design study. A new design study
object is added to the panel. The name of this design study is automatically populated. To change the
name, double click on the name and enter your preferred name. A design study is an object that
allows you to set up simulations. Once you configure and set up the values for the simulations, you
can select this design study and click Run All on the Simulink toolstrip to run the simulations.

Version History
Introduced in R2021b

 Multiple Simulations

7-93

See Also
“Running Multiple Simulations” | “Comparison Between Multiple Simulation Workflows” | “Configure
and Run Simulations with Multiple Simulations Panel”

Topics
“Multiple Simulations Panel: Simulate for Different Values of Stiffness for a Vehicle Dynamics System”

7 Tools and Apps

7-94

Performance Advisor
Run checks on model to improve simulation performance

Description
The Performance Advisor checks for configuration settings that slow down simulation and produces a
report of suggested changes. You can configure the Performance Advisor to apply changes suggested
in the report automatically, or you can make changes to your model manually. When you configure the
Performance Advisor to apply changes automatically, the Performance Advisor verifies that the
change improves performance without affecting results before applying the change.

When you use the Performance Advisor to modify your model, the Performance Advisor does not save
the changes automatically. You must save the model.

The Performance Advisor analyzes only the top model and does not traverse model reference
boundaries or library links.

Open the Performance Advisor
• Simulink Toolstrip: On the Debug tab, click Performance Advisor.
• MATLAB Command Window: Enter performanceadvisor(modelName), where modelName
specifies the name or handle for the model you want to analyze. If the model is not already open,
the function opens the model as well as the Performance Advisor.

 Performance Advisor

7-95

Examples
• “Improve Simulation Performance Using Performance Advisor”
• “Perform a Quick Scan Diagnosis”
• “Improve vdp Model Performance”

Version History
Introduced in R2013a

Topics
“Improve Simulation Performance Using Performance Advisor”
“Perform a Quick Scan Diagnosis”
“Improve vdp Model Performance”

7 Tools and Apps

7-96

Property Inspector
Edit parameters and properties for any Simulink model element

Description
The Simulink Property Inspector enables you to use a single interface to edit parameters and
properties for any model element.

You can leave the Property Inspector open as you build your model, and it updates with your
selection. You can use the Property Inspector to edit:

• Block parameters and properties
• Stateflow elements
• Annotations, areas, and images
• Signals
• Model properties

When you open the Property Inspector, it opens as a pane in the current Simulink Editor window. You
can drag the Property Inspector from the default location and dock it in another location in the editor.
The down arrow to the right of the pane title provides options to undock, minimize, and open help for
the pane.

The Property Inspector lets you quickly set parameters and properties as you work. Values take effect
when you set them. For more information on setting block parameters and properties, see “Add
Blocks to Models”.

Note You can alternatively open a dialog box for a selected model element by right-clicking and
selecting an item such as Properties, or for blocks, Block Parameters. Double-clicking a block
generally opens a block dialog box. (Use one of the menu commands on Subsystem and Model
blocks.)

The Property Inspector and dialog boxes operate on a single selected element. The main difference is
that the Property Inspector updates with each selection, and the dialog box shows settings for only
the element you opened it from. For this reason, the dialog box is useful if:

• You are moving through the model hierarchy and want to see or set element parameters or
properties as you navigate the model.

• You want to compare the parameters or properties of similar elements.
• The settings are advanced and appear only in the dialog box.

 Property Inspector

7-97

Open the Property Inspector
• In the Simulink Toolstrip, on the Modeling tab, in the Design gallery, select Property Inspector.
• While in the Simulink Editor, press Ctrl+Shift+I.

Examples

Set Block Parameter Value

You can set parameters on most blocks. Parameters allow you to specify how a block operates in the
model.

1 Open the vdp model.

vdp

2 Open the Property Inspector. On the Modeling tab, in the Design gallery, click Property
Inspector.

3 In the model, select the Gain block named Mu.
4 In the Property Inspector, set the Gain parameter to 2, then press Enter.

Version History
Introduced in R2016b

7 Tools and Apps

7-98

See Also
Model Explorer | Model Data Editor

Topics
“Add Blocks to Models”
“Manage Model Versions and Specify Model Properties”
“Create, Edit, and Manage Workspace Variables”
“Data Objects”
“Use Property Inspector in System Composer” (System Composer)

 Property Inspector

7-99

Referenced Files Pane
View, save, and close referenced subsystems and models

Description
The Referenced Files pane allows you to view, save, and close referenced subsystems and models in
the corresponding model hierarchy.

The Referenced Files pane shows a flat list of model and subsystem files that are loaded and
referenced by the model hierarchy. Opening the top model in the model hierarchy does not load the
referenced models in the model hierarchy. Load referenced models by opening them in the Simulink
Editor or by using a function such as load_system. Referenced subsystems load when you load the
models that reference them.

When you save a model using the Referenced Files pane, you also save the models it references.
When you close a model using the Referenced Files pane, you also close the models it references
that are not open in another model hierarchy. Before you can close a modified model, you must
choose whether to save the corresponding changes, which include changes to the model workspace.

Open the Referenced Files Pane
• On the Modeling tab, in the Design gallery, click Referenced Files.
• If a referenced file in the model hierarchy has been modified, on the Simulation tab, click the

Save All button arrow, then click Save Referenced Files > Manage Referenced Files.
• Navigate into a referenced model in the model hierarchy. The Referenced Files pane opens as a

tab on the left side of the Simulink Editor unless you have previously hidden the pane.

Examples

Individually Save and Close Referenced Models

Save and discard changes to individual referenced models in a model hierarchy.

Open the top model in a model hierarchy that contains multiple referenced models.

7 Tools and Apps

7-100

sldemo_mdlref_depgraph

On the Simulink Toolstrip Modeling tab, in the Design gallery, click Referenced Files.

The Referenced Files pane opens. It does not show any referenced subsystems or models. The
sldemo_mdlref_depgraph model does not reference any subsystems, but it references multiple
models. The referenced models must be loaded to appear in the Referenced Files pane.

Double-click the block named thermostat.

The sldemo_mdlref_heater model loads and opens. When Show Only Modified Files in the
Filter contents list () is cleared, this model appears in the Referenced Files pane. Otherwise,
you must modify the file before it appears.

Modify sldemo_mdlref_heater by moving a block.

Next to the model name, the dirty flag (*) indicates that the model has unsaved changes.

 Referenced Files Pane

7-101

Double-click the block named Fahrenheit to Celsius.

The sldemo_mdlref_F2C model loads and opens.

Modify sldemo_mdlref_F2C by moving a block.

Next to the model name, the dirty flag (*) indicates that the model has unsaved changes.

Suppose you want to keep your changes to sldemo_mdlref_F2C, and you want to discard your
changes to sldemo_mdlref_heater.

If you select sldemo_mdlref_heater and click Close, you receive a message asking whether to
save the changes to sldemo_mdlref_heater and sldemo_mdlref_F2C before closing both models.
Unless a referenced model is open in another model hierarchy, closing its parent model closes the
referenced model.

To keep your changes to sldemo_mdlref_F2C, select it in the Referenced Files pane and click
Save. Then, select sldemo_mdlref_heater and click Close.

Version History
Introduced in R2020b

See Also
Topics
“Navigate Model Hierarchies”
“Inspect Model Hierarchies”
“Component-Based Modeling Guidelines”

7 Tools and Apps

7-102

Root Inport Mapper
Import, visualize, and map signal and bus data to root-level inports

Description
The Root Inport Mapper lets you import, visualize, and map signal and bus data to root-level
inports.

Open the Root Inport Mapper
• Inport block: Open the block dialog box and click Connect Inputs.
• Simulink Editor:

1 Click on the Inport block in a model. In the Simulink Editor toolstrip:

a Click the Root Inport tab.
b Click Connect Inputs.

• Simulink Editor toolstrip:

1 In the Prepare section of the Simulation tab, click the expander.
2 Click Inputs & Parameter Tuning > Connect Inputs.

• Simulink Editor toolstrip:

 Root Inport Mapper

7-103

1 In the Prepare section of the Simulation tab, click the expander.
2 Click Configuration & Simulation > Model Settings.
3 In the Data Import/Export pane,click the Input check box.
4 Click Connect Inputs.

• Simulink Editor canvas:

1 Right-click the canvas.
2 Select Model Configuration Parameters.
3 In the Data Import/Export pane,click the Input check box.
4 Click Connect Inputs.

Examples

Root Inport Mapper Keyboard Shortcuts

The Root Inport Mapper uses these keyboard shortcuts.

Action Menu Action Keyboard Shortcut
Open file. Open Ctrl+O
Save file. Save Ctrl+S
Link from spreadsheet. From Spreadsheet Ctrl+Shift+X
Link from MAT-file. From MAT-File Ctrl+Shift+L
Link from workspace. From Workspace Ctrl+Shift+B
Create and edit new scenario in
MAT-file.

Signals > New MAT-File Ctrl+N

Edit scenario in MAT-file. Signals > Edit MAT-File Ctrl+E
Check readiness of all mapped
scenario datasets.

Check Readiness > Map All Ctrl+Shift+A

Check readiness of the mapped
datasets of the currently
selected scenarios.

Check Readiness > Map
Selected

Ctrl+Shift+S

Check readiness of the mapped
disconnected datasets.

Check Readiness > Map
Unconnected

Ctrl+Shift+U

Check readiness of the mapped
datasets that previously failed a
mapping.

Check Readiness > Map
Failed

Ctrl+Shift+F

Check readiness of the mapped
datasets that previously caused
warnings.

Check Readiness > Map
Warned

Ctrl+Shift+Y

Apply to model. Apply to Model Ctrl+M
Generate and open MATLAB
batch simulation file.

Generate Script Ctrl+G

Unlink all scenarios. Unlink all scenarios Ctrl+U

7 Tools and Apps

7-104

Action Menu Action Keyboard Shortcut
Unlink selected scenarios. Unlink selected scenarios Ctrl+I

Use the Root Inport Mapper

Follow this workflow to get started using the Root Inport Mapper.

Create signal data in the MATLAB workspace.

For a Simulink model, import the data from the workspace. You can visualize the data you import.

Map the data to root-level inports.

Simulate the model.

Save the Root Inport Mapper scenario.

Choose Map Mode

To specify how you want the Root Inport Mapper tool to map the signal data to a model, select from
these map modes in the Map Configuration section of the toolbar.

Goal Map Mode
Assign signals to ports according to the name of the
root-inport block. If the name of a signal or bus
element matches the name of a root-input port block,
the data is mapped to the corresponding port.

Block Name

Assign signals to ports according to the block path of
the root-input port block. If the block path of a signal
matches the block path of a root-inport block, the data
is mapped to the corresponding port.

Block Path

Assign signals to ports according to the name of the
signal on the port. If the signal name of a data element
matches the name of a signal at a port, the signal is
mapped to the corresponding port.

Signal Name

Assign sequential port numbers to the imported data,
starting at 1. Map signals to the corresponding input
ports.

If there is more data than input ports, the remaining
data is mapped to enable and then trigger input ports.

If the data is not in the form of a dataset, it is
processed in the order in which it appears in the data
file.

Port Order

 Root Inport Mapper

7-105

Goal Map Mode
Assign signals to ports according to the definitions in a
custom file. To create a custom map mode, see “Create
and Use Custom Map Modes”.

Custom

The Root Inport Mapper tool supports the MATLAB data types or formats described in the table for
imported signal data. For each data type, you can use the map modes indicated in the table.

Data Formats Block Name Block Path Signal Name Port Order Custom
Simulink.SimulationData.D
ataset
MATLAB timeseries

MATLAB timetable

Simulink.SimulationData.S
ignal
Stateflow.SimulationData.
State
Structure with time and structure
without time

Data array

Array of buses

Asynchronous function-call signal

• “Create Harness-Free Models with MAT File Input Data” on page 13-361
• “Interface Specification Using Bus Objects” on page 13-420
• “Map Data Using Root Inport Mapper Tool”
• Multi-Input Root Inport Mapping

Parameters
File

Open — Open existing Root Inport Mapper scenario
button

Open an existing scenario from a previous Root Inport Mapper session. If you are working in another
scenario, the Root Inport Mapper tool displays a message.

7 Tools and Apps

7-106

https://www.mathworks.com/videos/multi-input-root-inport-mapping-117997.html?s_tid=srchtitle_%2522root%20inport%2522_1

To... Click...
Open a new scenario. Remove the existing
scenario without saving it.

No

Cancel opening a scenario. Cancel
To save the existing scenario, click Yes. Then
click the Open button again to open an existing
scenario.

Yes

Save — Save current Root Inport Mapper scenario
button

Save current Root Inport Mapper scenario to a .mldatx file.

Link

From Spreadsheet — Import from spreadsheet
button

Import Simulink data from spreadsheet.

From MAT-file — Import from MAT-file
button

Import Simulink data from MAT-file.

From Workspace — Import from base workspace
button

Import Simulink data from base workspace.

Edit

Signals — Edit signals using Signal Editor tool
button

Start Signal Editor to edit signals from an existing scenario MAT-file or create a new MAT-file to
contain new scenarios and signals.

Map Configuration

Map Mode — Select map mode
button

 Root Inport Mapper

7-107

Select map mode according to the desired action.

Goal Map Mode
Assign signals to ports according to the name of the
root-inport block. If the name of a signal or bus
element matches the name of a root-input port block,
the data is mapped to the corresponding port.

Block Name

Assign signals to ports according to the block path of
the root-input port block. If the block path of a signal
matches the block path of a root-inport block, the data
is mapped to the corresponding port.

Block Path

Assign signals to ports according to the name of the
signal on the port. If the signal name of a data element
matches the name of a signal at a port, the signal is
mapped to the corresponding port.

Signal Name

Assign sequential port numbers to the imported data,
starting at 1. Map signals to the corresponding input
ports.

If there is more data than input ports, the remaining
data is mapped to enable and then trigger input ports.

If the data is not in the form of a dataset, it is
processed in the order in which it appears in the data
file.

Port Order

Assign signals to ports according to the definitions in a
custom file. To create a custom map mode, see “Create
and Use Custom Map Modes”.

Custom

Custom Map — Specify custom map mode file
button

Specify custom map mode file. For more information on custom map mode files. see “Create and Use
Custom Map Modes”.

Options — Select mapping options
button

Select mapping options according to the desired action.

Goal Option
Update the model and review the data types of root-
level input ports and imported data.

Update Model Automatically. Compare the signal
data and input port parameters to the root-level port
and display the results. If you do not select this option,
the tool maps the imported data to the root-level input
port but does not update the model.

7 Tools and Apps

7-108

Goal Option
Use strong data typing when mapping data from
spreadsheets.

Use Strong Data Typing with Spreadsheets. Clear
this check box to allow the Root Inport Mapper tool to
automatically convert spreadsheet input signals to the
data types of the corresponding root inports. The Root
Inport Mapper tool can cast the spreadsheet data to
only these data types: double, single, int8, uint8,
int16, uint16, int32, and uint32. If you select this
check box or if the root input port is not one of these
data types, you may receive a data type mismatch
error.

Import bus data that is only partially defined. Allow Partial Specification of Buses. Confirm that
any partially specified bus data you import maps
properly to root-level input ports.

Identify unassigned root input ports and detect
incomplete input data sets.

Notify of Missing Signals. Show inputs with missing
signals.

Map to Model

Check Map Readiness — Specify subset of scenarios to map
button

Specify subset of scenarios to map according to the desired action.

Goal Option
Map all the scenario datasets (default). Map All
Map the datasets of the scenarios currently selected in
the Scenario Dataset section.

Map Selected

Map the disconnected datasets. Map Unconnected
Map datasets that previously failed a mapping. Map Failed
Map datasets that previously caused warnings. Map Warned

Apply to Model — Apply data to model
button

Apply data to model. Clicking this button selects the Input check box in the Data Import/Export
pane in the model Configuration Parameters dialog box. It also sets the Input value to the imported
data variables.

Script

Generate Script — Generate batch simulation file
button

Generate a batch simulation file to run the mappings that you have set up. You can then run the script
in the MATLAB Editor.

 Root Inport Mapper

7-109

More About
Supported Microsoft Excel File Formats

You can use the Root Inport Mapper tool to import data from Excel spreadsheets. You can also use the
Root Inport Mapper tool to import signal data in CSV files on a Windows system with Microsoft Office
installed.

The Root Inport Mapper tool does not support Excel spreadsheet charts.

• Use sheet names that follow MATLAB variable name rules. If you import from a sheet whose name
does not follow these rules, the Root Inport Mapper tool uses a modified sheet name. This
modified sheet name follows the MATLAB variable name rules. For example, if you have a sheet
name Group Name, the Root Inport Mapper uses the modified name GroupName.

• Use the first row of a sheet to specify signal names. Either specify a signal name for every signal
or do not specify any signal names. If you do not specify any signal names, the tool assigns signal
names using the format Signal#.

• For time values, use the first column of the remaining rows. The time values must increase for
each row.

• Put signal values in the remaining columns.
• During import, the Root Inport Mapper tool converts formatted numbers from Excel spreadsheets

to doubles.
• The Root Inport Mapper tool does not support block path map mode for spreadsheets.

This example of a Microsoft Excel spreadsheet is set up for root-inport mapping.

• The sheet name is sigData, which is a valid MATLAB variable name.
• The first row contains the signal names signal1, signal2, and signal3.
• The first column has six time values that increase for each row.
• In each row with a time value, columns to the right of the first column contain signal data values

for each signal.

7 Tools and Apps

7-110

Version History
Introduced in R2012b

See Also
Blocks
Inport | Signal Editor

Functions
signalEditor

Tools
Create Signal

Model Settings
Input

Topics
“Create Harness-Free Models with MAT File Input Data” on page 13-361
“Interface Specification Using Bus Objects” on page 13-420
“Map Data Using Root Inport Mapper Tool”
Multi-Input Root Inport Mapping

 Root Inport Mapper

7-111

https://www.mathworks.com/videos/multi-input-root-inport-mapping-117997.html?s_tid=srchtitle_%2522root%20inport%2522_1

Schedule Editor
View and edit the schedule of model components (partitions)

Description
The Schedule Editor is a scheduling tool that represents the components in the model known as
partitions, the data connections between them, and the order of those partitions.

Partitions are the components of the model that execute independently as tasks. The data connections
between the partitions show the flow of the data between those partitions. The scheduling of these
partitions is based on the rates and the events in the model. This schedule is shown in the Order
table in the Schedule Editor.

Using the Schedule Editor, you can:

• Create partitions and specify their order.
• Edit and analyze the schedule of the executable partitions without disturbing the structure of the

model.
• Visualize how Simulink executes partitions.

Changes made in the Schedule Editor affect both, simulation and code generation.

Using the Schedule Editor

The Schedule Editor consists of two parts representing two different views of partitions in the model:

• A graph that shows the partitions and the data connections between them.

• A table that shows the order in which the partitions execute.

7 Tools and Apps

7-112

Changing one of the views impacts the other.

To use the Schedule Editor, select Schedule Editor in the Design section of the Modeling tab. If the

model is already partitioned, you can open the Schedule Editor by clicking the badge, which
appears above the blocks. To see the default partitions present in the model in the Schedule Editor,

update the diagram by clicking the icon on the toolstrip or by selecting Ctrl+D. As you create
partitions in the model and update the diagram, partitions appear in the Schedule Editor.

To check how the partitions map to the model, right-click the partitions and select Show Source. The
Simulink model window appears with every block corresponding to the partition highlighted.

Order

The Order shows the order in which the partitions execute. To change the order, you can drag and
drop the partitions. You can also use the Up and Down arrows on the toolstrip. Partitions are sorted
based on their rates. You can only reorder the partitions with the same rate. Clicking a partition in
the Order, highlights the corresponding partition in the graph. On changing the order, the
connections that are affected by this specified change get highlighted.

 Schedule Editor

7-113

Connections

Connections between the partitions show data dependencies. You can right-click the connections
between the partitions to change the constraints on data connections. The different types of
connections illustrate how the partitions behave with each other.

The types of connections are:

• Dependency — Indicates that the source always runs before the destination. The dependency
connection is a solid line.

• Delay — Indicates that the destination runs before the source. When the destination runs before
the source, a scheduling delay is introduced. The delay connection is a dashed line.

You can put these types of constraints on connections:

• Allow Delay — Inserts a delay when required. When you specify this constraint for a connection,
Simulink inserts a delay for that connection only when necessary. The unlock icon on the
connections signifies an allowed delay. When you select this constraint on a connection, Simulink
prefers these connections to be turned into a delay if necessary over other connections.

This constraint is displayed as one of these options.

• Prevent Delay — Prevents delay from being inserted in the connection. When you specify this
constraint for a connection, Simulink ensures that the connection is a dependency. The lock icon
on the connection indicates that the connection is locked as a dependency and is not changed to a
delay.

Events

The Events panel allows you to manage events in the Schedule Editor. The events in the Schedule
Editor can bind with aperiodic partitions to schedule their execution. You can create events in the
Schedule Editor and use these events to send from Stateflow to schedule execution of an aperiodic
partition. To send the events from the Stateflow chart, use the send(eventName) command.

In the Events panel, you can see the listeners and the broadcasters of the event. The icon

denotes the listeners, and the icon denotes the broadcasters. When you bind the aperiodic
partition with an event, the aperiodic partition executes when that event is sent. The broadcaster of
the event shows you the path of the Stateflow chart that sends the event.

7 Tools and Apps

7-114

Click the icon to create an event in the Schedule Editor, and select a listener partition from the
drop down. You can also bind an event by dragging and dropping the event over a valid aperiodic
partition. When an event is bound to a partition, the event name appears on the left side of the
partition and in, the Trigger column of the Order table.

Open the Schedule Editor
• Simulink: In the Modeling tab, expand the Design section and select Schedule Editor from

System Design.
• Simulink model: Click the badge on the partitioned blocks.

Examples
• “Schedule an Export-Function Model Using the Schedule Editor”
• “Schedule a Rate-Based Model Using the Schedule Editor”
• “Events in Schedule Editor”

Parameters
Manage Partitions

Partition Name — Name of the partitions
character vector

 Schedule Editor

7-115

Name of the partitions created. Double-click the name to edit and use the enter key to save the
partition name.

Sample Time — Sample time for partitions to execute
discrete value | variable

Sample time at which the partitions execute. The sample time is a discrete value or a defined variable
that contains a discrete value.

Property Inspector

Hit times — Times for aperiodic partitions to execute
vector

Times at which the aperiodic partitions execute, specified as a vector of discrete values.

Connections — Data connections between partitions
Auto (default) | Delay | Dependency | Prevent Delays | Allow Delays

Dependency between the partitions is shown as a solid line. A delay between the partitions is shown
as a dashed line. The arrow tail and head denote the source and destination, respectively.

Specify constraints on the connections by right-clicking the lines and selecting the constraint type.

More About
Order

By default, the Order table is expanded. Order shows the order of partition execution. Edit the order
by dragging the partitions or using the Up and Down arrows on the toolstrip.

Manage Partitions

By default, the Manage Partitions panel is collapsed. Expand the panel to create partitions, edit
names and/or sample times of the existing partitions, and remove existing partitions. Changes made
in the Manage Partitions panel take effect after updating the diagram.

Property Inspector

The Property Inspector shows information about the selected partition. It shows the rate at which
the partition executes and the connections on that partition. Enter the Hit times when you select an
aperiodic partition in the Property Inspector.

Arrange

The Arrange button organizes the partition graph.

Layout

By default, the Order panel and the Property Inspector panel are expanded. From the Layout drop-
down, select the preferred panels to be expanded as per preference. Clearing the panels collapses
them.

7 Tools and Apps

7-116

Events

From the Events panel, you can manage events in the Schedule Editor. In the Events panel, you can

see the listeners and the broadcasters of the event. The icon denotes the listeners, and the icon

 denotes the broadcasters.

Version History
Introduced in R2019a

See Also
“Create Partitions” | “Generate Code from a Partitioned Model”

Topics
“Schedule an Export-Function Model Using the Schedule Editor”
“Schedule a Rate-Based Model Using the Schedule Editor”
“Events in Schedule Editor”

 Schedule Editor

7-117

Sequence Viewer
Visualize messages, events, states, transitions, and functions

Description
The Sequence Viewer visualizes message flow, function calls, and state transitions.

Use the Sequence Viewer to see the interchange of messages, events, function calls in Simulink
models, Simulink behavior models in System Composer and between Stateflow charts in Simulink
models.

In the Sequence Viewer window, you can view event data related to Stateflow chart execution and the
exchange of messages between Stateflow charts. The Sequence Viewer window shows messages as
they are created, sent, forwarded, received, and destroyed at different times during model execution.
The Sequence Viewer window also displays state activity, transitions, and function calls to Stateflow
graphical functions, Simulink functions, and MATLAB functions. For more information, see “Use the
Sequence Viewer to Visualize Messages, Events, and Entities”.

Note The Sequence Viewer does not display function calls generated by MATLAB Function blocks
and S-functions.

Open the Sequence Viewer
• Simulink Toolstrip: On the Simulation tab, in the Review Results section, click Sequence

Viewer.

7 Tools and Apps

7-118

Examples

Using the Sequence Viewer Tool

1 To activate logging events, in the Simulink Toolstrip, under the Simulation tab, in the Prepare
section, click Log Events.

2 Simulate your model.
3 To open the tool, in the Simulink Toolstrip, under the Simulation tab, in the Review Results

section, click Sequence Viewer.

• “Use the Sequence Viewer to Visualize Messages, Events, and Entities”
• “Simulink Messages Overview”

Parameters
Time Precision for Variable Step — Digits for time increment precision
3 (default) | scalar

Number of digits for time increment precision. When using a variable step solver, change this
parameter to adjust the time precision for the sequence viewer. By default the block supports 3 digits
of precision. Minimum and maximum precision are 1 and 16, respectively.

Suppose the block displays two events that occur at times 0.1215 and 0.1219. Displaying these two
events precisely requires 4 digits of precision. If the precision is 3, then the block displays two events
at time 0.121.

Programmatic Use
Block Parameter: SequenceViewerTimePrecision
Type: character vector
Values: '3' | scalar
Default: '3'

History — Maximum number of previous events to display
1000 (default) | scalar

Total number of events before the last event to display. Minimum and maximum number of events are
0 and 25000, respectively.

For example, if History is 5 and there are 10 events in your simulation, then the block displays 6
events, including the last event and the five events prior the last event. Earlier events are not
displayed. The time ruler is greyed to indicate the time between the beginning of the simulation and
the time of the first displayed event.

Each send, receive, drop, or function call event is counted as one event, even if they occur at the
same simulation time.

Programmatic Use
Block Parameter: SequenceViewerHistory
Type: character vector

 Sequence Viewer

7-119

Values: '1000' | scalar
Default: '1000'

Version History
Introduced in R2020b

See Also
Blocks
Sequence Viewer

Topics
“Use the Sequence Viewer to Visualize Messages, Events, and Entities”
“Simulink Messages Overview”

7 Tools and Apps

7-120

Signal Editor
Create and edit input signals

Description
The Signal Editor lets you create and edit input signals that you can organize for multiple
simulations.

Open the Signal Editor
• MATLAB Command Window: Enter signalEditor.
• Root Inport Mapper: To create a MAT-file for your new signal data, select Signals > New MAT-

File. To link in an existing signal data file from an existing scenario and edit the signals in that
file, use the Signals > Edit MAT-File.

•
Signal Editor block: Click .

• Simulink Editor toolstrip:

1 In the Prepare section of the Simulation tab, click the expander.
2 Click Inputs & Parameter Tuning > Signal Editor.

 Signal Editor

7-121

Examples

Mouse, Keyboard, and Touchscreen Shortcuts

You can use these keyboard shortcuts to interact with the Signal Editor.

This table shows edit actions:

Action Keyboard Mouse Multi-Touch
Insert point Ctrl+P

Click
Tap

Insert line Ctrl+L
Click

Pan and pinch

Draw Ctrl+D Click and draw Pan
Select a point Ctrl+T

Click , then click
and select point or area

To select all areas,
double-click

Pan and pinch

To select all areas,
double-tap

Move a point Ctrl+M
Click and drag

Tap and move

Change data of a point
Click

Continuously delete
points on a line

Click

Fit to view if zoom
action is selected

 Three mouse clicks Triple tap

Zoom out if zoom action
is selected

 Two mouse clicks Double tap

Expand along the x-axis Ctrl+mouse pan Pry x-axis
Expand along the y-axis Shift+mouse pan Pry y-axis

This table shows zoom actions:

Type of Zoom or Pan Action
Zoom in along the T and Y axes. Click
Zoom in along the time axis. After selecting the
icon, on the graph, drag the mouse to select an
area to enlarge.

Click

Zoom in along the data value axis. After selecting
the icon, on the graph, drag the mouse to select
an area to enlarge.

Click

Zoom only in x while zooming in xy. Zoom in xy while pressing Ctrl

7 Tools and Apps

7-122

Type of Zoom or Pan Action
Zoom only in y while zooming in xy. Zoom in xy while pressing Shift
Zoom out from the graph.

Click
Fit the plot to the graph. After selecting the icon,
click the graph to enlarge the plot to fill the
graph.

Click

Pan the graph up, down, left, or right. Select the
icon. On the graph, hold the left mouse button
and move the mouse to the area of the graph that
you want to view.

Click

Snap to Grid for Alignment

You can use these alignment commands to snap to the plot grid for accuracy.

Alignment actions:

Action Snap to Grid
Snap values to x grid lines for point and line
insertion and movement and zooming.

Snap X to Grid

Snap values to y grid lines for point and line
insertion and movement and zooming.

Snap Y to Grid

Snap values to x minor grid lines for point and
line insertion and movement and zooming.

Snap X to Tick

Snap values to y grid lines for point and line
insertion and movement and zooming.

Snap Y to Tick

Snap to incremental value in X grid. Snap X to Increment
Snap to incremental value in Y grid. Snap Y to Increment
Turn plot markers on and off. Markers

Change Signal Names and Hierarchy Orders

In the Scenarios and Signals section, you can change signal names and hierarchy order, create
duplicates of signals, and delete signals. Simulink ignores leading and trailing spaces in signal
names.

To change a signal name, double-click the name and enter a new name.

 Signal Editor

7-123

To change the unit or interpolation of a signal, click the plus sign, then select the Unit or
Interpolation check boxes.

To change the order of a signal in the hierarchy, drag and release the signal. For example, you can
drag and release signals into a bus.

7 Tools and Apps

7-124

Alternatively, in the Adjust section, use the Move Up and Move Down buttons.

To copy a signal and paste it under the original, right-click the signal and select Duplicate Signal.

 Signal Editor

7-125

Alternatively, in the Adjust section, use the Duplicate button. You can also adjust the default
properties of the signal you duplicate. For more information, see “Create Signals with the Same
Properties” on page 7-126.

To copy a signal and paste it elsewhere in hierarchy, select Copy and then Paste.

Create Signals with the Same Properties

To create signals of the same predefined type, in the Adjust section, use the Duplicate button. To

change the predefined signal type, click the Defaults icon, . A Default Properties for Insertion
dialog box opens.

On the Signals tab:

• Data type — From the drop-down list, select the signal data type.

Enumeration — When you select the Enum data type, this parameter displays. Enter the class
name of your enumeration.

If you define an enumeration class that contains the same integer value multiple times, the Signal
Editor treats the first enumeration value as the canonical value and equates all subsequent
instances of the same underlying integer to the enumerated name. In this example, Red(118)) is
canonical, so Pink equals Red.

7 Tools and Apps

7-126

classdef(Enumeration) hEnumColors_duplicateValues < Simulink.IntEnumType
 enumeration
 Red(118)
 Yellow(-14)
 Blue(90)
 Green(87)
 White(-14)
 Black(198)
 Brown(90)
 Pink(118)
 Purple(90)
 end
 methods (Static = true)
 function retVal = getDefaultValue()
 retVal = hEnumColors_duplicateValues.Blue;
 end
 end
end

• Interpolation — From the drop-down list, select linear or zero order hold.
• Unit — Enter an appropriate unit expression. For a suggested list of unit expressions, see Allowed

Units.
• Dimensions — Enter the number of dimensions for the signal.
• Signal type — From the list, select real or complex.
• Variable type — From the list, select Timeseries (default), Timetable, Logged timeseries,

or Logged timetable.

Logged timeseries and logged timetables objects are Simulink.SimulationData.Signal
objects whose Value property is of data type timeseries or timetable.

On the Buses tab:

• Bus object — From the list, select the bus object for which to define the dimensions. If you leave
the Bus object parameter at the default <object name>, the Signal Editor adds empty buses.

• Dimensions — Enter the number of dimensions for the bus object.

On the Constant tab:

• Value — Enter constant value to output.
• Time — Enter sample time.

On the Step tab:

• Initial value — Enter output value before step.
• Final value — Enter output value after step.
• Start time — Enter time when step starts.
• Step time — Enter time increment when step occurs.
• Step final time — Enter final step time.

On the Pulse tab:

• Initial value — Enter initial default value of signal.
• Value at trigger — Enter value of signal at pulse trigger.
• Pulse duration — Enter length of time of pulse.
• Step time — Enter time when step occurs.

 Signal Editor

7-127

matlab:showunitslist
matlab:showunitslist

• Trigger time — Enter time when pulse trigger occurs.

Work with Data in Signals

This example describes how to add and delete data to the signals in the linked scenario. To create a
model and data to work with, see “Add Signals to Scenarios”.

In the Signal Editor, in the Scenarios and Signals section, click the plot check box for the signal ts.

Add data to the signal ts.

1
Click the add row icon and add signals. To add a signal row between other signals, click the
signal above and click the add row icon.

2 When done, click Apply to update the plot.

Remove the time 20 line from the signal. Select 20 and click .

7 Tools and Apps

7-128

Alternatively, if you want to replace all the signal data for ts with a signal defined with signal

notations, click the replace button and use the Author and Replace Signal Data dialog box to
define new data.

• “Create and Edit Signal Data”
• How to Import and Export Excel Files in Signal Editor
• How to Create Freehand Input Signals in the Signal Editor in Simulink

Parameters
File

New — Start new Signal Editor session
button

Open a new Signal Editor session.

Open — Open MAT-file containing signals
button

Open MAT-file containing signals to be displayed and edited in Signal Editor.

Save — Save signal data to MAT-file
button

Save the contents of Signal Editor.

Insert

Scenario — Create scenario
button

Create scenario to contain signals.

Defaults — Change predefine signal types and properties
button

Change the predefined signal type and properties by clicking .

Signal — Insert basic signal
button

Insert basic signal by clicking . For more information, see “Work with Basic Signal Data”.

Function Call — Insert function-call signal
button

Insert function-call signal by clicking .

 Signal Editor

7-129

https://www.mathworks.com/videos/how-to-import-and-export-excel-files-in-signal-editor-1653023523686.html?s_tid=srchtitle_%2522signal%20editor%2522_3
https://www.mathworks.com/videos/how-to-create-freehand-input-signals-in-the-signal-editor-in-simulink-1551870971583.html?s_tid=srchtitle_%2522signal%20editor%2522_4

If you need a function-call signal for a root inport with explicit periodic sample time, insert a ground
signal instead. Simulink then executes the function-call automatically.

Constant — Instant constant signal
button

Insert constant signal with value of 1 by clicking .

Bus — Insert bus
button

Insert bus by clicking . To the bus you can add signals using any of the other signal insertions
techniques.

Author Signal — Author signal using MATLAB expressions or workspace variables
button

Author signal using MATLAB expressions or workspace variables by clicking . The dialog box
displays:

• Time — Enter the range of time for the data.
• Data — Enter the MATLAB expression for the signal.
• Data type — Select or enter the signal data type.

• double
• single
• int8

7 Tools and Apps

7-130

• uint8
• int16
• uin16
• int32
• uint32
• boolean
• fixdt(1,16)
• fixdt(1,16,0)
• fixdt(1,16,2^0,0)
• string
• Enum: <class name>

If you enter your time and data and then select a fixed-point data type, the Signal Editor displays a
fixed-point proposed data type for your data.

• To help you select a fixed-point data type, click the Show Histogram button

(). Clicking this button displays a plot of the signal data using the selected
fixed-point data type. The graph displays:

Column Information
Values The negative, positive, and zero signal

values.
Potential Overflows Bins the signal values that may overflow.
In-Range Bins the signal values that are within

acceptable range.
Potential Underflows Bins the signal values that may underflow.

To see the difference that a data type may have on the histogram, select:

• User Specified
• Binary Scaling
• Slope & Bias Scaling

For more information, see “Histogram Plot of Signal” (Fixed-Point Designer).
• To apply the proposed fixed-point data type to your data, click the Use proposed data type

button ().

For more information, see “Create Signals with MATLAB Expressions and Variables”.

Step — Insert step waveform signal
button

Insert step waveform signal with an initial value of 0 and a final value of 1 by clicking .

 Signal Editor

7-131

Ground — Insert ground signal
button

Insert ground signal by clicking .

Draw Signal — Insert graphically-generated signal
button

Insert graphically-generated signal by clicking .

Pulse — Insert pulse waveform signal
button

Insert pulse signal waveform signal with an initial value of 0, trigger value of 1, and initial pulse

duration of 1 by clicking .

Adjust

Duplicate — Copy signal
button

Copy signal and paste it under original signal.

Move Up — Move signal up the signal hierarchy
button

Move signal up the signal hierarchy in a bus or scenario by clicking the signal and then clicking
Move Up.

Move Down — Move signal down the signal hierarchy
button

Move signal down the signal hierarchy in a bus or scenario by clicking the signal and then clicking
Move Down.

Delete — Delete signal
button

Delete signal by selecting one or more signals and clicking .

Programmatic Use
signalEditor opens the Signal Editor from the MATLAB Command Window.

Version History
Introduced in R2017b

7 Tools and Apps

7-132

See Also
Blocks
Signal Editor

Functions
signalEditor

Tools
Create Signal

Topics
“Create and Edit Signal Data”
How to Import and Export Excel Files in Signal Editor
How to Create Freehand Input Signals in the Signal Editor in Simulink

 Signal Editor

7-133

https://www.mathworks.com/videos/how-to-import-and-export-excel-files-in-signal-editor-1653023523686.html?s_tid=srchtitle_%2522signal%20editor%2522_3
https://www.mathworks.com/videos/how-to-create-freehand-input-signals-in-the-signal-editor-in-simulink-1551870971583.html?s_tid=srchtitle_%2522signal%20editor%2522_4

Signal Logging Selector
View signal logging configuration and override signal logging settings

Description
The Signal Logging Selector in Simulink allows you to view a signal logging configuration, including
signal logging override settings. You can also use the Simulink Signal Logging Selector to override
signal logging settings without changing the model in the Simulink Editor. When you override signal
logging settings, you select a subset of signals to log from a superset of signals marked for logging in
the model without changing the model itself. Overriding signal logging settings allows you to reduce
memory overhead and avoid recompiling a model. For more information about overriding signal
logging properties, see “Override Signal Logging Settings”.

Open the Signal Logging Selector
• Simulink Toolstrip: On the Modeling tab, click Model Settings. Then, click Configure Signals

to Log.
• MATLAB Command Window: Enter

Simulink.SimulationData.signalLoggingSelector(mdl), where mdl is the name of the

7 Tools and Apps

7-134

model for which you want to open the Signal Logging Selector dialog box, specified as a character
vector.

Examples
• “View Logging Configuration Using the Signal Logging Selector”
• “Override Signal Logging Settings with Signal Logging Selector”

Version History
Introduced in R2011a

Topics
“View Logging Configuration Using the Signal Logging Selector”
“Override Signal Logging Settings with Signal Logging Selector”

 Signal Logging Selector

7-135

Signal Properties
View and edit signal properties

Description
Use the Signal Properties dialog box to view and edit properties for signals in your model. Using the
Signal Properties dialog box, you can mark a signal for logging, specify a signal name, and configure
logging options, including which data points to log and the logging sample time.

When your model is configured for concurrent execution, the Signal Properties dialog box also
includes a Data Transfer tab. For more information, see “Configure Data Transfer Settings Between
Concurrent Tasks” and “Configure Your Model for Concurrent Execution”.

Open the Signal Properties
• Right-click a signal line in the model and select Properties.
• When you select a signal line in your model, the Signal Properties are available in the Property

Inspector.

7 Tools and Apps

7-136

Parameters
Signal Name Properties

Signal name — Signal name
string | character vector

Specify a name for the signal as a character vector or string.

When you select Signal name must resolve to Simulink signal object, the name must match the
name of a Simulink.Signal object in the base workspace, the model workspace, or a data
dictionary. The signal name can implicitly resolve to a Simulink.Signal object when you do not
select Signal name must resolve to Simulink signal object. For more information, see “Explicit
and Implicit Symbol Resolution”.

By default, the name for logged signal data matches the signal name specified in the model. To use a
different name for the logged signal data, specify the name for the logged data using the Logging
Name property.

Programmatic Use

To specify a signal name programmatically, use the set_param function to set the Name property for
the line handle that corresponds to the signal or the port handle that corresponds to the block output
port that produces the signal. For an example, see “Name a Signal Programmatically”.
Parameter: Name
Type: string | character vector

Signal name must resolve to Simulink signal object — Explicit signal name resolution
'off' (default) | 'on'

When enabled, the signal name specified in the Signal Properties dialog box must match the name of
a Simulink.Signal object in the base workspace, the model workspace, or a data dictionary. When
disabled, the signal name can implicitly resolve to a Simulink.Signal object. For more information,
see “Explicit and Implicit Symbol Resolution”.

By default, signals that require resolution to a Simulink.Signal object are marked with the signal
resolution icon to the left of the signal label. For more information, see “Signal to Object Resolution
Indicator”.

Programmatic Use

To configure this option for a signal programmatically, use the set_param function to set the
MustResolveToSignalObject property for the port handle that corresponds to the block output
port that produces the signal. For an example, see “Use Signal Objects”.
Parameter: MustResolveToSignalObject
Value: 'on' | 'off'
Default: 'off'

Show propagated signals — Option to display propagated signal name
'off' (default) | 'on'

When a downstream signal originates from a block that supports signal label propagation, you can
enable this option on the downstream signal line to display the propagated signal name as a label on
the signal line.

 Signal Properties

7-137

For example, the output signal from the Subsystem block is configured for signal label propagation.
The propagated signal label <const> comes from the name of the upstream Constant block output
signal const.

For more information see, “Signal Label Propagation”.

Tips

To display propagated signal labels for all signals, in the Simulink Editor, on the Debug tab, select
Information Overlays, then select Propagated Signal Labels.

Dependencies

The Show propagated signals property is only available for signals produced by blocks that support
signal label propagation.

Programmatic Use

To configure a signal to display its propagated name programmatically, use the set_param function
to specify the value of the ShowPropagatedSignals property for the port handle that corresponds
to the block output port that produces the signal. For an example, see “Display Propagated Signal
Labels”.
Parameter: ShowPropagatedSignals
Value: 'on' | 'off'
Default: 'off'

Logging and Accessibility

Log signal data — Signal logging
'off' (default) | 'on'

Select this option to mark a signal for logging. When the Signal logging option in the model
configuration parameters is enabled, data for signals marked for logging is sent to the workspace and
the Simulation Data Inspector during simulation. For more information, see “Save Signal Data Using
Signal Logging”.

Programmatic Use

You can control whether to log a signal programmatically using the
Simulink.sdi.markSignalForStreaming function or by using the set_param function to
configure the DataLogging property of the port handle that corresponds to the block output port
that produces the signal.
Parameter: DataLogging
Value: 'on' | 'off'
Default: 'off'

Test point — Test point designation
'off' (default) | 'on'

7 Tools and Apps

7-138

When enabled, the signal is designated as a test point. For more information, see “Configure Signals
as Test Points”.

Programmatic Use

To designate a signal as a test point programmatically, use the set_param function to specify the
value of the TestPoint property for the port handle that corresponds to port that produces the
signal.
Parameter: TestPoint
Value: 'on' | 'off'
Default: 'off'

Logging Name — Name for logged signal data
'SignalName' (default) | 'Custom'

Specify a name for the logged signal data. By default, logged signal data uses the name of the signal
specified in the model.

To specify a logging name for a signal that is different from the name of the signal in the model,
select Custom and specify the logging name in the text box.

Dependencies

To enable the Logging Name property, select Log signal data.

Programmatic Use

To specify the logging name programmatically, use the set_param function to configure the
DataLoggingNameMode and DataLoggingName parameters for the port handle that corresponds to
the block output port that produces the signal.
Parameter: DataLoggingNameMode
Value: 'SignalName' | 'Custom'
Default: 'SignalName'
Parameter: DataLoggingName
Type: string | character vector

Limit data points to last — Option to log only last n data points
'off' (default) | 'on'

When you only want to save or analyze the data from the end of a simulation, you can configure
logging to capture only the last n signal values. Select Limit data points to last and specify the
number of data points you want to log.

When you only log the last simulation values, dashboard blocks and the Simulation Data Inspector do
not display data during simulation. Consider data requirements for each signal before you reduce the
number of data points logged in simulation.

For more information, see “Specify Signal Values to Log” and “Limit the Size of Logged Data”.

Dependencies

To enable the Limit data points to last property, select Log signal data.

 Signal Properties

7-139

Programmatic Use

To configure this option programmatically, use the set_param function to configure the
DataLoggingLimitDataPoints and DataLoggingMaxPoints parameters for the port handle that
corresponds to the block output port that produces the signal.
Parameter: DataLoggingLimitDataPoints
Value: 'on' | 'off'
Default: 'off'
Parameter: DataLoggingMaxPoints
Value: numeric scalar
Type: string | character vector
Default: '5000'

Decimation — Option to log every nth data point
'off' (default) | 'on'

When you want to reduce the effective sample rate for logged data, select Decimation and specify
the desired decimation factor in the text box. For example, if you specify a decimation factor of 2,
every other signal value is logged.

Consider data requirements for each signal before reducing the number of data points logged in
simulation. Decimation can cause aliasing if the effective sample rate is too low.

For more information, see “Specify Signal Values to Log” and “Limit the Size of Logged Data”.

Dependencies

To enable the Decimation property, select Log signal data.

Programmatic Use

To configure this option programmatically, use the set_param function to configure the
DataLoggingDecimateData and DataLoggingDecimation parameters for the port handle that
corresponds to the block output port that produces the signal.
Parameter: DataLoggingDecimateData
Value: 'on' | 'off'
Default: 'off'
Parameter: DataLoggingDecimation
Value: numeric scalar
Type: string | character vector
Default: '2'

Sample time — Logging sample time
-1 (default) | scalar

Specify the sample time to use for logging the data for the selected signal. By default, the logging
sample time is inherited (-1) from the block that produces the signal. For continuous logging sample
time, specify the value as 0. To use a discrete sample time for logging data, specify the sampling
interval as a scalar.

Setting the sample time for a logged signal in the Signal Properties dialog box:

• Separates design and testing because you do not need to insert a Rate Transition block to have a
consistent sample time for logged signals

7 Tools and Apps

7-140

• Reduces the amount of logged data for a continuous time signal, for which setting decimation is
not relevant

• Eliminates the need to post-process logged signal data for signals with different sample times

Specifying a logging sample time may add a new sample time to the model. When you specify a
logging sample time, the model calculates a value for the exact time hits. When you use a fixed-step
solver, the logging sample time you specify must be a multiple of the base rate for the model.

Specifying a sample time for signal logging does not affect the simulation result. However, it is
possible that the signal logging output for a logged signal varies depending on whether you specify a
sample rate. For example, the interpolation method can differ depending on whether you specify a
sample time for signal logging.

If you simulate in software-in-the-loop (SIL) mode, signal logging ignores the sample time you specify
for logged signals.

Do not specify a sample time for:

• Frame-based signals
• Signals inside conditional subsystems or conditional referenced models

The Sample time property is the same as the Logging sample time property you configure using
the Instrumentation Properties dialog box.

Dependencies

To enable the Sample time property, select Log signal data.

Programmatic Use

To configure this option programmatically, use the set_param function to configure
theDataLoggingSampleTime parameter for the port handle that corresponds to the block output
port that produces the signal.
Parameter: DataLoggingSampleTime
Value: numeric scalar
Type: string | character vector
Default: '-1'

Documentation

Description — Signal description
string | character vector

You can provide a description of the signal that shows in the Info tab of the Property Inspector when
the signal is selected.

The description specified in the Signal Properties dialog box does not appear in generated code. To
provide a signal description that becomes a comment in generated code, use a Simulink.Signal
object.

Programmatic Use

To configure this option programmatically, use the set_param function to configure
theDescription parameter for the port handle that corresponds to the block output port that
produces the signal.

 Signal Properties

7-141

Parameter: Description
Type: string | character vector

Document link — Link to documentation about signal
MATLAB expression

Specify a MATLAB expression that opens documentation for the signal. For example, you can call the
web function to open an HTML file. When you specify a value for the Document link property, you
can click the Document link field label to open the document.

Programmatic Use

To programmatically specify a document link, use the set_param property to specify the
DocumentLink property of the port handle that corresponds to the block output port that produces
the signal.
Parameter: DocumentLink
Type: string | character vector

Version History
Introduced before R2006a

See Also
Functions
set_param | Simulink.sdi.markSignalForStreaming | web

Objects
Simulink.Signal

Model Settings
Signal logging

Tools
Instrumentation Properties | Simulation Data Inspector

Topics
“Signal Basics”
“Display Signal Attributes”
“Signal Label Propagation”
“Save Signal Data Using Signal Logging”
“Configure Signals as Test Points”
“Specify Signal Values to Log”
“Limit the Size of Logged Data”

7 Tools and Apps

7-142

Simulation Data Inspector
Inspect and compare data and simulation results to validate and iterate model designs

Description
The Simulation Data Inspector visualizes and compares multiple kinds of data.

Using the Simulation Data Inspector, you can inspect and compare time series data at multiple stages
of your workflow. This example workflow shows how the Simulation Data Inspector supports all
stages of the design cycle:

1 “View Data in the Simulation Data Inspector”

Run a simulation in a model configured to log data to the Simulation Data Inspector, or import
data from the workspace or a MAT-file. You can view and verify model input data or inspect
logged simulation data while iteratively modifying your model diagram, parameter values, or
model configuration.

2 “Inspect Simulation Data”

Plot signals on multiple subplots, zoom in and out on specified plot axes, and use data cursors to
understand and evaluate the data. “Create Plots Using the Simulation Data Inspector” to tell your
story.

3 “Compare Simulation Data”

Compare individual signals or simulation runs and analyze your comparison results with relative,
absolute, and time tolerances. The compare tools in the Simulation Data Inspector facilitate
iterative design and allow you to highlight signals that do not meet your tolerance requirements.
For more information about the comparison operation, see “How the Simulation Data Inspector
Compares Data”.

4 “Save and Share Simulation Data Inspector Data and Views”

Share your findings with others by saving Simulation Data Inspector data and views.

You can also harness the capabilities of the Simulation Data Inspector from the command line. For
more information, see “Inspect and Compare Data Programmatically”.

 Simulation Data Inspector

7-143

Open the Simulation Data Inspector
• Simulink Toolstrip: On the Simulation tab, under Review Results, click Data Inspector.
• Click the streaming badge on a signal to open the Simulation Data Inspector and plot the signal.
• MATLAB command prompt: Enter Simulink.sdi.view.

Examples

Apply a Tolerance to a Signal in Multiple Runs

You can use the Simulation Data Inspector programmatic interface to modify a parameter for the
same signal in multiple runs. This example adds an absolute tolerance of 0.1 to a signal in all four
runs of data.

First, clear the workspace and load the Simulation Data Inspector session with the data. The session
includes logged data from four simulations of a Simulink® model of a longitudinal controller for an
aircraft.

Simulink.sdi.clear
Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.getRunCount function to get the number of runs in the Simulation Data
Inspector. You can use this number as the index for a for loop that operates on each run.

count = Simulink.sdi.getRunCount;

Then, use a for loop to assign the absolute tolerance of 0.1 to the first signal in each run.

7 Tools and Apps

7-144

for a = 1:count
 runID = Simulink.sdi.getRunIDByIndex(a);
 aircraftRun = Simulink.sdi.getRun(runID);
 sig = getSignalByIndex(aircraftRun,1);
 sig.AbsTol = 0.1;
end

• “View Data in the Simulation Data Inspector”
• “Inspect Simulation Data”
• “Compare Simulation Data”
• “Iterate Model Design Using the Simulation Data Inspector”

Programmatic Use
Simulink.sdi.view opens the Simulation Data Inspector from the MATLAB command line.

Version History
Introduced in R2010b

See Also
Functions
Simulink.sdi.clear | Simulink.sdi.clearPreferences | Simulink.sdi.snapshot

Topics
“View Data in the Simulation Data Inspector”
“Inspect Simulation Data”
“Compare Simulation Data”
“Iterate Model Design Using the Simulation Data Inspector”

 Simulation Data Inspector

7-145

Simulation Manager
Monitor multiple simulations and visualize the simulation data

Description
Simulation Manager allows you to monitor the status of multiple simulations. Using this tool, you
can:

• View the progress of the simulations in a high-level grid view or a detailed list view.
• Find the simulations that error out and view diagnostics for each simulation.
• Visualize simulation data to analyze the trends across the simulations.
• Select a simulation run and open the model in Simulink, with all of the simulation settings applied

to the model.
• View simulation results in the Simulation Data Inspector.
• Abort simulations.

The Simulation Manager allows you to monitor multiple simulations, in serial or in parallel, and their
progress. You can view the details of every run, such as parameters, elapsed time, and diagnostics.
The Simulation Manager provides the option to analyze and compare your logged signal results in the
Simulation Data Inspector. Through Simulation Manager, you can select a run and apply its values
to the model.

With the command line API for running multiple simulations, for the parameter to show up in plots in
Simulation Manager use the setVariable method on the Simulink.SimulationInput object.

7 Tools and Apps

7-146

Open the Simulation Manager
• parsim and simfunctions — Set the argument ShowSimulationManager to on while using

Simulink.SimulationInput object to run simulations. For more information, see
Simulink.SimulationInput.

out = parsim(in, 'ShowSimulationManager', 'on')

out = sim(in, 'ShowSimulationManager', 'on')

• To open a saved Simulation Manager session, navigate to the folder where the file is saved and
double click the .mldatx Simulation Manager file.

open filename.mldatx

• To open a Simulation Manager with the Simulink.SimulationInput object, in, and a
Simulink.SimulationOutput object, out, of a completed run, use the
openSimulationManager command.

openSimulationManager(in, out)

 Simulation Manager

7-147

Examples
Open Simulation Manager

Open the model sldemo_suspn_3dof and create a set of sweep values.

mdl = 'sldemo_suspn_3dof';
openExample(mdl);
Cf_sweep = Cf*(0.05:0.1:0.95);
numSims = length(Cf_sweep);

To modify the block parameter Road-Suspension Interaction with the sweep values, create an
array of Simulink.SimulationInput objects.
in(1:numSims) = Simulink.SimulationInput(mdl);
for i = 1:numSims
 in(i) = setBlockParameter(in(i), [mdl '/Road-Suspension Interaction'], 'Cf', num2str(Cf_sweep(i)));
end

Run multiple simulations and open the Simulation Manager.

out = parsim(in, 'ShowSimulationManager', 'on')

In the absence of Parallel Computing Toolbox, the simulations run in serial.

Using Simulation Manager

Once you run the parsim command, the Simulation Manager UI opens up as follows:

7 Tools and Apps

7-148

Plot results

In the Figure 1 tab, you can view the default scatter plot where the parameter Cf is plotted against
itself. Use the Plot Properties to edit the plot. Add grid lines for X and Y by checking the
corresponding boxes. You can also change the data that is displayed on X- and Y- axes and the Marker
Color. Change the data on y-axis by selecting ScopeData(1) from the Data drop-down. Set the
Marker Color Data field to RunID.

To add another figure to the Simulation Manager, click surf or scatter plot and add plots as desired.
In this example, click surf plot, located in the Results section of the toolstrip. Drag the Figure 2 tab
to view the two plots together.

Plots in the Simulation Manager support numeric arrays and datasets.

 Simulation Manager

7-149

Adding multiple plots to the Simulation Manager enables you to observe the simulation data in
different ways. Using the results, you can analyze and study the design space of the parameters and
their behavior.

You can modify the configuration of the plot layouts by clicking the down arrow on the right corner of
the plot.

7 Tools and Apps

7-150

• Tile All — Choose a layout for multiple plots.
• Tab Position — Select where to display the figure tab.

View the Status

To view the status of the simulations in list and grid views, click the Simulations tab next to Figure
1. Toggle between the List and Grid in the Views section of the toolstrip. The list view shows a
tabular view of the simulations with certain details, such as status, parameters and timing
information. For large number of simulations, choose grid view for a compact view of the status of the
simulations.

 Simulation Manager

7-151

The status bar at the bottom of the window shows the progress of the simulations.

You can view all the multiple simulations in a detailed list view. This view gives you an option to add

or delete columns. Use the button to choose which columns to display. You can also sort the
columns based on your preference.

Click a specific run to view more details about it.. The simulation details appear at the bottom of the
window.

To show or hide the details of the selected simulation, toggle the Simulation Details button, .

Open Selected button, , allows you to open the model with the specifications of the selected
run.

7 Tools and Apps

7-152

You can view the results of one or more runs in the Simulation Data Inspector by clicking the Show

Results button, . Clicking Show Results creates a Simulation Data Inspector run from the
Simulink.SimulationOutput object and is displayed in Simulation Data Inspector.

To abort the job while the simulations are running, you can use the Stop Job button, .

Save the Session

To save the Simulation Manager session, click the Save button on the toolstrip. The saved session
contains all the simulation data and the plot configurations and layout. To reopen the saved
Simulation Manager session, navigate to the folder where the file is saved and double-click
the .mldatx Simulation Manager file.

The Reuse Window, , button enables you to reuse the plot layout and configurations for new
multiple simulations run with a different set of data. If the button is toggled off, a new window opens
with each set of simulations. If the button is toggled on, the new simulations reuse the existing
window preserving all plot configurations and layouts.

To reopen a saved file, use the Open button, navigate to the file location and double click the file.

See Also
Functions
parsim | sim | Simulink.SimulationInput | applyToModel | setExternalInput |
setInitialState | setVariable | setModelParameter | setBlockParameter | validate |
setPreSimFcn | setPostSimFcn

Topics
“Run Parallel Simulations for a Thermal Model of a House Using parsim”
“Running Multiple Simulations”
“Analyze Results Using Simulation Manager”
“Run Parallel Simulations”

 Simulation Manager

7-153

Simulation Stepping Options
Enable stepping back and configure number of time steps to move when stepping through simulation

Description
You can use the Step Forward and Step Back buttons to step through major time steps of a
simulation to analyze and debug models. Use the Simulation Stepping Options dialog box to configure
how many major time steps the simulation moves when you click Step Forward or Step Back and to
enable stepping back. You can step backward in time in a simulation only after you enable stepping
back using the Simulation Stepping Options.

You can adjust the simulation stepping options during simulation to balance simulation performance
against the granularity of steps based on the runtime behavior of the system.

Rapid accelerator simulations do not support stepping forward or backward. To step through a
simulation, use normal or accelerator mode.

Open the Simulation Stepping Options
• Simulink Toolstrip: On the Simulation tab or the Debug tab, click the Step Back button.
• Simulink Toolstrip: On the Simulation tab or the Debug tab, click the Step Back button arrow

and select Configure Simulation Stepping.

Examples
• “Step Through Simulation”
• “How Stepping Through Simulation Works”
• “Display Port Values for Debugging”

7 Tools and Apps

7-154

Parameters
Enable stepping back — Option to step backward in simulation

off (default) | on

Select this option to enable stepping backward as well as forward in time during simulation. When
you select this option, you can configure how the software saves data during simulation to support
stepping back.

Maximum number of saved back steps — Size of buffer that stores snapshots for stepping back

10 (default) | positive integer

Specify how many simulation snapshots to save to support stepping back. A simulation snapshot
contains all the information required to restore the state of the simulation.

Simulation snapshots are stored in memory and are not accessible in the workspace during or after
simulation. Saving more snapshots increases the amount of memory the simulation uses and can slow
the speed of the simulation.
Dependencies

To enable this parameter, select Enable stepping back.

Interval between stored back steps — Number of major time steps between saved snapshots

10 (default) | positive integer

Specify the number of major time steps between each simulation snapshot the software saves to
support stepping back.
Dependencies

To enable this parameter, select Enable stepping back.

Move back/forward by — Number of major time steps to step

1 (default) | positive integer

Specify the number of major time steps to step through each time you press the Step Forward or
Step Back button.

Tips
• To inspect signal values while stepping through the simulation, display port value labels on

signals. Select a signal. Then, on the Debug tab, under Tools, in the Output Values button
group, click Show Output Value of selected signal .

• To start stepping through a normal or accelerator mode simulation that is already running, pause
the simulation. Then, use the Step Forward and Step Backward buttons.

• To start stepping from a specific time within a simulation, specify a pause time. On the Debug tab,
under Breakpoints, specify the Pause Time in seconds. When you start the simulation by
clicking Run, the simulation runs until the specified time and pauses. From there, you can step
through the simulation.

 Simulation Stepping Options

7-155

• To debug the behavior of a model around a point of interest, you can add a signal breakpoint and
specify the condition such that the simulation pauses at the time of interest. Then, use the Step
Forward and Step Backward buttons. For more information about setting breakpoints in your
model, see Breakpoints List.

• The stepping and breakpoint options in the Simulink Editor do not have a programmatic
equivalent available in the software. The Simulink debugging programmatic interface includes
options for setting breakpoints and stepping through simulations. However, the behavior of these
functions is not identical to the behavior of the stepping options in the Simulink Editor. For more
information about programmatic debugging, see “Simulink Debugging Programmatic Interface”.

Version History
Introduced in R2012b

See Also
Breakpoints List

Topics
“Step Through Simulation”
“How Stepping Through Simulation Works”
“Display Port Values for Debugging”

7 Tools and Apps

7-156

Simulink Editor
Create models and set model properties

Description
The Simulink Editor allows you to create and configure system models.

The Simulink Editor is a tool for building models. In addition to providing standard methods for
working with diagrams in a vector graphics editor, the editor provides shortcuts that help you to add
and connect blocks. The Simulink Editor also gives you access to the tools you need for technical
operations such as importing data, simulating your model, and analyzing model performance.

Open the Simulink Editor
• Create a model. On the MATLAB Home tab, click Simulink and choose a model template.

Alternatively, if you already have the Library Browser open, click the New Model button .
• Open an existing model. To open recent models, on the MATLAB Home tab, click Simulink.

Alternatively, if you know the name of the model you want to open, enter the name in the MATLAB
Command Window, such as vdp.

 Simulink Editor

7-157

Tip The first model that you open in a MATLAB session takes longer to open than subsequent models.
By default, MATLAB does not start Simulink until you open the first model to reduce MATLAB startup
time and avoid unnecessary system memory use.

To speed up opening the first model, you can configure MATLAB startup to also start Simulink. For
more information on how to start Simulink without opening models or the Library Browser, see the
start_simulink reference page.

Examples

Interactively Build Models

When you build a model in the Simulink Editor, you use common techniques for working with
graphics objects.

Actions you can perform in the Simulink Editor include:

• Selecting using click, shift-click, and dragging
• Resizing objects using handles and moving objects by dragging
• Cutting, copying, and pasting
• Undoing and redoing up to 101 operations

Note After you undo or redo block parameter changes, a visual cue appears that shows the
current values of the affected parameters. Some parameter changes are not affected by the undo
or redo commands. After you undo or redo changes to block parameters, use the cue to see the
parameters affected.

A small subset of parameters cannot be undone. Changing these parameters clears the undo
history when you make the change in the Property Inspector or in the block dialog box.

You can also zoom and scroll the editing area. On the Modeling tab, select Environment > Zoom,
and select the zoom or view you want to use. If you are using a supported touch display platform, you
can pinch to zoom and swipe to scroll. The supported touch display devices include Microsoft
Windows platforms with a Windows 7 certified or Windows 8 certified touch display and Macintosh
platforms with an Apple Magic Trackpad.

The editor supports additional shortcuts for scrolling that are unique to Simulink. Shortcuts and
other interactive model building techniques are summarized in “Keyboard Shortcuts and Mouse
Actions for Simulink Modeling”.

Detect Model Design Errors

The Simulink Editor can provide you with visual cues for some model design issues. Highlighted
blocks alert you to issues. To see a description of the issue, pause on a highlighted block and click the
error or warning symbol.

7 Tools and Apps

7-158

Similar to the Diagnostic Viewer, if an error or warning has a predefined fix, the notification dialog
box lists actions and may include a Fix button to apply these changes.

Simulink can detect block errors and warnings, such as:

• Goto and From block mismatches.
• Duplicate data store blocks. The value of the Duplicate data store names parameter determines

whether to display a warning or an error symbol.

The Errors and Warnings option is enabled by default. To turn off this option, in the Debug tab,
select Diagnostics > Edit-Time Errors & Warnings.

Explore Model Hierarchy

Use the Model Browser to navigate a model hierarchy using a tree structure. The browser helps you
to understand the organization of your model and explore systems within systems.

To display the Model Browser, in the Simulink Editor, in the Modeling tab, select Environment >
Model Browser. You can toggle the Model Browser display by clicking the Hide/Show Model
Browser control .

 Simulink Editor

7-159

In the Model Browser, you can specify whether to display blocks that are linked to a library or to
masked subsystems. Click and select Library Links or Systems with Mask Parameters. For
information on these types of blocks, see “Linked Blocks” and “Masking Fundamentals”.

Set Properties and Parameters

As you build a model, you can set parameters and properties on model elements. For example, you
can set parameters and properties for blocks that affect how the block functions. You can also set
properties on Stateflow charts, signal lines, visual elements such as annotations, and on the model.

Based on your workflow and goals, set parameters and properties using:

• The Property Inspector, which stays open in the editor as you work and updates based on the
current selection

7 Tools and Apps

7-160

• A dialog box that is associated with an element, such as a specific block
• The Model Data Editor, which stays open and displays information about signals, states, and

algorithmic block parameters (for instances, gains and filter coefficients) in a table

For blocks whose parameter value appears on the block icon, you can select the block, pause on the
value, and edit the value directly. For more information, see “Edit Block Parameters”.

• “Create a Simple Model”

Parameters
Toolstrip — Access and discover Simulink capabilities
Simulation | Debug | Modeling | Format | Apps

To support common user workflow tasks, tabs called Simulation, Debug, Modeling, Format, and
Apps provide functionality corresponding to each task.

The Apps tab provides a gallery of applications from the Simulink family of products. Apps may open
a new contextual tab, a separate window, or they may be a shortcut to the configuration parameters.

After you open a gallery, you can mark buttons as favorites. Buttons that are favorites appear at the
top of the gallery for quicker access. You can drag these buttons to reorder them.

When you select a model component, a contextual tab displays tools to assist you. For example, when
you select a Subsystem block, the Subsystem Block tab appears. If you select a Stateflow chart, the
State Chart tab appears. When the block or chart is no longer selected, the contextual tabs
disappear.

The preferences folder saves the product-specific tabs that you have open for a model. Open tabs that
require a license checkout do not persist after you close the model.

To add custom tabs to the Simulink Toolstrip, see “Create Custom Simulink Toolstrip Tabs”.

The quick access toolbar contains frequently used options such as save, undo, and redo. To customize
the quick access toolbar, see “Access Frequently Used Features and Commands in Simulink”.

Commands also appear on context menus. Context menus appear when you right-click a model
element or a blank area of the editor. For example, if you right-click a block, the menus display the
commands relevant for working on blocks, such as clipboard and alignment operations. Some
commands appear only on a context menu.

Palette — Access additional shortcuts along the left side of the editor
icons

The palette along the left side of the editor provides shortcuts to commands you can use to modify the
model appearance and navigate the model. For example, the palette includes a shortcut for adding
annotations and other visuals, like boxed-in areas for labeling the model. It also provides a zoom
button for zooming on a particular part of the model.

Hide/Show Explorer Bar — Hide or display a bar that shows where you are in the model hierarchy
off (default) | on

 Simulink Editor

7-161

The Hide/Show Explorer Bar button in the upper left corner of the editor window displays a bar
that shows where you are in the model hierarchy.

Hide/Show Model Browser — Hide or display a hierarchical view of the model
off (default) | on

The Hide/Show Model Browser button displays the Model Browser pane. You can use this pane to
view and navigate a hierarchical view of the model.

Show Perspectives Views — Enable code, requirements, and interface perspectives
off (default) | on

The icon in the lower-right corner opens additional views of the model. One such view is the interface
view, which helps you to trace model interfaces. Click the control to see these views.

Model Data Access — Retrieve model data
off (default) | on

A badge in the lower-left corner indicates that a model has external data sources, such as a data
dictionary, or that there is data in the model workspace. Click the badge, then use the menu to
navigate to these data sources.

• To open the Model Explorer with the Model Workspace node selected, click the Model
Workspace link.

• To open the Model Explorer with the External Data node for the model selected, click the
External Data link.

• To add or change a linked data dictionary, click the gear icon to open the External Data tab of the
Model Properties dialog box.

Programmatic Use
simulink opens the Simulink Start Page. Select a model or template to open the Simulink Editor.

Version History
Introduced before R2006a

See Also
Functions
simulink | start_simulink

Tools
Library Browser | Model Explorer | Finder

Topics
“Create a Simple Model”

7 Tools and Apps

7-162

Simulink Fundamentals
Self-paced, interactive course available as part of Online Training Suite subscription or for individual
purchase

Description
Simulink Fundamentals is a self-paced, interactive course that is included with the Online Training
Suite. If you do not have access to the Online Training Suite, you can purchase access to the course.

Simulink Fundamentals builds upon concepts covered in Simulink Onramp. To get the most out of
Simulink Fundamentals, take Simulink Onramp first. Simulink Onramp is a free, self-paced,
interactive course that offers a quick and high-level introduction to Simulink.

Simulink Fundamentals is a comprehensive course that teaches you to:

• Use the Simulink environment.
• Model continuous and discrete dynamic systems.
• Organize growing models in subsystems that create visual and functional hierarchy.
• Componentize models by referencing other models and creating libraries.
• Optimize simulation performance.

Simulink Fundamentals uses tasks to teach concepts incrementally, such as through a real-life
example with a 3D printer. You receive automated assessments and feedback after submitting tasks.
Your progress is saved when you exit the course, so you can complete the course in multiple sessions.

Open the Simulink Fundamentals
• Simulink Start Page: On the Learn tab, click the button that appears when you pause on any of

the items in the Simulink Fundamentals group.

 Simulink Fundamentals

7-163

• MATLAB Command Window: Enter learning.simulink.launchOnramp("slbe").

Note If you do not have access to the Simulink Fundamentals course, explore access options at Self-
Paced Online Courses.

Version History
Introduced in R2022a

See Also
Tools
Simulink Onramp

Functions
learning.simulink.launchOnramp

Topics
“Simulink Block Diagrams”
“Create a Simple Model”
“Explore Model Hierarchy”
“Model-Based Design with Simulink”
“Simulink Models” on page 11-6

7 Tools and Apps

7-164

https://matlabacademy.mathworks.com/details/simulink-fundamentals/slbe
https://matlabacademy.mathworks.com/details/simulink-fundamentals/slbe

Simulink Onramp
Free, self-paced, interactive Simulink course

Description
Simulink Onramp is a free, self-paced, interactive course that helps you get started with Simulink.

After completing Simulink Onramp, you will be able to create, modify, and troubleshoot Simulink
models that simulate dynamic systems and perform basic signal analysis.

Simulink Onramp teaches you to:

• Use Simulink blocks and signals.
• Visualize signal values during simulation.
• Apply math and logic operators for algorithms.
• Access help from documentation.
• Use MATLAB variables and functions in Simulink.
• Model dynamic, discrete-time, and continuous-time systems in Simulink.
• Set simulation duration.

Simulink Onramp uses tasks to teach concepts incrementally, such as through real-life examples with
automotive performance modes, a thermostat, and a peregrine falcon dive. You receive automated
assessments and feedback after submitting tasks. Your progress is saved when you exit the course, so
you can complete the course in multiple sessions.

Open the Simulink Onramp
• Simulink Start Page: On the Learn tab, click the Launch button that appears when you pause on

Simulink Onramp.
• Simulink block diagram: On the quick access toolbar, click Help > Learn Simulink.

 Simulink Onramp

7-165

• MATLAB Command Window: Enter learning.simulink.launchOnramp("simulink").

Note If you do not have a Simulink license, you can take the course at Self-Paced Online Courses.

Version History
Introduced in R2019a

See Also
Functions
learning.simulink.launchOnramp

Tools
Simulink Fundamentals

Topics
“Simulink Block Diagrams”
“Create a Simple Model”
“Explore Model Hierarchy”
“Model-Based Design with Simulink”
“Simulink Models” on page 11-6

7 Tools and Apps

7-166

https://matlabacademy.mathworks.com/details/simulink-onramp/simulink

Simulink Preferences
Settings for Simulink Editor and model files

Description
Use Simulink Preferences to specify Simulink editing environment options and default behaviors.
Your settings affect the behavior of all Simulink models, including those currently open and all
subsequent models. Your preference settings are preserved for the next time you use the software.

Use the Simulink Preferences window to:

• Set preferences for generated file folders
• Set background colors for print or export
• Set model block, callback, and sample time legend display
• Configure Simulink Editor
• Set preferences for file change, autosave, version notifications, and other behaviors relating to

model files

Note To remove items that appear in the Simulink Toolstrip and context menus, see “Disable
Simulink Toolstrip and Context Menu Actions”.

 Simulink Preferences

7-167

Open the Simulink Preferences
• Simulink Toolstrip: On the Modeling tab, in the Evaluate and Manage section, select

Environment > Simulink Preferences.
• MATLAB Command Window: Enter slprivate('showprefs').

Examples

Show Callback Tracing for Double Mass-Spring System

Callbacks are commands you can define that execute in response to a specific modeling action, for
example, opening a model or stopping a simulation. When you enable Show Callback Tracing in
Simulink Preferences, the MATLAB Command Window displays callbacks as they are invoked. For
more information on callbacks, see “Customize Model Behavior with Callbacks”.

Display the callback that runs when you open the “Double Spring Mass System” on page 13-67
model. The example model represents a double spring-mass-damper system with a periodically
varying forcing function.

1 Open Simulink Preferences. In the Simulink Toolstrip of any open model window, on the
Modeling tab, in the Evaluate and Manage section, select Environment > Simulink
Preferences.

2 In Simulink Preferences, on the General Pane, select Show Callback Tracing.
3 Click Apply.
4 If the Double Spring Mass System model is open, close it.
5 Open the Double Spring Mass System model.

openExample('simulink_general/sldemo_dblcart1Example')

Evaluating callback 'PostLoadFcn' for sldemo_dblcart1
Callback: crtanim2([],[],[],0,1);

The invoked callback is a PostLoadFcn callback that runs the crtanim2 function.
6 You can use the information about the type of callback to find where the commands that it

executes are specified. To do so for this example, right-click the canvas and select Model
Properties.

7 On the Callbacks tab, select PostLoadFcn*. The right pane of the Model Properties dialog box
shows the callback that ran when the model opened.

7 Tools and Apps

7-168

Turn Off Display of Variable Values in Block Parameters Dialog Box

By default, when you specify a block parameter as a variable, the text box in the Block Parameters
dialog box where you specify the parameter displays the value of the variable. You can use the display
to obtain the value that a variable has at a certain point during simulation, and to debug your model.

You can use Simulink Preferences to turn the display off, for example when you are demonstrating a
model and the value of the variable is confidential, or when the display gives away the answer to a
problem that your students or trainees are supposed to solve.

In this example, view and then turn off the display of the heater air temperature in the “Thermal
Model of a House” on page 13-21 model. The heater air temperature is specified as the variable
THeater in the Heater subsystem.

1 To open the model, use this command.

openExample('simulink_general/sldemo_househeatExample')
2 To open the Heater subsystem, double-click the Subsystem block.
3 To see the value of the THeater variable, double-click the Heater Air Temperature block.

The Block Parameters dialog box opens.
4 The Constant value text box displays the name of the variable on the left and the value of the

variable on the right.

5 Close the Block Parameters dialog box.

 Simulink Preferences

7-169

6 Open Simulink Preferences. In the Simulink Toolstrip, on the Modeling tab, in the Evaluate and
Manage section, select Environment > Simulink Preferences.

7 In Simulink Preferences, on the Editor Pane, turn off Display value of parameter when
specified using variables.

8 Click Apply.
9 In the model, double-click the Heater Air Temperature block. The Block Parameters dialog

box opens. The Constant value text box no longer displays a value.

Parameters
General Pane

Simulation cache folder — Path to simulation cache folder
pwd (default)

Simulink cache files contain build artifacts that can speed up simulation and code generation. For
more information, see “Share Simulink Cache Files for Faster Simulation” and “Manage Build Process
Folders” (Simulink Coder).

The cache files are stored in the simulation cache folder. The simulation cache folder is a root folder.

Specify the path to the simulation cache folder as a character vector.

You can specify an absolute or relative path to the folder. For example:

• 'C:\Work\mymodelsimcache' and '/mywork/mymodelsimcache' specify absolute paths.
• 'mymodelsimcache' is a path relative to the current working folder (pwd). The software

converts a relative path to an absolute path when you set the preference. For example, if pwd is '/
mywork', the result is '/mywork/mymodelsimcache'.

• '../test/mymodelsimcache' is a path relative to 'pwd'. If 'pwd' is '/mywork', the result is
'/test/mymodelsimcache'.

Example: 'C:\Work\mymodelsimcache'

Programmatic Use
Parameter: CacheFolder

7 Tools and Apps

7-170

Type: character vector
Default:'pwd'

Code generation folder — Path to code generation folder
pwd (default)

The Simulink Coder build process uses system target files to generate production code from a
Simulink model. For more information, see “Manage Build Process Folders” (Simulink Coder).

The production code is stored in the code generation folder. The code generation folder is a root
folder.

Specify the path to the code generation folder as a character vector.

You can specify an absolute or relative path to the folder. For example:

• 'C:\Work\mymodelgencode' and '/mywork/mymodelgencode' specify absolute paths.
• 'mymodelgencode' is a path relative to the current working folder (pwd). The software converts

a relative path to an absolute path when you set the preference. For example, if pwd is '/
mywork', the result is '/mywork/mymodelgencode'.

• '../test/mymodelgencode' is a path relative to 'pwd'. If 'pwd' is '/mywork', the result is
'/test/mymodelgencode'.

Example: 'C:\Work\mymodelgencode'
Programmatic Use
Parameter: CodeGenFolder
Type: character vector
Default:'pwd'

Code generation folder structure — Structure of code generation folder
Model specific (default) | Target environment subfolder

The Simulink Coder build process uses system target files to generate production code from a
Simulink model. For more information, see “Manage Build Process Folders” (Simulink Coder).

The production code is stored in the code generation folder. The code generation folder is a root
folder.

Select the structure of the code generation folder.

• Model specific— Store the code in folders named after the model.
• Target environment subfolder— Store the code in folders named after the target

environment for which the model was configured.

Programmatic Use
Parameter: CodeGenFolderStructure
Values:'ModelSpecific'|'TargetEnvironmentSubfolder'
Default:'ModelSpecific'

Print — Canvas (background) color of printed models
White (default) | Match Canvas Color

Specify whether the color of the model canvas is white when printed or matches the color of the
digital model. For more information on printing models, see “Print Model Diagrams”.

 Simulink Preferences

7-171

Programmatic Use
Parameter: PrintBackgroundColorMode
Values: 'White' | 'MatchCanvas'
Default: 'White'

Export — Canvas (background) color of models exported to different file format
Match Canvas Color (default) | White | Transparent

Specify whether the color of the model canvas when exported to a different file format matches the
color of the digital model, is white, or is transparent. For example, you can export models to the .png
format with a transparent background. For more information on exporting a model to a different file
format, see “Print Models to Image File Formats”.

• Match Canvas Color— Match the canvas color of the model.
• White— Use a white canvas.
• Transparent— Use a transparent canvas so that whatever is behind the canvas is visible.

Programmatic Use
Parameter: ExportBackgroundColorMode
Values: 'MatchCanvas' | 'White' | 'Transparent'
Default:'MatchCanvas'

Clipboard — Canvas (background) color of models exported to different application
Match Canvas Color (default) | White | Transparent

Specify whether the color of the model canvas when exported to a different application matches the
color of the digital model, is white, or is transparent. For more information on exporting a model to a
different application, see “Copy Diagrams as Images”.

• Match Canvas Color— Match the canvas color of the model.
• White— Use a white canvas.
• Transparent— Use a transparent canvas, so that whatever is behind the canvas image shows

through.

Programmatic Use
Parameter: ClipboardBackgroundColorMode
Values: 'MatchCanvas' | 'White' | 'Transparent'
Default:'MatchCanvas'

Show callback tracing — Option to display model callbacks
Off (default) | On

Specify whether to display the model callbacks that Simulink invokes when simulating a model.
Enabling Show callback tracing displays the callbacks in the MATLAB Command Window as they
are invoked. For an example, see “Show Callback Tracing for Double Mass-Spring System” on page 7-
168.

Programmatic Use
Parameter: CallbackTracing
Values:'off'|'on'
Default:'off'

7 Tools and Apps

7-172

Open the sample time legend when the sample time display changes — Option to
display sample time legend when sample time display changes
On (default) | Off

Specify whether to display the sample time legend whenever you change the sample time display. To
change the display, in the Simulink Toolstrip, on the Debug tab, in the Diagnostics section, click
Information Overlays. In the Sample Time section, select Colors, Text, or both. For more
information on the sample time legend, see “View Sample Time Information”.

Programmatic Use
Parameter: OpenLegendWhenChangingSampleTimeDisplay
Values: 'on' | 'off'
Default: 'on'

Editor Pane

Use classic diagram theme — Option to use pre-R2012b visual theme in editor
Off (default) | On

Option to view diagrams in the Simulink Editor with the visual theme from before R2012b. To use the
visual theme from before R2012b, set Use classic diagram theme to On. To use the visual theme
introduced in R2012b, set Use classic diagram theme to Off.

Note Content preview does not display when Use classic diagram theme is enabled.

Programmatic Use

To programmatically specify whether to use the visual theme introduced in R2012b in the editor, set
the EditorModernTheme parameter. To use the visual theme from before R2012b, set
EditorModernTheme to 'off'. To use the visual theme introduced in R2012b, set
EditorModernTheme to 'on'.
Parameter: EditorModernTheme
Values: 'on' | 'off'
Default: 'on'

Line crossing style — Change default display for signal lines that cross
Tunnel (default) | Line Hop | None

Change the default display for signal lines that cross.

• Tunnel— Causes straight signal lines that cross each other but are not connected to display a
slight gap before and after the vertical line where it intersects the horizontal line.

• Line Hop— Shows a bend where the vertical line intersects the horizontal line. Simulink adjusts
the side the bend appears on to avoid overlapping with a block icon. If having the bend on either
side overlaps with a block, Simulink uses a solid line.

None— Uses solid lines. This format can improve performance slightly for updating very large
models. With the Use classic diagram theme preference enabled, Simulink uses a solid line.

Programmatic Use
Parameter: EditorPathXStyle
Values: 'grad_pin' | 'hop' | 'none'
Default: 'grad_pin'

 Simulink Preferences

7-173

Scroll wheel controls zooming — Option to use scroll wheel to zoom
On (default) | Off

Option to use the scroll wheel to zoom without pressing the Ctrl key modifier. If you enable Scroll
wheel controls zooming on macOS platforms with an Apple Magic Trackpad, a panning gesture
causes zooming. For more information on zooming, see “Zoom and Pan”.

Programmatic Use
Parameter: EditorScrollWheelZooms
Values:'on'|'off'
Default:'on'

Content preview displays for new hierarchical elements — Option to display preview of
contents on cover of hierarchical elements
On (default) | Off

Specify whether the cover of hierarchical model elements should display a preview of the contents of
the elements. For example, a Subsystem block can display a preview of the model that it contains.
The setting only applies to elements that are added to the model after the setting is enabled.

Programmatic Use
Parameter: EditorContentPreviewDefaultOn
Values: 'on' | 'off'
Default: 'on'

Enable smart editing features — Option to display model callbacks
On (default) | Off

Specify whether to enable the use of these smart editing cues to perform common model editing tasks
quickly:

• Quick insert — Add a block to a model by typing a block name.
• Tear-off block addition — Add a complementary block from a block tear-off cue. For example, when

you add a GoTo block, you can use a tear-off to add a corresponding From block.
• Multiselection actions — Perform actions from the prompt that appears when you select multiple

blocks.
• Single-selection actions — Perform actions from the prompt that appears when you select a block

or a signal.

Programmatic Use
Parameter: EditorSmartEditing
Values: 'on' | 'off'
Default: 'on'

Edit key parameter when adding new blocks — Option to edit key block parameter when
adding block to model
On (default) | Off

Specify whether to be prompted to enter a key parameter when you add a block to a model.

Programmatic Use
Parameter: EditorSmartEditingHotParam
Values: 'on' | 'off'
Default: 'on'

7 Tools and Apps

7-174

Use docked Diagnostic Viewer — Option to open Diagnostic Viewer docked in model window
On (default) | Off

Specify whether the Diagnostic Viewer should open docked in the Simulink model window. To open
the Diagnostic Viewer, in the Simulink Toolstrip, on the Debug tab, in the Diagnostics section, click
Diagnostics and select Diagnostic Viewer.

Display value of parameter when specified using variables — Option to evaluate
parameter specified as variable or variable expression
On (default) | Off

When you specify the value of a Simulink parameter as a variable or as an expression that contains
variables, the Block Parameters dialog box and the Property Inspector can display the value of the
variable or expression. The text box where you enter the parameter value displays the variable or
expression on the left and the value on the right. For more information, see “View Values of
Parameters Set as Variables”. For an example, see “Turn Off Display of Variable Values in Block
Parameters Dialog Box” on page 7-169.

Specify whether to enable the display of parameter values.

Model File Pane

File format for new models and libraries — Save new models and libraries in the SLX or
MDL format
SLX (default) | MDL

Specify the default file format for new models and libraries.

• SLX— Save new models and libraries in SLX format
• MDL— Save new models and libraries in MDL format

Programmatic Use
Parameter: ModelFileFormat
Values: 'mdl' | 'slx'
Default: slx

 Simulink Preferences

7-175

Save a thumbnail image inside SLX files — Save model screenshot to display in Current
Folder browser preview pane
On (default) | Off

Specify whether to save a small screenshot of the model with the SLX file to display in the Current
Folder browser preview pane.

Tip If your model is large and you want to reduce the time the model takes to save, clear this
parameter to avoid saving thumbnail model images.

Programmatic Use
Parameter: SaveSLXThumbnail
Default: on
Values: 'on' | 'off'

Updating or simulating the model — Option to receive notification if model has changed on
disk when updating or simulating the model
On (default) | Off

Specify whether to notify if a different MATLAB session changes the model on disk while you are
updating or simulating the model. When Updating or simulating the model is enabled, use Action
in Model File Preferences to specify the action to take if the model has changed. For more
information, see “Model File Change Notification”.

Tip To programmatically check whether the model has changed on disk since it was loaded, use the
function slIsFileChangedOnDisk.

Programmatic Use
Parameter: MDLFileChangedOnDiskChecks
Type: struct, field name: CheckWhenUpdating
Values: true | false | 1 | 0
Default: true

Action — Action to take if file has changed on disk
Warning (default) | Error | Reload model (if unmodified) | Show prompt dialog

Select the action to take if the file has changed on disk since it was loaded. This parameter is enabled
by the Updating or simulating the model parameter.

• Warning— Displays a warning in the MATLAB Command Window.
• Error— Displays an error. If simulating programmatically, the error appears in the MATLAB

Command Window. If simulating interactively, the error appears in a Simulation Diagnostics
window.

• Reload model (if unmodified)— Reloads if the model is unmodified. If the model is
modified, the prompt dialog box appears.

• Show prompt dialog— Shows prompt dialog box in which you can choose to close and reload or
ignore the changes.

For more information, see “Model File Change Notification”.

7 Tools and Apps

7-176

Tip To programmatically check whether the model has changed on disk since it was loaded, use the
function slIsFileChangedOnDisk.

Programmatic Use
Parameter: MdlFileChangedOnDiskHandling
Values: 'Warning' | 'Error' | 'Reload model (if unmodified)' | 'Show prompt dialog'
Default: 'Warning'

First editing the model — Option to receive notification if model has changed on disk when
editing the model
On (default) | Off

Specify whether to notify if a different MATLAB session changes the model on disk while, for
example, you are editing the model. For more information, see “Model File Change Notification”.

Any interactive operation that modifies the block diagram, for example, adding a block, causes a
warning dialog box to appear.

Any programmatic operation that causes the block diagram to be modified, for example, a call to
set_param, causes a warning in the MATLAB Command Window.

Tip To programmatically check whether the model has changed on disk since it was loaded, use the
function slIsFileChangedOnDisk.

Programmatic Use
Parameter: MDLFileChangedOnDiskChecks
Type: struct, field name: CheckWhenEditing
Values: true | false | 1 | 0
Default: true

Saving the model — Option to receive notification if model has changed on disk when saving the
model
On (default) | Off

Specify whether to notify if a different MATLAB session changes the model on disk while you are
saving the model.

When the notification is enabled, saving the model in the Simulink Editor causes a dialog box to
appear. In the dialog box, you can choose to overwrite or save with a new name.

The save_system function displays an error, unless you use the OverwriteIfChangedOnDisk
option.

For more information, see “Model File Change Notification”.

Tip To programmatically check whether the model has changed on disk since it was loaded, use the
function slIsFileChangedOnDisk.

Programmatic Use
Parameter: MDLFileChangedOnDiskChecks

 Simulink Preferences

7-177

Type: struct, field name: CheckWhenSaving
Values: true | false | 1 | 0
Default: true

Save before updating or simulating the model — Option to autosave before updating or
simulating model
On (default) | Off

Specify whether to automatically save a backup copy of the model before updating or simulating.

The copy is saved in the same directory as the model, with the name MyModel.slx.autosave or
MyModel.mdl.autosave.

Note

• If you open or load a model that has a more recent autosave copy available, then after the model
loads, a dialog box prompts to restore, ignore, or discard the autosave copy. If multiple models are
involved, then the Model Recovery dialog box appears.

• For each model listed, you can select a check box to specify any of these options. Alternatively,
click the Restore All, Delete All or Ignore All button to select that option for all listed models.

Option Result
Restore Overwrite the original model file with the autosave copy and

delete the autosave copy. Simulink will close the model and
reload from the restored file. If you select the check box to Keep
a copy of original model file, you can save copies of the
original model files named MyModel.slx.original or
MyModel.mdl.original.

Delete Autosave Delete the autosave copy.
Ignore Leave the model and the autosave copy untouched. This setting is

the default. The next time you open the model, the Model
Recovery dialog will reappear and you can choose to restore or
delete autosave files.

• Closing a modified model deletes any autosave copy.
• Autosave does not occur for models that are part of the MATLAB installation, so you will not

create autosave copies of those models.
• Autosave does not occur if the autosave file or location is read-only.
• Autosave does not occur in the Parallel Computing Toolbox.
• If a segmentation violation occurred, then the last autosave file for the model reflects the state of

the autosave data prior to the segmentation violation. Because Simulink models might be
corrupted by a segmentation violation, Simulink does not autosave a model after a segmentation
violation occurs.

Programmatic Use
Parameter: AutoSaveOptions
Type: struct, field name: SaveOnModelUpdate
Values: true | false | 1 | 0

7 Tools and Apps

7-178

Default: true

Save backup when overwriting a file created in an older version of Simulink —
Option to save copy of file created in older version of Simulink before overwriting
On (default) | Off

Specify whether to automatically save a backup copy of the model when overwriting with a newer
version of Simulink.

The backup copy is saved in the same directory as the model, with the name MyModel.slx.Version
or MyModel.mdl.Version, where Version is the last version that saved the model, e.g., R2010a.

Tip To recover the original model, rename the backup copy to MyModel.mdl or MyModel.slx by
deleting the Version suffix.

Programmatic Use
Parameter: AutoSaveOptions
Type: struct, field name: SaveBackupOnVersionUpgrade
Values: true | false | 1 | 0
Default: true

Notify when loading an old model — Option to notify when model being loaded was last saved
in older MATLAB version
Off (default) | On

Specify whether to be notified when loading a model last saved in a older version of Simulink
software. The notification appears in the MATLAB Command Window.

Tip

• Run the Upgrade Advisor to convert the block diagram to the format of the current version of
Simulink software.

• For advice on upgrading a model to the current version of Simulink, see “Model Upgrades”.

Programmatic Use
Parameter: NotifyIfLoadOldModel
Values: 'on' | 'off'
Default: off

Do not load models created with a newer version of Simulink — Option to prevent
models created in newer version of Simulink from loading
On (default) | Off

Specify whether to load a model last saved in a newer version of Simulink software.

• When this option is selected and you try to load a model last saved in a newer version of Simulink,
the model does not load, and an error message appears in the MATLAB Command Window.

• When this option is cleared and you try to load a model last saved in a newer version of Simulink,
the model loads, and a warning message appears in the MATLAB Command Window.

 Simulink Preferences

7-179

Tip If possible, use the Save As command to convert the block diagram to the format of the desired
version of the Simulink software. The Save As command allows you to save a model created with the
latest version of the Simulink software in formats used by earlier versions. See “Export Model to
Previous Version of Simulink”.

Programmatic Use
Parameter: ErrorIfLoadNewModel
Values: 'on' | 'off'
Default: on

Do not load models that are shadowed on the MATLAB path — Option to prevent models
with same name as other models higher on MATLAB path from loading
Off (default) | On

Specify whether to load a model that is shadowed by another file of the same name higher on the
MATLAB path.

• When the option is enabled and you try to load a shadowed model, the model does not load, and
an error message appears in the MATLAB Command Window.

The option applies when you try to open or load a model or library by either:

• Selecting a file in the current folder browser
• Calling open_system or load_system with a path to a file in a different folder to the current

folder
• When the option is not enabled and you try to load a shadowed model, the model loads, and a

warning message appears in the MATLAB Command Window.

Programmatic Use
Parameter: ErrorIfLoadShadowedModel
Values: 'on' | 'off'
Default: off

Verify digital signature of protected model before opening — Option to verify
signature before opening protected model
Off (default) | On

Specify whether to verify the signature on a protected model before opening the model.

When enabled, you cannot load a protected model that does not have a verified digital signature.

An error message appears if the signature verification process finds any of the these conditions:

• The protected model was changed after it was signed.
• The protected model was not signed.
• The protected model was signed with an expired certificate.
• The protected model was self-signed with a certificate issued by the author.
• The protected model was signed with a missing or invalid certificate.
• The certificate in your system certificate authority store is missing or invalid.
• The model was signed with an invalid key.

7 Tools and Apps

7-180

Verification does not check if the certificate expired or was revoked after the protected model was
signed.

Verification runs when you try to open or load a protected model by:

• Simulating or generating code for a model that references the protected model
• Performing an action that updates the diagram for a model that references the protected model
• Opening the web view of the protected model
• Opening the protected model report

You can suppress the diagnostic for an unverified protected model when the error message appears
in the Diagnostic Viewer. The error cannot be suppressed if the signature is not valid because
model was changed after it was signed.

Programmatic Use
Parameter: ProtectedModelValidateCertificate
Values: 'on' | 'off'
Default: off

Notify when opening a model in an unopened project — Option to open project when
opening associated model
On (default) | Off

Specify whether opening a model prompts you to open the project that contains a model.

For more information on projects, see “Create a Project from a Model”.

Programmatic Use
To get the value that a preference is set to programmatically, use get_param(Object,
ParameterName,...ParameterNameN). For example:

get_param(0,'EditorModernTheme')

To set preferences programmatically, set the root parameter using set_param(Object,
ParameterName,Value,...ParameterNameN,ValueN). For example:

set_param(0,'EditorModernTheme','off')

Note Parameters set programmatically do not persist between Simulink sessions.

Version History
Introduced before R2006a

R2022b: Simulink Block Parameters dialog box and Property Inspector display values of
variables

 Simulink Preferences

7-181

Starting in R2022b, when you specify the value of a Simulink parameter as a variable or as an
expression that contains variables, the Block Parameters dialog box and the Property Inspector
display the value of the variable or the expression.

The text box where you enter the parameter value displays the variable or expression on the left and
the value on the right.

To turn the value display off, in the Simulink Toolstrip, on the Modeling tab, in the Evaluate and
Manage section, open the Environment menu and select Simulink Preferences. On the Editor
tab, clear Display value of parameter when specified using variables.

See Also
“Customize Library Browser Appearance” | “Register Customizations with Simulink” | “Create
Custom Simulink Toolstrip Tabs” | “Disable Simulink Toolstrip and Context Menu Actions”

7 Tools and Apps

7-182

Simulink Profiler
Identify sources of simulation slowdowns

Description
Use the Simulink Profiler to examine model and block execution and identify issues that can
contribute to poor simulation performance.

Open the Simulink Profiler
1 Open a model.
2 On the Debug tab, select Performance Advisor > Simulink Profiler.
3 On the Profile tab, click Profile.

When simulation is complete, the Profiler Report pane opens and displays the simulation profile for
the model. You can share the results of the Profiling Run by exporting the report to HTML, as well as
by saving the profiling data to a MAT file.

 Simulink Profiler

7-183

Examples

Identify Performance Slowdowns Using the Simulink Profiler

This example shows how to use the Simulink Profiler to track down the source of a simulation
slowdown in your model.

This example uses a modified version of the sldemo_fuelsys_dd model, (the Modeling a Fault-
Tolerant Fuel Control System example) model with a slowdown artificially inserted.

7 Tools and Apps

7-184

Open the profiler for your model from the Debug tab by selecting Performance Advisor >
Simulink Profiler.

 Simulink Profiler

7-185

Click Profile to profile the model. When simulation completes, the Profiler Report pane opens.

Observe that the Engine Gas Dynamics block takes a large portion of the total profiling time
(177.759s out of 231.443s) of the top model. This is a useful place to start looking for the problematic
block in the model.

7 Tools and Apps

7-186

Recursively expand the block hierarchy view. By default, the profiler sorts the blocks at the same
level of the model in descending order of Total Time(s).

 Simulink Profiler

7-187

Observe that the For Iterator subsystem accounts for approximately 98% of the execution time of the
EGO Sensor subsystem. It is highly probable that this is the source of the slow performance of the
model.

7 Tools and Apps

7-188

Delete the block, reconnect the broken signal, and profile the model again. You should see
significantly faster simulation times.

To compare the results between the two runs, click Add Report Panel and select the previous run
from the Run list.

 Simulink Profiler

7-189

You can share the results of a selected run as an HTML report or as a MAT file. To share the profiler
report, from the Share menu, select Generate Report for an HTML report or Export to save the
results in a MAT file. The profiling results are exported to the current working folder in MATLAB™.

To view the generated report, you can open it in a supported web browser or use the built-in browser
by passing the file path to the web command. If you have MATLAB Report Generator™ installed, you
can also use rptview to view the report.

7 Tools and Apps

7-190

See Also

“Understanding Total Time and Self Time in Profiler Reports”

Version History
Introduced in R2007b

See Also
Simulink.profiler.Data

Topics
“Understanding Total Time and Self Time in Profiler Reports”
“How Profiler Captures Performance Data”

 Simulink Profiler

7-191

Solver Profiler
Identify solver performance bottlenecks

Description
Use the Solver Profiler to examine solver and model behavior to identify issues that can contribute to
poor simulation performance.

Use the Solver Profiler to analyze a model for patterns that affect its simulation. The Solver Profiler
presents graphical and statistical information about the simulation, solver settings, events, and
errors. You can use this data to identify locations in the model that caused simulation bottlenecks.

In addition, there are multiple factors that can limit the simulation speed. The Solver Profiler logs and
reports all the major events that occur when simulating a model:

• Zero-crossing events
• Solver exception events
• Solver reset events
• Jacobian computation events

These events are common and necessary for an accurate simulation. However, they do incur
computational cost and frequent occurrences can slow down or even stall the simulation.

Available actions

• Trace
• Configure
• Explore

Information Panes

• Statistics
• Step Size
• Suggestions

Open the Solver Profiler
• Simulink Toolstrip: On the Debug tab, in the Performance section, click Performance Advisor ,

then select Solver Profiler.

7 Tools and Apps

7-192

• Solver information menu: To open the Solver information menu, click the hyperlink on the right of
the status bar at the bottom of the Simulink Editor. Then, click Solver Profiler .

Examples

Identify Source of Zero Crossing Event

Use the Solver Profiler to locate the source of zero crossings that occur in simulation for a model of a
bouncing ball.

Open the model BouncingBallWithSwitch.

 Solver Profiler

7-193

Open the Solver Profiler. In the Simulink™ Toolstrip, on the Debug tab, in the Performance section,
click the Performance Advisor button arrow. Then, select Solver Profiler.

In the Solver Profiler, click Run. The Solver Profiler simulates the model and collects information
about solver events that occur. When the simulation completes, the Solver Profiler displays
information in the Statistics pane and a plot of the step size calculated for each step of the
simulation.

7 Tools and Apps

7-194

In the Statistics pane, scroll down to view the event information, which shows that 45 zero-crossing
events occurred during simulation from one source.

To view information about the source of the zero-crossing events, select the Zero Crossing tab. The
zero crossing events come from the Switch block.

To annotate the plot of the step sizes with the zero-crossing events, in the Statistics pane, click the
value for the Total Zero Crossings row. The yellow dots indicate when each zero crossing occurred.
Where the zero crossings occurred, the step size decreased significantly.

 Solver Profiler

7-195

To highlight in the block diagram the Switch block that produced the zero crossings, in the Zero
Crossing tab, select the block path. Then, in the States Explorer Toolstrip, in the Trace section, click
Highlight Block.

• “Examine Model Dynamics Using Solver Profiler”
• “Solver Resets”
• “Zero-Crossing Events”
• “Solver Exception Events”
• “Jacobian Logging and Analysis”

7 Tools and Apps

7-196

Parameters
Configure

From — Profiler start time
model start time (default) | scalar

Time, in seconds, of the simulation that the profiler starts analyzing the model. This is not the same
as the start time of the simulation.

To — Profiler stop time
model stop time (default) | scalar

Time, in seconds, of the simulation to which the profiler should profile the model. By default, the
analysis continues until the end of the simulation. Changing this parameter does not change the stop
time of the model which you specify in the Model Configuration Parameters.

A value less than the configured stop time of the model stops the profiling and simulation at
StopTime.

Buffer — Memory impact of logging
50000 (default) | positive scalar

Maximum number of events that are logged. If the number of logged events reaches this value and
memory is available, increase BufferSize. If memory is limited, consider lowering the value.

Continuous States — Save model states to file
off (default) | on

By default, the profiler does not save the states of the model. Enabling this parameter configures the
profiler to save the states to the profiler data MAT file.

If you select this parameter, it will enable the States explorer.

Simscape States — Save Simscape states to file
off (default) | on

Enable this parameter to save Simscape states to the profiler data MAT file.

If you select this parameter, it will enable the Simscape explorer.

Zero Crossing — Save zero crossing data to file
off (default) | on

Enable this parameter to save zero crossing information to the profiler data MAT file

If you select this parameter, it will enable the Zero-Crossing explorer.

Model Jacobian — Save model Jacobian
off (default) | on

Option to log the solver Jacobian matrices to memory. This option is useful for simulations that use
implicit solvers. For a comparison of solvers, see “Compare Solvers”.

For a more detailed explanation of the solver Jacobian, see “Choose a Jacobian Method for an Implicit
Solver”.

 Solver Profiler

7-197

Simscape Stiffness — Log stiffness analysis of Simscape states
array

Log stiffness analysis Simscape states, specified as an array. This parameter provides an array of time
points that you want to log the Simscape Stiffness states to the profiler data MAT file. Enable this
parameter to show Simscape Stiffness tab in the Suggestion Pane.

Enable this parameter to log the stiffness analysis of Simscape states to the profiler data MAT file.
For more information on Simscape representation of stiffness and other physical system concepts, see
“How Simscape Models Represent Physical Systems” (Simscape)

Rule Customization — Change thresholds for profiler rules
off (default) | on

Click Rule Customization in the Solver Profiler to access the rule set. You can change the
thresholds for most of these rules and also select which rules you want to apply selectively during a
simulation run.

To modify a rule, enable its customization and then enter a desired threshold value.

Custom Rule Set

You can override the settings on the Rule Set dialog box by specifying a custom rule set.

Create a rule set as a MATLAB script and specify the path to the script in the Custom Rule Set
section of the Rule Set dialog box.

A simple rule set example looks as follows:

7 Tools and Apps

7-198

function diagnosticsString = customRule(profilerData)
 if isempty(profilerData.zcEvents)
 diagnosticsString{1} = 'No zero crossing event detected.';
 else
 diagnosticsString{1} = 'Zero-crossing events detected.';
 end
end

The input to the function is an array of structures called profilerData. This array of structures
organizes all the information that the Solver Profiler collects during a profiling run. It contains the
following substructures.

Substructure Fields
stateInfo: Stores information on block states • name: Block name

• value: State values
• blockIdx: Block ID

blockInfo: Cross-reference of blocks and state
IDs

• name: Block name
• stateIdx: State ID

zcSrcInfo: Stores information on blocks
causing zero crossing events

• name: Block name
• blockIdx: Block ID

zcEvents: Cross-reference of the time stamps of
zero crossing events and the corresponding state
IDs

• t: Event timestamp
• srcIdx: Block ID

exceptionEvents: Cross-reference of exception
event timestamps, the ID of the corresponding
state that caused the event, and the cause.

• t: Event timestamp
• stateIdx: State ID
• cause: Cause of exception

resetTime: Stores timestamps of solver resets. None
tout: Stores simulation times. None

View

Solver Exception — Show solver exception events
off (default) | on

Enable this parameter to highlight solver exception events in the Step Size plot of the Solver Profiler.

Solver Reset — Show solver reset events
off (default) | on

Enable this parameter to highlight solver reset events in the Step Size plot of the Solver Profiler.

Jacobian Update — Show Jacobian update events
off (default) | on

Enable this parameter to highlight Jacobian update events in the Step Size plot of the Solver Profiler.

Zero Crossing — Show zero crossing events
off (default) | on

Enable this parameter to highlight zero crossing events in the Step Size plot of the Solver Profiler.

 Solver Profiler

7-199

Version History
Introduced in R2016a

See Also
solverprofiler.profileModel | Zero Crossing Explorer | State Explorer

Topics
“Examine Model Dynamics Using Solver Profiler”
“Solver Resets”
“Zero-Crossing Events”
“Solver Exception Events”
“Jacobian Logging and Analysis”

7 Tools and Apps

7-200

State Explorer
Visualize states in model

Description
Use the State Explorer to view individual state dynamics of your model

Open the State Explorer
• Profile the model using the Solver Profiler. Ensure that the Continuous States parameter is

enabled.
• Select States in the Explore section of the Solver Profiler toolstrip.

Examples

Interactively Explore States

This example shows how to use State Explorer to explore Newton Exceptions.

 State Explorer

7-201

To begin, open the model BouncingBallWithSwitch, click Debug, open the drop down menu of
Performance Advisor, select Solver Profiler.

Enable the “Continuous States” on page 7-0 parameter in the Configure section of the toolstrip
and run Solver Profiler.

When profiling has completed, launch State Explorer. Select Newton/DAE Exception in the Filter
section of the State Explorer toolstrip.

There is an increase in the density of Newton exceptions through the simulation. Zoom in on the
State plot between the 5 and 6 second mark.

7 Tools and Apps

7-202

A closer examination reveals that each bounce causes two Newton iterations to switch from positive
to negative corresponding to two zero crossing events. For more details, see “Interactively Explore
Zero Crossings” on page 7-211. Around 5.48 seconds, the bouncing ball being simulated in the model
comes to ‘rest’, hence the isolated single Newton iteration exception.

Version History
Introduced in R2016a

See Also
solverprofiler.profileModel | Solver Profiler | Zero Crossing Explorer

 State Explorer

7-203

Type Editor
Create, modify, and manage types, such as bus objects

Description
The Type Editor lets you interactively create, modify, and manage types.

The supported types are:

• Simulink.Bus objects with Simulink.BusElement objects
• Simulink.ConnectionBus objects with Simulink.ConnectionElement objects
• Simulink.ValueType objects
• Simulink.AliasType objects
• Simulink.NumericType objects
• Simulink.data.dictionary.EnumTypeDefinition objects in data dictionaries

The Sources pane provides available sources, which are the MATLAB base workspace and open data
dictionaries. The objects that you create are stored in the selected source. In the toolstrip, you can
create or open a data dictionary. You can also import objects defined by a MAT file, function, or script
into the base workspace.

The Contents pane provides an interactive table with information about the objects, such as
hierarchy and properties. You can select which columns appear in the table by using the Columns
list in the toolstrip. Use the table to:

• Filter objects — Enter a universal filter or a column-specific filter.
• Edit objects — Double-click a value in the table and enter a new value. When you enter a value

that is not supported, a diagnostic message appears in this pane.
• Batch edit objects — Select objects of the same type that you want to edit. Double-click a value of

one of the selected objects and enter a new value. The new value applies to all selected objects.
• Navigate among types — Right-click an object that references another object and select Go to.

Alternatively, click an object to highlight its referenced object. Use this navigation to bring you to
the editable instance of a bus object and its elements.

• Reorder bus element objects — Drag the bus element objects to a new position or use the Move
Up and Move Down buttons in the toolstrip.

• Cut, copy, and paste objects — Use keyboard shortcuts or the corresponding buttons in the
toolstrip.

• Delete objects — Press the Delete key or click the Delete button in the toolstrip. When you delete
a bus object, you also delete the bus element objects it contains. Update any blocks that specify
the deleted object. To find where a bus object is used in a model, see “Finding Blocks That Use a
Specific Variable”.

Note Changes that create, reorder, or delete objects take effect immediately in the base workspace.
The Contents pane of the Type Editor does not support undo or redo actions.

7 Tools and Apps

7-204

The Property Inspector pane lets you focus on one object at a time and edit the object properties.
When you enter a value that is not supported, a diagnostic message appears in this pane. To undo or
redo a change, right-click the corresponding box. Then, select Undo or Redo.

The Type Editor can export object definitions to a MAT file (.mat) or function (.m). It can also create
a MATLAB structure or Simulink.Parameter object from a Simulink.Bus object. You can find
these actions in the Share section of the toolstrip.

Open the Type Editor
• Simulink Toolstrip: On the Modeling tab, in the Design gallery, click Type Editor.
• MATLAB Command Window: Enter typeeditor.
• Model Explorer: In a bus object dialog box, click Launch Type Editor.
• MATLAB Workspace: Double-click a bus object, alias type, or value type.

Examples

Create Bus Objects Using Type Editor

Suppose you want to define an interface for a model with a Simulink.Bus object. For this example,
the interface receives signals named sine, chirp, constant, pulse, and saw. You want the

 Type Editor

7-205

interface to group all the signals. Within that group, you want the interface to group the sinusoidal
and nonsinusoidal signals.

You can create the objects in the base workspace or a data dictionary. In the Sources pane, select the
location to contain the new objects.

• To create a data dictionary, in the Type Editor toolstrip, click New. In the dialog box, specify a
name for the data dictionary. Then, click Save.

• To open a data dictionary, in the Type Editor toolstrip, click Open. In the dialog box, specify the
data dictionary that you want to open. Then, click Open.

Create three Simulink.Bus objects.

1 In the toolstrip, in the Add gallery, click Bus three times to create three Bus objects.
2 Name the objects interface, sinusoidal, and nonsinusoidal. Double-click each object

name in the table and enter the new name, or use the Property Inspector pane.

Add Simulink.BusElement objects to the Bus objects.

1 Select the object named interface, and add three BusElement objects to it. In the toolstrip,
click Bus Element three times.

2 Name the elements constant, sinusoidal_bus, and nonsinusoidal_bus. Double-click each
object name in the table and enter the new name or use the Property Inspector pane.

3 Similarly, select the sinusoidal bus object and add two elements to it named sine and chirp.
4 Select the nonsinusoidal bus object and add two elements to it named pulse and saw.

Any element in a bus can be another bus, which can in turn contain subordinate buses, to any depth.
To mimic this bus hierarchy, a bus-element object can specify a bus object data type.

Nest the Bus objects named sinusoidal and nonsinusoidal in the Bus object named interface.

1 For the object named sinusoidal_bus, set DataType to Bus: sinusoidal.
2 For the object named nonsinusoidal_bus, set DataType to Bus: nonsinusoidal.

The object named interface now matches the desired hierarchy for the component interface. To
specify the object at a component interface, you can specify it as the data type of In Bus Element,
Inport, Out Bus Element, and Outport blocks.

Create Alias, Numeric, Value, and Enumerated Types Using Type Editor

In the Sources pane, select the location to contain the new objects.

You can create Simulink.AliasType, Simulink.NumericType, and Simulink.ValueType
objects in the base workspace or a data dictionary. You can create
Simulink.data.dictionary.EnumTypeDefinition objects only in a data dictionary.

• To create a data dictionary, in the Type Editor toolstrip, click New. In the dialog box, specify a
name for the data dictionary. Then, click Save.

• To open a data dictionary, in the Type Editor toolstrip, click Open. In the dialog box, specify the
data dictionary that you want to open. Then, click Open.

7 Tools and Apps

7-206

In the Type Editor toolstrip, in the Add gallery, select one of these options:

• Alias Type — Create a Simulink.AliasType object.
• Numeric Type — Create a Simulink.NumericType object.
• Value Type — Create a Simulink.ValueType object.
• Enum Type — Create a Simulink.data.dictionary.EnumTypeDefinition object.

The new object appears in the Contents pane.

Modify Objects Using Type Editor

You can use the Type Editor to modify objects in the base workspace and data dictionaries.

To edit one or more objects of the same type in the Type Editor:

1 Select the objects that you want to update.

• To select multiple noncontiguous objects, hold Ctrl and select each element.
• To select multiple contiguous objects, hold Shift and select the first and last element.
• To select all objects, first select one object. Then, press Ctrl+A.

2 In the Contents pane, double-click the property value that you want to change for all the
selected objects of the same type. Then, enter the new value.

When you commit the new value, the change applies to all the selected objects that are the same
type of object.

You can also edit one object at a time in the Property Inspector pane. Some object properties are
available only in the Property Inspector pane.

For a bus object, edit the properties of the bus object and its elements at the top level, not where the
bus object is specified as a data type. Right-click the dimmed object and select Go to to bring you to
the editable instance of the object.

To reorder bus object elements, select and drag the elements to a new position or use the Move Up
and Move Down buttons in the toolstrip.

You can edit contents in the filtered view just like the unfiltered view. Elements that no longer match
the filter disappear from the table. Conversely, if some activity outside the Type Editor changes a
filtered object so that it passes the current filter, the object immediately becomes visible.

Operations affect only the available objects. An object that a filter hides is unaffected by the
operation. To act on all available objects, clear the filter.

Save Objects Using Type Editor

When you create or modify objects in the base workspace or a data dictionary, save the objects for
future use. If blocks specify these objects, the objects are required for simulation.

The Type Editor can save objects in a MAT file (.mat), MATLAB function (.m), or data dictionary
(.sldd).

 Type Editor

7-207

To save the objects that are in the base workspace:

1 In the Sources pane, select the base workspace.
2 In the toolstrip, click the Export button arrow. Then, select an option, which creates a MAT file

or MATLAB function.

For MATLAB functions, you have the option to save the objects in a compressed cell format or a
more readable object format.

3 In the Export dialog box, specify the file name, then click Save.

Alternatively, cut or copy the objects from the base workspace. Then, paste them in a data dictionary.

To save the objects that are in a data dictionary:

1 In the Sources pane, select the modified data dictionary.
2 In the toolstrip, click Save. Alternatively, right-click the data dictionary and select Save

changes.

Manage Objects Using Type Editor

You can use the Type Editor to manage objects from multiple sources.

You can import objects from a function, script, or MAT file.

1 In the toolstrip, click the Import button arrow, then select one of the options.
2 In the Import into Base Workspace dialog box, select the file that defines the objects and click

Open.

The import loads the complete contents of the file, not just the objects. The table displays the
available objects in alphabetical order.

You can also open a data dictionary to manage its objects.

1 In the toolstrip, click Open.
2 In the Open dialog box, select the data dictionary that defines the objects and click Open.

Use filters to quickly find objects by name or property value. The filter can be a search term or
regular expression. For information about regular expressions, see “Regular Expressions”.

To quickly find objects with a double data type, type double in either the Filter contents box or
the Filter by DataType box that appears when you pause on the DataType column heading and click
the button that appears. As you type, the table updates dynamically to show only the objects whose
names or property values match the filter and their parents. The comparison is not case-sensitive.

Initialize Buses and Arrays of Buses Using Type Editor

You can use the Type Editor to create MATLAB structures for initialization.

Suppose you have a Simulink.Bus object named MyData that contains two elements named
temperature and pressure.

7 Tools and Apps

7-208

• temperature — Signal with a data type of int16
• pressure — Nested array of buses with a data type of Bus: PressureBus and dimensions
specified as [1 3]

The nested Bus object named PressureBus has two elements named s1 and s2.

Select the Bus object named MyData. Then, in the toolstrip, click MATLAB Structure.

Specify a name and location for the new MATLAB structure.

The MATLAB structure specifies an initial condition of 0 for each element.

MyData_MATLABStruct = struct;
MyData_MATLABStruct.temperature = int16(0);
MyData_MATLABStruct.pressure = struct;
MyData_MATLABStruct.pressure(1).s1 = 0;
MyData_MATLABStruct.pressure(1).s2 = 0;
MyData_MATLABStruct.pressure(2).s1 = 0;
MyData_MATLABStruct.pressure(2).s2 = 0;
MyData_MATLABStruct.pressure(3).s1 = 0;
MyData_MATLABStruct.pressure(3).s2 = 0;

Optionally, change the initial conditions of the structure elements.

Use the MATLAB structure to specify the Initial condition parameter of a block such as a Unit Delay
block.

To create a MATLAB structure for a top-level Bus object that defines an array of buses, use the
Simulink.Bus.createMATLABStruct function.

Tips
• In the Contents pane, display only the columns that are relevant to you. For example, if your

focus is simulation, in the Type Editor toolstrip, in the View section, change the column display
from All to Value. If your focus is code generation, change the column display to Code.
Alternatively, individually select which table columns appear with the Columns list.

• A bus object cannot directly or indirectly reference itself. If you define a circular structure, the
Type Editor keeps the original data type of the element that would have completed the circle.

 Type Editor

7-209

• When you have a model that creates a bus with a Bus Creator block, you can use the
Simulink.Bus.createObject function to create the corresponding objects instead of creating
each Simulink.Bus and Simulink.BusElement object individually.

Version History
Introduced before R2006a

R2022b: buseditor function is not recommended
Not recommended starting in R2022b

Starting in R2022b, the Bus Editor is called the Type Editor to reflect that it now supports value
types, alias types, numeric types, and enumerations in addition to bus objects. While there are no
plans to remove the buseditor function, the typeeditor function is now the recommended
function to open the tool.

R2022a: Custom import and export functions are not supported

Starting in R2022a, the Bus Editor loads faster and has an updated interface for creating, modifying,
and managing bus objects. However, the Bus Editor no longer supports custom import and export
functions.

Remove the cm.BusEditorCustomizer.importCallbackFcn and
cm.BusEditorCustomizer.exportCallbackFcn registration functions from the
sl_customization function. To eliminate both customizations in one operation for a customization
manager object named cm, use this command.

cm.BusEditorCustomizer.clear

For more information about customizations, see “Register Customizations with Simulink”.

See Also
Simulink.Bus | Simulink.BusElement | Simulink.AliasType | Simulink.NumericType |
Simulink.ValueType | Simulink.data.dictionary.EnumTypeDefinition |
Simulink.ConnectionBus | Simulink.ConnectionElement

Topics
“Specify Bus Properties with Simulink.Bus Object Data Types”
“Programmatically Create Simulink Bus Objects”
“About Data Types in Simulink”
“Specify Application-Specific Signal Properties”
“Use Enumerated Data in Simulink Models”
“Design Rigid Interface Specifications for Conserving Connections” (Simscape)

7 Tools and Apps

7-210

Zero Crossing Explorer
Visualize and interactively explore zero-crossing events

Description
Use the Zero Crossing Explorer to visualize and analyze zero crossing events that occur for each
state in your model.

Open the Zero Crossing Explorer
• Profile the model using the Solver Profiler. Ensure that the Zero Crossing parameter is enabled.
• Select Zero Crossing in the Explore section of the Solver Profiler toolstrip.

Examples

Interactively Explore Zero Crossings

Use the Zero Crossing Explorer to examine clusters of zero crossing events

 Zero Crossing Explorer

7-211

Open the model BouncingBallWithSwitch and launch the Solver Profiler.

Enable the Zero Crossing parameter in the Configure section of the toolstrip and run the Solver
Profiler.

When profiling has completed, launch the Zero Crossing Explorer

There is an increase in the density of zero crossing events halfway through the simulation. Zoom in
on the event density plot between the 5 and 6 second mark.

7 Tools and Apps

7-212

A closer examination reveals that each bounce corresponds to two zero crossings — from positive to
negative and vice-versa. This is an artefact of numerically solving state dynamics that approach 0
value. Around 5.48 seconds, the ball being simulated in the model comes to 'rest', hence the isolated
single zero crossing event.

• “Zero-Crossing Events”
• “Zero-Crossing Detection”

Version History
Introduced in R2019a

See Also
Solver Profiler | State Explorer | solverprofiler.profileModel

Topics
“Zero-Crossing Events”
“Zero-Crossing Detection”

 Zero Crossing Explorer

7-213

Objects

8

LibraryBrowser.LBStandalone
Display, hide, size, and position Simulink Library Browser

Description
Use LibraryBrowser.LBStandalone objects to programmatically display, hide, size, position, and
refresh the Simulink Library Browser in standalone mode. For more information, see Library Browser
in Standalone Mode, show, hide, getPosition, setPosition, and refresh. To interact with a
LibraryBrowser.LBStandalone object, create and get the handle of the object, then set the object
properties or run the object functions.

Creation
To create and get the handle of the Library Browser object, use either slLibraryBrowser or
LibraryBrowser.LibraryBrowser2.

Note When you use the slLibraryBrowser to get the handle:

• If the Library Browser is open in standalone mode, the Library Browser window moves in front of
all other Simulink windows.

• If the Library Browser is not open in standalone mode, the Library Browser opens in standalone
mode.

Properties
IsOnTop — Always put Library Browser window on top
false or 0 (default) | true or 1

Always put the Library Browser window on top of other Simulink Editor windows, specified as a
numeric or logical 1 (true) or 0 (false).

Object Functions
refresh Refresh Simulink Library Browser
show Display Simulink Library Browser
hide Hide Simulink Library Browser
getPosition Get position of Simulink Library Browser
setPosition Set position of Simulink Library Browser

Examples

8 Objects

8-2

Keep Library Browser in Front of Other Windows

Create and get the handle of the LibraryBrowser.LBStandalone object that lets you
programmatically access the Library Browser.

lb = LibraryBrowser.LibraryBrowser2;

Set the IsOnTop property of the Library Browser to 1 (true), using dot notation to access the
property.

lb.IsOnTop = 1;

Limitations
The LibraryBrowser.LBStandalone object does not allow you to programmatically act on a
docked Library Browser. To use the LibraryBrowser.LBStandalone object, open the Library

Browser in standalone mode by clicking the Launch standalone library browser button .

Version History
Introduced in R2014b

R2016b: LibraryBrowser.LBStandalone object replaces
LibraryBrowser.LibraryBrowser2 object
Behavior changed in R2016b

In previous releases, these two commands returned a LibraryBrowser.LibraryBrowser2 object:

lb = slLibraryBrowser
lb = LibraryBrowser.LibraryBrowser2

Starting in R2016b, each command returns a LibraryBrowser.LBStandalone object. The
functions to access Library Browser operations such as show and refresh support
LibraryBrowser.LBStandalone objects.

See Also
Functions
slLibraryBrowser | LibraryBrowser.LibraryBrowser2

Tools
Library Browser

Topics
“Create Custom Library”
“Add Libraries to Library Browser”
“Customize Library Browser Appearance”
“Register Customizations with Simulink”

 LibraryBrowser.LBStandalone

8-3

getPosition
Package: LibraryBrowser

Get position of Simulink Library Browser

Syntax
position = getPosition(lb)

Description
position = getPosition(lb) returns the position of the Simulink Library Browser in standalone
mode. For more information on standalone mode, see Library Browser in Standalone Mode.

Examples

Get Position of Library Browser

lb = LibraryBrowser.LibraryBrowser2;
getPosition(lb)

ans =

 50 279 600 600

Input Arguments
lb — Simulink Library Browser
LibraryBrowser.LBStandalone object

Simulink Library Browser, specified as a LibraryBrowser.LBStandalone object.

Output Arguments
position — Position of Library Browser
numeric array

Position of Library Browser, returned as a numeric array of integers, in pixels: upper-left x-
coordinate, upper-left y-coordinate, width, and height.

Limitations
The getPosition function does not act on a docked Library Browser. To use the getPosition
function, open the Library Browser in standalone mode by clicking the Launch standalone library

browser button .

8 Objects

8-4

Version History
Introduced in R2016b

See Also
Tools
Library Browser

Objects
LibraryBrowser.LBStandalone

Functions
setPosition | slLibraryBrowser | LibraryBrowser.LibraryBrowser2 | hide | show |
refresh

 getPosition

8-5

hide
Package: LibraryBrowser

Hide Simulink Library Browser

Syntax
hide(lb)

Description
hide(lb) hides the Simulink Library Browser in standalone mode. For more information on
standalone mode, see Library Browser in Standalone Mode.

Examples

Hide Library Browser

lb = LibraryBrowser.LibraryBrowser2;
hide(lb)

Input Arguments
lb — Simulink Library Browser
LibraryBrowser.LBStandalone object

Simulink Library Browser, specified as a LibraryBrowser.LBStandalone object.

Limitations
The hide function does not act on a docked Library Browser. To use the hide function, open the

Library Browser in standalone mode by clicking the Launch standalone library browser button .

Version History
Introduced in R2016b

See Also
Tools
Library Browser

Objects
LibraryBrowser.LBStandalone

8 Objects

8-6

Functions
show | slLibraryBrowser | LibraryBrowser.LibraryBrowser2 | getPosition |
setPosition | refresh

 hide

8-7

refresh
Package: LibraryBrowser

Refresh Simulink Library Browser

Syntax
refresh(lb)

Description
refresh(lb) updates the Simulink Library Browser with changes that affect it. Examples include
adding a library to the Library Browser, removing a library from the Library Browser, and making
changes to your custom libraries, slblocks function, or sl_customization.m file.

Examples

Refresh Library Browser

Refresh the Library Browser when you have made any changes that affect libraries on your MATLAB
path that are registered in the Library Browser.

lb = LibraryBrowser.LibraryBrowser2;
refresh(lb)

Input Arguments
lb — Simulink Library Browser
LibraryBrowser.LBStandalone object

Simulink Library Browser, specified as a LibraryBrowser.LBStandalone object.

Version History
Introduced in R2016b

See Also
Tools
Library Browser

Objects
LibraryBrowser.LBStandalone

Functions
slLibraryBrowser | LibraryBrowser.LibraryBrowser2 | hide | show | getPosition |
setPosition

8 Objects

8-8

Topics
“Create Custom Library”
“Add Libraries to Library Browser”
“Customize Library Browser Appearance”

 refresh

8-9

setPosition
Package: LibraryBrowser

Set position of Simulink Library Browser

Syntax
setPosition(lb,position)

Description
setPosition(lb,position) sets the position of the Simulink Library Browser in standalone mode.
For more information on standalone mode, see Library Browser in Standalone Mode.

Examples

Set Position of Library Browser

lb = LibraryBrowser.LibraryBrowser2;
setPosition(lb,[70 250 500 500])

Input Arguments
lb — Simulink Library Browser
LibraryBrowser.LBStandalone object

Simulink Library Browser, specified as a LibraryBrowser.LBStandalone object.

position — New position of Library Browser
numeric array

New position of Library Browser, specified as a numeric array of integers, in pixels: upper-left x-
coordinate, upper-left y-coordinate, width, and height.
Data Types: double

Limitations
The setPosition function does not act on a docked Library Browser. To use the setPosition
function, open the Library Browser in standalone mode by clicking the Launch standalone library

browser button .

Version History
Introduced in R2016b

8 Objects

8-10

See Also
Tools
Library Browser

Objects
LibraryBrowser.LBStandalone

Functions
getPosition | slLibraryBrowser | LibraryBrowser.LibraryBrowser2 | hide | show |
refresh

 setPosition

8-11

show
Package: LibraryBrowser

Display Simulink Library Browser

Syntax
show(lb)

Description
show(lb) displays the Simulink Library Browser in standalone mode. For more information on
standalone mode, see Library Browser in Standalone Mode.

Examples

Display Library Browser

lb = LibraryBrowser.LibraryBrowser2;
show(lb)

Input Arguments
lb — Simulink Library Browser
LibraryBrowser.LBStandalone object

Simulink Library Browser, specified as a LibraryBrowser.LBStandalone object.

Limitations
The show function does not act on a docked Library Browser. To use the show function, open the

Library Browser in standalone mode by clicking the Launch standalone library browser button .

Version History
Introduced in R2016b

See Also
Tools
Library Browser

Objects
LibraryBrowser.LBStandalone

8 Objects

8-12

Functions
hide | slLibraryBrowser | LibraryBrowser.LibraryBrowser2 | getPosition |
setPosition | refresh

 show

8-13

Stateflow.EMChart
Stateflow interface to MATLAB Function block

Description
Use Stateflow.EMChart objects to configure MATLAB Function blocks through the Stateflow
programmatic interface. For more information, see “Overview of the Stateflow API” (Stateflow).

Tip You can also configure the properties of a MATLAB Function block programmatically by using a
MATLABFunctionConfiguration object. This object provides a direct interface to the properties of
a MATLAB Function block. For more information, see “Configure MATLAB Function Blocks
Programmatically”.

Creation
Each MATLAB Function block has its own Stateflow.EMChart object. When you add a MATLAB
Function block to a Simulink model, a Stateflow.EMChart object is automatically created for it.
For example, you can use the function add_block to add a MATLAB Function with the name MATLAB
Function to a model called myModel:

add_block("simulink/User-Defined Functions/MATLAB Function", ...
 "myModel/MATLAB Function")

Then, to access the Stateflow.EMChart object, call the find function for the loaded system:

block = find(get_param("myModel","Object"), ...
 "-isa","Stateflow.EMChart","Name","MATLAB Function");

Properties
Stateflow API objects have properties that correspond to the values you set in the Stateflow Editor. To
access or modify a property, use dot notation. To access or modify multiple properties for multiple API
objects, use the get and set functions, respectively. For more information, see “Modify Properties
and Call Functions of Stateflow Objects” (Stateflow).

Content

Name — Name of MATLAB Function block
"MATLAB Function" (default) | string scalar | character vector

Name of the MATLAB Function block, specified as a string scalar or character vector.

Script — Code for MATLAB Function block
string scalar | character vector

Code for the MATLAB Function block, specified as a string scalar or character vector. To enter
multiple lines of code, you can:

8 Objects

8-14

• Call the MATLAB function sprintf and use \n to insert newline characters:

str = sprintf("function y=f(x)\ny=x+1;\nend");
block.Script = str;

• Enter a concatenated text expression that uses the function newline to create newline
characters:

str = "function y=f(x)" + newline + ...
 "y=x+1;" + newline + ...
 "end";
block.Script = str;

SupportVariableSizing — Whether MATLAB Function block supports variable-size data
true or 1 (default) | false or 0

Whether the MATLAB Function block supports variable-size data, specified as a numeric or logical 1
(true) or 0 (false). For more information, see “Declare Variable-Size MATLAB Function Block
Variables”.

AllowDirectFeedthrough — Whether MATLAB Function block supports direct feedthrough
semantics
true or 1 (default) | false or 0

Whether the MATLAB Function block supports direct feedthrough semantics, specified as a numeric
or logical 1 (true) or 0 (false). For more information, see “Allow direct feedthrough”.

VectorOutputs1D — Whether MATLAB Function block outputs column vectors as one-
dimensional data
false or 0 (default) | true or 1

Whether the MATLAB Function block outputs column vectors as one-dimensional data, specified as a
numeric or logical 0 (false) or 1 (true). For more information, see “Interpret output column vectors
as one-dimensional data”.

TreatDimensionOfLengthOneAsFixedSize — Whether MATLAB Function block output
variables with at least one dimension of length 1 are fixed size
true or 1 (default) | false or 0

Whether MATLAB Function block output variables with at least one dimension of length 1 are fixed
size, specified as a numeric or logical 0 (false) or 1 (true). When this property is true, the object
sets variables that are variable size in the block with a dimension of 1 to fixed size. When this
property is false, variables in the block that have the Variable size property enabled are always
variable size. Prior to R2023a, the object treats variables with at least one dimension of length 1 as
fixed size.

This property only affects output variables that have the Variable size property enabled. See
“Variable size”.

Interface

Inputs — Input arguments
array of Stateflow.Data objects

This property is read-only.

 Stateflow.EMChart

8-15

Input arguments of the MATLAB Function block, specified as an array of Stateflow.Data objects.
The value of this property depends on the inputs defined in the Script property for the block.

Outputs — Output arguments
array of Stateflow.Data objects

This property is read-only.

Output arguments of the MATLAB Function block, specified as an array of Stateflow.Data objects.
The value of this property depends on the outputs defined in the Script property for the block.

Discrete and Continuous-Time Semantics

ChartUpdate — Activation method for MATLAB Function block
"INHERITED" (default) | "CONTINUOUS" | "DISCRETE"

Activation method for the MATLAB Function block, specified as "CONTINUOUS", "DISCRETE", or
"INHERITED". For more information, see “Update method”.

SampleTime — Sample time for activating MATLAB Function block
"-1" (default) | string scalar | character vector

Sample time for activating the MATLAB Function block, specified as a string scalar or character
vector. This property applies only when the ChartUpdate property for the MATLAB function is
"DISCRETE".

Integer and Fixed-Point Data

SaturateOnIntegerOverflow — Whether data saturates on integer overflow
true or 1 (default) | false or 0

Whether the data in the MATLAB Function block saturates on integer overflow, specified as a numeric
or logical 1 (true) or 0 (false). When this property is disabled, the data in the function wraps on
integer overflow. For more information, see “Saturate on integer overflow”.

TreatAsFi — Inherited Simulink signals to treat as fi objects
"Fixed-point" (default) | "Fixed-point & Integer"

Inherited Simulink signals to treat as Fixed-Point Designer fi objects, specified as one of these
values:

• "Fixed-point" — The MATLAB Function block treats all fixed-point inputs as fi objects.
• "Fixed-point & Integer" — The MATLAB Function block treats all fixed-point and integer

inputs as fi objects.

EmlDefaultFimath — Default fimath properties
"Same as MATLAB Default" (default) | "Other:UserSpecified"

Default fimath properties for the MATLAB Function block, specified as one of these values:

• "Same as MATLAB Default" — Use the same fimath properties as the current default fimath
object.

• "Other:UserSpecified" — Use the InputFimath property to specify the default fimath
object.

8 Objects

8-16

InputFimath — Default fimath object
string scalar | character vector

Default fimath object, specified as a string scalar or character vector. When the
EmlDefaultFimath property for the MATLAB Function block is "Other:UserSpecified", you can
use this property to:

• Enter an expression that constructs a fimath object.
• Enter the variable name for a fimath object in the MATLAB or model workspace.

Hierarchy

Machine — Machine that contains MATLAB Function block
Stateflow.Machine object

This property is read-only.

Machine that contains the MATLAB Function block, specified as a Stateflow.Machine object.

Path — Location of MATLAB Function block in model hierarchy
string scalar | character vector

This property is read-only.

Location of the MATLAB Function block in the model hierarchy, specified as a character vector.

Dirty — Whether MATLAB Function block has changed
true or 1 | false or 0

Whether the MATLAB Function block has changed after being opened or saved, specified as a
numeric or logical 1 (true) or 0 (false).

Locked — Whether MATLAB Function block is locked
false or 0 (default) | true or 1

Whether the MATLAB Function block is locked, specified as a numeric or logical 1 (true) or 0
(false). Enable this property to prevent changes in the MATLAB Function block.

Iced — Whether MATLAB Function block is locked
false or 0 (default) | true or 1

This property is read-only.

Whether the MATLAB Function block is locked, specified as a numeric or logical 1 (true) or 0
(false). This property is equivalent to the property Locked, but is used internally to prevent
changes in the MATLAB Function block during simulation.

Identification

Description — Description
"" (default) | string scalar | character vector

Description for the MATLAB Function block, specified as a string scalar or character vector.

Document — Document link
"" (default) | string scalar | character vector

 Stateflow.EMChart

8-17

Document link for the MATLAB Function block, specified as a string scalar or character vector.

Tag — User-defined tag
[] (default) | any data type

User-defined tag for the MATLAB Function block, specified as data of any type.

Id — Unique identifier
scalar

This property is read-only.

Unique identifier, specified as an integer scalar. Use this property to distinguish the MATLAB
Function block from other objects in the model. The value of this property is reassigned every time
you start a new MATLAB session and may be recycled after an object is deleted.

Object Functions
find Identify specified objects in hierarchy
getChildren Identify children of object
dialog Open properties dialog box
view Display object in editing environment

Examples

Program MATLAB Function Block

Access the Stateflow.EMChart object for a MATLAB Function block named My Function in a
model called myModel.

block = find(get_param(gcs,"Object"), ...
 "-isa","Stateflow.EMChart","Path","myModel/My Function");

Store the MATLAB code to calculate the mean and standard deviation for a vector of values as a
string scalar.

str = "function [mean,stdev] = stats(vals)" + newline + ...
 "% Calculates a statistical mean and a standard" + newline + ...
 "% deviation for the values in vals." + newline + newline + ...
 "len = length(vals);" + newline + ...
 "mean = avg(vals,len);" + newline + ...
 "stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);" + newline + ...
 "plot(vals,""-+"");" + newline + newline + ...
 "function mean = avg(array,size)" + newline + ...
 "mean = sum(array)/size;";

Populate the block with code by modifying the Script property of the corresponding
Stateflow.EMChart object.

block.Script = str;

Open the function in the MATLAB Function Block Editor.

view(block)

8 Objects

8-18

The editor shows this code.

function [mean,stdev] = stats(vals)
% Calculates a statistical mean and a standard
% deviation for the values in vals.

len = length(vals);
mean = avg(vals,len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);
plot(vals,"-+");

function mean = avg(array,size)
mean = sum(array)/size;

Import Code from MATLAB Function

Open a Simulink model called myModel.

open_system("myModel")

Add a MATLAB Function block to myModel named My Function.

blockPath = "myModel/My Function";
add_block("simulink/User-Defined Functions/MATLAB Function",blockPath)

Populate the block with code from the MATLAB function myFunction.m.

block = find(get_param("myModel","Object"),"-isa", ...
 "Stateflow.EMChart","Path",blockPath);
block.Script = fileread("myFunction.m");

Find Number of MATLAB Function Blocks in Model

Open a Simulink model called myModel.

open_system("myModel")

Find the MATLAB Function blocks in the model.

blocks = find(get_param("myModel","Object"),"-isa","Stateflow.EMChart");

Count the number of blocks.

numel(blocks)

Version History
Introduced in R2011a

R2023a: Set output variables of any dimension as variable size

 Stateflow.EMChart

8-19

You can now set output variables of any dimension to be variable size by setting the
TreatDimensionOfLengthOneAsFixedSize property to false. Prior to R2023a, the object treats
variables with at least one dimension of length 1 as fixed size.

R2021b: Change to output column vectors

You can output column vectors in MATLAB Function blocks as two-dimensional or one-dimensional
data with the VectorOutputs1D property.

Before R2021b, MATLAB Function blocks always output column vectors as one-dimensional data.
After R2021b, MATLAB Function blocks output column vectors as two-dimensional data by default. To
maintain the original behavior of the block, set the VectorOutputs1D property to true.

See Also
Blocks
MATLAB Function

Functions
add_block | fileread | numel | get_param

Objects
MATLABFunctionConfiguration

Topics
“Overview of the Stateflow API” (Stateflow)
“Specify MATLAB Function Block Properties”
“Summary of Stateflow API Objects and Properties” (Stateflow)

8 Objects

8-20

Simulink.AliasType
Create alias for signal and parameter data type

Description
Use a Simulink.AliasType to create an alias of a built-in data type such as int8.

The name of the object is the alias. The data type to which an alias refers, such as int8, is the base
type. Alias names cannot be:

• Built-in data types, including:

• Floating-point types: half, single, double
• Integer types: int8, uint8, int16, uint16, int32, uint32, int64, or uint64.
• string

• Fixed-Point Designer types beginning with sfix, ufix, or flt.
• boolean

You create the object in the base workspace or a data dictionary. To use the alias, you use the name of
the object to set data types for signals, states, and parameters in a model.

Using aliases to specify signal and parameter data types can greatly simplify global changes to the
data types that a model specifies. In particular, changing the data type of all signals, states, and
parameters whose data type is specified by an alias requires changing only the base type of the alias.
By contrast, changing the data types of signals, states, and parameters whose data types are
specified by an actual type name requires respecifying the data type of each signal and parameter
individually.

You can use objects of this class to create an alias for Simulink built-in data types, fixed-point data
types, enumerated data types, Simulink.NumericType objects, and other Simulink.AliasType
objects. The code that you generate from a model (Simulink Coder) uses the alias only if you use an
ERT-based system target file (Embedded Coder).

Alternatively, to define and name a numeric data type, you can use an object of the class
Simulink.NumericType.

Creation
You can create a Simulink.AliasType object several ways.

• Interactively create a data type alias using the Type Editor or Model Explorer.
• Generate data type aliases that correspond to typedef statements in your external C code using

the Simulink.importExternalCTypes function.
• Programmatically create a data type alias using the Simulink.AliasType function described

here.

 Simulink.AliasType

8-21

Note You must create data type aliases in the MATLAB workspace or in a data dictionary. You cannot
create an alias in a model workspace.

Syntax
aliasObj = Simulink.AliasType
aliasObj = Simulink.AliasType(baseType)

Description

aliasObj = Simulink.AliasType returns a Simulink.AliasType object with default property
values.

aliasObj = Simulink.AliasType(baseType) returns a Simulink.AliasType object and
initializes the value of the BaseType property by using baseType.

Properties
To interactively edit the properties of a Simulink.AliasType object, use the Type Editor.

BaseType — Name of base data type
'double' (default) | character vector | string scalar

Name of the base data type that this alias renames, specified as a character vector or string scalar.
You can specify the name of a standard data type, such as int8 or half, or the name of a custom
data type, such as the name of another Simulink.AliasType object or the name of an enumeration.

To specify a fixed-point data type, you can use a call to the fixdt function, such as
'fixdt(0,16,7)'. To specify the characteristics of the type interactively, expand the Data Type
Assistant and set Mode to Fixed point. For information about using the Data Type Assistant, see
“Specify Data Types Using Data Type Assistant”.

You can, with one exception, specify a nonstandard data type, e.g., a data type defined by a
Simulink.NumericType object, by specifying the data type name. The exception is a
Simulink.NumericType object whose DataTypeMode is Fixed-point: unspecified scaling.

Note Fixed-point: unspecified scaling is a partially specified type whose definition is
completed by the block that uses the Simulink.NumericType object. Forbidding its use in alias
types avoids creating aliases that have different base types depending on where they are used.

Example: 'int8'
Example: 'myOtherAlias'
Data Types: char | string

DataScope — Specification to generate or import type definition in the generated code
'Auto' (default) | 'Exported' | 'Imported'

Specification to generate or import the type definition (typedef) in the generated code (Simulink
Coder), specified as 'Auto', 'Exported, or 'Imported'.

The table shows the effect of each option.

8 Objects

8-22

Value Action
'Auto' (default) If no value is specified for HeaderFile, export the type definition to

model_types.h, where model is the model name. If you have an
Embedded Coder license, and you have specified a data type
replacement, then export the type definition to rtwtypes.h.

If a value is specified for HeaderFile, import the data type definition
from the specified header file.

'Exported' Export the data type definition to a header file, which can be specified in
the HeaderFile property. If no value is specified for HeaderFile, the
header file name defaults to type.h. type is the data type name.

'Imported' Import the data type definition from a header file, which can be specified
in the HeaderFile property. If no value is specified for HeaderFile,
the header file name defaults to type.h. type is the data type name.

Set the data scope to Imported or Exported to avoid potential MISRA C:2012 violations.

For more information, see “Control File Placement of Custom Data Types” (Embedded Coder).

Description — Custom description of data type alias
'' (empty character vector) (default) | character vector

Custom description of the data type alias, specified as a character vector.
Example: 'This type alias corresponds to a floating-point implementation.'
Data Types: char

HeaderFile — Name of header file that contains type definition in the generated code
'' (empty character vector) (default) | character vector

Name of the header file that contains the type definition (typedef) in the generated code, specified
as a character vector.

If this property is specified, the specified name is used during code generation for importing or
exporting. If this property is empty, the value defaults to type.h if DataScope is 'Imported' or
'Exported', or defaults to model_types.h if DataScope is 'Auto'.

By default, the generated #include directive uses the preprocessor delimiter " instead of < and >.
To generate the directive #include <myTypes.h>, specify HeaderFile as '<myTypes.h>'.

For more information, see “Control File Placement of Custom Data Types” (Embedded Coder).

Corresponds to Header file in the property dialog box.
Example: 'myHdr.h'
Example: 'myHdr'
Example: 'myHdr.hpp'
Data Types: char

Examples

 Simulink.AliasType

8-23

Create Alias for Enumerated Data Type

To create an alias for an enumerated type called SlDemoSign:

myEnumAlias = Simulink.AliasType('Enum: SlDemoSign');

Create Alias for Fixed-Point Data Type

To create an alias for a fixed-point data type by using a Simulink.AliasType object, set the
BaseType property of the object by using a call to the fixdt function. The value of BaseType must
be specified as a character vector.

For example, this code creates an alias for an unsigned fixed-point data type with word length 16 and
fraction length 7.

myFixptAlias = Simulink.AliasType;
myFixptAlias.BaseType = 'fixdt(0,16,7)';

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

A Simulink.AliasType object appears in the generated code as a typedef statement. The
generated code uses the named type to define and declare data (variables).

The Simulink.AliasType class does not support multiword base data types for code generation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Tools
Type Editor

Functions
Simulink.importExternalCTypes

Objects
Simulink.NumericType

Topics
“Control Data Types of Signals”
“Manage Replacement of Simulink Data Types in Generated Code” (Embedded Coder)
“About Data Types in Simulink”

8 Objects

8-24

Simulink.Annotation
Create and specify properties of text, image, and area annotations

Description
Annotations are visual elements that you can use to add descriptive notes and callouts to your model.
You can programmatically access and modify them as Simulink.Annotation objects.

To get an existing Simulink.Annotation object, select the annotation. Then, use the
getCurrentAnnotation function.

Creation
You can create a Simulink.Annotation object in multiple ways.

• To programmatically create an Annotation object, use the Simulink.Annotation function
described on this page.

• To interactively create an Annotation object, see “Annotate Models”.

Syntax
a = Simulink.Annotation(sys,name)
a = Simulink.Annotation(path,Name,Value)

Description

a = Simulink.Annotation(sys,name) creates an annotation with the specified name and default
properties in the specified system or subsystem.

a = Simulink.Annotation(path,Name,Value) creates an annotation with properties on page 8-
26 specified using name-value pairs. For example, Simulink.Annotation('model/
annotation','BackgroundColor','yellow') creates an annotation with a yellow background.
You can specify multiple name-value pairs. Enclose each property name in quotes.

Input Arguments

sys — System or subsystem to contain annotation
character vector | string scalar

System or subsystem to contain annotation, specified as a character vector or string scalar.
Data Types: char | string

name — Name of new annotation
character vector

Name of new annotation, specified as a character vector.
Data Types: char

 Simulink.Annotation

8-25

path — Path to new annotation
character vector | string scalar

Path to new annotation, specified as a character vector or string scalar composed of the system name
and the annotation name.
Example: Simulink.Annotation('model/annotation')
Data Types: char | string

Properties
Interaction

Selected — Option to select annotation
'off' (default) | on/off logical value

Option to select or deselect the annotation, specified as 'on' or 'off', or numeric or logical 1
(true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus,
you can use the value of this property as a logical value. The value is stored as an on/off logical value
of type OnOffSwitchState.

• 'on' — Select annotation.
• 'off' — Remove selection from annotation.

Data Types: logical | char | string

Text

Name — Text of annotation
character vector | string scalar

Text of annotation, specified as a character vector or string scalar.

Same as Text.
Data Types: char | string

Text — Text of annotation
character vector | string scalar

Text of annotation, specified as a character vector or string scalar.

Same as Name.
Data Types: char | string

Interpreter — Option to format text style
'off' (default) | 'rich' | 'tex'

Option to format text style, specified as 'off' for plain text, 'rich' for rich text, or 'tex' for text
that contains LaTeX commands. When you format a plain text annotation using the formatting toolbar,
the annotation becomes a rich text annotation.

TeXMode — Option to render TeX markup
'off' (default) | on/off logical value

8 Objects

8-26

Option to render TeX markup, specified as 'on' or 'off', or numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
OnOffSwitchState.

• 'on' — Render TeX markup.
• 'off' — Do not render TeX markup.

MarkupType — Option to make markup annotation
'model' (default) | 'markup'

Option to make markup annotation, specified as 'model' or 'markup'.

Note Set the 'ShowMarkup' model parameter to 'on' to show markup annotations or 'off' to
hide markup annotations.

Font

FontName — Font name
'auto' (default) | character vector | string scalar

This property affects only plain text annotations.

Font name, specified as a character vector or string scalar. The default value, 'auto', uses the
default font specified for annotations in the Font Styles dialog box. To open the Font Styles dialog box,
on the Format tab, click the Font Properties button arrow, then click Fonts for Model.
Data Types: char | string

FontSize — Font size, in points
-1 (default) | numeric scalar

This property affects only plain text annotations.

Font size, in points, specified as a numeric scalar. The default value, -1, uses the default font size for
annotations specified in the Font Styles dialog box. To open the Font Styles dialog box, on the Format
tab, click the Font Properties button arrow, then click Fonts for Model.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FontWeight — Character thickness
'auto' (default) | 'normal' | 'bold' | 'light' | 'demi'

This property affects only plain text annotations.

Character thickness, specified as one of the values listed in the table.

Value Description
'auto' The default weight for annotations specified in

the Font Styles dialog box. To open the Font
Styles dialog box, on the Format tab, click the
Font Properties button arrow, then click Fonts
for Model.

 Simulink.Annotation

8-27

Value Description
'normal' Normal font weight.
'bold' Bold font weight.
'light' Not recommended.
'demi' Not recommended.

FontAngle — Angle of annotation font
'auto' (default) | 'normal' | 'italic' | 'oblique'

This property affects only plain text annotations.

Angle of annotation font, specified as one of the values listed in the table.

Value Description
'auto' The default font angle specified for annotations in

the Font Styles dialog box. To open the Font
Styles dialog box, on the Format tab, click the
Font Properties button arrow, then click Fonts
for Model.

'normal' Normal font.
'italic' Italic font.
'oblique' Oblique font (usually the same as italic font).

Colors and Effects

BackgroundColor — Background color of annotation
'white' (default) | RGB value array | 'automatic' (transparent) | 'black' | 'red' | 'green' |
'blue' | ...

Background color of annotation, specified as one of the values listed in this table.

Value Description
'automatic' Transparent
'black' Black
'white' White
'red' Red
'green' Green
'blue' Blue
'cyan' Cyan
'magenta' Magenta
'yellow' Yellow
'gray' Gray
'lightBlue' Light blue
'orange' Orange

8 Objects

8-28

Value Description
'darkGreen' Dark green
RGB value array, specified as '[r,g,b]' where
r, g, and b are the red, green, and blue values of
the color normalized to the range 0.0 to 1.0.

Fully opaque custom color

Data Types: char | string

ForegroundColor — Foreground color of annotation
'black' (default) | RGB value array | 'white' | 'red' | 'green' | 'blue' | ...

Foreground color of annotation, specified as one of the values listed in this table.

Value Description
'black' Black
'white' White
'red' Red
'green' Green
'blue' Blue
'cyan' Cyan
'magenta' Magenta
'yellow' Yellow
'gray' Gray
'lightBlue' Light blue
'orange' Orange
'darkGreen' Dark green
RGB value array, specified as '[r,g,b]' where
r, g, and b are the red, green, and blue values of
the color normalized to the range 0.0 to 1.0.

Fully opaque custom color

Data Types: char | string

DropShadow — Option to display drop shadow
'off' (default) | on/off logical value

Option to display drop shadow, specified as 'on' or 'off', or numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
OnOffSwitchState.

• 'on' — Display drop shadow.
• 'off' — Do not display drop shadow.

Size and Position

FixedHeight — Option to control annotation height
'off' (default) | on/off logical value

 Simulink.Annotation

8-29

Option to control annotation height, specified as 'on' or 'off', or numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
OnOffSwitchState.

• 'on' — The annotation does not resize to accommodate text changes. The visible text may be
truncated.

• 'off' — The annotation automatically resizes to accommodate text changes.

Interactively resizing the annotation sets this parameter to 'on'.

VerticalAlignment — Vertical anchor point of annotation
'top' (default) | 'middle' | 'bottom' | 'cap' | 'baseline'

Vertical anchor point of annotation, specified as one of the values listed in this table.

Value Description
'top' The top of the annotation remains fixed as the

annotation grows or shrinks.
'middle' The middle of the annotation remains fixed as the

annotation grows or shrinks.
'bottom' The bottom of the annotation remains fixed as the

annotation grows or shrinks.
'cap' Not recommended.
'baseline' Not recommended.

Dependencies

To enable VerticalAlignment, set FixedHeight to 'off'.

FixedWidth — Option to control annotation width
'off' (default) | on/off logical value

Option to control annotation width, specified as 'on' or 'off', or numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
OnOffSwitchState.

• 'on' — The annotation does not resize to accommodate text changes. When text cannot fit inside
the annotation bounds, it wraps onto the next line.

• 'off' — The annotation automatically resizes to accommodate text changes.

Interactively resizing the annotation sets this parameter to 'on'.

HorizontalAlignment — Horizontal alignment of text within annotation
'left' (default) | 'center' | 'right'

Horizontal alignment of text within annotation, specified as one of the values listed in the table.

Value Result
'left' Text in the annotation is left justified.

8 Objects

8-30

Value Result
'center' Text in the annotation is centered.
'right' Text in the annotation is right justified.

InternalMargins — Space between bounding box and borders
[0 0 0 0] (default) | 1x4 array

Space between bounding box of text and borders of annotation, specified as a 1x4 array. The array
provides the space between the text and each side of the annotation. The elements of the array
specify the space at the left, top, right, and bottom sides in order ([left top right bottom]).

Supported coordinates are between -1073740824 and 1073740823, inclusive.
Data Types: double

Position — Location of annotation
[0 0 28 14] (default) | 1x4 array

Location of annotation, specified as a 1x4 array. The array provides the locations of the annotation
sides, in pixels. The elements of the array specify the locations of the left, top, right, and bottom sides
in order ([left top right bottom]).

The origin is the upper-left corner of the Simulink Editor canvas before any canvas resizing. Positive
values are to the right of and down from the origin. Negative values are to the left of and up from the
origin. Supported coordinates are between -1073740824 and 1073740823, inclusive.

Dependencies

• To programmatically move the location of the right side without moving the left side the same
amount, FixedWidth must be set to 'on'.

• To programmatically move the location of the bottom side without moving the top side the same
amount, FixedHeight must be set to 'on'.

Data Types: double

Metadata

Description — Description of annotation
character vector | string scalar

Description of annotation, specified as a character vector or string scalar.
Data Types: char | string

Tag — Text tag for annotation
character vector | string scalar

Text tag for annotation, specified as a character vector or string scalar.
Data Types: char | string

UserData — Data to associate with annotation
user data

Data to associate with annotation.

 Simulink.Annotation

8-31

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi

Callback Functions

ClickFcn — MATLAB code that executes when you click annotation
character vector | string scalar

MATLAB code that executes when you click annotation, specified as a character vector or string
scalar.

For more information, see “Add Hyperlinks to Annotations”.

Dependencies

When UseDisplayTextAsClickCallback is set to 'on', the ClickFcn value matches the Name
and Text value.
Data Types: char | string

UseDisplayTextAsClickCallback — Option to use text as click function
'off' (default) | on/off logical value

Option to use text as click function, specified as 'on' or 'off', or numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
OnOffSwitchState.

• 'on' — Clicking the annotation runs the annotation text specified by Text, which is interpreted
as a valid MATLAB expression.

• 'off' — Clicking the annotation runs the function specified by ClickFcn, if available. If a click
function is not specified, clicking the annotation does not run a function.

For more information, see “Add Hyperlinks to Annotations”.

LoadFcn — MATLAB code to execute when model containing annotation loads
character vector | string scalar

MATLAB code to execute when model containing annotation is loaded, specified as a character vector
or string scalar. For more information, see “Add Hyperlinks to Annotations”.
Data Types: char | string

DeleteFcn — MATLAB code to execute before programmatically deleting annotation
character vector | string scalar

MATLAB code to execute before programmatically deleting annotation, specified as a character
vector or string scalar.

For more information, see “Add Hyperlinks to Annotations”.
Data Types: char | string

8 Objects

8-32

Information (Read-Only)

Type — Annotation type
'annotation' (default)

This property is read-only.

Annotation type, returned as 'annotation'.

AnnotationType — Type of annotation
'note_annotation' | 'area_annotation' | 'image_annotation'

This property is read-only.

Type of annotation, specified as 'note_annotation' for a text-based note, 'area_annotation'
for an area, or 'image_annotation' for an image.

To programmatically create an area, see “Create Area Programmatically”.

To programmatically create an image-only annotation, see setImage.

IsImage — Check whether annotation is image-only annotation
'off' (default) | 'on'

This property is read-only.

Check whether annotation is an image-only annotation, returned as 'on' or 'off'.

PlainText — Text in annotation
vector

This property is read-only.

Text in annotation, without formatting, returned as a vector.

Handle — Annotation handle
double

This property is read-only.

Annotation handle, returned as a double.

Parent — System that contains annotation
character vector

This property is read-only.

System that contains annotation, returned as a character vector.

Path — Path to annotation
character vector

This property is read-only.

Path to annotation, returned as a character vector.

 Simulink.Annotation

8-33

Object Functions
view Find annotation
setImage Specify image to display as annotation
delete Delete annotation

Examples

Create Annotation Programmatically

Programmatically create, modify, and view an annotation.

Open a new model.

open_system(new_system)

Create an annotation with default properties using the Simulink.Annotation function.

a = Simulink.Annotation(gcs,'This is an annotation.');

After creating the annotation, use dot notation to set property values. For example, apply an 18-point
font and light blue background to the annotation.

a.FontSize = 18;
a.BackgroundColor = 'lightBlue';

To view and briefly highlight the new annotation, use the view function.

view(a)

Create Annotation with Custom Properties

Programmatically create an annotation with custom properties.

Open a model.

new_system('CreateAnnotationModel')
open_system('CreateAnnotationModel')

Create an annotation with custom properties specified as comma-separated pairs consisting of the
property and value by using the Simulink.Annotation function. For example, apply an 18-point
font and light blue background to the annotation.

a = Simulink.Annotation('CreateAnnotationModel/This is an annotation.',...
'FontSize',18,'BackgroundColor','lightblue');

Tips
• To programmatically modify an existing annotation, use the find_system function to get the

annotation handle, then use the get_param function to get the object. For example:

h = find_system(gcs,'FindAll','on','Type','annotation');
a1 = get_param(h(1),'Object');

8 Objects

8-34

• If an annotation invoked a currently executing callback function, use the
getCallbackAnnotation to determine which annotation invoked it. The function returns the
corresponding Annotation object. This function is also useful if you write a callback function in a
separate MATLAB file that contains multiple callback calls.

Alternative Functionality
You also can create annotations using the add_block function. For example:

• add_block('built-in/Note','model/This is a
note.','BackgroundColor','yellow') creates a note annotation with a yellow background.

• add_block('built-in/Area','model/This is an Area.','Position',
[120,100,230,200]) creates an area annotation at the specified position.

To interactively create an annotation and edit its properties, see “Annotate Models”.

Version History
Introduced before R2006a

See Also
add_block | getCallbackAnnotation | find_system

Topics
“Annotate Models”
“Create and Edit Annotations Programmatically”

 Simulink.Annotation

8-35

delete
Package: Simulink

Delete annotation

Syntax
delete(a)

Description
delete(a) deletes the specified annotation.

Examples

Delete Annotation

Programmatically delete an annotation.

Open the vdp model.

vdp

To get the handles for the annotations in the model, use the find_system function.

h = find_system(gcs,'FindAll','on','Type','annotation');

To identify the annotations, query the text inside the annotations.

get_param(h,'PlainText')

ans = 2x1 cell
 {'Copyright 2004-2020 The MathWorks, Inc.'}
 {'van der Pol Equation' }

To delete the title of the model ('van der Pol Equation'), get the Simulink.Annotation
object that corresponds to the second handle.

a = get_param(h(2),'Object');

Delete the annotation from the model.

delete(a)

Input Arguments
a — Annotation
Simulink.Annotation object

8 Objects

8-36

Annotation, specified as a Simulink.Annotation object.

Version History
Introduced before R2006a

See Also
Simulink.Annotation | view | setImage

Topics
“Annotate Models”
“Create and Edit Annotations Programmatically”

 delete

8-37

setImage
Package: Simulink

Specify image to display as annotation

Syntax
setImage(a,img)

Description
setImage(a,img) changes the annotation to display only the specified image.

Examples

Add Image to Model

Add an image to your model, such as a logo, by creating an image-only annotation.

Open a new model and create an annotation in it.

open_system(new_system)
a = Simulink.Annotation(gcs,'This is an annotation.');

Change the annotation to display only the specified image.

img = fullfile(matlabroot,'toolbox','matlab','imagesci','peppers.png');
setImage(a,img)

Input Arguments
a — Annotation
Simulink.Annotation object

Annotation, specified as a Simulink.Annotation object.

img — Image filename
character vector | string scalar

Image filename, specified as a character vector or string scalar. The filename must contain the file
extension and can include a partial path, complete path, relative path, or no path.
Data Types: char | string

Version History
Introduced in R2014a

8 Objects

8-38

See Also
Simulink.Annotation | view | delete

Topics
“Annotate Models”
“Create and Edit Annotations Programmatically”

 setImage

8-39

view
Package: Simulink

Find annotation

Syntax
view(a)

Description
view(a) displays and briefly highlights the specified annotation.

Examples

Create Annotation Programmatically

Programmatically create, modify, and view an annotation.

Open a new model.

open_system(new_system)

Create an annotation with default properties using the Simulink.Annotation function.

a = Simulink.Annotation(gcs,'This is an annotation.');

After creating the annotation, use dot notation to set property values. For example, apply an 18-point
font and light blue background to the annotation.

a.FontSize = 18;
a.BackgroundColor = 'lightBlue';

To view and briefly highlight the new annotation, use the view function.

view(a)

Input Arguments
a — Annotation
Simulink.Annotation object

Annotation, specified as a Simulink.Annotation object.

Version History
Introduced before R2006a

8 Objects

8-40

See Also
Simulink.Annotation | delete | setImage

Topics
“Annotate Models”
“Create and Edit Annotations Programmatically”

 view

8-41

Simulink.BlockPath
Fully specified Simulink block path

Description
A Simulink.BlockPath object represents a fully specified block path that uniquely identifies a
block within a model hierarchy, even when the model hierarchy references the same model multiple
times.

Creation
Use either the Simulink.BlockPath or gcbp function to create a Simulink.BlockPath object. To
get a Simulink.BlockPath object for the most recently clicked or loaded block, use the gcbp
function.

Syntax
bp = Simulink.BlockPath
bp = Simulink.BlockPath(blockpath)
bp = Simulink.BlockPath(paths)
bp = Simulink.BlockPath(paths,subpath)

Description

bp = Simulink.BlockPath creates an empty BlockPath object.

bp = Simulink.BlockPath(blockpath) creates a copy of the specified BlockPath object.

bp = Simulink.BlockPath(paths) creates a BlockPath object from the specified character
vector or cell array of character vectors. Each character vector represents a path at a level of the
model hierarchy. Simulink builds the full block path based on the character vectors.

bp = Simulink.BlockPath(paths,subpath) additionally specifies an individual component of
the block, such as a signal, that you specify with the subpath argument.

Input Arguments

blockpath — Existing BlockPath object
BlockPath object

Existing BlockPath object that you want to copy, specified as a BlockPath object.

paths — Paths used to build block path
character vector | cell array of character vectors

Paths used to build the block path, specified as a character vector or cell array of character vectors.

Specify each character vector in order, from the top model to the specific block for which you are
creating a BlockPath object.

8 Objects

8-42

Each character vector must be a path to a block within the Simulink model. The block must be:

• A block in a single model
• A Model block (except for the last character vector, which may be a block other than a Model

block)
• A block in the model referenced by the Model block that the previous character vector specifies

subpath — Individual component of block
character vector

Individual component of a block, such as a signal, specified as a character vector.

Properties
SubPath — Component of block
'' (default) | character vector

Component of the block, specified as a character vector that provides the block path. For example, if
the block path refers to a Stateflow chart, you can use SubPath to indicate the chart signals.
Example: 'gear_state.first'
Data Types: char

Object Functions
convertToCell Convert block path to cell array of character vectors
getBlock Get single block path in model reference hierarchy
getLength Get number of hierarchy levels in block path
open Open specified model, library, subsystem, or block
validate Determine whether block path represents valid block hierarchy

Examples

Create Simulink.BlockPath Object Using Cell Array

Create a block path object called bp2, using a cell array of character vectors representing elements
of the block path.

sldemo_mdlref_depgraph
bp2 = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
'sldemo_mdlref_F2C/Gain1'})

bp2 =

 Simulink.BlockPath
 Package: Simulink

 Block Path:
 sldemo_mdlref_depgraph/thermostat
 sldemo_mdlref_heater/Fahrenheit to Celsius
 sldemo_mdlref_F2C/Gain1

 Simulink.BlockPath

8-43

The resulting block path reflects the model reference hierarchy for the block path.

Version History
Introduced in R2010b

See Also
Classes
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Dataset

Functions
gcbp

8 Objects

8-44

convertToCell
Package: Simulink

Convert block path to cell array of character vectors

Syntax
cellarray = convertToCell(bp)

Description
cellarray = convertToCell(bp) converts a block path to a cell array of character vectors.

Examples

Create Cell Array that Represents Block Path

Open the example model, which references multiple models.

sldemo_mdlref_depgraph

Create a Simulink.BlockPath object.

bp = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
'sldemo_mdlref_F2C/Gain1'});

Create a cell array that represents the elements of the block path.

cellarray = convertToCell(bp)

cellarray =

 3×1 cell array

 {'sldemo_mdlref_depgraph/thermostat' }
 {'sldemo_mdlref_heater/Fahrenheit to Celsius'}
 {'sldemo_mdlref_F2C/Gain1' }

Input Arguments
bp — Fully specified block path
Simulink.BlockPath object

Fully specified block path, specified as a Simulink.BlockPath object. This block path uniquely
identifies a block within a model hierarchy, even when the model hierarchy references the same
model multiple times.

 convertToCell

8-45

Output Arguments
cellarray — Block path elements
cell array of character vectors

Block path elements, returned as a cell array of character vectors.

Version History
Introduced in R2010b

See Also
Objects
Simulink.BlockPath

Functions
getBlock | getLength | open | validate

8 Objects

8-46

getBlock
Package: Simulink

Get single block path in model reference hierarchy

Syntax
block = getBlock(bp,index)

Description
block = getBlock(bp,index) returns the block path of the block at the level of the model
reference hierarchy specified by the index argument.

Examples

Get Block Path for Specified Model Hierarchy Level

Open the example model, which references multiple models.

sldemo_mdlref_depgraph

Create a Simulink.BlockPath object.

bp = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius', ...
'sldemo_mdlref_F2C/Gain1'});

Get the block for the second level in the model reference hierarchy.

blockpath = getBlock(bp,2)

blockpath =

 'sldemo_mdlref_heater/Fahrenheit to Celsius'

Get the block for the third level in the model reference hierarchy.

blockpath = getBlock(bp,3)

blockpath =

 'sldemo_mdlref_F2C/Gain1'

Input Arguments
bp — Fully specified block path
Simulink.BlockPath object

 getBlock

8-47

Fully specified block path, specified as a Simulink.BlockPath object. This block path uniquely
identifies a block within a model hierarchy, even when the model hierarchy references the same
model multiple times.

index — Index of block
integer

Index of the block for which you want to get the block path, specified as an integer. The index reflects
the level in the model reference hierarchy. For example:

• An index of 1 represents a block in the top model.
• An index of 2 represents a block in the model that is referenced by the Model block of index 1.
• An index of n represents a block in the model that is referenced by the Model block of index n-1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
block — Block path of block
character vector

Block path of the block at the level of the model reference hierarchy specified by the index
argument, returned as a character vector.

Version History
Introduced in R2010b

See Also
Objects
Simulink.BlockPath

Functions
convertToCell | getLength | open | validate

8 Objects

8-48

getLength
Package: Simulink

Get number of hierarchy levels in block path

Syntax
length = getLength(bp)

Description
length = getLength(bp) returns a numeric value that corresponds to the number of levels in the
model reference hierarchy for the block path.

Examples

Get Number of Hierarchy Levels in Block Path

Create a Simulink.BlockPath object that represents a referenced model within a model hierarchy.

load_system('sldemo_mdlref_depgraph')
bp = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius'});

Get the number of hierarchy levels in the block path for the Simulink.BlockPath object.

length = getLength(bp)

length =

 2

Input Arguments
bp — Fully specified block path
Simulink.BlockPath object

Fully specified block path, specified as a Simulink.BlockPath object. This block path uniquely
identifies a block within a model hierarchy, even when the model hierarchy references the same
model multiple times.

Output Arguments
length — Length of block path
integer

Length of the block path, returned as an integer. The length is the number of levels in the model
reference hierarchy.

 getLength

8-49

Version History
Introduced in R2010b

See Also
Objects
Simulink.BlockPath

Functions
convertToCell | getBlock | open | validate

8 Objects

8-50

open
Package: Simulink

Open specified model, library, subsystem, or block

Syntax
open(bp)
open(bp,Name,Value)

Description
open(bp) opens the specified model, library, subsystem, or block. This is equivalent to double-
clicking the model or library in the Current Folder browser or the subsystem or block in the Simulink
Editor.

open(bp,Name,Value) opens the specified model, library, subsystem, or block with additional
options.

Examples

Open Referenced Model in Context of Model Hierarchy

Create a Simulink.BlockPath object that represents a referenced model within a model hierarchy.

load_system('sldemo_mdlref_depgraph')
bp = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius'});

Open the referenced model specified by bp in the context of the model hierarchy.

open(bp)

Open Referenced Model in New Window

Open the sldemo_mdlref_depgraph model.

sldemo_mdlref_depgraph

Create a Simulink.BlockPath object that represents a referenced model within a model hierarchy.

bp = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius'})

Open the referenced model specified by bp in a new window.

 open

8-51

open(bp,'OpenType','new-window')

Input Arguments
bp — Fully specified block path
Simulink.BlockPath object

Fully specified block path, specified as a Simulink.BlockPath object. This block path uniquely
identifies a block within a model hierarchy, even when the model hierarchy references the same
model multiple times.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: open(bp,'OpenType','new-window')

OpenType — Option to open object in new tab or window
'current-tab' (default) | 'new-tab' | 'new-window'

Option to open object in a new tab or window, specified as the comma-separated pair consisting of
'OpenType' and 'current-tab', 'new-tab', or 'new-window'. This option determines whether
the subsystem or model specified by a Simulink.BlockPath object opens in the current window
and tab, a new tab, or a new window, respectively.
Data Types: char | string

Force — Option to open object under block mask
'off' (default) | 'on'

Option to open the object under the block mask, specified as the comma-separated pair consisting of
'Force' and 'off' or 'on'. When this argument is set to 'off', the function opens the block
mask. When this argument is set to 'on', the function opens the dialog box of the block under the
mask or opens the masked system in a new tab, which is equivalent to the Look Under Mask menu
item. It forces the Simulink.BlockPath object to open, regardless of the block mask.
Data Types: char | string

Version History
Introduced in R2019a

See Also
Objects
Simulink.BlockPath

Functions
open_system | validate

8 Objects

8-52

validate
Package: Simulink

Determine whether block path represents valid block hierarchy

Syntax
validate(bp)

Description
validate(bp) determines whether the block path represents a valid block hierarchy. If the block
path is invalid, the function returns an error. The function checks that:

• All elements in the block path represent valid blocks
• Each element except the last is a valid Model block and references the model of the following

element

Examples

Validate Block Path

Create a Simulink.BlockPath object that incorrectly represents a referenced model within a
model hierarchy.

load_system('sldemo_mdlref_depgraph')
bp = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/F2C'});

Check whether the block path is valid.

validate(bp);

The function returns an error because the block path is invalid. It does not specify the name of a
block in the sldemo_mdlref_heater model.

Create a Simulink.BlockPath object that correctly represents the referenced model within a
model hierarchy.

bp = Simulink.BlockPath({'sldemo_mdlref_depgraph/thermostat', ...
'sldemo_mdlref_heater/Fahrenheit to Celsius'});

Check whether the block path is valid.

validate(bp);

 validate

8-53

The block path is valid, so the function does not return an error.

Input Arguments
bp — Fully specified block path
Simulink.BlockPath object

Fully specified block path, specified as a Simulink.BlockPath object. This block path uniquely
identifies a block within a model hierarchy, even when the model hierarchy references the same
model multiple times.

Version History
Introduced in R2010b

See Also
Objects
Simulink.BlockPath

Functions
convertToCell | getBlock | getLength | open

8 Objects

8-54

Simulink.Bus
Specify properties of buses

Description
A Simulink.Bus object, when used with Simulink.BusElement objects, specifies and validates
the properties of a bus and its elements. When you simulate or update a model, the software checks
whether buses connected to blocks match the Simulink.Bus objects that the blocks specify.

A bus object specifies only the architectural properties of a bus. For example, a bus object can specify
element names, hierarchy, order, and data types. A bus object is analogous to a struct in C code
because it defines the members of the bus but does not create the bus. A bus object is also similar to
a cable connector. The connector defines all the pins and their configuration and controls what types
of wires can be connected to it. Similarly, a bus object defines the configuration and properties of the
signals that the associated bus must have.

Simulink.Bus objects contain Simulink.BusElement objects. Each bus element object specifies
the properties of a signal in a bus, such as its name, data type, and dimension. The order of the bus
element objects in the bus object defines the order of the signals in the bus.

A bus object can specify properties that were not defined by constituent signals, but were left to be
inherited.

To create and modify bus objects in the base workspace or a data dictionary, you can use the Type
Editor, Model Explorer, or MATLAB commands. You cannot store Simulink.Bus objects in model
workspaces.

To use Simulink.Bus objects in a model, see “Specify Bus Properties with Simulink.Bus Object Data
Types”.

Creation
You can create a Simulink.Bus object in multiple ways.

• To interactively create a Simulink.Bus object, use the Type Editor or Model Explorer.
• To programmatically create a Simulink.Bus object with default properties, use the

Simulink.Bus function described below.
• To programmatically create Simulink.Bus objects from blocks in a model, MATLAB data, and

external C code, see “Programmatically Create Simulink Bus Objects”.

Syntax
name = Simulink.Bus

Description

name = Simulink.Bus returns a Simulink.Bus object with default property values. The name of
the object is the name of the MATLAB variable to which you assign the object.

 Simulink.Bus

8-55

Properties
Description — Bus description
'' (default) | character vector | string scalar

Bus description, specified as a character vector or string scalar. Use the description to document
information about the object, such as the kind of signal it applies to or where the object is used. This
information does not affect Simulink processing.
Data Types: char | string

Elements — Elements of bus
empty array (default) | array of Simulink.BusElement objects

Elements of bus, specified as an array of Simulink.BusElement objects. Each bus element object
defines the name, data type, dimensions, and other properties of a signal within the bus. For more
information, see Simulink.BusElement.

DataScope — Data type definition mode in generated code
'Auto' (default) | 'Exported' | 'Imported'

Data type definition mode in generated code, specified as 'Auto', 'Exported', or 'Imported'.
This property specifies whether during code generation the data type definition is imported from, or
exported to, the header file specified with the HeaderFile property.

Value Action
'Auto' (default) Import the data type definition from the specified header file. If you do

not specify the header file, export the data type definition to the default
header file.

'Exported' Export the data type definition to the specified header file or default
header file.

'Imported' Import the data type definition from the specified header file or default
header file.

Note To import enum or struct types that are not declared with a typedef statement:

• Include (#include) the header file containing the declaration in the Simulation Target
configuration parameters.

• Ensure that Import custom code in the Simulation Target configuration parameters is
selected. This parameter is selected by default.

To avoid potential MISRA C:2012 violations, set the data scope to Imported or Exported.
Data Types: char | string

HeaderFile — C header file used with data type definition
'' (default) | character vector | string scalar

C header file used with data type definition, specified as a character vector or string scalar. Based on
the value of the DataScope property, import the data type definition from or export the data type

8 Objects

8-56

definition to the header file. The Simulink Coder software uses this property for code generation.
Simulink software ignores this property.

By default, the generated #include directive uses the preprocessor delimiter " instead of < and >.
To generate the directive #include <myTypes.h>, specify HeaderFile as <myTypes.h>.
Data Types: char | string

Alignment — Data alignment boundary
-1 (default) | integer

Data alignment boundary, specified as an integer, in number of bytes. The Simulink Coder software
uses this property for code generation. Simulink software ignores this property.

The starting memory address for the data allocated for the bus is a multiple of the Alignment
setting. If the object occurs in a context that requires alignment, you must specify an Alignment
value with a positive integer that is a power of 2, not exceeding 128.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PreserveElementDimensions — Specification to preserve dimensions of multidimensional
bus elements
'false' (default) | 'true'

Specification for the code generator to preserve dimensions of multidimensional bus elements in the
generated code, specified as 'false' or 'true'. For more information, see “Preserve Dimensions of
Bus Elements in Generated Code” (Embedded Coder).
Data Types: logical

Object Functions
getNumLeafBusElements Number of leaf elements in Simulink.Bus object
getLeafBusElements Leaf elements in Simulink.Bus object

Examples

Create Bus Objects from Bus Element Objects

Create a hierarchy of Simulink.Bus objects using arrays of Simulink.BusElement objects.

Create an array that contains two BusElement objects, named Chirp and Sine, in the base
workspace.

elems(1) = Simulink.BusElement;
elems(1).Name = 'Chirp';

elems(2) = Simulink.BusElement;
elems(2).Name = 'Sine';

Array indexing lets you create and access the elements of the array. Dot notation lets you access
property values of the elements.

Create a Bus object, named Sinusoidal, that contains the elements defined in the elems array.

 Simulink.Bus

8-57

Sinusoidal = Simulink.Bus;
Sinusoidal.Elements = elems;

To create a hierarchy of Bus objects, create another Bus object to reference the Bus object named
Sinusoidal.

Create an array that contains two BusElement objects, named NestedBus and Step. Specify the
Bus object named Sinusoidal as the data type of the NestedBus element.

clear elems

elems(1) = Simulink.BusElement;
elems(1).Name = 'NestedBus';
elems(1).DataType = 'Bus: Sinusoidal';

elems(2) = Simulink.BusElement;
elems(2).Name = 'Step';

Create a Bus object, named TopBus, that contains the elements defined in the elems array.

TopBus = Simulink.Bus;
TopBus.Elements = elems;

You can view the hierarchy of the created objects in the Type Editor.

typeeditor

Inspect Bus Objects Programmatically

While the Type Editor lets you inspect a hierarchy of Simulink.Bus objects interactively, you can
also inspect the objects programmatically.

Open the example. Then, load the bus objects by running the function named
busObjectDefinition.

busObjectDefinition

Two bus objects appear in the base workspace.

Inspect Top-Level Bus Object

Inspect the top-level bus object, which is named TopBus.

TopBus

TopBus =
 Bus with properties:

 Description: ''
 DataScope: 'Auto'
 HeaderFile: ''
 Alignment: -1
 PreserveElementDimensions: 0
 Elements: [2x1 Simulink.BusElement]

8 Objects

8-58

Based on the value of the Elements property, TopBus contains two Simulink.BusElement objects.

Inspect the elements of TopBus.

TopBus.Elements(1)

ans =
 BusElement with properties:

 Name: 'NestedBus'
 Complexity: 'real'
 Dimensions: 1
 DataType: 'Bus: Sinusoidal'
 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 Unit: ''
 Description: ''

Based on the value of the DataType property, the first element represents a nested bus object named
Sinusoidal.

TopBus.Elements(2)

ans =
 BusElement with properties:

 Name: 'Step'
 Complexity: 'real'
 Dimensions: 1
 DataType: 'double'
 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 Unit: ''
 Description: ''

Based on the values of the Name and DataType properties, the second element represents a signal
named Step.

Inspect Nested Bus Object

Inspect the elements of the nested Simulink.Bus object named Sinusoidal.

Sinusoidal

Sinusoidal =
 Bus with properties:

 Description: ''
 DataScope: 'Auto'
 HeaderFile: ''
 Alignment: -1
 PreserveElementDimensions: 0
 Elements: [2x1 Simulink.BusElement]

 Simulink.Bus

8-59

Based on the value of the Elements property, Sinusoidal contains two Simulink.BusElement
objects.

Inspect the elements of Sinusoidal.

Sinusoidal.Elements(1)

ans =
 BusElement with properties:

 Name: 'Chirp'
 Complexity: 'real'
 Dimensions: 1
 DataType: 'double'
 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 Unit: ''
 Description: ''

Sinusoidal.Elements(2)

ans =
 BusElement with properties:

 Name: 'Sine'
 Complexity: 'real'
 Dimensions: 1
 DataType: 'double'
 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 Unit: ''
 Description: ''

Based on the values of the Name and DataType properties, the elements represent two signals:
Chirp and Sine.

Inspect Leaf Elements of Bus Objects

To directly inspect the leaf elements of a bus object, use the getNumLeafBusElements and
getLeafBusElements object functions.

To get the number of leaf elements in TopBus, use the getNumLeafBusElements object function.

num = getNumLeafBusElements(TopBus)

num = 3

To get information about the leaf elements in TopBus, use the getLeafBusElements object
function. For example, inspect the first element of TopBus.

leaf = getLeafBusElements(TopBus);
leaf(1)

ans =
 BusElement with properties:

8 Objects

8-60

 Name: 'Chirp'
 Complexity: 'real'
 Dimensions: 1
 DataType: 'double'
 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 Unit: ''
 Description: ''

Version History
Introduced before R2006a

See Also
Functions
Simulink.Bus.cellToObject | Simulink.Bus.createObject |
Simulink.Bus.createMATLABStruct | Simulink.Bus.objectToCell | Simulink.Bus.save

Tools
Type Editor

Objects
Simulink.BusElement

Topics
“Specify Bus Properties with Simulink.Bus Object Data Types”
“Programmatically Create Simulink Bus Objects”
“Organize Data into Structures in Generated Code” (Simulink Coder)
“Data Alignment for Code Replacement” (Embedded Coder)

 Simulink.Bus

8-61

getLeafBusElements
Package: Simulink

Leaf elements in Simulink.Bus object

Syntax
getLeafBusElements(busObj)

Description
getLeafBusElements(busObj) returns the leaf elements in the specified Simulink.Bus object.

A leaf element of a bus object is any element of the bus object that is not defined by another bus
object. For example, a signal or message can be a leaf element of a bus object.

Examples

Get Information about Leaf Elements in Bus Object

Any element that is not defined by a bus object is a leaf element. For example, signals can be leaf
elements of a bus object.

Load a bus object into the base workspace by running the function named busObjectDefinition.

busObjectDefinition

The top-level bus object, named TopBus, defines a signal named Step and a nested bus object. The
nested bus object defines two signals: Chirp and Sine.

Get information about the leaf elements in TopBus.

leaf = getLeafBusElements(TopBus)

leaf =
 3x1 BusElement array with properties:

 Min
 Max
 DimensionsMode
 Description
 Unit
 Name
 DataType
 Complexity
 Dimensions

Get the properties of a leaf element.

leaf(1)

8 Objects

8-62

ans =
 BusElement with properties:

 Name: 'Chirp'
 Complexity: 'real'
 Dimensions: 1
 DataType: 'double'
 Min: []
 Max: []
 DimensionsMode: 'Fixed'
 Unit: ''
 Description: ''

Input Arguments
busObj — Bus definition
Simulink.Bus object

Bus definition, specified as a Simulink.Bus object. The top-level bus object and each nested bus
object must be in the base workspace.

Tips
Use the getLeafBusElements function to determine the data type, complexity, and dimensions of
MATLAB timeseries objects needed to create a structure of timeseries objects from a bus.

Version History
Introduced in R2010b

See Also
getNumLeafBusElements

Topics
“Load Bus Data to Root-Level Input Ports”

 getLeafBusElements

8-63

getNumLeafBusElements
Package: Simulink

Number of leaf elements in Simulink.Bus object

Syntax
getNumLeafBusElements(busObj)

Description
getNumLeafBusElements(busObj) returns the number of leaf elements in the specified
Simulink.Bus object.

A leaf element of a bus object is any element of the bus object that is not defined by another bus
object. For example, a signal or message can be a leaf element of a bus object.

Examples

Get Number of Leaf Elements in Bus Object

Load a bus object into the base workspace by running the function named busObjectDefinition.

busObjectDefinition

The top-level bus object, named TopBus, defines a signal named Step and a nested bus object. The
nested bus object defines two signals: Chirp and Sine.

Get the number of leaf elements in TopBus.

num = getNumLeafBusElements(TopBus)

num = 3

TopBus has three leaf elements: Step, Chirp, and Sine.

Input Arguments
busObj — Bus definition
Simulink.Bus object

Bus definition, specified as a Simulink.Bus object. The top-level bus object and each nested bus
object must be in the base workspace.

Tips
Use the getNumLeafBusElements function to determine the number of MATLAB timeseries
objects needed to create a structure of timeseries objects from a bus.

8 Objects

8-64

Version History
Introduced in R2010b

See Also
getLeafBusElements

Topics
“Load Bus Data to Root-Level Input Ports”

 getNumLeafBusElements

8-65

Simulink.BusElement
Specify properties of elements of buses

Description
A Simulink.BusElement object is an element of a Simulink.Bus object that validates the
properties of an element in a bus. When you simulate or update a model, the software checks whether
the properties specified by the object match the properties specified by the corresponding bus
elements.

You can specify a bus object, but not a bus element object, as a data type.

To create and modify Simulink.Bus and Simulink.BusElement objects in the base workspace or
a data dictionary, you can use the Type Editor, Model Explorer, or MATLAB commands. You cannot
store Bus objects in model workspaces.

Creation
You can create a Simulink.BusElement object in multiple ways.

• To interactively create a Simulink.BusElement object, use the Type Editor or Model
Explorer.

• To programmatically create a default Simulink.BusElement object, use the
Simulink.BusElement function (described here).

• To programmatically create Simulink.BusElement objects from blocks in a model, MATLAB
data, and external C code, see “Programmatically Create Simulink Bus Objects”.

Syntax
be = Simulink.BusElement

Description

be = Simulink.BusElement returns a bus element object with default property values.

Properties
Name — Name of element
'a' (default) | character vector

Name of element, specified as a character vector.

To validate the properties of a signal against a Simulink.BusElement object, the signal name must
be a valid identifier that starts with an alphabetic character or underscore (_), followed by
alphanumeric characters or underscores.
Data Types: char | string

8 Objects

8-66

Complexity — Numeric type of element
'real' (default) | 'complex'

Numeric type of the element, specified as 'real' or 'complex'.
Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the complexity specified by the Simulink.ValueType
object or the Simulink.BusElement objects in the Simulink.Bus object instead.
Data Types: char | string

Dimensions — Dimensions of element
1 (default) | scalar | vector

Dimensions of element, specified as a scalar or vector.

To use symbolic dimensions in generated code, see “Implement Symbolic Dimensions for Array Sizes
in Generated Code” (Embedded Coder).
Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
object. The software uses the dimensions specified by the Simulink.ValueType object instead.
Data Types: double

DataType — Data type of element
'double' (default) | character vector | string scalar

Data type of element, specified as a character vector or string scalar.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant . For more information, see “Specify Data Types Using Data Type
Assistant”.

You can specify any of these options:

• Built-in Simulink data type — For example, specify 'single' or 'uint8'. See “Data Types
Supported by Simulink”.

• Fixed-point data type — Use the fixdt function. For example, specify 'fixdt(1,16,0)'.
• Enumerated data type — Use the name of the type preceded by Enum:. For example, specify

'Enum: myEnumType'.
• Bus data type — Use the name of the Simulink.Bus object preceded by Bus:. For example,

specify 'Bus: myBusObject'.
• Value type — Use the name of the Simulink.ValueType object preceded by ValueType:. For

example, specify 'ValueType: windVelocity'.
• Custom data type — Use a MATLAB expression that specifies the type. For example, you can

specify a Simulink.NumericType object whose DataTypeMode property is set to a value other
than 'Fixed-point: unspecified scaling'.

Specifying a Simulink.Bus object allows you to create Bus objects that specify hierarchical buses,
that is, buses that contain other buses.

 Simulink.BusElement

8-67

When you specify a Simulink.ValueType or Simulink.Bus object as the data type, some
properties of the Simulink.BusElement object are ignored. For example, the Min, Max, and Unit
properties of the Simulink.BusElement object are ignored. The software uses the corresponding
properties of the Simulink.ValueType object or Simulink.BusElement objects in the
Simulink.Bus object instead.
Data Types: char | string

Min — Minimum value of element
[] (default) | scalar

Minimum value of the element, specified as a scalar. This value must be a finite real double scalar or,
if the element is a bus, the value must be empty, [].
Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the minimum values specified by the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead.
Data Types: double

Max — Maximum value of element
[] (default) | scalar

Maximum value of the element, specified as a scalar. This value must be a finite real double scalar or,
if the element is a bus, the value must be empty, [].
Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the maximum values specified by the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead.
Data Types: double

DimensionsMode — Specify how to handle size of element
'Fixed' (default) | 'Variable'

Specify how to handle size of element, specified as 'Fixed' or 'Variable'.
Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the dimensions modes specified by the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead.
Data Types: char | string

Unit — Physical unit for expressing element
'' (default) | character vector

Physical unit for expressing element, specified as a character vector.

For more information, see “Unit Specification in Simulink Models”.

8 Objects

8-68

Example: 'inches'

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the units specified by the Simulink.ValueType object
or the Simulink.BusElement objects in the Simulink.Bus object instead.
Data Types: char | string

Description — Bus element description
'' (default) | character vector

Bus element description, specified as a character vector. Use the description to document information
about the BusElement object, such as the kind of signal it applies to. This information does not affect
Simulink processing.

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
object. The software uses the description of the Simulink.ValueType object instead.
Data Types: char | string

Examples

Create Bus Objects from Bus Element Objects

Create a hierarchy of Simulink.Bus objects using arrays of Simulink.BusElement objects.

Create an array that contains two BusElement objects, named Chirp and Sine, in the base
workspace.

elems(1) = Simulink.BusElement;
elems(1).Name = 'Chirp';

elems(2) = Simulink.BusElement;
elems(2).Name = 'Sine';

Array indexing lets you create and access the elements of the array. Dot notation lets you access
property values of the elements.

Create a Bus object, named Sinusoidal, that contains the elements defined in the elems array.

Sinusoidal = Simulink.Bus;
Sinusoidal.Elements = elems;

To create a hierarchy of Bus objects, create another Bus object to reference the Bus object named
Sinusoidal.

Create an array that contains two BusElement objects, named NestedBus and Step. Specify the
Bus object named Sinusoidal as the data type of the NestedBus element.

clear elems

elems(1) = Simulink.BusElement;

 Simulink.BusElement

8-69

elems(1).Name = 'NestedBus';
elems(1).DataType = 'Bus: Sinusoidal';

elems(2) = Simulink.BusElement;
elems(2).Name = 'Step';

Create a Bus object, named TopBus, that contains the elements defined in the elems array.

TopBus = Simulink.Bus;
TopBus.Elements = elems;

You can view the hierarchy of the created objects in the Type Editor.

typeeditor

Version History
Introduced before R2006a

R2020b: Simulink.BusElement objects no longer support the SampleTime property
Errors starting in R2020b

The SampleTime property of Simulink.BusElement objects is no longer supported.

BusElement objects that specify a sample time cause an error during compile. To remove the sample
time specification from a BusElement object, set its SampleTime to -1.

Simulink.Bus.cellToObject continues to accept cell arrays that specify sample time for bus
elements. Simulink.Bus.objectToCell, Simulink.Bus.save, and
Simulink.Bus.createObject continue to return cell arrays or arrays that include the sample time
when it is noninherited. When the sample time is inherited (-1), they omit it. Similarly, the Type
Editor and Model Explorer omit the sample time when it is inherited.

To specify the sample time for an element of a bus, use the SampleTime block parameter of
corresponding blocks. For example, you can use In Bus Element, Out Bus Element, and Signal
Specification blocks to specify sample time.

R2016b: Simulink.BusElement objects will no longer support the SamplingMode property
Not recommended starting in R2016b

In R2016b, the SamplingMode property of Simulink.BusElement objects was removed. Scripts
that use the SamplingMode property of Simulink.BusElement objects continue to work.
Simulink.Bus.cellToObject continues to require the SamplingMode field and
Simulink.Bus.objectToCell continues to include the sampling mode in the output cell arrays.

In a future release, support for the SamplingMode property will be removed.

To specify whether a signal is sample-based or frame-based, define the sampling mode of input
signals at the block level instead of at the signal level.

See Also
Simulink.Bus | Simulink.ValueType

8 Objects

8-70

Topics
“Specify Bus Properties with Simulink.Bus Object Data Types”
“Programmatically Create Simulink Bus Objects”
“Signal Names and Labels”
“Specify Application-Specific Signal Properties”
“Specify Sample Time”
“Variable-Size Signal Basics”

 Simulink.BusElement

8-71

Simulink.CoderInfo
Specify information needed to generate code for signal, state, or parameter data

Description
Use a Simulink.CoderInfo object to specify code generation settings for signal, state, and
parameter data in a model.

The software creates a Simulink.CoderInfo object for each data object that you create. Data
objects represent signal, state, or parameter data. The Simulink.CoderInfo object exists in the
CoderInfo property of each data object.

Data objects include objects of these classes:

• Simulink.Parameter
• Simulink.Signal
• Simulink.LookupTable
• Simulink.Breakpoint
• Simulink.DualScaledParameter

Use the properties of the Simulink.CoderInfo object to configure the representation of the parent
data object in the generated code.

You can set the properties of a Simulink.CoderInfo object through the CoderInfo property or the
property dialog box of the parent data object. For example, the following MATLAB expression sets the
StorageClass property of a Simulink.CoderInfo object used by a signal object named
mysignal.

mysignal.CoderInfo.StorageClass = 'ExportedGlobal';

Creation
When you create a data object, the software sets the value of the CoderInfo property by creating a
Simulink.CoderInfo object. You do not need to create a Simulink.CoderInfo object explicitly.

Properties
Identifier — Alternative name for code generation
'' (empty character vector) (default) | character vector

Alternative name for the data in the generated code, specified as a character vector.
Example: 'myOtherName'
Data Types: char

Alignment — Data alignment boundary
-1 (default) | positive integer

8 Objects

8-72

Data alignment boundary for this data, specified as a positive integer that is a power of 2, not
exceeding 128. Specify an integer number of double data type. See “Data Alignment for Code
Replacement” (Embedded Coder) for more information.
Example: 8
Data Types: double
Complex Number Support: Yes

CustomAttributes — Custom storage class attributes of this data
SimulinkCSC.AttribClass_Simulink_Default object (default) | custom attributes object

Custom storage class attributes of this data, returned as a custom attributes object. You must set the
property StorageClass to 'Custom' to enable this property.

Depending on the custom storage class that you apply by using the CustomStorageClass property
of the Simulink.CoderInfo object, Simulink sets the value of this property by creating a custom
attributes object. Then, you can set the values of the properties of the custom attributes object. See
“Organize Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder) for
more information.

CustomStorageClass — Custom storage class of this data
'Default' (default) | character vector

Custom storage class of this data, specified as a character vector. You must set the property
StorageClass to 'Custom' to enable this property.

For a list of valid custom storage classes (Embedded Coder) when you create the data object from the
Simulink package, see “Choose Storage Class for Controlling Data Representation in Generated
Code” (Embedded Coder).
Example: 'ExportToFile'
Data Types: char

StorageClass — Storage class of this data
'Auto' (default) | character vector

Storage class of this data, specified as a character vector. For more information, see “C Code
Generation Configuration for Model Interface Elements” (Simulink Coder).

The storage class of a Simulink.Signal object in a model workspace must be 'Auto'.
Example: 'ExportedGlobal'
Data Types: char

 Simulink.CoderInfo

8-73

Examples
Configure Code Generation Settings Programmatically

For examples that show how to configure code generation settings for a data item programmatically,
see “C Code Generation Configuration for Model Interface Elements” (Simulink Coder) and “Organize
Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder).

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Topics
“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)
“Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder)
“Data Objects”
“Organize Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder)

8 Objects

8-74

Simulink.ConfigSet
Model configuration set

Description
Use the Simulink.ConfigSet object to access a model configuration set. Get information about
your configuration set and manage configuration parameters.

The Simulink.ConfigSet object is a handle object.

Creation
Use the getActiveConfigSet function to get the active configuration set for a model. Use the
getConfigSet function to get a model configuration set by name.

Properties
Description — Description of the configuration set
character vector

Description of the configuration set, specified as a character vector. Use the description to provide
additional information about a configuration set, such as its purpose.

Name — Name of the configuration set
character vector

Name of the configuration set, specified by a character vector. This name represents the
configuration set in the Model Explorer.

Object Functions
copy Copy configuration set or reference
getFullName
getModel
get_param Get parameter names and values
isActive
isValidParam
saveAs
setPropEnabled
set_param Set Simulink parameter value

Examples
Get the Active Configuration Set for a Model

Open the model vdp and get the active configuration set.

 Simulink.ConfigSet

8-75

vdp
configSetObj = getActiveConfigSet('vdp');

Version History
Introduced in R2006a

See Also
getConfigSet | getActiveConfigSet | getConfigSets

Topics
“Manage Configuration Sets for a Model”
“Share a Configuration with Multiple Models”

8 Objects

8-76

Simulink.ConfigSetRef
Link model to freestanding configuration set

Description
Use the ConfigSetRef object to allow a model to reference configuration sets that are not saved in
a model.

The Simulink.ConfigSetRef object is a handle object.

Creation
Create a ConfigSetRef object by using the getConfigSet function to call a model configuration
reference by name.

Properties
Description — Description of configuration reference
character vector

Description of the configuration reference, specified as a character vector. Use this property to
provide additional information about a configuration reference, such as its purpose. This field can
remain blank.

Name — Name of configuration reference
character vector

Name of the configuration reference, specified as a character vector. This name represents the
configuration reference in the Model Explorer.

SourceName — Variable that contains referenced configuration set
character vector

Name of the variable in the workspace or the data dictionary that contains the referenced
configuration set, specified as a character vector.

Object Functions
copy Copy configuration set or reference
getFullName
getModel
get_param Get parameter names and values
getRefConfigSet
isActive
refresh

Examples

 Simulink.ConfigSetRef

8-77

Create and Reference a Freestanding Configuration Set

Use a ConfigSetRef object to allow a model to use a freestanding configuration set, which is not
associated with a model.

Open the model vdp. Create a freestanding configuration set by copying the configuration set of the
model.

model = 'vdp';
open_system(model)

freeConfigSet = copy(getActiveConfigSet(model));

Create a configuration reference. To point the reference to your freestanding configuration, set the
SourceName property to freeConfigSet, the base workspace variable that represents your
configuration. Name the reference vdpConfigRef.

configRef = Simulink.ConfigSetRef;
set_param(configRef,'SourceName','freeConfigSet');
set_param(configRef,'Name','vdpConfigRef');

Attach the configuration reference to the vdp model and activate it.

attachConfigSet('vdp',configRef);
setActiveConfigSet('vdp','vdpConfigRef');

Version History
Introduced in R2007a

See Also
getConfigSet | getActiveConfigSet | getConfigSets

Topics
“Share a Configuration with Multiple Models”
“Automate Model Configuration by Using a Script”

8 Objects

8-78

copy
Copy configuration set or reference

Syntax
copyCs = copy(cs)

Description
copyCs = copy(cs) returns a copy of a configuration set or configuration reference.

Examples

Attach New Configuration Set to a Model

Create a copy of a configuration set and attach it to a model.

Get the active configuration set for your model.

activeConfig = getActiveConfigSet ('vdp');

Copy the active configuration set.

develConfig = copy(activeConfig);

Give the copied configuration set a name.

develConfig.Name = 'develConfig';

Attach the new configuration set to the model.

attachConfigSet('vdp',develConfig);

Input Arguments
cs — Configuration set
ConfigSet object | ConfigSetRef object

Configuration set object to copy, specified as a ConfigSet object or a Simulink.ConfigSetRef
object.

Output Arguments
copyCs — Copy of configuration set
ConfigSet object

A copy of the configuration set, returned as a ConfigSet object or a ConfigSetRef object.

 copy

8-79

Version History
Introduced before R2006a

See Also
Topics
“Manage Configuration Sets for a Model”

8 Objects

8-80

Symbol
C Function block data symbol

Description
Define C Function block symbols and their properties.

Creation
Access a Symbol object through one of the following methods.

• addSymbol function
• getSymbol function
• Access the Symbols property of a SymbolSpec object.

Properties
Name — Symbol name in source code
character vector

Symbol name in source code, specified as a character vector.
Data Types: character

PortNumber — Port number
scalar integer

Port number, specified as a scalar integer. For input and output symbols, PortNumber indicates the
port index on the block. For parameter symbols, PortNumber indicates the order that the symbol
appears in the block parameter mask.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Size — Size dimensions of the symbol
'1' (default) | character vector

Size of the symbol data specified as a character vector containing a scalar integer. The C Function
block supports only scalars and vectors. Matrices and higher-dimension arrays are not supported. You
can use a size expression to define the size of an output. Use -1 to inherit size.
Data Types: character

Type — Data type of symbol
'double' (default) | character vector

Data type of the symbol, specified as a character vector that evaluates to a numeric data type, or as a
Simulink.AliasType object.
Example: mySymbol.DataType = 'int32'

 Symbol

8-81

Data Types: char

Scope — Scope of the symbol
'Input' (default) | 'Output' | 'Persistent' | 'Parameter' | 'Constant'

Scope of the symbol, specified as one of the following values.

• Input — Input symbol to the C Function block.
• Output — Output symbol to the C Function block.
• Parameter — Define a symbol as parameter. The parameter name is defined by the Label

property of the symbol.
• Persistent — Define a symbol as persistent data.
• You can define a void pointer using the Persistent scope in the C Function block. A void pointer

is a pointer that can store any type of data that you create or allocate.
• Constant — Define a symbol as constant using value-size or numeric expressions.

Data Types: character

Label — Symbol label
character vector

Symbol label, specified as a character vector. For symbols with their scope set to Input or Output,
this label appears as the port name on the block. For symbols with their scope set to Parameter, this
label is the label that appears on the block parameter mask. If the scope is Constant, the label is the
constant expression. You cannot define a label for Persistent symbols.
Data Types: character

Version History
Introduced in R2020a

See Also
Functions
addSymbol | getSymbol | deleteSymbol

Objects
SymbolSpec

Blocks
C Function

Topics
“Integrate External C/C++ Code into Simulink Using C Function Blocks”

8 Objects

8-82

SymbolSpec
Query and configure C Function block data symbols

Description
Use the SymbolSpec object to query and configure C Function block symbol definitions and their
properties.

Creation

Syntax
myCFunctionObj = get_param(CFcnBlk, 'SymbolSpec')

Description

myCFunctionObj = get_param(CFcnBlk, 'SymbolSpec') creates a C Function block symbol
configuration object for the specified C Function block.

Input Arguments

CFcnBlk — C Function block
character vector

C Function block path specified as a character vector, or a handle to the C Function block.

Properties
Symbols — Symbols defined in the C Function block
Symbol object | array of Symbol objects

The symbols defined in the C Function block, specified as a Symbol object, or an array of Symbol
objects.

Symbol objects define the properties of each symbol in the C Function block.

Object Functions
addSymbol Add a symbol object definition to a C Function block
getSymbol Get a symbol object definition of a C Function block
deleteSymbol Delete a symbol object definition from a C Function block

Version History
Introduced in R2020a

 SymbolSpec

8-83

See Also
Objects
Symbol

Blocks
C Function

Topics
“Integrate External C/C++ Code into Simulink Using C Function Blocks”

8 Objects

8-84

addSymbol
Package: Simulink.CFunctionBlock

Add a symbol object definition to a C Function block

Syntax
mySymbol = addSymbol(mySymbolSpec)
mySymbol = addSymbol(mySymbolSpec, name)

Description
mySymbol = addSymbol(mySymbolSpec) creates a Symbol object, mySymbol, and adds the
symbol to the SymbolSpec object, mySymbolSpec.

mySymbol = addSymbol(mySymbolSpec, name) creates a Symbol object, mySymbol, with the
Name property specified by name and adds the symbol to the SymbolSpec object mySymbolSpec.

Examples

Specify and Edit Symbol Attributes Used in a C Function Block

Access and edit the properties of a symbol used in a C Function block.

Obtain the SymbolSpec object of the C Function block in your model using get_param. For example,
select the C Function block in the model canvas and enter the following at the command line.

mySymbolSpec = get_param(gcb, 'SymbolSpec');

Use the addSymbol function to specify a new parameter symbol, myParam, in your C Function block
code.

myParam = addSymbol(mySymbolSpec, 'myParam')

The Symbol object, myParam, uses default properties. Specify the scope of the symbol using the
Scope property.

myParam.Scope = 'Parameter';

You can use the getSymbol function to access symbols specified for the block. For example, access
the parameter symbol you added.

myParam = getSymbol(mySymbolSpec, 'myParam');

Edit the label of the parameter in the Block Parameters dialog using the Label property.

myParam.Label = 'Amplitude';

To delete a symbol from the SymbolSpec object, use the deleteSymbol function.

 addSymbol

8-85

deleteSymbol(mySymbolSpec, 'myParam');

Input Arguments
mySymbolSpec — Symbol specifications of C Function block
SymbolSpec object

Symbol specifications of C Function block, specified as a SymbolSpec object.

name — Name of symbol
character vector

Name of the symbol, specified as a character vector.
Data Types: character

Output Arguments
mySymbol — Symbol
Symbol object

Symbol added to the C Function block, returned as a Symbol object. The Symbol object has default
properties, except when you specify a name for the symbol in the input arguments. You can edit the
properties of the Symbol object after creation.

Version History
Introduced in R2020a

See Also
Functions
getSymbol | deleteSymbol

Objects
SymbolSpec | Symbol

Blocks
C Function

Topics
“Integrate External C/C++ Code into Simulink Using C Function Blocks”

8 Objects

8-86

getSymbol
Package: Simulink.CFunctionBlock

Get a symbol object definition of a C Function block

Syntax
mySymbol = getSymbol(mySymbolSpec, name)

Description
mySymbol = getSymbol(mySymbolSpec, name) returns the Symbol object with the Name
property specified by name associated with the SymbolSpec object.

Examples

Specify and Edit Symbol Attributes Used in a C Function Block

Access and edit the properties of a symbol used in a C Function block.

Obtain the SymbolSpec object of the C Function block in your model using get_param. For example,
select the C Function block in the model canvas and enter the following at the command line.

mySymbolSpec = get_param(gcb, 'SymbolSpec');

Use the addSymbol function to specify a new parameter symbol, myParam, in your C Function block
code.

myParam = addSymbol(mySymbolSpec, 'myParam')

The Symbol object, myParam, uses default properties. Specify the scope of the symbol using the
Scope property.

myParam.Scope = 'Parameter';

You can use the getSymbol function to access symbols specified for the block. For example, access
the parameter symbol you added.

myParam = getSymbol(mySymbolSpec, 'myParam');

Edit the label of the parameter in the Block Parameters dialog using the Label property.

myParam.Label = 'Amplitude';

To delete a symbol from the SymbolSpec object, use the deleteSymbol function.

 getSymbol

8-87

deleteSymbol(mySymbolSpec, 'myParam');

Input Arguments
mySymbolSpec — Symbol specifications of C Function block
SymbolSpec object

Symbol specifications of C Function block, specified as a SymbolSpec object.

name — Name of symbol
character vector

Name of the symbol, specified as a character vector.
Data Types: character

Output Arguments
mySymbol — Symbol
Symbol object

Symbol associated with the C Function block, returned as a Symbol object.

Version History
Introduced in R2020a

See Also
Functions
addSymbol | deleteSymbol

Objects
SymbolSpec | Symbol

Blocks
C Function

Topics
“Integrate External C/C++ Code into Simulink Using C Function Blocks”

8 Objects

8-88

deleteSymbol
Package: Simulink.CFunctionBlock

Delete a symbol object definition from a C Function block

Syntax
deleteSymbol(mySymbolSpec, name)

Description
deleteSymbol(mySymbolSpec, name) deletes the Symbol object with the Name property
specified by name from the SymbolSpec object.

Examples

Specify and Edit Symbol Attributes Used in a C Function Block

Access and edit the properties of a symbol used in a C Function block.

Obtain the SymbolSpec object of the C Function block in your model using get_param. For example,
select the C Function block in the model canvas and enter the following at the command line.

mySymbolSpec = get_param(gcb, 'SymbolSpec');

Use the addSymbol function to specify a new parameter symbol, myParam, in your C Function block
code.

myParam = addSymbol(mySymbolSpec, 'myParam')

The Symbol object, myParam, uses default properties. Specify the scope of the symbol using the
Scope property.

myParam.Scope = 'Parameter';

You can use the getSymbol function to access symbols specified for the block. For example, access
the parameter symbol you added.

myParam = getSymbol(mySymbolSpec, 'myParam');

Edit the label of the parameter in the Block Parameters dialog using the Label property.

myParam.Label = 'Amplitude';

To delete a symbol from the SymbolSpec object, use the deleteSymbol function.

 deleteSymbol

8-89

deleteSymbol(mySymbolSpec, 'myParam');

Input Arguments
mySymbolSpec — Symbol specifications of C Function block
SymbolSpec object

Symbol specifications of C Function block, specified as a SymbolSpec object.

name — Name of symbol
character vector

Name of the symbol to delete, specified as a character vector.
Data Types: character

Version History
Introduced in R2020a

See Also
Functions
addSymbol | getSymbol

Objects
SymbolSpec | Symbol

Blocks
C Function

Topics
“Integrate External C/C++ Code into Simulink Using C Function Blocks”

8 Objects

8-90

Simulink.ConnectionBus
Specify properties of physical connection buses

Description
A Simulink.ConnectionBus object is a data type that, when used with
Simulink.ConnectionElement objects, lets you design rigid interface specifications for Simscape
conserving connections. When you apply such rigid specification to a Simscape Bus or Connection
Port block, the block ports become typed by the interface and do not accept connections to a different
domain type.

A ConnectionBus object specifies the architectural properties of an interface, such as element
names, hierarchy, and domain types. A ConnectionBus object is similar to a cable connector. The
connector defines all the pins and their configuration and controls what types of wires can be
connected to it. Similarly, a ConnectionBus object defines the configuration and domain types of the
ports of the associated Simscape Bus or Connection Port blocks.

ConnectionBus objects contain Simulink.ConnectionElement objects. Each
ConnectionElement object specifies the properties of a port in a connection bus, such as its name
and domain type. To create nested connection buses, specify a ConnectionElement on the parent
bus and set its type as the child ConnectionBus object.

To create and modify ConnectionBus objects in the base workspace or a data dictionary, you can
use the Type Editor, the Model Explorer, or MATLAB commands. You cannot store
ConnectionBus objects in model workspaces.

To simulate a model containing blocks that use a ConnectionBus object, that ConnectionBus
object must be in the base workspace or in a data dictionary. You save and load ConnectionBus
objects similar to Simulink.Bus objects. For more information, see “Determine How to Manage
Simulink.Bus Objects”.

To apply an existing connection bus specification to a Simscape Bus or Connection Port block, use the
Connection type parameter and select the bus name from the drop-down list.

Creation

Syntax
name = Simulink.ConnectionBus

Description

name = Simulink.ConnectionBus returns a ConnectionBus object with default property values.
The name of the ConnectionBus object is the name of the MATLAB variable to which you assign the
ConnectionBus object.

 Simulink.ConnectionBus

8-91

Properties
Description — Connection bus description
'' (default) | character vector

Connection bus description, specified as a character vector. Use the description to document
information about the ConnectionBus object, such as the application it is used for or domain types
of its ports. This information does not affect Simulink processing.
Data Types: char | string

Elements — Elements of connection bus
empty array (default) | array of Simulink.ConnectionElement objects

Elements of connection bus, specified as an array of Simulink.ConnectionElement objects. Each
ConnectionElement object defines the properties of a conserving connection within the bus, such
as its name and domain type. For more information, see Simulink.ConnectionElement.

Examples

Create Connection Bus and Connection Element Objects Using MATLAB Commands

Define a rigid interface with one mechanical translational and one electrical port by creating a
ConnectionBus object containing a two-element array of ConnectionElement objects. Array
indexing lets you create and access multiple elements in an array. Dot notation lets you access
property values.

Create a ConnectionBus object called MechElec:

MechElec = Simulink.ConnectionBus

 MechElec =

 ConnectionBus with properties:

 Description: ''
 Elements: [0×0 Simulink.ConnectionElement]

By default, the connection bus has no description and an empty array of connection elements.

Use the dot notation to fill in the description:
MechElec.Description = 'Rigid interface with one mechanical and one electrical port'

 MechElec =

 ConnectionBus with properties:

 Description: 'Rigid interface with one mechanical and one electrical port'
 Elements: [0×0 Simulink.ConnectionElement]

Create a ConnectionElement object to define the mechanical translational port:

mech = Simulink.ConnectionElement

8 Objects

8-92

 mech =

 ConnectionElement with properties:

 Name: 'a'
 Type: 'Connection: <domain name>'
 Description: ''

This command creates a ConnectionElement object with default properties.

Change the ConnectionElement name to mech:

mech.Name = 'mech'

 mech =

 ConnectionElement with properties:

 Name: 'mech'
 Type: 'Connection: <domain name>'
 Description: ''

Specify the domain type for the connection:
mech.Type = 'Connection: foundation.mechanical.translational.translational'

 mech =

 ConnectionElement with properties:

 Name: 'mech'
 Type: 'Connection: foundation.mechanical.translational.translational'
 Description: ''

For a list of Foundation domain types, see “Domain-Specific Line Styles” (Simscape).

Optionally, fill in the port description:
mech.Description = 'Mechanical translational port'

 mech =

 ConnectionElement with properties:

 Name: 'mech'
 Type: 'Connection: foundation.mechanical.translational.translational'
 Description: 'Mechanical translational port'

Similarly, create another ConnectionElement object to define the electrical port:

elec = Simulink.ConnectionElement;
elec.Name = 'elec';
elec.Type = 'Connection: foundation.electrical.electrical';
elec.Description = 'Electrical port'

 elec =

 ConnectionElement with properties:

 Name: 'elec'

 Simulink.ConnectionBus

8-93

 Type: 'Connection: foundation.electrical.electrical'
 Description: 'Electrical port'

Add the two elements to the ConnectionBus object:
MechElec.Elements = [mech elec]

 MechElec =

 ConnectionBus with properties:

 Description: 'Rigid interface containing one mechanical and one electrical port'
 Elements: [2×1 Simulink.ConnectionElement]

You can view the created objects in the Type Editor:

typeeditor

Alternatives
To interactively create a ConnectionBus object, use the Type Editor or the Model Explorer.

Version History
Introduced in R2021b

See Also
Tools
Type Editor

Objects
Simulink.ConnectionElement | Simulink.Bus | Simulink.BusElement

Topics
“Design Rigid Interface Specifications for Conserving Connections” (Simscape)

8 Objects

8-94

Simulink.ConnectionElement
Specify properties of elements of physical connection buses

Description
A Simulink.ConnectionElement object is an element of a Simulink.ConnectionBus object. It
validates the properties of a physical connection port.

ConnectionElement objects exist only within the ConnectionBus object. You can specify a
ConnectionBus object, but not a ConnectionElement object, as a data type.

When you simulate or update a model, Simulink checks whether the ports connected to Simscape Bus
or Connection Port blocks with rigid interface specifications match the properties of the
corresponding ConnectionElement objects.

To create and modify ConnectionBus and ConnectionElement objects in the base workspace or a
data dictionary, you can use the Type Editor, the Model Explorer, or MATLAB commands. You
cannot store ConnectionBus and ConnectionElement objects in model workspaces.

Creation

Syntax
ce = Simulink.ConnectionElement

Description

ce = Simulink.ConnectionElement returns a ConnectionElement object with default property
values.

Properties
Name — Name of element
'a' (default) | character vector

Name of element, specified as a character vector. The element name must be a valid MATLAB
identifier that starts with an alphabetic character or underscore (_), followed by alphanumeric
characters or underscores.
Data Types: char | string

Type — Connection type of element
'Connection: <domain name>' (default) | registered Simscape domain | Simscape Multibody
conserving connection type | ConnectionBus object present in the base workspace or a data
dictionary

Connection type of element, specified as a Simscape Foundation domain name, a custom domain
name registered in your MATLAB session, or a Simscape Multibody conserving connection type.

 Simulink.ConnectionElement

8-95

For a list of Foundation domains, see “Domain-Specific Line Styles” (Simscape).

Selecting a ConnectionBus object present in the base workspace or a data dictionary lets you
create nested connection buses.

If you create ConnectionElement objects interactively, by using the Type Editor or the Model
Explorer, the drop-down list automatically contains all the valid domain and connection types.
Data Types: char | string

Description — Connection element description
'' (default) | character vector

Connection element description, specified as a character vector. Use the description to document
information about the ConnectionElement object, such as the domain type. This information does
not affect Simulink processing.
Data Types: char | string

Examples

Create Connection Bus and Connection Element Objects Using MATLAB Commands

Define a rigid interface with one mechanical translational and one electrical port by creating a
ConnectionBus object containing a two-element array of ConnectionElement objects. Array
indexing lets you create and access multiple elements in an array. Dot notation lets you access
property values.

Create a ConnectionBus object called MechElec:

MechElec = Simulink.ConnectionBus

 MechElec =

 ConnectionBus with properties:

 Description: ''
 Elements: [0×0 Simulink.ConnectionElement]

By default, the connection bus has no description and an empty array of connection elements.

Use the dot notation to fill in the description:
MechElec.Description = 'Rigid interface with one mechanical and one electrical port'

 MechElec =

 ConnectionBus with properties:

 Description: 'Rigid interface with one mechanical and one electrical port'
 Elements: [0×0 Simulink.ConnectionElement]

Create a ConnectionElement object to define the mechanical translational port:

mech = Simulink.ConnectionElement

8 Objects

8-96

 mech =

 ConnectionElement with properties:

 Name: 'a'
 Type: 'Connection: <domain name>'
 Description: ''

This command creates a ConnectionElement object with default properties.

Change the ConnectionElement name to mech:

mech.Name = 'mech'

 mech =

 ConnectionElement with properties:

 Name: 'mech'
 Type: 'Connection: <domain name>'
 Description: ''

Specify the domain type for the connection:
mech.Type = 'Connection: foundation.mechanical.translational.translational'

 mech =

 ConnectionElement with properties:

 Name: 'mech'
 Type: 'Connection: foundation.mechanical.translational.translational'
 Description: ''

For a list of Foundation domain types, see “Domain-Specific Line Styles” (Simscape).

Optionally, fill in the port description:
mech.Description = 'Mechanical translational port'

 mech =

 ConnectionElement with properties:

 Name: 'mech'
 Type: 'Connection: foundation.mechanical.translational.translational'
 Description: 'Mechanical translational port'

Similarly, create another ConnectionElement object to define the electrical port:

elec = Simulink.ConnectionElement;
elec.Name = 'elec';
elec.Type = 'Connection: foundation.electrical.electrical';
elec.Description = 'Electrical port'

 elec =

 ConnectionElement with properties:

 Name: 'elec'

 Simulink.ConnectionElement

8-97

 Type: 'Connection: foundation.electrical.electrical'
 Description: 'Electrical port'

Add the two elements to the ConnectionBus object:
MechElec.Elements = [mech elec]

 MechElec =

 ConnectionBus with properties:

 Description: 'Rigid interface containing one mechanical and one electrical port'
 Elements: [2×1 Simulink.ConnectionElement]

You can view the created objects in the Type Editor:

typeeditor

Alternatives
To interactively create a ConnectionElement object, use the Type Editor or the Model Explorer.

Version History
Introduced in R2021b

See Also
Tools
Type Editor

Objects
Simulink.ConnectionBus | Simulink.Bus | Simulink.BusElement

Topics
“Design Rigid Interface Specifications for Conserving Connections” (Simscape)

8 Objects

8-98

FunctionPortSpecification
Query and configure C Caller block properties

Description
Query and configure the C Caller block function definition and return argument. Configure the C
Caller block input arguments programmatically.

Creation
myCCallerObj = get_param(gcb, 'FunctionPortSpecification') creates a C Caller block
configuration object for the selected C Caller block.

Properties
CPrototype — C function mapping to the C Caller block
character vector

Displays the mapping of the C function input to the C Caller block in the model. You cannot edit this
property using the command line. To edit the C function mapping, edit the source code of the C Caller
block.
Example: real_T add(real_T u1, real_T u2);
Data Types: char

InputArguments — List of function input arguments
FunctionArgument object

Returns the list of function input arguments in a “FunctionArgument Object” on page 8-99.

ReturnArgument — List of function output arguments
FunctionArgument scalar

Returns a scalar or an empty “FunctionArgument Object” on page 8-99.
Data Types: char

GlobalArguments — List of global arguments
FunctionArgument scalar

Returns a scalar or an empty “FunctionArgument Object” on page 8-99.
Data Types: char

FunctionArgument Object

The FunctionArgument is a class that carries port specification information of a C Caller block
programmatically. The FunctionArgument object has these properties:

 FunctionPortSpecification

8-99

1 Name — Name of the variable in the source code, specified as a character vector. This property is
read-only.

2 PortNumber — Port number of the InputArgument that has been edited, specified as uint32.
This property is read-only.

3 Size — Size of the Simulink port dimensions specified as a character vector. You can edit this
property if it is allowed in the function definition.

4 Type — Simulink data type for the specified port specified as a character vector. You can edit this
property if it is allowed in the function definition.

5 Label — Port label on the Simulink block specified as a character vector. You can change the
port label programmatically, for example:

myCCallerObj.my_CCaller.InputArguments(1).Label = 'inputport1'

my_CCallerObj =

 FunctionPortSpecification with properties:

 CPrototype: 'real_T add(real_T u1, real_T u2);'
 InputArguments: [1×2 Simulink.CustomCode.FunctionArgument]
 ReturnArgument: [1×1 Simulink.CustomCode.FunctionArgument]
 GlobalArguments: [1×0 Simulink.CustomCode.FunctionArgument]

6 Scope — Mapping of the Simulink scope to the input argument specified as a character vector. If
the variable is defined as a constant qualifier, the argument can be an input or a parameter. If no
constant qualifier exists, you can change an output argument to an input, inputoutput, or to a
parameter. If your scope fits any of the scenarios above, you can change it programmatically:

my_CCallerObj.InputArguments(1).Scope = 'parameter'

my_CCallerObj =

 FunctionPortSpecification with properties:

 CPrototype: 'extern real_T add(real_T u1, real_T u2);'
 InputArguments: [1×2 Simulink.CustomCode.FunctionArgument]
 ReturnArgument: [1×1 Simulink.CustomCode.FunctionArgument]
 GlobalArguments: [1×0 Simulink.CustomCode.FunctionArgument]

Object Functions
getGlobalArg Get an object definition of a global variable in a C Caller block

Examples
Create a C Caller Configuration Object

This example creates a C Caller configuration object using the 'slexCCallerExample' demo
model.

my_CCallerObj = get_param('slexCCallerExample/C Caller','FunctionPortSpecification')

my_CCallerObj =

 FunctionPortSpecification with properties:

 CPrototype: 'real_T add(real_T u1, real_T u2);'

8 Objects

8-100

 InputArguments: [1×2 Simulink.CustomCode.FunctionArgument]
 ReturnArgument: [1×1 Simulink.CustomCode.FunctionArgument]
 GlobalArguments: [1×0 Simulink.CustomCode.FunctionArgument]

Create a FunctionArgument object for the 1st input port:

inargone = my_CCallerObj.InputArguments(1)

inargone =

 FunctionArgument with properties:

 Name: 'u1'
 PortNumber: 1
 Size: '1'
 Type: 'double'
 Label: 'u1'
 Scope: 'Parameter'

Change the label for the first input port:

inargone.Label = 'inputport1'

inargone =

 FunctionArgument with properties:

 Name: 'u1'
 PortNumber: 1
 Size: '1'
 Type: 'double'
 Label: 'inputport1'
 Scope: 'Parameter'

Version History
Introduced in R2019b

See Also
C Caller | MATLABFunctionConfiguration

Topics
“Call C Functions Using C Caller Block” on page 13-527
“Integrate C Code Using C Caller Blocks”

 FunctionPortSpecification

8-101

getGlobalArg
Package: Simulink.CustomCode

Get an object definition of a global variable in a C Caller block

Syntax
GlobalArg = PortSpecObj.getGlobalArg(globalVariableName)

Description
GlobalArg = PortSpecObj.getGlobalArg(globalVariableName), where PortSpecObj is an
object of class FunctionPortSpecification or
Simulink.CodeImporter.SimulinkPortSpecification, creates a FunctionArgument on
page 8-99 object. To use global variables in a model that uses C Caller blocks, turn on the Enable
custom code globals as function interface setting from Configuration Parameters >
Simulation Target.

Examples

Create Handle to Global Variable in C Caller Block

Access the properties of a global variable used in a C Caller block.

Create a FunctionPortSpecification object.

myFunctionPortSpecObject = get_param(gcb, 'FunctionPortSpecification')

Query and create a FunctionArgument object for the global argument.

myGlobalVariable = myFunctionPortSpecObject.getGlobalArg('myGlobalVariableName')

myGlobalVariable =

 FunctionArgument with properties:

 Name: 'myGlobalVarPort'
 PortNumber: 1
 Size: '1'
 Type: 'double'
 Label: 'myGlobalVarPort'
 Scope: 'Input'

Input Arguments
globalVariableName — Name of global variable
character vector | string scalar

Name of global variable, specified as a character vector.

8 Objects

8-102

Data Types: char

Output Arguments
GlobalArg — Global argument object
FunctionArgument object

Global argument object associated with the C Caller block, returned as a FunctionArgument object.

Version History
Introduced in R2020b

See Also
C Caller | FunctionPortSpecification |
Simulink.CodeImporter.SimulinkPortSpecification

Topics
“Integrate C Code Using C Caller Blocks”

 getGlobalArg

8-103

Simulink.data.adapters.AdapterDataTester
Test custom external file adapter

Description
A Simulink.data.adapters.AdapterDataTester object provides functions for testing a custom
external file adapter derived from the Simulink.data.adapters.BaseMatlabFileAdapter base
class.

Creation

Syntax
adapterTester = Simulink.data.adapters.AdapterDataTester(adapterObj,source,
section)

Description

adapterTester = Simulink.data.adapters.AdapterDataTester(adapterObj,source,
section) creates a Simulink.data.adapters object that can test an instance of an adapter
derived from the Simulink.data.adapters.BaseMatlabFileAdapter base class. With this
adapter tester you can test the getData method for your custom file adapter.

Input Arguments

adapterObj — Custom file adapter
BaseMatlabFileAdapter subclass object

Custom file adapter, specified as an object of a class that derives from the
Simulink.data.adapters.BaseMatlabFileAdapter base class.
Example: myCustomFileAdapter

source — External source file
character array

External source file, specified as a character array.
Example: 'Tires.xls'

section — Section of external file
adapter name (default) | character array | string

Section of the external file source, specified as a character array or string.
Example: 'tireManufacturer'

8 Objects

8-104

Properties
WorkspaceVariables — Workspace variables
containers.Map object

This property is read-only.

Workspace variables, specified as a containers.Map object. Simulink populates the map object
when you call the object function readFromSource. The keys to the map object are the workspace
variable names..

Object Functions
clear Clear variables from file adapter tester object
readFromSource Test custom file adapter by reading from source

Examples

Create External File Adapter Tester

Create a Simulink.data.adapters.AdapterDataTester object to test the getData method of
an XML file adapter derived from a Simulink.data.adapters.BaseMatlabFileAdapter base
class. For an example of an XML file adapter, see .

The getData method reads data from an XML file test.xml in the following format.

<customerData>
<x>10</x>
<y>15</y>
</customerData>

Create an instance of your file adapter.

adapterInstance = myXMLAdapter;

Create an instance of the file adapter tester object using the test file specified above.

adapterTester = Simulink.data.adapters.AdapterDataTester(adapterInstance, 'test.xml','XML Adapter');

Use adapterTester to read the data from your XML file. Then, check the data in the
WorkspaceVariables property.

readFromSource(adapterTester);
variables = adapterTester.WorkspaceVariables

variables =
 Map with properties:
 Count: 2
 KeyType: char
 ValueType: double

Check the data in the WorkspaceVariables map object.

variables.keys

 Simulink.data.adapters.AdapterDataTester

8-105

ans =
 1x2 cell array
 {"x"} {"y"}

Finally, clear the workspace variables.

clear(adapterTester);

After clearing the variables, you can make changes to your XML file and use the same adapter to read
the file again.

readFromSource(adapterTester);

Version History
Introduced in R2022b

See Also
Simulink.data.adapters.BaseMatlabFileAdapter |
Simulink.data.DataSourceWorkspace

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-106

clear
Package: Simulink.data.adapters

Clear variables from file adapter tester object

Syntax
clear(testerObj)

Description
clear(testerObj) clears the workspace variables from the
Simulink.data.adapters.AdapterDataTester object testerObj. The tester object provides
functions for testing a custom external file adapter derived from the
Simulink.data.adapters.BaseMatlabFileAdapter base class.

Examples

Clear Variables from XML File Adapter Tester

Clear the workspace variables from a Simulink.data.adapters.AdapterDataTester object
after using the object to test an XML file adapter derived from a
Simulink.data.adapters.BaseMatlabFileAdapter base class. For an example of an XML file
adapter, see .

The example uses an XML file test.xml with the following format.

<customerData>
<x>10</x>
<y>15</y>
</customerData>

Create an instance of your file adapter.

adapterInstance = myXMLAdapter;

Create an instance of the file adapter tester object using the test file specified above.

adapterTester = Simulink.data.adapters.AdapterDataTester(adapterInstance, 'test.xml','XML Adapter');

Use adapterTester to read the data from your XML file. Then, check the data in the
WorkspaceVariables property.

readFromSource(adapterTester);
variables = adapterTester.WorkspaceVariables

variables =
 Map with properties:
 Count: 2
 KeyType: char
 ValueType: double

 clear

8-107

Check the data in the WorkspaceVariables map object.

variables.keys

ans =
 1x2 cell array
 {"x"} {"y"}

Finally, clear the workspace variables.

clear(adapterTester);

Input Arguments
testerObj — File adapter tester
Simulink.data.adapters.AdapterDataTester object

File adapter tester, specified as a Simulink.data.adapters.AdapterDataTester object.

Version History
Introduced in R2022b

See Also
readFromSource | Simulink.data.adapters.BaseMatlabFileAdapter |
Simulink.data.DataSourceWorkspace | Simulink.data.adapters.catalog |
Simulink.data.adapters.registerAdapter |
Simulink.data.adapters.unregisterAdapter

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-108

readFromSource
Package: Simulink.data.adapters

Test custom file adapter by reading from source

Syntax
readFromSource(testerObj)

Description
readFromSource(testerObj) tests the getData method of a custom external file adapter derived
from the Simulink.data.adapters.BaseMatlabFileAdapter base class. When you create the
Simulink.data.adapters.AdapterDataTester object, testerObj, you open a connection to a
test file by using an instance of a custom file adapter. The object function reads data from that test
file.

Examples

Test Custom XML File Adapter

Use a Simulink.data.adapters.AdapterDataTester object to test the getData method of an
XML file adapter derived from a Simulink.data.adapters.BaseMatlabFileAdapter base class.
For an example of an XML file adapter, see .

The getData method reads data from an XML file test.xml with the following format.

<customerData>
<x>10</x>
<y>15</y>
</customerData>

Create an instance of your file adapter.

adapterInstance = myXMLAdapter;

Create an instance of the file adapter tester object using the test file specified above.

adapterTester = Simulink.data.adapters.AdapterDataTester(adapterInstance, 'test.xml','XML Adapter');

Use adapterTester to read the data from your XML file. Then, check the data in the
WorkspaceVariables property.

readFromSource(adapterTester);
variables = adapterTester.WorkspaceVariables

variables =
 Map with properties:
 Count: 2
 KeyType: char
 ValueType: double

 readFromSource

8-109

Check the data in the WorkspaceVariables map object.

variables.keys

ans =
 1x2 cell array
 {"x"} {"y"}

Finally, clear the workspace variables.

clear(adapterTester);

Input Arguments
testerObj — File adapter tester
Simulink.data.adapters.AdapterDataTester object

File adapter tester, specified as a Simulink.data.adapters.AdapterDataTester object.

Version History
Introduced in R2022b

See Also
Simulink.data.adapters.AdapterDataTester | clear |
Simulink.data.adapters.BaseMatlabFileAdapter |
Simulink.data.DataSourceWorkspace | Simulink.data.adapters.catalog |
Simulink.data.adapters.registerAdapter |
Simulink.data.adapters.unregisterAdapter

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-110

Simulink.data.DataSourceWorkspace
Contains data for external data source

Description
A Simulink.data.DataSourceWorkspace object is a handle object that can contain data from an
external data source.

When you load data from an external source, for example by using the
loadVariablesFromExternalSource function, Simulink passes a reference to a
Simulink.data.DataSourceWorkspace object to the custom file adapter that can read that
external file format. The file adapter, derived from the
Simulink.data.adapters.BaseMatlabFileAdapter class, loads the data into the workspace in
the form of MATLAB variables and data objects. The workspace object acts as a cache for Simulink
and can run a MATLAB script, similar to a base workspace. Symbol resolution includes symbols in the
workspace. See run.

Creation
Only Simulink can create and manage a Simulink.data.DataSourceworkspace object, but you
can create another handle for the workspace object by assignment.

copyWks = dsWks

copyWks =
DataSourceWorkspace with no properties

To test a custom file adapter without creating a data source workspace, use the
Simulink.data.adapters.AdapterDataTester object.

Object Functions
clearVariables Clear specified variables from data source workspace
clearAllVariables Clear variables from data source workspace
getVariable Return value of variable in data source workspace
getVariables Return values of variables in data source workspace
hasVariables Check if variables exist in data source workspace
listVariables List variables in data source workspace
run Execute the specified MATLAB script in data source workspace
setVariable Set variable in data source workspace
setVariables Set variables in data source workspace

Examples

Load Data from External Source File into Workspace

Define a getData method for an XML file adapter to populate the data from an XML file into the data
source workspace that Simulink passes to the method.

 Simulink.data.DataSourceWorkspace

8-111

This getData method reads an XML file in the following format:

<customerData>
<x>10</x>
<y>15</y>
</customerData>

function diagnostic = getData(adapterObj, sourceWorkspace, previousChecksum, diagnostic)
 % Each time getData is called on the same source, sourceWorkspace is the same as
 % the last time it was called. Clear it to make sure no old variables exist.
 clearAllVariables(sourceWorkspace);
 dom = xmlread(adapterObj.source);
 tree = dom.getFirstChild;
 if tree.hasChildNodes
 item = tree.getFirstChild;
 while ~isempty(item)
 name = item.getNodeName.toCharArray';
 if isvarname(name)
 value = item.getTextContent;
 setVariable(sourceWorkspace, name, str2num(value));
 end
 item = item.getNextSibling;
 end
 end
end

Version History
Introduced in R2022b

See Also
clearVariables | clearAllVariables | getVariable | getVariables | hasVariables |
listVariables | run | setVariable | setVariables |
Simulink.data.adapters.BaseMatlabFileAdapter

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-112

clearAllVariables
Package: Simulink.data

Clear variables from data source workspace

Syntax
clearAllVariables(dsWks)

Description
clearAllVariables(dsWks) clears the variables from the data source workspace represented by
the Simulink.data.DataSourceWorkspace object dsWks.

Examples

Clear All Variables From Data Source Workspace

Add some variables to a data source workspace.

setVariable(sourceWorkspace,'b', 2);
setVariables(sourceWorkspace,["c" "d"], {3,4});
setVariables(sourceWorkspace,{'e','f'}, {5,6});

Now return the list of variables that are contained in the workspace.

vars = listVariables(sourceWorkspace);
vars

vars
 5x1 string array

 "b"
...."c"
...."d"
 "e"
 "f"

Clear the variables from the workspace.

clearAllVariables(sourceWorkspace);

Now return the list of variables again and confirm that the workspace is empty.

vars = listVariables(sourceWorkspace);
vars

 clearAllVariables

8-113

vars
 0x1 empty string array

Input Arguments
dsWks — Data source workspace
Simulink.data.DataSourceWorkspace object

Data source workspace, specified as a Simulink.data.DataSourceWorkspace object.

Version History
Introduced in R2022b

See Also
clearVariables | getVariable | getVariables | hasVariables | listVariables | run |
setVariable | setVariables | Simulink.data.adapters.BaseMatlabFileAdapter

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-114

clearVariables
Package: Simulink.data

Clear specified variables from data source workspace

Syntax
clearVariables(dsWks,varNames)

Description
clearVariables(dsWks,varNames) clears the specified variables from the data source workspace
represented by the Simulink.data.DataSourceWorkspace object dsWks.

Examples

Clear Specified Variables From a Data Source Workspace

Add some variables to a data source workspace.

setVariable(sourceWorkspace,'b', 2);
setVariables(sourceWorkspace,["c" "d"], {3,4});
setVariables(sourceWorkspace,{'e','f'}, {5,6});

Remove variables c and d from the workspace.

clearVariables(sourceWorkspace,["c" "d"]);

Now return the list of variables in the workspace and check that variables c and d are no longer
there.

vars = listVariables(sourceWorkspace);
vars

vars
 3x1 string array

 "b"
 "e"
 "f"

Input Arguments
dsWks — Data source workspace
Simulink.data.DataSourceWorkspace object

Data source workspace, specified as a Simulink.data.DataSourceWorkspace object.

varNames — Variable names
string array | cell array of character arrays

 clearVariables

8-115

Variable names, specified as a string array or cell array of character vectors.
Example: ["c" "d"]
Example: {'e', 'f'}

Version History
Introduced in R2022b

See Also
clearAllVariables | getVariable | getVariables | hasVariables | listVariables | run |
setVariable | setVariables | Simulink.data.adapters.BaseMatlabFileAdapter

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-116

getVariable
Package: Simulink.data

Return value of variable in data source workspace

Syntax
varValue = getVariable(dsWks,varName)

Description
varValue = getVariable(dsWks,varName) returns the value of the variable varName that
exists in the data source workspace represented by the Simulink.data.DataSourceWorkspace
object dsWks.

Examples

Get Value of Variable in Data Source Workspace

Set the value of variable b in a data source workspace.

setVariable(sourceWorkspace,'b',2);

Now return that variable and store the value in another variable c.

c = getVariable(sourceWorkspace,'b');
c

ans =

 2

Input Arguments
dsWks — Data source workspace
Simulink.data.DataSourceWorkspace object

Data source workspace, specified as a Simulink.data.DataSourceWorkspace object.

varName — Variable name
string | character array

Variable name, specified as a string or character array.
Example: "x"
Data Types: char | string

 getVariable

8-117

Output Arguments
varValue — Variable value
number, structure, or other MATLAB value

Variable value, returned as a number, structure, or other MATLAB value.

Version History
Introduced in R2022b

See Also
clearVariables | clearAllVariables | getVariables | hasVariables | listVariables |
run | setVariable | setVariables | Simulink.data.adapters.BaseMatlabFileAdapter

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-118

getVariables
Package: Simulink.data

Return values of variables in data source workspace

Syntax
varValues = getVariables(dsWks,varNames)

Description
varValues = getVariables(dsWks,varNames) returns the values of the variables varNames
that exist in the data source workspace represented by the
Simulink.data.DataSourceWorkspace object dsWks.

Examples

Get Values of Variables in Data Source Workspace

Set the value of variables c and d in a data source workspace.

setVariables(sourceWorkspace,["c" "d"], {3,4});

Now return the variables.

getVariables(sourceWorkspace,["c" "d"])

ans =

1x2 cell array

 {[3]} {[4]}

Input Arguments
dsWks — Data source workspace
Simulink.data.DataSourceWorkspace object

Data source workspace, specified as a Simulink.data.DataSourceWorkspace object.

varNames — Variable names
string array | cell array of character vectors

Variable names, specified as a string array or cell array of character vectors.
Example: ["c" "d"]
Example: {'e', 'f'}

 getVariables

8-119

Output Arguments
varValues — Variable values
cell array of numbers, structures, or other MATLAB values

Variable values, returned as a cell array of numbers, structures, or other MATLAB values. The
dimensions of the cell array match the dimensions of varNames.

Version History
Introduced in R2022b

See Also
clearVariables | clearAllVariables | getVariable | hasVariables | listVariables | run
| setVariable | Simulink.data.adapters.BaseMatlabFileAdapter

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-120

hasVariables
Package: Simulink.data

Check if variables exist in data source workspace

Syntax
varExists = hasVariables(dsWks,varNames)

Description
varExists = hasVariables(dsWks,varNames) checks if the specified variables exist in the data
source workspace represented by the Simulink.data.DataSourceWorkspace object dsWks.

Examples

Check if Specified Variables Exist in Data Source Workspace

Add some variables to a data source workspace.

setVariable(sourceWorkspace,'b', 2);
setVariables(sourceWorkspace,["c" "d"], {3,4});
setVariables(sourceWorkspace,{'e','f'}, {5,6});

Check if variable b is in the data source workspace.

retVal = hasVariables(sourceWorkspace,'b');
retVal

retVal =
 true

Now check if the variables a and e are in the data source workspace.

retVal = hasVariables(sourceWorkspace,["a" "e"]);
retVal

retVal =
 1x2 logical array

 0 1

Input Arguments
dsWks — Data source workspace
Simulink.data.DataSourceWorkspace object

Data source workspace, specified as a Simulink.data.DataSourceWorkspace object.

varNames — Variable names
string array | cell array of character vectors

 hasVariables

8-121

Variable names, specified as a string array or cell array of character vectors.
Example: ["c" "d"]
Example: {'e', 'f'}

Output Arguments
varExists — True or false result
logical array

True or false result, returned as a logical array. Dimensions of the logical array match the dimensions
of varNames.

Version History
Introduced in R2022b

See Also
clearVariables | clearAllVariables | getVariable | getVariables | listVariables | run
| setVariable | setVariables | Simulink.data.adapters.BaseMatlabFileAdapter

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-122

listVariables
Package: Simulink.data

List variables in data source workspace

Syntax
varNames = listVariables(dsWks)

Description
varNames = listVariables(dsWks) lists the variables contained in the data source workspace
represented by the Simulink.data.DataSourceWorkspace object dsWks.

Examples

List Variables in Data Source Workspace

Add some variables to a data source workspace.

setVariable(sourceWorkspace,'b', 2);
setVariables(sourceWorkspace,["c" "d"], {3,4});
setVariables(sourceWorkspace,{'e','f'}, {5,6});

Now return that list of variables and store the list in another variable vars.

vars = listVariables(sourceWorkspace);
vars

vars
 5x1 string array

 "b"
 "c"
 "d"
 "e"
 "f"

Input Arguments
dsWks — Data source workspace
Simulink.data.DataSourceWorkspace object

Data source workspace, specified as a Simulink.data.DataSourceWorkspace object.

Output Arguments
varNames — Variable names
array of strings | cell array of character vectors

 listVariables

8-123

Variable names, returned as an array of strings or cell array of character vectors.

Version History
Introduced in R2022b

See Also
clearVariables | clearAllVariables | getVariable | getVariables | hasVariables | run |
setVariable | setVariables | Simulink.data.adapters.BaseMatlabFileAdapter

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-124

run
Package: Simulink.data

Execute the specified MATLAB script in data source workspace

Syntax
run(dsWks,mscript)

Description
run(dsWks,mscript) executes the specified MATLAB script in the data source workspace
represented by the Simulink.data.DataSourceWorkspace object dsWks.

While executing a script on the data source workspace, MATLAB temporarily changes the current
folder to the folder that contains the script.

Examples

Execute Script in Data Source Workspace

Write a short script that sets some variables in a data source workspace.

% myscript.m
x = 10;
p = p+1;

Before running the script, check the current value of variable p in the data source workspace object
sourceWorkspace.

getVariable(sourceWorkspace,'p')

2

Also check the value of variable x.

getVariable(sourceWorkspace,'x')

Error: undefined variable 'x'

The output shows that x is not yet defined in the workspace.

Now run the script myscript.m and check the values of p and x again.

run(sourceWorkspace,'myscript.m');
getVariables(sourceWorkspace,["p" "x"])

ans =

1x2 cell array

 run

8-125

 {[3]} {[10]}

Input Arguments
dsWks — Data source workspace
Simulink.data.DataSourceWorkspace object

Data source workspace, specified as a Simulink.data.DataSourceWorkspace object.

mscript — MATLAB script
character vector | string scalar

MATLAB script, specified as a character vector or string scalar. The script must be a .m or .mlx file
on the MATLAB path.
Example: 'mfun.m'

Version History
Introduced in R2022b

See Also
clearVariables | clearAllVariables | getVariable | getVariables | hasVariables |
listVariables | setVariable | setVariables |
Simulink.data.adapters.BaseMatlabFileAdapter

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-126

setVariable
Package: Simulink.data

Set variable in data source workspace

Syntax
setVariable(dsWks,varName,varValue)

Description
setVariable(dsWks,varName,varValue) assigns varValue to the variable varName in the data
source workspace represented by the Simulink.data.DataSourceWorkspace object dsWks.

Examples

Modify Variable in Data Source Workspace

Define a getData method for an XML file adapter to read the data from an XML file and then use the
setVariable function to populate the data into the data source workspace that Simulink passes to
the method.

This getData method reads an XML file in the following format.

<customerData>
<x>10</x>
<y>15</y>
</customerData>

function diagnostic = getData(adapterObj, sourceWorkspace, previousChecksum, diagnostic)
 % Each time getData is called on the same source, sourceWorkspace is the same as
 % the last time it was called. Clear it to make sure no old variables exist.
 clearAllVariables(sourceWorkspace);
 dom = xmlread(adapterObj.source);
 tree = dom.getFirstChild;
 if tree.hasChildNodes
 item = tree.getFirstChild;
 while ~isempty(item)
 name = item.getNodeName.toCharArray';
 if isvarname(name)
 value = item.getTextContent;
 setVariable(sourceWorkspace, name, str2num(value));
 end
 item = item.getNextSibling;
 end

 setVariable

8-127

 end
end

Input Arguments
dsWks — Data source workspace
Simulink.data.DataSourceWorkspace object

Data source workspace, specified as a Simulink.data.DataSourceWorkspace object.

varName — Variable name
string | character array

Variable name specified as a string or character array.
Example: "x"
Data Types: char | string

varValue — Variable value
scalar

Variable value, specified as a scalar.
Example: 2

Version History
Introduced in R2022b

See Also
clearVariables | clearAllVariables | getVariable | getVariables | hasVariables |
listVariables | run | setVariables | Simulink.data.adapters.BaseMatlabFileAdapter

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-128

setVariables
Package: Simulink.data

Set variables in data source workspace

Syntax
setVariables(dsWks,varNames,varValues)

Description
setVariables(dsWks,varNames,varValues) assigns the values varValues to the variables
varNames in the data source workspace represented by the
Simulink.data.DataSourceWorkspace object dsWks.

Examples

Set Variables in Data Source Workspace

Specify values for multiple variables in a DataSourceWorkspace object.

setVariables(sourceWorkspace,["c" "d"],{3,4})

Input Arguments
dsWks — Data source workspace
Simulink.data.DataSourceWorkspace object

Data source workspace, specified as a Simulink.data.DataSourceWorkspace object.

varNames — Variable names
string array | cell array of character vectors

Variable names, specified as a string array or cell array of character vectors.
Example: ["c" "d"]
Example: {'e', 'f'}

varValues — Variable values
cell array of scalars

Variable values, specified as a cell array of scalars. The dimensions of the cell array must match the
dimensions of varNames.
Example: {3,4}

Version History
Introduced in R2022b

 setVariables

8-129

See Also
clearVariables | clearAllVariables | getVariable | getVariables | hasVariables |
listVariables | run | setVariable | Simulink.data.adapters.BaseMatlabFileAdapter

Topics
“Create External File Adapter for Loading Variables into Simulink.SimulationInput Object”

8 Objects

8-130

Simulink.data.Dictionary
Configure data dictionary

Description
A Simulink.data.Dictionary object represents a data dictionary. The object allows you to
perform operations on the data dictionary such as save or discard changes, import data from the base
workspace, and add other data dictionaries as references.

Creation
The functions Simulink.data.dictionary.create and Simulink.data.dictionary.open
create a Simulink.data.Dictionary object.

Properties
DataSources — Referenced data dictionaries
cell array of character vectors

This property is read-only.

Referenced data dictionaries by file name, returned as a cell array of character vectors. This property
only lists directly referenced dictionaries whose parent is the Simulink.data.Dictionary object.

EnableAccessToBaseWorkspace — Specify whether models can use design data in the base
workspace
false (default) | true

Whether linked models can use design data in the base workspace, specified as true or false.

To determine whether a dictionary provides access to the base workspace (including through
referenced dictionaries), query the HasAccessToBaseWorkspace property.

For more information about this property, including restrictions that limit your ability to interact with
base workspace data through the dictionary, see “Continue to Use Shared Data in the Base
Workspace”.
Data Types: logical

HasAccessToBaseWorkspace — Query whether models can use design data in the base
workspace
0 (default) | 1

This property is read-only.

Query whether models can use design data in the base workspace, returned as 1 (true) or 0 (false). If
the dictionary or a referenced dictionary has the EnableAccessToBaseWorkspace property set to
true, this property returns 1.

 Simulink.data.Dictionary

8-131

Use this property to determine whether models that link to the dictionary can use design data in the
base workspace. You do not need to query each referenced dictionary to determine whether it has the
EnableAccessToBaseWorkspace property set to true.
Data Types: logical

HasUnsavedChanges — Indicator of unsaved changes
0 | 1

This property is read-only.

Indicator of unsaved changes to the data dictionary, returned as 0 or 1. The value is 1 if changes have
been made since last data dictionary save and 0 if not.

NumberOfEntries — Total number of entries in data dictionary
integer

This property is read-only.

Total number of entries in data dictionary, including those in referenced dictionaries, returned as an
integer.

Object Functions
addDataSource Add reference data dictionary to parent data dictionary
close Close connection between data dictionary and Simulink.data.Dictionary

object
discardChanges Discard changes to data dictionary
exportToVersion Export a Simulink.data.Dictionary object to a previous version
filepath Full path and file name of data dictionary
getSection Return Simulink.data.dictionary.Section object to represent data

dictionary section
hide Remove data dictionary from Model Explorer
importEnumTypes Import enumerated type definitions to data dictionary
importFromBaseWorkspace Import base workspace variables to data dictionary
listEntry List data dictionary entries
removeDataSource Remove reference data dictionary from parent data dictionary
saveChanges Save changes to data dictionary
show Show data dictionary in Model Explorer

Examples

Create New Data Dictionary and Data Dictionary Object

Create a data dictionary file myNewDictionary.sldd and a Simulink.data.Dictionary object
representing the new data dictionary. Assign the object to variable dd1.

dd1 = Simulink.data.dictionary.create('myNewDictionary.sldd')

dd1 =

 data dictionary with properties:

 DataSources: {0x1 cell}

8 Objects

8-132

 HasUnsavedChanges: 0
 NumberOfEntries: 0

Open Existing Data Dictionary

Create a Simulink.data.Dictionary object representing the existing data dictionary
myDictionary_ex_API.sldd. Assign the object to variable dd2.

dd2 = Simulink.data.dictionary.open('myDictionary_ex_API.sldd')

dd2 =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}
 HasUnsavedChanges: 0
 NumberOfEntries: 4

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.open | Simulink.data.dictionary.create |
Simulink.data.dictionary.Section | Simulink.data.dictionary.Entry

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”

 Simulink.data.Dictionary

8-133

addDataSource
Package: Simulink.data

Add reference data dictionary to parent data dictionary

Syntax
addDataSource(dictionaryObj,refDictionaryFile)

Description
addDataSource(dictionaryObj,refDictionaryFile) adds a data dictionary,
refDictionaryFile, as a reference dictionary to a parent dictionary dictionaryObj, a
Simulink.data.Dictionary object.

The parent dictionary contains all the entries that are defined in the referenced dictionary until the
referenced dictionary is removed from the parent dictionary. The DataSource property of an entry
indicates the dictionary that defines the entry.

Examples

Add a Reference Data Dictionary to a Parent Data Dictionary

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Add the data dictionary mySubDictionary_ex_API.sldd as a reference dictionary to
myDictionary_ex_API.sldd.

addDataSource(myDictionaryObj,'mySubDictionary_ex_API.sldd');

Confirm the addition by viewing the DataSources property of variable myDictionaryObj. The
property returns the name of the newly referenced dictionary.

myDictionaryObj.DataSources

ans =

 'myRefDictionary_ex_API.sldd'
 'mySubDictionary_ex_API.sldd'

Input Arguments
dictionaryObj — Parent data dictionary
Simulink.data.Dictionary object

Parent data dictionary, specified as a Simulink.data.Dictionary object. Before you use this
function, represent the target dictionary with a Simulink.data.Dictionary object by using, for

8 Objects

8-134

example, the Simulink.data.dictionary.create or Simulink.data.dictionary.open
function.

refDictionaryFile — File name of data dictionary to reference
character vector

File name of data dictionary to reference, specified as a character vector that includes the .sldd
extension. The data dictionary file must be on your MATLAB path.
Example: 'mySubDictionary_ex_API.sldd'
Data Types: char

Alternatives
You can use the Model Explorer window to manage reference dictionaries. See “Partition Dictionary
Data Using Referenced Dictionaries” for more information.

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary | removeDataSource

Topics
“Store Data in Dictionary Programmatically”

 addDataSource

8-135

close
Package: Simulink.data

Close connection between data dictionary and Simulink.data.Dictionary object

Syntax
close(dictionaryObj)

Description
close(dictionaryObj) closes the connection between the Simulink.data.Dictionary object
dictionaryObj and the data dictionary it represents. dictionaryObj remains as a
Simulink.data.Dictionary object but no longer represents any data dictionary.

Examples

Close Connection Between Data Dictionary Object and Data Dictionary

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Remove connection between myDictionaryObj and myDictionary_ex_API.sldd.

close(myDictionaryObj);

Input Arguments
dictionaryObj — Target Simulink.data.Dictionary object
handle to Simulink.data.Dictionary object

Target Simulink.data.Dictionary object, specified as a handle to the object.

Tips
• Use the close function in a custom MATLAB function to disassociate a

Simulink.data.Dictionary object from a data dictionary. Custom MATLAB functions can
create and store variables and objects in function workspaces but cannot delete those variables
and objects.

• The close function does not affect the content or the state of the represented data dictionary. The
function does not discard unsaved changes to the represented dictionary or entries. You can save
or discard them later.

Version History
Introduced in R2015a

8 Objects

8-136

See Also
Simulink.data.Dictionary

Topics
“Store Data in Dictionary Programmatically”

 close

8-137

discardChanges
Package: Simulink.data

Discard changes to data dictionary

Syntax
discardChanges(dictionaryObj)

Description
discardChanges(dictionaryObj) discards all changes made to the specified data dictionary
since the last time changes to the dictionary were saved using the saveChanges function.
discardChanges also discards changes made to referenced data dictionaries. The changes to the
target dictionary and its referenced dictionaries are permanently lost.

Examples

Discard Changes to Data Dictionary

Create a Simulink.data.Dictionary object representing the data dictionary
myDictionary_ex_API.sldd and assign the object to variable myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd')

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}
 HasUnsavedChanges: 0
 NumberOfEntries: 4

Make a change to myDictionary_ex_API.sldd by adding an entry named myNewEntry with value
237. View the HasUnsavedChanges property of myDictionaryObj to confirm a change was made.

dDataSectObj = getSection(myDictionaryObj,'Design Data');
addEntry(dDataSectObj,'myNewEntry',237);
myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}
 HasUnsavedChanges: 1
 NumberOfEntries: 5

Discard all changes to myDictionary_ex_API.sldd. The HasUnsavedChanges property of
myDictionaryObj indicates changes were discarded.

8 Objects

8-138

discardChanges(myDictionaryObj)
myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}
 HasUnsavedChanges: 0
 NumberOfEntries: 4

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you use this
function, represent the target dictionary with a Simulink.data.Dictionary object by using, for
example, the Simulink.data.dictionary.create or Simulink.data.dictionary.open
function.

Alternatives
You can use the Model Explorer window to discard changes to data dictionaries. See “View and
Revert Changes to Dictionary Entries” for more information.

Version History
Introduced in R2015a

See Also
saveChanges | Simulink.data.Dictionary

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”

 discardChanges

8-139

exportToVersion
Package: Simulink.data

Export a Simulink.data.Dictionary object to a previous version

Syntax
Simulink.data.Dictionary.exportToVersion(dictionaryObj,target_folder,version)

Description
Simulink.data.Dictionary.exportToVersion(dictionaryObj,target_folder,version)
exports the data dictionary dictionaryObj to the folder target_folder in a format that the
specified previous Simulink version can load. The function also exports references to the specified
folder. The file names of the dictionary and its references are preserved.

Examples

Export a Data Dictionary to a Previous Version

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.
openExample('sldemo_fuelsys_dd_controller');
myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

Export the data dictionary to a previous version of Simulink.

exportToVersion(myDictionaryObj, 'myR2018aFolder', 'R2018a');

Input Arguments
dictionaryObj — Data dictionary
Simulink.data.Dictionary object

Data dictionary, specified as a Simulink.data.Dictionary object. Before you use this function,
represent the target dictionary with a Simulink.data.Dictionary object by using, for example,
the Simulink.data.dictionary.create or Simulink.data.dictionary.open function.

target_folder — Folder for dictionary
string scalar | character vector

Target folder for the new version of the dictionary, specified as a character vector or string scalar.
Example: 'myR2018aFolder'
Data Types: char | string

version — MATLAB release name
string scalar | character vector

8 Objects

8-140

MATLAB release name, specified as a character vector or string scalar, which specifies a previous
Simulink version. The release name is not case sensitive.
Simulink.data.Dictionary.exportToVersion exports the data dictionary to a format that the
specified previous Simulink version can load. The value must be R2014a or later. You cannot export to
your current version.
Example: 'R2018a'
Data Types: char | string

Version History
Introduced in R2018b

See Also
Simulink.data.Dictionary

Topics
“Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139
“What Is a Data Dictionary?”

 exportToVersion

8-141

filepath
Package: Simulink.data

Full path and file name of data dictionary

Syntax
dictionaryFilePath = filepath(dictionaryObj)

Description
dictionaryFilePath = filepath(dictionaryObj) returns the full path and file name of the
data dictionary dictionaryObj, a Simulink.data.Dictionary object.

Examples

Return Path of Data Dictionary File

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Return the full path of myDictionary_ex_API.sldd and assign it to variable
myDictionaryFilePath.

myDictionaryFilePath = filepath(myDictionaryObj)

myDictionaryFilePath =

C:\Users\jsmith\myDictionary_ex_API.sldd

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you use this
function, represent the target dictionary with a Simulink.data.Dictionary object by using, for
example, the Simulink.data.dictionary.create or Simulink.data.dictionary.open
function.

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary

8 Objects

8-142

Topics
“Store Data in Dictionary Programmatically”

 filepath

8-143

getSection
Package: Simulink.data

Return Simulink.data.dictionary.Section object to represent data dictionary section

Syntax
sectionObj = getSection(dictionaryObj,sectionName)

Description
sectionObj = getSection(dictionaryObj,sectionName) returns a
Simulink.data.dictionary.Section object representing one section, sectionName, of a data
dictionary dictionaryObj, a Simulink.data.Dictionary object.

When you access the Embedded Coder section of a data dictionary, getSection returns a
coder.Dictionary object representing the Embedded Coder Dictionary in the data dictionary.

Examples

Create New Data Dictionary Section Object

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.

dDataSectObj = getSection(myDictionaryObj,'Design Data')

dDataSectObj =

 Section with properties:

 Name: 'Design Data'

Input Arguments
dictionaryObj — Data dictionary containing target section
Simulink.data.Dictionary object

Data dictionary containing target section, specified as a Simulink.data.Dictionary object.
Before you use this function, represent the dictionary with a Simulink.data.Dictionary object by
using, for example, the Simulink.data.dictionary.create or
Simulink.data.dictionary.open function.

sectionName — Name of target data dictionary section
character vector

8 Objects

8-144

Name of target data dictionary section, specified as a character vector.
Example: 'Design Data'
Example: 'Configurations'
Example: 'EmbeddedCoder'
Data Types: char

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.Section

Topics
“Store Data in Dictionary Programmatically”

 getSection

8-145

hide
Package: Simulink.data

Remove data dictionary from Model Explorer

Syntax
hide(dictionaryObj)

Description
hide(dictionaryObj) removes the data dictionary dictionaryObj from the Model Hierarchy
pane of Model Explorer. The target dictionary no longer appears as a node in the model hierarchy
tree. Use this function when you are finished working with a data dictionary and want to reduce
clutter in the Model Explorer.

Examples

Hide Data Dictionary from Model Explorer

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Open Model Explorer and display the new data dictionary as the selected tree node in the Model
Hierarchy pane.

show(myDictionaryObj)

With Model Explorer open, at the MATLAB command prompt, call the hide function to observe the
removal of myDictionary_ex_API.sldd from the model hierarchy tree.

hide(myDictionaryObj)

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you use this
function, represent the target dictionary with a Simulink.data.Dictionary object by using, for
example, the Simulink.data.dictionary.create or Simulink.data.dictionary.open
function.

Tips
• To add a data dictionary as a node in the model hierarchy tree in Model Explorer, use the show

function or use the interface to open and view the dictionary in Model Explorer.

8 Objects

8-146

• The hide function does not affect the content of the target dictionary.

Alternatives
You can remove a data dictionary from the Model Hierarchy pane of Model Explorer by right-
clicking the dictionary tree node and selecting Close.

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary | show

Topics
“Store Data in Dictionary Programmatically”

 hide

8-147

importEnumTypes
Package: Simulink.data

Import enumerated type definitions to data dictionary

Syntax
importedTypes = importEnumTypes(dictionaryObj,targetTypes)
[importedTypes,importFailures] = importEnumTypes(dictionaryObj,targetTypes)

Description
importedTypes = importEnumTypes(dictionaryObj,targetTypes) imports to the data
dictionary dictionaryObj the definitions of one or more enumerated types targetTypes.
importEnumTypes does not import MATLAB variables created using enumerated types but instead,
in support of those variables, imports the definitions of the types. The target data dictionary stores
the definition of a successfully imported type as an entry. This syntax returns a list of the names of
successfully imported types. importEnumTypes saves changes made to the target dictionary, so
before you use importEnumTypes, confirm that unsaved changes are acceptable.

[importedTypes,importFailures] = importEnumTypes(dictionaryObj,targetTypes)
additionally returns a list of any target types that were not successfully imported. You can inspect the
list to determine the reason for each failure.

Examples

Import Enumerated Data to Data Dictionary

Create a data dictionary myNewDictionary.sldd in your current working folder and a
Simulink.data.Dictionary object representing the new data dictionary. Assign the object to the
variable myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.create('myNewDictionary.sldd');

Run the script in the MATLAB file myDataEnum_ex_API.m. The file defines an enumerated type
named InstrumentTypes using the Simulink.defineIntEnumType function and creates three
variables based on the new type. Then, import the new variables from the base workspace to
myDictionary_ex_API.sldd.

myDataEnum_ex_API
importFromBaseWorkspace(myDictionaryObj,'varList',...
{'firstEnumVariable','secondEnumVariable','thirdEnumVariable'});

Clear the imported variables from the base workspace. Before you can import an enumerated data
type definition to the target data dictionary, you must clear the base workspace of any variables
created using the target type.

clear firstEnumVariable
clear secondEnumVariable
clear thirdEnumVariable

8 Objects

8-148

Import the data type definition to myDictionary_ex_API.sldd.

importEnumTypes(myDictionaryObj,{'InstrumentTypes'})

ans =

 className: 'InstrumentTypes'
 renamedFiles: {}

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you use this
function, represent the target dictionary with a Simulink.data.Dictionary object by using, for
example, the Simulink.data.dictionary.create or Simulink.data.dictionary.open
function.

targetTypes — Enumerated type definitions to import
cell array of character vectors | string array

Enumerated type definitions to import, specified as a cell array of character vectors or a string array.
If any target types are defined using classdef blocks in MATLAB files or P-files, the files must be
available on your MATLAB path so that importEnumTypes can disable them.
Example: {'myEnumType'}
Example: {'myFirstEnumType','mySecondEnumType','myThirdEnumType'}
Data Types: cell

Output Arguments
importedTypes — Target types successfully imported
array of structures

Target enumerated type definitions successfully imported, returned as an array of structures. Each
structure in the array represents one imported type. The className field of each structure identifies
a type by name and the renamedFiles field identifies any renamed MATLAB files or P-files.

importFailures — Target types not imported
array of structures

Enumerated type definitions targeted but not imported, returned as an array of structures. Each
structure in the array represents one type not imported. The className field of each structure
identifies a type by name and the reason field explains the failure.

Tips
• Before you can import an enumerated data type definition to a data dictionary, you must clear the

base workspace of any variables created using the target type.
• You can define an enumerated type using a classdef block in a MATLAB file or a P-file.

importEnumTypes imports type definitions directly from these files if you specify the names of

 importEnumTypes

8-149

the types to import using the input argument targetTypes and if the files defining the types are
on your MATLAB path.

• To avoid conflicting definitions for imported types, importEnumTypes renders MATLAB files or P-
files ineffective by appending .save to their names. The .save extensions cause variables to rely
on the definitions in the target data dictionary and not on the definitions in the files. You can
remove the .save extensions to restore the files to their original state.

• You can use importEnumTypes to import enumerated types defined using the
Simulink.defineIntEnumType function. Because such types are not defined using MATLAB
files or P-files, importEnumTypes does not rename any files.

• Use the function Simulink.findVars to generate a list of the enumerated types that are used by
a model. Then, use the list with importEnumTypes to import the definitions of the types to a data
dictionary. See “Enumerations in Data Dictionary” for more information.

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary | importFromBaseWorkspace

Topics
“Enumerations in Data Dictionary”
“Store Data in Dictionary Programmatically”

8 Objects

8-150

importFromBaseWorkspace
Package: Simulink.data

Import base workspace variables to data dictionary

Syntax
importedVars = importFromBaseWorkspace(dictionaryObj)
importedVars = importFromBaseWorkspace(dictionaryObj,Name,Value)
[importedVars,existingVars] = importFromBaseWorkspace(___)
[importedVars,existingVars,unsupportedVars] = importFromBaseWorkspace(___)

Description
importedVars = importFromBaseWorkspace(dictionaryObj) imports all variables from the
MATLAB base workspace to the data dictionary dictionaryObj without overwriting existing entries
in the dictionary. If any base workspace variables are already in the dictionary, the function present a
warning and a list.

This syntax returns a list of names of the successfully imported variables. A variable is considered
successfully imported only if importFromBaseWorkspace assigns the value of the variable to the
corresponding entry in the target data dictionary.

importedVars = importFromBaseWorkspace(dictionaryObj,Name,Value) imports base
workspace variables to a data dictionary, with additional options specified by one or more
Name,Value pair arguments.

[importedVars,existingVars] = importFromBaseWorkspace(___) additionally returns a list
of variables that were not overwritten. Use this syntax if existingVarsAction is set to 'none', the
default value, which prevents existing dictionary entries from being overwritten.

[importedVars,existingVars,unsupportedVars] = importFromBaseWorkspace(___)
additionally returns a list of unsupported variables that were not imported. When there are
unsupported variables in the base workspace, if you call this function without the unsupportedVars
output argument, Simulink reports a warning.

Examples

Import All Base Workspace Variables to Data Dictionary

In the MATLAB base workspace, create variables to import.

a = 'Char Variable';
myVariable = true;
fuelFlow = 324;

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

 importFromBaseWorkspace

8-151

Import all base workspace variables to the data dictionary and return a list of successfully imported
variables. If any base workspace variables are already in myDictionary_ex_API.sldd,
importFromBaseWorkspace presents a warning and a list of the affected variables.

importFromBaseWorkspace(myDictionaryObj);

Warning: The following variables were not imported because
they already exist in the dictionary:
 fuelFlow

Specify Variables to Import to Data Dictionary from Base Workspace

In the MATLAB base workspace, create variables to import.

b = 'Char Variable';
mySecondVariable = true;
airFlow = 324;

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import only the new base workspace variables to the data dictionary.

importFromBaseWorkspace(myDictionaryObj,'varList',...
{'b','mySecondVariable','airFlow'});

Import Variables from Base Workspace and Overwrite Conflicts

In the MATLAB base workspace, create a variable to import.

fuelFlow = 324;

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj. myDictionary_ex_API.sldd
already contains an entry called fuelFlow.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the variable fuelFlow and overwrite the corresponding entry in
myDictionary_ex_API.sldd.

importFromBaseWorkspace(myDictionaryObj,'varList',{'fuelFlow'},...
'existingVarsAction','overwrite');

importFromBaseWorkspace assigns the value of the base workspace variable fuelFlow to the
value of the corresponding entry in myDictionary_ex_API.sldd.

Return Variables Not Imported to Data Dictionary from Base Workspace

Return a list of variables that are not imported from the MATLAB base workspace because they are
already in the target data dictionary.

8 Objects

8-152

In the MATLAB base workspace, create variables to import.

fuelFlow = 324;
myNewVariable = 'This is a character vector.'

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj. myDictionary_ex_API.sldd
already contains an entry called fuelFlow.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the variables fuelFlow and myNewVariable to the data dictionary. Specify names for the
output arguments of importFromBaseWorkspace to return the names of successfully and
unsuccessfully imported variables.
[importedVars,existingVars] = importFromBaseWorkspace(myDictionaryObj,...
'varList',{'fuelFlow','myNewVariable'})

importedVars =

 'myNewVariable'

existingVars =

 'fuelFlow'

importFromBaseWorkspace does not import the variable fuelflow because it is already in the
target data dictionary.

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you use this
function, represent the target dictionary with a Simulink.data.Dictionary object by using, for
example, the Simulink.data.dictionary.create or Simulink.data.dictionary.open
function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'varList',{'fuelFlow'}, 'existingVarsAction','overwrite' imports the
variable fuelFlow and overwrites the corresponding entry in the data dictionary.

clearWorkspaceVars — Flag to clear base workspace of imported variables
false (default) | true

Flag to clear the base workspace of any successfully imported variables, specified as the comma-
separated pair consisting of 'clearWorkspaceVars' and true or false.
Example: 'clearWorkspaceVars',true

 importFromBaseWorkspace

8-153

Data Types: logical

existingVarsAction — Action to take for existing dictionary variables
'none' (default) | 'error' | 'overwrite'

Action to take for existing dictionary variables, specified as the comma-separated pair consisting of
'existingVarsAction' and 'none', 'error', or 'overwrite'.

If you specify 'none', importFromBaseWorkspace attempts to import target variables but does not
import or make any changes to variables that are already in the data dictionary.

If you specify 'error', importFromBaseWorkspace returns an error, without importing any
variables, if any target variables are already in the data dictionary.

If you specify 'overwrite', importFromBaseWorkspace imports all target variables and
overwrites any variables that are already in the data dictionary.
Example: 'existingVarsAction','error'
Data Types: char

varList — Variables to import
cell array of character vectors | string array

Names of specific base workspace variables to import, specified as the comma-separated pair
consisting of 'varList' and a cell array of character vectors or a string array. If you want to import
only one variable, specify the name inside a cell array. If you do not specify 'varList',
importFromBaseWorkspace imports all variables from the MATLAB base workspace.
Example: 'varList',{'a','myVariable','fuelFlow'}
Example: 'varList',{'fuelFlow'}
Data Types: cell

Output Arguments
importedVars — Successfully imported variables
cell array of character vectors

Names of successfully imported variables, returned as a cell array of character vectors. A variable is
considered successfully imported only if importFromBaseWorkspace assigns the value of the
variable to the corresponding entry in the target data dictionary.

existingVars — Existing variables that were not imported
cell array of character vectors

Names of target variables that were not imported due to their existence in the target data dictionary,
returned as a cell array of character vectors. existingVars has content only if
'existingVarsAction' is set to 'none' which is also the default. In that case
importFromBaseWorkspace imports only variables that are not already in the target data
dictionary.

unsupportedVars — Unsupported variables that were not imported
cell array of character vectors

8 Objects

8-154

Names of unsupported target variables that were not imported, returned as a cell array of character
vectors. If this output argument is not included in the function call when there are unsupported
variables, Simulink reports a warning. For the types of variables that can be imported into a data
dictionary, see “Valid Design Data Classes”.

Tips
• importFromBaseWorkspace can import MATLAB variables created from enumerated data types

but cannot import the definitions of the enumerated types. Use the importEnumTypes function to
import enumerated data type definitions to a data dictionary. If you import variables of
enumerated data types to a data dictionary but do not import the enumerated type definitions, the
dictionary is less portable and might not function properly if used by someone else.

• If the value of a variable is a timeseries object (which a data dictionary cannot store) or a
structure with fields identical to a timeseries object, importFromBaseWorkspace cannot import
the variable.

Alternatives
• When you use the Simulink Editor to link a model to a data dictionary, you can choose to import

model variables from the base workspace. See “Migrate Single Model to Use Dictionary” for more
information.

• You can also use the Model Explorer window to drag-and-drop variables from the base workspace
into a data dictionary.

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary | importEnumTypes

Topics
“Store Data in Dictionary Programmatically”

 importFromBaseWorkspace

8-155

listEntry
Package: Simulink.data

List data dictionary entries

Syntax
listEntry(dictionaryObj)
listEntry(dictionaryObj,Name,Value)

Description
listEntry(dictionaryObj) displays in the MATLAB Command Window a table of information
about all the entries in the data dictionary dictionaryObj, a Simulink.data.Dictionary object.
The displayed information includes the name of each entry, the name of the section containing each
entry, the status of each entry, the date and time each entry was last modified, the last user name to
modify each entry, and the class of the value each entry contains. By default, the function sorts the
list of entries alphabetically by entry name.

listEntry(dictionaryObj,Name,Value) displays the entries in a data dictionary with additional
options specified by one or more Name,Value pair arguments.

To return the value of a data dictionary entry at the command prompt, use the getValue method of a
Simulink.data.dictionary.Entry object. See “Store Data in Dictionary Programmatically”.

To get a list of entries in a dictionary section, returned as an array of
Simulink.data.dictionary.Entry objects, use the find method of a
Simulink.data.dictionary.Section object with no arguments.

Examples

List All Entries in Data Dictionary

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.
openExample('sldemo_fuelsys_dd_controller');
myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

List all the entries in the data dictionary.

listEntry(myDictionaryObj)

Sort List of Data Dictionary Entries in Descending Order

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.
openExample('sldemo_fuelsys_dd_controller');
myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

8 Objects

8-156

List all the entries in the data dictionary and sort the list in descending order by entry name.

listEntry(myDictionaryObj,'Ascending',false)

Filter List of Data Dictionary Entries by Name

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.
openExample('sldemo_fuelsys_dd_controller');
myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

List only the entries in the data dictionary whose names begin with max.

listEntry(myDictionaryObj,'Name','max*')

Sort List of Data Dictionary Entries by Time of Modification

Represent the data dictionary sldemo_fuelsys_dd_controller.sldd with a
Simulink.data.Dictionary object named myDictionaryObj.
openExample('sldemo_fuelsys_dd_controller');
myDictionaryObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

List all the entries in the dictionary and sort the list by the date and time each entry was last
modified.

listEntry(myDictionaryObj,'SortBy','LastModified')

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you use this
function, represent the target dictionary with a Simulink.data.Dictionary object by using, for
example, the Simulink.data.dictionary.create or Simulink.data.dictionary.open
function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SortBy','LastModified' sorts the entries in the data dictionary by the date and time
each entry was last modified.

Ascending — Sort order of list
true (default) | false

 listEntry

8-157

Sort order of the list of data dictionary entries, specified as the comma-separated pair consisting of
'Ascending' and true or false. If you specify false, listEntry sorts the list in descending
order.
Example: 'Ascending',false
Data Types: logical

Class — Criteria to filter list by class
character vector

Criteria to filter the list of data dictionary entries by class, specified as the comma-separated pair
consisting of 'Class' and a character vector identifying a valid class. The function lists only entries
whose values are of the specified class.
Example: 'Class','Simulink.Parameter'
Data Types: char

LastModifiedBy — Criteria to filter list by user name of last modifier
character vector

Criteria to filter the list of data dictionary entries by the user name of the last user to modify each
entry, specified as the comma-separated pair consisting of 'LastModifiedBy' and a character
vector identifying the specified user name. The function lists only entries that were last modified by
the specified user name.
Example: 'LastModifiedBy','jsmith'
Data Types: char

Limit — Maximum number of entries to list
integer

Maximum number of entries to list, specified as the comma-separated pair consisting of 'Limit' and
an integer. The function lists up to the specified number of entries starting from the top of the sorted
and filtered list.
Example: 'Limit',9
Data Types: double

Name — Criteria to filter list by entry name
character vector

Criteria to filter the list of data dictionary entries by entry name, specified as the comma-separated
pair consisting of 'Name' and a character vector defining the filter criteria. You can use an asterisk
character, *, as a wildcard to represent any number of characters. The function lists only entries
whose names match the filter criteria.
Example: 'Name','fuelFlow'
Example: 'Name','fuel*'
Data Types: char

Section — Criteria to filter list by data dictionary section
character vector

8 Objects

8-158

Criteria to filter the list of data dictionary entries by section, specified as the comma-separated pair
consisting of 'Section' and a character vector identifying the target section. The function lists only
entries that are contained in the target section.
Example: 'Section','Design Data'

SortBy — Flag to sort list by specific property
'Name' (default) | 'Section' | 'LastModified' | 'LastModifiedBy'

Flag to sort the list of data dictionary entries by a specific property, specified as the comma-separated
pair consisting of 'SortBy' and a character vector identifying a property in the list of entries. Valid
properties include 'Name', 'Section', 'LastModified', and 'LastModifiedBy'.
Example: 'SortBy','LastModifiedBy'

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary | Simulink.data.dictionary.Entry | evalin | find

Topics
“Store Data in Dictionary Programmatically”
“Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139
“What Is a Data Dictionary?”

 listEntry

8-159

removeDataSource
Package: Simulink.data

Remove reference data dictionary from parent data dictionary

Syntax
removeDataSource(dictionaryObj,refDictionaryFile)

Description
removeDataSource(dictionaryObj,refDictionaryFile) removes a referenced data
dictionary, refDictionaryFile, from a parent dictionary dictionaryObj, a
Simulink.data.Dictionary object.

The parent dictionary no longer contains the entries that are defined in the referenced dictionary.

Examples

Remove Referenced Data Dictionary from Parent Data Dictionary

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj. The DataSources property of
myDictionaryObj indicates myDictionary_ex_API.sldd references
myRefDictionary_ex_API.sldd.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd')

myDictionaryObj =

 Dictionary with properties:

 DataSources: {'myRefDictionary_ex_API.sldd'}
 HasUnsavedChanges: 0
 NumberOfEntries: 4

Remove myRefDictionary_ex_API.sldd from myDictionary_ex_API.sldd.

removeDataSource(myDictionaryObj,'myRefDictionary_ex_API.sldd');

View the properties of the Simulink.data.Dictionary object myDictionaryObj, which
represents the parent data dictionary. The DataSources property confirms the removal of
myRefDictionary_ex_API.sldd.

myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {0x1 cell}

8 Objects

8-160

 HasUnsavedChanges: 1
 NumberOfEntries: 3

Input Arguments
dictionaryObj — Parent data dictionary
Simulink.data.Dictionary object

Parent data dictionary, specified as a Simulink.data.Dictionary object. Before you use this
function, represent the target dictionary with a Simulink.data.Dictionary object by using, for
example, the Simulink.data.dictionary.create or Simulink.data.dictionary.open
function.

refDictionaryFile — File name of referenced data dictionary
character vector

File name of referenced data dictionary, specified as a character vector that includes the .sldd
extension. The data dictionary file must be on your MATLAB path.
Example: 'myRefDictionary_ex_API.sldd'
Data Types: char

Alternatives
You can use Model Explorer to manage reference dictionaries. See “Partition Dictionary Data Using
Referenced Dictionaries” for more information.

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary | addDataSource

Topics
“Store Data in Dictionary Programmatically”

 removeDataSource

8-161

saveChanges
Package: Simulink.data

Save changes to data dictionary

Syntax
saveChanges(dictionaryObj)

Description
saveChanges(dictionaryObj) saves all changes made to a data dictionary dictionaryObj, a
Simulink.data.Dictionary object. saveChanges also saves changes made to referenced data
dictionaries. The previous states of the target dictionary and its referenced dictionaries are
permanently lost.

Examples

Save Changes to Data Dictionary

Create a new data dictionary myNewDictionary.sldd and represent the Design Data section with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.create('myNewDictionary.sldd')
dDataSectObj = getSection(myDictionaryObj,'Design Data');

myDictionaryObj =

 data dictionary with properties:

 DataSources: {0x1 cell}
 HasUnsavedChanges: 0
 NumberOfEntries: 0

Change myNewDictionary.sldd by adding an entry named myNewEntry with value 237. View the
HasUnsavedChanges property of myDictionaryObj to confirm a change was made.

addEntry(dDataSectObj,'myNewEntry',237);
myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {0x1 cell}
 HasUnsavedChanges: 1
 NumberOfEntries: 1

Save all changes to myNewDictionary.sldd. The HasUnsavedChanges property of
myDictionaryObj indicates changes were saved.

8 Objects

8-162

saveChanges(myDictionaryObj)
myDictionaryObj

myDictionaryObj =

 Dictionary with properties:

 DataSources: {0x1 cell}
 HasUnsavedChanges: 0
 NumberOfEntries: 1

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you use this
function, represent the target dictionary with a Simulink.data.Dictionary object by using, for
example, the Simulink.data.dictionary.create or Simulink.data.dictionary.open
function.

Alternatives
You can use Model Explorer to save changes to a data dictionary by right-clicking on the dictionary
tree node in the Model Hierarchy pane and selecting Save Changes.

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary | discardChanges

Topics
“Store Data in Dictionary Programmatically”

 saveChanges

8-163

show
Package: Simulink.data

Show data dictionary in Model Explorer

Syntax
show(dictionaryObj)
show(dictionaryObj,openModelExplorer)

Description
show(dictionaryObj) opens Model Explorer and displays the data dictionary dictionaryObj as
the selected tree node in the Model Hierarchy pane.

show(dictionaryObj,openModelExplorer) enables you to add the target dictionary to the
Model Hierarchy pane without opening Model Explorer.

Examples

Show Data Dictionary in Model Explorer

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Open Model Explorer and display myDictionary_ex_API as the selected node of the model
hierarchy tree in the Model Hierarchy pane.

show(myDictionaryObj)

Add Data Dictionary to Model Hierarchy Tree

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Add myDictionary_ex_API.sldd to the model hierarchy tree without opening Model Explorer.

show(myDictionaryObj,false)

8 Objects

8-164

You can confirm the addition of myDictionary_ex_API to the model hierarchy tree by manually
opening Model Explorer.

Input Arguments
dictionaryObj — Target data dictionary
Simulink.data.Dictionary object

Target data dictionary, specified as a Simulink.data.Dictionary object. Before you use this
function, represent the target dictionary with a Simulink.data.Dictionary object by using, for
example, the Simulink.data.dictionary.create or Simulink.data.dictionary.open
function.

openModelExplorer — Flag to open Model Explorer
true (default) | false

Flag to open Model Explorer, specified as true or false.
Data Types: logical

Tips
• Use the hide function to remove a data dictionary from the tree in the Model Hierarchy pane of

Model Explorer. The dictionary does not appear in the hierarchy again until you use the show
function or you open and view the dictionary in the Model Explorer using the interface.

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary | hide

Topics
“Store Data in Dictionary Programmatically”

 show

8-165

Simulink.data.dictionary.Entry
Configure data dictionary entry

Description
An object of the Simulink.data.dictionary.Entry class represents one entry of a data
dictionary. The object allows you to perform operations such as assign the entry a value or change the
name of the entry.

Before you can create a new Simulink.data.dictionary.Entry object, you must create a
Simulink.data.dictionary.Section object representing the data dictionary section that
contains the target entry. However, once created, the Simulink.data.dictionary.Entry object
exists independently of the Simulink.data.dictionary.Section object. Use the function
getSection to create a Simulink.data.dictionary.Section object.

Creation
Syntax
Description

The functions addEntry, getEntry, and find create Simulink.data.dictionary.Entry
objects.

Properties
DataSource — File name of containing data dictionary
character vector

File name of containing data dictionary, specified as a character vector. Changes you make to this
property affect the represented data dictionary entry.
Example: 'myDictionary.sldd'
Data Types: char

LastModified — Date and time of last modification
character vector

Date and time of last modification to entry, returned in Coordinated Universal Time (UTC) as a
character vector. This property is read only.

LastModifiedBy — Name of last user to modify entry
character vector

Name of last user to modify entry, returned as a character vector. This property is read only.

Name — Name of entry
character vector

8 Objects

8-166

Name of entry, specified as a character vector. Changes you make to this property affect the
represented data dictionary entry.
Data Types: char

Status — State of entry
'New' | 'Modified' | 'Unchanged' | 'Deleted'

State of entry, returned as 'New', 'Modified', 'Unchanged', or 'Deleted'. The state is valid
since the last data dictionary save. If the state is 'Deleted', the represented entry was deleted from
its data dictionary. This property is read only.

Object Functions
deleteEntry Delete data dictionary entry
discardChanges Discard changes to data dictionary entry
find Search in array of data dictionary entries
getValue Return value of data dictionary entry
setValue Set value of data dictionary entry
showChanges Display changes made to data dictionary entry

Examples

Add Entry to Data Dictionary and Modify its Value

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Add an entry myEntry with value 27 to the Design Data section of myDictionary_ex_API.sldd.
Assign the returned Simulink.data.dictionary.Entry object to variable e.

e = addEntry(dDataSectObj,'myEntry',27)

e =

 Entry with properties:

 Name: 'myEntry'
 Value: 27
 DataSource: 'myDictionary_ex_API.sldd'
 LastModified: '2014-Aug-26 18:42:08.439709'
 LastModifiedBy: 'jsmith'
 Status: 'New'

Change the value of myEntry from 27 to the character vector 'My New Value'.

setValue(e,'My New Value')
e

e =

 Entry with properties:

 Simulink.data.dictionary.Entry

8-167

 Name: 'myEntry'
 Value: 'My New Value'
 DataSource: 'myDictionary_ex_API.sldd'
 LastModified: '2014-Aug-26 18:45:58.336598'
 LastModifiedBy: 'jsmith'
 Status: 'New'

Return Value of Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a Simulink.data.dictionary.Entry object
named fuelFlowObj. fuelFlow is defined in the data dictionary myDictionary_ex_API.sldd.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Return the value of the entry fuelFlow and assign the value to the variable fuelFlowValue.

fuelFlowValue = getValue(fuelFlowObj)

fuelFlowValue =

 237

Move Entry Within Data Dictionary Hierarchy

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionary_ex_API.sldd references the data dictionary myRefDictionary_ex_API.sldd.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Create a Simulink.data.dictionary.Entry object representing the entry fuelFlow, which
resides in myDictionary_ex_API.sldd. Assign the object to variable e.

e = getEntry(dDataSectObj,'fuelFlow')

e =

 Entry with properties:

 Name: 'fuelFlow'
 Value: 237
 DataSource: 'myDictionary_ex_API.sldd'
 LastModified: '2014-Sep-05 13:12:06.099278'
 LastModifiedBy: 'jsmith'
 Status: 'Unchanged'

Migrate the entry fuelFlow to the reference data dictionary myRefDictionary_ex_API.sldd by
modifying the DataSource property of e.

e.DataSource = 'myRefDictionary_ex_API.sldd'

e =

 Entry with properties:

8 Objects

8-168

 Name: 'fuelFlow'
 Value: 237
 DataSource: 'myRefDictionary_ex_API.sldd'
 LastModified: '2014-Sep-05 13:12:06.099278'
 LastModifiedBy: 'jsmith'
 Status: 'Modified'

Because myDictionary_ex_API.sldd references myRefDictionary_ex_API.sldd, both
dictionaries belong to the same dictionary hierarchy, allowing you to migrate the entry fuelFlow
between them.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Section | getEntry | Simulink.data.Dictionary

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”

 Simulink.data.dictionary.Entry

8-169

deleteEntry
Package: Simulink.data.dictionary

Delete data dictionary entry

Syntax
deleteEntry(entryObj)

Description
deleteEntry(entryObj) deletes the data dictionary entry represented by entryObj, a
Simulink.data.dictionary.Entry object. The represented entry no longer exists in the data
dictionary that defined it.

The function sets the Status properties of any Simulink.data.dictionary.Entry objects
representing the deleted entry to 'Deleted'. You can access only the Status properties of the
objects.

Examples

Delete Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a Simulink.data.dictionary.Entry object
named fuelFlowObj. fuelFlow is defined in the data dictionary myDictionary_ex_API.sldd.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Delete the entry fuelFlow from the data dictionary myDictionary_ex_API.sldd.
myDictionary_ex_API.sldd no longer contains the fuelFlow entry.

deleteEntry(fuelFlowObj)

Input Arguments
entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry object. Before you
use this function, represent the target entry with a Simulink.data.dictionary.Entry object by
using, for example, the getEntry function.

Alternatives
You can use the Model Explorer window to view the contents of a data dictionary and delete entries.

8 Objects

8-170

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Entry | addEntry

Topics
“Store Data in Dictionary Programmatically”

 deleteEntry

8-171

discardChanges
Package: Simulink.data.dictionary

Discard changes to data dictionary entry

Syntax
discardChanges(entryObj)

Description
discardChanges(entryObj) discards all changes made to the data dictionary entry entryObj, a
Simulink.data.dictionary.Entry object, since the last time the containing data dictionary was
saved using the saveChanges function. The changes to the entry are permanently lost.

Examples

Discard Changes to Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a Simulink.data.dictionary.Entry object
named fuelFlowObj. fuelFlow is defined in the data dictionary myDictionary_ex_API.sldd.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Change the entry fuelFlow by assigning it the new value 493. Confirm a change was made by
viewing the Status property of fuelFlowObj.

setValue(fuelFlowObj,493);
fuelFlowObj

fuelFlowObj =

 Entry with properties:

 Name: 'fuelFlow'
 Value: 493
 DataSource: 'myDictionary_ex_API.sldd'
 LastModified: '2014-Sep-05 13:14:30.661978'
 LastModifiedBy: 'jsmith'
 Status: 'Modified'

Discard all changes to the entry fuelFlow. The Status property of fuelFlowObj shows that
changes were discarded.

discardChanges(fuelFlowObj)
fuelFlowObj

fuelFlowObj =

 Entry with properties:

8 Objects

8-172

 Name: 'fuelFlow'
 Value: 237
 DataSource: 'myDictionary_ex_API.sldd'
 LastModified: '2014-Sep-05 13:12:06.099278'
 LastModifiedBy: 'jsmith'
 Status: 'Unchanged'

Input Arguments
entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry object. Before you
use this function, represent the target entry with a Simulink.data.dictionary.Entry object by
using, for example, the getEntry function.

Tips
• You can use the discardChanges function or the saveChanges function with an entire data

dictionary, discarding or saving changes to all entries in the dictionary at once. However, only the
discardChanges function can additionally operate on individual entries. You cannot use the
saveChanges function to save changes to individual entries.

Alternatives
You can use Model Explorer and the Comparison Tool to discard changes to data dictionary entries.
See “View and Revert Changes to Dictionary Entries” for more information.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Entry | saveChanges

Topics
“Store Data in Dictionary Programmatically”

 discardChanges

8-173

find
Package: Simulink.data.dictionary

Search in array of data dictionary entries

Syntax
foundEntries = find(targetEntries,PName1,PValue1,...,PNameN,PValueN)
foundEntries = find(targetEntries,PName1,PValue1,...,PNameN,PValueN,options)

Description
foundEntries = find(targetEntries,PName1,PValue1,...,PNameN,PValueN) searches
the array of data dictionary entries targetEntries using search criteria
PName1,PValue1,...,PNameN,PValueN, and returns an array of entries matching the criteria.
This syntax matches the search criteria with the properties of the target entries, which are
Simulink.data.dictionary.Entry objects, but not with the properties of their values. See
Simulink.data.dictionary.Entry for a list of data dictionary entry properties.

foundEntries = find(targetEntries,PName1,PValue1,...,PNameN,PValueN,options)
searches for data dictionary entries using additional search options. For example, you can match the
search criteria with the values of the target entries.

Examples

Search Data Dictionary Entry Values for Specific Class

Search in an array of data dictionary entries myEntryObjs for entries whose values are objects of
the class Simulink.Parameter.

foundEntries = find(myEntryObjs,'-value','-class','Simulink.Parameter')

Search Data Dictionary Entries for Modifying User

Search in an array of data dictionary entries myEntryObjs for entries that were last modified by the
user jsmith.

foundEntries = find(myEntryObjs,'LastModifiedBy','jsmith')

Search Data Dictionary Entries Using Multiple Criteria

Search in an array of data dictionary entries myEntryObjs for entries that were last modified by the
user jsmith or whose names begin with fuel.

8 Objects

8-174

foundEntries = find(myEntryObjs,'LastModifiedBy','jsmith','-or',...
'-regexp','Name','fuel*')

Search Data Dictionary Entries Using Regular Expressions

Search in an array of data dictionary entries myEntryObjs for entries whose names begin with
Press.

foundEntries = find(myEntryObjs,'-regexp','Name','Press*')

Search Data Dictionary Entries for Specific Value

Search in an array of data dictionary entries myEntryObjs for entries whose values are 273. If you
find more than one entry, store the entries in an array called foundEntries.

foundEntries = [];
for i = 1:length(myEntryObjs)
 if getValue(myEntryObjs(i)) == 237
 foundEntries = [foundEntries myEntryObjs(i)];
 end
end

Search Data Dictionary Entry Values for Specific Property

Search in an array of data dictionary entries myEntryObjs for entries whose values have a property
DataType.

foundEntries = find(myEntryObjs,'-value','-property','DataType')

Input Arguments
targetEntries — Data dictionary entries to search
array of Simulink.data.dictionary.Entry objects

Data dictionary entries to search, specified as an array Simulink.data.dictionary.Entry
objects. Before you use this function, represent the target entries with
Simulink.data.dictionary.Entry objects by using, for example, the getEntry function.
Example: [myEntryObj1,myEntryObj2,myEntryObj3]

PName1,PValue1,...,PNameN,PValueN — Search criteria
name-value pairs representing properties

Search criteria, specified as one or more name-value pairs representing names and values of
properties of the target data dictionary entries. For a list of the properties of a data dictionary entry,
see Simulink.data.dictionary.Entry. If you specify more than one name-value pair, the
returned entries meet all of the criteria.

If you include the '-value' option to search in the values of the target entries, the search criteria
apply to the values of the entries rather than to the entries themselves.

 find

8-175

Example: 'LastModifiedBy','jsmith'
Example: 'DataSource','myRefDictionary_ex_API.sldd'

options — Additional search options
supported option codes

Additional search options, specified as one or more of the following supported option codes.

'-value' This option causes find to search only in the values of
the target data dictionary entries. Specify this option
before any other search criteria or options arguments.

'-and', '-or', '-xor', or '-not'
logical operators

These options modify or combine multiple search criteria
or other option codes.

'-property',propertyName This name-value pair causes find to search for entries or
values that have the property propertyName regardless
of the value of the property. Specify propertyName as a
character vector.

'-class',className This name-value pair causes find to search for entries or
values that are objects of the class className. Specify
className as a character vector.

'-isa',className This name-value pair causes find to search for entries or
values that are objects of the class or of any subclass
derived from the class className. Specify className
as a character vector.

'-regexp' This option allows you to use regular expressions in your
search criteria. This option affects only search criteria
that follow '-regexp'.

Example: '-value'
Example: '-value','-property','CoderInfo'
Example: '-value','-class','Simulink.Parameter'

Output Arguments
foundEntries — Data dictionary entries matching search criteria
array of Simulink.data.dictionary.Entry objects

Data dictionary entries matching the specified search criteria, returned as an array of
Simulink.data.dictionary.Entry objects.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Entry | find

8 Objects

8-176

Topics
“Store Data in Dictionary Programmatically”

 find

8-177

getValue
Package: Simulink.data.dictionary

Return value of data dictionary entry

Syntax
entryValue = getValue(entryObj)

Description
entryValue = getValue(entryObj) returns the value of the data dictionary entry entryObj, a
Simulink.data.dictionary.Entry object.

To programmatically access variables for the purpose of sweeping block parameter values, consider
using Simulink.SimulationInput objects instead of modifying the variables through the
programmatic interface of the data dictionary. See “Optimize, Estimate, and Sweep Block Parameter
Values”.

Examples

Return Value of Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a Simulink.data.dictionary.Entry object
named fuelFlowObj. fuelFlow is defined in the data dictionary myDictionary_ex_API.sldd.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Return the value of the entry fuelFlow and assign the value to variable fuelFlowValue.

fuelFlowValue = getValue(fuelFlowObj)

fuelFlowValue =

 237

Input Arguments
entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry object. Before you
use this function, represent the target entry with a Simulink.data.dictionary.Entry object by
using, for example, the getEntry function.

Version History
Introduced in R2015a

8 Objects

8-178

See Also
Simulink.data.dictionary.Entry | setValue

Topics
“Store Data in Dictionary Programmatically”

 getValue

8-179

setValue
Package: Simulink.data.dictionary

Set value of data dictionary entry

Syntax
setValue(entryObj,newValue)

Description
setValue(entryObj,newValue) assigns the value newValue to the data dictionary entry
entryObj, a Simulink.data.dictionary.Entry object.

To programmatically access variables for the purpose of sweeping block parameter values, consider
using Simulink.SimulationInput objects instead of modifying the variables through the
programmatic interface of the data dictionary. See “Optimize, Estimate, and Sweep Block Parameter
Values”.

Examples

Set Value of Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a Simulink.data.dictionary.Entry object
named fuelFlowObj. fuelFlow is defined in the data dictionary myDictionary_ex_API.sldd.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Set the value of the entry fuelFlow to 493. Then, view the Value property of fuelFlowObj to
observe the change.

setValue(fuelFlowObj,493)
fuelFlowObj

fuelFlowObj =

 Entry with properties:

 Name: 'fuelFlow'
 Value: 493
 DataSource: 'myDictionary_ex_API.sldd'
 LastModified: '2014-Sep-05 13:37:22.161124'
 LastModifiedBy: 'jsmith'
 Status: 'Modified'

Input Arguments
entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

8 Objects

8-180

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry object. Before you
use this function, represent the target entry with a Simulink.data.dictionary.Entry object by
using, for example, the getEntry function.

newValue — Value to assign to data dictionary entry
MATLAB expression

Value to assign to data dictionary entry, specified as a MATLAB expression. The expression must
return a value that is supported by the data dictionary section that contains the entry.
Example: 27.5
Example: myBaseWorkspaceVariable
Example: Simulink.Parameter

Alternatives
You can use the Model Explorer window to view and change the values of data dictionary entries.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Entry | getValue

Topics
“Store Data in Dictionary Programmatically”

 setValue

8-181

showChanges
Package: Simulink.data.dictionary

Display changes made to data dictionary entry

Syntax
showChanges(entryObj)

Description
showChanges(entryObj) opens the Comparison Tool to show changes made to the data dictionary
entry entryObj, a Simulink.data.dictionary.Entry object. The Comparison Tool displays the
properties of entryObj as they were when the data dictionary was last saved and as they were when
the showChanges function was called.

Examples

View Unsaved Changes to Data Dictionary Entry

Represent the data dictionary entry fuelFlow with a Simulink.data.dictionary.Entry object
named fuelFlowObj. fuelFlow is defined in the data dictionary myDictionary_ex_API.sldd.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Make a change to the entry fuelFlow by assigning it the new value 494.

setValue(fuelFlowObj,494);

Observe the unsaved change to the entry fuelFlow. The Comparison Tool opens and compares side
by side the current state of the entry with its most recently saved state.

showChanges(fuelFlowObj)

Input Arguments
entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, specified as a Simulink.data.dictionary.Entry object. Before you
use this function, represent the target entry with a Simulink.data.dictionary.Entry object by
using, for example, the getEntry function.

Alternatives
You can use Model Explorer and the Comparison Tool to view changes to data dictionary entries. See
“View and Revert Changes to Dictionary Entries” for more information.

8 Objects

8-182

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Entry | discardChanges

Topics
“Store Data in Dictionary Programmatically”

 showChanges

8-183

Simulink.data.dictionary.EnumTypeDefinition
Store enumerated type definition in data dictionary

Description
A Simulink.data.dictionary.EnumTypeDefinition object defines an enumerated data type in
a data dictionary. You store the object in a data dictionary entry so models linked to the dictionary can
use the enumerated type definition.

In the MATLAB base workspace, Simulink.data.dictionary.EnumTypeDefinition objects
retain information about an enumerated type but do not define the type for use by other variables or
by models.

Creation
You can create a Simulink.data.dictionary.EnumTypeDefinition object several ways.

• Interactively create a Simulink.data.dictionary.EnumTypeDefinition object using the
Type Editor or Model Explorer.

• Import the definitions of enumerated types to a data dictionary using the importEnumTypes
function. Simulink creates a Simulink.data.dictionary.EnumTypeDefinition object in the
dictionary for each imported definition. The dictionary stores each object in an individual entry.

• Programmatically create a Simulink.data.dictionary.EnumTypeDefinition object using
the Simulink.data.dictionary.EnumTypeDefinition function described here.

Syntax
Simulink.data.dictionary.EnumTypeDefinition

Description

The Simulink.data.dictionary.EnumTypeDefinition function creates a
Simulink.data.dictionary.EnumTypeDefinition object with default property values and a
single enumeration member that has underlying integer value 0.

Properties
AddClassNameToEnumNames — Flag to control enumeration identifiers in generated code
false (default) | true

Flag to prefix enumerations with the class name in generated code, specified as true or false.

If you specify true, when you generate code the identifier of each enumeration member begins with
the name of the enumeration class. For example, an enumeration class LEDcolor with enumeration
members GREEN and RED defines the enumeration members in generated code as LEDcolor_GREEN
and LEDcolor_RED.

8 Objects

8-184

Data Types: logical

DataScope — Flag to control data type definition in generated code
'Auto' (default) | 'Imported' | 'Exported'

Flag to control data type definition in generated code, specified as 'Auto', 'Imported', or
'Exported'. The table describes the behavior of generated code for each value.

Value Action
Auto (default) If you do not specify the property Headerfile,

export the data type definition to
model_types.h, where model is the model
name.

If you specify Headerfile, import the data type
definition from the specified header file.

Exported Export the data type definition to a separate
header file.

If you do not specify the property Headerfile,
the header file name defaults to type.h, where
type is the data type name.

Imported Import the data type definition from a separate
header file.

If you do not specify the property Headerfile,
the header file name defaults to type.h, where
type is the data type name.

DefaultValue — Default enumeration member
'' (default) | character vector

Default enumeration member, specified as a character vector. Specify DefaultValue as the name of
an enumeration member you have already defined.

When you create a Simulink.data.dictionary.EnumTypeDefinition object, DefaultValue is
an empty character vector, '', and Simulink uses the first enumeration member as the default
member.
Example: 'enumMember1'

Description — Description of enumerated data type in generated code
'' (default) | character vector

Description of the enumerated data type, specified as a character vector. Use this property to explain
the purpose of the type in generated code.
Example: 'Two possible colors of LED indicator: GREEN and RED.'
Data Types: char

HeaderFile — Name of header file defining enumerated data type in generated code
'' (default) | character vector

 Simulink.data.dictionary.EnumTypeDefinition

8-185

Name of the header file that defines the enumerated data type in generated code, specified as a
character vector. Use a .h extension to specify the file name.

If you do not specify HeaderFile, generated code uses a default header file name that depends on
the value of the DataScope property .
Example: 'myTypeIncludeFile.h'
Data Types: char

StorageType — Data type of underlying integer values
'' (default) | character vector

Data type of the integer values underlying the enumeration members, specified as a character vector.
Generated code stores the underlying integer values using the data type you specify.

You can specify one of these supported integer types:

• 'int8'
• 'int16'
• 'int32'
• 'uint8'
• 'uint16'
• 'uint32'

To store the underlying integer values in generated code using the native integer type of the target
hardware, specify StorageType as an empty character vector, '', which is the default value.
Example: 'int16'

''

Object Functions
appendEnumeral Add enumeration member to enumerated data type definition in data dictionary
removeEnumeral Remove enumeration member from enumerated data type definition in data

dictionary

Examples

Programmatically Create Enumerated Type Definition in Data Dictionary

Create an object that can store the definition of an enumerated type. By default, the new type defines
a single enumeration member enum1 with underlying integer value 0.

myColors = Simulink.data.dictionary.EnumTypeDefinition

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 enum1

Add some enumeration members to the definition of the type.

8 Objects

8-186

appendEnumeral(myColors,'Orange',1,'')
appendEnumeral(myColors,'Black',2,'')
appendEnumeral(myColors,'Cyan',3,'')
myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 enum1
 Orange
 Black
 Cyan

Remove the default enumeration member enum1. Since enum1 is the first enumeration member in the
list, identify it with index 1.

removeEnumeral(myColors,1)
myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 Orange
 Black
 Cyan

Customize the enumerated type by configuring the properties of the object representing it.

myColors.Description = 'These are my favorite colors.';
myColors.DefaultValue = 'Cyan';
myColors.HeaderFile = 'colorsType.h';

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the object that defines the enumerated type myColors to the dictionary.

importFromBaseWorkspace(myDictionaryObj,'varList',{'myColors'});

Alternatives
You can use Model Explorer to add and modify enumerated data types stored in a data dictionary.

Version History
Introduced in R2015a

See Also
Simulink.data.Dictionary | enumeration

Topics
“Store Data in Dictionary Programmatically”
“Use Enumerated Data in Simulink Models”

 Simulink.data.dictionary.EnumTypeDefinition

8-187

appendEnumeral
Package: Simulink.data.dictionary

Add enumeration member to enumerated data type definition in data dictionary

Syntax
appendEnumeral(typeObj,memberName,memberValue,memberDesc)

Description
appendEnumeral(typeObj,memberName,memberValue,memberDesc) adds an enumeration
member to the enumerated type definition stored by typeObj, a
Simulink.data.dictionary.EnumTypeDefinition object.

Examples

Programmatically Create Enumerated Type Definition in Data Dictionary

Create an object that can store the definition of an enumerated type. By default, the new type defines
a single enumeration member enum1 with underlying integer value 0.

myColors = Simulink.data.dictionary.EnumTypeDefinition

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 enum1

Add some enumeration members to the definition of the type.

appendEnumeral(myColors,'Orange',1,'')
appendEnumeral(myColors,'Black',2,'')
appendEnumeral(myColors,'Cyan',3,'')
myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 enum1
 Orange
 Black
 Cyan

Remove the default enumeration member enum1. Since enum1 is the first enumeration member in the
list, identify it with index 1.

removeEnumeral(myColors,1)
myColors

myColors =

8 Objects

8-188

 Simulink.data.dictionary.EnumTypeDefinition
 Orange
 Black
 Cyan

Customize the enumerated type by configuring the properties of the object representing it.

myColors.Description = 'These are my favorite colors.';
myColors.DefaultValue = 'Cyan';
myColors.HeaderFile = 'colorsType.h';

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the object that defines the enumerated type myColors to the dictionary.

importFromBaseWorkspace(myDictionaryObj,'varList',{'myColors'});

Input Arguments
typeObj — Target enumerated type definition
Simulink.data.dictionary.EnumTypeDefinition object

Target enumerated type definition, specified as a
Simulink.data.dictionary.EnumTypeDefinition object.

memberName — Name of new enumeration member
character vector

Name of the new enumeration member, specified as a character vector.
Example: 'myNewEnumMember'
Data Types: char

memberValue — Integer value underlying new enumeration member
integer

Integer value underlying the new enumeration member, specified as an integer.

The definition of the enumeration class determines the integer data type used in generated code to
store the underlying values of enumeration members.
Example: 3
Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | double

memberDesc — Description of new enumeration member
character vector

Description of the new enumeration member, specified as a character vector.

If you do not want to supply a description for the enumeration member, use an empty character
vector.
Example: 'Enumeration member number 1.'

 appendEnumeral

8-189

Example: ''
Data Types: char

Alternatives
You can use Model Explorer to add enumeration members to the enumerated data type represented
by a Simulink.data.dictionary.EnumTypeDefinition object.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.EnumTypeDefinition | removeEnumeral

Topics
“Store Data in Dictionary Programmatically”
“Use Enumerated Data in Simulink Models”

8 Objects

8-190

removeEnumeral
Package: Simulink.data.dictionary

Remove enumeration member from enumerated data type definition in data dictionary

Syntax
removeEnumeral(typeObj,memberNum)

Description
removeEnumeral(typeObj,memberNum) removes an enumeration member from the enumerated
type definition stored by typeObj, a Simulink.data.dictionary.EnumTypeDefinition object.

Examples

Programmatically Create Enumerated Type Definition in Data Dictionary

Create an object that can store the definition of an enumerated type. By default, the new type defines
a single enumeration member enum1 with underlying integer value 0.

myColors = Simulink.data.dictionary.EnumTypeDefinition

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 enum1

Add some enumeration members to the definition of the type.

appendEnumeral(myColors,'Orange',1,'')
appendEnumeral(myColors,'Black',2,'')
appendEnumeral(myColors,'Cyan',3,'')
myColors

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 enum1
 Orange
 Black
 Cyan

Remove the default enumeration member enum1. Since enum1 is the first enumeration member in the
list, identify it with index 1.

removeEnumeral(myColors,1)
myColors

myColors =

 removeEnumeral

8-191

 Simulink.data.dictionary.EnumTypeDefinition
 Orange
 Black
 Cyan

Customize the enumerated type by configuring the properties of the object representing it.

myColors.Description = 'These are my favorite colors.';
myColors.DefaultValue = 'Cyan';
myColors.HeaderFile = 'colorsType.h';

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Import the object that defines the enumerated type myColors to the dictionary.

importFromBaseWorkspace(myDictionaryObj,'varList',{'myColors'});

Input Arguments
typeObj — Target enumerated type definition
Simulink.data.dictionary.EnumTypeDefinition object

Target enumerated type definition, specified as a
Simulink.data.dictionary.EnumTypeDefinition object.

memberNum — Index of target enumeration member
integer

Index of target enumeration member, specified as an integer.

The first enumeration member in an enumerated type definition has index 1. For example, suppose an
enumerated type BasicColors has this definition:

myColors =

 Simulink.data.dictionary.EnumTypeDefinition
 Orange
 Black
 Cyan

To remove the enumeration member Black, specify memberNum as 2. To remove the enumeration
member Cyan, specify 3.

Do not specify memberNum using the integer value underlying an enumeration member. The integer
value underlying the member is not equivalent to the index of the member.
Example: 3
Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | double

Alternatives
You can use Model Explorer to remove enumeration members from the enumerated data type
represented by a Simulink.data.dictionary.EnumTypeDefinition object.

8 Objects

8-192

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.EnumTypeDefinition | appendEnumeral

Topics
“Store Data in Dictionary Programmatically”
“Use Enumerated Data in Simulink Models”

 removeEnumeral

8-193

Simulink.data.dictionary.Section
Configure data dictionary section

Description
An object of the Simulink.data.dictionary.Section class represents one section of a data
dictionary, such as Design Data or Configurations. The object allows you to perform operations on the
section such as add or delete entries and import data from files.

Before you can create a Simulink.data.dictionary.Section object, you must create a
Simulink.data.Dictionary object representing the target data dictionary. Once created, the
Simulink.data.dictionary.Section object exists independently of the
Simulink.data.Dictionary object.

You cannot use the data dictionary programmatic interface (see “Store Data in Dictionary
Programmatically”) to access the Embedded Coder section of a data dictionary. Instead, see
Embedded Coder Dictionary (Embedded Coder).

Creation
Syntax
Description

The function getSection creates a Simulink.data.dictionary.Section object.

Properties
Name — Name of data dictionary section
character vector

Name of data dictionary section, returned as a character vector. This property is read only.

Object Functions
addEntry Add new entry to data dictionary section
assignin Assign value to data dictionary entry
deleteEntry Delete data dictionary entry
evalin Evaluate MATLAB expression in data dictionary section
exist Check existence of data dictionary entry
exportToFile Export data dictionary entries from section to MAT-file or MATLAB file
find Search in data dictionary section
getEntry Create Simulink.data.dictionary.Entry object to represent data dictionary entry
importFromFile Import variables from MAT-file or MATLAB file to data dictionary section

Examples

8 Objects

8-194

Create New Data Dictionary Section Object

Open the data dictionary myDictionary_ex_API.sldd and represent it with a
Simulink.data.Dictionary object named myDictionaryObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.

dDataSectObj = getSection(myDictionaryObj,'Design Data')

dDataSectObj =

 Section with properties:

 Name: 'Design Data'

Version History
Introduced in R2015a

See Also
getSection | Simulink.data.Dictionary

Topics
“Store Data in Dictionary Programmatically”
“What Is a Data Dictionary?”

 Simulink.data.dictionary.Section

8-195

addEntry
Package: Simulink.data.dictionary

Add new entry to data dictionary section

Syntax
addEntry(sectionObj,entryName,entryValue)
entryObj = addEntry(sectionObj,entryName,entryValue)

Description
addEntry(sectionObj,entryName,entryValue) adds an entry, with name entryName and
value entryValue, to the data dictionary section sectionObj, a
Simulink.data.dictionary.Section object.

entryObj = addEntry(sectionObj,entryName,entryValue) returns a
Simulink.data.dictionary.Entry object representing the newly added data dictionary entry.

Examples

Add Entry to Design Data Section of Data Dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Add an entry to the Design Data section of myDictionary_ex_API.sldd an entry myNewEntry
with value 237.

addEntry(dDataSectObj,'myNewEntry',237)

Add New Simulink.Parameter Object to Data Dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Add an entry to the Design Data section of myDictionary_ex_API.sldd. Name the new entry
myNewParam and assign a Simulink.Parameter object to the value.

addEntry(dDataSectObj,'myNewParam',Simulink.Parameter)

8 Objects

8-196

The expression Simulink.Parameter constructs a new Simulink.Parameter object, and the
addEntry function assigns the object to the value of the new data dictionary entry myNewParam.

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section object. Before
you use this function, represent the target section with a Simulink.data.dictionary.Section
object by using, for example, the getSection function.

entryName — Name of new data dictionary entry
character vector

Name of new data dictionary entry, specified as a character vector.
Example: 'myNewEntry'
Data Types: char

entryValue — Value of new data dictionary entry
MATLAB expression

Value of new data dictionary entry, specified as a MATLAB expression that returns any valid data
dictionary content.
Example: 27.5
Example: myBaseWorkspaceVariable
Example: Simulink.Parameter

Tips
• addEntry returns an error if the entry name you specify with entryName is already the name of

an entry in the target data dictionary section or in the same section of any referenced dictionaries.

Alternatives
You can use Model Explorer to add entries to a data dictionary in the same way you can use it to add
variables to a model workspace or the base workspace.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Section | Simulink.data.dictionary.Entry | assignin

Topics
“Store Data in Dictionary Programmatically”

 addEntry

8-197

assignin
Package: Simulink.data.dictionary

Assign value to data dictionary entry

Syntax
assignin(sectionObj,entryName,entryValue)

Description
assignin(sectionObj,entryName,entryValue) assigns the value entryValue to the data
dictionary entry entryName in the data dictionary section sectionObj, a
Simulink.data.dictionary.Section object. If an entry with the specified name is not in the
target section, assignin creates the entry with the specified name and value.

If an entry with the name specified by input argument entryName is not defined in the target data
dictionary section but is defined in a referenced dictionary, assignin does not create a new entry in
the target section but operates on the entry in the referenced dictionary.

To programmatically access variables for the purpose of sweeping block parameter values, consider
using Simulink.SimulationInput objects instead of modifying the variables through the
programmatic interface of the data dictionary. See “Optimize, Estimate, and Sweep Block Parameter
Values”.

Examples

Assign Value to Data Dictionary Entry

Assign a value to a data dictionary entry by operating on a Simulink.data.dictionary.Section
object.

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Assign the value 237 to an entry myAssignedEntry in the data dictionary
myDictionary_ex_API.sldd. If an entry named myAssignedEntry is not in
myDictionary_ex_API.sldd, create it.

assignin(dDataSectObj,'myAssignedEntry',237)

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

8 Objects

8-198

Target data dictionary section, specified as a Simulink.data.dictionary.Section object. Before
you use this function, represent the target section with a Simulink.data.dictionary.Section
object by using, for example, the getSection function.

entryName — Name of target data dictionary entry
character vector

Name of target data dictionary entry, specified as a character vector. If a matching entry does not
already exist, the functions creates a new entry using the specified name.
Example: 'myEntry'
Data Types: char

entryValue — Value to assign to data dictionary entry
MATLAB expression

Value to assign to data dictionary entry, specified as a MATLAB expression that returns any valid data
dictionary content.
Example: 27.5
Example: myBaseWorkspaceVariable
Example: Simulink.Parameter

Alternatives
You can use the Model Explorer window to view and change the values of data dictionary entries.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Section | setValue

Topics
“Store Data in Dictionary Programmatically”

 assignin

8-199

deleteEntry
Package: Simulink.data.dictionary

Delete data dictionary entry

Syntax
deleteEntry(sectionObj,entryName)
deleteEntry(sectionObj,entryName,'DataSource',dictionaryName)

Description
deleteEntry(sectionObj,entryName) deletes a data dictionary entry entryName from the data
dictionary section sectionObj, a Simulink.data.dictionary.Section object. If there are
multiple entries with the specified name in a hierarchy of reference dictionaries, the function deletes
all the entries. If you represent a data dictionary entry with one or more
Simulink.data.dictionary.Entry objects and later delete the entry using the deleteEntry
function, the objects remain with their Status property set to 'Deleted'.

deleteEntry(sectionObj,entryName,'DataSource',dictionaryName) deletes an entry that
is defined in the data dictionary DictionaryName. Use this syntax to uniquely identify an entry that
is defined more than once in a hierarchy of referenced data dictionaries.

Examples

Delete Entry from Data Dictionary Section

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj. The Design Data section of
myDictionary_ex_API.sldd already contains an entry named fuelFlow.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Delete the entry fuelFlow from the data dictionary myDictionary_ex_API.sldd.
myDictionary_ex_API.sldd no longer contains the fuelFlow entry.

deleteEntry(dDataSectObj,'fuelFlow')

Delete Entry from Reference Data Dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Delete the entry myRefEntry from the data dictionary myRefDictionary_ex_API.sldd.
myDictionary_ex_API.sldd references myRefDictionary_ex_API.sldd, and
myRefDictionary_ex_API.sldd defines an entrymyRefEntry.

8 Objects

8-200

deleteEntry(dDataSectObj,'myRefEntry','DataSource',...
'myRefDictionary_ex_API.sldd')

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section object. Before
you use this function, represent the target section with a Simulink.data.dictionary.Section
object by using, for example, the getSection function.

entryName — Name of target data dictionary entry
character vector

Name of target data dictionary entry, specified as a character vector.
Example: 'myEntry'
Data Types: char

dictionaryName — Name of data dictionary that defines target entry
character vector

File name of data dictionary that defines the target entry, specified as a character vector including
the .sldd extension.
Example: 'mySubDictionary_ex_API.sldd'
Data Types: char

Alternatives
You can use the Model Explorer window to delete entries from a data dictionary in the same way you
can delete variables from a model workspace or the base workspace.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Section | addEntry | Simulink.data.dictionary.Entry

Topics
“Store Data in Dictionary Programmatically”

 deleteEntry

8-201

evalin
Package: Simulink.data.dictionary

Evaluate MATLAB expression in data dictionary section

Syntax
returnValue = evalin(sectionObj,expression)

Description
returnValue = evalin(sectionObj,expression) evaluates a MATLAB expression in the data
dictionary section sectionObj and returns the values returned by expression.

To programmatically access variables for the purpose of sweeping block parameter values, consider
using Simulink.SimulationInput objects instead of modifying the variables through the
programmatic interface of the data dictionary. See “Optimize, Estimate, and Sweep Block Parameter
Values”.

Examples

List All Entries in Data Dictionary Section

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Execute the whos command in the Design Data section of myDictionary_ex_API.sldd.

evalin(dDataSectObj,'whos')

 Name Size Bytes Class Attributes

 fuelFlow 1x1 8 double
 myRefEntry 1x1 1 logical
 parameterGain37 1x1 112 Simulink.Parameter

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section object. Before
you use this function, represent the target section with a Simulink.data.dictionary.Section
object by using, for example, the getSection function.

expression — MATLAB expression to evaluate
character vector

MATLAB expression to evaluate, specified as a character vector.

8 Objects

8-202

Example: 'a = 5.3'
Example: 'whos'
Example: 'CurrentSpeed.Value = 290.73'
Data Types: char

Tips
• evalin allows you to treat a data dictionary section as a MATLAB workspace. You can think of

entries contained in the section as workspace variables you can manipulate with MATLAB
expressions.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Section | Simulink.data.evalinGlobal

Topics
“Store Data in Dictionary Programmatically”

 evalin

8-203

exist
Package: Simulink.data.dictionary

Check existence of data dictionary entry

Syntax
doesExist = exist(sectionObj,entryName)

Description
doesExist = exist(sectionObj,entryName) determines if the data dictionary section
sectionObj contains an entry by the name of entryName and returns an indication.

Examples

Determine if Data Dictionary Entry Exists

Determine if an entry exists in a data dictionary by searching for the name of the entry

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Determine if an entry fuelFlow exists in the Design Data section of myDictionary_ex_API.sldd.

exist(dDataSectObj,'fuelFlow')

ans =

 1

Determine if an entry myEntry exists in the Design Data section of myDictionary_ex_API.sldd.

exist(dDataSectObj,'myEntry')

ans =

 0

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section object. Before
you use this function, represent the target section with a Simulink.data.dictionary.Section
object by using, for example, the getSection function.

8 Objects

8-204

entryName — Name of target entry
character vector

Name of target entry, specified as a character vector.
Example: 'myEntry'
Data Types: char

Output Arguments
doesExist — Indication of entry existence
0 | 1

Indication of entry existence, returned as 0 if false and 1 if true.

Tips
• exist also determines if a matching entry exists in the same section of any referenced data

dictionaries. For example, if sectionObj represents the Design Data section of a data dictionary
myDictionary_ex_API.sldd, exist searches the Design Data section of
myDictionary_ex_API.sldd and the Design Data sections of any dictionaries referenced by
myDictionary_ex_API.sldd.

Alternatives
You can use Model Explorer to search a data dictionary for an entry.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Section | find | Simulink.data.existsInGlobal

Topics
“Store Data in Dictionary Programmatically”

 exist

8-205

exportToFile
Package: Simulink.data.dictionary

Export data dictionary entries from section to MAT-file or MATLAB file

Syntax
exportToFile(sectionObj,fileName)

Description
exportToFile(sectionObj,fileName) exports to a MAT or MATLAB file all the values of the
entries contained in the data dictionary section sectionObj, a
Simulink.data.dictionary.Section object. exportToFile exports the values of all entries,
including those defined in referenced dictionaries.

Examples

Export Data Dictionary Entries to MAT or MATLAB Files

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj. Represent the
Configurations section of myDictionary_ex_API.sldd with an object named configSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');
configSectObj = getSection(myDictionaryObj,'Configurations');

Export the entries from the Design Data section of myDictionary_ex_API.sldd to a MATLAB file
in your current working folder.

exportToFile(dDataSectObj,'myDictionaryDesignData.m')

Export the entries from the Configurations section of myDictionary_ex_API.sldd to a MAT-file in
your current working folder.

exportToFile(configSectObj,'myDictionaryConfigurations.mat')

Exported 1 entries from scope 'Configurations'
to MAT-file myDictionaryConfigurations.mat.

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section object. Before
you use this function, represent the target section with a Simulink.data.dictionary.Section
object by using, for example, the getSection function.

8 Objects

8-206

fileName — Name of MAT or MATLAB file
character vector

Name of target MAT or MATLAB file, specified as a character vector. exportToFile supplies a file
extension .mat if you do not specify an extension.
Example: 'myNewFile.mat'
Example: 'myNewFile.m'
Data Types: char

Limitation
The exportToFile method does not export enumerated data types (which are stored as
Simulink.data.dictionary.EnumTypeDefinition objects). To transfer or copy an enumerated
type from one dictionary to another, use the getEntry and addEntry methods of
Simulink.data.dictionary.Section objects.

Alternatives
You can use Model Explorer to export data dictionary entries to a file. See “Export Design Data from
Dictionary” for more information.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Section | importFromFile

Topics
“Store Data in Dictionary Programmatically”

 exportToFile

8-207

find
Package: Simulink.data.dictionary

Search in data dictionary section

Syntax
foundEntries = find(sectionObj,PName1,PValue1,...,PNameN,PValueN)
foundEntries = find(sectionObj,PName1,PValue1,...,PNameN,PValueN,options)

Description
foundEntries = find(sectionObj,PName1,PValue1,...,PNameN,PValueN) searches the
data dictionary section sectionObj using search criteria
PName1,PValue1,...,PNameN,PValueN, and returns an array of matching entries that were found
in the target section. This syntax matches the search criteria with the properties of the entries in the
target section but not with the properties of their values. See Simulink.data.dictionary.Entry
for a list of data dictionary entry properties.

foundEntries = find(sectionObj,PName1,PValue1,...,PNameN,PValueN,options)
searches for data dictionary entries using additional search options. For example, you can match the
search criteria with the values of the entries in the target section.

Examples

Return Array of All Entries in Data Dictionary Section

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Return all of the entries stored in the Design Data section of the data dictionary
myDictionary_ex_API.sldd.

allEntries = find(dDataSectObj)

Search Data Dictionary Section for Specific Class

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries whose values are
objects of the Simulink.Parameter class.

8 Objects

8-208

foundEntries = find(dDataSectObj,'-value','-class','Simulink.Parameter')

Search Data Dictionary Section for Modifying User

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries that were last
modified by the user jsmith.

foundEntries = find(dDataSectObj,'LastModifiedBy','jsmith')

Search Data Dictionary Section Using Multiple Criteria

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries that were last
modified by the user jsmith or whose names begin with fuel.

foundEntries = find(dDataSectObj,'LastModifiedBy','jsmith','-or',...
'-regexp','Name','fuel*')

Search Data Dictionary Section Using Regular Expressions

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries whose names begin
with fuel.

foundEntries = find(dDataSectObj,'-regexp','Name','fuel*')

Search Data Dictionary Section for Specific Value

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Return all of the entries stored in the Design Data section of the data dictionary
myDictionary_ex_API.sldd.

allEntries = find(dDataSectObj);

 find

8-209

Find the entries with value 237. If you find more than one entry, store the entries in an array called
foundEntries.

foundEntries = [];
for i = 1:length(allEntries)
 if getValue(allEntries(i)) == 237
 foundEntries = [foundEntries allEntries(i)];
 end
end

Search Data Dictionary Section for Specific Property

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Search in the Design Data section of myDictionary_ex_API.sldd for entries whose values have a
property DataType.

foundEntries = find(dDataSectObj,'-value','-property','DataType')

Input Arguments
sectionObj — Data dictionary section to search
Simulink.data.dictionary.Section object

Data dictionary section to search, specified as a Simulink.data.dictionary.Section object.
Before you use this function, represent the target section with a
Simulink.data.dictionary.Section object by using, for example, the getSection function.

PName1,PValue1,...,PNameN,PValueN — Search criteria
name-value pairs representing properties

Search criteria, specified as one or more name-value pairs representing names and values of
properties of the entries in the target data dictionary section. For a list of the properties of a data
dictionary entry, see Simulink.data.dictionary.Entry. If you specify more than one name-value
pair, the returned entries meet all of the criteria.

If you include the '-value' option to search in the values of the entries, the search criteria apply to
the values of the entries rather than to the entries themselves.
Example: 'LastModifiedBy','jsmith'
Example: 'DataSource','myRefDictionary_ex_API.sldd'

options — Additional search options
supported option codes

Additional search options, specified as one or more of the following supported option codes.

8 Objects

8-210

'-value' This option causes find to search only in the values of
the entries in the target data dictionary section. Specify
this option before any other search criteria or options
arguments.

'-and', '-or', '-xor', '-not' logical
operators

These options modify or combine multiple search criteria
or other option codes.

'-property',propertyName This name-value pair causes find to search for entries or
values that have the property propertyName regardless
of the value of the property. Specify propertyName as a
character vector.

'-class',className This name-value pair causes find to search for entries or
values that are objects of the class className. Specify
className as a character vector.

'-isa',className This name-value pair causes find to search for entries or
values that are objects of the class or of any subclass
derived from the class className. Specify className
as a character vector.

'-regexp' This option allows you to use regular expressions in your
search criteria. This option affects only search criteria
that follow '-regexp'.

Example: '-value'
Example: '-value','-property','CoderInfo'
Example: '-value','-class','Simulink.Parameter'

Output Arguments
foundEntries — Data dictionary entries matching search criteria
array of Simulink.data.dictionary.Entry objects

Data dictionary entries matching the specified search criteria, returned as an array of
Simulink.data.dictionary.Entry objects.

Alternatives
You can use Model Explorer to search a data dictionary for entries using arbitrary criteria.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Section | exist | Simulink.data.dictionary.Entry | find

Topics
“Store Data in Dictionary Programmatically”

 find

8-211

getEntry
Package: Simulink.data.dictionary

Create Simulink.data.dictionary.Entry object to represent data dictionary entry

Syntax
entryObj = getEntry(sectionObj,entryName)
entryObj = getEntry(sectionObj,entryName,'DataSource',dictionaryName)

Description
entryObj = getEntry(sectionObj,entryName) returns an array of
Simulink.data.dictionary.Entry objects representing data dictionary entries entryName
found in the data dictionary section sectionObj, a Simulinkdata.dictionary.Section object.
getEntry returns multiple objects if multiple entries have the specified name in a reference
hierarchy of data dictionaries.

entryObj = getEntry(sectionObj,entryName,'DataSource',dictionaryName) returns an
object representing a data dictionary entry that is defined in the data dictionary dictionaryName.
Use this syntax to uniquely identify an entry that is defined more than once in a hierarchy of
referenced data dictionaries.

Examples

Set Value of Data Dictionary Entry

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Represent the data dictionary entry fuelFlow with a Simulink.data.dictionary.Entry object
named fuelFlowObj. fuelFlow is defined in the data dictionary myDictionary_ex_API.sldd.

fuelFlowObj = getEntry(dDataSectObj,'fuelFlow');

Set the value of the entry fuelFlow to 493.

setValue(fuelFlowObj,493)

Set Value of Entry in Reference Dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

8 Objects

8-212

Represent the data dictionary entry myRefEntry with a Simulink.data.dictionary.Entry
object named refEntryObj. myDictionary_ex_API.sldd references
myRefDictionary_ex_API.sldd, and myRefDictionary_ex_API.sldd defines an entry
myRefEntry.

refEntryObj = getEntry(dDataSectObj,'myRefEntry','DataSource',...
'myRefDictionary_ex_API.sldd');

Set the value of the entry myRefEntry to 493.

setValue(refEntryObj,493)

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section object. Before
you use this function, represent the target section with a Simulink.data.dictionary.Section
object by using, for example, the getSection function.

entryName — Name of target data dictionary entry
character vector

Name of target data dictionary entry, specified as a character vector.
Example: 'myEntry'
Data Types: char

dictionaryName — Name of data dictionary containing target entry
character vector

File name of data dictionary containing the target entry, specified as a character vector including
the .sldd extension.
Example: 'mySubDictionary_ex_API.sldd'
Data Types: char

Output Arguments
entryObj — Target data dictionary entry
Simulink.data.dictionary.Entry object

Target data dictionary entry, returned as one or more Simulink.data.dictionary.Entry objects.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Section | addEntry | Simulink.data.dictionary.Entry |
getValue

 getEntry

8-213

Topics
“Store Data in Dictionary Programmatically”

8 Objects

8-214

importFromFile
Package: Simulink.data.dictionary

Import variables from MAT-file or MATLAB file to data dictionary section

Syntax
importedVars = importFromFile(sectionObj,fileName)
importedVars = importFromFile(sectionObj,fileName,'existingVarsAction',
existAction)
[importedVars,existingVars] = importFromFile(___)

Description
importedVars = importFromFile(sectionObj,fileName) imports variables defined in the
MAT-file or MATLAB file fileName to the data dictionary section sectionObj without overwriting
any variables that are already in the target section. If any variables are already in the target section,
the function displays a warning and a list in the MATLAB Command Window. This syntax returns a list
of variables that were successfully imported. A variable is considered successfully imported only if
importFromFile assigns the value of the variable to the corresponding entry in the target data
dictionary.

importedVars = importFromFile(sectionObj,fileName,'existingVarsAction',
existAction) imports variables that are already in the target section by taking a specified action
existAction. For example, you can choose to use the variable values in the target file to overwrite
the corresponding values in the target section.

[importedVars,existingVars] = importFromFile(___) returns a list of variables in the
target section that were not overwritten. Use this syntax if existingVarsAction is set to 'none',
the default value, which prevents existing dictionary entries from being overwritten.

Examples

Import to Data Dictionary from File

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Import all variables contained in the file myData_ex_API.m to the data dictionary and return a list of
successfully imported variables. If any variables are already in myDictionary_ex_API.sldd,
importFromFile returns a warning and a list of the affected variables.

importFromFile(dDataSectObj,'myData_ex_API.m')

Warning: The following variables were not imported because
they already exist in the dictionary:
 fuelFlow

 importFromFile

8-215

ans =

 'myFirstEntry'
 'mySecondEntry'
 'myThirdEntry'

Import Variables from File and Overwrite Conflicts

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Import all variables contained in the file myData_ex_API.m to the data dictionary, overwrite any
variables that are already in the dictionary, and return a list of successfully imported variables.
importFromFile(dDataSectObj,'myData_ex_API.m','existingVarsAction','overwrite')

ans =

 'fuelFlow'
 'myFirstEntry'
 'mySecondEntry'
 'myThirdEntry'

Return Variables Not Imported to Data Dictionary from File

Return a list of variables that are not imported from a file because they are already in the target data
dictionary

Represent the Design Data section of the data dictionary myDictionary_ex_API.sldd with a
Simulink.data.dictionary.Section object named dDataSectObj.
myDictionaryObj = Simulink.data.dictionary.open('myDictionary_ex_API.sldd');
dDataSectObj = getSection(myDictionaryObj,'Design Data');

Import all variables contained in the file myData_ex_API.m to the data dictionary. Specify names for
the output arguments of importFromFile to return the names of successfully and unsuccessfully
imported variables.
[importedVars,existingVars] = importFromFile(dDataSectObj,'myData_ex_API.m')

importedVars =

 'myFirstEntry'
 'mySecondEntry'
 'myThirdEntry'

existingVars =

 'fuelFlow'

8 Objects

8-216

importFromFile does not import the variable fuelflow because it is already in the target data
dictionary.

Input Arguments
sectionObj — Target data dictionary section
Simulink.data.dictionary.Section object

Target data dictionary section, specified as a Simulink.data.dictionary.Section object. Before
you use this function, represent the target section with a Simulink.data.dictionary.Section
object by using, for example, the getSection function.

fileName — Name of MAT or MATLAB file
character vector

Name of target MAT or MATLAB file, specified as a character vector. importFromFile automatically
supplies a file extension .mat if you do not specify an extension.
Example: 'myFile.mat'
Example: 'myFile.m'
Data Types: char

existAction — Action to take for existing dictionary variables
'none' (default) | 'overwrite' | 'error'

Action to take for existing dictionary variables, specified as 'none', 'overwrite', or 'error'.

If you specify 'none', importFromFile attempts to import target variables but does not import or
make any changes to variables that are already in the data dictionary section.

If you specify 'overwrite', importFromFile imports all target variables and overwrites any
variables that are already in the data dictionary section.

If you specify 'error', importFromFile returns an error, without importing any variables, if any
target variables are already in the data dictionary section.
Example: 'overwrite'
Data Types: char

Output Arguments
importedVars — Successfully imported variables
cell array of character vectors

Names of successfully imported variables, returned as a cell array of character vectors. A variable is
considered successfully imported only if importFromFile assigns its value to the corresponding
entry in the target data dictionary.

existingVars — Variables that were not imported
cell array of character vectors

Names of target variables that were not imported due to their existence in the target data dictionary,
returned as a cell array of character vectors. existingVars has content only if existAction is set

 importFromFile

8-217

to 'none', which is also the default. In that case importFromFile imports only variables that are
not already in the target data dictionary.

Tips
• importFromFile can import MATLAB variables created from enumerated data types but cannot

import the definitions of the enumerated types. Use the importEnumTypes function to import
enumerated data type definitions to a data dictionary. If you import variables of enumerated data
types to a data dictionary but do not import the enumerated type definitions, the dictionary is less
portable and might not function properly if used by someone else.

Alternatives
You can use the Model Explorer to import variables to a data dictionary from a file. See “Import Data
to Dictionary from File” for more information.

Version History
Introduced in R2015a

See Also
Simulink.data.dictionary.Section | exportToFile | importEnumTypes

Topics
“Store Data in Dictionary Programmatically”

8 Objects

8-218

Simulink.DualScaledParameter
Specify name, value, units, and other properties of Simulink dual-scaled parameter

Description
Use Simulink.DualScaledParameter so that you can define an object that stores two scaled
values of the same physical value.

For example, for temperature measurement, you can store a Fahrenheit scale and a Celsius scale with
conversion defined by a computation method that you provide. Given one scaled value, the
Simulink.DualScaledParameter computes the other scaled value using the computation method.

A dual-scaled parameter inherits some properties from the Simulink.Parameter class. A dual-
scaled parameter has:

• A calibration value. The value that you prefer to use.
• A main value. The real-world value that Simulink uses.
• An internal stored integer value. The value that is used in the embedded code.

You can use Simulink.DualScaledParameter objects in your model for both simulation and code
generation. The parameter computes the internal value before code generation via the computation
method. This offline computation results in leaner generated code.

If you provide the calibration value, the parameter computes the main value using the computation
method. This method can be a first-order rational function.

y = ax + b
cx + d

• x is the calibration value.
• y is the main value.
• a and b are the coefficients of the CalToMain compute numerator.
• c and d are the coefficients of the CalToMain compute denominator.

If you provide the calibration minimum and maximum values, the parameter computes minimum and
maximum values of the main value. Simulink performs range checking of parameter values. The
software alerts you when the parameter object value lies outside a range that corresponds to its
specified minimum and maximum values and data type.

Creation
Create a Simulink.DualScaledParameter object:

• By using the Model Data Editor. Instead of creating a Simulink.Parameter object, create a
Simulink.DualScaledParameter object.

• By using the Model Explorer:

 Simulink.DualScaledParameter

8-219

1 In the Model Hierarchy pane, select a workspace or data dictionary.
2 On the toolbar, select Add > Add Custom.
3 In the Model Explorer — Select Object dialog box, set Object class to

Simulink.DualScaledParameter.
• By using the Simulink.DualScaledParameter function, described below.

Syntax
DSParam = Simulink.DualScaledParameter

Description

DSParam = Simulink.DualScaledParameter returns a Simulink.DualScaledParameter
object with default property values.

Properties
For information about properties in the property dialog box of a Simulink.DualScaledParameter
object, see “Simulink.DualScaledParameter Property Dialog Box”.

CalibrationValue — Calibration value of this parameter
[] (default) | finite, real, double number

Calibration value of this parameter, specified as a finite, real, double number. This value represents
the value that you prefer to use.

Before specifying CalibrationValue, you must specify CalToMainCompuNumerator and
CalToMainCompuDenominator to define the computation method. The parameter uses the
computation method and the calibration value to calculate the main value that Simulink uses.

Corresponds to Calibration value in the property dialog box.
Example: 5.34
Data Types: double

CalibrationMin — Calibration minimum value of this parameter
[] (default) | finite, real, double, scalar number

Calibration minimum value of this parameter, specified as a finite, real, double, scalar number. The
default value, [], means the minimum is unspecified.

Before specifying CalibrationMin, you must specify CalToMainCompuNumerator and
CalToMainCompuDenominator to define the computation method. The parameter uses the
computation method and the calibration minimum value to calculate the minimum or maximum value
that Simulink uses. A first order rational function is strictly monotonic, either increasing or
decreasing. If it is increasing, setting the calibration minimum sets the main minimum value. If it is
decreasing, setting the calibration minimum sets the main maximum.

If the parameter value is less than the minimum value or if the minimum value is outside the range of
the parameter data type, Simulink generates a warning. In these cases, when updating the diagram
or starting a simulation, Simulink generates an error.

Corresponds to Calibration minimum in the property dialog box.

8 Objects

8-220

Example: 10.51
Data Types: double

CalibrationMax — Calibration maximum value of this parameter
[] (default) | finite, real, double, scalar number

Calibration maximum value of this parameter, specified as a finite, real, double, scalar number. The
default value, [], means the maximum is unspecified.

Before specifying CalibrationMax, you must specify CalToMainCompuNumerator and
CalToMainCompuDenominator to define the computation method. The parameter uses the
computation method and the calibration maximum value to calculate the corresponding maximum or
minimum value that Simulink uses. A first order rational function is strictly monotonic, either
increasing or decreasing. If it is increasing, setting the calibration maximum sets the main maximum
value. If it is decreasing, setting the calibration maximum sets the main minimum.

If the parameter value is less than the minimum value or if the minimum value is outside the range of
the parameter data type, Simulink generates a warning. In these cases, when updating the diagram
or starting a simulation, Simulink generates an error.

Corresponds to Calibration maximum in the property dialog box.
Example: -10.51
Data Types: double

CalToMainCompuNumerator — Numerator coefficients of the computation method
[] (default) | finite, real, double scalar | finite, real, double vector

Numerator coefficients of the computation method, specified as a scalar number or vector of values
for the numerator coefficients a and b of the first-order linear equation:

y = ax + b
cx + d

The default value is [] (unspecified). Specify finite, real, double scalar values for a and b. For
example, [1 1] or, for reciprocal scaling, 1.

Once you have applied CalToMainCompuNumerator, you cannot change it.

Corresponds to CalToMain compute numerator in the property dialog box.
Example: [1 1]
Example: 1
Data Types: double

CalToMainCompuDenominator — Denominator coefficients of the computation method
[] (default) | finite, real, double scalar | finite, real, double vector

Denominator coefficients of the computation method, specified as a scalar number or vector of values
for the denominator coefficients c and d of the first-order linear equation:

y = ax + b
cx + d

 Simulink.DualScaledParameter

8-221

The default value is [] (unspecified). Specify finite, real, double scalar values for c and d. For
example, [1 1].

Once you have applied CalToMainCompuDenominator, you cannot change it.

Corresponds to CalToMain compute denominator in the property dialog box.
Example: [1 1]
Data Types: double

CalibrationName — Name of the calibration parameter
'' (empty character vector) (default) | character vector

Name of the calibration parameter, specified as a character vector.

Corresponds to Calibration name in the property dialog box.
Example: 'This is a calibration parameter.'
Data Types: char

CalibrationDocUnits — Measurement units for this calibration parameter's value
'' (empty character vector) (default) | character vector

Measurement units for this calibration parameter's value, specified as a character vector.

Corresponds to Calibration units in the property dialog box.
Example: 'Fahrenheit'
Data Types: char

IsConfigurationValid — Information about validity of configuration
true (default) | false

This property is read-only.

Information about the validity of the object configuration, returned as true (valid) or false (invalid).
If Simulink detects an issue with the configuration, it sets this field to false and provides
information in the DiagnosticMessage property.

Corresponds to Is configuration valid in the property dialog box.
Data Types: logical

DiagnosticMessage — Diagnostic information about invalid configuration
'' (empty character vector) (default) | character vector

This property is read-only.

Diagnostic information about an invalid object configuration, returned as a character vector. If you
specify invalid property settings, Simulink displays a message in this field. Use the diagnostic
information to help you fix an invalid configuration issue.

Corresponds to Diagnostic message in the property dialog box.
Data Types: char

8 Objects

8-222

Examples

Create and Update a Dual-Scaled Parameter

Create a Simulink.DualScaledParameter object that stores a temperature as both Fahrenheit
and Celsius.

Create a Simulink.DualScaledParameter object.

Temp = Simulink.DualScaledParameter;

Set the computation method that converts between Fahrenheit and Celsius.

Temp.CalToMainCompuNumerator = [1 -32];
Temp.CalToMainCompuDenominator = [1.8];

Set the value of the temperature that you want to see in Fahrenheit.

Temp.CalibrationValue = 212

Temp =

 DualScaledParameter with properties:

 CalibrationValue: 212
 CalibrationMin: []
 CalibrationMax: []
 CalToMainCompuNumerator: [1 -32]
 CalToMainCompuDenominator: 1.8000
 CalibrationName: ''
 CalibrationDocUnits: ''
 IsConfigurationValid: 1
 DiagnosticMessage: ''
 Value: 100
 CoderInfo: [1x1 Simulink.CoderInfo]
 Description: ''
 DataType: 'auto'
 Min: []
 Max: []
 Unit: ''
 Complexity: 'real'
 Dimensions: [1 1]

The Simulink.DualScaledParameter calculates Temp.Value which is the value that Simulink
uses. Temp.CalibrationValue is 212 (degrees Fahrenheit), so Temp.Value is 100 (degrees
Celsius).

Name the value and specify the units.

Temp.CalibrationName = 'TempF';
Temp.CalibrationDocUnits = 'Fahrenheit';

Set calibration minimum and maximum values.

Temp.CalibrationMin = 0;
Temp.CalibrationMax = 300;

 Simulink.DualScaledParameter

8-223

If you specify a calibration value outside this allowable range, Simulink generates a warning.

Specify the units that Simulink uses.

Temp.Unit = 'degC';

Open the Simulink.DualScaledParameter dialog box.

open Temp

The Calibration Attributes tab displays the calibration value and the computation method that you
specified.

In the dialog box, click the Main Attributes tab.

8 Objects

8-224

This tab displays information about the value used by Simulink.

Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

To control the appearance of a Simulink.DualScaledParameter object in the generated code, use
the Storage class property, which the object inherits from Simulink.Parameter.

 Simulink.DualScaledParameter

8-225

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Simulink.Parameter | AUTOSAR.DualScaledParameter

Topics
“Configure AUTOSAR Data for Calibration and Measurement” (AUTOSAR Blockset)
“Fixed Point”

8 Objects

8-226

simulink.event.InputWrite
Trigger event when input port value updates

Description
Use a simulink.event.InputWrite object to configure a root input port to trigger a schedule
event each time the port value updates. By configuring event triggers on input ports, you can model
and simulate quality of service effects.

You can trigger one or more model partitions in a rate-based system based on the flow of data into an
input port in the top model or on a model reference interface. The EventTriggers parameter of an
Inport or In Bus Element block stores the event trigger objects associated with the port. Each event
trigger maps an input event to the name of the schedule event it triggers. The schedule for the model
specifies the partition to execute in response to the schedule event. The table summarizes the event
triggers you can configure on input ports. For each input port, you can configure one event trigger for
each input event.

Input Event Input Event Description Event Trigger Object
Input write Value for input port updates. simulink.event.InputWrit

e
Input write timeout Input port value does not update

within a specified amount of
time.

simulink.event.InputWrit
eTimeout

Input write lost Input port value update
overwrites unprocessed data.

simulink.event.InputWrit
eLost

To configure the schedule for your model, use the Schedule Editor.

Creation
You can configure the event triggers for an input port programmatically or interactively.

• When you configure the input port programmatically, create and configure the event trigger object
yourself using the simulink.event.InputWrite function.

• When you configure the input port interactively using the Block Parameters dialog box or the
Property Inspector, the software creates and configures the event trigger object.

Syntax
inputWrite = simulink.event.InputWrite

Description

inputWrite = simulink.event.InputWrite creates the event trigger object inputWrite that
you can use to configure an input port to trigger a specified schedule event each time the port value
updates.

 simulink.event.InputWrite

8-227

Properties
EventName — Event to trigger when input port value updates
'Auto' (default) | string | character vector

Event to trigger when input port value updates, specified as a string or a character vector. The event
name must be 'Auto' or the name of an event defined in the Schedule Editor.

By default, the event name is 'Auto'. When you update or compile a model that has an input port
configured with an InputWrite event trigger with the event name 'Auto', the software:

1 Creates a schedule event that is scoped to the block. For example, for a block named Inport, the
software creates the event Inport.InputWrite.

This event appears in the Events panel in the Schedule Editor with other events defined for the
model.

2 Configures the listener for the event as the aperiodic partition connected to the input port, if the
input port is connected to an aperiodic partition.

To configure a different listener for the event, use the Schedule Editor.

Example: inWrite.EventName = "myEvent" configures the event trigger object inWrite to
trigger the event myEvent that is defined in the Schedule Editor.
Data Types: char | string

Examples

Trigger Partition Each Time Input Port Value Updates

Open the model ScaleInput. The model loads external input data into a subsystem. The subsystem
contains a Gain block that multiplies the subsystem input by two.

mdl = "ScaleInput";
open_system(mdl)

Create a timeseries object with input data for the model. The input data represents a line with a
slope of one sampled every second for ten seconds.

sampleTime = 1;
numSteps = 11;
time = sampleTime*(0:numSteps-1);
time = time';

8 Objects

8-228

data = time;

lineTS = timeseries(data,time);

Configure the model to load the timeseries object.

set_param(mdl,"LoadExternalInput","on")
set_param(mdl,"ExternalInput","lineTS")

Simulate the model. By default, the maximum step size for the simulation is calculated such that the
simulation takes 50 steps, resulting in a time step every 0.2 seconds.

out = sim(mdl);

Configure the model to execute the partition only when the value of the input port updates.

Configure the subsystem to execute as an aperiodic partition. In the Block Parameters dialog box or
the Property Inspector, select Treat as atomic unit, then from the Schedule as list, select
Aperiodic partition. Alternatively, use the set_param function to configure the
TreatAsAtomicUnit and ScheduleAs parameters.

set_param("ScaleInput/Subsystem","TreatAsAtomicUnit","on")
set_param("ScaleInput/Subsystem","ScheduleAs","Aperiodic partition")

Add an input write event trigger to the Inport block. In the Block Parameters dialog box, on the

Execution tab, click Add event trigger , then select Input Write from the list. Alternatively,
create a simulink.event.InputWrite object and use the set_param function to configure the
EventTriggers parameter.

inputWrite = simulink.event.InputWrite;
set_param("ScaleInput/Inport","EventTriggers",{inputWrite})

Update the block diagram by pressing Ctrl+D or by using the set_param function. By default, the
input write event trigger is configured to trigger the Auto event. When you update the block diagram
or compile the model, the software creates the event Inport.InputWrite that is scoped to the
Inport block and configures the partition connected to the Inport block as the listener for the event.

set_param(mdl,"SimulationCommand","update")

 simulink.event.InputWrite

8-229

Simulate the model again. Because input port data drives the partition execution, the simulation
takes a step only when the input value updates.

out = sim(mdl);

Version History
Introduced in R2022b

See Also
Blocks
Inport | In Bus Element

Tools
Schedule Editor

Objects
simulink.event.InputWriteTimeout | simulink.event.InputWriteLost

8 Objects

8-230

simulink.event.InputWriteLost
Trigger event when input port value update overwrites unprocessed data

Description
Use a simulink.event.InputWriteLost object to configure a root input port to trigger a
schedule event each time a value update on the input port overwrites unprocessed data. By
configuring event triggers on input ports, you can model and simulate quality of service effects.

You can trigger one or more model partitions in a rate-based system based on the flow of data into an
input port in the top model or on a model reference interface. The EventTriggers parameter of an
Inport or In Bus Element block stores the event trigger objects associated with the port. Each event
trigger maps an input event to the name of the schedule event it triggers. The schedule for the model
specifies the partition to execute in response to the schedule event. The table summarizes the event
triggers you can configure on input ports. For each input port, you can configure one event trigger for
each input event.

Input Event Input Event Description Event Trigger Object
Input write Value for input port updates. simulink.event.InputWrit

e
Input write timeout Input port value does not update

within a specified amount of
time.

simulink.event.InputWrit
eTimeout

Input write lost Input port value update
overwrites unprocessed data.

simulink.event.InputWrit
eLost

To configure the schedule for your model, use the Schedule Editor.

Creation
You can configure the event triggers for an input port programmatically or interactively.

• When you configure an event trigger programmatically, create and configure the event trigger
object yourself using the simulink.event.InputWriteLost function.

• When you configure an event trigger interactively by using the Block Parameters dialog box or the
Property Inspector, the software creates and configures the event trigger object.

Syntax
writeLost = simulink.event.InputWriteLost

Description

writeLost = simulink.event.InputWriteLost creates the event trigger writeLost that you
can use to configure an input port to trigger a specified schedule event each time an update of the
input port value overwrites unprocessed data.

 simulink.event.InputWriteLost

8-231

Properties
EventName — Event to trigger when input port value update overwrites unprocessed data
'Auto' (default) | string | character vector

Event to trigger when input port value update overwrites unprocessed data, specified as a string or a
character vector. The event name must be 'Auto' or the name of an event defined in the Schedule
Editor.

By default, the event name is 'Auto'. When you update or compile a model that has an input port
configured with an InputWriteTimeout event trigger with the event name 'Auto', the software
creates a schedule event that is scoped to the block. For example, for a block named Inport, the
software creates the event Inport.InputWriteLost. Use the Schedule Editor to configure the
listener for the event.
Example: inLost.EventName = "myEvent" configures the event trigger object inLost to trigger
the event myEvent that is defined in the Schedule Editor.
Data Types: char | string

Examples

Trigger Partition Each Time Sample Overwritten in Queue

Configure a model to execute a partition each time an incoming value overwrites unprocessed data in
a queue.

Open the model SampleLost. The model contains the subsystem Sensors that models transmitting
data from a single sensor every 0.1 seconds. A Queue block stores the sensor messages, and the
model reference SinkSystem reads the sensor data from the queue. The model is configured to log
events so you can visualize how messages propagate through the system using the Sequence Viewer.

mdl = "SampleLost";
open_system(mdl)

The referenced model SinkSystem contains two subsystems:

• The SignalConditioning subsystem receives messages of sensor data from the queue and
scales the data using a Gain block.

8 Objects

8-232

• The SampleLost subsystem contains a Constant block with a value of 1 connected to an
Accumulator block.

Configure the subsystem SignalConditioning as a periodic partition that receives a message from
the queue every 0.5 seconds.

1 In the Block Parameters dialog box or the Property Inspector, select Treat as atomic unit.
2 From the Schedule as list, select Periodic partition.
3 Specify the partition name as SignalConditioning.
4 Specify the sample time as 0.5.

Alternatively, use the set_param function to configure the TreatAsAtomicUnit, ScheduleAs,
PartitionName, and SystemSampleTime parameters.

load_system("SinkSystem");
set_param("SinkSystem/SignalConditioning","TreatAsAtomicUnit","on",...
 "ScheduleAs","Periodic partition",...
 "PartitionName","SignalConditioning",...
 "SystemSampleTime","0.5");

Configure the subsystem SampleLost as an aperiodic partition.

1 In the Block Parameters dialog box or the Property Inspector, select Treat as atomic unit.
2 From the Schedule as list, select Aperiodic partition.
3 Specify the partition name as SampleLost.

Alternatively, use the set_param function to configure the TreatAsAtomicUnit, ScheduleAs, and
PartitionName parameters.

set_param("SinkSystem/SampleLost","TreatAsAtomicUnit","on",...
 "ScheduleAs","Aperiodic partition",...
 "PartitionName","SampleLost")

 simulink.event.InputWriteLost

8-233

Configure the input port for the model reference SinkSystem with an input write lost event trigger.

1 In the Block Parameters dialog box, on the Execution tab, click Add event trigger.
2 From the list, select Input Write Lost.

Alternatively, create and configure a simulink.event.InputWriteLost object. Then, configure
the EventTriggers parameter of the input port using the set_param function.

inLost = simulink.event.InputWriteLost;
set_param("SinkSystem/Inport","EventTriggers",{inLost})

Update the block diagram by pressing Ctrl+D or by using the set_param function. By default, the
event trigger is configured to trigger the Auto event. When you update the block diagram or compile
the model, the software creates the event SampleLost.Inport.InputWriteLost that is scoped to
the Inport block in the model reference.

set_param(mdl,"SimulationCommand","update")

Configure the model so the SampleLost.Inport.InputWriteLost event triggers the SampleLost
partition.

1 Open the Schedule Editor. In the model, click the badge on one of the partitioned
subsystems. Alternatively, from the Block Parameters dialog box for the Inport block, on the
Execution tab, click Open Schedule Editor .

2 To expand the Events pane, click Expand Side .
3 Select the SampleLost.Inport.InputWriteLost event. Then, drag it into the Schedule

Editor canvas and release it on the SampleLost partition.

8 Objects

8-234

Alternatively, use the get_param function to get the schedule for the model. Then, using the Order
property of the schedule, specify the trigger for the SampleLost partition and use the set_param
function to specify the modified schedule as the schedule for the model.

sched = get_param(mdl,"Schedule");
sched.Order.Trigger("SinkSystem.SampleLost") = "SinkSystem.Inport.InputWriteLost";
set_param(mdl,"Schedule",sched)

Simulate the model.

out = sim(mdl);

Use the Simulation Data Inspector and the Sequence Viewer to analyze how the sensor data moves
through the system. On the Simulation tab, under Review Results, click Data Inspector and
Sequence Viewer.

To plot the data, display markers, and add cursors in the Simulation Data Inspector, load the view
SampleLostView using the Simulink.sdi.loadView function.

Simulink.sdi.loadView("SampleLostView.mldatx")

Use the cursors to analyze the data.

 simulink.event.InputWriteLost

8-235

A sensor sample overwrites data in the queue for the first time when the sensor system writes the
eleventh sample into the queue. The sensor writes into the queue before the sink system reads a
value from the queue for the third time, so the queue size of 8 is no longer sufficient.

The sink system reading the third value frees up space in the queue so no input write lost event
occurs on the next time step, 1.1. Then, starting with time 1.2, four input write lost events occur in
sequence as the sensor system continues writing values into the queue. The sink system pulls another
value at time 1.5, freeing space in the queue. This pattern continues for the rest of the simulation.

The sequence viewer denotes overwritten queue values with a closed black circle.

8 Objects

8-236

Version History
Introduced in R2022b

See Also
Blocks
Inport | In Bus Element | Model | Queue

Tools
Schedule Editor | Sequence Viewer

Objects
simulink.event.InputWrite | simulink.event.InputWriteTimeout

 simulink.event.InputWriteLost

8-237

simulink.event.InputWriteTimeout
Trigger event when input port value does not update within specified time

Description
Use a simulink.event.InputWrite object to configure a root input port to trigger a schedule
event when the input port value does not update within a specified amount of time. By configuring
event triggers on input ports, you can model and simulate quality of service effects.

You can trigger one or more model partitions in a rate-based system based on the flow of data into an
input port in the top model or on a model reference interface. The EventTriggers parameter of an
Inport or In Bus Element block stores the event trigger objects associated with the port. Each event
trigger maps an input event to the name of the schedule event it triggers. The schedule for the model
specifies the partition to execute in response to the schedule event. The table summarizes the event
triggers you can configure on input ports. For each input port, you can configure one event trigger for
each input event.

Input Event Input Event Description Event Trigger Object
Input write Value for input port updates. simulink.event.InputWrit

e
Input write timeout Input port value does not update

within a specified amount of
time.

simulink.event.InputWrit
eTimeout

Input write lost Input port value update
overwrites unprocessed data.

simulink.event.InputWrit
eLost

To configure the schedule for your model, use the Schedule Editor.

Creation
You can configure the event triggers for an input port programmatically or interactively.

• When you configure an event trigger programmatically, create and configure the event trigger
object yourself using the simulink.event.InputWriteTimeout function.

• When you configure an event trigger interactively by using the Block Parameters dialog box or the
Property Inspector, the software creates and configures the event trigger object.

Syntax
writeTimeout = simulink.event.InputWriteTimeout

Description

writeTimeout = simulink.event.InputWriteTimeout creates the event trigger
writeTimeout that you can use to configure an input port to trigger a specified schedule event each
time the input port value does not update within the specified amount of time.

8 Objects

8-238

Properties
EventName — Event to trigger when input port value does not update within specified time
'Auto' (default) | string | character vector

Event to trigger when input port value does not update within specified time, specified as a string or
a character vector. The event name must be 'Auto' or the name of an event defined in the Schedule
Editor.

By default, the event name is 'Auto'. When you update or compile a model that has an input port
configured with an InputWriteTimeout event trigger with the event name 'Auto', the software
creates a schedule event that is scoped to the block. For example, for a block named Inport, the
software creates the event Inport.InputWriteTimeout. Use the Schedule Editor to configure
the listener for the event.
Example: inTimeout.EventName = "myEvent" configures the event trigger object inTimeout to
trigger the event myEvent that is defined in the Schedule Editor.
Data Types: char | string

Timeout — Time limit for update of input port value
'' (default) | string | character vector

Time limit for update of input port value, specified as a string or a character vector that defines a
positive numeric value.
Example: inTimeout.Timeout = "1" configures the event trigger object inTimeout with a
timeout of one second.
Data Types: char | string

Examples

Trigger Partition When Input Value Becomes Stale

Configure a model to execute a partition when the input value does not update within ten seconds.

Open the model InputTimeout. The model contains an input port that loads external data into two
subsystems.

mdl = "InputTimeout";
open_system(mdl);

 simulink.event.InputWriteTimeout

8-239

Configure the model to allow multiple partitions to access the model inputs and outputs. Both
subsystems need to use the input port value, and each subsystem will execute at its own rate.

1 On the Modeling tab, under Setup, click Model Settings.
2 In the Configuration Parameters dialog box, on the Solver pane, expand Solver details.
3 Under Tasking and sample time options, select Allow multiple tasks to access inputs and

outputs.

Alternatively, use the set_param function to configure the AllowMultiTaskInputOutput
parameter.

set_param(mdl,"AllowMultiTaskInputOutput","on")

Configure the subsystem SampleSignal as a periodic partition that samples the input signal every
second.

1 In the Block Parameters dialog box or the Property Inspector, select Treat as atomic unit.
2 From the Schedule as list, select Periodic partition.
3 Specify the partition name as SampleSignal.
4 Specify the sample time as 1.

Alternatively, use the set_param function to configure the TreatAsAtomicUnit, ScheduleAs,
PartitionName, and SystemSampleTime parameters.

set_param("InputTimeout/SampleSignal","TreatAsAtomicUnit","on",...
 "ScheduleAs","Periodic partition",...
 "PartitionName","SampleSignal",...
 "SystemSampleTime","1")

Configure the subsystem InputTimeout as an aperiodic partition.

1 In the Block Parameters dialog box or the Property Inspector, select Treat as atomic unit.
2 From the Schedule as list, select Aperiodic partition.
3 Specify the partition name as InputTimeout.

8 Objects

8-240

Alternatively, use the set_param function to configure the TreatAsAtomicUnit, ScheduleAs, and
PartitionName parameters.

set_param("InputTimeout/InputTimeout","TreatAsAtomicUnit","on",...
 "ScheduleAs","Aperiodic partition",...
 "PartitionName","InputTimeout")

Configure the input port with an input write timeout event trigger.

1 In the Block Parameters dialog box, on the Execution tab, click Add event trigger.
2 From the list, select Input Write Timeout.
3 In the Timeout column of the table, specify the timeout as 10.

Alternatively, create and configure a simulink.event.InputWriteTimeout object. Then,
configure the EventTriggers parameter of the input port using the set_param function.

inTimeout = simulink.event.InputWriteTimeout;
inTimeout.Timeout = "10";
set_param("InputTimeout/Inport","EventTriggers",{inTimeout})

Update the block diagram by pressing Ctrl+D or by using the set_param function. By default, the
event trigger is configured to trigger the Auto event. When you update the block diagram or compile
the model, the software creates the event Inport.InputWriteTimeout that is scoped to the Inport
block.

set_param(mdl,"SimulationCommand","update")

Configure the model schedule such that the Inport.InputWriteTimeout event triggers the
InputTimeout partition.

1 Open the Schedule Editor. In the model, click the badge on one of the partitioned subsystems
. Alternatively, from the Block Parameters dialog box for the Inport block, on the Execution

tab, click Open Schedule Editor .
2 To expand the Events pane, click Expand Side .
3 Select the Inport.InputWriteTimeout event. Then, drag it into the Schedule Editor canvas

and release it on the InputTimeout partition.

 simulink.event.InputWriteTimeout

8-241

In the Schedule Editor, click Update Diagram. The block diagram updates to reflect the binding of
the Inport.InputWriteTimeout event to the InputTimeout partition.

Alternatively, use the get_param function to get the schedule for the model. Then, using the Order
property of the schedule, specify the trigger for the InputTimeout partition and use the set_param
function to specify the modified schedule as the schedule for the model.

sched = get_param(mdl,"Schedule");
sched.Order.Trigger("InputTimeout") = "Inport.InputWriteTimeout";
set_param(mdl,"Schedule",sched)

Create a timeseries object that contains input data with sample values separated by an increasing
time interval.

8 Objects

8-242

time = [0 1 3 5 8 13 21 34 55 89 144];
data = (0:10)';
inp = timeseries(data,time);

Configure the model to load the input data.

set_param(mdl,"LoadExternalInput","on",...
 "ExternalInput","inp")

Simulate the model.

out = sim(mdl);

The InputTimeout partition executes only when the input value does not update for at least ten
seconds.

Version History
Introduced in R2022b

See Also
Blocks
Inport | In Bus Element

Tools
Schedule Editor

Objects
simulink.event.InputWrite | simulink.event.InputWriteLost

 simulink.event.InputWriteTimeout

8-243

Simulink.FindOptions
Specify options for finding blocks in models and subsystems

Description
Simulink.FindOptions objects allow you to constrain a search with the Simulink.findBlocks
and Simulink.findBlocksOfType functions.

Creation

Syntax
f = Simulink.FindOptions
f = Simulink.FindOptions(Name,Value)

Description

f = Simulink.FindOptions creates a FindOptions object that uses the default search options.

f = Simulink.FindOptions(Name,Value) sets properties on page 8-244 using name-value pairs.
For example, Simulink.FindOptions('SearchDepth',1) creates a FindOptions object with a
search depth of 1. You can specify multiple name-value pairs. Enclose each property name in single
quotes.

Properties
CaseSensitive — Option to match case when searching
true (default) | false

Option to match case when searching, specified as true for case-sensitive search or false for case-
insensitive search.
Data Types: logical

FollowLinks — Option for search to follow library links
false (default) | true

Option for search to follow library links, specified as true or false. If true, search follows links into
library blocks.
Data Types: logical

IncludeCommented — Option for search to include commented blocks
true (default) | false

Option for search to include commented blocks, specified as true or false.
Data Types: logical

8 Objects

8-244

LookUnderMasks — Options to search masked blocks
'all' (default) | 'none' | 'functional' | 'graphical'

Options to search masked blocks, specified as:

• 'all' — Search in all masked blocks.
• 'none' — Prevent searching in masked systems.
• 'functional' — Include masked subsystems that do not have dialogs.
• 'graphical' — Include masked subsystems that do not have workspaces or dialogs.

Data Types: char | string

Variants — Options to search variant subsystems
'AllVariants' (default) | 'ActiveVariants' | 'ActivePlusCodeVariants'

Note The Variants argument will be removed. Use MatchFilter instead. For more information,
see Compatibility Considerations on page 8-248.

Options to search variant subsystems, specified as:

• 'AllVariants' — Search all variant choices.
• 'ActiveVariants' — Search only active variant choices.
• 'ActivePlusCodeVariants' — Search all variant choices in the Variant Subsystem that are

active in simulation and is part of the generated code.

This search constraint applies only to Variant Subsystem blocks that have the Variant control mode
set to expression or label. Use the Simulink.FindOptions object with the MatchFilter
option to operate on all types of variant blocks.
Data Types: char | string

MatchFilter — Option to match and filter elements in search
function handle

Option to match and filter elements such as blocks, system, lines, ports, and annotations in a search,
specified as function handle. Use MatchFilter to determine whether elements should be included
or skipped in a search.

The option:

• Allows you to filter elements with custom filter functions
• Avoids processing elements when filters do not match
• Applies complex filters on blocks, lines, or annotations, to filter the results internally

The named function must be defined within a MATLAB program file. The function takes the handle of
the element as input and returns two outputs.

 function [match, prune] = func(element)

• The input element is the handle of the block being processed.

 Simulink.FindOptions

8-245

• The first output, match, is a logical value. If false, search skips the element.
• The second output, prune, is an optional logical value that only applies when element is a

subsystem. The default value is false. If this value is set to true, the entire subsystem is omitted
from the search.

Example: Use MatchFilter to find all Gain blocks in the model vdp with a gain value between 1 and
10.

function match = gainOneToTen(blk)
match = false;
if strcmp(get_param(blk,'Type'),'block') ...
 && strcmp(get_param(blk,'BlockType'),'Gain')
 gainValue = str2double(get_param(blk, 'Gain'));
 match = gainValue >= 1 && gainValue <= 10;
end
end

load_system('vdp');
findOptObj = Simulink.FindOptions('MatchFilter', @gainOneToTen);
blks=getfullname((Simulink.findBlocks('vdp',findOptObj)));

Variants: Simulink provides these built-in match filter functions to find variant blocks that are active
in simulation or part of the generated code.

• Simulink.match.activeVariants — Filter function to find blocks that are active in simulation
after model compilation

• Simulink.match.codeCompileVariants — Filter function to find blocks that are part of
generated code after model compilation

• Simulink.match.allVariants — Filter function to find all blocks irrespective of whether the
block is active or inactive due to variants.

Note To get correct results, you must compile the model before using
Simulink.match.activeVariants and Simulink.match.codeCompileVariants filters. If the
model is not compiled, these filters return all blocks in the model.

Example: Use the Simulink.match.activeVariants option to find active variants in a model:

openExample('simulink_variants/BuiltInMatchFiltersWithfindsystemForVariantBlocksExample');
model='sldemo_variant_subsystems';
load_system(model);
assignin('base','VSS_MODE',2);
set_param(model, 'SimulationCommand', 'update');
findOptObj= Simulink.FindOptions('MatchFilter', @Simulink.match.activeVariants);
blks=getfullname((Simulink.findBlocks(model,findOptObj)))

Example: Use the Simulink.match.codeCompileVariants option to find variant choices that are
part of the generated C code:

openExample('simulink_variants/BuiltInMatchFiltersWithfindsystemForVariantBlocksExample');
load_system('sldemo_variant_subsystems');
assignin('base','VSS_MODE',2);
sldemo_variant_subsystems([], [], [], 'compileForCodegen');
findOptObj = Simulink.FindOptions('MatchFilter', @Simulink.match.codeCompileVariants);

8 Objects

8-246

blks=getfullname((Simulink.findBlocks('sldemo_variant_subsystems',findOptObj)));
sldemo_variant_subsystems([], [], [], 'term');

Example: Use the Simulink.match.allVariants() option to find all blocks in a model.
openExample('simulink_variants/BuiltInMatchFiltersWithfindsystemForVariantBlocksExample');
model='sldemo_variant_subsystems';
load_system(model);
findOptObj= Simulink.FindOptions('MatchFilter', @Simulink.match.allVariants);
blks=getfullname((Simulink.findBlocks(model,findOptObj)))

RegExp — Option to treat search text as regular expression
false (default) | true

Option to treat search text as a regular expression, specified as true or false. To learn more about
MATLAB regular expressions, see “Regular Expressions”.
Data Types: logical

SearchDepth — Levels in model to search
-1 (default) | positive integer

Levels in model to search, specified as a positive integer. The default (-1) is to search all levels.
Specify:

• 1 — Search in the top-level system.
• 2 — Search the top-level system and its children, 3 to search an additional level, and so on.

Data Types: int32

Examples

Specify Search Options

Create a Simulink.FindOptions object that specifies a search depth of 1.

f = Simulink.FindOptions('SearchDepth',1);

Using the FindOptions object, search for all blocks in the subsystem named Unlocked, but not in
any of its children.

openExample('sldemo_clutch');
bh = Simulink.findBlocks('sldemo_clutch/Unlocked',f);

The Simulink.findBlocks function returns the block handles.

To get the block path, use the getfullname function.

bp = getfullname(bh)

bp =

 20×1 cell array

 {'sldemo_clutch/Unlocked/Tfmaxk' }
 {'sldemo_clutch/Unlocked/Tin' }
 {'sldemo_clutch/Unlocked/Enable' }
 {'sldemo_clutch/Unlocked/E_Sum' }

 Simulink.FindOptions

8-247

 {'sldemo_clutch/Unlocked/Engine↵Damping' }
 {'sldemo_clutch/Unlocked/Engine↵Inertia' }
 {'sldemo_clutch/Unlocked/Engine↵Integrator' }
 {'sldemo_clutch/Unlocked/Goto' }
 {'sldemo_clutch/Unlocked/Goto1' }
 {'sldemo_clutch/Unlocked/Max↵Dynamic↵Friction↵Torque'}
 {'sldemo_clutch/Unlocked/V_Sum' }
 {'sldemo_clutch/Unlocked/Vehicle↵Damping' }
 {'sldemo_clutch/Unlocked/Vehicle↵Inertia' }
 {'sldemo_clutch/Unlocked/Vehicle↵Integrator' }
 {'sldemo_clutch/Unlocked/W_Slip' }
 {'sldemo_clutch/Unlocked/slip direction' }
 {'sldemo_clutch/Unlocked/w0' }
 {'sldemo_clutch/Unlocked/w0 ' }
 {'sldemo_clutch/Unlocked/we' }
 {'sldemo_clutch/Unlocked/wv' }

Version History
Introduced in R2018a

R2022a: New built-in match filter to find all variant blocks

You can use the built-in match filter, Simulink.match.allVariants, to find all the blocks in a
variant model regardless of whether the block is active or inactive due to variants. This filter is the
recommended replacement for the AllVariants option.

To be removed Recommended Replacement
findOptObj= Simulink.FindOptions('Variants', ...
'AllVariants');

findOptObj= Simulink.FindOptions('MatchFilter', ...
@Simulink.match.allVariants);

R2021a: Variants option will be removed
Warns starting in R2021a

The Variants option will be removed from Simulink.FindOptions in a future release. Scripts
that use the Variants option continue to work with a warning.

Using the Simulink.FindOptions object with the Variants argument produces inconsistent
search results. Simulink.FindOptions is used at edit-time, but to determine whether a block is
active in a model with all types of variant blocks, you need to compile the model.

To find variant blocks that are active during simulation or code generation, compile the model and
use the Simulink.FindOptions object with the MatchFilter option.

This table lists the recommended replacement for different values of the Variants option.

To Be Removed Recommended Replacement
findOptObj= Simulink.FindOptions('Variants', ...
'ActiveVariants');

set_param(model,'SimulationCommand','update');
findOptObj= Simulink.FindOptions('MatchFilter', ...
@Simulink.match.activeVariants);

8 Objects

8-248

To Be Removed Recommended Replacement
findOptObj= Simulink.FindOptions('Variants', ...
'ActivePlusCodeVariants');

model([], [], [], 'compileForCodegen');
findOptObj = Simulink.FindOptions('MatchFilter', ...
@Simulink.match.codeCompileVariants);
blks=getfullname((Simulink.findBlocks(model,findOptObj)));
model([], [], [], 'term');

When you use the Simulink.FindOptions object, you cannot specify both of the MatchFilter and
Variants arguments.

This command produces an error.

f = Simulink.FindOptions('MatchFilter',...
@Simulink.match.activeVariants, 'Variants', 'ActiveVariants');
blocks=Simulink.findBlocks('sldemo_variant_subsystems',f)

R2020b: Filter elements during search with MatchFilter

To match and filter model elements during a search, you can define a custom filter function and pass
the function handle as value to the MatchFilter option.

To find variant blocks that are active in a simulation or part of the generated code, you can use the
built-in match filter functions, Simulink.match.activeVariants,
Simulink.match.codeCompileVariants, and Simulink.match.allVariants, after compiling
the model.

See Also
Simulink.findBlocksOfType | Simulink.findBlocks | Simulink.allBlockDiagrams

 Simulink.FindOptions

8-249

Simulink.HMI.InstrumentedSignals
Save and restore signal logging specification

Description
A Simulink.HMI.InstrumentedSignals object acts as a specification for logged signals in a
model, including signals in subsystems, library instances, and Stateflow charts. You can get a
Simulink.HMI.InstrumentedSignals object for the logging configuration in your model using
the get_param function with the InstrumentedSignals model parameter. You can save several
logging configurations as Simulink.HMI.InstrumentedSignals objects and easily swap the
logging configuration for your model using set_param.

Note An InstrumentedSignals object for a model does not include signals logged inside
referenced models. To get a list of logged signals in a referenced model, create an
InstrumentedSignals object for the referenced model.

Creation
The get_param function returns a Simulink.HMI.InstrumentedSignals object for the
InstrumentedSignals model parameter.

Properties
Model — Model name
character vector

Name of the model that corresponds to the list of logged signals.
Example: 'sldemo_fuelsys'

Count — Number of logged signals
integer

Number of logged signals in the model.
Example: 10
Data Types: uint32

Examples

Save and Restore a Set of Logged Signals

This example shows how to use the Simulink.HMI.InstrumentedSignals object to save a set of
logged signals to restore after running a simulation with a different signal logging configuration.

8 Objects

8-250

Save the Initial Signal Logging Configuration

This example uses the sldemo_fuelsys model, which is configured to log 10 signals. Open the
model and use the get_param function to get a Simulink.HMI.InstrumentedSignals object
representing the signal logging configuration.

load_system sldemo_fuelsys

initSigs = get_param('sldemo_fuelsys','InstrumentedSignals');

You can save the initial signal logging configuration in a MAT-file for later use.

save initial_instSigs.mat initSigs

Remove All Logging Badges

To return to a baseline of no logged signals, you can use the set_param function to remove all
logging badges from signals in your model. Then, you can easily select a different configuration of
signals to log in the Simulink™ Editor or using the Simulink.sdi.markSignalForStreaming
function.

set_param('sldemo_fuelsys','InstrumentedSignals',[])

Restore Saved Logging Configuration

After working with a different set of logged signals, you can restore a saved configuration using the
Simulink.HMI.InstrumentedSignals object. For example, if you saved the logging configuration
to a MAT-file, you can load the MAT-file contents into the workspace and use the set_param function
to restore the previously saved logging configuration.

load initial_instSigs.mat

set_param('sldemo_fuelsys','InstrumentedSignals',initSigs)

Version History
Introduced in R2015b

See Also
Simulink.HMI.SignalSpecification | Simulink.sdi.markSignalForStreaming

Topics
“View Data in the Simulation Data Inspector”
“Save Signal Data Using Signal Logging”
“Mark Signals for Logging”

 Simulink.HMI.InstrumentedSignals

8-251

Simulink.HMI.ParamSourceInfo
Information about Dashboard block variable and parameter connections

Description
Use a Simulink.HMI.ParamSourceInfo object to connect a Dashboard block to a variable or
parameter programmatically using the set_param function. The get_param function returns a
Simulink.HMI.ParamSourceInfo object when you use the function to query the connection
information for a Dashboard block connected to a variable or parameter.

The Simulink.HMI.ParamSourceInfo object contains four properties. Some of the properties
apply to connecting Dashboard blocks to parameters, and some apply for connecting Dashboard
blocks to variables. Not all fields have a value for a connection because a given Dashboard block
connects to either a parameter or a variable.

Creation
Syntax
paramSourceInfo = Simulink.HMI.ParamSourceInfo

Description

paramSourceInfo = Simulink.HMI.ParamSourceInfo creates the empty
Simulink.HMI.ParamSourceInfo object, paramSourceInfo.

Properties
BlockPath — Path to the block associated with the parameter or variable
Simulink.BlockPath

Simulink.BlockPath object for the block associated with the parameter or variable. You can create
a Simulink.BlockPath object for a block by passing a character array describing the path to
Simulink.BlockPath. You can get a character array describing the block path for a selected block
using the gcb function.
Example: Simulink.BlockPath('vdp/Mu')

ParamName — Name of the connected tunable block parameter
character array

Name of the connected tunable block parameter, specified as a character array. A
Simulink.HMI.ParamSourceInfo object connected to a variable does not have a value for the
ParamName property.
Example: Gain

VarName — Name of the connected variable
character array

8 Objects

8-252

Name of the connected variable, specified as a character array. A
Simulink.HMI.ParamSourceInfo object connected to a tunable parameter does not have a value
for the VarName property.
Example: Mu

Element — Element of nonscalar variable or parameter value to connect
character array

Element of nonscalar variable or parameter value to connect, specified as a character array.

When the value of the variable or parameter you want to tune using a dashboard block is nonscalar,
use the Element property to specify the scalar element of the nonscalar value that you want to tune.
To connect to a scalar element in a vector or matrix, specify the element index. To connect to an
element of a bus or structure, specify the element in the context of the bus or structure hierarchy by
using dots to indicate different levels in the hierarchy, and omit the top level. The value of the
VarName property or the ParamName property specifies the top level.
Example: 3 connects the block to the third element of the variable specified by the VarName property
or the parameter specified by the ParamName property.
Example: (3,2) connects the block to the element in the third row and second column of the variable
specified by the VarName property or the parameter specified by the ParamName property.
Example: a.b connects the block to element b of the nested structure or bus a within the value of the
variable specified by the VarName property or the parameter specified by the ParamName property.

WksType — Source workspace for the connected variable
'base' | 'model' | data dictionary file path

Source workspace for the connected variable, specified as a character array. The source workspace
can be the base workspace, model workspace, or a data dictionary. When the source workspace is a
data dictionary, the WksType property value is the file path for the data dictionary, specified as a
character array. A Simulink.HMI.ParamSourceInfo object connected to a tunable parameter does
not have a value for the WksType property.
Example: 'modelData.sldd'

Examples

Programmatically Add and Connect a Dashboard Block

This example shows how to programmatically add Dashboard blocks to a model and connect them to
elements in the model. The example adds a Dashboard Scope block and a Slider block to the vdp
model and connects and configures the blocks.

Add Blocks

Use the add_block function to add a Dashboard Scope block and a Slider block to the vdp model.
This example also specifies the position of the blocks.

mdl = "vdp";
open_system(mdl)

scopePos = [750 85 990 295];

 Simulink.HMI.ParamSourceInfo

8-253

sliderPos =[765 -5 1005 135];

add_block("simulink_hmi_blocks/Dashboard Scope","vdp/Dashboard Scope",...
 "Position",scopePos)
add_block("simulink_hmi_blocks/Slider","vdp/Slider","Position",sliderPos)

set_param(mdl,"location",[25 25 1133 671]);

Connect the Dashboard Scope Block

Use a cell array of Simulink.HMI.SignalSpecification objects to connect the Dashboard block
to the x1 and x2 signals. The Simulink.HMI.SignalSpecification object specifies a connected
signal using the block path and port index for the source of the signal. The default value for the
OutputPortIndex is 1, so this example does not specify the output port for the x1 and x2 signals.

x1_sigSpec = Simulink.HMI.SignalSpecification;
x1_sigSpec.BlockPath = Simulink.BlockPath("vdp/x1");

x2_sigSpec = Simulink.HMI.SignalSpecification;
x2_sigSpec.BlockPath = Simulink.BlockPath("vdp/x2");

connection_dashboardScope = {x1_sigSpec x2_sigSpec};

Use the set_param function to configure the connected signals for the Dashboard Scope block.

set_param("vdp/Dashboard Scope","Binding",connection_dashboardScope)

Connect and Configure the Slider Block

Use a Simulink.HMI.ParamSourceInfo object and the set_param function to connect the Slider
block to the Gain parameter of the Mu block. To connect a parameter, the
Simulink.HMI.ParamSourceInfo needs to specify the block path for the block that corresponds to
the parameter and the name of the parameter.

slider_param = Simulink.HMI.ParamSourceInfo;
slider_param.BlockPath = Simulink.BlockPath("vdp/Mu");
slider_param.ParamName = 'Gain';

set_param("vdp/Slider","Binding",slider_param)

Configure the scale for the slider for a range of 1 to 10 with a tick mark spacing of 1.

slider_limits = [1 1 10];

set_param("vdp/Slider","Limits",slider_limits)

Version History
Introduced in R2019a

See Also
Edit | Knob | Slider | Push Button | Rotary Switch | Radio Button | Combo Box | Check Box | Rocker
Switch | Slider Switch | Toggle Switch | Simulink.HMI.SignalSpecification

8 Objects

8-254

Simulink.HMI.SignalSpecification
Programmatically connect a Dashboard block to a signal

Description
Use a Simulink.HMI.SignalSpecification object to programmatically connect a Dashboard
block to a signal.

The SignalSpecification object contains the block path, port index, and frame processing mode
for a signal. To connect a Dashboard block to a signal, specify the corresponding
SignalSpecification object as the value for the Binding parameter for the block using the
set_param function.

Creation

Syntax
sigSpec = Simulink.HMI.SignalSpecification

Description

sigSpec = Simulink.HMI.SignalSpecification creates an empty
Simulink.HMI.SignalSpecification object. Specify the block path and port index that
correspond to the origin of the signal you want to connect.

Properties
BlockPath — Path of the block with the signal as an output
Simulink.BlockPath (default) | character vector

Block path for the block that has the signal you want to connect as an output, specified as a character
vector or a Simulink.BlockPath object.
Example: sigSpec.BlockPath = 'vdp/Mu';
Example: sigSpec.BlockPath = myBlockPath;

OutputPortIndex — Block output port corresponding to the signal
1 (default) | scalar

Output port index corresponding to the signal, specified as a scalar, real integer.
Example: sigSpec.OutputPortIndex = 2;

FrameProcessingMode — Processing mode for the signal data
"sample" (default) | "frame"

Processing mode for the signal data, specified as sample or frame.

 Simulink.HMI.SignalSpecification

8-255

• sample — Each element in a sample of the signal is processed as a channel.
• frame — Each column in a sample of the signal is processed as a channel.

Example: sigSpec.FrameProcessingMode = "frame";

Note Only the Dashboard Scope block supports frame-based data.

Examples

Programmatically Add and Connect a Dashboard Block

This example shows how to programmatically add Dashboard blocks to a model and connect them to
elements in the model. The example adds a Dashboard Scope block and a Slider block to the vdp
model and connects and configures the blocks.

Add Blocks

Use the add_block function to add a Dashboard Scope block and a Slider block to the vdp model.
This example also specifies the position of the blocks.

mdl = "vdp";
open_system(mdl)

scopePos = [750 85 990 295];
sliderPos =[765 -5 1005 135];

add_block("simulink_hmi_blocks/Dashboard Scope","vdp/Dashboard Scope",...
 "Position",scopePos)
add_block("simulink_hmi_blocks/Slider","vdp/Slider","Position",sliderPos)

set_param(mdl,"location",[25 25 1133 671]);

Connect the Dashboard Scope Block

Use a cell array of Simulink.HMI.SignalSpecification objects to connect the Dashboard block
to the x1 and x2 signals. The Simulink.HMI.SignalSpecification object specifies a connected
signal using the block path and port index for the source of the signal. The default value for the
OutputPortIndex is 1, so this example does not specify the output port for the x1 and x2 signals.

x1_sigSpec = Simulink.HMI.SignalSpecification;
x1_sigSpec.BlockPath = Simulink.BlockPath("vdp/x1");

x2_sigSpec = Simulink.HMI.SignalSpecification;
x2_sigSpec.BlockPath = Simulink.BlockPath("vdp/x2");

connection_dashboardScope = {x1_sigSpec x2_sigSpec};

Use the set_param function to configure the connected signals for the Dashboard Scope block.

set_param("vdp/Dashboard Scope","Binding",connection_dashboardScope)

Connect and Configure the Slider Block

Use a Simulink.HMI.ParamSourceInfo object and the set_param function to connect the Slider
block to the Gain parameter of the Mu block. To connect a parameter, the

8 Objects

8-256

Simulink.HMI.ParamSourceInfo needs to specify the block path for the block that corresponds to
the parameter and the name of the parameter.

slider_param = Simulink.HMI.ParamSourceInfo;
slider_param.BlockPath = Simulink.BlockPath("vdp/Mu");
slider_param.ParamName = 'Gain';

set_param("vdp/Slider","Binding",slider_param)

Configure the scale for the slider for a range of 1 to 10 with a tick mark spacing of 1.

slider_limits = [1 1 10];

set_param("vdp/Slider","Limits",slider_limits)

Version History
Introduced in R2015b

See Also
get_param | set_param | Simulink.BlockPath

Topics
“View Data in the Simulation Data Inspector”
“Tune and Visualize Your Model with Dashboard Blocks”

 Simulink.HMI.SignalSpecification

8-257

MATLABFunctionConfiguration
MATLAB Function block property configuration

Description
The MATLABFunctionConfiguration object controls the MATLAB Function block properties such
as the description, sample time, and function script.

Tip You can also configure a MATLAB Function block programmatically by using a
Stateflow.EMChart object. This object provides access to the inputs, outputs, and properties of a
MATLAB Function block. For more information, see “Configure MATLAB Function Blocks
Programmatically”.

Creation
Each MATLAB Function block has its own MATLABFunctionConfiguration object. To access this
object, use the get_param function. For example, if the model myModel contains a MATLAB
Function block called MATLAB Function, enter:

config = get_param("myModel/MATLAB Function", ...
 "MATLABFunctionConfiguration");

Properties
Path — Path of block relative to model
string scalar | character vector

Path of the MATLAB Function block relative to the model, specified as a string scalar or character
vector.
Data Types: string | char

FunctionScript — Code for MATLAB Function block
string scalar | character vector

Code for the MATLAB Function block, specified as a string scalar or character vector.
Data Types: string | char

UpdateMethod — Update method for MATLAB Function block
"Inherited" (default) | "Discrete" | "Continuous"

Update method for the MATLAB Function block, specified as one of these values:

• "Inherited" — The input signal at the trigger port determines when the block is updated during
a simulation. A signal from a connected Simulink block triggers the port. If UpdateMethod is
changed to "Inherited", Sample Time is automatically set to -1.

8 Objects

8-258

• "Discrete" — The Simulink model generates an implicit event at regular time intervals to
awaken the block at the rate you specify in the SampleTime property. Other blocks in the model
can have different sample times.

• "Continuous" — The MATLAB Function block updates at major time steps only, although it
computes outputs and local continuous variables during minor and major time steps. If the
UpdateMethod is changed to "Continuous", Sample Time is automatically set to 0.

When you set UpdateMethod to "Inherited" or "Continuous" and attempt to change
SampleTime, Simulink displays a warning and ignores the input sample time.
Data Types: enumerated

SampleTime — Sample time
"-1" (default) | "0" | string scalar | character vector

Sample time of the MATLAB Function block, specified as a string scalar or character vector. Sample
time is only valid when UpdateMethod is set to "Discrete". If UpdateMethod is set to
"Continuous" or "Inherited", any changes made to the sample time are ignored.
Data Types: string | char

Description — Description
string scalar | character vector

Description of the MATLAB Function block, specified as a string scalar or character vector.
Data Types: string | char

DocumentLink — Documentation link
string scalar | character vector

Documentation link for the MATLAB Function block, specified as a string scalar or character vector.
Data Types: string | char

SupportVariableSizing — Whether MATLAB Function block supports variable-size data
true or 1 (default) | false or 0

Whether the MATLAB Function block supports variable-size data, specified as a numeric or logical 1
(true) or 0 (false).
Data Types: logical

AllowDirectFeedthrough — Whether MATLAB Function block supports direct feedthrough
semantics
true or 1 (default) | false or 0

Whether the MATLAB Function block supports direct feedthrough semantics, specified as a numeric
or logical 1 (true) or 0 (false). The block has direct feedthrough if the output of the block directly
depends on the input of the block. The block does not have direct feedthrough if the outputs of the
block depend on the internal states and properties rather than the input of the block.
Data Types: logical

VectorOutputs1D — Whether MATLAB Function block outputs column vectors as one-
dimensional data
false or 0 (default) | true or 1

 MATLABFunctionConfiguration

8-259

Whether the MATLAB Function block outputs column vectors as one-dimensional data, specified as a
numeric or logical 0 (false) or 1 (true). When enabled, the block converts vectors of size N-by-1 to
one-dimensional signals with a signal size equal to N.
Data Types: logical

TreatDimensionOfLengthOneAsFixedSize — Whether MATLAB Function block output
variables with at least one dimension of length 1 are fixed size
true or 1 (default) | false or 0

Whether MATLAB Function block output variables with at least one dimension of length 1 are fixed
size, specified as a numeric or logical 0 (false) or 1 (true). When this property is true, the object
sets variables that are variable size in the block with a dimension of 1 to fixed size. When this
property is false, variables in the block that have the Variable size property enabled are always
variable size. Prior to R2023a, the object treats variables with at least one dimension of length 1 as
fixed size.

This property only affects output variables that have the Variable size property enabled. See
“Variable size”.

SaturateonIntegerOverflow — Whether data saturates on integer overflow
true or 1 (default) | false or 0

Whether the data in the MATLAB Function block saturates on integer overflow, specified as a numeric
or logical 1 (true) or 0 (false). If this setting is set to true, the overflows saturate to either the
minimum or maximum value that the data type can represent. If the setting is false, the overflow
wraps to the appropriate value that the data type can represent. If your model has a possible overflow
and you want to apply saturation protection in your generated code, it is recommended to enable this
setting. If you have performance restrictions or are not concerned with integer overflow, you can
disable this setting.
Data Types: logical

TreatAsFi — Inherited signals to treat as fi objects
"FixedPoint" (default) | "FixedPointAndInteger"

Inherited Simulink signals to treat as Fixed-Point Designer fi objects, specified as one of these
values:

• "FixedPoint" — The MATLAB Function block treats all fixed-point inputs as fi objects.
• "FixedPointAndInteger" — The MATLAB Function block treats all fixed-point and integer

inputs as fi objects.

To learn more about fi objects, see “Set fi Object Properties” (Fixed-Point Designer).
Data Types: enumerated

FimathMode — Default fimath properties
"SameAsMATLAB" (default) | "UserSpecified"

Default fimath properties for the MATLAB Function block, specified as one of these values:

• "SameAsMATLAB" — Use the same fimath properties as the current default fimath object.
• "UserSpecified" — Use the Fimath property to specify the default fimath object.

To learn more about fixed-point math, see fimath.

8 Objects

8-260

Data Types: enumerated

Fimath — Default fimath object
string scalar | character vector

Default fimath object, specified as a string scalar or character vector. When the FimathMode
property for the MATLAB Function block is "UserSpecified", you can use this property to:

• Enter an expression that constructs a fimath object.
• Enter the variable name for a fimath object in the MATLAB or model workspace.

To learn more about fimath object properties, see “fimath Object Properties” (Fixed-Point Designer).
Data Types: string | char

Object Functions
openReport Open MATLAB function report
closeReport Close MATLAB function report
getReport Generate MATLAB function report

Examples

Configure MATLAB Function Block Properties

Access the MATLABFunctionConfiguration object for the MATLAB Function block in the model
call_stats_block1 described in “Implement MATLAB Functions in Simulink with MATLAB
Function Blocks”.

config = get_param("call_stats_block1/MATLAB Function", ...
 "MATLABFunctionConfiguration");

Set the value of the Description property.

config.Description = "Calculate the mean and standard deviation for a vector of values.";

Create Custom Report for MATLAB Function Block

Access the MATLABFunctionConfiguration object for the MATLAB Function block in the model
call_stats_block2 described in “Implement MATLAB Functions in Simulink with MATLAB
Function Blocks”.

config = get_param("call_stats_block2/MATLAB Function", ...
 "MATLABFunctionConfiguration");

Create the MATLABFunctionReport object for the MATLAB Function block.

report = getReport(config);

Access the coder.Function objects in the report.

functions = report.Functions;

Create a custom report that lists the functions and variables in the MATLAB Function block.

 MATLABFunctionConfiguration

8-261

for i = 1:numel(functions)
 fprintf("Function %s uses these variables:\n",functions(i).Name)
 variables = functions(i).Variables;
 for j = 1:numel(variables)
 fprintf("%d. %s -- %s\n",j,variables(j).Name,variables(j).Scope)
 end
 fprintf("\n")
end

Function stats uses these variables:
1. mean -- Output
2. stdev -- Output
3. vals -- Input
4. len -- Local

Function avg uses these variables:
1. mean -- Output
2. array -- Input
3. size -- Input

Version History
Introduced in R2019b

R2023a: Set output variables of any dimension as variable size

You can now set output variables of any dimension to be variable size by setting the
TreatDimensionOfLengthOneAsFixedSize property to false. Prior to R2023a, the object treats
variables with at least one dimension of length 1 as fixed size.

R2021b: Change to output column vectors

You can output column vectors in MATLAB Function blocks as two-dimensional or one-dimensional
data with the VectorOutputs1D property.

Before R2021b, MATLAB Function blocks always output column vectors as one-dimensional data.
After R2021b, MATLAB Function blocks output column vectors as two-dimensional data by default. To
maintain the original behavior of the block, set the VectorOutputs1D property to true.

R2021a: Programmatically access MATLAB function reports

You can access MATLAB function reports for MATLAB Function blocks by calling these functions on
MATLABFunctionConfiguration objects:

• openReport opens the MATLAB function report for the block.
• closeReport closes the MATLAB function report for the block.
• getReport returns a MATLABFunctionReport object for the block. You can query report

information from this object by accessing its 'Functions' property, which is an array of
coder.Function objects.

8 Objects

8-262

See Also
Blocks
MATLAB Function

Functions
get_param

Objects
Stateflow.EMChart | MATLABFunctionReport

Topics
“Radar Tracking Using MATLAB Function Block” on page 13-244
“Implement MATLAB Functions in Simulink with MATLAB Function Blocks”
“Specify MATLAB Function Block Properties”

 MATLABFunctionConfiguration

8-263

closeReport
Package: Simulink

Close MATLAB function report

Syntax
closeReport(config)

Description
closeReport(config) closes the MATLAB function report for a MATLAB Function block.

Examples

Open and Close MATLAB Function Report

Access the MATLABFunctionConfiguration object for the MATLAB Function block in the model
call_stats_block2 described in “Implement MATLAB Functions in Simulink with MATLAB
Function Blocks”.

config = get_param("call_stats_block2/MATLAB Function", ...
 "MATLABFunctionConfiguration");

Open the MATLAB function report.

openReport(config)

Close the MATLAB function report.

closeReport(config)

Input Arguments
config — MATLAB Function block property configuration
MATLABFunctionConfiguration object

MATLAB Function block property configuration, specified as a MATLABFunctionConfiguration
object.
Data Types: MATLABFunctionConfiguration

Version History
Introduced in R2021a

See Also
MATLAB Function | MATLABFunctionConfiguration | openReport

8 Objects

8-264

Topics
“MATLAB Function Reports”
“Configure MATLAB Function Blocks Programmatically”

 closeReport

8-265

getReport
Package: Simulink

Generate MATLAB function report

Syntax
report = getReport(config)

Description
report = getReport(config) returns the MATLABFunctionReport object for a MATLAB
Function block. Use the MATLABFunctionReport object to access information about the functions
and variables used by the MATLAB Function block.

Examples

Create Custom Report for MATLAB Function Block

Access the MATLABFunctionConfiguration object for the MATLAB Function block in the model
call_stats_block2 described in “Implement MATLAB Functions in Simulink with MATLAB
Function Blocks”.

config = get_param("call_stats_block2/MATLAB Function", ...
 "MATLABFunctionConfiguration");

Create the MATLABFunctionReport object for the MATLAB Function block.

report = getReport(config);

Access the coder.Function objects in the report.

functions = report.Functions;

Create a custom report that lists the functions and variables in the MATLAB Function block.

for i = 1:numel(functions)
 fprintf("Function %s uses these variables:\n",functions(i).Name)
 variables = functions(i).Variables;
 for j = 1:numel(variables)
 fprintf("%d. %s -- %s\n",j,variables(j).Name,variables(j).Scope)
 end
 fprintf("\n")
end

Function stats uses these variables:
1. mean -- Output
2. stdev -- Output
3. vals -- Input
4. len -- Local

8 Objects

8-266

Function avg uses these variables:
1. mean -- Output
2. array -- Input
3. size -- Input

Input Arguments
config — MATLAB Function block property configuration
MATLABFunctionConfiguration object

MATLAB Function block property configuration, specified as a MATLABFunctionConfiguration
object.

Tips
The first time that you create a MATLABFunctionReport object or open the MATLAB function
report, Simulink automatically updates your model. If you make subsequent changes to the MATLAB
code in the block, you must update your model before you generate a new MATLABFunctionReport
object. Otherwise, the object does not reflect your changes. From the Modeling tab, select Update
Model, or use the Ctrl+D keyboard shortcut. If you are in the MATLAB Function Block Editor,
update the model by using the Ctrl+Shift+D keyboard shortcut instead.

Version History
Introduced in R2021a

See Also
MATLAB Function | MATLABFunctionConfiguration | MATLABFunctionReport | coder.Function
Properties

Topics
“MATLAB Function Reports”
“Configure MATLAB Function Blocks Programmatically”

 getReport

8-267

openReport
Package: Simulink

Open MATLAB function report

Syntax
openReport(config)

Description
openReport(config) opens the MATLAB function report for a MATLAB Function block.

Examples

Open and Close MATLAB Function Report

Access the MATLABFunctionConfiguration object for the MATLAB Function block in the model
call_stats_block2 described in “Implement MATLAB Functions in Simulink with MATLAB
Function Blocks”.

config = get_param("call_stats_block2/MATLAB Function", ...
 "MATLABFunctionConfiguration");

Open the MATLAB function report.

openReport(config)

Close the MATLAB function report.

closeReport(config)

Input Arguments
config — MATLAB Function block property configuration
MATLABFunctionConfiguration object

MATLAB Function block property configuration, specified as a MATLABFunctionConfiguration
object.
Data Types: MATLABFunctionConfiguration

Tips
The first time that you open the MATLAB function report, Simulink automatically updates your model.
If you make subsequent changes to the MATLAB code in the block, you must update your model
before you reopen the report. Otherwise, the report does not reflect your changes. From the
Modeling tab, select Update Model, or use the Ctrl+D keyboard shortcut. If you are in the

8 Objects

8-268

MATLAB Function Block Editor, update the model by using the Ctrl+Shift+D keyboard shortcut
instead.

Version History
Introduced in R2021a

See Also
MATLAB Function | MATLABFunctionConfiguration | closeReport

Topics
“MATLAB Function Reports”
“Configure MATLAB Function Blocks Programmatically”

 openReport

8-269

MATLABFunctionReport
MATLAB function report

Description
Use MATLABFunctionReport objects to access information about the functions and variables used
by MATLAB Function blocks.

Creation
To create a MATLABFunctionReport object for a MATLAB Function block, call the getReport
function on the MATLABFunctionConfiguration object for the block. For example, if the model
myModel contains a MATLAB Function block called MATLAB Function, enter:

config = get_param("myModel/MATLAB Function", ...
 "MATLABFunctionConfiguration");
report = getReport(config);

Properties
Functions — Functions in block
array of coder.Function objects

This property is read-only.

Functions in the MATLAB Function block, specified as an array of coder.Function objects. The
array contains one coder.Function object for each function in the block. Use these objects to
access information such as the name, scope, and type of the variables used by each function. For
more information, see coder.Function Properties.
Data Types: coder.Function

Examples

Create Custom Report for MATLAB Function Block

Access the MATLABFunctionConfiguration object for the MATLAB Function block in the model
call_stats_block2 described in “Implement MATLAB Functions in Simulink with MATLAB
Function Blocks”.

config = get_param("call_stats_block2/MATLAB Function", ...
 "MATLABFunctionConfiguration");

Create the MATLABFunctionReport object for the MATLAB Function block.

report = getReport(config);

Access the coder.Function objects in the report.

8 Objects

8-270

functions = report.Functions;

Create a custom report that lists the functions and variables in the MATLAB Function block.

for i = 1:numel(functions)
 fprintf("Function %s uses these variables:\n",functions(i).Name)
 variables = functions(i).Variables;
 for j = 1:numel(variables)
 fprintf("%d. %s -- %s\n",j,variables(j).Name,variables(j).Scope)
 end
 fprintf("\n")
end

Function stats uses these variables:
1. mean -- Output
2. stdev -- Output
3. vals -- Input
4. len -- Local

Function avg uses these variables:
1. mean -- Output
2. array -- Input
3. size -- Input

Tips
The first time that you create a MATLABFunctionReport object or open the MATLAB function
report, Simulink automatically updates your model. If you make subsequent changes to the MATLAB
code in the block, you must update your model before you generate a new MATLABFunctionReport
object. Otherwise, the object does not reflect your changes. From the Modeling tab, select Update
Model, or use the Ctrl+D keyboard shortcut. If you are in the MATLAB Function Block Editor,
update the model by using the Ctrl+Shift+D keyboard shortcut instead.

Version History
Introduced in R2021a

See Also
getReport | MATLAB Function | MATLABFunctionConfiguration | coder.Function Properties

Topics
“MATLAB Function Reports”
“Implement MATLAB Functions in Simulink with MATLAB Function Blocks”
“Configure MATLAB Function Blocks Programmatically”

 MATLABFunctionReport

8-271

Simulink.MDLInfo
Extract SLX, SLXP, or MDL file information without loading file

Description
Simulink.MDLInfo objects extract information from an SLX, SLXP or MDL file without loading it
into memory.

To extract the description and metadata from a file without creating an MDLInfo object, use the
Simulink.MDLInfo.getDescription and Simulink.MDLInfo.getMetadata functions,
respectively.

Creation

Syntax
info = Simulink.MDLInfo(file)

Description

info = Simulink.MDLInfo(file) creates an MDLInfo object called info and populates the
properties with the information from the specified model file.

Input Arguments

file — Name of SLX, SLXP, or MDL file
character vector | string scalar

Name of the SLX, SLXP, or MDL file, specified as a character vector or string scalar.

The file name can include a partial path, complete path, relative path, or no path. When you do not
provide a path, the file extension is optional.

To avoid unexpected results caused by shadowed files that share a name, specify a fully qualified file
name.
Example: Simulink.MDLInfo('vdp')
Example: Simulink.MDLInfo('mymodel.slx')
Example: Simulink.MDLInfo('mydir/mymodel.slx')
Example: Simulink.MDLInfo('C:/mydir/mymodel.slx')
Data Types: char | string

8 Objects

8-272

Properties
File Name and Contents

BlockDiagramName — Name of block diagram
character vector

This property is read-only.

Name of the block diagram, returned as a character vector.

The name of the block diagram matches the file name, but without an extension.
Data Types: char

BlockDiagramType — Type of file
character vector

This property is read-only.

Type of file, returned as a character vector.
Data Types: char

FileName — Fully qualified file name
character vector

This property is read-only.

Fully qualified file name, returned as a character vector.
Data Types: char

Interface — Description of inputs, outputs, and references
structure

This property is read-only.

Description of inputs, outputs, and references, returned as a structure.

The structure includes the names and attributes of the top-level ports, model references, and
subsystem references.
Data Types: struct

IsLibrary — True or false result
1 | 0

This property is read-only.

True or false result, returned as a 1 or 0 of data type logical.

• 1 (true) — File is a library.
• 0 (false) — File is not a library.

Data Types: logical

 Simulink.MDLInfo

8-273

User-Specified Information

Description — User-specified description
character vector

This property is read-only.

User-specified description for the file, returned as a character vector.

Tips

• To extract the description without loading the model or creating an MDLInfo object, use the
Simulink.MDLInfo.getDescription function.

• To view the description without loading the model or creating an MDLInfo object, in the MATLAB
Command Window, enter:

help 'mymodelname'
• To view the description for an open model, open the Description tab in the Model Properties

dialog box.

Data Types: char

Metadata — Names and values of arbitrary data
structure

This property is read-only.

Names and values of arbitrary data associated with the file, returned as a structure.

The structure fields can be character vectors, numeric matrices of type double, or more structures.

Tips

To extract the metadata structure without loading the model or creating an MDLInfo object, use the
Simulink.MDLInfo.getMetadata function.
Data Types: struct

Save Information

ReleaseUpdateLevel — Release update used to save file
positive integer

This property is read-only.

Release update used to save the file, returned as a positive integer.

• 0 — The file was saved in a general release, for example, 'R2020a', or was saved in a release
before R2020a.

• Positive integer — The file was saved in an update release, for example, 2, if the model was saved
in 'R2020a Update 2'.

Data Types: int32

LastModifiedBy — Name of user who last saved file
character vector

8 Objects

8-274

This property is read-only.

Name of the user who last saved the file, returned as a character vector.
Data Types: char

LastSavedArchitecture — Platform used to save file
character vector

This property is read-only.

Platform used to save the file, returned as a character vector.
Example: 'glnxa64'
Data Types: char

ModelVersion — Version number
character vector

This property is read-only.

Version number of the file, returned as a character vector.
Data Types: char

ReleaseName — MATLAB release used to save file
character vector

This property is read-only.

MATLAB release used to save the file, returned as a character vector.
Example: 'R2020a'
Data Types: char

SavedCharacterEncoding — Character encoding
character vector

This property is read-only.

Character encoding when the file was saved, returned as a character vector.
Example: 'UTF-8'
Data Types: char

SimulinkVersion — Simulink version number used to save file
character vector

This property is read-only.

Simulink version number used to save the file, returned as a character vector.
Example: '10.1'
Data Types: char

 Simulink.MDLInfo

8-275

Examples

Get Model Information

Create a Simulink.MDLInfo object that corresponds to the vdp.slx file.

info = Simulink.MDLInfo('vdp.slx');

Get information about the file, such as the type of file, by using dot notation to access the property
values.

type = info.BlockDiagramType

type =

 'Model'

vdp is a model file.

Find Referenced Models Without Loading Top Model

Get information about the sldemo_mdlref_depgraph model.

info = Simulink.MDLInfo('sldemo_mdlref_depgraph');

Get the interface information.

info.Interface

ans =

 struct with fields:

 Inports: [0×1 struct]
 Outports: [0×1 struct]
 Trigports: [0×1 struct]
 Enableports: [0×1 struct]
 ModelVersion: '1.84'
 SubsystemReferences: {0×1 cell}
 ModelReferences: {4×1 cell}
 ParameterArgumentNames: ''
 TestPointedSignals: [0×1 struct]
 ProvidedFunctions: [0×1 struct]
 IsExportFunctionModel: 0
 IsArchitectureModel: 0
 IsAUTOSARArchitectureModel: 0
 ResetEvents: [0×1 struct]
 HasInitializeEvent: 0
 HasTerminateEvent: 0
 PreCompExecutionDomainType: 'Unset'
 ParameterArguments: [0×1 struct]
 ExternalFileReference: [4×1 struct]

Get the referenced models.

info.Interface.ModelReferences

8 Objects

8-276

ans =

 4×1 cell array

 {'sldemo_mdlref_depgraph/heat2cost|sldemo_mdlref_heat2cost' }
 {'sldemo_mdlref_depgraph/house|sldemo_mdlref_house' }
 {'sldemo_mdlref_depgraph/outdoor temp|sldemo_mdlref_outdoor_temp'}
 {'sldemo_mdlref_depgraph/thermostat|sldemo_mdlref_heater' }

Add and Check File Metadata

Create a structure that contains metadata information.

m.TestStatus = 'untested';
m.ExpectedCompletionDate = '01/01/2011';

Create a model, update the 'Metadata' parameter, and save the metadata in the model.

new_system('MDLInfoMetadataModel')
set_param('MDLInfoMetadataModel','Metadata',m)
save_system('MDLInfoMetadataModel')

Check the model for metadata by using an MDLInfo object.

info = Simulink.MDLInfo('MDLInfoMetadataModel');
info.Metadata

ans =

 struct with fields:

 TestStatus: 'untested'
 ExpectedCompletionDate: '01/01/2011'

Version History
Introduced in R2009b

See Also
Simulink.MDLInfo.getDescription | Simulink.MDLInfo.getMetadata

Topics
“Manage Model Versions and Specify Model Properties”

 Simulink.MDLInfo

8-277

Simulink.ModelAdvisor
Run Model Advisor from MATLAB file

Description
To run the Model Advisor, use instances of this object in MATLAB programs. For example, you can
perform a standard set of checks.

Many Simulink.ModelAdvisor object functions require or return IDs. An ID is a unique identifier
for a Model Advisor check, task, or group. IDs must remain constant. A Simulink.ModelAdvisor
object includes functions that enable you to retrieve the ID or IDs for:

• All checks, tasks, and groups
• Checks belonging to groups and tasks
• The active check
• Selected checks, tasks, and groups

To find check IDs in the Model Advisor, use the check context menu.

Find Action
Check ID 1 In the left pane of the Model Advisor, select the check.

2 Right-click the check name and select Send Check ID to Workspace.
The ID is displayed in the Command Window and sent to the base
workspace.

Check IDs for selected checks
in a folder

1 In the left pane of the Model Advisor, select the checks for which you want
IDs. Clear the other checks in the folder.

2 Right-click the folder and select Send Check ID to Workspace. An array
of the selected check IDs are sent to the base workspace.

If you have a Simulink Check license, consider using the ModelAdvisor.run function or the
Advisor.Application run function instead of the Simulink.ModelAdvisor runCheck or
runTask functions.

Consider using Advisor.Application object if you have a large model with subsystems and model
references. Advisor.Application does not run checks on library models. If you want to run checks
on multiple independent models that are not in a model reference hierarchy or you want to leverage
parallel processing, use ModelAdvisor.run to run Model Advisor checks on your model.

Creation

Syntax
ma = Simulink.ModelAdvisor.getModelAdvisor(system)

8 Objects

8-278

Description

MATLAB creates an instance of this object for each model that you open in the current MATLAB
session. To get a handle to a model's Model Advisor object, execute this command: ma =
Simulink.ModelAdvisor.getModelAdvisor(system) where system is the name of the model or
subsystem that you want to check. Your program can then use the Model Advisor object functions to
initialize and run the Model Advisor checks.

Input Arguments

system — Model or subsystem name
character vector

Model or subsystem that the Model Advisor checks.
Data Types: char

Properties
EmitInputParametersToReport — Display check input parameters in Model Advisor report
true (default) | false

A value of true displays input parameters in the Model Advisor report. A value of false does not
display input parameters in the Model Advisor report.
Data Types: char

Object Functions
closeReport Close Model Advisor report
deselectCheck Clear Model Advisor check
deselectCheckAll Clear Model Advisor checks
deselectCheckForGroup Clear Model Advisor checks for groups
deselectCheckForTask Clear Model Advisor checks that belong to a specified task or set of tasks
deselectTask Clear Model Advisor checks that belong to a specified task or set of tasks
deselectTaskAll Clear all Model Advisor tasks
displayReport Display report in Model Advisor window
exportReport Create copy of Model Advisor report
filterResultWithExclusion Filter excluded objects
getBaselineMode Determine whether Model Advisor is in baseline data generation mode
getCheckAll Get check IDs of all Model Advisor checks
getCheckForGroup Get checks belonging to Model Advisor check group
getCheckForTask Get checks belonging to a task
getCheckResult Get Model Advisor check results
getCheckResultData Obtain Model Advisor check result data
getCheckResultStatus Obtain Model Advisor check result status
getGroupAll Get all groups of checks that Model Advisor runs
getInputParameters Get Model Advisor check input parameters
getSelectedCheck Get currently selected Model Advisor checks
getSelectedSystem Get system that Model Advisor targets
getSelectedTask Get selected Model Advisor tasks
getTaskAll Get tasks run by Model Advisor
runCheck Run currently selected checks
runTask Run currently selected tasks

 Simulink.ModelAdvisor

8-279

selectCheck Select checks
selectCheckAll Select all checks
selectCheckForGroup Select check group
selectCheckForTask Select checks for a specific task or tasks
selectTask Select Model Advisor task
selectTaskAll Select all Model Advisor tasks
setActionEnable Set status for check action
setBaselineMode Set Model Advisor baseline mode
setCheckErrorSeverity Set severity of check failure
setCheckResult Set result for currently running check
setCheckResultData Set result data for currently running check
setCheckResultStatus Set status for currently running check
setInputParameters Specify input parameters
verifyCheckRan Verify that Model Advisor ran a set of checks
verifyCheckResult Generate baseline Model Advisor check results file or compare current

check results to baseline check results
verifyCheckResultStatus Verify that a model passed or failed a set of checks
verifyHTML Generate baseline Model Advisor report or compare current report to

baseline report

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor.getModelAdvisor | Simulink.ModelAdvisor.openConfigUI |
Simulink.ModelAdvisor.reportExists

Topics
“Run Model Advisor Checks”

8 Objects

8-280

closeReport
Package: Simulink

Close Model Advisor report

Syntax
closeReport(ma)

Description
For a Model Advisor object, use the closeReport(ma) function to close a Model Advisor Report.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to close the corresponding Model Advisor
report.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 closeReport

8-281

deselectCheck
Package: Simulink

Clear Model Advisor check

Syntax
output = deselectCheck(ma,checkID)

Description
For a Model Advisor object, use the output = deselectCheck(ma,checkID) function to clear a
Model Advisor check. This function cannot clear disabled checks.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object that you want to clear Model Advisor check(s).

checkID — Check IDs associated with Model Advisor check(s)
character vector | cell array of character vectors

Model Advisor Check IDs for which you want to clear from the Model Advisor.
Example: 'mathworks.design.UnconnectedLinesPorts'

Output Arguments
output — Logical value
boolean

A logical value indicating whether Simulink cleared the specified check. A value of 1 indicates
success. A value of 0 indicates that Simulink was not able to clear the specified check.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-282

deselectCheckAll
Package: Simulink

Clear Model Advisor checks

Syntax
output = deselectCheckAll(ma)

Description
For a Model Advisor object, use the output = deselectCheckAll(ma) function to clear all
selected Model Advisor checks. This function cannot clear disabled checks.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to clear all selected Model Advisor checks.

Output Arguments
output — Logical value
boolean

A logical value indicating whether Simulink cleared all selected checks. A value of 1 indicates
success. A value of 0 indicates that Simulink did not clear all checks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 deselectCheckAll

8-283

deselectCheckForGroup
Package: Simulink

Clear Model Advisor checks for groups

Syntax
output = deselectCheckForGroup(ma,groupName)

Description
For a Model Advisor object, use the output = deselectCheckForGroup(ma,groupName)
function to clear all selected Model Advisor checks for one or more groups. To locate the group name,
use the getGroupAll function.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to clear all selected Model Advisor checks for
one or more groups.

groupName — Check group names
character vector | cell array of character vectors

Name of group or groups that contain the selected Model Advisor checks that you want to clear.

Output Arguments
output — Logical value
boolean

A logical value indicating whether Simulink cleared the checks for the specified group. A value of 1
indicates success. A value of 0 indicates that Simulink did not clear the specified checks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-284

deselectCheckForTask
Package: Simulink

Clear Model Advisor checks that belong to a specified task or set of tasks

Syntax
output = deselectCheckForTask(ma,task)

Description
For a Model Advisor object, use the output = deselectCheckForTask(ma,task) function to
clear all selected Model Advisor checks for one or more tasks. To locate the task name, use the
getTaskAll function.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to clear all selected Model Advisor checks for a
task or tasks.

task — Task name
character vector | cell array of character vectors

Name of task or tasks that contain selected Model Advisor checks that you want to clear.

Output Arguments
output — Logical value
boolean

A logical value indicating whether Simulink cleared the checks for the specified group. A value of 1
indicates success. A value of 0 indicates that Simulink did not clear the specified checks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 deselectCheckForTask

8-285

deselectTask
Package: Simulink

Clear Model Advisor checks that belong to a specified task or set of tasks

Syntax
output = deselectTask(ma,task)

Description
For a Model Advisor object, use the output = deselectTask(ma,task) function to clear all
selected Model Advisor checks for one or more tasks. To locate the task name, use the getTaskAll
function.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to clear all selected Model Advisor checks for a
task or tasks

task — Task name
character vector | cell array of character vectors

Name of task or tasks that contain selected Model Advisor checks that you want to clear.

Output Arguments
output — Logical value
boolean

A logical value indicating whether Simulink removed the checks for the specified task. A value of 1
indicates success. A value of 0 indicates that Simulink was not able to clear the checks for the
specified task.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-286

deselectTaskAll
Package: Simulink

Clear all Model Advisor tasks

Syntax
output = deselectTaskAll(ma)

Description
For a Model Advisor object, use the output = deselectTaskAll(ma) function to clear all selected
Model Advisor checks for all tasks.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to clear all selected Model Advisor checks for
all tasks

Output Arguments
output — Logical value
boolean

A logical value indicating whether Simulink cleared the checks for all tasks. A value of 1 indicates
success. A value of 0 indicates that Simulink did not clear the checks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 deselectTaskAll

8-287

displayReport
Package: Simulink

Display report in Model Advisor window

Syntax
displayReport(ma)

Description
For a Model Advisor object, use the displayReport(ma) function to display a Model Advisor report
in the Model Advisor window. The report includes the most recent results of running checks on the
system corresponding to the Model Advisor object and the current selection status of checks, groups,
and tasks for the system.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to open the corresponding Model Advisor
report.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-288

exportReport
Package: Simulink

Create copy of Model Advisor report

Syntax
[output, message] = exportReport(ma, destination)

Description
For a Model Advisor object, use the [output, message] = exportReport(ma, destination)
function to create a copy of a Model Advisor report. The report includes the most recent results of
running checks on the system corresponding to the Model Advisor object and the current selection
status of checks, groups, and tasks for the system.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to export the corresponding Model Advisor
report.

destination — Path name
character vector

Path name to report file location.

Output Arguments
output — Logical value
boolean

A logical value indicating whether Simulink created a report in location that you specify by
destination input argument. A value of 1 indicates success. A value of 0 indicates that Simulink
did not create a copy of the report in the specified location.

message — Reason why report was not created
character vector

This output argument is empty if a report is created. If a report was not created, this argument
contains the reason why.

Version History
Introduced in R2006a

 exportReport

8-289

See Also
Simulink.ModelAdvisor

8 Objects

8-290

filterResultWithExclusion
Package: Simulink

Filter excluded objects

Syntax
filteredResultHandles = filterResultWithExclusion(ma,ResultHandles)

Description
Use the filteredResultHandles = filterResultWithExclusion(ma,ResultHandles)
function to filter objects that have exclusions enabled and cause a check warning or failure.

This function is intended for excluding objects from custom checks that you create by using the
Model Advisor customization API, available with Simulink Check.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to filter objects causing exclusion enabled
checks to warn or fail.

ResultHandles — Array of model objects causing a check warning or failure
array of model objects

Array of objects causing a check warning or failure.

Output Arguments
filteredResultHandles — Array of objects causing a check warning or failure
array of objects

An array of objects causing exclusion enabled checks to warn or fail.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

Topics
“Exclude Blocks From Custom Checks” (Simulink Check)

 filterResultWithExclusion

8-291

getBaselineMode
Package: Simulink

Determine whether Model Advisor is in baseline data generation mode

Syntax
mode = getBaselineMode(ma)

Description
mode = getBaselineMode(ma) returns true if the Model Advisor is in baseline data mode.
Baseline data mode causes the verification functions of the Model Advisor, for example, verifyHTML,
to generate baseline data.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to determine if it is in baseline data mode.

Output Arguments
mode — Boolean value indicating baseline mode
0 (default)

A value of 1 indicates that the Model Advisor is in baseline data generation mode.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-292

getCheckAll
Package: Simulink

Get check IDs of all Model Advisor checks

Syntax
CheckIDs = getCheckAll(ma)

Description
The CheckIDs = getCheckAll(ma) function returns a cell array of character vectors specifying
the Check IDs of all checks that the Model Advisor performs.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to get the Check IDs of all checks that the
Model Advisor performs.

Output Arguments
CheckIDs — Model Advisor Check IDs
cell array of character vectors

Cell array of character vectors specifying the Check IDs of all Model Advisor checks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 getCheckAll

8-293

getCheckForGroup
Package: Simulink

Get checks belonging to Model Advisor check group

Syntax
groupChecks = getCheckForGroup(ma,groupName)

Description
For a Model Advisor object, use the groupChecks = getCheckForGroup(ma,groupName) method
to get all of the Model Advisor checks in a group. To locate the group name, use the getGroupAll
method.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to get all of the Model Advisor checks
corresponding to a check group.

groupName — Check group name
character vector

Name of group that contains the Model Advisor checks.
Example: 'Simulink Coder'

Output Arguments
groupChecks — Model Advisor checks
cell array of character vectors

Checks that belong to a Model Advisor group.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-294

getCheckForTask
Package: Simulink

Get checks belonging to a task

Syntax
taskChecks = getCheckForTask(ma,taskID)

Description
For a Model Advisor object, use the taskChecks = getCheckForTask(ma,taskID) function to
get all of the Model Advisor checks that are part of a task. To locate the task name, use the
getTaskAll function.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to get all of the Model Advisor checks that are
part of a task.

taskID — Task name
character vector

Name of task that contains the Model Advisor checks.
Example: '_SYSTEM_By Task_Modeling_Physical_Systems'

Output Arguments
taskChecks — Model Advisor checks
cell array of character vectors

Checks that are part of a Model Advisor task

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 getCheckForTask

8-295

getCheckResult
Package: Simulink

Get Model Advisor check results

Syntax
results = getCheckResult(ma,checkID)

Description
For a Model Advisor object, use the results = getCheckResult(ma,checkID) function to get
the results of running a check or set of checks.

This function enables you to access results generated by custom checks that you create using the
Model Advisor customization API, an optional feature available with Simulink Check software. For
more information, see “Define Custom Model Advisor Checks” (Simulink Check).

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to obtain check results.

checkID — Check IDs associated with Model Advisor check
character vector | cell array of character vectors

Model Advisor Check IDs for which you want to obtain results.
Example: 'mathworks.design.UnconnectedLinesPorts'

Output Arguments
results — Check results
cell array

Cell array of check results. The result format depends on the check data.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-296

getCheckResultData
Package: Simulink

Obtain Model Advisor check result data

Syntax
results = getCheckResultData(ma,checkID)

Description
For a Model Advisor object, use the results = getCheckResultData(ma,checkID) function to
get the check result data for a specified set of checks. You set the check result data for a check by
using setCheckResultData in the check callback function.

This function enables you to access results generated by custom checks that you create using the
Model Advisor customization API, an optional feature available with Simulink Check software. For
more information, see “Define Custom Model Advisor Checks” (Simulink Check).

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to obtain check result data.

checkID — Check IDs associated with Model Advisor checks
character vector | cell array of character vectors

Model Advisor Check IDs that you want to obtain results
Example: 'mathworks.design.UnconnectedLinesPorts'

Output Arguments
results — Check results
cell array

Data from a check result or cell array of data from check results. The data format depends on the
checks that generate the data.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 getCheckResultData

8-297

getCheckResultStatus
Package: Simulink

Obtain Model Advisor check result status

Syntax
status = getCheckResultStatus(ma,checkID)

Description
After running a set of checks, use the status = getCheckResultStatus(ma,checkID) function
to determine whether these checks passed or failed.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to determine whether a check or set of checks
passed or failed.

checkID — Model Advisor Check IDs
character vector | cell array of character vectors

Model Advisor Check IDs for which you want to obtain results.
Example: 'mathworks.design.UnconnectedLinesPorts'

Output Arguments
status — Pass or fail
Boolean | cell array of Boolean values

Boolean value or cell array of Boolean values indicating the pass or fail status of a check or set of
checks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-298

getGroupAll
Package: Simulink

Get all groups of checks that Model Advisor runs

Syntax
groupChecks = getGroupAll(ma)

Description
For a Model Advisor object, use the groupChecks = getGroupAll(ma) function to get all groups
of checks that the Model Advisor runs.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to determine all Model Advisor check groups.

Output Arguments
groupChecks — Model Advisor check groups
cell array of character vectors

IDs of check groups that the Model Advisor runs.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 getGroupAll

8-299

getInputParameters
Package: Simulink

Get Model Advisor check input parameters

Syntax
params = getInputParameters(ma,CheckID)

Description
Use the params = getInputParameters(ma,CheckID) function to get the input parameters for a
Model Advisor check.

This function enables you to access custom checks that you create using Simulink Check. For more
information, see “Define Custom Model Advisor Checks” (Simulink Check).

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you determine the input parameters for specific Model
Advisor check.

CheckID — Model Advisor check
character vector

Model Advisor check ID for which to obtain its input parameters. If you use the function inside a
check callback function, you can omit this argument.
Example: 'mathworks.design.UnconnectedLinesPorts'

Output Arguments
params — Input parameters
cell array of ModelAdvisor.InputParameter objects

Cell array that contains the ModelAdvisor.InputParameter objects for a Model Advisor check.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-300

Topics
“Run Model Advisor Checks”

 getInputParameters

8-301

getListViewParameters
Package: Simulink

Get Model Advisor checklist parameters displayed in checklist view

Syntax
params = getListViewParameters(ma,CheckID)

Description
Use the params = getListViewParameters(ma,CheckID) function to get the list view of
parameters for a Model Advisor check.

This function enables you to access custom checks that you create by using Simulink Check. For more
information, see “Define Custom Model Advisor Checks” (Simulink Check).

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you determine the list view of parameters for a specific
Model Advisor check.

CheckID — Model Advisor check
character vector

Name of Model Advisor check for which to obtain its parameters in list view. You can omit this
argument if you use the function inside a check callback function.
Example: 'mathworks.design.UnconnectedLinesPorts'

Output Arguments
params — Input parameters
cell array of ModelAdvisor.ListViewParameter objects

Cell array that contains the ModelAdvisor.ListViewParameter objects for a Model Advisor
check.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor | ModelAdvisor.ListViewParameter

8 Objects

8-302

getSelectedCheck
Package: Simulink

Get currently selected Model Advisor checks

Syntax
CheckIDs = getSelectedCheck(ma)

Description
Use the CheckIDs = getSelectedCheck(ma) function to obtain the selected Model Advisor
checks for a corresponding Simulink.ModelAdvisor object.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to obtain the selected Model Advisor checks.

Output Arguments
CheckIDs — Model Advisor checks
cell array of character vectors

Check IDs of currently selected Model Advisor checks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 getSelectedCheck

8-303

getSelectedSystem
Package: Simulink

Get system that Model Advisor targets

Syntax
system = getSelectedSystem(ma)

Description
Use the system = getSelectedSystem(ma) function to obtain the model or subsystem that is the
target of the Simulink.ModelAdvisor object.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to obtain the model or subsystem that the
object targets.

Output Arguments
system — Model or subsystem
character vector

Name of the model or subsystem that the Model.Advisor object ma targets.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-304

getSelectedTask
Package: Simulink

Get selected Model Advisor tasks

Syntax
TaskIDs = getSelectedTask(ma)

Description
Use the TaskIDs = getSelectedTask(ma) function to obtain the tasks that are selected for the
Simulink.ModelAdvisor object ma.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to obtain the currently selected tasks.

Output Arguments
TaskIDs — Model Advisor Task IDs
cell array of character vectors

Cell array of selected Task IDs for the Simulink.ModelAdvisor object that you specify as an input.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 getSelectedTask

8-305

getTaskAll
Package: Simulink

Get tasks run by Model Advisor

Syntax
TaskIDs = getTaskAll(ma)

Description
Use the TaskIDs = getTaskAll(ma) function to obtain the tasks that are run for the
Simulink.ModelAdvisor object ma.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to obtain the tasks that the Model Advisor ran.

Output Arguments
TaskIDs — Model Advisor Task IDs
cell array of character vectors

Cell array of Task IDs that are run for the Simulink.ModelAdvisor object that you specify as an
input.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-306

runCheck
Package: Simulink

Run currently selected checks

Syntax
success = runCheck(ma,checkID)

Description
The success = runCheck(ma,checkID) function runs selected Model Advisor checks. Invoking
this function is equivalent to selecting the Run Checks button on the Model Advisor.

If you have a Simulink Check license, consider using the ModelAdvisor.run function or the
Advisor.Application run function instead of the Simulink.ModelAdvisor runCheck or
runTask functions.

Consider using Advisor.Application class if you have a large model with subsystems and model
references. Advisor.Application does not run checks on library models. If you want to run checks
on multiple independent models that are not in a model reference hierarchy or you want to leverage
parallel processing, use ModelAdvisor.run to run Model Advisor checks on your model.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to run Model Advisor.

checkID — Model Advisor check IDs
character vector | cell array of character vectors

If you want to run the Model Advisor on a subset of the currently selected Model Advisor checks,
specify this optional input parameter.
Example: 'mathworks.design.UnconnectedLinesPorts'

Output Arguments
success — Boolean value indicating whether the Model Advisor ran on selected checks
Boolean

Boolean value that indicates whether the Model Advisor ran on the selected checks. A value of 1
indicates that the Model Advisor successfully ran on the selected checks. A value of 0 indicates that
the Model Advisor did not run on the selected checks.

Version History
Introduced in R2006a

 runCheck

8-307

See Also
Simulink.ModelAdvisor

8 Objects

8-308

runTask
Package: Simulink

Run currently selected tasks

Syntax
success = runTask(ma)

Description
The success = runTask(ma) function runs selected Model Advisor tasks. Invoking this function is
equivalent to the Run Checks button on the Model Advisor.

If you have a Simulink Check license, consider using the ModelAdvisor.run function or the
Advisor.Application run function instead of the Simulink.ModelAdvisor runCheck or
runTask functions.

Consider using Advisor.Application class if you have a large model with subsystems and model
references. Advisor.Application does not run checks on library models. If you want to run checks
on multiple independent models that are not in a model reference hierarchy or you want to leverage
parallel processing, use ModelAdvisor.run to run Model Advisor checks on your model.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to run the Model Advisor.

Output Arguments
success — Boolean value indicating whether the Model Advisor ran selected tasks
Boolean

Boolean value that indicates whether the Model Advisor ran on the selected tasks. A value of 1
indicates that the Model Advisor successfully ran on the selected tasks. A value of 0 indicates that the
Model Advisor did not run on the selected tasks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 runTask

8-309

selectCheck
Package: Simulink

Select checks

Syntax
success = selectCheck(ma,checkID)

Description
The success = selectCheck(ma,checkID) function selects Model Advisor checks.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to select Model Advisor checks.

checkID — Model Advisor Check IDs
character vector | cell array of character vectors

Model Advisor checks for you to select.
Example: 'mathworks.design.UnconnectedLinesPorts'

Output Arguments
success — Boolean value indicating whether the Model Advisor selected the checks
Boolean

Boolean value that indicates whether the Model Advisor selected the checks. A value of 1 indicates
that the Model Advisor successfully selected the specified checks. A value of 0 indicates that the
Model Advisor did not select the specified checks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-310

selectCheckAll
Package: Simulink

Select all checks

Syntax
success = selectCheckAll(ma)

Description
The success = selectCheckAll(ma) function selects all Model Advisor checks.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to select all Model Advisor checks.

Output Arguments
success — Boolean value indicating whether all Model Advisor checks are selected
Boolean

Boolean value that indicates whether all Model Advisor checks are selected. A value of 1 indicates
that the Model Advisor successfully selected all checks. A value of 0 indicates that the Model Advisor
did not select all checks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 selectCheckAll

8-311

selectCheckForGroup
Package: Simulink

Select check group

Syntax
success = selectCheckForGroup(ma,groupName)

Description
The success = selectCheckForGroup(ma,groupName) function selects all Model Advisor
checks in the group that you specify.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to select the Model Advisor checks.

groupName — Check group name
character vector | cell array of character vectors

Name of groups that contain the Model Advisor checks that you want to select.

Output Arguments
success — Boolean value indicating whether the Model Advisor selected the checks
Boolean

Boolean value that indicates whether the Model Advisor selected the checks. A value of 1 indicates
that the Model Advisor successfully selected the specified checks. A value of 0 indicates that the
Model Advisor did not select the specified checks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-312

selectCheckForTask
Package: Simulink

Select checks for a specific task or tasks

Syntax
success = selectCheckForTask(ma,taskIDs)

Description
Use the success = selectCheckForTask(ma,taskIDs) function to select the checks for a task
or tasks.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to select checks for a specific task or tasks.

taskIDs — Model Advisor Task IDs
cell array of character vectors | character vector

Cell array of Task IDs for the Simulink.ModelAdvisor object that you specify as an input.

Output Arguments
success — Boolean value indicating whether the checks are selected
Boolean

Boolean value that indicates whether the Model Advisor successfully selected the checks for the
specified task or tasks. A value of 1 indicates that the Model Advisor successfully selected the checks.
A value of 0 indicates that the Model Advisor did not select the checks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 selectCheckForTask

8-313

selectTask
Package: Simulink

Select Model Advisor task

Syntax
success = selectTask(ma, TaskIDs)

Description
The success = selectTask(ma, TaskIDs) function selects the Model Advisor tasks.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to select Model Advisor tasks.

TaskIDs — Model Advisor Task IDs
cell array of character vectors

Cell array of Task IDs that you want to select for the Simulink.ModelAdvisor object, which you
specify as an input.

Output Arguments
success — Boolean value indicating whether Model Advisor selected tasks
Boolean

Boolean value that indicates whether the Model Advisor selected tasks. A value of 1 indicates that
the Model Advisor successfully selected the tasks. A value of 0 indicates that the Model Advisor did
not select the tasks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-314

selectTaskAll
Package: Simulink

Select all Model Advisor tasks

Syntax
success = selectTaskAll(ma)

Description
The success = selectTaskAll(ma) function selects all Model Advisor tasks.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to select the Model Advisor tasks.

Output Arguments
success — Boolean value indicating whether Model Advisor selected tasks
Boolean

Boolean value that indicates whether the Model Advisor selected tasks. A value of 1 indicates that
the Model Advisor successfully selected the tasks. A value of 0 indicates that the Model Advisor did
not select the tasks.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 selectTaskAll

8-315

setActionEnable
Package: Simulink

Set status for check action

Syntax
setActionEnable(ma, value)

Description
The setActionEnable(ma, value) function enables or disables the Action box. Only a check
callback function can invoke this function.

This function enables you to access custom checks that you create by using the Model Advisor
customization API, an optional feature that is available with Simulink Check software. For more
information, see “Define Custom Model Advisor Checks” (Simulink Check).

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to set check action status.

value — Boolean value indicating whether to enable or disable the Model Advisor Action
box
Boolean

Boolean value that indicates whether to enable or disable Model Advisor Action box. To enable the
box, specify a value of true. To disable the box, specify a value of false.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-316

setBaselineMode
Package: Simulink

Set Model Advisor baseline mode

Syntax
setBaselineMode(ma,mode)

Description
Use the setBaselineMode(ma,mode) function to set the Model Advisor baseline mode. Baseline
mode causes the Model Advisor verify methods to generate baseline comparison data for verifying the
results of a Model Advisor run.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to set the baseline mode.

mode — Boolean value indicating the Model Advisor baseline mode
Boolean

Boolean value that indicates the Model Advisor baseline mode. A value of true indicates that
baseline mode is on. A value of false indicates that baseline mode is off.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 setBaselineMode

8-317

setCheckErrorSeverity
Package: Simulink

Set severity of check failure

Syntax
setCheckErrorSeverity(ma,value)

Description
Use the setCheckErrorSeverity(ma,value) function to set the check error severity for the
currently running check. Only the callback function of a check can invoke this function.

This function enables you to access custom checks that you create by using the Model Advisor
customization API, an optional feature that is available with Simulink Check software. For more
information, see “Define Custom Model Advisor Checks” (Simulink Check).

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to set the check error severity for the currently
running check.

value — Integer indicating severity of failure
0 (default) | integer

A value of 0 indicates a warning check result. A value of 1 indicates a failed check result.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-318

setCheckResult
Package: Simulink

Set result for currently running check

Syntax
success = setCheckResult(ma,result)

Description
Use the success = setCheckResult(ma,result) function to set the check result for the
currently running check. Only the callback function of a check can invoke this function.

This function enables you to access custom checks that you create using the Model Advisor
customization API, an optional feature that is available with Simulink Check software. For more
information, see “Define Custom Model Advisor Checks” (Simulink Check).

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to set the result for the currently running
check.

result — Result to be set
character vector | cell array of character vectors

Character vector or cell array that specifies the result of the currently running check.

Output Arguments
success — Boolean value indicating whether the result is set
Boolean

Boolean value that indicates whether the Model Advisor successfully set the result for the currently
running check. A value of 1 indicates that the Model Advisor successfully set the result. A value of 0
indicates that the Model Advisor did not set the result.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 setCheckResult

8-319

setCheckResultData
Package: Simulink

Set result data for currently running check

Syntax
success = setCheckResultData(ma,data)

Description
Use the success = setCheckResultData(ma,data) function to set the check result data for the
currently running check. Only the callback function of a check can invoke this function.

This function enables you to access custom checks that you create with the Model Advisor
customization API, an optional feature that is available with Simulink Check software. For more
information, see “Define Custom Model Advisor Checks” (Simulink Check).

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to set result data for the currently running
check.

data — Result data
cell array of character vectors

Result data that you specify for a custom check.

Output Arguments
success — Boolean value indicating whether result data is set
Boolean

Boolean value that indicates whether the Model Advisor successfully set result data for the currently
running check. A value of 1 indicates that the Model Advisor successfully set the data. A value of 0
indicates that the Model Advisor did not set the data.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

8 Objects

8-320

setCheckResultStatus
Package: Simulink

Set status for currently running check

Syntax
success = setCheckResultStatus(ma,status)

Description
The success = setCheckResultStatus(ma,status) function sets the status for the currently
running check. Only the callback function of a check can invoke this function.

This function enables you to access custom checks that you create with the Model Advisor
customization API, an optional feature that is available with Simulink Check software. For more
information, see “Define Custom Model Advisor Checks” (Simulink Check).

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to set the status for the currently running
check.

status — Status of currently running check
Char | Boolean

For char type inputs, pass | fail | warn values indicate the status of the check that just ran. If
you use char as input parameter, you do not need to update the severity of the error using the
setCheckErrorSeverity function.

Boolean value that indicates the status of the check that just ran. A value of true indicates that the
check passed. A value of false indicates that the check failed.

Output Arguments
success — Boolean value indicating whether the Model Advisor successfully set the status
Boolean

Boolean value that indicates whether the Model Advisor successfully set the status of the currently
running check. A value of 1 indicates that the Model Advisor successfully set the status. A value of 0
indicates that the Model Advisor did not set the status.

Version History
Introduced in R2006a

 setCheckResultStatus

8-321

See Also
Simulink.ModelAdvisor

8 Objects

8-322

setInputParameters
Package: Simulink

Specify input parameters

Syntax
success = setInputParameters(ma, checkID, InputParameters)

Description
Use the success = setInputParameters(ma, checkID, InputParameters) function to
specify input parameters for a Model Advisor check.

This function enables you to access custom checks that you create using Simulink Check. For more
information, see “Define Custom Model Advisor Checks” (Simulink Check) .

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which to specify the input parameters for the specific Model
Advisor check.

checkID — Model Advisor check
character vector

Model Advisor check ID to which the input parameters apply. If you use this method inside a current
active check function, you can omit this argument.
Example: 'mathworks.design.UnconnectedLinesPorts'

InputParameters — Input parameters
cell array of ModelAdvisor.InputParamter objects

Cell array that contains the ModelAdvisor.InputParameter objects for a Model Advisor check.

Output Arguments
success — Boolean value indicating whether the input parameters were specified for check
Boolean

Boolean value that indicates whether the Model Advisor specified the input parameters. A value of 1
indicates that the Model Advisor successfully specified the input parameters for the check. A value of
0 indicates that the Model Advisor did not specify the input parameters.

Version History
Introduced in R2006a

 setInputParameters

8-323

See Also
Simulink.ModelAdvisor | ModelAdvisor.InputParameter

Topics
“Create Model Advisor Checks” (Simulink Check)
“Fix a Model to Comply with Conditions that You Specify with the Model Advisor” (Simulink Check)
“Review a Model Against Conditions that You Specify with the Model Advisor” (Simulink Check)

8 Objects

8-324

setListViewParameters
Package: Simulink

Specify list-view parameters for check

Syntax
setListViewParameters(ma,checkID, params)

Description
The setListViewParameters(ma,checkID, params) function sets the list-view parameters for a
check. Only the callback function of a check can invoke this function.

This function enables you to access custom checks that you create with the Model Advisor
customization API, an optional feature that is available with Simulink Check software. For more
information, see “Define Custom Model Advisor Checks” (Simulink Check).

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to set list-view parameters.

checkID — Model Advisor Check ID
character vector

Character vector specifying the identifier for a Model Advisor check.

params — Cell array of ModelAdvisor.ListViewParameter objects
ModelAdvisor.ListViewParameter objects

Set the list-view parameters for the check.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor | ModelAdvisor.ListViewParameter

 setListViewParameters

8-325

verifyCheckRan
Package: Simulink

Verify that Model Advisor ran a set of checks

Syntax
[success, missingChecks, additionalChecks]= verifyCheckRan(ma,CheckIDs)

Description
Use the [success, missingChecks, additionalChecks]= verifyCheckRan(ma,CheckIDs)
function to verify that the Model Advisor ran a set of checks.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to verify that a set of checks ran

CheckIDs — Model Advisor Check IDs
cell array of character vectors

Cell array of character vectors specifying the identifiers of Model Advisor checks that you want to
verify have run.

Output Arguments
success — Boolean value indicating whether the Model Advisor ran checks
Boolean

Boolean value that indicates whether the Model Advisor successfully ran a set of checks. A value of
1 indicates that the Model Advisor successfully ran the checks. A value of 0 indicates that the Model
Advisor did not run the checks.

missingChecks — Cell array of Check IDs
cell array of character vectors

Cell array of character vectors specifying the identifiers of specified Model Advisor checks that did
not run.

additionalChecks — Model Advisor Check IDs
cell array of character vectors

Cell array of character vectors specifying the identifiers of unspecified Model Advisor checks that
ran.

8 Objects

8-326

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 verifyCheckRan

8-327

verifyCheckResult
Package: Simulink

Generate baseline Model Advisor check results file or compare current check results to baseline
check results

Syntax
[success, message]= verifyCheckResult(ma,baseline,CheckIDs)

Description
Use the [success, message]= verifyCheckResult(ma,baseline,CheckIDs)function to
generate a baseline Model Advisor check results file or compare to current check results to baseline
check results. If the Model Advisor is in baseline mode, this function stores the most recent results of
running the checks that you specify by the CheckIDs argument in a MAT-file. For the MAT-file, use
the location that you specify by using the baseline input argument.

To generate a baseline report, put the Model Advisor in baseline mode. Then invoke this function with
the baseline argument set to the location where you want to store the baseline results. To perform a
current-to-baseline report comparison, first check that the Model Advisor is not in baseline mode.
Then, invoke this function with the path of the baseline report as the value of the baseline input
argument.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to verify that a set of checks ran.

baseline — Path of the baseline check results MAT-file
character vector

To perform a current-to-baseline report comparison, make sure that the Model Advisor is not in
baseline mode and specify a path to the baseline report.

CheckIDs — Model Advisor Check IDs
cell array of character vectors

Cell array of character vectors specifying the identifiers of Model Advisor checks that you want to
verify by using check results.

Output Arguments
success — Boolean value indicating whether the function succeeded
Boolean

Boolean value that indicates whether the function ran successfully. A value of 1 indicates that the
function verified that the current check results match the baseline results. A value of 0 indicates that

8 Objects

8-328

the Model Advisor did not verify check results. If the function is unable to store the check results at
the specified location, it returns false in the output variable success. The reason for the failure is in
the message argument.

message — Error message
character vector

Error message indicating why Simulink did not verify check result.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 verifyCheckResult

8-329

verifyCheckResultStatus
Package: Simulink

Verify that a model passed or failed a set of checks

Syntax
[success message]= verifyCheckResultStatus(ma, baseline, checkIDs)

Description
Use the [success message]= verifyCheckResultStatus(ma, baseline, checkIDs)
function to verify that a model has passed or failed a set of checks.

Before invoking the verifyCheckResultStatus function, run the checks that you specify with
checkIDs. Then use the getCheckResultStatus function to obtain the boolean values for the
baseline argument.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to verify that a set of checks passed.

baseline — Statuses from running most recent round of checks
Cell array of Boolean variables

Statuses from the most recent checks run that you specify by Check IDs.

checkIDs — Model Advisor Check IDs
cell array of character vectors

Cell array of character vectors specifying the identifiers of Model Advisor checks that you want to
verify have run.

Output Arguments
success — Boolean value indicating whether the check statuses match the baseline
Boolean

Boolean value that indicates whether the statuses match the baseline. A value of 1 indicates that the
statuses match. A value of 0 indicates that the statuses do not match the baseline.

message — Message indicating status
character vector

Message indicating whether the function successfully verified the check result statuses.

8 Objects

8-330

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 verifyCheckResultStatus

8-331

verifyHTML
Package: Simulink

Generate baseline Model Advisor report or compare current report to baseline report

Syntax
[success message]= verifyHTML(ma,baseline)

Description
Use the [success message]= verifyHTML(ma,baseline) function to generate a Model Advisor
report or to compare a current report to a baseline report.

This function enables you to compare a Model Advisor report with a baseline report to determine if
they differ. You can use this function to generate the baseline report and perform current-to-baseline
report comparisons. To generate a baseline report, use the setBaselineMode function to put the
Model Advisor in baseline mode. Invoke this function with the baseline argument set to the location
where you want to store the baseline report. To perform a current-to-baseline report comparison, first
make sure that the Model Advisor is not in baseline mode. Then, invoke this function with the path of
the baseline report as the value of the baseline input argument.

Input Arguments
ma — Model Advisor object
Simulink.ModelAdvisor object

Simulink.ModelAdvisor object for which you want to generate a baseline report or compare
current report to baseline report

baseline — Path of Model Advisor report
character vector

Path to baseline Model Advisor report

Output Arguments
success — Boolean value indicating whether the function is successful
Boolean

Boolean value that indicates whether the function is successful. If the Model Advisor is in baseline
mode, this function stores the most recently generated Model Advisor report at the location specified
by the baseline input argument. If the function is unable to store a copy of the report at the
specified location, it returns false in the output variable success. The reason for the failure is in
the output variable message. If the Model Advisor is not in baseline mode, this function compares the
report most recently generated by the Model Advisor with the report specified by baseline. If the
current report has the same content as the baseline report, this function returns true as the value of
the success output variable.

8 Objects

8-332

message — Message indicating status
character vector

Message indicating whether the Model Advisor is able to successfully store a report.

Version History
Introduced in R2006a

See Also
Simulink.ModelAdvisor

 verifyHTML

8-333

Simulink.ModelDataLogs
(Not recommended) Access signal data logs for data logged using ModelDataLogs format

Note The ability to log and load data using the ModelDataLogs format has been removed. Use
another supported format, such as Dataset format, instead. For more information, see
“Compatibility Considerations”.

Description
The Simulink.ModelDataLogs object contains all data logged from simulation in a model that logs
data using the ModelDataLogs format.

Creation
Prior to R2016a, you could configure a model to log data using the ModelDataLogs format.
Simulating a model with the Signal logging format parameter set to ModelDataLogs created a
Simulink.ModelDataLogs object that contained the data for all logged signals. You could specify
the name for the ModelDataLogs object using the Signal logging name parameter.

Properties
Logged Data Properties

The Simulink.ModelDataLogs object contains properties with the signal data logged from
simulation. The number, type, and names of the properties that contain logged data depend on the
structure of the model and the logging configuration.

Property Name Source Logged Data Source Value
Model name Top model or model reference Simulink.ModelDataLogs
Subsystem name Subsystem Simulink.SubsysDataLogs
Signal name Signal Simulink.Timeseries
Mux or virtual bus name Mux or virtual bus Simulink.TSArray
Bus object Nonvirtual bus Simulink.TSArray

The hierarchy of ModelDataLogs and SubsysDataLogs objects in a ModelDataLogs object
matches the hierarchy of the model. The hierarchy of a Simulink.TSArray object for a bus matches
the bus hierarchy.

Model Properties

Name — Model or Model block name
character vector

8 Objects

8-334

Model or Model block name, returned as a character vector. For the top model, the Name property
value is the name of the model. For a referenced model, the Name property value is the name of the
Model block that references the model.

Object Functions
convertToDataset (Not recommended) Convert data logged using ModelDataLogs format to Dataset

format
unpack (Not recommended) Extract signal data from ModelDataLogs, SubsysDataLogs,

or TSArray object into workspace variables
who (Not recommended) List names of objects inside ModelDataLogs,

SubsysDataLogs, or TSArray object
whos (Not recommended) List name and type of objects inside ModelDataLogs,

SubsysDataLogs, or TSArray object

Examples

Access Data Using Names with Spaces or New Lines

Property names in a ModelDataLogs object can have spaces or new line characters when a logged
signal:

• Has a name that includes a space or new line character
• Is unnamed and originates in a block with a name that includes a space or new line character
• Exists in a subsystem or referenced model, and the name of the subsystem, Model block, or of any

upstream block in the model hierarchy includes a space or new line character

This model logs signals with names that include spaces or new line characters.

logsout

logsout =

Simulink.ModelDataLogs (model_name):
 Name Elements Simulink Class

 Simulink.ModelDataLogs

8-335

 ('x y') 1 Timeseries
 ('a
b') 1 Timeseries
 ('SL_Sine
Wave1') 1 Timeseries

You cannot access elements of the ModelDataLogs object by using tab completion or by typing the
name after a dot. The MATLAB parser interprets the space or new line character as a separator
between identifiers. For example, this code results in an error.

logsout.x y

??? logsout.x y
 |
Error: Unexpected MATLAB expression.

To access an element with a name that includes a space, enclose the name in single quotes.

logsout.('x y')

 Name: 'x y'
 BlockPath: 'model_name/Sine'
 PortIndex: 1
 SignalName: 'x y'
 ParentName: 'x y'
 TimeInfo: [1x1 Simulink.TimeInfo]
 Time: [51x1 double]
 Data: [51x1 double]

To access an element with a name that includes a new line character, construct the element name by
concatenating a new line character in the appropriate location.

cr=sprintf('\n')
logsout.(['a' cr 'b'])

Version History
Introduced before R2006a

R2022b: Loading data saved in the ModelDataLogs format no longer supported
Errors starting in R2022b

Starting in R2022b, you can no longer load data stored in the ModelDataLogs format, including data
stored in Simulink.Timeseries, Simulink.TSArray, and Simulink.SubsysDataLogs objects.

You can convert data stored in the ModelDataLogs format to the Dataset format. For more
information, see “Convert Data to Dataset Format”.

R2021a: Loading data saved in the ModelDataLogs format will not be supported
Warns starting in R2021a

When you load data that uses the ModelDataLogs format as input for simulation, the software issues
a warning that support for loading data in the ModelDataLogs format will be removed in a future
release.

R2020b: Loading data saved in the ModelDataLogs format will not be supported
Not recommended starting in R2020b

8 Objects

8-336

In a future release, the ability to load data that uses the ModelDataLogs format as input for
simulation will be removed.

R2016a: Logging data using ModelDataLogs format no longer supported

Starting in R2016a, you can no longer log data using the ModelDataLogs format, and signal logging
always uses the Dataset format. When you open a model from a previous release that had logged
data using the ModelDataLogs format, the model configuration parameters are updated to log data
using the Dataset format instead.

You can still use and access data logged using the ModelDataLogs format in previous releases,
including data in Simulink.SubsysDataLogs, Simulink.TSArray, and Simulink.Timeseries
objects. You can also convert data saved in the ModelDataLogs format to the Dataset format,
which can simplify data processing. For more information, see “Convert Data to Dataset Format”.

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Dataset

Topics
“Convert Data to Dataset Format”

 Simulink.ModelDataLogs

8-337

convertToDataset
Package: Simulink

(Not recommended) Convert data logged using ModelDataLogs format to Dataset format

Note The ability to log and load data using the ModelDataLogs format has been removed. Use
another supported format, such as Dataset, instead. For more information, see “Compatibility
Considerations”.

Syntax
ds = convertToDataset(mdlObj,dsName)

Description
ds = convertToDataset(mdlObj,dsName) converts the data in the Simulink.ModelDataLogs
object mdlObj to a Simulink.SimulationData.Dataset with the name specified by dsName. The
output ds is a Dataset object that contains a flat list with an element for each
Simulink.Timeseries, Simulink.ModelDataLogs, Simulink.TSArray, and
Simulink.SubsysDataLogs object inside mdlObj.

You can also use the Simulink.SimulationData.Dataset function to convert data from the
ModelDataLogs format to the Dataset format.

Input Arguments
mdlObj — Data to convert
Simulink.ModelDataLogs object

Data to convert, specified as a Simulink.ModelDataLogs object.

dsName — Name of Dataset object to contain converted data
character vector

Name of Dataset object to contain converted data, specified as a character vector.

Output Arguments
ds — Converted data
Simulink.Simulationdata.Dataset object

Converted data, returned as a Simulink.Simulationdata.Dataset object.

8 Objects

8-338

Limitations
Source of Simulink.ModelDataLogs Data Conversion Limitation
Model reference Conversion fails if any ancestor of the model

reference is not on the MATLAB path.

Conversion might fail if the model reference or
any ancestors of the model reference have
changed since the Simulink.ModelDataLogs
object was created. For example, adding,
deleting, or renaming a block after the object was
created can cause conversion to fail.

Variant model or subsystem Conversion fails if the current active variant is
not the same as the active variant when the
Simulink.ModelDataLogs object was created.

Frame signal Not supported.
Mux block Conversion produces a different Dataset object

than logging the output using the Dataset
format would produce.

Stateflow chart Not supported.

Version History
Introduced in R2011a

R2022b: Loading data saved in the ModelDataLogs format no longer supported
Errors starting in R2022b

Starting in R2022b, you can no longer load data stored in the ModelDataLogs format, including data
stored in Simulink.Timeseries, Simulink.TSArray, and Simulink.SubsysDataLogs objects.

You can convert data stored in the ModelDataLogs format to the Dataset format. For more
information, see “Convert Data to Dataset Format”.

R2021a: Loading data saved in the ModelDataLogs format will not be supported
Warns starting in R2021a

When you load data that uses the ModelDataLogs format as input for simulation, the software issues
a warning that support for loading data in the ModelDataLogs format will be removed in a future
release.

R2020b: Loading data saved in the ModelDataLogs format will not be supported
Not recommended starting in R2020b

In a future release, the ability to load data that uses the ModelDataLogs format as input for
simulation will be removed.

R2016a: Logging data using ModelDataLogs format no longer supported

Starting in R2016a, you can no longer log data using the ModelDataLogs format, and signal logging
always uses the Dataset format. When you open a model from a previous release that had logged

 convertToDataset

8-339

data using ModelDataLogs format, the model configuration parameters are updated to log data
using the Dataset format instead.

You can still use and access data logged using the ModelDataLogs format in previous releases,
including data in Simulink.SubsysDataLogs, Simulink.TSArray, and Simulink.Timeseries
objects. You can also convert data saved in the ModelDataLogs format to the Dataset format,
which can simplify data processing. For more information, see “Convert Data to Dataset Format”.

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Dataset

Topics
“Convert Data to Dataset Format”

8 Objects

8-340

unpack
Package: Simulink

(Not recommended) Extract signal data from ModelDataLogs, SubsysDataLogs, or TSArray
object into workspace variables

Note The ability to log and load data using the ModelDataLogs format has been removed. Use
another supported format, such as Dataset format, instead. For more information, see
“Compatibility Considerations”.

Syntax
unpack(logs)
unpack(logs,opt)

Description
unpack(logs) extracts the top-level contents of the data logging object logs into one or more
workspace variables.

unpack(logs,opt) extracts the contents specified by opt from the data logging object logs into
one or more workspace variables.

Input Arguments
logs — Object from which to extract logged data
Simulink.ModelDataLogs object | Simulink.TSArray object | Simulink.SubsysDataLogs
object

Object from which to extract logged data, specified as a Simulink.ModelDataLogs object, a
Simulink.SubsysDataLogs object, or a Simulink.TSArray object.

opt — Logged data to extract into workspace variables
'systems' | 'all'

Logged data to unpack into workspace, specified as 'systems' or 'all'.

• 'systems' — Extract Simulink.Timeseries and Simulink.TSArray objects from
Simulink.ModelDataLogs or Simulink.SubsysDataLogs object. Simulink.Timeseries
objects are not extracted from Simulink.TSArray objects, and intermediate
Simulink.ModelDataLogs and Simulink.SubsysDataLogs objects are not extracted to the
workspace.

• 'all' — Extract Simulink.Timeseries objects from all Simulink.ModelDataLogs,
Simulink.SubsysDataLogs, and Simulink.TSArray objects.

Version History
Introduced before R2006a

 unpack

8-341

R2022b: Loading data saved in the ModelDataLogs format no longer supported
Errors starting in R2022b

Starting in R2022b, you can no longer load data stored in the ModelDataLogs format, including data
stored in Simulink.Timeseries, Simulink.TSArray, and Simulink.SubsysDataLogs objects.

You can convert data stored in the ModelDataLogs format to the Dataset format. For more
information, see “Convert Data to Dataset Format”.

R2021a: Loading data saved in the ModelDataLogs format will not be supported
Warns starting in R2021a

When you load data that uses the ModelDataLogs format as input for simulation, the software issues
a warning that support for loading data in the ModelDataLogs format will be removed in a future
release.

R2020b: Loading data saved in the ModelDataLogs format will not be supported
Not recommended starting in R2020b

In a future release, the ability to load data that uses the ModelDataLogs format as input for
simulation will be removed.

R2016a: Logging data using ModelDataLogs format no longer supported

Starting in R2016a, you can no longer log data using the ModelDataLogs format, and signal logging
always uses the Dataset format. When you open a model from a previous release that had logged
data using ModelDataLogs format, the model configuration parameters are updated to log data
using the Dataset format instead.

You can still use and access data logged using the ModelDataLogs format in previous releases,
including data in Simulink.SubsysDataLogs, Simulink.TSArray, and Simulink.Timeseries
objects. You can also convert data saved in the ModelDataLogs format to the Dataset format,
which can simplify data processing. For more information, see “Convert Data to Dataset Format”.

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Dataset

Functions
find | Simulink.SimulationData.DatasetRef.getDatasetVariableNames

Topics
“Convert Data to Dataset Format”

8 Objects

8-342

who
Package: Simulink

(Not recommended) List names of objects inside ModelDataLogs, SubsysDataLogs, or TSArray
object

Note The ability to log and load data using the ModelDataLogs format has been removed. Use
another supported format, such as Dataset format, instead. For more information, see
“Compatibility Considerations”.

Syntax
who(logs)
who(logs,opt)

Description
who(logs) lists the names of top-level objects inside the data logging object logs.

who(logs,opt) lists the names of objects inside the Simulink.ModelDataLogs or
Simulink.TSArray object logs according to the option specified by opt.

Input Arguments
logs — Logged data
Simulink.ModelDataLogs object | Simulink.TSArray object

Logged data, specified as a Simulink.ModelDataLogs object or a Simulink.TSArray object.

opt — Object names to list
'systems' | 'all'

Object names to list, specified as 'systems' or 'all'.

• 'systems' — List names of all objects except Simulink.Timeseries objects inside a nested
Simulink.TSArray object.

• 'all' — List names of all objects.

Version History
Introduced before R2006a

R2022b: Loading data saved in the ModelDataLogs format no longer supported
Errors starting in R2022b

Starting in R2022b, you can no longer load data stored in the ModelDataLogs format, including data
stored in Simulink.Timeseries, Simulink.TSArray, and Simulink.SubsysDataLogs objects.

 who

8-343

You can convert data stored in the ModelDataLogs format to the Dataset format. For more
information, see “Convert Data to Dataset Format”.

R2021a: Loading data saved in the ModelDataLogs format will not be supported
Warns starting in R2021a

When you load data that uses the ModelDataLogs format as input for simulation, the software issues
a warning that support for loading data in the ModelDataLogs format will be removed in a future
release.

R2020b: Loading data saved in the ModelDataLogs format will not be supported
Not recommended starting in R2020b

In a future release, the ability to load data that uses the ModelDataLogs format as input for
simulation will be removed.

R2016a: Logging data using ModelDataLogs format no longer supported

Starting in R2016a, you can no longer log data using the ModelDataLogs format, and signal logging
always uses the Dataset format. When you open a model from a previous release that had logged
data using ModelDataLogs format, the model configuration parameters are updated to log data
using the Dataset format instead.

You can still use and access data logged using the ModelDataLogs format in previous releases,
including data in Simulink.SubsysDataLogs, Simulink.TSArray, and Simulink.Timeseries
objects. You can also convert data saved in the ModelDataLogs format to the Dataset format,
which can simplify data processing. For more information, see “Convert Data to Dataset Format”.

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Dataset

Functions
find | Simulink.SimulationData.DatasetRef.getDatasetVariableNames

Topics
“Convert Data to Dataset Format”

8 Objects

8-344

whos
Package: Simulink

(Not recommended) List name and type of objects inside ModelDataLogs, SubsysDataLogs, or
TSArray object

Note The ability to log and load data using the ModelDataLogs format has been removed. Use
another supported format, such as Dataset format, instead. For more information, see
“Compatibility Considerations”.

Syntax
whos(logs)
whos(logs,opt)

Description
whos(logs) lists the name and type of each top-level object inside the data logging object logs.

whos(logs,opt) lists the name and type of the objects inside the data logging object logs
according to the option opt.

Input Arguments
logs — Logged data
Simulink.ModelDataLogs object | Simulink.TSArray object

Logged data, specified as a Simulink.ModelDataLogs object or a Simulink.TSArray object.

opt — Objects for which to list name and type
'systems' | 'all'

Objects for which to list name and type, specified as 'systems' or 'all'.

• 'systems' — List name and type of all objects except Simulink.Timeseries objects inside a
nested Simulink.TSArray object.

• 'all' — List name and type of all objects.

Version History
Introduced before R2006a

R2022b: Loading data saved in the ModelDataLogs format no longer supported
Errors starting in R2022b

Starting in R2022b, you can no longer load data stored in the ModelDataLogs format, including data
stored in Simulink.Timeseries, Simulink.TSArray, and Simulink.SubsysDataLogs objects.

 whos

8-345

You can convert data stored in the ModelDataLogs format to the Dataset format. For more
information, see “Convert Data to Dataset Format”.

R2021a: Loading data saved in the ModelDataLogs format will not be supported
Warns starting in R2021a

When you load data that uses the ModelDataLogs format as input for simulation, the software issues
a warning that support for loading data in the ModelDataLogs format will be removed in a future
release.

R2020b: Loading data saved in the ModelDataLogs format will not be supported
Not recommended starting in R2020b

In a future release, the ability to load data that uses the ModelDataLogs format as input for
simulation will be removed.

R2016a: Logging data using ModelDataLogs format no longer supported

Starting in R2016a, you can no longer log data using the ModelDataLogs format, and signal logging
always uses the Dataset format. When you open a model from a previous release that had logged
data using ModelDataLogs format, the model configuration parameters are updated to log data
using the Dataset format instead.

You can still use and access data logged using the ModelDataLogs format in previous releases,
including data in Simulink.SubsysDataLogs, Simulink.TSArray, and Simulink.Timeseries
objects. You can also convert data saved in the ModelDataLogs format to the Dataset format,
which can simplify data processing. For more information, see “Convert Data to Dataset Format”.

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Dataset

Functions
find | Simulink.SimulationData.DatasetRef.getDatasetVariableNames

Topics
“Convert Data to Dataset Format”

8 Objects

8-346

Simulink.ModelWorkspace
Interact with the model workspace of a model programmatically

Description
Use a Simulink.ModelWorkspace object to interact with a model workspace. For example, you can
add and remove variables, set the data source of the workspace, and save changes to the workspace.

For more information, see “Model Workspaces”.

Creation
To create a Simulink.ModelWorkspace, use the get_param function to query the value of the
model parameter ModelWorkspace. For example, to create an object named mdlWks that represents
the model workspace of a model named myModel.slx:

mdlWks = get_param('myModel','ModelWorkspace')

Properties
DataSource — Source for initializing variables in model workspace
'Model File' (default) | 'MAT-File' | 'MATLAB Code' | 'MATLAB File'

Source for initializing the variables in the model workspace, specified as one of these character
vectors:

• 'Model File' — The variables are stored in the model file. When you save the model, you also
save the variables.

• 'MATLAB Code' — The variables are created by MATLAB code that you write and store in the
model file.

• 'MAT-File' — The variables are stored in a MAT-file, which you can manage and manipulate
separately from the model file.

• 'MATLAB File' — The variables are created by MATLAB code in a script file, which you can
manage and manipulate separately from the model file.

Data Types: char

FileName — Name of external file that stores or creates variables
'' (empty character vector) (default) | character vector

Name of the external file that stores or creates variables, specified as a character vector. To enable
this property, set DataSource to 'MAT-File' or 'MATLAB File'.
Example: 'myFile.mat'
Example: 'myFile.m'
Data Types: char

 Simulink.ModelWorkspace

8-347

MATLABCode — MATLAB code for initializing variables
'' (empty character vector) (default) | character vector

MATLAB code for initializing variables, specified as a character vector. To enable this property, set
DataSource to 'MATLAB Code'.
Example: sprintf('%% Create variables that this model uses.\n\nK = 0.00983;\n
\nP = Simulink.Parameter(5);')

Data Types: char

Object Functions
getVariable Return value of variable in the model workspace of a model
getVariablePart Get value of variable property in model workspace
setVariablePart Set property of variable in model workspace
hasVariable Determine whether variable exists in the model workspace of a model
whos Return list of variables in the model workspace of a model
saveToSource Save model workspace changes to the external data source of the model workspace
save Save contents of model workspace to a MAT-file
reload Reinitialize variables from the data source of a model workspace
evalin Evaluate expression in the model workspace of a model
clear Clear variables from the model workspace of a model
assignin Assign value to variable in the model workspace of a model

Examples

Interact With Model Workspace Programmatically

Create a variable in the model workspace of a model. Then, modify the variable and query the
variable value to confirm the modification.

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object mdlWks that represents the model workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create a variable named myVar with value 5.12 in the model workspace.

assignin(mdlWks,'myVar',5.12)

Apply a new value, 7.22. To do so, first create a temporary copy of the variable by using the
getVariable function. Then, modify the copy and use it to overwrite the original variable in the
model workspace.

temp = getVariable(mdlWks,'myVar');
temp = 7.22;
assignin(mdlWks,'myVar',temp)

Confirm the new value by querying the value of the variable.

getVariable(mdlWks,'myVar')

8 Objects

8-348

ans =

 7.2200

Version History
Introduced before R2006a

See Also
Topics
“Model Workspaces”
“Manage Design Data”

 Simulink.ModelWorkspace

8-349

assignin
Package: Simulink

Assign value to variable in the model workspace of a model

Syntax
assignin(mdlWks,varName,varValue)

Description
assignin(mdlWks,varName,varValue) assigns the value varValue to the MATLAB variable
varName in the model workspace represented by the Simulink.ModelWorkspace object mdlWks. If
the variable does not exist, assignin creates it.

Examples

Assign Value to Variable in Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create a variable named myVar with value 5.12 in the model workspace.

assignin(mdlWks,'myVar',5.12)

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

varName — Name of target variable
character vector

Name of the target variable, specified as a character vector.
Example: 'myVar'
Data Types: char

varValue — Value to assign to target variable
valid value

8 Objects

8-350

Value to assign to the target variable, specified as a valid value. For example, you can specify a literal
number, a structure, or an expression that evaluates to a valid value.

If you specify the name of a handle object, such as a Simulink.Parameter object, use the copy
function to create a separate copy of the object.
Example: 5.12
Example: struct('a',5.12,'b',7.22)
Example: Simulink.Parameter(5.12)
Example: copy(myExistingParameterObject)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | categorical | datetime | duration |
calendarDuration | fi
Complex Number Support: Yes

Version History
Introduced before R2006a

See Also
Simulink.ModelWorkspace

 assignin

8-351

clear
Package: Simulink

Clear variables from the model workspace of a model

Syntax
clear(mdlWks)

Description
clear(mdlWks) removes all variables from the model workspace represented by the
Simulink.ModelWorkspace object mdlWks.

Examples

Clear Variables From Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create a variable named myVar with value 5.12 in the model workspace.

assignin(mdlWks,'myVar',5.12)

Clear all variables from the model workspace, including myVar.

clear(mdlWks)

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

Version History
Introduced before R2006a

See Also
Simulink.ModelWorkspace

8 Objects

8-352

evalin
Package: Simulink

Evaluate expression in the model workspace of a model

Syntax
result = evalin(mdlWks,expression)

Description
result = evalin(mdlWks,expression) evaluates the expression expression in the model
workspace represented by the Simulink.ModelWorkspace object represented by mdlWks. The
function returns the result of the expression in result.

Note For setting and getting variable properties in the model workspace, consider using
setVariablePart and getVariablePart instead of evalin because:

• The functions do not create new variables or cause unintended results.
• getVariablePart does not dirty the model.

For information on these alternatives, see Simulink.ModelWorkspace.

Examples

Evaluate Expression in Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create some variables in the model workspace.

assignin(mdlWks,'myVar',5.12)
assignin(mdlWks,'myOtherVar',7.22)

Evaluate the expression myLastVar = myVar + myOtherVar in the model workspace. The
expression creates another variable, myLastVar, whose value is the sum of the first two variables.

evalin(mdlWks,'myLastVar = myVar + myOtherVar');

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

 evalin

8-353

Target model workspace, specified as a Simulink.ModelWorkspace object.

expression — Expression to evaluate
character vector

Expression to evaluate, specified as a character vector.
Example: 'myLastVar = myVar + myOtherVar'
Data Types: char

Output Arguments
result — Result of expression
number, structure, or other MATLAB value

Result of the evaluated expression, returned as a number, structure, or other MATLAB value.

Version History
Introduced before R2006a

See Also
Simulink.ModelWorkspace

8 Objects

8-354

getVariable
Package: Simulink

Return value of variable in the model workspace of a model

Syntax
varValue = getVariable(mdlWks,varName)

Description
varValue = getVariable(mdlWks,varName) returns the value of the variable whose name is
varName that exists in the model workspace represented by the Simulink.ModelWorkspace object
mdlWks.

If the value of the target variable is a handle to a handle object (such as Simulink.Parameter),
getVariable returns a copy of the handle. Changes you make to the variable in the model
workspace or to the returned variable (variableValue) affect both variables.

To return a deep copy of the handle object, use the copy method of the object. To modify a handle
object that you store in a model workspace, it is a best practice to use both the getVariable and
assignin methods (see “Modify Property Value of Handle Object” on page 8-355).

Examples

Return Value of Variable in Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create a variable named myVar in the model workspace.

assignin(mdlWks,'myVar',5.12)

Return the value of the new variable. Store the value in another variable named varValue.

varValue = getVariable(mdlWks,'myVar');

Modify Property Value of Handle Object

Modify a property of the Simulink.Parameter object K, which is defined in model mdl.slx. When
you call getVariable, use the copy method because Simulink.Parameter is a handle class.

wksp = get_param(mdl,'ModelWorkspace');
value = copy(getVariable(wksp,'K'));

 getVariable

8-355

value.DataType = 'single';
assignin(wksp,'K',value);

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

varName — Name of target variable
character vector

Name of the target variable, specified as a character vector.
Example: 'myVariable'
Data Types: char

Output Arguments
varValue — Value of target variable
number, structure, or other MATLAB value

Value of the target variable, returned as a number, structure, or other MATLAB value.

Version History
Introduced in R2012a

See Also
get_param | Simulink.ModelWorkspace

8 Objects

8-356

getVariablePart
Package: Simulink

Get value of variable property in model workspace

Syntax
varValue = getVariablePart(mdlWks,varName.Property)

Description
varValue = getVariablePart(mdlWks,varName.Property) returns the value of the variable
property named varName.Property that exists in the model workspace represented by the
Simulink.ModelWorkspace object mdlWks.

If the value of the variable property is a handle to a handle object (such as Simulink.Parameter),
getVariablePart returns a copy of the handle.

Using getVariablePart is preferable to using evalin for getting variable properties in the model
workspace because:

• The function does not dirty the model.
• Use of the function does not result in the creation of a new variable or other unintended results.

Examples

Return Value of Variable Properties in Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create a structure named myStruct with fields a, b, and c.

aStruct.a = 10;
aStruct.b = {1,2,3,4,5};
aStruct.c = Simulink.Parameter(7);
mdlWks.assignin('myStruct',aStruct);

Return the values of the structure fields. Store the values in varValuea, varValueb, and
varValuec.

 getVariablePart

8-357

varValuea = getVariablePart(mdlWks,'myStruct.a');
varValueb = getVariablePart(mdlWks,'myStruct.b{1}');
varValueC = getVariablePart(mdlWks,'myStruct.c.Value');

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

varName.Property — Name of target variable property
character vector

Name of the target variable property, specified as a character vector.
Example: 'myVariable.Property'
Data Types: char

Output Arguments
varValue — Value of variable property
number, structure, or other MATLAB value

Value of the variable property, returned as a number, structure, or other MATLAB value.

If the value of the variable property is a handle to a handle object (such as Simulink.Parameter),
getVariablePart returns a copy of the handle.

Version History
Introduced in R2018b

See Also
Simulink.ModelWorkspace

8 Objects

8-358

hasVariable
Package: Simulink

Determine whether variable exists in the model workspace of a model

Syntax
varExists = hasVariable(mdlWks,varName)

Description
varExists = hasVariable(mdlWks,varName) returns 1 if a variable whose name is varName
exists in the model workspace represented by the Simulink.ModelWorkspace object mdlWks.

Examples

Determine Existence of Variable in Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create a variable named myVar in the model workspace.

assignin(mdlWks,'myVar',5.12)

Determine whether a variable named myVar exists in the model workspace.

exists = hasVariable(mdlWks,'myVar')

exists =
 1

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

varName — Name of target variable
character vector

Name of the target variable, specified as a character vector.
Example: 'myVariable'

 hasVariable

8-359

Data Types: char

Output Arguments
varExists — Indication of existence
1 | 0

Indication of variable existence, returned as 1 (true) or 0.

Version History
Introduced in R2012a

See Also
get_param | Simulink.ModelWorkspace

8 Objects

8-360

reload
Package: Simulink

Reinitialize variables from the data source of a model workspace

Syntax
reload(mdlWks)

Description
reload(mdlWks) reinitializes the variables in the model workspace represented by the
Simulink.ModelWorkspace object mdlWks. When you set the DataSource property of the model
workspace to 'MAT-File', 'MATLAB File', or 'MATLAB Code', reload overwrites variables that
exist in the model workspace by loading the associated MAT-file or by running the associated
MATLAB code.

Examples

Reinitialize Variables in a Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Configure the model workspace to use some MATLAB code as a data source.

mdlWks.DataSource = 'MATLAB Code';
mdlWks.MATLABCode = sprintf('myVar = 5.12;\nmyOtherVar = 7.22;');

Create variables in the model workspace by executing the MATLAB code.

reload(mdlWks)

Assign new values to the variables in the model workspace.

assignin(mdlWks,'myVar',5.22)
assignin(mdlWks,'myOtherVar',7.33)

Overwrite the new values with the values specified by the MATLAB code.

reload(mdlWks)

Confirm that the variables have the values specified by the MATLAB code.

myVarValue = getVariable(mdlWks,'myVar')
myOtherVarValue = getVariable(mdlWks,'myOtherVar')

 reload

8-361

myVarValue =

 5.1200

myOtherVarValue =

 7.2200

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

Version History
Introduced before R2006a

See Also
Simulink.ModelWorkspace

8 Objects

8-362

save
Package: Simulink

Save contents of model workspace to a MAT-file

Syntax
save(mdlWks,fileName)

Description
save(mdlWks,fileName) saves the variables in the model workspace represented by the
Simulink.ModelWorkspace object mdlWks to the MAT-file specified by fileName.

When you set the DataSource property of the model workspace to 'MAT-File' or 'MATLAB
File', to save to the file that acts as the external data source of the model, use saveToSource
instead of save.

Examples

Save Contents of Model Workspace to MAT-File

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create some variables in the model workspace.

assignin(mdlWks,'myVar',5.12)
assignin(mdlWks,'myOtherVar',7.22)

Save the variables to a new MAT-file named myVars.mat.

save(mdlWks,'myVars.mat')

The MAT-file appears in your current folder.

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

fileName — Name of target MAT-file
character vector

 save

8-363

Name of the target MAT-file, specified as a character vector.
Example: 'myFile.mat'
Data Types: char

Version History
Introduced before R2006a

See Also
Simulink.ModelWorkspace

8 Objects

8-364

saveToSource
Package: Simulink

Save model workspace changes to the external data source of the model workspace

Syntax
saveToSource(mdlWks)

Description
saveToSource(mdlWks) saves the variables in the model workspace represented by the
Simulink.ModelWorkspace object mdlWks to the MAT-file or script file specified by the FileName
property of the model workspace.

When you set the DataSource property of the model workspace to 'MAT-File' or 'MATLAB
File', the FileName property specifies the name of the file that acts as the external data source of
the workspace. As you make changes to the variables in the model workspace, use saveToSource to
permanently save the changes in the external data source.

Examples

Save Variables to External Data Source of Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create some variables in the model workspace.

assignin(mdlWks,'myVar',5.12)
assignin(mdlWks,'myOtherVar',7.22)

Configure the model workspace to use a MAT-file named myVars.mat as the data source.

mdlWks.DataSource = 'MAT-File';
mdlWks.FileName = 'myVars.mat';

Save the variables to the external data source (the MAT-file).

saveToSource(mdlWks)

 saveToSource

8-365

The file appears in your current folder.

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

Version History
Introduced before R2006a

See Also
Simulink.ModelWorkspace

8 Objects

8-366

setVariablePart
Package: Simulink

Set property of variable in model workspace

Syntax
varValue = setVariablePart(mdlWks,varName.Property, varValue)

Description
varValue = setVariablePart(mdlWks,varName.Property, varValue) assigns varValue to
the MATLAB variable property varName.Property in the model workspace represented by the
Simulink.ModelWorkspace object mdlWks.

Using setVariablePart is preferable to using evalin for assigning variable properties in the
model workspace because the setVariablePart function does not create a new variable or cause
unintended results.

Examples

Assign Value to Variable Properties in Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create a structure named myStruct with fields a, b, and c.

aStruct.a = 10;
aStruct.b = {1,2,3,4,5};
aStruct.c = Simulink.Parameter(7);
mdlWks.assignin('myStruct',aStruct);

Assign new values to the structure fields.

setVariablePart(mdlWks,'myStruct.a', 2);
setVariablePart(mdlWks,'myStruct.b{1}', 2);
setVariablePart(mdlWks,'myStruct.c', Simulink.Parameter(2));

Return the new values of the structure fields. Store the values in varValuea, varValueb, and
varValuec.

 setVariablePart

8-367

varValuea = getVariablePart(mdlWks,'myStruct.a')
varValueb = getVariablePart(mdlWks,'myStruct.b{1}')
varValueC = getVariablePart(mdlWks,'myStruct.c.Value')

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

varName.Property — Name of target variable property
character vector

Name of the target variable property, specified as a character vector.
Example: 'myVariable.Property'
Data Types: char | string

varValue — Value to assign to variable property
valid value

Value to assign to the value property, specified as a valid value. For example, you can specify a literal
number, a structure, or an expression that evaluates to a valid value.

If you specify the name of a handle object, such as a Simulink.Parameter object, use the copy
function to create a separate copy of the object.
Example: 5.12
Example: struct('a',5.12,'b',7.22)
Example: Simulink.Parameter(5.12)
Example: copy(myExistingParameterObject)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | categorical | datetime | duration |
calendarDuration | fi
Complex Number Support: Yes

Version History
Introduced in R2018b

See Also
Simulink.ModelWorkspace

8 Objects

8-368

whos
Package: Simulink

Return list of variables in the model workspace of a model

Syntax
varList = whos(mdlWks)

Description
varList = whos(mdlWks) returns a list of the variables in the model workspace represented by
the Simulink.ModelWorkspace object mdlWks.

Examples

Return List of Variables in Model Workspace

Open the example model vdp.

open_system('vdp')

Create a Simulink.ModelWorkspace object that represents the model workspace of vdp.

mdlWks = get_param('vdp','ModelWorkspace');

Create some variables in the model workspace.

assignin(mdlWks,'myVar',5.12)
assignin(mdlWks,'myOtherVar',7.22)

Display a list of the variables in the model workspace.

whos(mdlWks)

 Name Size Bytes Class Attributes

 myOtherVar 1x1 8 double
 myVar 1x1 8 double

Input Arguments
mdlWks — Target model workspace
Simulink.ModelWorkspace object

Target model workspace, specified as a Simulink.ModelWorkspace object.

 whos

8-369

Output Arguments
varList — List of variables
nested structure array

List of variables, returned as a nested structure array. For details about the information in the list,
see whos.

Version History
Introduced before R2006a

See Also
Simulink.ModelWorkspace

8 Objects

8-370

Simulink.NumericType
Specify floating-point, integer, or fixed-point data type

Description
Use a Simulink.NumericType object to set and share numeric data types for signal, state, and
parameter data in a model.

1 Create an instance of this class in the MATLAB base workspace, a model workspace, or a data
dictionary. To create a numeric type in a model workspace, you must clear the Is alias property.

2 Set the properties of the object to create a custom floating point, integer, or fixed point data type.
3 Assign the data type to all signals and parameters of your model that you want to conform to the

data type.

Assigning a data type in this way allows you to change the data types of the signals and parameters in
your model by changing the properties of the object that describe them. You do not have to change
the model itself.

To rename a data type in a model and in the code that you generate from a model (by generating a
typedef statement), you can use a Simulink.AliasType object.

Creation
You can create a Simulink.NumericType object several ways.

• Interactively create a Simulink.NumericType object using the Type Editor or Model
Explorer.

• Programmatically create a Simulink.NumericType object using the Simulink.NumericType
function described here.

Syntax
typeObj = Simulink.NumericType

Description

typeObj = Simulink.NumericType returns a Simulink.NumericType object with default
property values.

Properties
Bias — Bias for slope and bias scaling
0 (default) | real number

Bias for slope and bias scaling of a fixed-point data type (Fixed-Point Designer), specified as a real
number.

 Simulink.NumericType

8-371

If you use a number with a data type other than double to set the value, Simulink converts the value
to double.
Example: 3
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

DataScope — Specification to generate or import type definition in the generated code
'Auto' (default) | 'Exported' | 'Imported'

Specification to generate or import the type definition (typedef) in the generated code (Simulink
Coder), specified as 'Auto', 'Exported, or 'Imported'.

The table shows the effect of each option.

Value Action
'Auto' (default) If no value is specified for HeaderFile, export the type definition to

model_types.h. model is the model name.
If a value is specified for HeaderFile, import the data type definition
from the specified header file.

'Exported' Export the data type definition to a header file, which can be specified in
the HeaderFile property. If no value is specified for HeaderFile, the
header file name defaults to type.h. type is the data type name.

'Imported' Import the data type definition from a header file, which can be specified
in the HeaderFile property. If no value is specified for HeaderFile,
the header file name defaults to type.h. type is the data type name.

Set the data scope to Imported or Exported to avoid potential MISRA C:2012 violations.

For more information, see “Control File Placement of Custom Data Types” (Embedded Coder).

DataTypeMode — Mode of numeric data type
'Double' (default) | 'Single' | 'Half' | 'Boolean' | 'Fixed-point: unspecified
scaling' | 'Fixed-point: binary point scaling' | 'Fixed-point: slope and bias
scaling'

Mode of the numeric data type, specified as one of these character vectors:

• 'Double' — Same as the MATLAB double type.
• 'Single' — Same as the MATLAB single type.
• 'Half' — Half-precision floating-point type.
• 'Boolean' — Same as the MATLAB boolean type.
• 'Fixed-point: unspecified scaling' — A fixed-point data type with unspecified scaling.
• 'Fixed-point: binary point scaling' — A fixed-point data type with binary-point scaling.
• 'Fixed-point: slope and bias scaling' — A fixed-point data type with slope and bias

scaling.

Selecting a half-precision or fixed-point data type mode can, depending on the other dialog box
options that you select, cause the model to run only on systems that have a Fixed-Point Designer
license.

8 Objects

8-372

Data Types: char

DataTypeOverride — Data type override mode
'Inherit' (default) | 'Off'

Data type override mode, specified as 'Inherit' or 'Off'.

• If you specify 'Inherit', the data type override setting for the context in which this numeric
type is used (block, signal, Stateflow chart in Simulink) applies to this numeric type.

• If you specify 'Off', data type override does not apply to this numeric type.

For more information about data type override, see “Control Data Type Override”.
Data Types: char

Description — Custom description of data type
'' (empty character vector) (default) | character vector

Custom description of the data type, specified as a character vector.
Example: 'This is a floating-point data type.'
Data Types: char

FixedExponent — Exponent for binary point scaling
0 (default) | real number

Exponent for binary point scaling, specified as a real number. Setting this property causes Simulink
software to set the FractionLength and Slope properties accordingly, and vice versa. This
property applies only if the DataTypeMode is Fixed-point: binary point scaling or Fixed-
point: slope and bias scaling.

If you use a number with a data type other than double to set the value, Simulink converts the value
to double.

This property must be set programmatically.
Example: -8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

FractionLength — Bit length of the fractional portion of a fixed-point number
0 (default) | real integer

Bit length of the fractional portion of a fixed-point number (Fixed-Point Designer), specified as a real
integer. This property equals -FixedExponent. Setting this property causes Simulink software to set
the FixedExponent property accordingly, and vice versa.

If you use a number with a data type other than double to set the value, Simulink converts the value
to double.
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

 Simulink.NumericType

8-373

HeaderFile — Name of header file that contains type definition in the generated code
'' (empty character vector) (default) | character vector

Name of the header file that contains the type definition (typedef) in the generated code, specified
as a character vector.

If this property is specified, the specified name is used during code generation for importing or
exporting. If this property is empty, the value defaults to type.h if DataScope equals 'Imported'
or 'Exported', or defaults to model_types.h if DataScope equals 'Auto'.

By default, the generated #include directive uses the preprocessor delimiter " instead of < and >.
To generate the directive #include <myTypes.h>, specify HeaderFile as '<myTypes.h>'.

For more information, see “Control File Placement of Custom Data Types” (Embedded Coder).
Example: 'myHdr.h'
Example: 'myHdr'
Example: 'myHdr.hpp'
Data Types: char

IsAlias — Specification to create data type alias using object name
false (default) | true

Specification to create a data type alias by using the name of the object, specified as true (yes) or
false (no).

If you specify true, the object acts as a data type alias in a similar manner to a
Simulink.AliasType object. For more information, see “Manage Replacement of Simulink Data
Types in Generated Code” (Embedded Coder).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Signedness — Signedness of fixed-point data type
'Signed (default) | 'Unsigned' | 'Auto'

Signedness of a fixed-point data type (Fixed-Point Designer), specified as 'Signed' (signed),
'Unsigned' (unsigned), or 'Auto' (inherit signedness).
Data Types: char

SignednessBool — Signedness of fixed-point data type
false | true

Signedness of a fixed-point data type (Fixed-Point Designer), specified as a Boolean.
Data Types: logical

Slope — Slope for slope and bias scaling of fixed-point data type
2^0 (default) | real number

Slope for slope and bias scaling of a fixed-point data type (Fixed-Point Designer), specified as a real
number.

This property equals SlopeAdjustmentFactor * 2^FixedExponent. If
SlopeAdjustmentFactor is 1.0, Simulink software displays the value of this field as

8 Objects

8-374

2^SlopeAdjustmentFactor. Otherwise, it displays it as a numeric value. Setting this property
causes Simulink software to set the FixedExponent and SlopeAdjustmentFactor properties
accordingly, and vice versa.

If you use a number with a data type other than double to set the value, Simulink converts the value
to double.

This property appears only if DataTypeMode is Fixed-point: slope and bias scaling.
Example: 5.2
Example: 2^9
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

SlopeAdjustmentFactor — Slope for slope and bias scaling of fixed-point data type
1 (default) | real number

Slope for slope and bias scaling of a fixed-point data type (Fixed-Point Designer), specified as a real
number in the range [1, 2).

Setting this property causes Simulink software to adjust the Slope property accordingly, and vice
versa. This property applies only if DataTypeMode is Fixed-point: slope and bias scaling.

If you use a number with a data type other than double to set the value, Simulink converts the value
to double.

This property must be set programmatically.
Example: 1.7
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

WordLength — Word size of fixed-point or integer data type
16 (default) | integer

Word size of a fixed-point (Fixed-Point Designer) or integer data type, specified as an integer number
of bits.

This property appears only if DataTypeMode is Fixed-point.

If you use a number with a data type other than double to set the value, Simulink converts the value
to double.
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Object Functions
isboolean Determine whether numeric type represents the Boolean data type boolean
isdouble Determine whether numeric type represents the double-precision, floating-

point data type double
isfixed Determine whether numeric type represents a fixed-point data type

 Simulink.NumericType

8-375

isfloat Determine whether numeric type represents a floating-point data type
isscalingbinarypoint Determine whether fixed-point numeric type has binary-point scaling
isscalingslopebias Determine whether numeric type represents a fixed-point data type with slope-

and-bias scaling
isscalingunspecified Determine whether numeric type represents a data type with unspecified

scaling
issingle Determine whether numeric type represents the single-precision, floating-

point data type single
ishalf Determine whether numeric type represents the half-precision, floating-point

data type half

Examples

Share a Data Type Between Separate Algorithms, Data Paths, Models, and Bus Elements

See “Share a Data Type Between Separate Algorithms, Data Paths, Models, and Bus Elements”.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When you select the Is alias property, a Simulink.NumericType object appears in the generated
code as a typedef statement. The generated code uses the named type to define and declare data
(variables).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Simulink.AliasType

Topics
“Validate a Floating-Point Embedded Model”
“Control Data Types of Signals”
“Manage Replacement of Simulink Data Types in Generated Code” (Embedded Coder)
“Data Types Supported by Simulink”
“About Data Types in Simulink”

8 Objects

8-376

isboolean
Package: Simulink

Determine whether numeric type represents the Boolean data type boolean

Syntax
indication = isboolean(numericType)

Description
indication = isboolean(numericType) returns 1 (true) if the Simulink.NumericType
object numericType represents the Boolean data type boolean and 0 (false) otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share between
different data items in a model. For more information, see Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents boolean
1 | 0

Indication of whether the target object represents boolean, returned as 1 (true) or 0 (false).

Version History
Introduced in R2010b

See Also
Simulink.NumericType

Topics
“Control Data Types of Signals”
“Control Block Parameter Data Types”
“Manage Replacement of Simulink Data Types in Generated Code” (Embedded Coder)

 isboolean

8-377

isdouble
Package: Simulink

Determine whether numeric type represents the double-precision, floating-point data type double

Syntax
indication = isdouble(numericType)

Description
indication = isdouble(numericType) returns 1 (true) if the Simulink.NumericType object
numericType represents the double-precision, floating-point data type double and 0 (false)
otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share between
different data items in a model. For more information, see Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents double
1 | 0

Indication of whether the target object represents double, returned as 1 (true) or 0 (false).

Version History
Introduced in R2010b

See Also
Simulink.NumericType | ishalf | issingle | isfloat

Topics
“Control Data Types of Signals”
“Control Block Parameter Data Types”
“Manage Replacement of Simulink Data Types in Generated Code” (Embedded Coder)

8 Objects

8-378

isfixed
Package: Simulink

Determine whether numeric type represents a fixed-point data type

Syntax
indication = isfixed(numericType)

Description
indication = isfixed(numericType) returns 1 (true) if the Simulink.NumericType object
numericType represents a fixed-point data type and 0 (false) otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share between
different data items in a model. For more information, see Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents a fixed-point type
1 | 0

Indication of whether the target object represents a fixed-point type, returned as 1 (true) or 0
(false).

Version History
Introduced in R2010b

See Also
Simulink.NumericType | isscalingbinarypoint | isscalingslopebias |
isscalingunspecified

Topics
“Control Data Types of Signals”
“Control Block Parameter Data Types”
“Manage Replacement of Simulink Data Types in Generated Code” (Embedded Coder)

 isfixed

8-379

isfloat
Package: Simulink

Determine whether numeric type represents a floating-point data type

Syntax
indication = isfloat(numericType)

Description
indication = isfloat(numericType) returns 1 (true) if the Simulink.NumericType object
numericType represents a floating-point data type such as double, single, or half, and 0 (false)
otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share between
different data items in a model. For more information, see Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents a floating-point type
1 | 0

Indication of whether the target object represents a floating-point type, returned as 1 (true) or 0
(false).

Version History
Introduced in R2010b

See Also
Simulink.NumericType | isdouble | issingle | ishalf

Topics
“Control Data Types of Signals”
“Control Block Parameter Data Types”
“Manage Replacement of Simulink Data Types in Generated Code” (Embedded Coder)

8 Objects

8-380

ishalf
Package: Simulink

Determine whether numeric type represents the half-precision, floating-point data type half

Syntax
indication = ishalf(numericType)

Description
indication = ishalf(numericType) returns 1 (true) if the Simulink.NumericType object
numericType represents the half-precision, floating-point data type half and 0 (false) otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share between
different data items in a model. For more information, see Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents half
1 | 0

Indication of whether the target object represents half, returned as 1 (true) or 0 (false).

Version History
Introduced in R2020b

See Also
Simulink.NumericType | isfloat | isdouble | issingle

Topics
“Control Data Types of Signals”
“Control Block Parameter Data Types”
“Manage Replacement of Simulink Data Types in Generated Code” (Embedded Coder)

 ishalf

8-381

isscalingbinarypoint
Package: Simulink

Determine whether fixed-point numeric type has binary-point scaling

Syntax
indication = isscalingbinarypoint(numericType)

Description
indication = isscalingbinarypoint(numericType) returns 1 (true) if the
Simulink.NumericType object numericType represents a fixed-point data type with binary-point
scaling and 0 (false) otherwise. A numeric type object can use binary-point scaling if you explicitly
specify it or if you specify trivial slope-and-bias scaling (the slope is an integer power of two and the
bias is zero).

In Simulink, a Simulink.NumericType object represents a data type that you can share between
different data items in a model. For more information, see Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents fixed-point type with binary-
point scaling
1 | 0

Indication of whether the target object represents a fixed-point type with binary-point scaling,
returned as 1 (true) or 0 (false).

Version History
Introduced in R2010b

See Also
Simulink.NumericType | isfixed | isscalingslopebias | isscalingunspecified

Topics
“Control Data Types of Signals”
“Control Block Parameter Data Types”
“Manage Replacement of Simulink Data Types in Generated Code” (Embedded Coder)

8 Objects

8-382

isscalingslopebias
Package: Simulink

Determine whether numeric type represents a fixed-point data type with slope-and-bias scaling

Syntax
indication = isscalingslopebias(numericType)

Description
indication = isscalingslopebias(numericType) returns 1 (true) if the
Simulink.NumericType object numericType represents a fixed-point data type with nontrivial
slope-and-bias scaling and 0 (false) otherwise. A slope-and-bias fixed-point type has trivial scaling if
the slope is an integer power of two and the bias is zero.

In Simulink, a Simulink.NumericType object represents a data type that you can share between
different data items in a model. For more information, see Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents fixed-point type with slope-
and-bias scaling
1 | 0

Indication of whether the target object represents a fixed-point type with nontrivial slope-and-bias
scaling, returned as 1 (true) or 0 (false).

Version History
Introduced in R2010b

See Also
Simulink.NumericType | isfixed | isscalingbinarypoint | isscalingunspecified

Topics
“Control Data Types of Signals”
“Control Block Parameter Data Types”
“Manage Replacement of Simulink Data Types in Generated Code” (Embedded Coder)

 isscalingslopebias

8-383

isscalingunspecified
Package: Simulink

Determine whether numeric type represents a data type with unspecified scaling

Syntax
indication = isscalingunspecified(numericType)

Description
indication = isscalingunspecified(numericType) returns 1 (true) if the
Simulink.NumericType object numericType represents a fixed-point or scaled double data type
with unspecified scaling and 0 (false) otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share between
different data items in a model. For more information, see Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents a type with unspecified
scaling
1 | 0

Indication of whether the target object represents a type with unspecified scaling, returned as 1
(true) or 0 (false).

Version History
Introduced in R2010b

See Also
Simulink.NumericType | isfixed | isscalingbinarypoint | isscalingslopebias

Topics
“Control Data Types of Signals”
“Control Block Parameter Data Types”
“Manage Replacement of Simulink Data Types in Generated Code” (Embedded Coder)

8 Objects

8-384

issingle
Package: Simulink

Determine whether numeric type represents the single-precision, floating-point data type single

Syntax
indication = issingle(numericType)

Description
indication = issingle(numericType) returns 1 (true) if the Simulink.NumericType object
numericType represents the single-precision, floating-point data type single and 0 (false)
otherwise.

In Simulink, a Simulink.NumericType object represents a data type that you can share between
different data items in a model. For more information, see Simulink.NumericType.

Input Arguments
numericType — Target numeric type
Simulink.NumericType object

Target numeric type, specified as a Simulink.NumericType object.

Output Arguments
indication — Indication of whether target object represents single
1 | 0

Indication of whether the target object represents single, returned as 1 (true) or 0 (false).

Version History
Introduced in R2010b

See Also
Simulink.NumericType | ishalf | isdouble | isfloat

Topics
“Control Data Types of Signals”
“Control Block Parameter Data Types”
“Manage Replacement of Simulink Data Types in Generated Code” (Embedded Coder)

 issingle

8-385

Simulink.op.ModelOperatingPoint
Complete information that represents model operating point in simulation

Description
A Simulink.op.ModelOperatingPoint object contains a complete representation of a model
operating point that you can use to specify the initial state for a simulation. For example, when you
run a set of simulations for a model of a system that has a startup phase or initialization behavior, you
can simulate the model through the end of the startup or initialization phase once, save the model
operating point, then run a set of simulations that use the operating point as the initial state. If you
do not modify the model, simulating a model using a Simulink.op.ModelOperatingPoint object
as the initial state produces the same results as a simulation with no initial state specified.

The operating point for a model represents the model state in simulation, including logged block
states, hidden block states, the state of the solver and execution engine, and output values for some
blocks. For more information, see “Use Model Operating Point for Faster Simulation Workflow”.

Creation
A model configured to save the final operating point creates a
Simulink.op.ModelOperatingPoint object when the simulation completes or when you pause or
stop the simulation. To configure a model to save the final operating point:

1 On the Modeling tab, click Model Settings.
2 In the Configuration Parameters dialog box, select Data Import/Export.
3 Select Final states and Save final operating point.

By default, the Simulink.op.ModelOperatingPoint object is saved using a variable called
xFinal. To save the operating point using a different variable name, specify the variable name you
want to use in the Final states text box.

When you return simulation results using a single simulation output, the
Simulink.op.ModelOperatingPoint object is returned as part of the
Simulink.SimulationOutput object that contains all the simulation data.

Properties
description — Description of saved operating point
string | character vector

Description of saved operating point, specified as a string or a character vector. The
ModelOperatingPoint object has a default description that includes the name of the model and the
simulation time at which the operating point was saved.
Example: Operating point of the model 'vdp' at simulation time
3.2137655751098118

8 Objects

8-386

Tips

The simulation time at which the model operating point was saved is also stored in the
snapshotTime property.

loggedStates — Operating point information for built-in blocks
Simulink.SimulationData.Dataset object | structure

Operating point information for built-in blocks, specified as a
Simulink.SimulationData.Dataset object or a structure.

The format of the data in the loggedStates property for a ModelOperatingPoint object created
from simulation depends on the format used for logging states and output data. To configure the
format for logging states and outputs, use the Configuration Parameters dialog box. On the Modeling
tab, click Model Settings. Then, on the Data Import/Export pane, select a value for the Format
parameter.

Format parameter value Format of loggedStates property value
Dataset Simulink.SimulationData.Dataset object
• Structure with time
• Structure
• Array

Structure that contains block states data

Tips

• The loggedStates property contains the operating point information for built-in blocks and S-
functions that do not implement custom operating point behavior. To access or modify the
operating point information for a Stateflow chart, a MATLAB System block, or an S-function with a
custom operating point implementation, use the get and set functions.

• Not all operating point information for built-in blocks is exposed in the loggedStates property
for viewing or editing. For example, the loggedStates property does not include operating point
information for:

• Blocks inside For Each subsystems
• Simscape blocks
• Blocks inside referenced models that execute in accelerator mode

• You cannot change the format for the data in the loggedStates property after a
ModelOperatingPoint object is created.

snapshotTime — Simulation time at which operating point was saved
double

This property is read-only.

Simulation time at which operating point was saved, returned as a double.

startTime — Start time of simulation that created operating point
double

This property is read-only.

Start time of simulation that created operating point, returned as a double.

 Simulink.op.ModelOperatingPoint

8-387

Object Functions
get Get operating point information for Stateflow chart, MATLAB System block, or S-function
set Set operating point information for Stateflow chart, MATLAB System block, or S-function

Examples

Save and Restore Model Operating Point

Open the model sldemo_tonegen.

model = "sldemo_tonegen";
open_system(model);

Create a Simulink.SimulationInput object to specify parameter values to use in simulation.

simIn = Simulink.SimulationInput(model);

Configure the simulation to stop after ten seconds and save the final operating point in a variable
named finalOP.

simIn = setModelParameter(simIn,"StopTime","10",...
 "SaveFinalState","on","SaveOperatingPoint","on",...
 "FinalStateName","finalOP");

Simulate the model using the settings configured on the SimulationInput object.

out = sim(simIn);

Access the saved operating point, returned as part of the single Simulink.SimulationOutput
object.

finalOP = out.finalOP

finalOP =
 Simulink.op.ModelOperatingPoint

 Operating point of the model 'sldemo_tonegen' at simulation time 10.

 Properties

 loggedStates
 description
 startTime (Read-only)
 snapshotTime (Read-only)

 Methods

 get
 set

Create a SimulationInput object to configure another simulation that uses the operating point
saved from the first simulation.

simIn2 = Simulink.SimulationInput(model);

8 Objects

8-388

Configure the model to simulate to a stop time of twenty seconds.

simIn2 = setModelParameter(simIn2,"StopTime","20");

Use the setInitialState function to specify the initial state for the simulation using the
Simulink.op.ModelOperatingPoint object saved from the first simulation.

simIn2 = setInitialState(simIn2,finalOP);

Simulate the model from the initial operating point.

out2 = sim(simIn2);

Tips
When you want to save an operating point from a simulation, disable Block reduction before
simulating the model.

Version History
Introduced in R2019a

R2019a: Simulink.SimState.ModelSimState is renamed to
Simulink.op.ModelOperatingPoint
Behavior changed in R2019a

The Simulink.SimState.ModelSimState object, which was introduced in R2009a, is renamed
and replaced with the Simulink.op.ModelOperatingPoint object. You can still use simulation
snapshots from a previous release that you captured and saved as ModelSimState objects. When
you load the object into the workspace or a model, the object is replaced with a
ModelOperatingPoint object that contains the same data.

In most cases, you do not need to update scripts in response to this change. The
ModelOperatingPoint object has the same properties as the ModelSimState object. The
setBlockSimState and getBlockSimState functions continue to work but are not recommended.
Instead, use the get and set functions for the ModelOperatingPoint object.

See Also
Objects
Simulink.SimulationData.Dataset | Simulink.SimulationData.State

Model Settings
Final states | Save final operating point | Initial state

Topics
“Save Block States and Simulation Operating Points”
“Use Model Operating Point for Faster Simulation Workflow”
“Operating Point Behavior”

 Simulink.op.ModelOperatingPoint

8-389

get
Package: Simulink.op

Get operating point information for Stateflow chart, MATLAB System block, or S-function

Syntax
op = get(modelOP,blockPath)

Description
op = get(modelOP,blockPath) returns the operating point information op for the model element
at the specified path blockPath. Use the get function to access operating point information for:

• Stateflow charts
• MATLAB System blocks
• S-functions with custom operating point implementation

To access the state for a built-in block, use the loggedStates property of the
Simulink.op.ModelOperatingPoint object.

Examples

Get Operating Point for Stateflow Chart

To get the operating point for a Stateflow chart that is inside a referenced model, specify the full path
to the chart relative to the top model.

model = 'sldemo_fuelsys_dd';
opt = struct('SaveFinalState','on','SaveOperatingPoint','on','StopTime','1');
simOut = sim(model,opt);
modelOp = simOut.xFinal;
blockPath = 'sldemo_fuelsys_dd/Fuel Rate Controller|sldemo_fuelsys_dd_controller/control_logic';
chartOp = get(modelOp,blockPath)

Input Arguments
modelOP — Model operating point
Simulink.op.ModelOperatingPoint object

Model operating point, specified as a Simulink.op.ModelOperatingPoint object.

blockPath — Path to model element whose operating point you want to access
string | character vector

Path to model element whose operating point you want to access, specified as a string or a character
vector.

8 Objects

8-390

You cannot access or modify operating point information for Stateflow charts, MATLAB System
blocks, or S-functions inside referenced models simulated using accelerator mode.

Output Arguments
op — Element operating point
Stateflow.op.BlockOperatingPoint object | S-function operating point | MATLAB System block
operating point

Element operating point, returned as a Stateflow.op.BlockOperatingPoint object, an S-
function operating point, or a MATLAB System block operating point.

Tips

• For more information about working with operating points for Stateflow charts, see “Save and
Restore Operating Points for Stateflow Charts” (Stateflow).

• Use the ssSetOperatingPointVisibility function to specify whether operating point
information for an S-function is accessible from the ModelOperatingPoint object.

Version History
Introduced in R2019a

R2019a: Simulink.SimState.ModelSimState is renamed to
Simulink.op.ModelOperatingPoint
Behavior changed in R2019a

The Simulink.SimState.ModelSimState object, which was introduced in R2009a, is renamed
and replaced with the Simulink.op.ModelOperatingPoint object. You can still use simulation
snapshots from a previous release that you captured and saved as ModelSimState objects. When
you load the object into the workspace or a model, the object is replaced with a
ModelOperatingPoint object that contains the same data.

In most cases, you do not need to update scripts in response to this change. The
ModelOperatingPoint object has the same properties as the ModelSimState object. The
setBlockSimState and getBlockSimState functions continue to work but are not recommended.
Instead, use the get and set functions for the ModelOperatingPoint object.

See Also
Objects
Simulink.op.ModelOperatingPoint | Stateflow.op.BlockOperatingPoint

Functions
set | ssSetOperatingPointVisibility

Model Settings
Final states | Save final operating point | Initial state

Topics
“Use Model Operating Point for Faster Simulation Workflow”
“Operating Point Behavior”

 get

8-391

“Save Block States and Simulation Operating Points”

8 Objects

8-392

set
Package: Simulink.op

Set operating point information for Stateflow chart, MATLAB System block, or S-function

Syntax
set(modelOP,blockPath,op)

Description
set(modelOP,blockPath,op) sets the operating point op for the model element at the specified
path blockPath. Use the set function to specify operating point information for:

• Stateflow charts
• MATLAB System blocks
• S-functions with custom operating point implementation

To modify the operating point information for a built-in block, use the loggedStates property for
the Simulink.op.ModelOperatingPoint object.

Examples

Set Operating Point for Stateflow Chart

Specify the operating point for the Stateflow chart 'mymodel/chart' as the contents of the variable
newChartOperPoint.

newOperPoint = set(myOperPoint,'mymodel/chart',newChartOperPoint)

Input Arguments
modelOP — Model operating point
Simulink.op.ModelOperatingPoint object

Model operating point, specified as a Simulink.op.ModelOperatingPoint object.

blockPath — Path to element whose operating point you want to modify
string | character vector

Path to element whose operating point you want to modify, specified as a string or a character vector.

You cannot access or modify operating point information for Stateflow charts, MATLAB System
blocks, or S-functions inside model references that execute in accelerator mode.

op — Operating point information to set
Stateflow.op.BlockOperatingPoint object | S-function operating point | MATLAB System block
operating point

 set

8-393

Operating point information to set, specified as a Stateflow.op.BlockOperatingPoint object, an
S-function operating point, or a MATLAB System block operating point.

Tips

• For more information about working with operating points for Stateflow charts, see “Save and
Restore Operating Points for Stateflow Charts” (Stateflow).

• Use the ssSetOperatingPointVisibility function to specify whether operating point
information for an S-function is accessible from the ModelOperatingPoint object.

Version History
Introduced in R2019a

R2019a: Simulink.SimState.ModelSimState is renamed to
Simulink.op.ModelOperatingPoint
Behavior changed in R2019a

The Simulink.SimState.ModelSimState object, which was introduced in R2009a, is renamed
and replaced with the Simulink.op.ModelOperatingPoint object. You can still use simulation
snapshots from a previous release that you captured and saved as ModelSimState objects. When
you load the object into the workspace or a model, the object is replaced with a
ModelOperatingPoint object that contains the same data.

In most cases, you do not need to update scripts in response to this change. The
ModelOperatingPoint object has the same properties as the ModelSimState object. The
setBlockSimState and getBlockSimState functions continue to work but are not recommended.
Instead, use the get and set functions for the ModelOperatingPoint object.

See Also
Objects
Simulink.op.ModelOperatingPoint | Stateflow.op.BlockOperatingPoint

Functions
get | ssSetOperatingPointVisibility

Model Settings
Final states | Save final operating point | Initial state

Topics
“Use Model Operating Point for Faster Simulation Workflow”
“Operating Point Behavior”
“Save Block States and Simulation Operating Points”

8 Objects

8-394

Simulink.Parameter
Store, share, and configure parameter values

Description
Create a Simulink.Parameter object to set the value of one or more block parameters in a model,
such as the Gain parameter of a Gain block. You create the object in a workspace or in a data
dictionary. Set the parameter value in the object, then reference the object from the block.

Use a Simulink.Parameter object to:

• Share a value among multiple block parameters.
• Represent an engineering constant or a tunable calibration parameter.
• Separate a parameter value from its data type and other properties.
• Configure parameter data for code generation.

The Value property of the object stores the parameter value. To use the object in a model, set the
value of a block parameter to an expression that includes the name of the object. Omit the Value
property from the expression. For more information, see “Use Parameter Objects”.

For more information about block parameters, see “Set Block Parameter Values” and “How Generated
Code Stores Internal Signal, State, and Parameter Data” (Simulink Coder).

To configure a Simulink.Parameter object as a model argument, the object must be in a model
workspace. In a dialog box such as the Model Explorer, select Argument for the parameter object.
For more information, see “Parameterize Instances of a Reusable Referenced Model”.

Creation
Create a Simulink.Parameter object:

• Directly from a block dialog box or the Property Inspector. See “Create, Edit, and Manage
Workspace Variables”.

• By using the Model Data Editor. Inspect the Parameters tab. Right-click the row that contains a
variable, and from the context menu, select Convert to parameter object.

• By using the Model Explorer. See “Create Data Objects from Built-In Data Class Package
Simulink”.

• By using the Simulink.Parameter function described below.

Syntax
paramObj = Simulink.Parameter
paramObj = Simulink.Parameter(paramValue)

 Simulink.Parameter

8-395

Description

paramObj = Simulink.Parameter returns a Simulink.Parameter object with default property
values.

paramObj = Simulink.Parameter(paramValue) returns a Simulink.Parameter object and
initializes the Value property to paramValue.

Properties
Value — Value to use in block parameters
[] (default) | numeric | boolean | enum | structure | scalar | array | character value | <mathematical
expression>

Value to use in block parameters, specified as any of these valid values:

• Numeric value
• Boolean value
• Instance of enumerated type
• Structure
• Scalar or array
• Mathematical expression (see “Set Variable Value by Using a Mathematical Expression”)

If you use a Simulink.Parameter object to set the block parameter value in a reusable referenced
model, you can compile and simulate the model as a referenced model with the value for the object
left empty (Value set to []) as long as you provide an explicit value somewhere in the parent model
reference hierarchy. In this case, you cannot simulate the model directly. When the value is empty,
you must provide the DataType and Dimensions for the object. Although you have specified an
empty value, the software still synthesizes a Value by using one of these:

• Max
• Min, if you have not specified Max
• 1, if you have not specified either Min or Max

See “Parameterize Instances of a Reusable Referenced Model”.

You can also use MATLAB syntax to specify the value.

Example Expression Description
15.23 Specifies a scalar value
[3 4; 9 8] Specifies a matrix
3+2i Specifies a complex value
struct('A',20,'B',5) Specifies a structure with two fields, A and B, with double-precision

values 20 and 5.

Organize block parameters into structures (see “Organize Related
Block Parameter Definitions in Structures”) or initialize the signal
elements in a bus (see “Specify Initial Conditions for Bus
Elements”).

8 Objects

8-396

Example Expression Description
slexpr('myVar +
myOtherVar')

Specifies the expression myVar + myOtherVar where myVar and
myOtherVar are other MATLAB variables or parameter objects.
The software preserves this mathematical relationship between the
object and the variables.

To use a Simulink.Parameter object to store a value of a particular numeric data type, specify the
ideal value with the Value property and control the data type with the DataType property.

If you set the Value property by using a typed expression such as single(32.5), the DataType
property changes to reflect the new type. A best practice is to use an expression that is not typed to
avoid accumulating numerical error through repeated quantizations or data type saturation,
especially for fixed-point data types.
Example: 3.15
Example: 1.2 + 3.2i
Example: true
Example: myEnumType.myEnumValue
Example: struct('field1',15,'field2',7.32)
Example: slexpr('myVar + myOtherVar')
Tips

• To more easily edit a large vector, 2-D matrix, or structure that you store in a
Simulink.Parameter object, use the Variable Editor. See “Create, Edit, and Manage Workspace
Variables”.

• When you specify an array with three or more dimensions interactively, such as by using the
Model Explorer, this property displays the array as an expression that contains a call to the
reshape function. To edit the values in the array, modify the first argument of the reshape call,
which contains all of the array values in a serialized vector. When you add or remove elements
along a dimension, you must also correct the argument that represents the length of the modified
dimension.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | struct | fi | enum
Complex Number Support: Yes

CoderInfo — Specifications for generating code for parameter object
Simulink.CoderInfo object

This property is read-only.

Specifications for generating code for the parameter object, returned as a Simulink.CoderInfo
object.

Modify the properties of the Simulink.CoderInfo object that this property contains.

For example, the StorageClass property of the Simulink.CoderInfo object determines how
Simulink code generation toolboxes allocate memory for the parameter object in the generated code.
For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder) and “Choose Storage Class for Controlling Data Representation in Generated Code”
(Embedded Coder).

 Simulink.Parameter

8-397

Description — Custom description of parameter object
'' (default) | character vector | string scalar

Custom description of the parameter object, specified as a character vector. Use this property to
document the significance that the parameter object has in your algorithm.

If you have an Embedded Coder license, you can configure this description to appear in the generated
code as a comment. See Simulink data object descriptions (Embedded Coder).
Example: 'This parameter represents the maximum rotation speed of the engine.'

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
object. The software uses the description of the Simulink.ValueType object instead.
Data Types: char | string

DataType — Data type of parameter value
'auto' (default) | character vector | string scalar

Data type of the parameter value in the Value property, specified as 'auto' or a character vector.
When you simulate the model or generate code, the software casts the value to the specified data
type.

If you specify 'auto', the default setting, the parameter object uses the same data type as the block
parameters that use the object. See “Reduce Maintenance Effort with Data Type Inheritance”.

When you set the Value property to something other than a double number, the object typically sets
the DataType property based on the value of the Value property. For example, when you set the
Value property to int8(5), the object sets the value of the DataType property to 'int8'.

To explicitly specify a built-in data type (see “Data Types Supported by Simulink”), specify one of
these options:

• 'double'
• 'single'
• 'half'
• 'int8'
• 'uint8'
• 'int16'
• 'uint16'
• 'int32'
• 'uint32'
• 'int64'
• 'uint64'
• 'boolean'

To specify a fixed-point data type, use the fixdt function. For example, specify 'fixdt(1,16,5)'.

If you use a Simulink.AliasType or Simulink.NumericType object to create and share custom
data types in your model, specify the name of the object.

8 Objects

8-398

To specify an enumerated data type, use the name of the type preceded by Enum:. For example,
specify 'Enum: myEnumType'.

To specify a Simulink.ValueType object as the data type, use the name of the object preceded by
ValueType:. For example, specify 'ValueType: myValueType'.

When you store a structure or array of structures in the Value property of the object, the object sets
the DataType property to 'struct'. To specify a Simulink.Bus object as the data type, use the
name of the bus object preceded by Bus:. For example, specify 'Bus: myBusObject'.

When you specify a Simulink.ValueType or Simulink.Bus object as the data type, some
properties of the Simulink.Parameter object are ignored. For example, the Min, Max, and Unit
properties of the Simulink.Parameter object are ignored. The software uses the corresponding
properties of the Simulink.ValueType object or Simulink.BusElement objects in the
Simulink.Bus object instead.
Example: 'auto'
Example: 'int8'
Example: 'fixdt(1,16,5)'
Example: 'myAliasTypeObject'
Example: 'Enum: myEnumType'
Example: 'ValueType: myValueType'
Example: 'Bus: myBusObject'

Tips

When you edit the data type interactively, to display the Data Type Assistant, click the Show data

type assistant button . For more information, see “Specify Data Types Using Data Type
Assistant”.
Data Types: char | string

Min — Minimum value of parameter
[] (default) | real double scalar

Minimum value that the Value property of the object can store, specified as a real double scalar.

The default value is empty, which means the parameter value does not have a minimum.

If you store a complex number in the Value property, the Min property applies separately to the real
and imaginary parts.

If Value is less than the minimum value or if the minimum value is outside the range of the object
data type, the software generates a warning. When updating the diagram or starting a simulation, the
software generates an error.

For more information about how the software uses this property, see “Specify Minimum and
Maximum Values for Block Parameters”
Example: -0.92

 Simulink.Parameter

8-399

Dependencies

The software ignores the value of this property when either of these options apply:

• Value specifies a structure.

To specify minimum values for the structure, set DataType to a Simulink.Bus object and specify
a minimum value for each field by using the corresponding Simulink.BusElement objects in the
Simulink.Bus object. See “Control Field Data Types and Characteristics by Creating Parameter
Object”.

• DataType specifies a Simulink.ValueType or Simulink.Bus object.

The software uses the minimum values specified by the Simulink.ValueType object or the
Simulink.BusElement objects in the Simulink.Bus object instead.

Tips

For parameter objects with a fixed-point data type, dialog boxes show the Stored Integer Minimum
property, which is the minimum value that the parameter can have, specified as a stored integer
value. The value is derived from the real-world minimum value.
Data Types: double

Max — Maximum value of parameter
[] (default) | real double scalar

Maximum value that the Value property of the object can store, specified as a real double scalar.

The default value is empty, which means the parameter value does not have a maximum.

If you store a complex number in the Value property, the Max property applies separately to the real
and imaginary parts.

If Value is greater than the maximum value or if the maximum value is outside the range of the
object data type, the software generates a warning. When updating the diagram or starting a
simulation, the software generates an error.

For more information about how the software uses this property, see “Specify Minimum and
Maximum Values for Block Parameters”.
Example: 5.32

Dependencies

The software ignores the value of this property when either of these options apply:

• Value specifies a structure.

To specify maximum values for the structure, set DataType to a Simulink.Bus object and
specify a maximum value for each field by using the corresponding Simulink.BusElement
objects in the Simulink.Bus object. See “Control Field Data Types and Characteristics by
Creating Parameter Object”.

• DataType specifies a Simulink.ValueType or Simulink.Bus object.

The software uses the maximum values specified by the Simulink.ValueType object or the
Simulink.BusElement objects in the Simulink.Bus object instead.

8 Objects

8-400

Tips

For parameter objects with a fixed-point data type, dialog boxes show the Stored Integer Maximum
property, which is the maximum value that the parameter can have, specified as a stored integer
value. The value is derived from the real-world maximum value.
Data Types: double

Unit — Physical unit of parameter value
'' (default) | character vector | string scalar

Physical unit of parameter value, specified as a character vector that describes a valid unit. For more
information, see “Unit Specification in Simulink Models”.
Example: 'degC'

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the units specified by the Simulink.ValueType object
or the Simulink.BusElement objects in the Simulink.Bus object instead.
Data Types: char | string

Complexity — Numeric complexity of parameter value
'real' (default) | 'complex'

Numeric complexity of the parameter value, specified as either 'real' or 'complex'. For
Simulink.Parameter objects in the model workspace, use this property to configure the complexity
of a model argument. See “Parameterize Instances of a Reusable Referenced Model”.

For numeric values, the software derives the complexity from the parameter value that you specify in
the Value property. In this case, changing the complexity results in error.

Dependencies

The software ignores the value of this property when any of these options apply:

• Value specifies a mathematical expression.
• Value specifies a structure.

To specify complexity for the structure, set DataType to a Simulink.Bus object and specify a
complexity for each field by using the corresponding Simulink.BusElement objects in the
Simulink.Bus object. See “Control Field Data Types and Characteristics by Creating Parameter
Object”.

• DataType specifies a Simulink.ValueType or Simulink.Bus object.

The software uses the complexity specified by the Simulink.ValueType object or the
Simulink.BusElement objects in the Simulink.Bus object instead.

Dimensions — Dimensions of parameter value
[0 0] (default) | row vector | character vector | string scalar

Dimensions of the value stored in the Value property, specified as a row vector, character vector, or
string scalar.

 Simulink.Parameter

8-401

When you set the Value property of the object, the object sets the value of the Dimensions property
to a double row vector. The vector is the same vector that the size function returns.

If you are configuring the object as a model argument, and you intend to provide a value for the
object elsewhere in the parent model reference hierarchy, you can leave the Value property empty
(set to []) and set the Dimensions and Data Type properties explicitly. See “Parameterize
Instances of a Reusable Referenced Model”.

To use symbolic dimensions, specify a character vector. See “Implement Symbolic Dimensions for
Array Sizes in Generated Code” (Embedded Coder).
Example: [1 3]
Example: '[1 myDimParam]'
Dependencies

• To enable this property, Value must be empty ([]). Otherwise, the software derives the
dimensions from the Value property. For example, a value of [3 4;9 8] has dimensions [2 2].

• The software ignores the value of this property when DataType specifies a
Simulink.ValueType object. The software uses the dimensions specified by the
Simulink.ValueType object instead.

Data Types: double | char | string

Examples

Use Parameter Object to Set Value of Gain Parameter

In the MATLAB Command Window, create a Simulink.Parameter object.

myParam = Simulink.Parameter;

Assign a numeric value to the Value property.

myParam.Value = 15.23;

Specify the minimum and maximum values the parameter can take with the Min and Max properties.

myParam.Min = 10.11;
myParam.Max = 25.27;

Open a new Simulink model. Add a Gain block and set its Gain parameter to myParam. During
simulation, the Gain parameter uses the value 15.23.

Change Value Stored by Parameter Object

In the MATLAB Command Window, create a Simulink.Parameter object that stores the value
2.52.

myParam = Simulink.Parameter(2.52);

Change the value by accessing the Value property of the object. This technique preserves the values
of the other properties of the object.

8 Objects

8-402

myParam.Value = 1.13;

Create Parameter Object with Specific Numeric Data Type

To reduce model maintenance, you can leave the DataType property at its default value, auto. The
parameter object acquires a data type from the block parameter that uses the object.

To reduce the risk of the data type changing when you make changes to signal data types and other
data types in your model, you can explicitly specify a data type for the parameter object. For example,
when you generate code that exports parameter data to your custom code, explicitly specify a data
type for the object.

In the MATLAB Command Window, create a Simulink.Parameter object that stores the value
18.25.

myParam = Simulink.Parameter(18.25);

The expression 18.25 returns the number 18.25 with the double-precision, floating-point data type
double. The Value property stores the number 18.25 with double precision.

Use the DataType property to specify the single-precision data type single.

myParam.DataType = 'single';

When you simulate or generate code, the object casts the value of the Value property, 18.25, to the
data type specified by the DataType property, single.

Set Parameter Value to a Mathematical Expression

This example shows how to set the value of a parameter object, myParam, to the sum of two other
variables, myVar and myOtherVar. With this technique, when you change the values of the
independent variables, the software immediately calculates the new value of the parameter object.

Create the two independent variables.

myVar = 5.2;
myOtherVar = 9.8;

Create the parameter object.

myParam = Simulink.Parameter;

Set the value of the parameter object to the expression myVar + myOtherVar.

myParam.Value = slexpr('myVar + myOtherVar')

When you simulate or generate code, the expression evaluates to 15.

Version History
Introduced before R2006a

 Simulink.Parameter

8-403

See Also
Simulink.Signal | Simulink.CoderInfo | AUTOSAR.Parameter | Simulink.LookupTable |
Simulink.Breakpoint | Simulink.AliasType

Topics
“Data Objects”
“Set Block Parameter Values”
“How Generated Code Stores Internal Signal, State, and Parameter Data” (Simulink Coder)
“Determine Where to Store Variables and Objects for Simulink Models”
“Data Types Supported by Simulink”
“Define Data Classes”

8 Objects

8-404

Simulink.profiler.Data
Programmatically access Simulink Profiler information

Description
The Simulink.profiler.Data object provides access to simulation profiling metadata.

Creation
Access the Simulink.profiler.Data object from the SimulationMetadata.TimingInfo field
of the Simulink.SimulationOutput object.

Properties
run — Profiling session identifier
character vector | string scalar

This is a read only property.

Identifier of the profiling session, returned as a character vector or string scalar.
Example: 'vdp @ 21-Nov-2019 13;48:00'
Data Types: char | string

UserString — User documentation of profiling session
"" (default) | character vector | string scalar

Use the UserString field to document relevant information about the current profiling session
Example: profilingData.UserString = "Updated gain to reduce chatter.";
Data Types: char | string

rootUINode — Block hierarchy of the model
Simulink.profiler.UINode object

Block hierarchy of the model, returned as a Simulink.profiler.UINode object with the following
fields:

Field Value Description
totalTime double Execution time of the block, as

well as its children.
selfTime double Execution time of the block,

excluding its children
numberOfCalls double Number of times the block was

executed during the simulation.

 Simulink.profiler.Data

8-405

Field Value Description
children Simulink.profiler.UINode

array
Contents of the current block

path string scalar Path of the block relative to the
top level of the model.

Note The path of the
rootUINode field is the name
of the model

A Simulink.profiler.UINode object corresponds to a row in the block hierarchy view of the
Simulink Profiler.

rootExecNode — Execution stack of the model
Simulink.profiler.ExecNode

Execution phases of the model, returned as a Simulink.profiler.ExecNode object with the
following fields:

Field Value Description
totalTime double Execution time of the stack

element, as well as its children.
selfTime double Execution time of the stack

element, excluding its children
numberOfCalls double Number of times the stack

element was executed during
the simulation.

location Specific phase of the model's
execution

children Simulink.profiler.ExecNo
de array

Similar tasks corresponding to
the execution phase of the
parent.

objectPath string scalar Path of the model element
corresponding to the current
element of the execution stack.

Note The objectPathfield of
the rootExecNode is the name
of the model

A Simulink.profiler.ExecNode object corresponds to a row in the execution stack view of the
Simulink Profiler.

Version History
Introduced in R2020a

8 Objects

8-406

See Also
Simulink Profiler

Topics
“Understanding Total Time and Self Time in Profiler Reports”
“How Profiler Captures Performance Data”

 Simulink.profiler.Data

8-407

Simulink.sdi.CustomSnapshot
Specify settings for snapshot without opening or affecting the Simulation Data Inspector

Description
Use a Simulink.sdi.CustomSnapshot object to specify settings for a snapshot without opening
the Simulation Data Inspector or affecting an open session. Creating a snapshot using a
Simulink.sdi.CustomSnapshot object is the best option for fully scripted workflows. You can
specify the snapshot dimensions in pixels, the subplot layout, and limits for the x- and y- axes. You can
use the clearSignals and plotOnSubplot functions to plot signals you want to include in the
snapshot. To capture the snapshot, you can pass the Simulink.sdi.CustomSnapshot object as the
value for the settings name-value argument for the Simulink.sdi.snapshot object or use the
snapshot function.

Creation

Syntax
snap = Simulink.sdi.CustomSnapshot

Description

snap = Simulink.sdi.CustomSnapshot creates a Simulink.sdi.CustomSnapshot object.

Properties
Width — Image width in pixels
600 (default) | scalar

Image width in pixels, specified as a scalar. The width of the snapshot is constrained by monitor
resolution.
Example: 750

Height — Image height in pixels
400 (default) | scalar

Image height in pixels, specified as a scalar. The height of the snapshot is constrained by monitor
resolution.
Example: 500

Rows — Number of subplot rows
1 (default) | scalar

Number of subplot rows, specified as a scalar between 1 and 8, inclusive. Use Rows and Columns to
set your desired subplot layout.

8 Objects

8-408

When you use the plotComparison function to plot comparison results onto a
Simulink.sdi.CustomSnapshot object, the number of rows is 2.
Example: 2

Columns — Number of subplot columns
1 (default) | scalar

Number of subplot columns, specified as a scalar between 1 and 8, inclusive. Use Rows and Columns
to set your desired subplot layout.

When you use the plotComparison function to plot comparison results onto a
Simulink.sdi.CustomSnapshot object, the number of columns is 1.
Example: 3

TimeSpan — Time axis limits
2x1 matrix

Time axis limits, specified as a 2x1 matrix. The time axis limits in the snapshot are the same for all
subplots. By default, the time axis adjusts to accommodate the largest time range of the plotted
signals.

When you use the plotComparison function to plot comparison results onto a
Simulink.sdi.CustomSnapshot object, a fit-to-view is performed to determine the axis limits.
Example: [0 20]

YRange — y-axis limits
cell array

y-axis limits, specified as a cell array of 1-by-2 matrices specifying the y-axis limits for all subplots in
the custom snapshot. By default, YRange is [-3 3] for all subplots.

When you use the plotComparison function to plot comparison results onto a
Simulink.sdi.CustomSnapshot object, a fit-to-view is performed to determine the axis limits.
Example: {[-10 10],[0 100]}

Object Functions
clearSignals Clear signals plotted on subplots of Simulink.sdi.CustomSnapshot object
plotOnSubPlot Plot signals on Simulink.sdi.CustomSnapshot object subplots
snapshot Create custom snapshot
plotComparison Plot comparison results on Simulink.sdi.CustomSnapshot objects

Examples

Copy View Settings to Run

Copy view settings from one run to another and create figures using the
Simulink.sdi.CustomSnapshot object.

Simulate Model and Get Run Object

Configure the vdp model to save output data. Run a simulation to create data.

 Simulink.sdi.CustomSnapshot

8-409

load_system("vdp")
set_param("vdp","SaveFormat","Dataset","SaveOutput","on")
set_param("vdp/Mu","Gain","1");
sim("vdp");

Use the Simulation Data Inspector programmatic interface to access the run data.

runIndex = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(runIndex);
vdpRun = Simulink.sdi.getRun(runID);

Modify Signal View Settings

Use the Simulink.sdi.Run object to access signals in the run. Then, modify the signal view
settings. This example specifies the line color and style for each signal. The view settings for the run
comprise the view settings for each signal and view settings specified for the plot area.

sig1 = getSignalByIndex(vdpRun,1);
sig2 = getSignalByIndex(vdpRun,2);

sig1.LineColor = [0 0 1];
sig1.LineDashed = "-.";

sig2.LineColor = [1 0 0];
sig2.LineDashed = ":";

Capture Snapshot from Simulation Data Inspector

Create a Simulink.sdi.CustomSnapshot object and use the Simulink.sdi.snapshot function
to programmatically capture a snapshot of the contents of the Simulation Data Inspector.

snap = Simulink.sdi.CustomSnapshot;

You can use properties of the Simulink.sdi.CustomSnapshot object to configure the plot settings,
such as the subplot layout and axis limits, and to plot signals. When you use a
Simulink.sdi.CustomSnapshot object to create your figure, these plot settings do not affect the
Simulation Data Inspector.

snap.Rows = 2;
snap.YRange = {[-2.25 2.25],[-3 3]};
plotOnSubPlot(snap,1,1,sig1,true)
plotOnSubPlot(snap,2,1,sig2,true)

Use the Simulink.sdi.snapshot function to generate the figure you specified in the properties of
the Simulink.sdi.CustomSnapshot object.

fig = Simulink.sdi.snapshot("From","custom","To","figure","Settings",snap);

8 Objects

8-410

Copy View Settings to New Simulation Run

Simulate the model again, with a different Mu value. Use the Simulation Data Inspector programmatic
interface to access the simulation data.

set_param("vdp/Mu","Gain","5")
sim("vdp");

runIndex2 = Simulink.sdi.getRunCount;
runID2 = Simulink.sdi.getRunIDByIndex(runIndex2);
run2 = Simulink.sdi.getRun(runID2);

To create a plot of the new output data that looks like the one you created in the previous step, you
can copy the view settings to the run in a single line of code using the
Simulink.sdi.copyRunViewSettings function. This function does not automatically update plot
settings in Simulink.sdi.CustomSnapshot objects, so specify the input that determines whether
the plot updates as false.

sigIDs = Simulink.sdi.copyRunViewSettings(runID,runID2,false);

Capture Snapshot of New Simulation Run

Use the Simulink.sdi.CustomSnapshot object to capture a snapshot of the new simulation run.
First, clear the signals from the subplots. Then, plot the signals from the new run and capture
another snapshot.

clearSignals(snap)
snap.YRange = {[-2.25 2.25],[-8 8]};

 Simulink.sdi.CustomSnapshot

8-411

plotOnSubPlot(snap,1,1,sigIDs(1),true)
plotOnSubPlot(snap,2,1,sigIDs(2),true)

fig = snapshot(snap,"To","figure");

Version History
Introduced in R2018a

See Also
Objects
Simulink.sdi.Signal

Functions
plotOnSubPlot | snapshot | clearSignals | plotComparison | Simulink.sdi.snapshot |
Simulink.sdi.copyRunViewSettings

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

8 Objects

8-412

clearSignals
Package: Simulink.sdi

Clear signals plotted on subplots of Simulink.sdi.CustomSnapshot object

Syntax
clearSignals(snap)

Description
clearSignals(snap) clears plotted signals from all subplots in the
Simulink.sdi.CustomSnapshot object snap. Using the clearSignals function does not affect
any subplots or signals in your open Simulation Data Inspector session.

Examples

Copy View Settings to Run

Copy view settings from one run to another and create figures using the
Simulink.sdi.CustomSnapshot object.

Simulate Model and Get Run Object

Configure the vdp model to save output data. Run a simulation to create data.

load_system("vdp")
set_param("vdp","SaveFormat","Dataset","SaveOutput","on")
set_param("vdp/Mu","Gain","1");
sim("vdp");

Use the Simulation Data Inspector programmatic interface to access the run data.

runIndex = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(runIndex);
vdpRun = Simulink.sdi.getRun(runID);

Modify Signal View Settings

Use the Simulink.sdi.Run object to access signals in the run. Then, modify the signal view
settings. This example specifies the line color and style for each signal. The view settings for the run
comprise the view settings for each signal and view settings specified for the plot area.

sig1 = getSignalByIndex(vdpRun,1);
sig2 = getSignalByIndex(vdpRun,2);

sig1.LineColor = [0 0 1];
sig1.LineDashed = "-.";

sig2.LineColor = [1 0 0];
sig2.LineDashed = ":";

 clearSignals

8-413

Capture Snapshot from Simulation Data Inspector

Create a Simulink.sdi.CustomSnapshot object and use the Simulink.sdi.snapshot function
to programmatically capture a snapshot of the contents of the Simulation Data Inspector.

snap = Simulink.sdi.CustomSnapshot;

You can use properties of the Simulink.sdi.CustomSnapshot object to configure the plot settings,
such as the subplot layout and axis limits, and to plot signals. When you use a
Simulink.sdi.CustomSnapshot object to create your figure, these plot settings do not affect the
Simulation Data Inspector.

snap.Rows = 2;
snap.YRange = {[-2.25 2.25],[-3 3]};
plotOnSubPlot(snap,1,1,sig1,true)
plotOnSubPlot(snap,2,1,sig2,true)

Use the Simulink.sdi.snapshot function to generate the figure you specified in the properties of
the Simulink.sdi.CustomSnapshot object.

fig = Simulink.sdi.snapshot("From","custom","To","figure","Settings",snap);

Copy View Settings to New Simulation Run

Simulate the model again, with a different Mu value. Use the Simulation Data Inspector programmatic
interface to access the simulation data.

8 Objects

8-414

set_param("vdp/Mu","Gain","5")
sim("vdp");

runIndex2 = Simulink.sdi.getRunCount;
runID2 = Simulink.sdi.getRunIDByIndex(runIndex2);
run2 = Simulink.sdi.getRun(runID2);

To create a plot of the new output data that looks like the one you created in the previous step, you
can copy the view settings to the run in a single line of code using the
Simulink.sdi.copyRunViewSettings function. This function does not automatically update plot
settings in Simulink.sdi.CustomSnapshot objects, so specify the input that determines whether
the plot updates as false.

sigIDs = Simulink.sdi.copyRunViewSettings(runID,runID2,false);

Capture Snapshot of New Simulation Run

Use the Simulink.sdi.CustomSnapshot object to capture a snapshot of the new simulation run.
First, clear the signals from the subplots. Then, plot the signals from the new run and capture
another snapshot.

clearSignals(snap)
snap.YRange = {[-2.25 2.25],[-8 8]};
plotOnSubPlot(snap,1,1,sigIDs(1),true)
plotOnSubPlot(snap,2,1,sigIDs(2),true)

fig = snapshot(snap,"To","figure");

 clearSignals

8-415

Input Arguments
snap — Custom snapshot settings
Simulink.sdi.CustomSnapshot object

Custom snapshot settings, specified as a Simulink.sdi.CustomSnapshot object.

Version History
Introduced in R2018a

See Also
Objects
Simulink.sdi.CustomSnapshot | Simulink.sdi.Signal

Functions
snapshot | plotOnSubPlot | Simulink.sdi.snapshot | Simulink.sdi.clear |
Simulink.sdi.clearPreferences

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

8 Objects

8-416

plotComparison
Package: Simulink.sdi

Plot comparison results on Simulink.sdi.CustomSnapshot objects

Syntax
plotComparison(snap,diffSignalResult)

Description
plotComparison(snap,diffSignalResult) plots the signal comparison result
diffSignalResult on the Simulink.sdi.CustomSnapshot object snap.

When you use the plotComparison function to plot comparison results to a
Simulink.sdi.CustomSnapshot object, you can only customize the Width and Height properties
of the Simulink.sdi.CustomSnapshot object. When you take a snapshot of comparison results,
the Simulink.sdi.CustomSnapshot object will always have 2×1 subplot layout. A fit-to-view is
performed to determine the axis limits.

Examples

Capture Snapshot of Comparison Results

You can use the function plotComparison to plot comparison results to a
Simulink.sdi.CustomSnapshot object. This example uses data collected by simulating a model of
an aircraft longitudinal flight control system and captures a snapshot of the contents of the
comparison results in the Simulation Data Inspector. When you use a
Simulink.sdi.CustomSnapshot object to create the snapshot, you can adjust the look of the
figure without affecting the Simulation Data Inspector. For more information about the model, see
“Aircraft Longitudinal Flight Control” on page 13-241.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load("AircraftExample.mldatx");

Access the run IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAllRunIDs;
baselineID = runIDs(end-1);
comparedToID = runIDs(end);

Use the Simulink.sdi.compareRuns function to compare the last two runs.Specify a global time
tolerance of 0.8.

diffResult = Simulink.sdi.compareRuns(baselineID,comparedToID,"TimeTol",0.8);

Use the getResultsByName function to access the comparison results for the q rad/sec signal.

 plotComparison

8-417

qResult = getResultsByName(diffResult,"q, rad/sec");

Create a Simulink.sdi.CustomSnapshot object and plot the comparison results on it. Then, use
the snapshot function to generate the figure.

snap = Simulink.sdi.CustomSnapshot;
plotComparison(snap,qResult);
snapshot(snap,"To","image");

Input Arguments
snap — Custom snapshot settings
Simulink.sdi.CustomSnapshot object

Custom snapshot settings, specified as a Simulink.sdi.CustomSnapshot object.

diffSignalResult — Signal comparison result
Simulink.sdi.DiffSignalResult object

Signal comparison result, specified as a Simulink.sdi.DiffSignalResult object.

Version History
Introduced in R2023a

8 Objects

8-418

See Also
Objects
Simulink.sdi.CustomSnapshot | Simulink.sdi.DiffSignalResult |
Simulink.sdi.DiffRunResult

Functions
snapshot | getResultByIndex

Topics
“Compare Simulation Data”

 plotComparison

8-419

plotOnSubPlot
Package: Simulink.sdi

Plot signals on Simulink.sdi.CustomSnapshot object subplots

Syntax
plotOnSubPlot(snap,r,c,sig,plotMode)

Description
plotOnSubPlot(snap,r,c,sig,plotMode) plots the signal sig on the subplot in the
Simulink.sdi.CustomSnapshot object snap specified by the row index r and the column index c
when the plotting mode plotMode is true. When plotMode is false, plotOnSubPlot clears the
signal sig from the subplot.

Examples

Copy View Settings to Run

Copy view settings from one run to another and create figures using the
Simulink.sdi.CustomSnapshot object.

Simulate Model and Get Run Object

Configure the vdp model to save output data. Run a simulation to create data.

load_system("vdp")
set_param("vdp","SaveFormat","Dataset","SaveOutput","on")
set_param("vdp/Mu","Gain","1");
sim("vdp");

Use the Simulation Data Inspector programmatic interface to access the run data.

runIndex = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(runIndex);
vdpRun = Simulink.sdi.getRun(runID);

Modify Signal View Settings

Use the Simulink.sdi.Run object to access signals in the run. Then, modify the signal view
settings. This example specifies the line color and style for each signal. The view settings for the run
comprise the view settings for each signal and view settings specified for the plot area.

sig1 = getSignalByIndex(vdpRun,1);
sig2 = getSignalByIndex(vdpRun,2);

sig1.LineColor = [0 0 1];
sig1.LineDashed = "-.";

8 Objects

8-420

sig2.LineColor = [1 0 0];
sig2.LineDashed = ":";

Capture Snapshot from Simulation Data Inspector

Create a Simulink.sdi.CustomSnapshot object and use the Simulink.sdi.snapshot function
to programmatically capture a snapshot of the contents of the Simulation Data Inspector.

snap = Simulink.sdi.CustomSnapshot;

You can use properties of the Simulink.sdi.CustomSnapshot object to configure the plot settings,
such as the subplot layout and axis limits, and to plot signals. When you use a
Simulink.sdi.CustomSnapshot object to create your figure, these plot settings do not affect the
Simulation Data Inspector.

snap.Rows = 2;
snap.YRange = {[-2.25 2.25],[-3 3]};
plotOnSubPlot(snap,1,1,sig1,true)
plotOnSubPlot(snap,2,1,sig2,true)

Use the Simulink.sdi.snapshot function to generate the figure you specified in the properties of
the Simulink.sdi.CustomSnapshot object.

fig = Simulink.sdi.snapshot("From","custom","To","figure","Settings",snap);

 plotOnSubPlot

8-421

Copy View Settings to New Simulation Run

Simulate the model again, with a different Mu value. Use the Simulation Data Inspector programmatic
interface to access the simulation data.

set_param("vdp/Mu","Gain","5")
sim("vdp");

runIndex2 = Simulink.sdi.getRunCount;
runID2 = Simulink.sdi.getRunIDByIndex(runIndex2);
run2 = Simulink.sdi.getRun(runID2);

To create a plot of the new output data that looks like the one you created in the previous step, you
can copy the view settings to the run in a single line of code using the
Simulink.sdi.copyRunViewSettings function. This function does not automatically update plot
settings in Simulink.sdi.CustomSnapshot objects, so specify the input that determines whether
the plot updates as false.

sigIDs = Simulink.sdi.copyRunViewSettings(runID,runID2,false);

Capture Snapshot of New Simulation Run

Use the Simulink.sdi.CustomSnapshot object to capture a snapshot of the new simulation run.
First, clear the signals from the subplots. Then, plot the signals from the new run and capture
another snapshot.

clearSignals(snap)
snap.YRange = {[-2.25 2.25],[-8 8]};
plotOnSubPlot(snap,1,1,sigIDs(1),true)
plotOnSubPlot(snap,2,1,sigIDs(2),true)

fig = snapshot(snap,"To","figure");

8 Objects

8-422

Input Arguments
snap — Custom snapshot settings
Simulink.sdi.CustomSnapshot object

Custom snapshot settings, specified as a Simulink.sdi.CustomSnapshot object.

r — Row index
integer

Row index for subplot, specified as an integer between 1 and 8, inclusive.
Example: 2

c — Column index
integer

Column index for subplot, specified as an integer between 1 and 8, inclusive.
Example: 3

sig — Signal to plot
Simulink.sdi.Signal | signal ID

Signal to plot, specified as a Simulink.sdi.Signal object or as a signal ID corresponding to the
signal you want to plot.

 plotOnSubPlot

8-423

plotMode — Plotting mode
true | false

Plotting mode, specified as:

• true – Plot the signal on the subplot.
• false – Clear the signal from the subplot.

Data Types: logical

Version History
Introduced in R2018a

See Also
Objects
Simulink.sdi.CustomSnapshot | Simulink.sdi.Signal

Functions
snapshot | clearSignals | Simulink.sdi.snapshot

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

8 Objects

8-424

snapshot
Package: Simulink.sdi

Create custom snapshot

Syntax
fig = snapshot(snap)
[fig,image] = snapshot(snap)
fig = snapshot(snap,Name,Value)
[fig,image] = snapshot(snap,Name,Value)

Description
fig = snapshot(snap) creates a figure according to the properties of the
Simulink.sdi.CustomSnapshot object snap and returns the handle for the figure fig.

[fig,image] = snapshot(snap) returns the handle fig and an array of image data, image.

fig = snapshot(snap,Name,Value) creates a figure with additional options specified by one or
more Name,Value arguments and returns the figure handle.

[fig,image] = snapshot(snap,Name,Value) creates a figure with additional options specified
by one or more Name,Value arguments and returns the figure handle and an array of image data.

Examples

Copy View Settings to Run

Copy view settings from one run to another and create figures using the
Simulink.sdi.CustomSnapshot object.

Simulate Model and Get Run Object

Configure the vdp model to save output data. Run a simulation to create data.

load_system("vdp")
set_param("vdp","SaveFormat","Dataset","SaveOutput","on")
set_param("vdp/Mu","Gain","1");
sim("vdp");

Use the Simulation Data Inspector programmatic interface to access the run data.

runIndex = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(runIndex);
vdpRun = Simulink.sdi.getRun(runID);

 snapshot

8-425

Modify Signal View Settings

Use the Simulink.sdi.Run object to access signals in the run. Then, modify the signal view
settings. This example specifies the line color and style for each signal. The view settings for the run
comprise the view settings for each signal and view settings specified for the plot area.

sig1 = getSignalByIndex(vdpRun,1);
sig2 = getSignalByIndex(vdpRun,2);

sig1.LineColor = [0 0 1];
sig1.LineDashed = "-.";

sig2.LineColor = [1 0 0];
sig2.LineDashed = ":";

Capture Snapshot from Simulation Data Inspector

Create a Simulink.sdi.CustomSnapshot object and use the Simulink.sdi.snapshot function
to programmatically capture a snapshot of the contents of the Simulation Data Inspector.

snap = Simulink.sdi.CustomSnapshot;

You can use properties of the Simulink.sdi.CustomSnapshot object to configure the plot settings,
such as the subplot layout and axis limits, and to plot signals. When you use a
Simulink.sdi.CustomSnapshot object to create your figure, these plot settings do not affect the
Simulation Data Inspector.

snap.Rows = 2;
snap.YRange = {[-2.25 2.25],[-3 3]};
plotOnSubPlot(snap,1,1,sig1,true)
plotOnSubPlot(snap,2,1,sig2,true)

Use the Simulink.sdi.snapshot function to generate the figure you specified in the properties of
the Simulink.sdi.CustomSnapshot object.

fig = Simulink.sdi.snapshot("From","custom","To","figure","Settings",snap);

8 Objects

8-426

Copy View Settings to New Simulation Run

Simulate the model again, with a different Mu value. Use the Simulation Data Inspector programmatic
interface to access the simulation data.

set_param("vdp/Mu","Gain","5")
sim("vdp");

runIndex2 = Simulink.sdi.getRunCount;
runID2 = Simulink.sdi.getRunIDByIndex(runIndex2);
run2 = Simulink.sdi.getRun(runID2);

To create a plot of the new output data that looks like the one you created in the previous step, you
can copy the view settings to the run in a single line of code using the
Simulink.sdi.copyRunViewSettings function. This function does not automatically update plot
settings in Simulink.sdi.CustomSnapshot objects, so specify the input that determines whether
the plot updates as false.

sigIDs = Simulink.sdi.copyRunViewSettings(runID,runID2,false);

Capture Snapshot of New Simulation Run

Use the Simulink.sdi.CustomSnapshot object to capture a snapshot of the new simulation run.
First, clear the signals from the subplots. Then, plot the signals from the new run and capture
another snapshot.

clearSignals(snap)
snap.YRange = {[-2.25 2.25],[-8 8]};

 snapshot

8-427

plotOnSubPlot(snap,1,1,sigIDs(1),true)
plotOnSubPlot(snap,2,1,sigIDs(2),true)

fig = snapshot(snap,"To","figure");

Input Arguments
snap — Custom snapshot settings
Simulink.sdi.CustomSnapshot object

Custom snapshot settings, specified as a Simulink.sdi.CustomSnapshot object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: snapshot(snap,To="image")

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'To','figure','Props',{'Name','My Data'}

To — Type of snapshot to create
"image" (default) | "figure" | "file" | "clipboard"

8 Objects

8-428

Type of snapshot to create, specified as:

• "image" — Create a figure and return the figure handle and an array of image data. When you
specify "To","image", the fig and image outputs both have value.

• "figure" — Create a figure and return the figure handle. When you specify "To","figure", the
fig output has value, and the image output is empty.

• "file" — Save to a PNG file with the name specified by the Filename name-value argument. If
you do not specify a Filename name-value argument, the file is named plots.png. When you
specify "To","file", the fig and image outputs are both empty.

• "clipboard" — Copy the plots to your system clipboard. From the clipboard, you can paste the
image into another program, such as Microsoft Word. When you specify "To","clipboard", the
fig and image outputs are both empty.

Example: "To","file"
Data Types: char | string

Filename — Name for image file
"plots.png" (default) | character array | string

Name for image file to store the snapshot when you specify "To","file", specified as a character
array or string.
Example: "Filename","MyImage.png"
Data Types: char | string

Props — Figure properties
cell array

Figure properties, specified as a cell array. To customize your figure, you can include settings for the
figure properties described in Figure Properties.
Example: "Props",{"Name","MyData","NumberTitle","off"}
Data Types: char | string

Output Arguments
fig — Figure handle
figure handle

Figure handle, specified as a figure handle. When a figure is not created with your specified options,
the fig output is empty.

image — Image data
array

Image data, returned as an array. The image output has value when you use
Simulink.sdi.snapshot without any input arguments or without a To name-value argument and
when you specify 'To','image'.

Version History
Introduced in R2018a

 snapshot

8-429

See Also
Objects
Simulink.sdi.CustomSnapshot | Simulink.sdi.Signal

Functions
plotOnSubPlot | clearSignals | plotComparison | Simulink.sdi.snapshot

Properties
Figure Properties

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

8 Objects

8-430

Simulink.sdi.DiffRunResult
Access run comparison results

Description
The Simulink.sdi.DiffRunResult object provides access to run comparison metadata and
comparison results. Use the getSignalByIndex function to access the metadata and comparison
results for each signal in the run comparison.

Creation
A Simulink.sdi.DiffRunResult object is created when you perform a comparison using the
Simulation Data Inspector.

When you compare data using the UI, use the Simulink.sdi.getCurrentComparison function to
access the results in a Simulink.sdi.DiffRunResult object.

Programmatic comparisons using the Simulink.sdi.compareRuns function or the compare
function return a DiffRunResult object.

Properties
MatlabVersion — Software version used to create object
character vector

This property is read-only.

Version of MATLAB used to create the DiffRunResult object, returned as a character vector.

RunID1 — Baseline run ID
integer

This property is read-only.

Run identifier for the comparison baseline run, returned as an integer.

RunID2 — ID for run to compare
integer

This property is read-only.

Run identifier of the run to compare, returned as an integer.

Count — Number of signals compared
integer

This property is read-only.

 Simulink.sdi.DiffRunResult

8-431

Number of signals that aligned between the two runs in the comparison, returned as an integer. For
more information on how signals are aligned for comparisons, see “Signal Alignment”.

DateCreated — Object creation date
datetime

This property is read-only.

Date and time the Simulink.sdi.DiffRunResult object was created, returned as a datetime
object.
Data Types: datetime

GlobalTolerance — Global tolerance values used for comparison
structure

This property is read-only.

Global tolerance values used for the run comparison, returned as a structure with fields:

• AbsTol — Global absolute tolerance used for the run comparison.
• RelTol — Global relative tolerance used for the run comparison.
• TimeTol — Global time tolerance used for the run comparison.

For more information about how tolerances are used and calculated for comparisons, see “Tolerance
Specification”.

Summary — Comparison results summary
structure

This property is read-only.

Comparison results summary, returned as a structure with a field for each Status a signal
comparison result could have. The value of each field indicates the number of signals in the run
comparison with the corresponding Status.

• WithinTolerance — Signal comparison completed, and all data points compared fell within the
specified tolerance.

• OutOfTolerance — Signal comparison completed, and some data points compared fell outside of
the specified tolerance.

• Unaligned — Signal from the baseline run did not align with a signal in the run to compare.
• Empty — Aligned signal in the baseline run or run to compare contains no data.
• EmptySynced — Synchronized signal in the baseline run or run to compare contains no data. An

empty synchronized signal can mean that the signals do not overlap or, if you specified the
intersection synchronization method, that they included none of the same time points.

• Canceled — Signal result not computed because the user canceled the comparison.
• Pending — Comparison is in progress and the signal result computation has not started.
• Processing — Signal result computation in progress.
• UnitsMismatch — The signal units in the baseline run and run to compare do not match.
• DataTypeMismatch — The signal data types in the baseline run and run to compare do not

match. Only results of comparisons configured to check signal data types can have this status.

8 Objects

8-432

• TimeMismatch — The signal time vectors in the baseline run and run to compare do not match.
Only results of comparisons configured to check signal time vectors can have this status.

• StartStopMismatch — The signal start and stop times in the baseline run and run to compare
do not match. Only results of comparisons configured to check signal start and stop times can
have this status.

• Unsupported — The Simulation Data Inspector comparison algorithm does not support this type
of signal. For example, signals with data types that lose precision when converted to double are
not supported.

For more information about alignment, tolerances, and synchronization, see “How the Simulation
Data Inspector Compares Data”. For more information about how to configure a comparison to check
additional metadata, see Simulink.sdi.compareRuns.

Options — Comparison configuration
n-by-2 cell array

This property is read-only.

Configuration options used for the comparison, returned as an n-by-2 cell array. Each row in the cell
array corresponds to an option used by the comparison. Every comparison requires that aligned
signal units match, so the Options property always includes a row to indicate that units must match.
Other possible configuration options correspond to these name-value pairs for the
Simulink.sdi.compareRuns function:

• DataType
• Time
• StartStop
• StopOnFirstMismatch

Status — Status of run comparison
Completed | Canceled | Stopped

This property is read-only.

Status of the run comparison, indicating how the comparison ended, returned as one of the following:

• Completed — Comparison finished computing all results
• Canceled — Comparison ended because the user canceled the comparison operation in the UI
• Stopped — Comparison ended because the comparison detected a mismatch and was configured

to stop on the first mismatch

StopReason — Signal result that stopped the run comparison
Simulink.sdi.DiffSignalResult

This property is read-only.

Signal result for signal comparison that caused the run comparison to stop without comparing
remaining signals, returned as a Simulink.sdi.DiffSignalResult object. The StopReason
property is empty when the comparison completes without detecting a mismatch and when the
comparison is not configured to stop on the first mismatch. You can configure a simulation to stop on
the first mismatch using the Simulink.sdi.compareRuns function and the
'StopOnFirstMismatch' name-value pair.

 Simulink.sdi.DiffRunResult

8-433

Object Functions
getResultByIndex Return signal comparison result
getResultsByName Return signal comparison results based on signal name
saveResult Save comparison results to an MLDATX file

Examples
Analyze Simulation Data Using Signal Tolerances

You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

qResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

alphaResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

8 Objects

8-434

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that
correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

alphaResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

Configure Comparisons to Check Metadata

You can use the Simulink.sdi.compareRuns function to compare signal data and metadata,
including data type and start and stop times. A single comparison may check for mismatches in one
or more pieces of metadata. When you check for mismatches in signal metadata, the Summary
property of the Simulink.sdi.DiffRunResult object may differ from a basic comparison because
the Status property for a Simulink.sdi.DiffSignalResult object can indicate the metadata
mismatch. You can configure comparisons using the Simulink.sdi.compareRuns function for
imported data and for data logged from a simulation.

 Simulink.sdi.DiffRunResult

8-435

This example configures a comparison of runs created from workspace data three ways to show how
the Summary of the DiffSignalResult object can provide specific information about signal
mismatches.

Create Workspace Data

The Simulink.sdi.compareRuns function compares time series data. Create data for a sine wave
to use as the baseline signal, using the timeseries format. Give the timeseries the name Wave
Data.

time = 0:0.1:20;
sig1vals = sin(2*pi/5*time);
sig1_ts = timeseries(sig1vals,time);
sig1_ts.Name = 'Wave Data';

Create a second sine wave to compare against the baseline signal. Use a slightly different time vector
and attenuate the signal so the two signals are not identical. Cast the signal data to the single data
type. Also name this timeseries object Wave Data. The Simulation Data Inspector comparison
algorithm will align these signals for comparison using the name.

time2 = 0:0.1:22;
sig2vals = single(0.98*sin(2*pi/5*time2));
sig2_ts = timeseries(sig2vals,time2);
sig2_ts.Name = 'Wave Data';

Create and Compare Runs in the Simulation Data Inspector

The Simulink.sdi.compareRuns function compares data contained in Simulink.sdi.Run
objects. Use the Simulink.sdi.createRun function to create runs in the Simulation Data
Inspector for the data. The Simulink.sdi.createRun function returns the run ID for each created
run.

runID1 = Simulink.sdi.createRun('Baseline Run','vars',sig1_ts);
runID2 = Simulink.sdi.createRun('Compare to Run','vars',sig2_ts);

You can use the Simulink.sdi.compareRuns function to compare the runs. The comparison
algorithm converts the signal data to the double data type and synchronizes the signal data before
computing the difference signal.

basic_DRR = Simulink.sdi.compareRuns(runID1,runID2);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see the
result of the comparison.

basic_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 1
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0

8 Objects

8-436

 Unsupported: 0

The difference between the signals is out of tolerance.

Compare Runs and Check for Data Type Match

Depending on your system requirements, you may want the data types for signals you compare to
match. You can use the Simulink.sdi.compareRuns function to configure the comparison
algorithm to check for and report data type mismatches.

dataType_DRR = Simulink.sdi.compareRuns(runID1,runID2,'DataType','MustMatch');
dataType_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 1
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

The result of the signal comparison is now DataTypeMismatch because the data for the baseline
signal is double data type, while the data for the signal compared to the baseline is single data
type.

Compare Runs and Check for Start and Stop Time Match

You can use the Simulink.sdi.compareRuns function to configure the comparison algorithm to
check whether the aligned signals have the same start and stop times.

startStop_DRR = Simulink.sdi.compareRuns(runID1,runID2,'StartStop','MustMatch');
startStop_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 1
 Unsupported: 0

 Simulink.sdi.DiffRunResult

8-437

The signal comparison result is now StartStopMismatch because the signals created in the
workspace have different stop times.

Alternatives
You can view and inspect comparison results using the Simulation Data Inspector UI. For more
information, see “Compare Simulation Data”.

For software tests, see the Simulink.sdi.constraints.MatchesSignal constraint.

Version History
Introduced in R2012b

See Also
Simulink.sdi.compareRuns | Simulink.sdi.DiffSignalResult | compare

Topics
“Inspect and Compare Data Programmatically”
“How the Simulation Data Inspector Compares Data”
“Compare Simulation Data”

8 Objects

8-438

getResultByIndex
Package: Simulink.sdi

Return signal comparison result

Syntax
diffSig = getResultByIndex(diffRes,index)

Description
diffSig = getResultByIndex(diffRes,index) returns the
Simulink.sdi.DiffSignalResult object diffSig at the specified index in the
Simulink.sdi.DiffRunResult object, diffRes.

Examples

Analyze Simulation Data Using Signal Tolerances

You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

qResult.Status

ans =
 ComparisonSignalStatus enumeration

 getResultByIndex

8-439

 OutOfTolerance

alphaResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that
correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

alphaResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

8 Objects

8-440

Input Arguments
diffRes — Run comparison results
Simulink.sdi.DiffRunResult object

Run comparison results that contain the signal result you want to access, specified as a
Simulink.sdi.DiffRunResult object.

index — Index of signal in run comparison results
integer

Index of signal in run comparison results, specified as an integer.
Example: 2

Output Arguments
diffSig — Comparison results for signal at specified index
Simulink.sdi.DiffSignalResult object

Comparison results for the signal at the specified index, returned as a
Simulink.sdi.DiffSignalResult object.

Version History
Introduced in R2012b

See Also
Simulink.sdi.DiffRunResult | Simulink.sdi.DiffSignalResult | getResultsByName

Topics
“Inspect and Compare Data Programmatically”

 getResultByIndex

8-441

getResultsByName
Package: Simulink.sdi

Return signal comparison results based on signal name

Syntax
diffSig = getResultsByName(diffRes,sigName)

Description
diffSig = getResultsByName(diffRes,sigName) returns the signal comparison result with
name sigName in the run comparison results diffRes.

The output of the function getResultsByName depends on the signal that is being compared.

• If the result that corresponds to sigName is a real, scalar signal, then diffSig is a
Simulink.sdi.DiffSignalResult object.

• If the result that corresponds to sigName is a complex signal, a multidimensional signal, or a bus,
then diffSig is an array of Simulink.sdi.DiffSignalResult objects. The size of the array
corresponds to characteristics of the comparison result.

Examples

Get Comparison Results By Name

Load the Simulation Data Inspector session file getResultsByNameData. The file contains data
logged from two simulations of the model getResultsByNameModel, which logs data for five
signals.

Simulink.sdi.load("getResultsByNameData.mldatx");

Access the run IDs for the two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
baselineID = runIDs(end-1);
comparedToID = runIDs(end);

Compare the two runs.

diffResult = Simulink.sdi.compareRuns(baselineID,comparedToID);

Use the function getResultsByName to access comparison results for the signal ScalarOut.

compareSig = getResultsByName(diffResult,"ScalarOut")

compareSig =
 DiffSignalResult with properties:

 Name: 'ScalarOut'

8 Objects

8-442

 Status: WithinTolerance
 AlignBy: 'Path'
 SignalID1: 6981
 SignalID2: 6901
 MaxDifference: 0
 Sync1: [1x1 timeseries]
 Sync2: [1x1 timeseries]
 Diff: [1x1 timeseries]

Get Comparison Results for Complex Signal

Load the Simulation Data Inspector session file getResultsByNameData. The file contains data
logged from two simulations of the model getResultsByNameModel, which logs data for five
signals, including the complex signal ComplexOut.

Simulink.sdi.load("getResultsByNameData.mldatx");

Access the run IDs for the two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
baselineID = runIDs(end-1);
comparedToID = runIDs(end);

Compare the two runs.

diffResult = Simulink.sdi.compareRuns(baselineID,comparedToID);

Use the function getResultsByName to access comparison results for the complex signal
ComplexOut.

compareComplex = getResultsByName(diffResult,"ComplexOut")

compareComplex=1×2 object
 1x2 DiffSignalResult array with properties:

 Name
 Status
 AlignBy
 SignalID1
 SignalID2
 MaxDifference
 Sync1
 Sync2
 Diff
 Options

You can also use the function getResultsByName to access comparison results for the real or
imaginary parts of the signal by specifying (real) or (imag) as part of the signal name.

compareComplexReal = getResultsByName(diffResult,"ComplexOut (real)")

compareComplexReal =
 DiffSignalResult with properties:

 getResultsByName

8-443

 Name: 'ComplexOut (real)'
 Status: WithinTolerance
 AlignBy: 'Path'
 SignalID1: 3681
 SignalID2: 3601
 MaxDifference: 0
 Sync1: [1x1 timeseries]
 Sync2: [1x1 timeseries]
 Diff: [1x1 timeseries]

Get Comparison Results for Nonscalar Signal

Load the Simulation Data Inspector session file getResultsByNameData. The file contains data
logged from two simulations of the model getResultsByNameModel, which logs data for five
signals, including two multidimensional signals: SmallMux and LargeMux.

Simulink.sdi.load("getResultsByNameData.mldatx");

Access run IDs for the two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
baselineID = runIDs(end-1);
comparedToID = runIDs(end);

Compare the two runs.

diffResult = Simulink.sdi.compareRuns(baselineID,comparedToID);

Use the function getResultsByName to access comparison results for LargeMux and SmallMux. By
default, when you compare runs that contain signals with multidimensional sample values, the
Simulation Data Inspector expands the signal to channels and compares the channels. For more
information, see “Analyze Multidimensional Signal Data”.

compareLargeMux = getResultsByName(diffResult,"LargeMux")

compareLargeMux=1×5 object
 1x5 DiffSignalResult array with properties:

 Name
 Status
 AlignBy
 SignalID1
 SignalID2
 MaxDifference
 Sync1
 Sync2
 Diff
 Options

compareSmallMux = getResultsByName(diffResult,"SmallMux")

compareSmallMux=1×2 object
 1x2 DiffSignalResult array with properties:

8 Objects

8-444

 Name
 Status
 AlignBy
 SignalID1
 SignalID2
 MaxDifference
 Sync1
 Sync2
 Diff
 Options

You can access comparison results for an element within a multidimensional signal using the index of
the element within the logged signal. For example, get comparison results for the fourth element of
the LargeMux signal.

compareElement = compareLargeMux(4)

compareElement =
 DiffSignalResult with properties:

 Name: 'LargeMux(4)'
 Status: WithinTolerance
 AlignBy: 'Path'
 SignalID1: 6461
 SignalID2: 6465
 MaxDifference: 0
 Sync1: [1x1 timeseries]
 Sync2: [1x1 timeseries]
 Diff: [1x1 timeseries]

Get Comparison Results for Bus

Load the Simulation Data Inspector session file getResultsByNameData. The file contains data
logged from two simulations of the model getResultsByNameModel, which logs data for five
signals, including a bus.

Simulink.sdi.load("getResultsByNameData.mldatx");

Access the run IDs for the two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
baselineID = runIDs(end-1);
comparedToID = runIDs(end);

Compare the two runs.

diffResult = Simulink.sdi.compareRuns(baselineID,comparedToID);

Use the function getResultsByName to access the comparison results for BusOut.

compareBus = getResultsByName(diffResult,"BusOut")

compareBus=1×4 object
 1x4 DiffSignalResult array with properties:

 getResultsByName

8-445

 Name
 Status
 AlignBy
 SignalID1
 SignalID2
 MaxDifference
 Sync1
 Sync2
 Diff
 Options

You can also get comparison results for bus elements. Use the function getResultsByName to
access the comparison results for the signal Constant 4 inside the bus BusOut.

compareConst4 = getResultsByName(diffResult,"BusOut.Constant_4")

compareConst4 =
 DiffSignalResult with properties:

 Name: 'BusOut.Constant_4'
 Status: WithinTolerance
 AlignBy: 'Path'
 SignalID1: 1993
 SignalID2: 1913
 MaxDifference: 0
 Sync1: [1x1 timeseries]
 Sync2: [1x1 timeseries]
 Diff: [1x1 timeseries]

Input Arguments
diffRes — Run comparison results
Simulink.sdi.DiffRunResult object

Run comparison results that contain the signal result you want to access, specified as a
Simulink.sdi.DiffRunResult object.

sigName — Name of signal result in run comparison results
string | character vector

Name of the signal in the run comparison results, specified as a character vector or string.

To access a bus element, specify the path to the element through the hierarchy of the bus. For
example, to access comparison results for the signal Sine inside the bus BusOut, specify sigName as
"BusOut.Sine".

sineRes = getResultsByName(diffRes,"BusOut.Sine");

To access only the real or imaginary result for a complex signal, append the signal name with either
(real) or (imag). For example, to access the comparison results for the imaginary part of the
complex signal ComplexOut, specify sigName as "ComplexOut (imag)".

imagRes = getResultsByName(diffRes,"ComplexOut (imag)");

8 Objects

8-446

Data Types: char | string

Output Arguments
diffSig — Comparison results for specified name
Simulink.sdi.DiffSignalResult object | array of Simulink.sdi.DiffSignalResult objects

Comparison results for specified name, returned as a Simulink.sdi.DiffSignalResult object or
an array of Simulink.sdi.DiffSignalResult objects.

The type of output returned by getResultsByName depends on the sigName input.

sigName Input diffSig Result
Uniquely named scalar signal Simulink.sdi.DiffSignalResult object
One of N scalar signals with the same name 1×N array of

Simulink.sdi.DiffSignalResult objects
Complex signal 1×2 array of

Simulink.sdi.DiffSignalResult objects
that contain the real and imaginary results

Vector or matrix signal with N elements 1×N array of
Simulink.sdi.DiffSignalResult objects

Bus 1×N array of
Simulink.sdi.DiffSignalResult objects,
where N is the number of elements in the bus

Note If you specify a name for sigName that is not in the run comparison results, then the function
returns an empty array.

Version History
Introduced in R2022b

See Also
Simulink.sdi.DiffRunResult | Simulink.sdi.DiffSignalResult | getResultByIndex

Topics
“Inspect and Compare Data Programmatically”

 getResultsByName

8-447

saveResult
Package: Simulink.sdi

Save comparison results to an MLDATX file

Syntax
saveResult(DiffRes,fileName)
saveResult(DiffRes,fileName,saveRuns)

Description
saveResult(DiffRes,fileName) saves the comparison results in the
Simulink.sdi.DiffRunResult object, DiffRes, and original run data to the MLDATX file,
fileName. You can load the MLDATX file containing the runs and comparison results into the
Simulation Data Inspector using the Simulink.sdi.load or open functions.

saveResult(DiffRes,fileName,saveRuns) saves the comparison results with or without the
original run data, depending on the specified value for saveRuns.

Examples

Compare Runs with Global Tolerance

You can specify global tolerance values to use when comparing two simulation runs. Global tolerance
values are applied to all signals within the run. This example shows how to specify global tolerance
values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx');

To access the run data to compare, use the Simulink.sdi.getAllRunIDs function to get the run
IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

Use the Simulink.sdi.compareRuns function to compare the runs. Specify a global relative
tolerance value of 0.2 and a global time tolerance value of 0.5.

runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether
signals were within the tolerance values or out of tolerance.

runResult.Summary

8 Objects

8-448

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 3
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

All three signal comparison results fell within the specified global tolerance.

You can save the comparison results to an MLDATX file using the saveResult function.

saveResult(runResult,'InputFilterComparison');

Input Arguments
DiffRes — Run comparison results
Simulink.sdi.DiffRunResult object

Run comparison results that contain the data you want to save, specified as a
Simulink.sdi.DiffRunResult object.

fileName — MLDATX file name
string | character vector

Name of the MLDATX file where you want to save the results, specified as a string or character array.
Example: 'ComparisonResults'

saveRuns — Whether to save original run data
1 or true (default) | 0 or false

Whether to save the original run data for the compared runs, specified as a logical 1 (true) or 0
(false). By default, the saveResult function saves the original run data along with the comparison
results.

Version History
Introduced in R2020a

See Also
Simulink.sdi.compareRuns | Simulink.sdi.DiffRunResult | Simulink.sdi.load |
Simulink.sdi.Run | Simulink.sdi.save | Simulink.sdi.view

Topics
“Compare Simulation Data”
“Save and Share Simulation Data Inspector Data and Views”

 saveResult

8-449

Simulink.sdi.DiffSignalResult
Access signal comparison results

Description
When you compare runs or signals using the Simulation Data Inspector, the results are returned
as either a Simulink.sdi.DiffSignalResult object or a Simulink.sdi.DiffRunResult object
that contains one or more Simulink.sdi.DiffSignalResult objects. The DiffSignalResult
object contains the data and metadata for signal comparison results, such as the difference signal,
tolerance data, and the synchronized signal data.

Creation
When you use the Simulation Data Inspector to compare runs or signals, you can access signal
comparison results in a Simulink.sdi.DiffSignalResult object two ways:

• By using the Simulink.sdi.compareSignals function to compare signals.
• By using the getResultByIndex function to access DiffSignalResult objects in

Simulink.sdi.DiffRunResult objects.

Properties
Name — Baseline signal name
character vector

This property is read-only.

Baseline signal name, returned as a character vector. When comparison results are complex, the
name of the DiffSignalResult object that contains the real data is appended with (real), and
the name of the DiffSignalResult object that contains the imaginary data is appended with
(imag).

Status — Comparison result signal status
WithinTolerance | OutOfTolerance | Unaligned | Pending | Processing | ...

This property is read-only.

Status of the signal comparison corresponding to the DiffSignalResult object, returned as one of
the following options. The status can indicate where a given signal comparison is in the comparison
process during a long comparison, or it can indicate information about the result of the signal
comparison.

• WithinTolerance — Signal comparison completed, and all data points compared fell within the
specified tolerance.

• OutOfTolerance — Signal comparison completed, and some data points compared fell outside of
the specified tolerance.

8 Objects

8-450

• Unaligned — Signal from the baseline run did not align with a signal in the run to compare.
• Empty — Aligned signal in the baseline run or run to compare contains no data.
• EmptySynced — Synchronized signal in the baseline run or run to compare contains no data. An

empty synchronized signal can mean that the signals do not overlap or, if you specified the
intersection synchronization method, that they included none of the same time points.

• Canceled — Signal result not computed because the user canceled the comparison or the
algorithm ended the comparison before computing this signal result.

• Pending — Comparison is in progress and the signal result computation has not started.
• Processing — Signal result computation in progress.
• UnitsMismatch — The signal units in the baseline run and run to compare do not match.
• DataTypeMismatch — The signal data types in the baseline run and run to compare do not

match. Only results of comparisons configured to check signal data types can have this status.
• TimeMismatch — The signal time vectors in the baseline run and run to compare do not match.

Only results of comparisons configured to check signal time vectors can have this status.
• StartStopMismatch — The signal start and stop times in the baseline run and run to compare

do not match. Only results of comparisons configured to check signal start and stop times can
have this status.

• Unsupported — The Simulation Data Inspector comparison algorithm does not support this type
of signal. For example, signals with data types that lose precision when converted to double are
not supported.

For more information about alignment, tolerances, and synchronization, see “How the Simulation
Data Inspector Compares Data”. For more information about configuring comparisons to check for
additional metadata, see Simulink.sdi.compareRuns.

AlignBy — Property by which signals aligned for comparison
character vector

This property is read-only.

Property by which signals aligned in a run comparison, returned as a character vector. When the
DiffSignalResult object was created from a signal comparison, the AlignBy property is empty.
For more information about how run comparisons align signals, see “How the Simulation Data
Inspector Compares Data”.

SignalID1 — Baseline signal ID
integer

This property is read-only.

Unique signal identifier for the baseline signal in the comparison, returned as an integer.

SignalID2 — Signal ID of the signal to compare
integer

This property is read-only.

Unique signal identifier for the signal to compare against the baseline signal, returned as an integer.

MaxDifference — Maximum difference
double

 Simulink.sdi.DiffSignalResult

8-451

This property is read-only.

Maximum difference between the two comparison signals, returned as a double.

Sync1 — Synchronized Baseline signal
timeseries

This property is read-only.

Synchronized baseline signal, returned as a timeseries object. For more information about
synchronization, see “How the Simulation Data Inspector Compares Data”.

Sync2 — Synchronized Compare to signal
timeseries

This property is read-only.

Synchronized signal to compare, returned as a timeseries object. For more information about
synchronization, see “How the Simulation Data Inspector Compares Data”.

Diff — Difference signal
timeseries

This property is read-only.

Difference signal resulting from the comparison, returned as a timeseries object.

Examples
Compare Two Signals in the Same Run

You can use the Simulation Data Inspector programmatic interface to compare signals within a single
run. This example compares the input and output signals of an aircraft longitudinal controller.

First, load the session that contains the data.

Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.Run.getLatest function to access the latest run in the data.

aircraftRun = Simulink.sdi.Run.getLatest;

Then, you can use the Simulink.sdi.getSignalsByName function to access the Stick signal,
which represents the input to the controller, and the alpha, rad signal that represents the output.

stick = getSignalsByName(aircraftRun,'Stick');
alpha = getSignalsByName(aircraftRun,'alpha, rad');

Before you compare the signals, you can specify a tolerance value to use for the comparison.
Comparisons use tolerance values specified for the baseline signal in the comparison, so set an
absolute tolerance value of 0.1 on the Stick signal.

stick.AbsTol = 0.1;

Now, compare the signals using the Simulink.sdi.compareSignals function. The Stick signal is
the baseline, and the alpha, rad signal is the signal to compare against the baseline.

8 Objects

8-452

comparisonResults = Simulink.sdi.compareSignals(stick.ID,alpha.ID);
match = comparisonResults.Status

match =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison result is out of tolerance. You can use the Simulink.sdi.view function to open the
Simulation Data Inspector to view and analyze the comparison results.

Alternatives
You can view and inspect comparison results using the Simulation Data Inspector UI. For more
information, see “Compare Simulation Data”.

Version History
Introduced in R2012b

See Also
Functions
Simulink.sdi.compareRuns | Simulink.sdi.compareSignals | getResultByIndex

Objects
Simulink.sdi.DiffRunResult

Tools
Simulation Data Inspector

Topics
“Inspect and Compare Data Programmatically”
“How the Simulation Data Inspector Compares Data”
“Compare Simulation Data”

 Simulink.sdi.DiffSignalResult

8-453

Simulink.sdi.Run
Access run signals and metadata

Description
The Simulink.sdi.Run object contains run metadata and allows you to access the
Simulink.sdi.Signal objects that contain data and metadata for the signals in the run. You can
also use a Simulink.sdi.Run object to import data into the Simulation Data Inspector from the
workspace or a file.

Creation
The Simulation Data Inspector creates Simulink.sdi.Run objects when you import data or
simulate a model that logs data. You can access a Run object in the Simulation Data Inspector three
ways:

• When you want to access a run that corresponds to a specific run ID, use the
Simulink.sdi.getRun function.

Tip Use the Simulink.sdi.getAllRunIDs function to get the run IDs for all the runs in the
Simulation Data Inspector.

• When you want to access the most recently created run in the Simulation Data Inspector, use the
Simulink.sdi.Run.getLatest function.

• When you want to access the run that corresponds to the in-progress or most recently completed
simulation of a model, use the Simulink.sdi.getCurrentSimulationRun function.

You can also programmatically create a Simulink.sdi.Run object to import data into the
Simulation Data Inspector.

• Create an empty run in the Simulation Data Inspector using the Simulink.sdi.Run.create
function.

• Create an empty run in the Simulation Data Inspector or import data into the Simulation Data
Inspector using the Simulink.sdi.createRun.

Tip Use the add function or the Simulink.sdi.addToRun function to import data into an empty
Run object.

Properties
ID — Run ID
integer

This property is read-only.

Unique numerical identification for the run, returned as an integer.

8 Objects

8-454

Name — Run name
character vector | string

Run name, specified as a character vector or string.

By default, the Name property is empty when you use the Simulink.sdi.Run.create function to
create a run.

You can specify the run name when you use the Simulink.sdi.createRun function to create a run.

When you create a run by simulating a model that logs data, the run name is generated according to
the run-naming rule in the Simulation Data Inspector. You can modify the run-naming rule in the
Simulation Data Inspector in the UI or by using the Simulink.sdi.setRunNamingRule function.
Example: 'Run 1: vdp'

Description — Run description
[] (default) | character vector | string

Description of the run, specified as a character vector or string. By default, Description is empty.
Use the Description property to add notes about the significance of the data within the run, like
the test or simulation conditions used to create the data.
Example: 'Initial simulation'

Tag — Information tag
[] (default) | character vector | string

Tag for additional run information, specified as a character vector or string. By default, Tag is empty.
You can use the Tag property to attach additional information to the Run object. For example, you
could use the Tag property to include parameter values used for the simulation that created the run
in the Run object metadata.
Example: 'Gain = 2'

DateCreated — Run creation timestamp
datetime object

Date and time the run was created, returned as a datetime object.
Example: 07-Dec-2019 13:55:25
Data Types: datetime

RunIndex — Index of run in Simulation Data Inspector
integer

This property is read-only.

Index of the run in the Simulation Data Inspector when the run was created, returned as an integer.
The RunIndex matches the run number in the run name when you use the run index as part of the
run-naming rule.

If you delete runs from the Simulation Data Inspector, the value of the RunIndex property may not
match the index of the run ID in the vector returned by the Simulink.sdi.getAllRunIDs function.

SignalCount — Number of signals in run
integer

 Simulink.sdi.Run

8-455

This property is read-only.

Number of signals in the run, returned as an integer.

Model — Model simulated to create run
character vector

Name of the model simulated to create the run, returned as a character vector. The Model property is
empty for runs created by importing data into the Simulation Data Inspector.

SimMode — Simulation mode
character vector

Simulation mode used in the simulation that created the run, returned as a character vector. The
SimMode property is empty for runs created by importing data into the Simulation Data Inspector.

StartTime — Run start time
scalar

First time point shared by all signals in the run, returned as a scalar.

StopTime — Run stop time
scalar

Last time point shared by all signals in the run, returned as a scalar.

SLVersion — Software version used for model simulation that created run
character vector

Version of Simulink used for the simulation that created the run, returned as a character vector. The
SLVersion property is empty for runs created by importing data into the Simulation Data Inspector.

ModelVersion — Version of model simulated to create run
character vector

Version of the model that was simulated to create the run, returned as a character vector. The version
of a model is stored in its model properties. The ModelVersion property is empty for runs created
by importing data into the Simulation Data Inspector.

UserID — System account
character vector

System account used to perform the simulation that created the run, returned as a character vector.
The UserID property is empty for runs created by importing data into the Simulation Data Inspector.

MachineName — Name of machine used for simulation
character vector

Name of the machine used to perform the simulation that created the run, returned as a character
vector. The MachineName property is empty for runs created by importing data into the Simulation
Data Inspector.

Platform — Operating system on machine used for simulation
character vector

8 Objects

8-456

Operating system on the machine used to perform the simulation, returned as a character vector. The
Platform property is empty for runs that do not correspond to a simulation.
Example: 'PCWIN64'

TaskName — Task name
[] (default) | character vector

Name of the simulation task that corresponds to the run, returned as a character vector. The
TaskName property is empty unless the run was created using Parallel Computing Toolbox workers.

SolverType — Type of solver used in simulation that created run
'Variable-Step' | 'Fixed-Step'

Type of solver used in the simulation that created the run, returned as 'Variable-Step' or
'Fixed-Step'. The SolverType property is empty for runs created by importing data into the
Simulation Data Inspector.

SolverName — Name of solver used in simulation that created run
character vector

Name of the solver used in the simulation that created the run, returned as a character vector. The
SolverName property is empty for runs created by importing data into the Simulation Data
Inspector.
Example: ode45

SolverStepSize — Solver step size used in simulation
character vector

Step size used by the solver during the simulation, returned as a character vector. If the simulation
used a fixed-step solver, the SolverStepSize property indicates the fixed step size used in the
simulation. If the simulation used a variable-step solver, the SolverStepSize property indicates the
maximum step size used in the simulation.
Example: '0.4'

Status — Simulation status
character vector

Simulation status, returned as a character vector. When the simulation is running, the Status
property is 'Running'. When a simulation is paused or completes, the Status property takes the
value from the StopEvent field of the Simulink.SimulationMetadata object StopEvent
property. The StopEvent property has one of these values:

• ReachedStopTime — The simulation completed with no reported errors, not including errors
reported in the StopFcn callback, which executes after the simulation stops.

• ModelStop — A block or solver stopped the simulation before the simulation stop time.
• StopCommand — A Stop button press or set_param function call ended the simulation.
• DiagnosticError — A reported error ended the simulation.
• KeyboardControlC — A Ctrl+C keyboard entry ended the simulation.
• PauseCommand — A Pause button press or set_param function call paused the simulation.
• ConditionalPause — A conditional breakpoint paused the simulation.

 Simulink.sdi.Run

8-457

• PauseTime — A specified pause time paused the simulation.
• StepForward — The simulation paused after stepping forward while stepping through a

simulation.
• StepBackward — The simulation paused after stepping backward while stepping through a

simulation.
• TimeOut — The simulation stopped after the simulation execution time exceeded the timeout time
specified using the 'TimeOut' name-value pair for the sim function.

StopEventSource — Block that issued stop event
Simulink.SimulationData.BlockPath

Block that issued the stop event that stopped the simulation, returned as a
Simulink.SimulationData.BlockPath object.

StopEventDescription — Translated description of simulation stop
character vector

Translated description of the simulation stop, returned as a character vector. The
StopEventDescription includes a description of the stop event and the associated simulation
time, if applicable. The StopEventDescription property takes its value from the
StopEventDescription field of the Simulink.SimulationMetadata object ExecutionInfo
property.
Example: 'Pause command issued at time 100'

ExecutionErrors — Errors that occurred during simulation
character vector

Errors that occurred during simulation, returned as a character vector.

ExecutionWarnings — Warnings that occurred during simulation
character vector

Warnings that occurred during simulation, returned as a character vector.

ModelInitializationTime — Time to initialize model for simulation that created run
double

Time required to initialize the model for the simulation that created the run, returned as a double.
The ModelInitializationTime property is empty for runs created by importing data into the
Simulation Data Inspector.

ModelExecutionTime — Execution time for simulation that created run
double

Execution time for the simulation that created the run, returned as a double. The
ModelExecutionTime property is empty for runs created by importing data into the Simulation
Data Inspector.

ModelTerminationTime — Time to terminate simulation that created run
double

Time to terminate the simulation that created the run, returned as a double. The
ModelTerminationTime property is empty for runs created by importing data into the Simulation
Data Inspector.

8 Objects

8-458

ModelTotalElapsedTime — Total simulation time for simulation that created run
double

Total simulation time for the simulation that created the run, returned as a double. The
ModelTotalElapsedTime property is empty for runs created by importing data into the Simulation
Data Inspector.

UserString — User-specified string
character vector

User-specified string that corresponds to the simulation, returned as a character vector. Often, the
UserString provides a brief description of the simulation. You specify the UserString for a
simulation in the Simulink.SimulationInput object for the simulation.

Object Functions
add Import data into existing run in Simulation Data Inspector using

Simulink.sdi.Run object
export Export run to base workspace or file
getAllSignalIDs Get all signal IDs for signals in Simulink.sdi.Run object
getAllSignals Get all signals in Simulink.sdi.Run object
getDatasetRef Create a Simulink.sdi.DatasetRef object for a run
getSignalByIndex Get signal in Simulink.sdi.Run object by index
getSignalIDByIndex Get signal ID for signal at specified index in Simulink.sdi.Run object
getSignalIDsByName Get signal IDs for signals inside Simulink.sdi.Run object using signal name
getSignalsByName Access signals in a Simulink.sdi.Run object using signal name
isValidSignalID Check whether signal ID corresponds to signal in Simulink.sdi.Run object

Examples
Plot Signals from Simulation Run

This example demonstrates how to access the Simulink.sdi.Run object for a Simulation Data
Inspector run created by logging signals. From the Simulink.sdi.Run object you can get
Simulink.sdi.Signal objects that contain the logged signal data and metadata. You can use the
Signal objects and the plotOnSubPlot function to plot the data in the Simulation Data Inspector.

Create a Simulation Run and Access the Run Object

The ex_vdp model logs two signals. To create a simulation run containing the logged data, simulate
the model.

sim('ex_vdp');

The Simulation Data Inspector keeps track of runs by assigning a unique numeric run ID to each run
created by simulation, importing data, or opening a session. To access the run object for the
simulation you just performed, use the Simulink.sdi.getAllRunIDs function and take the last
run ID in the returned vector.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

Once you have the run ID for the run, you can use the Simulink.sdi.getRun function to get the
Simulink.sdi.Run object that corresponds to the run. You can use the Run object to check the
metadata associated with the run, including the number of signals in the run.

 Simulink.sdi.Run

8-459

vdpRun = Simulink.sdi.getRun(runID);

vdpRun.SignalCount

ans = int32
 2

Plot Data Using Signal Objects

Use the getSignalByIndex function to access signals from the Run object, vdpRun.

signal1 = getSignalByIndex(vdpRun,1);
signal2 = getSignalByIndex(vdpRun,2);

Use the Simulink.sdi.setSubPlotLayout function to specify a 2-by-1 layout.

Simulink.sdi.setSubPlotLayout(2,1)

Before plotting the data, use the Simulink.sdi.clearAllSubPlots function to clear any data that
is already plotted.

Simulink.sdi.clearAllSubPlots

Plot one signal on each subplot. To plot signals on the first subplot, you can set the checked property
for the signal. To plot signals on subplots other than the first subplot, use the plotOnSubPlot
function.

signal1.Checked = true;
plotOnSubPlot(signal2,2,1,true);

View the Plotted Data

To view the plots you just created, open the Simulation Data Inspector using the
Simulink.sdi.view function.

8 Objects

8-460

Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the Simulation Data
Inspector.

Create Data for the Run

Create timeseries objects to contain data for a sine signal and a cosine signal. Give each
timeseries object a descriptive name.

time = linspace(0,20,100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Add Data

Use the Simulink.sdi.view function to open the Simulation Data Inspector.

Simulink.sdi.view

To import data into the Simulation Data Inspector from the workspace, create a Simulink.sdi.Run
object using the Simulink.sdi.Run.create function. Add information about the run to its
metadata using the Name and Description properties of the Run object.

 Simulink.sdi.Run

8-461

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = 'Sinusoids';
sinusoidsRun.Description = 'Sine and cosine signals with different frequencies';

Use the add function to add the data you created in the workspace to the empty run.

add(sinusoidsRun,'vars',sine_ts,cos_ts);

Plot the Data in the Simulation Data Inspector

Use the getSignalByIndex function to access Simulink.sdi.Signal objects that contain the
signal data. You can use the Simulink.sdi.Signal object properties to specify the line style and
color for the signal and plot it in the Simulation Data Inspector. Specify the LineColor and
LineDashed properties for each signal.

sine_sig = getSignalByIndex(sinusoidsRun,1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';

cos_sig = sinusoidsRun.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.LineDashed = '--';

Use the Simulink.sdi.setSubPlotLayout function to configure a 2-by-1 subplot layout in the
Simulation Data Inspector plotting area. Then use the plotOnSubplot function to plot the sine
signal on the top subplot and the cosine signal on the lower subplot.

Simulink.sdi.setSubPlotLayout(2,1);

plotOnSubPlot(sine_sig,1,1,true);
plotOnSubPlot(cos_sig,2,1,true);

Close the Simulation Data Inspector and Save Your Data

When you have finished inspecting the plotted signal data, you can close the Simulation Data
Inspector and save the session to an MLDATX file.

Simulink.sdi.close('sinusoids.mldatx')

Access Data from a Parallel Simulation

This example executes parallel simulations of the model slexAircraftExample with different input
filter time constants and shows several ways to access the data using the Simulation Data Inspector
programmatic interface.

Setup

Start by ensuring the Simulation Data Inspector is empty and Parallel Computing Toolbox support is
configured to import runs created on local workers automatically. Then, create a vector of filter
parameter values to use in each simulation.

% Make sure the Simulation Data Inspector is empty, and PCT support is
% enabled.
Simulink.sdi.clear
Simulink.sdi.enablePCTSupport('local')

% Define Ts values
Ts_vals = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

8 Objects

8-462

Initialize Parallel Workers

Use gcp to create a pool of local workers to run parallel simulations if you don't already have one. In
an spmd code block, load the slexAircraftExample model and select signals to log. To avoid data
concurrency issues using sim in parfor, create a temporary directory for each worker to use during
simulations.

p = gcp;

Starting parallel pool (parpool) using the 'local' profile ...
connected to 4 workers.

spmd

 % Load system and select signals to log
 load_system('slexAircraftExample')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot', 1, 'on')
 Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model', 4, 'on')

 % Create temporary directory on each worker
 workDir = pwd;
 addpath(workDir)
 tempDir = tempname;
 mkdir(tempDir)
 cd(tempDir)

end

Run Parallel Simulations

Use parfor to run the seven simulations in parallel. Select the value for Ts for each simulation, and
modify the value of Ts in the model workspace. Then, run the simulation and build an array of
Simulink.sdi.WorkerRun objects to access the data with the Simulation Data Inspector. After the
parfor loop, use another spmd segment to remove the temporary directories from the workers.

parfor index = 1:7

 % Select value for Ts
 Ts_val = Ts_vals(index);

 % Change the filter time constant and simulate
 modelWorkspace = get_param('slexAircraftExample','modelworkspace');
 modelWorkspace.assignin('Ts',Ts_val)
 sim('slexAircraftExample')

 % Create a worker run for each simulation
 workerRun(index) = Simulink.sdi.WorkerRun.getLatest

end

spmd

 % Remove temporary directories
 cd(workDir)
 rmdir(tempDir, 's')
 rmpath(workDir)

end

 Simulink.sdi.Run

8-463

Get Dataset Objects from Parallel Simulation Output

The getDataset method puts the data from a WorkerRun into a Dataset object so you can easily
post-process.

ds(7) = Simulink.SimulationData.Dataset;

for a = 1:7
 ds(a) = workerRun(a).getDataset;
end
ds(1)

ans =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 __________ __
 1 [1x1 Signal] alpha, rad ...rcraftExample/Aircraft Dynamics Model
 2 [1x1 Signal] Stick slexAircraftExample/Pilot

 - Use braces { } to access, modify, or add elements using index.

Get DatasetRef Objects from Parallel Simulation Output

For big data workflows, use the getDatasetRef method to reference the data associated with the
WorkerRun.

for b = 1:7
 datasetRef(b) = workerRun(b).getDatasetRef;
end

datasetRef(1)

ans =
 DatasetRef with properties:

 Name: 'Run 3: slexAircraftExample'
 Run: [1×1 Simulink.sdi.Run]
 numElements: 2

Process Parallel Simulation Data in the Simulation Data Inspector

You can also create local Run objects to analyze and visualize your data using the Simulation Data
Inspector API. This example adds a tag indicating the filter time constant value for each run.

for c = 1:7

 Runs(c) = workerRun(c).getLocalRun;
 Ts_val_str = num2str(Ts_vals(c));
 desc = strcat('Ts = ', Ts_val_str);
 Runs(c).Description = desc;
 Runs(c).Name = strcat('slexAircraftExample run Ts=', Ts_val_str);

end

8 Objects

8-464

Clean Up Worker Repositories

Clean up the files used by the workers to free up disk space for other simulations you want to run on
your worker pool.

Simulink.sdi.cleanupWorkerResources

Alternatives
You can view run metadata and import data using the Simulation Data Inspector UI. For more
information, see “View Data in the Simulation Data Inspector”.

Version History
Introduced in R2012b

See Also
Objects
Simulink.sdi.Signal | Simulink.sdi.WorkerRun

Functions
Simulink.sdi.getRun | Simulink.sdi.createRun | Simulink.sdi.getRunIDByIndex |
Simulink.sdi.setRunNamingRule | Simulink.sdi.addToRun | getLocalRun

Topics
“Inspect and Compare Data Programmatically”

 Simulink.sdi.Run

8-465

add
Package: Simulink.sdi

Import data into existing run in Simulation Data Inspector using Simulink.sdi.Run object

Syntax
add(runObj,var)
add(runObj,'vars',var,var2,...,varn)
add(runObj,'namevalue',sourceNames,sigValues)

add(runObj,'file',filename)
add(runObj,'file',filename,Name=Value)

Description
Import Data from Workspace

add(runObj,var) imports the data in the variable var into the Simulation Data Inspector by adding
a signal to the run that corresponds to the specified Simulink.sdi.Run object.

To import data into a new run, use the Simulink.sdi.Run.create function or the
Simulink.sdi.createRun function.

add(runObj,'vars',var,var2,...,varn) imports data from one or more variables into the
Simulation Data Inspector by adding one or more signals to the run that corresponds to the specified
Run object.

add(runObj,'namevalue',sourceNames,sigValues) imports data from one or more variables
into the Simulation Data Inspector by adding one or more signals to the run that corresponds to the
specified Run object. The sourceNames argument specifies values to use for the data source in the
metadata for the signals added to the run.

Import Data from File

add(runObj,'file',filename) imports data from a file into the Simulation Data Inspector by
adding one or more signals to the run that corresponds to the specified Run object. You can use a
built-in file reader to import data from a MAT file, CSV file, Microsoft Excel file, or MDF file.

When you need to import data from a file that the built-in readers do not support, you can write your
own reader using the io.reader class.

add(runObj,'file',filename,Name=Value) imports data from a file into the Simulation Data
Inspector by adding one or more signals to the run that corresponds to the specified Run object. For
example, sheets=["sheet1" "sheet2"] specifies the sheets from which to import data when
importing data from an Excel file.

Examples

8 Objects

8-466

Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the Simulation Data
Inspector.

Create Data for the Run

Create timeseries objects to contain data for a sine signal and a cosine signal. Give each
timeseries object a descriptive name.

time = linspace(0,20,100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Add Data

Use the Simulink.sdi.view function to open the Simulation Data Inspector.

Simulink.sdi.view

To import data into the Simulation Data Inspector from the workspace, create a Simulink.sdi.Run
object using the Simulink.sdi.Run.create function. Add information about the run to its
metadata using the Name and Description properties of the Run object.

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = 'Sinusoids';
sinusoidsRun.Description = 'Sine and cosine signals with different frequencies';

Use the add function to add the data you created in the workspace to the empty run.

add(sinusoidsRun,'vars',sine_ts,cos_ts);

Plot the Data in the Simulation Data Inspector

Use the getSignalByIndex function to access Simulink.sdi.Signal objects that contain the
signal data. You can use the Simulink.sdi.Signal object properties to specify the line style and
color for the signal and plot it in the Simulation Data Inspector. Specify the LineColor and
LineDashed properties for each signal.

sine_sig = getSignalByIndex(sinusoidsRun,1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';

cos_sig = sinusoidsRun.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.LineDashed = '--';

Use the Simulink.sdi.setSubPlotLayout function to configure a 2-by-1 subplot layout in the
Simulation Data Inspector plotting area. Then use the plotOnSubplot function to plot the sine
signal on the top subplot and the cosine signal on the lower subplot.

Simulink.sdi.setSubPlotLayout(2,1);

 add

8-467

plotOnSubPlot(sine_sig,1,1,true);
plotOnSubPlot(cos_sig,2,1,true);

Close the Simulation Data Inspector and Save Your Data

When you have finished inspecting the plotted signal data, you can close the Simulation Data
Inspector and save the session to an MLDATX file.

Simulink.sdi.close('sinusoids.mldatx')

Input Arguments
runObj — Run to which you want to add imported data
Simulink.sdi.Run object

Run to which you want to add imported data, specified as a Simulink.sdi.Run object.

var — Data to import
variable

Data to import, specified as a variable. The Simulation Data Inspector supports time-based data in
which sample values are associated with sample times. The Simulation Data Inspector supports all
loading and logging data formats, including timeseries and
Simulink.SimulationData.Dataset.
Example: myData

sourceNames — Source names for imported data
cell array of character vectors

Source names for imported data, specified as a cell array of character vectors. The source name is
used to set the RootSource, TimeSource, and DataSource properties of the
Simulink.sdi.Signal objects created from the data specified by the sigValues input.

Provide a sourceNames input when you specify 'namevalue' for the second argument.
Example: {'sig1','sig2'}

sigValues — Data to import
cell array of variables

Data to import, specified as a cell array of variables.

Provide a sigValues input when you specify 'namevalue' for the second argument.
Example: {var1,var2}

filename — Name of file with data to import
character vector

Name of file with data to import, specified as a character vector. Provide a filename input when you
specify 'file' for the second argument.

You can create a run from these types of files using file readers built into the Simulation Data
Inspector:

8 Objects

8-468

• MAT-file
• CSV file
• Microsoft Excel file that contains data formatted according to “Microsoft Excel Import, Export,

and Logging Format”.
• MDF file with one of these extensions:

• .mdf
• .mf4
• .mf3
• .data
• .dat

When you need to import data from a file that the built-in readers do not support, you can write your
own reader using the io.reader class. You can also write a custom reader to use instead of the
built-in reader for any file extension. For an example, see “Import Data Using a Custom File Reader”.
Example: 'simulation.mat'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: sheets=["sheet1" "sheet2"]

reader — File reader to use to import data
string | character vector

File reader to use to import data, specified as a string or character vector.

The Simulation Data Inspector prioritizes using a registered custom reader when one is available for
the file. When you do not specify a reader, the Simulation Data Inspector uses the first custom reader
registered for the file. If no custom readers are registered, the data is imported using the built-in
reader.

Specify the reader input when:

• You want to use the built-in reader to import data for a file that is also supported by a custom
reader.

• Multiple registered custom readers support the file.

To determine which readers are available to import your file, use the
io.reader.getSupportedReadersForFile function.
Example: "MyExcelReader"
Example: "built-in"

sheets — Sheets in Excel file from which to import data
string array | cell array of character vectors

 add

8-469

Sheets in Excel file from which to import data, specified as a string array or a cell array of character
vectors. By default, the Simulation Data Inspector imports data from all sheets. Use the sheets
name-value argument when you do not want to import data from all sheets in the Excel file.

When the data in the file does not include simulation numbers and source information, the data on
each sheet is imported into a separate run. For more information about formatting data to import
from an Excel file, see “Microsoft Excel Import, Export, and Logging Format”.
Example: ["sheet1" "sheet2"]

model — Model with definitions of user-defined data types
string | character vector

Model with definitions of user-defined data types, specified as a string or character vector.

When you load data from an Excel file that defines signal data types using user-defined data types,
such as enumerations, buses, or aliases, the Simulation Data Inspector needs access to the type
definition to import the data. You can provide access to the type definitions by:

• Loading the associated object into the MATLAB workspace.
• Specifying the model name-value argument to use type definitions saved in the model workspace

or a data dictionary.

For more information on formatting data to import from an Excel file, see “Microsoft Excel Import,
Export, and Logging Format”.
Example: "myModel.slx"

Version History
Introduced in R2017b

See Also
Objects
Simulink.sdi.Run

Functions
Simulink.sdi.addToRun | Simulink.sdi.createRunOrAddToStreamedRun |
Simulink.sdi.Run.create

Tools
Simulation Data Inspector

Topics
“View Data in the Simulation Data Inspector”

8 Objects

8-470

export
Package: Simulink.sdi

Export run to base workspace or file

Syntax
ds = export(runObj)
export(runObj,Name,Value)

Description
ds = export(runObj) exports the Simulink.sdi.Run object runObj to the base workspace as
the Simulink.SimulationData.Dataset object ds.

export(runObj,Name,Value) exports the Simulink.sdi.Run object runObj to the base
workspace or a file according to the options specified by one or more name-value pair arguments.

Examples

Export Run Data

This example shows how to export data from a run in the Simulation Data Inspector to a
Simulink.SimulationData.Dataset object in the base workspace that you can use to further
process your data. The method you choose to export your run depends on the processing you do in
your script. If you have a run object for the run, you can use the export method to create a
Simulink.SimulationData.Dataset object with the run data in the base workspace. If you do not
have a run object, use the Simulink.sdi.exportRun function to export the run to the workspace.

Export Run Using Simulink.sdi.exportRun

Use the Simulink.sdi.export function to export run data to the workspace or a file when your
workflow does not include creating a run object.

To create a run of simulation data, open the vdp model, mark signals for logging, and run a
simulation.

load_system('vdp')

SignalHandles = get_param('vdp', 'Lines');

Simulink.sdi.markSignalForStreaming(SignalHandles(5).Handle, 'on')
Simulink.sdi.markSignalForStreaming(SignalHandles(6).Handle, 'on')

out = sim('vdp');

Use the Simulink.sdi.getAllRunIDs function to access the most recently created run.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

 export

8-471

Use the Simulink.sdi.exportRun function to export the run data to a Dataset object in the
workspace.

simDataset = Simulink.sdi.exportRun(runID);

Export Run Using the export Function

When your task involves creating a Run object, you can use the export function to create a
Simulink.SimulationData.Dataset object in the base workspace to further process the run
data. For example, suppose you need to access Run objects for simulation runs with signal data you
want to compare using the Simulink.sdi.compareSignals function.

Load a model and mark signals for logging. Then simulate the model to create run data.

load_system('vdp')

SignalHandles = get_param('vdp', 'Lines');

Simulink.sdi.markSignalForStreaming(SignalHandles(5).Handle, 'on')
Simulink.sdi.markSignalForStreaming(SignalHandles(6).Handle, 'on')

sim('vdp');

Use the Simulink.sdi.getAllRunIDs function to access the run ID for the most recently created
run. Then, use the Simulink.sdi.getRun function to access the Run object corresponding to the
run.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
vdpRun = Simulink.sdi.getRun(runID);

Use the export function to export the run data to a Dataset object in the workspace.

simDataset = export(vdpRun);

Input Arguments
runObj — Run with data to export
Simulink.sdi.Run object

Run with data to export, specified as a Simulink.sdi.Run object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'to','file'

to — Where to export data
'variable' (default) | 'file'

Where to export data, specified as the comma-separated pair consisting of 'to' and 'variable' or
'file'.

8 Objects

8-472

When you export data to a file, you must also specify a file name using the 'filename' name-value
pair argument. You can specify a file name with a .mat, .mldatx, or .xlsx extension.

When you export a run to a MAT-file, the data is saved in a Simulink.SimulationData.Dataset
object. When you export more than one run to a MAT-file using the Simulink.sdi.exportRun
function, the data is saved in a Dataset object, where each element is a Dataset object that
contains the data for one exported run.

Data exported to a Microsoft Excel file is saved using the format described in “Microsoft Excel
Import, Export, and Logging Format”.

When you export data to a Microsoft Excel file, you can specify additional options using the
'overwrite', 'metadata', and 'sharetimecolumn' name-value pairs.
Example: 'to','file'

filename — Name of file to contain exported data
string | character array

Name of the file to contain the exported data, specified as the comma-separated pair consisting of
'filename' and a string or character array. Include a .mat, .mldatx, or .xlsx extension in the file
name to specify whether to export the data to a MAT-file, MLDATX file, or a Microsoft Excel file. When
you do not specify an extension with a file name, the data exports to a MAT-file.

Use the 'filename' name-value pair argument when you specify the 'to' name-value pair
argument with the value 'file'.

When you export data to a Microsoft Excel file, you can specify additional options using the
'overwrite', 'metadata', and 'sharetimecolumn' name-value pair arguments.
Example: 'filename',"mySpreadsheet.xlsx"

overwrite — Data to overwrite in existing Microsoft Excel file
'file' (default) | 'sheetsonly'

Data to overwrite in existing Microsoft Excel file, specified as the comma-separated pair consisting of
'overwrite' and 'file' or 'sheetsonly'.

• 'file' — Overwrite the entire file with the exported data.
• 'sheetsonly' — Only overwrite sheets of the Microsoft Excel file with data that corresponds to

the exported data.

When you export data to an existing MAT-file or MLDATX file, the exported data overwrites the entire
file.
Example: 'overwrite','sheetsonly'

metadata — Metadata to include in exported Microsoft Excel file
[] (default) | string array

Metadata to include in the exported Microsoft Excel file, specified as the comma-separated pair
consisting of 'metadata' and a string array. By default, the export operation does not include any
metadata. You can export this metadata to the Microsoft Excel file:

• dataType — Signal data type

 export

8-473

• units — Signal units
• blockPath — Path to the source block for logged signals
• interp — Signal interpolation method
• portIndex — Index of the port on the source block for logged signals

You can specify the desired metadata in any order you choose in the string array. The order of the
metadata in the string array does not affect the format in the exported file, which always matches the
description in “Microsoft Excel Import, Export, and Logging Format”.
Example: 'metadata',["units","dataType"]

sharetimecolumn — Whether signals share time columns in exported Microsoft Excel file
'on' (default) | 'off'

Whether signals that have identical time data share time columns in the exported Microsoft Excel file,
specified as the comma-separated pair consisting of 'sharetimecolumn' and 'on' or 'off'. By
default, signals with the same time data share a time column in the exported file. When you specify
the value as 'off', each signal in the exported file has its own time column.
Example: 'sharetimecolumn','off'

Output Arguments
ds — Exported run data
Simulink.SimulationData.Dataset object

Exported run data, returned as a Simulink.SimulationData.Dataset object.

Alternatives
You can export data programmatically for one or more runs using the Simulink.sdi.exportRun
function, or you can use the Simulation Data Inspector UI. For more information, see “Save and Share
Simulation Data Inspector Data and Views”.

Version History
Introduced in R2017b

See Also
Simulink.sdi.Run | Simulink.sdi.getRun | Simulink.sdi.exportRun |
Simulink.sdi.report

Topics
“Inspect and Compare Data Programmatically”
“Save and Share Simulation Data Inspector Data and Views”

8 Objects

8-474

getAllSignalIDs
Package: Simulink.sdi

Get all signal IDs for signals in Simulink.sdi.Run object

Syntax
sigIDs = getAllSignalIDs(runObj)

Description
sigIDs = getAllSignalIDs(runObj) returns an array, sigIDs, that contains the signal IDs for
all signals in the Simulink.sdi.Run object runObj. Use the getAllSignalIDs function when you
need to work with many or all of the signals in the run. When you only need to analyze a specific
signal, you can access the single Signal object using the getSignalIDsByName function or the
getSignalIDByIndex function.

Examples

Get Signal IDs for All Signals in a Run

You can use the getAllSignalIDs function to access an array containing the signal IDs for all the
signals in a run. This example simulates the slexAircraftExample model to create run data and
then shows how to get the signal IDs for the signals in the run and use the IDs to compare the
signals.

Create a Run

This example creates a run in the Simulation Data Inspector by simulating a model that logs data.
Load the slexAircraftExample model and mark the Stick and alpha, rad signals for logging.

load_system('slexAircraftExample')

Simulink.sdi.markSignalForStreaming('slexAircraftExample/Pilot',1,'on')
Simulink.sdi.markSignalForStreaming('slexAircraftExample/Aircraft Dynamics Model',4,'on')

Simulate the model.

out = sim('slexAircraftExample');

Access Run Data and Signal IDs

Use the Simulink.sdi.getCurrentSimulationRun function to access the run created when you
simulated the slexAircraftExample model.

airRun = Simulink.sdi.getCurrentSimulationRun('slexAircraftExample');

Get an array of the signal IDs for the logged signals using the getAllSignalIDs function.

sigIDs = getAllSignalIDs(airRun);

 getAllSignalIDs

8-475

Compare Logged Signals

You can use the signal IDs to compare the logged signals. Use the Simulink.sdi.getSignal
function to get the Simulink.sdi.Signal object with the first ID in the array sigIDs. Check the
Name property for the returned Signal object.

sigID1 = sigIDs(1);
sig1 = Simulink.sdi.getSignal(sigID1);
sig1.Name

ans =
'alpha, rad'

Use the input signal, Stick, as the baseline signal in the signal comparison.

sigID2 = sigIDs(2);
DSR = Simulink.sdi.compareSignals(sigID2,sigID1);
DSR.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The signals do not match. You can use the tolerance properties of the Signal objects to
programmatically analyze the data, or you can open the Simulation Data Inspector using the
Simulink.sdi.view function to view and analyze the comparison results using the UI.

Input Arguments
runObj — Run containing signals you want to access
Simulink.sdi.Run object

Run containing the signals you want to access, specified as a Simulink.sdi.Run object.

Output Arguments
sigIDs — Signal IDs for signals in run
array

Signal IDs for the signals in the run, returned as an array.

Version History
Introduced in R2020a

See Also
Simulink.sdi.Signal | Simulink.sdi.Run | getAllSignals | getSignalsByName |
getSignalIDsByName | getSignalByIndex | getSignalIDByIndex |
Simulink.sdi.getSignal | getSignal

8 Objects

8-476

Topics
“Inspect and Compare Data Programmatically”

 getAllSignalIDs

8-477

getAllSignals
Package: Simulink.sdi

Get all signals in Simulink.sdi.Run object

Syntax
sigs = getAllSignals(runObj)

Description
sigs = getAllSignals(runObj) returns an array of Simulink.sdi.Signal objects, sigs, that
correspond to the signals contained in the Simulink.sdi.Run object runObj. Use the
getAllSignals function when you need to work with many or all of the signals in the run. When you
need to analyze a specific signal, you can access the single Signal object using the
getSignalsByName function or the getSignalByIndex function.

Examples

Get All Signals in a Run

You can use the getAllSignals function to access Simulink.sdi.Signal objects for each signal
in a Simulink.sdi.Run object when you want to analyze all the data in the run. This example shows
how to access and inspect signal data logged in the sldemo_autotrans model.

Create a Run

This example creates a run in the Simulation Data Inspector by simulating a model that logs data.

out = sim('sldemo_autotrans');

Access Run and Signal Data

Access the run and signal data using the Simulation Data Inspector programmatic interface. Use the
Simulink.sdi.getCurrentSimulationRun function to get the Run object created when you
simulated the sldemo_autotrans model.

autoRun = Simulink.sdi.getCurrentSimulationRun('sldemo_autotrans');

Use the getAllSignals function to get an array of Signal objects containing the logged signal
data.

autoSigs = getAllSignals(autoRun);

You can use a for loop to inspect or analyze the data in each Signal object in the array. For
example, you could check the name of each signal.

count = length(autoSigs);
for idx = 1:count
 sig = autoSigs(idx);

8 Objects

8-478

 name = sig.Name;
 formatSpec = "The signal at index %d is named %s\n";
 fprintf(formatSpec,idx,name)
end

The signal at index 1 is named EngineRPM
The signal at index 2 is named Throttle
The signal at index 3 is named Brake
The signal at index 4 is named ShiftLogic:1
The signal at index 5 is named ImpellerTorque
The signal at index 6 is named OutputTorque
The signal at index 7 is named VehicleSpeed
The signal at index 8 is named TransmissionRPM

Input Arguments
runObj — Run containing signals you want to access
Simulink.sdi.Run object

Run containing the signals you want to access, specified as a Simulink.sdi.Run object.

Output Arguments
sigs — Signals contained in run
array of Simulink.sdi.Signal objects

Signals contained in the run, returned as an array of Simulink.sdi.Signal objects.

Version History
Introduced in R2020a

See Also
Simulink.sdi.Signal | Simulink.sdi.Run | getAllSignalIDs | getSignalsByName |
getSignalIDsByName | getSignalByIndex | getSignalIDByIndex |
Simulink.sdi.getSignal | getSignal

Topics
“Inspect and Compare Data Programmatically”

 getAllSignals

8-479

getDatasetRef
Package: Simulink.sdi

Create a Simulink.sdi.DatasetRef object for a run

Syntax
sdiDSRef = getDatasetRef(runObj)

Description
sdiDSRef = getDatasetRef(runObj) creates a Simulink.sdi.DatasetRef object, sdiDSRef,
that references the data in the Simulink.sdi.Run object runObj. Use a DatasetRef object to
process your data when the data is too large to fit into memory.

Examples

Compare Runs with the Simulink.sdi.DatasetRef Object

This example shows how to work with the Simulink.sdi.DatasetRef object by comparing two
runs of the ex_sldemo_absbrake system with different desired slip ratios.

% Simulate model ex_sldemo_absbrake to create a run of logged signals
load_system('ex_sldemo_absbrake')
sim('ex_sldemo_absbrake')

% Get the runID
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

% Get the run object
brakeRun = Simulink.sdi.getRun(runID);

% Make a Simulink.sdi.DatasetRef object
run_DSRef = brakeRun.getDatasetRef;

% Get the names of the elements in the object
names = run_DSRef.getElementNames

names = 2x1 cell
 {'yout'}
 {'slp' }

% Get yout bus
[yout, name, index] = run_DSRef.getElement(1);

% View signals in outputs
outputs = yout.Values

outputs = struct with fields:
 Ww: [1x1 timeseries]

8 Objects

8-480

 Vs: [1x1 timeseries]
 Sd: [1x1 timeseries]

% Get slp signal
slp = run_DSRef.getSignal('slp');

% Plot signal
slp.Checked = 'true';

% Create another run for a different Desired relative slip
set_param('ex_sldemo_absbrake/Desired relative slip', 'Value', '0.25')
sim('ex_sldemo_absbrake')
DSR_Runs = Simulink.sdi.DatasetRef;

% Compare the results from the two runs
[matches, mismatches, diffResult] = run_DSRef.compare(DSR_Runs(2));

% Open the Simulation Data Inspector to view signals
run_DSRef.plot

Input Arguments
runObj — Run with data that does not fit in memory
Simulink.sdi.Run object

Run with data you want to process that does not fit into memory, specified as a Simulink.sdi.Run
object.

Output Arguments
sdiDSRef — Reference to run data
Simulink.sdi.DatasetRef object

Reference to run data that you can use to process data that does not fit into memory, returned as a
Simulink.sdi.DatasetRef object.

Version History
Introduced in R2017b

See Also
Simulink.sdi.Run | Simulink.sdi.DatasetRef

Topics
“Inspect and Compare Data Programmatically”

 getDatasetRef

8-481

getSignalByIndex
Package: Simulink.sdi

Get signal in Simulink.sdi.Run object by index

Syntax
sig = getSignalByIndex(runObj,idx)

Description
sig = getSignalByIndex(runObj,idx) returns the Simulink.sdi.Signal object, sig, at the
index specified by idx within the Simulink.sdi.Run object runObj.

Examples

Plot Signals from Simulation Run

This example demonstrates how to access the Simulink.sdi.Run object for a Simulation Data
Inspector run created by logging signals. From the Simulink.sdi.Run object you can get
Simulink.sdi.Signal objects that contain the logged signal data and metadata. You can use the
Signal objects and the plotOnSubPlot function to plot the data in the Simulation Data Inspector.

Create a Simulation Run and Access the Run Object

The ex_vdp model logs two signals. To create a simulation run containing the logged data, simulate
the model.

sim('ex_vdp');

The Simulation Data Inspector keeps track of runs by assigning a unique numeric run ID to each run
created by simulation, importing data, or opening a session. To access the run object for the
simulation you just performed, use the Simulink.sdi.getAllRunIDs function and take the last
run ID in the returned vector.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

Once you have the run ID for the run, you can use the Simulink.sdi.getRun function to get the
Simulink.sdi.Run object that corresponds to the run. You can use the Run object to check the
metadata associated with the run, including the number of signals in the run.

vdpRun = Simulink.sdi.getRun(runID);

vdpRun.SignalCount

ans = int32
 2

8 Objects

8-482

Plot Data Using Signal Objects

Use the getSignalByIndex function to access signals from the Run object, vdpRun.

signal1 = getSignalByIndex(vdpRun,1);
signal2 = getSignalByIndex(vdpRun,2);

Use the Simulink.sdi.setSubPlotLayout function to specify a 2-by-1 layout.

Simulink.sdi.setSubPlotLayout(2,1)

Before plotting the data, use the Simulink.sdi.clearAllSubPlots function to clear any data that
is already plotted.

Simulink.sdi.clearAllSubPlots

Plot one signal on each subplot. To plot signals on the first subplot, you can set the checked property
for the signal. To plot signals on subplots other than the first subplot, use the plotOnSubPlot
function.

signal1.Checked = true;
plotOnSubPlot(signal2,2,1,true);

View the Plotted Data

To view the plots you just created, open the Simulation Data Inspector using the
Simulink.sdi.view function.

 getSignalByIndex

8-483

Input Arguments
runObj — Run that contains desired signal
Simulink.sdi.Run object

Run that contains the signal you want to access, specified as a Simulink.sdi.Run object.

idx — Index of signal in run
integer

Index of the signal within the run, specified as an integer.

Output Arguments
sig — Signal at specified index
Simulink.sdi.Signal object

Signal at the specified index in the Run object, returned as a Simulink.sdi.Signal object.

Version History
Introduced in R2012b

8 Objects

8-484

See Also
Simulink.sdi.Signal | Simulink.sdi.Run | getSignalIDByIndex | getSignalsByName |
getSignalIDsByName | getAllSignals | getAllSignalIDs

Topics
“Inspect and Compare Data Programmatically”

 getSignalByIndex

8-485

getSignalIDByIndex
Package: Simulink.sdi

Get signal ID for signal at specified index in Simulink.sdi.Run object

Syntax
sigID = getSignalIDByIndex(runObj,idx)

Description
sigID = getSignalIDByIndex(runObj,idx) returns the signal ID sigID for the signal at the
specified index idx in the Simulink.sdi.Run object runObj.

Tip You can use the signal ID to get the Simulink.sdi.Signal object that contains the signal data
and metadata or perform a signal comparison using the Simulink.sdi.compareSignals function.

Examples

Compare Two Signals in the Same Run

You can use the Simulation Data Inspector programmatic interface to compare signals within a single
run. This example compares the input and output signals of an aircraft longitudinal controller.

First, load the session that contains the data.

Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.Run.getLatest function to access the latest run in the data.

aircraftRun = Simulink.sdi.Run.getLatest;

Then, you can use the Simulink.sdi.getSignalsByName function to access the Stick signal,
which represents the input to the controller, and the alpha, rad signal that represents the output.

stick = getSignalsByName(aircraftRun,'Stick');
alpha = getSignalsByName(aircraftRun,'alpha, rad');

Before you compare the signals, you can specify a tolerance value to use for the comparison.
Comparisons use tolerance values specified for the baseline signal in the comparison, so set an
absolute tolerance value of 0.1 on the Stick signal.

stick.AbsTol = 0.1;

Now, compare the signals using the Simulink.sdi.compareSignals function. The Stick signal is
the baseline, and the alpha, rad signal is the signal to compare against the baseline.

comparisonResults = Simulink.sdi.compareSignals(stick.ID,alpha.ID);
match = comparisonResults.Status

8 Objects

8-486

match =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison result is out of tolerance. You can use the Simulink.sdi.view function to open the
Simulation Data Inspector to view and analyze the comparison results.

Input Arguments
runObj — Run that contains desired signal
Simulink.sdi.Run object

Run that contains the desired signal, specified as a Simulink.sdi.Run object.

idx — Index of signal in run
integer

Index of the signal within the run, specified as an integer.

Output Arguments
sigID — Signal ID
integer

Unique numeric signal identifier, returned as an integer.

Version History
Introduced in R2012b

See Also
Objects
Simulink.sdi.Signal | Simulink.sdi.Run

Functions
Simulink.sdi.compareSignals | Simulink.sdi.getSignal | getSignalByIndex |
getAllSignalIDs | getAllSignals | getSignalsByName | getSignalIDsByName

Tools
Simulation Data Inspector

Topics
“Inspect and Compare Data Programmatically”

 getSignalIDByIndex

8-487

getSignalIDsByName
Package: Simulink.sdi

Get signal IDs for signals inside Simulink.sdi.Run object using signal name

Syntax
sigIDs = getSignalIDsByName(runObj,name)

Description
sigIDs = getSignalIDsByName(runObj,name) returns one or more signal IDs for signals in the
Simulink.sdi.Run object with the specified name, name.

Examples

Get Signal IDs by Signal Name

You can access signal IDs for signals inside a Simulink.sdi.Run object by specifying the name of
the signal for which you want the signal ID. You can use the signal ID to compare signals using the
Simulink.sdi.compareSignals function, access the Simulink.sdi.Signal object for the
signal using the Simulink.sdi.getSignal function, or delete the signal from the Simulation Data
Inspector using the Simulink.sdi.deleteSignal function.

This example shows how to use the getSignalIDsByName function to access a signal using its name
or its block path and how to access the signal ID for a signal contained inside a bus.

Create Data in the Simulation Data Inspector

This example uses a model of a pulse counter to create simulation data in the Simulation Data
Inspector. The model has two input signals that define the upper and lower limits for the counter, and
one input pulse signal with pulses to count. The model uses buses to send data into the Bus Counter
subsystem and out of it to an Outport block. The model is configured to log the pulse signal, input,
and the output signal, OUT, which is connected to the Outport block.

8 Objects

8-488

Simulate the model to create a run that contains the logged data in the Simulation Data Inspector.

out = sim('ex_pulse_counter');

Access Signal IDs

Use the Simulation Data Inspector programmatic interface to access the logged data. The
Simulink.sdi.Run.getLatest function returns the Simulink.sdi.Run object that corresponds
to the most recently created run. You can access the signal IDs for logged signals from the
Simulink.sdi.Run object.

countRun = Simulink.sdi.Run.getLatest;

Use the getSignalIDsByName function to access the signal ID for the input signal.

inSigID = getSignalIDsByName(countRun,'input');

In a more complicated model, multiple signals might have the same name. In that case, using only the
signal name with the getSignalIDsByName function results in an array of signal IDs for all logged
signals in the model that use that name. To avoid duplicate results, you can specify the block path and
signal name together. Use dots to separate elements of the block path instead of slashes. For
example, to access the signal ID for the input signal, you could also specify the name as
'ex_pulse_counter.Pulse Generator.input'.

inSigID = getSignalIDsByName(countRun,'ex_pulse_counter.Pulse Generator.input');

Access Signal IDs for Signals Inside Composite Signals

The output logged in the ex_pulse_counter model is a bus signal. You can access the signal ID that
corresponds to the top bus signal, OUT, the nested bus, LIMITBUS, and the individual signals in the
bus: output, upper_limit, and lower_limit.

To access the signal ID for the top bus, specify the signal name, OUT.

 getSignalIDsByName

8-489

OUTSigID = getSignalIDsByName(countRun,'OUT');

To access the signal ID for the nested bus, specify the path to the signal in the bus hierarchy.

LIMITBUSSigID = getSignalIDsByName(countRun,'OUT.LIMITBUS');

To access the signal ID for one of the individual signals, specify the path to the signal in the bus
hierarchy. You cannot access the signal using only the signal name. The Name property of the Signal
object includes the bus hierarchy.

upper_limitSigID = getSignalIDsByName(countRun,'OUT.LIMITBUS.upper_limit');
upper_limitSig = Simulink.sdi.getSignal(upper_limitSigID);
upper_limitSig.Name

ans =
'OUT.LIMITBUS.upper_limit'

Input Arguments
runObj — Run containing signals with IDs you want to access
Simulink.sdi.Run object

Run containing the signals with the signal IDs you want to access, specified as a Simulink.sdi.Run
object.

name — Name of signal with ID you want to access
character vector | string

Name of the signal with the signal ID you want to access, specified as a character vector or string.

A model can use the same signal name for more than one signal. In that case, when you want to
access the signal ID for a specific signal, you can include the block path for the block that produces
the signal in the name argument. For example, specify name as
'slexAircraftExample.Pilot.Stick' to access the signal ID for the signal named Stick that is
the output of the Pilot block in the slexAircraftExample model.

To access signals inside composite signals, specify the path to the signal through the hierarchy of the
composite signal. For example, specify name as 'COUNTERBUS.LIMITBUS.lower_limit' to access
the signal ID for the lower_limit signal inside the bus LIMITBUS that is nested in the bus
COUNTERBUS.
Data Types: char | string

Output Arguments
sigIDs — Signal IDs for signals with specified name
scalar | array

One or more signal IDs for signals with the specified name, returned as a scalar or array.

Version History
Introduced in R2020a

8 Objects

8-490

See Also
Simulink.sdi.compareSignals | Simulink.sdi.deleteSignal | Simulink.sdi.getSignal
| getSignalsByName

Topics
“Inspect and Compare Data Programmatically”

 getSignalIDsByName

8-491

getSignalsByName
Package: Simulink.sdi

Access signals in a Simulink.sdi.Run object using signal name

Syntax
sigs = getSignalsByName(runObj,name)

Description
sigs = getSignalsByName(runObj,name) returns one or more Simulink.sdi.Signal objects
with the name specified by name.

Examples

Access Simulink.sdi.Signal Objects by Name

You can use the Simulation Data Inspector programmatic interface to access Simulink.sdi.Signal
objects that correspond to logged or imported data. Using the getSignalsByName function, you can
specify the name of the signal you want to get from a Simulink.sdi.Run object. You can access
data for individual signals and composite signals.

Create Data in the Simulation Data Inspector

This example uses a model of a pulse counter to create simulation data in the Simulation Data
Inspector. The model has two input signals that define the upper and lower limit for the counter, and
one input pulse signal with pulses to count. The model uses buses to send data into the Bus Counter
subsystem and out of it to an Outport block. The model is configured to log the pulse signal, input,
and the output connected to the Outport block.

8 Objects

8-492

Simulate the model to create a run that contains the logged data in the Simulation Data Inspector.

out = sim('ex_pulse_counter');

Access Signals in the Simulation Data Inspector

Use the Simulation Data Inspector programmatic interface to access the logged data. The
Simulink.sdi.Run.getLatest function returns the Simulink.sdi.Run object that corresponds
to the most recently created run.

countRun = Simulink.sdi.Run.getLatest;

Use the getSignalsByName function to access the input signal. Check the Name property of the
returned Simulink.sdi.Signal object.

inSig = getSignalsByName(countRun,'input');
inSig.Name

ans =
'input'

The input signal is not a composite signal, so the Children property of the Signal object is empty.

inChildren = inSig.Children;
size(inChildren)

ans = 1×2

 0 0

Now, use the getSignalsByName function to access the output signal, OUT. OUT is a bus signal that
contains the output signal from the counter, output, and the counter limit signals, upper_limit
and lower_limit, in a nested bus named LIMITBUS.

 getSignalsByName

8-493

outSig = getSignalsByName(countRun,'OUT');

Check the Name and Children properties for the returned Signal object. The Children property
value contains two Signal objects that correspond to the signals at the next level of hierarchy in the
OUT bus.

outSig.Name

ans =
'OUT'

outChildren = outSig.Children;
size(outChildren)

ans = 1×2

 1 2

Because the Signal object outSig corresponds to a composite signal, you cannot plot the signal
data in the Simulation Data Inspector using the Checked property or the plotOnSubPlot function.
To plot data in the composite signal, access the individual Signal objects.

Access Signals Inside a Composite Signal

You can access the signals inside the OUT bus and LIMITBUS by indexing into the Children property
of the corresponding Signal object. For example, you can access the output signal from the OUT
bus Signal object.

outChildren = outSig.Children;
outputSig = outChildren(1);
outputSig.Name

ans =
'OUT.output'

You can also get the Signal object for the output signal by specifying the path to the signal through
the bus hierarchy.

outputSig = getSignalsByName(countRun,'OUT.output');
outputSig.Name

ans =
'OUT.output'

To access the upper_limit signal, specify the full path to the signal within the bus.

upper_limitSig = getSignalsByName(countRun,'OUT.LIMITBUS.upper_limit');
upper_limitSig.Name

ans =
'OUT.LIMITBUS.upper_limit'

Input Arguments
runObj — Run containing signals you want to access
Simulink.sdi.Run object

8 Objects

8-494

Run containing the signals you want to access, specified as a Simulink.sdi.Run object.

name — Name of signal you want to access
character vector | string

Name of the signal you want to access, specified as a character vector or string.

A model can use the same signal name for more than one signal. In that case, when you want to
access a specific signal, you can include the block path for the block that produces the signal in the
name argument. For example, specify name as 'slexAircraftExample.Pilot.Stick' to access
the signal named Stick that is the output of the Pilot block in the slexAircraftExample model.

To access signals inside composite signals, specify the path to the signal through the hierarchy of the
composite signal. For example, specify name as 'COUNTERBUS.LIMITBUS.lower_limit' to access
the lower_limit signal inside the bus LIMITBUS that is nested in the bus COUNTERBUS.
Data Types: char | string

Output Arguments
sigs — Signals matching specified name
Simulink.sdi.Signal object | array of Simulink.sdi.Signal objects

One or more signals matching the specified name, returned as a Simulink.sdi.Signal object or
an array of Simulink.sdi.Signal objects.

Version History
Introduced in R2020a

See Also
Simulink.sdi.compareSignals | Simulink.sdi.deleteSignal | Simulink.sdi.getSignal
| getSignalIDsByName

Topics
“Inspect and Compare Data Programmatically”

 getSignalsByName

8-495

isValidSignalID
Package: Simulink.sdi

Check whether signal ID corresponds to signal in Simulink.sdi.Run object

Syntax
isValid = isValidSignalID(runObj,sigID)

Description
isValid = isValidSignalID(runObj,sigID) returns the logical indication isValid of whether
the signal ID sigID corresponds to a signal in the Simulink.sdi.Run object runObj.

Input Arguments
runObj — Run in Simulation Data Inspector
Simulink.sdi.Run object

Run in the Simulation Data Inspector, specified as a Simulink.sdi.Run object.

sigID — Signal ID
integer

Unique numeric signal identifier, specified as an integer. The Simulation Data Inspector assigns a
signal ID to each signal when a run is created. You can get the signal ID for a signal using one of
these functions:

• getAllSignalIDs
• getSignalIDByIndex
• getSignalIDsByName
• Simulink.sdi.createRun

Output Arguments
isValid — Signal validity
logical

Signal validity, returned as a logical 1 or 0.

• 1 — The specified signal ID corresponds to a signal in the specified run.
• 0 — The specified signal ID does not correspond to a signal in the specified run.

Version History
Introduced in R2012b

8 Objects

8-496

See Also
Objects
Simulink.sdi.Run | Simulink.sdi.Signal

Functions
getSignalIDByIndex | getAllSignalIDs | Simulink.sdi.compareSignals

Tools
Simulation Data Inspector

Topics
“Inspect and Compare Data Programmatically”

 isValidSignalID

8-497

Simulink.sdi.Signal
Access signal data and metadata

Description
A Simulink.sdi.Signal object contains data and metadata for a signal in the Simulation Data
Inspector. You can use the Signal object properties to inspect signal metadata, visualize signals on
time plots, and compare signals using the Simulink.sdi.compareSignals function.

Creation
A Simulink.sdi.Signal object is created for each signal you log in a model simulation or import
into the Simulation Data Inspector. You can access Signal objects in the Simulation Data Inspector
several ways. Generally, to access a Signal object, you first need to get the Simulink.sdi.Run
object that contains the signal.

• The Simulink.sdi.getSignal function returns a Signal object that corresponds to the signal
ID you provide.

• The getSignal function returns the Signal object with the specified signal ID inside the
specified Run object.

• The getSignalByIndex function returns the Signal object at the specified index within the
specified Run object.

Properties
Signal Properties

ID — Signal identifier
integer

This property is read-only.

Unique number identifying the signal, returned as an integer. The Simulation Data Inspector assigns
a unique numeric ID to each run and signal.

RunID — Run identifier
integer

This property is read-only.

Run identifier for the run that contains the signal, returned as an integer. The Simulation Data
Inspector assigns a unique numeric ID to each run and signal.

Name — Signal name
character vector | string

Name of the signal, specified as a character vector or a string. When the Signal object contains data
logged from a simulation, the name matches the name specified for the signal in the model. If the

8 Objects

8-498

model does not specify the name, the signal name is the block path to the block that produces the
signal.
Example: 'fuel'

Domain — Signal type
'Signals' | 'Outports' | 'States' | 'Data Store Memory' | 'Parameters' | ...

Signal type, specified as one of these options:

• 'Signals' — Signal logging data.
• 'Outports' — Output logging data.
• 'States' — States logging data.
• 'Data Store Memory' — Data store memory logging data.
• 'Parametrs' — Logged parameter data.
• 'Stateflow' — Stateflow data.
• 'Simscape' — Simscape data.
• 'Assessments' — Simulink Test assessment data.
• 'Profiling' — Execution profiling data.

The Domain property is empty for data not created by logging simulation data.

Description — Signal description
'' (default) | character vector | string

Description of the signal, specified as a character vector or a string. You can use the Description
property to annotate the signal or identify the signal content beyond the Name. When you log
Simscape data to the Simulation Data Inspector, the Description property is populated
automatically for each node.

Stored Units — Units of signal data stored on disk
character vector | string

This property is read-only.

Units of signal data stored on disk, specified as a character vector or a string. For signals generated
from simulating a model, the stored units of the Signal objects use the units specified in the model.
When you specify display units for a signal without units, the same units are used to set the stored
units. To analyze a signal alongside another that uses different units, modify the display units for the
signal. The Simulation Data Inspector performs the conversion to plot the data using the display
units.

You can convert the stored units for a signal using the convertUnits function. Stored unit
conversion does not support undo and may result in precision loss.
Example: 'g/s'

Display Units — Units used to display signal data in Simulation Data Inspector
character vector | string

Units used to display signal data in the Simulation Data Inspector, specified as a character vector or a
string. The display units for a signal may differ from the stored units that reflect the data stored on
disk. Modify signal display units to analyze data in the Simulation Data Inspector. Unit preferences in

 Simulink.sdi.Signal

8-499

the Simulation Data Inspector may change the display units for logged and imported signal data. For
more information, see “Signal Display Units”.
Example: 'm/s'

Data Type — Data type for signal data
character vector | string

This property is read-only.

Data type of signal data, returned as a character vector or string.
Example: 'double'

Complexity — Complexity of signal data
"real" | "complex"

This property is read-only.

Complexity of signal data, returned as "real" or "complex".
Example: "real"

SampleTime — Signal sample time
character vector

This property is read-only.

Signal sample time, returned as a character vector or scalar. A value of 'Continuous' indicates a
variable-step simulation.
Example: 'Continuous'
Example: '0.1'

Model — Name of model that produced signal
character vector

This property is read-only.

Name of the model that produced the signal, returned as a character vector. The Model property is
empty for Signal objects that contain data that was not produced by simulating a model.
Example: 'sldemo_fuelsys'

BlockPath — Block path for block that produced signal
character vector

This property is read-only.

Block path for the block that produced the signal, returned as a character array. The BlockPath
property is a relative path that does not include model hierarchy. The BlockPath property is empty
for Signal objects that contain data that was not produced by simulating a model.
Example: 'sldemo_fuelsys/Engine Gas Dynamics'

FullBlockPath — Complete block path for block that produced signal
character vector | cell array

8 Objects

8-500

This property is read-only.

Complete block path for the block that produced the signal, including the full model hierarchy,
returned as a character vector. For signals within referenced models, FullBlockPath is a cell array
that contains the full path. For other signals, FullBlockPath is identical to BlockPath. The
FullBlockPath property is empty for Signal objects that contain data that was not produced by
simulating a model.

BlockName — Name of block that produced signal
character vector

This property is read-only.

Name of the block that produced the signal, returned as a character vector. The BlockName property
is empty for Signal objects that contain data that was not produced by simulating a model.
Example: 'Engine Gas Dynamics'

PortIndex — Block port index
integer

This property is read-only.

Index of the output port connected to the signal on the block that produces the signal. The
PortIndex property is empty for Signal objects that contain data that was not produced by
simulating a model.
Example: 1

Dimensions — Signal dimensions
integer | integer array

This property is read-only.

Signal dimensions, returned as an integer or integer array.
Example: [1 2]

Channel — Index of signal within matrix
integer array

This property is read-only.

Index of the signal within a matrix, returned as an integer array.

NumPoints — Number of samples in signal
integer

This property is read-only.

Number of samples in the signal, returned as an integer.

Values — Signal values
timeseries | structure

Time and data values for the signal, returned as a timeseries object for non-bus signals or
structure matching the bus hierarchy for bus signals.

 Simulink.sdi.Signal

8-501

RootSource — High-level structure that contains imported signal
character vector

This property is read-only.

Name of the high-level structure containing the signal, returned as a character vector. The
RootSource property only has value for imported signals.
Example: When you import the Simulink.SimulationOutput object simOut containing structure
xout, the RootSource is 'simOut.get('xout')'

TimeSource — Source of imported signal time data
character vector

This property is read-only.

Path to the signal time data, returned as a character vector. The TimeSource property only has value
for imported signals.
Example: When you import the Simulink.SimulationOutput object simOut containing structure
xout, the TimeSource is 'simOut.get('xout').time'

DataSource — Source of imported signal data
character vector

This property is read-only.

Path to the signal sample values, returned as a character array. The DataSource property only has
value for imported signals.
Example: When you import the Simulink.SimulationOutput object simOut containing structure
xout, the DataSource is 'simOut.get('xout').signals(1).values'

Children — Signals contained by composite signal
Simulink.sdi.Signal vector

This property is read-only.

Signals contained by the composite signal, returned as Simulink.sdi.Signal objects. The
Children property is empty for scalar signals.

Display Scaling — Scaling used to display signal data in Simulation Data Inspector
1 (default) | scalar

Scaling used to display signal data in the Simulation Data Inspector, specified as a real non-zero
scalar. Display Scaling acts as a multiplier, allowing you to scale the appearance of an individual
signal in the Simulation Data Inspector. Scaling the display does not change the data values of the
signal. Signals scale differently depending on the visualization type.

Visualization Scaling
Time Plot Scale an individual signal display in the y

direction.
Sparklines Scale an individual signal display in the y

direction.

8 Objects

8-502

Visualization Scaling
XY Scale signal display in the y direction and x

direction independently.
Array Scale each element of the multidimensional

signal display in the same manner in the y
direction.

Map Scale signal display in the longitudinal and
latitudinal directions independently. Note that
this allows you to convert other units to longitude
and latitude.

Display Offset — Offset used to display signal data in Simulation Data Inspector
1 (default) | scalar

Offset used to display signal data in the Simulation Data Inspector, specified as a real scalar. Display
Offset allows you to shift the appearance of an individual signal in the Simulation Data Inspector.
Offsetting the display does not change the data values of the signal. Signals shift differently
depending on the visualization type.

Visualization Scaling
Time Plot Shift an individual signal display in the y

direction.
Sparklines Shift an individual signal display in the y

direction.
XY Shift signal display in the y direction and x

direction independently.
Array Shift each element of the multidimensional signal

display in the same manner in the y direction.
Map Shift signal display in the longitudinal and

latitudinal directions independently.

Visualization Properties

ComplexFormat — Display format for complex signals
"real-imaginary" | "magnitude" | "magnitude-phase" | "phase"

Complex format used to display complex signal data in the Simulation Data Inspector, specified as
one of the following values. You can modify the ComplexFormat property for a Signal object to
change how the Simulation Data Inspector displays the signal data when the object contains data for
a complex signal.

• "real-imaginary" — The real and imaginary components of the signal display together when
you plot the signal. The imaginary component of the signal is plotted with a different shade of the
Line Color.

• "magnitude" — The magnitude of the signal displays when you plot the signal.
• "magnitude-phase" — The magnitude and phase of the signal display together when you plot

the signal.
• "phase" — The phase of the signal displays when you plot the signal. The phase is plotted with a
different shade of the Line Color.

 Simulink.sdi.Signal

8-503

Data Types: char | string

Checked — Whether signal is plotted
0 or false (default) | 1 or true

Whether the signal is plotted, specified as a logical value. Setting Checked to false clears the signal
from all subplots. Setting Checked to true plots the signal on the active subplot.
Data Types: logical

LineColor — Signal line color
1-by-3 vector

Color of signal in plots, specified as a 1-by-3 RGB vector with values between 0 and 1.
Example: [0 0.5 0.5]
Data Types: double

LineDashed — Signal line style
'-' | '--' | ':' | '-.'

Signal line style used when the signal is plotted in the Simulation Data Inspector, specified as one of
these options:

• '-' — Solid
• '--' — Dashed
• ':' — Dotted
• '-.' — Dash-dotted

LineWidth — Signal line width
1 (default) | integer between 1 and 20

Signal line width used when the signal is plotted in the Simulation Data Inspector, specified as an
integer between 1 and 20, inclusive.

InterpMethod — Interpolation method
'linear' (default) | 'zoh' | 'none'

Interpolation method used in data visualization and the synchronization step of comparisons,
specified as one of the following values:

• 'zoh' — Zero-order hold interpolation
• 'linear' — Linear interpolation
• 'none' — No interpolation

For more information about the interpolation options, see “How the Simulation Data Inspector
Compares Data”.

Comparison Properties

AbsTol — Absolute tolerance
0 (default) | scalar

Absolute tolerance to use in signal comparisons, specified as a positive-valued scalar.

8 Objects

8-504

The Simulation Data Inspector uses tolerances specified in the signal properties of the baseline signal
when the OverrideGlobalTol property is set to 1 or true. For more information about tolerances
in the Simulation Data Inspector, see “How the Simulation Data Inspector Compares Data”.
Example: 0.1
Data Types: double

RelTol — Relative tolerance
0 (default) | scalar

Relative tolerance to use in signal comparisons, specified as a positive-valued scalar. The relative
tolerance is expressed as a fractional multiplier. For example, 0.1 specifies a 10 percent tolerance.

The Simulation Data Inspector uses tolerances specified in the signal properties of the baseline signal
when the OverrideGlobalTol property is set to 1 or true. For more information about tolerances
in the Simulation Data Inspector, see “How the Simulation Data Inspector Compares Data”.
Example: 0.05
Data Types: double

TimeTol — Time tolerance
0 (default) | scalar

Time tolerance for the signal used in signal comparisons, specified as a positive-valued scalar. Specify
the time tolerance in seconds.

The Simulation Data Inspector uses tolerances specified in the signal properties of the baseline signal
when the OverrideGlobalTol property is set to 1 or true. For more information about tolerances
in the Simulation Data Inspector, see “How the Simulation Data Inspector Compares Data”.
Example: 0.1
Data Types: double

OverrideGlobalTol — Whether comparisons use signal tolerance
0 or false (default) | 1 or true

Whether comparisons use signal tolerance values instead of global tolerance values, specified as a
logical value. Set the OverrideGlobalTol property to 1 or true to use the tolerance values defined
in the Signal object properties. Set the property to 0 or false to use global tolerance values.

For more information about tolerances in the Simulation Data Inspector, see “How the Simulation
Data Inspector Compares Data”.
Data Types: logical

SyncMethod — Synchronization method
'union' (default) | 'intersection'

Method used to synchronize signals in comparisons, specified as 'union' or 'intersection'. For
more information about the synchronization options, see “How the Simulation Data Inspector
Compares Data”.

 Simulink.sdi.Signal

8-505

Object Functions
convertUnits Convert units of Simulink.sdi.Signal object
export Export data for signal in Simulation Data Inspector to workspace or file
getAsTall Create tall timetable from Simulink.sdi.Signal object
plotOnSubPlot Plot Simulink.sdi.Signal object on Simulation Data Inspector subplot

Examples
Analyze Simulation Data Using Signal Tolerances

You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

qResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

alphaResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

8 Objects

8-506

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that
correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

alphaResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

Define Comparison and Visualization Properties for a Signal

This example shows how to obtain a Simulink.sdi.Signal object and modify its properties using
the Simulation Data Inspector programmatic interface.

Create Data in the Simulation Data Inspector

When you simulate a model that logs data, a run is created in the Simulation Data Inspector to
contain the logged data. You can also create a run in the Simulation Data Inspector by importing
data. This example simulates the slexAircraftExample model and logs the data in Dataset
format.

simOut = sim('slexAircraftExample','SaveFormat','Dataset');

 Simulink.sdi.Signal

8-507

Get a Simulink.sdi.Signal Object

The programmatic simulation returns the logged data in the workspace variable simOut. You can
access the logged data in that variable. However, to use the Simulation Data Inspector programmatic
interface, you need to access the logged data in Simulink.sdi.Run and Simulink.sdi.Signal
objects.

First, use the Simulink.sdi.getCurrentSimulationRun to get the Run object that was created
when you simulated the slexAircraftExample model.

aircraftRun = Simulink.sdi.getCurrentSimulationRun('slexAircraftExample');

You can use the getAllSignals function to access the Signal objects for all the signals in the run.
From the returned array of Signal objects, select the first signal.

signals = getAllSignals(aircraftRun);
sig = signals(1);

Modify the Signal Properties

The Simulink.sdi.Signal object has properties that specify options for comparing and visualizing
the signal. Specify a line style and color for the signal. Then, use the
Simulink.sdi.setSubPlotLayout to configure the Simulation Data Inspector to show a single
subplot, and use the plotOnSubPlot function to plot the signal.

sig.LineColor = [1 0.4 0.6];
sig.LineDashed = '-';

Simulink.sdi.setSubPlotLayout(1,1)
plotOnSubPlot(sig,1,1,true)

Use the Simulink.sdi.view function to open the Simulation Data Inspector and view the plotted
signal.

Compare Two Signals in the Same Run

You can use the Simulation Data Inspector programmatic interface to compare signals within a single
run. This example compares the input and output signals of an aircraft longitudinal controller.

First, load the session that contains the data.

Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.Run.getLatest function to access the latest run in the data.

aircraftRun = Simulink.sdi.Run.getLatest;

Then, you can use the Simulink.sdi.getSignalsByName function to access the Stick signal,
which represents the input to the controller, and the alpha, rad signal that represents the output.

stick = getSignalsByName(aircraftRun,'Stick');
alpha = getSignalsByName(aircraftRun,'alpha, rad');

Before you compare the signals, you can specify a tolerance value to use for the comparison.
Comparisons use tolerance values specified for the baseline signal in the comparison, so set an
absolute tolerance value of 0.1 on the Stick signal.

stick.AbsTol = 0.1;

8 Objects

8-508

Now, compare the signals using the Simulink.sdi.compareSignals function. The Stick signal is
the baseline, and the alpha, rad signal is the signal to compare against the baseline.

comparisonResults = Simulink.sdi.compareSignals(stick.ID,alpha.ID);
match = comparisonResults.Status

match =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison result is out of tolerance. You can use the Simulink.sdi.view function to open the
Simulation Data Inspector to view and analyze the comparison results.

Plot Signals from Simulation Run

This example demonstrates how to access the Simulink.sdi.Run object for a Simulation Data
Inspector run created by logging signals. From the Simulink.sdi.Run object you can get
Simulink.sdi.Signal objects that contain the logged signal data and metadata. You can use the
Signal objects and the plotOnSubPlot function to plot the data in the Simulation Data Inspector.

Create a Simulation Run and Access the Run Object

The ex_vdp model logs two signals. To create a simulation run containing the logged data, simulate
the model.

sim('ex_vdp');

The Simulation Data Inspector keeps track of runs by assigning a unique numeric run ID to each run
created by simulation, importing data, or opening a session. To access the run object for the
simulation you just performed, use the Simulink.sdi.getAllRunIDs function and take the last
run ID in the returned vector.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

Once you have the run ID for the run, you can use the Simulink.sdi.getRun function to get the
Simulink.sdi.Run object that corresponds to the run. You can use the Run object to check the
metadata associated with the run, including the number of signals in the run.

vdpRun = Simulink.sdi.getRun(runID);

vdpRun.SignalCount

ans = int32
 2

Plot Data Using Signal Objects

Use the getSignalByIndex function to access signals from the Run object, vdpRun.

signal1 = getSignalByIndex(vdpRun,1);
signal2 = getSignalByIndex(vdpRun,2);

Use the Simulink.sdi.setSubPlotLayout function to specify a 2-by-1 layout.

 Simulink.sdi.Signal

8-509

Simulink.sdi.setSubPlotLayout(2,1)

Before plotting the data, use the Simulink.sdi.clearAllSubPlots function to clear any data that
is already plotted.

Simulink.sdi.clearAllSubPlots

Plot one signal on each subplot. To plot signals on the first subplot, you can set the checked property
for the signal. To plot signals on subplots other than the first subplot, use the plotOnSubPlot
function.

signal1.Checked = true;
plotOnSubPlot(signal2,2,1,true);

View the Plotted Data

To view the plots you just created, open the Simulation Data Inspector using the
Simulink.sdi.view function.

Version History
Introduced in R2012b

See Also
Objects
Simulink.sdi.Run

8 Objects

8-510

Functions
Simulink.sdi.getSignal | Simulink.sdi.createRun | getSignalByIndex |
getSignalIDByIndex | getSignal

Tools
Simulation Data Inspector

Topics
“Inspect and Compare Data Programmatically”
“How the Simulation Data Inspector Compares Data”

 Simulink.sdi.Signal

8-511

collapse
Package: Simulink.sdi

Represent multidimensional signal as a single signal with nonscalar sample values

Syntax
collapse(sigObj)

Description
collapse(sigObj) converts the representation of the signal that corresponds to the
Simulink.sdi.Signal object sigObj from a set of signals with scalar sample values to a single
signal with nonscalar sample values.

When you convert the representation of a multidimensional signal from a set of scalar signals, called
channels, to a single signal with nonscalar sample values:

• The Signal object that previously contained the data for the first channel contains the data for
the multidimensional signal.

• The Signal objects for all other channels no longer contain data.
• The signal IDs for all other channels become invalid.

Examples

Convert Representation of Multidimensional Signal Data

When you analyze multidimensional signal data using the Simulation Data Inspector, you can choose
whether to represent the data as a single signal with multidimensional sample values or as a set of
signals, called channels, with scalar sample values. Use the Simulation Data Inspector programmatic
interface to convert the representation of a signal created by logging the output of the Mux block in
the model vdp.

Open and Simulate the Model

Open the model vdp, mark the output of the Mux block for logging, and name the Mux block output
signal. Then, simulate the model.

open_system('vdp');

MuxPort = get_param('vdp/Mux','PortHandles');
set_param(MuxPort.Outport,'DataLogging','on');

MuxSig = get_param(MuxPort.Outport,'Line');
set_param(MuxSig,'Name','Mux');

sim('vdp');

8 Objects

8-512

Access the Run and Signal Data

By default, the output of the Mux block is represented as channels in the Simulation Data Inspector
because it contains fewer than four channels, so the run contains two signals: one for each channel in
the Mux block output.

Use the Simulink.sdi.getCurrentSimulationRun function to access the Simulink.sdi.Run
object that contains the simulation data. Then, check how many Simulink.sdi.Signal objects the
Run object contains using the SignalCount property on the Run object.

runObj = Simulink.sdi.getCurrentSimulationRun('vdp');
runObj.SignalCount

ans = int32
 2

Signals with multidimensional data have a top-level Signal object that does not contain data. The
Children property of the top-level signal object contains one or more Signal objects associated
with the top-level composite signal that contain the data. Because the top-level signals do not contain
data, they are not counted to determine the value of the SignalCount property for the Run object.

Use the getSignalsByName function to access the top-level Signal object for the Mux block
output.

topSig = getSignalsByName(runObj,'Mux');

Use the Children property to access the Signal object for each channel.

sig1 = topSig.Children(1);
sig1.Name

ans =
'Mux(1)'

sig2 = topSig.Children(2);
sig2.Name

ans =
'Mux(2)'

Convert Channels to a Multidimensional Signal

Use the collapse function to convert the representation of the Mux block output so you access the
data as a single signal with multidimensional sample values.

collapse(sig1)

The Run object now contains only one signal with multidimensional sample values.

runObj.SignalCount

ans = int32
 1

The Children property of the top-level Signal object now contains only one signal.

size(topSig.Children)

ans = 1×2

 collapse

8-513

 1 1

After you convert a signal from channels to multidimensional representation, the Signal object that
previously contained the data for the first channel contains the data for the multidimensional signal.

sig1.Values.Data

ans = 64×2

 2.0000 0
 2.0000 -0.0002
 2.0000 -0.0012
 2.0000 -0.0062
 1.9998 -0.0306
 1.9943 -0.1398
 1.9379 -0.3840
 1.8155 -0.5570
 1.5990 -0.7204
 1.2687 -0.9452
 ⋮

After conversion, the signal IDs for the Signal objects that contained data for other channels
become invalid.

isValidSignalID(runObj,sig2.ID)

ans = logical
 0

Convert a Multidimensional Signal to Channels

Use the expand function to convert the Mux output back to channels.

expand(sig1)

After converting a multidimensional signal to channels, the Signal object that previously contained
the data for the multidimensional signal contains the data for the first channel. New Signal objects
are created for other channels.

sig1.Name

ans =
'Mux(1)'

The Run object and the Children property of the top-level Signal object both contain two signals.

runObj.SignalCount

ans = int32
 2

size(topSig.Children)

ans = 1×2

 1 2

8 Objects

8-514

Access the new Signal object that contains the data for the second channel.

newSig = topSig.Children(2);
newSig.Name

ans =
'Mux(2)'

Input Arguments
sigObj — Channel of multidimensional signal to convert to single signal
Simulink.sdi.Signal object

Channel of multidimensional signal to convert to a single signal, specified as a
Simulink.sdi.Signal object.

Version History
Introduced in R2021b

See Also
Objects
Simulink.sdi.Signal | Simulink.sdi.Run

Functions
expand | convertToFrames

 collapse

8-515

convertDataType
Package: Simulink.sdi

Convert data type for signal in Simulation Data Inspector

Syntax
convertDataType(sigObj,dataType)

Description
convertDataType(sigObj,dataType) converts the data in the Simulink.sdi.Signal object
sigObj to the specified data type dataType.

The convertDataType function supports converting to all built-in data types. For more information,
see “Data Types Supported by Simulink”. When you have a license for Fixed-Point Designer, you can
also convert to fixed-point data types defined using the fixdt function.

You cannot convert the data type for a signal produced by logging simulation data while the
simulation that produces the signal is in progress.

Warning You cannot undo a data type conversion in the Simulation Data Inspector. Some data types
allow more precision in the stored data values than others. Conversion to a data type with less
precision can result in permanent loss of precision in data values.

Examples

Convert Data Type for Logged Signal

Simulate the model vdp while logging outputs using the Dataset format.

mdl = "vdp";
open_system(mdl)
out = sim(mdl,SaveOutput="on",SaveFormat="Dataset");

Access the Simulink.sdi.Run object that contains the logged data and metadata in the Simulation
Data Inspector.

run1 = Simulink.sdi.getCurrentSimulationRun(mdl);

Access the Simulink.sdi.Signal object that contains the data for the signal x1.

x1Sig = getSignalsByName(run1,"x1");

Check the DataType property for the signal. The model uses the double data type for the signal.

x1Sig.DataType

ans =
'double'

8 Objects

8-516

Convert the data type for the signal from double to single. You cannot undo a data type conversion
in the Simulation Data Inspector. When you convert to a data type with less precision in the stored
data values, precision lost due to conversion is permanent. A warning occurs when the data type
conversion causes a loss in precision.

convertDataType(x1Sig,"single");

Warning: Changing the data type of signal 'x1' from 'double' to 'single' causes precision loss that cannot be undone.

Check the DataType property for the signal again.

x1Sig.DataType

ans =
'single'

Convert Data Type for Imported Signal

Create time and signal data that represents a sine wave.

time = 0.01*(0:1000);
time = time';
data = 50*sin(2*pi/3*time);

By default, MATLAB® creates double data. To represent a scenario where another process creates
int32 data you want to analyze in the Simulation Data Inspector, convert the data type for the signal
values to int32.

data = cast(data,"int32");

Create a timeseries object using the time and data values for the signal. Then, name the
timeseries object Sine Wave.

sigTS = timeseries(data,time);
sigTS.Name = "Sine Wave";

Import the signal into the Simulation Data Inspector.

runObj = Simulink.sdi.Run.create("Imported Data","vars",sigTS);

Access the Simulink.sdi.Signal object with the data values. Then, check the signal data type.

sigObj = getSignalsByName(runObj,"Sine Wave");
sigObj.DataType

ans =
'int32'

Use the convertDataType function to convert the data type to double. Then, check the signal data
type again.

convertDataType(sigObj,"double");
sigObj.DataType

ans =
'double'

 convertDataType

8-517

Input Arguments
sigObj — Signal with data to convert
Simulink.sdi.Signal object

Signal with data to convert, specified as a Simulink.sdi.Signal object.

dataType — Desired data type for signal
string | character vector

Desired data type for signal, specified as a string or a character vector.

You can convert to any built-in data type by specifying the name for the data type as a string or
character vector. For example, to convert to an 8-bit unsigned integer data type, specify the data type
as "uint8". For more information about built-in data types and their names, see “Data Types
Supported by Simulink”.

When you have a license for Fixed-Point Designer, you can also convert to fixed-point data types
defined using the fixdt function. To convert to a fixed-point data type, specify the fixdt command
as a string or a character vector.
Example: "int16" specifies conversion to the built-in signed 16-bit integer data type
Example: "fixdt(1,12,4)" specifies conversion to a fixed-point data type defined using the fixdt
function

Version History
Introduced in R2022a

See Also
Objects
Simulink.sdi.Signal | Simulink.sdi.Run

Functions
convertUnits

Topics
“Modify Signal Properties in the Simulation Data Inspector”

8 Objects

8-518

convertToFrames
Package: Simulink.sdi

Remove buffering from frames of frame-based signal

Syntax
convertToFrames(sigObj)

Description
convertToFrames(sigObj) removes the buffering from each frame of the frame-based signal that
corresponds to the Simulink.sdi.Signal object sigObj. For example, suppose sigObj is a
frame-based signal with 64-by-2 sample values. The convertToFrames function interprets each 64-
by-2 sample as 64 evenly spaced 1-by-2 samples.

To convert the representation of a signal using the convertToFrames function, the signal must have
a discrete sample rate, and the sample values must be nonscalar with fixed dimensions. The
convertToFrames function does not support variable-size signals. The Simulation Data Inspector
does not support converting frames for imported data.

Examples

Interpret Data in Simulation Data Inspector as Frame-Based

Some applications buffer several samples of a signal into a frame to process with a single
computation. When you log a frame-based signal to the Simulation Data Inspector, you can view and
analyze the data for each frame using an array plot, or you can convert the representation of the
signal data to undo the buffering. This example converts the representation of a frame-based signal
from the model sfcndemo_frame.

Simulating the model for this example requires a license for DSP System Toolbox™. Converting
frame-based data in the Simulation Data Inspector does not require a license for DSP System Toolbox.

Open the model sfcndemo_frame. Then, mark the output from the A/D Converter block for logging
and specify a name for the signal line.

open_system('sfcndemo_frame');
ADPort = get_param(find_system(gcs,'FindAll','on','name','A/D Converter'),'PortHandles');
set_param(ADPort.Outport,'DataLogging','on');

ADLine = get_param(ADPort.Outport,'Line');
set_param(ADLine,'Name','Noisy Signal');

Simulate the model.

out = sim('sfcndemo_frame','StopTime','99.84');

Use the Simulink.sdi.getCurrentSimulationRun function to access the simulation data.

 convertToFrames

8-519

runObj = Simulink.sdi.getCurrentSimulationRun('sfcndemo_frame');

Use the getSignalsByName function to access the Simulink.sdi.Signal object for the A/D
Converter block output signal named Noisy Signal.

NoisySig = getSignalsByName(runObj,'Noisy Signal');

Check the dimensions for a sample of the signal. The signal has two channels with a frame size of 64,
resulting in sample values with dimensions 64-by-2. Because each sample is two-dimensional, the
samples are concatenated along the third dimension, such that the time values align with the third
dimension of the array of sample values.

size(NoisySig.Values.Data(:,:,1))

ans = 1×2

 64 2

To analyze the the data for the signal over the duration of the simulation, use the convertToFrames
function to interpret the signal as frame-based.

convertToFrames(NoisySig);

Check the dimensions for a sample of the signal. After interpreting the signal as frame-based, each
sample is a vector, and time aligns with the first dimension of the array of sample values.

size(NoisySig.Values.Data(1,:))

ans = 1×2

 1 2

Because the resulting signal has fewer than four elements in each sample, the Simulation Data
Inspector also automatically converts the signal to channels. You can access the Signal objects for
each channel using the Children property of the original Signal object.

NoisyChannel1 = NoisySig.Children(1);
NoisyChannel1.Name

ans =
'Noisy Signal(1)'

NoisyChannel2 = NoisySig.Children(2);
NoisyChannel2.Name

ans =
'Noisy Signal(2)'

Each channel has scalar sample values.

size(NoisyChannel1.Values.Data(1,:))

ans = 1×2

 1 1

8 Objects

8-520

Input Arguments
sigObj — Signal with data to convert
Simulink.sdi.Signal object

Signal with data to convert, specified as a Simulink.sdi.Signal object. The convertToFrames
function does not support variable-size signals.

Version History
Introduced in R2021b

See Also
Objects
Simulink.sdi.Signal | Simulink.sdi.Run

Functions
collapse | expand

 convertToFrames

8-521

convertUnits
Package: Simulink.sdi

Convert units of Simulink.sdi.Signal object

Syntax
convertUnits(sig,units)

Description
convertUnits(sig,units) converts the stored units of the Simulink.sdi.Signal object sig to
the units specified by units. When you convert the stored units, the display units are updated. For a
list of supported units, see Allowed Units. You can use the convertUnits function to convert the
units of Simulink.sdi.Signal objects that contain data of all built-in and fixed-point types.

Note Unit conversion does not support undo and may lead to precision loss.

Examples

Programmatically Convert Signal Units

Use the convertUnits function to convert the stored units of a Simulink.sdi.Signal object. This
example uses data generated by simulating the model sldemo_autotrans. When you convert the
stored units of the Signal object, the Simulation Data Inspector performs a conversion on the data
and updates the signal display units any plots that display the signal. Changing the stored units of a
Signal object does not affect the model that created the signal.

Generate Simulation Data

Simulate the sldemo_autotrans model to create a run in the Simulation Data Inspector. Then, use
the Simulink.sdi.Run.getLatest function to access the Run object that corresponds to the
simulation.

out = sim('sldemo_autotrans');

autoRun = Simulink.sdi.Run.getLatest;

Inspect the Signal Properties

Get the Simulink.sdi.Signal object for the EngineRPM signal and check the StoredUnits and
DisplayUnits properties.

engine_sig = getSignalsByName(autoRun,'EngineRPM');

engine_sig.StoredUnits

ans =
'rpm'

8 Objects

8-522

matlab:showunitslist

engine_sig.DisplayUnits

ans =
'rpm'

Convert Stored Units

Use the convertUnits function to convert the EngineRPM signal units to rad/s. When you convert
the stored units, the display units are updated. Then, change the signal name to reflect the new units.

convertUnits(engine_sig,'rad/s')
engine_sig.Name = 'EngineFreq,rad/s';

Check the modified signal properties.

engine_sig.StoredUnits

ans =
'rad/s'

engine_sig.DisplayUnits

ans =
'rad/s'

engine_sig.Name

ans =
'EngineFreq,rad/s'

Input Arguments
sig — Signal with units to convert
Simulink.sdi.Signal object

Signal with units to convert, specified as a Simulink.sdi.Signal object.

units — Desired signal units
string | character vector

Desired signal units, specified as a string or character vector. For a list of accepted units, see Allowed
Units.
Example: 'm'
Example: "ft/s"
Data Types: char | string

Version History
Introduced in R2018a

See Also
Simulink.sdi.Signal

 convertUnits

8-523

matlab:showunitslist
matlab:showunitslist

Topics
“Inspect and Compare Data Programmatically”
“Configure the Simulation Data Inspector”
“Modify Signal Properties in the Simulation Data Inspector”
“Unit Specification in Simulink Models”
“Units in Simulink”

8 Objects

8-524

expand
Package: Simulink.sdi

Represent multidimensional signal as group of signals with scalar sample values

Syntax
expand(sigObj)

Description
expand(sigObj) converts the representation of the signal that corresponds to the
Simulink.sdi.Signal object sigObj from a single signal with nonscalar sample values to a set of
signals with scalar sample values: one signal, called a channel, for each element in the
multidimensional sample values.

Expanding a signal creates a new Signal object for each channel except the channel that
corresponds to the first element in the multidimensional signal value. The data for the first channel in
the multidimensional signal is stored in the Signal object that previously contained the
multidimensional signal data.

The expand function does not support variable-size signals.

Examples

Convert Representation of Multidimensional Signal Data

When you analyze multidimensional signal data using the Simulation Data Inspector, you can choose
whether to represent the data as a single signal with multidimensional sample values or as a set of
signals, called channels, with scalar sample values. Use the Simulation Data Inspector programmatic
interface to convert the representation of a signal created by logging the output of the Mux block in
the model vdp.

Open and Simulate the Model

Open the model vdp, mark the output of the Mux block for logging, and name the Mux block output
signal. Then, simulate the model.

open_system('vdp');

MuxPort = get_param('vdp/Mux','PortHandles');
set_param(MuxPort.Outport,'DataLogging','on');

MuxSig = get_param(MuxPort.Outport,'Line');
set_param(MuxSig,'Name','Mux');

sim('vdp');

 expand

8-525

Access the Run and Signal Data

By default, the output of the Mux block is represented as channels in the Simulation Data Inspector
because it contains fewer than four channels, so the run contains two signals: one for each channel in
the Mux block output.

Use the Simulink.sdi.getCurrentSimulationRun function to access the Simulink.sdi.Run
object that contains the simulation data. Then, check how many Simulink.sdi.Signal objects the
Run object contains using the SignalCount property on the Run object.

runObj = Simulink.sdi.getCurrentSimulationRun('vdp');
runObj.SignalCount

ans = int32
 2

Signals with multidimensional data have a top-level Signal object that does not contain data. The
Children property of the top-level signal object contains one or more Signal objects associated
with the top-level composite signal that contain the data. Because the top-level signals do not contain
data, they are not counted to determine the value of the SignalCount property for the Run object.

Use the getSignalsByName function to access the top-level Signal object for the Mux block
output.

topSig = getSignalsByName(runObj,'Mux');

Use the Children property to access the Signal object for each channel.

sig1 = topSig.Children(1);
sig1.Name

ans =
'Mux(1)'

sig2 = topSig.Children(2);
sig2.Name

ans =
'Mux(2)'

Convert Channels to a Multidimensional Signal

Use the collapse function to convert the representation of the Mux block output so you access the
data as a single signal with multidimensional sample values.

collapse(sig1)

The Run object now contains only one signal with multidimensional sample values.

runObj.SignalCount

ans = int32
 1

The Children property of the top-level Signal object now contains only one signal.

size(topSig.Children)

ans = 1×2

8 Objects

8-526

 1 1

After you convert a signal from channels to multidimensional representation, the Signal object that
previously contained the data for the first channel contains the data for the multidimensional signal.

sig1.Values.Data

ans = 64×2

 2.0000 0
 2.0000 -0.0002
 2.0000 -0.0012
 2.0000 -0.0062
 1.9998 -0.0306
 1.9943 -0.1398
 1.9379 -0.3840
 1.8155 -0.5570
 1.5990 -0.7204
 1.2687 -0.9452
 ⋮

After conversion, the signal IDs for the Signal objects that contained data for other channels
become invalid.

isValidSignalID(runObj,sig2.ID)

ans = logical
 0

Convert a Multidimensional Signal to Channels

Use the expand function to convert the Mux output back to channels.

expand(sig1)

After converting a multidimensional signal to channels, the Signal object that previously contained
the data for the multidimensional signal contains the data for the first channel. New Signal objects
are created for other channels.

sig1.Name

ans =
'Mux(1)'

The Run object and the Children property of the top-level Signal object both contain two signals.

runObj.SignalCount

ans = int32
 2

size(topSig.Children)

ans = 1×2

 1 2

 expand

8-527

Access the new Signal object that contains the data for the second channel.

newSig = topSig.Children(2);
newSig.Name

ans =
'Mux(2)'

Input Arguments
sigObj — Multidimensional signal to convert to channels
Simulink.sdi.Signal object

Multidimensional signal to convert to channels, specified as a Simulink.sdi.Signal object. The
expand function does not support variable-size signals.

Version History
Introduced in R2021b

See Also
Objects
Simulink.sdi.Signal | Simulink.sdi.Run

Functions
collapse | convertToFrames

8 Objects

8-528

export
Package: Simulink.sdi

Export data for signal in Simulation Data Inspector to workspace or file

Syntax
sigData = export(sig)
sigData = export(sig,startTime,endTime)
export(___ ,Name=Value)

Description
sigData = export(sig) exports the data for one or more signals in the Simulation Data Inspector
to the workspace.

• If sig is a scalar Simulink.sdi.Signal object, then sigData is a timeseries object.
• If sig is an array of Simulink.sdi.Signal objects, then sigData is a

Simulink.SimulationData.Dataset object that contains a
Simulink.SimulationData.Signal object for each signal in the input array.

sigData = export(sig,startTime,endTime) exports to the workspace the portion of one or
more signals within the interval defined by the start time startTime and the end time endTime.

export(___ ,Name=Value) exports one or more signals in the Simulation Data Inspector to the
workspace or a file according to the options specified by one or more name-value arguments.

For most signals, you can choose to export the data to the workspace, a MAT file, or a Microsoft Excel
file.

When the signal contains video data, you can export the signal to an MP4 file. Exporting a video
signal to an MP4 file is not supported for Linux operating systems.

Examples

Export Signal Data to Workspace

This example shows how to create a run in the Simulation Data Inspector, access the data, and export
the signal data to a timeseries object in the workspace.

Simulate the model sldemo_fuelsys to create a run in the Simulation Data Inspector that contains
the logged data.

sim('sldemo_fuelsys');

Use the Simulink.sdi.getCurrentSimulationRun function to access the run.

fuelRun = Simulink.sdi.getCurrentSimulationRun('sldemo_fuelsys');

Use the getSignalByIndex function to get the second signal in the Simulink.sdi.Run object.

 export

8-529

sig = getSignalByIndex(fuelRun,2);

Export the signal data to the workspace using the export function.

ts = export(sig);

Input Arguments
sig — Signal to export
Simulink.sdi.Signal object | array of Simulink.sdi.Signal objects

Signal to export, specified as a Simulink.sdi.Signal object or an array of
Simulink.sdi.Signal objects.

startTime — Start of signal portion to export
numeric scalar

Start of signal portion to export, specified as a numeric scalar.
Example: sigData = export(sig,0,10) exports to the workspace the portion of the signal sig
between the times 0 and 10.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

endTime — End of signal portion to export
numeric scalar

End of signal portion to export, specified as a numeric scalar.
Example: sigData = export(sig,0,10) exports to the workspace the portion of the signal sig
between the times 0 and 10.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: to="file",filename="mySpreadshee.xlsx"

to — Where to export data
'variable' (default) | 'file'

Where to export data, specified as:

• 'variable' — Export one or more signals to the workspace.
• 'file' — Export one or more signals to a MAT file, a Microsoft Excel file, or an MP4 file.

When you export data to a file, specify a file name using the filename name-value argument.

Example: to="file",filename="mySpreadsheet.xlsx"

8 Objects

8-530

filename — Name and type of file to which to export data
string | character vector

Name and type of file to which to export data, specified as a string or character vector. Include a file
extension to specify the type of file:

• .mat — Export data to MAT file.
• .xlsx — Export data to Microsoft Excel file.
• .mp4 — Export data to MP4 file.

When you do not specify an extension with the file name, the data exports to a MAT file.

To specify the filename name-value argument, you must specify the to name-value argument as
'file'.

To export a video signal to an MP4 file:

• The signal must be 2D or 3D and contain RGB or monochrome video data.
• The data type for the signal values must be double, single, or uint8.
• The signal must be represented as a single signal with multidimensional sample values.

You may need to convert the representation of the signal using the collapse function before
exporting the signal data. For more information, see “Analyze Multidimensional Signal Data”.

Example: to="file",filename="mySpreadsheet.xlsx"

Tips

• When you export one signal to a MAT file, the data is saved in the MAT file as a timeseries
object.

• When you export multiple signals to a MAT file, the data is saved as a
Simulink.SimulationData.Dataset object that contains a
Simulink.SimulationData.Signal object for each exported signal.

• Data exported to a Microsoft Excel file is saved using the format described in “Microsoft Excel
Import, Export, and Logging Format”.

• When you export data to a Microsoft Excel file, you can specify additional options using the
overwrite, metadata, and sharetimecolumn name-value arguments.

overwrite — Data to overwrite in existing Microsoft Excel file
'file' (default) | 'sheetsonly'

Data to overwrite in existing Microsoft Excel file, specified as 'file' or 'sheetsonly'.

• 'file' — Overwrite the entire file with the exported data.
• 'sheetsonly' — Overwrite only sheets of the Microsoft Excel file that contain data that

corresponds to the exported data.

Specify the overwrite name-value argument only when you export data to a Microsoft Excel file.

When you export data to an existing MAT file, the exported data overwrites the entire file.
Example: overwrite="sheetsonly"

 export

8-531

metadata — Metadata to include in exported Microsoft Excel file
[] (default) | string array

Metadata to include in the exported Microsoft Excel file, specified as a string array. By default, the
exported file does not include any metadata. You can export this metadata to a Microsoft Excel file:

• dataType — Signal data type
• units — Signal units
• blockPath — Path to the source block for logged signals
• interp — Signal interpolation method
• portIndex — Index of the port on the source block for logged signals

The order of metadata options in the string array does not determine the order of the metadata in the
exported file, which always matches the description in “Microsoft Excel Import, Export, and Logging
Format”.
Example: metadata=["units" "dataType"]

sharetimecolumn — Option for signals to share time columns in exported Microsoft Excel
file
'on' (default) | 'off'

Option for signals that have identical time data to share time columns in the exported Microsoft Excel
file, specified as 'on' or 'off'. By default, signals that have identical time data share a time column
in the exported file. When you specify the value as 'off', each signal in the exported file has its own
time column.
Example: sharetimecolumn='off'

Output Arguments
sigData — Exported signal data
timeseries object | Simulink.SimulationData.Dataset object

Exported signal data, returned as a timeseries object or a Simulink.SimulationData.Dataset
object.

Alternatives
You can export data to the workspace or a file using the Simulation Data Inspector. For more
information, see “Save and Share Simulation Data Inspector Data and Views”.

Version History
Introduced in R2017b

See Also
Simulink.sdi.Signal | Simulink.sdi.exportRun

Topics
“Inspect and Compare Data Programmatically”

8 Objects

8-532

“Save and Share Simulation Data Inspector Data and Views”

 export

8-533

getAsTall
Package: Simulink.sdi

Create tall timetable from Simulink.sdi.Signal object

Syntax
tt = getAsTall(sig)

Description
tt = getAsTall(sig) returns a tall timetable containing the time and data values in the
Simulink.sdi.Signal object sig. For more information on working with tall arrays, see “Tall
Arrays for Out-of-Memory Data”.

Examples

Get Tall Timetable of Signal Data

This example shows how to generate a tall timetable from the signal data in a
Simulink.sdi.Signal object.

Create a run containing logged data in the Simulation Data Inspector by simulating the model
sldemo_fuelsys.

sim('sldemo_fuelsys');

Use the Simulink.sdi.getAllRunIDs function to get the run ID for the run that corresponds to
the simulation. Then use the Simulink.sdi.getRun function to get the Simulink.sdi.Run object
that corresponds to the run ID.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

fuelRun = Simulink.sdi.getRun(runID);

Use the getSignalByIndex function to get the Simulink.sdi.Signal object that corresponds to
the second signal in the run.

sig = getSignalByIndex(fuelRun,2);

Get a tall timetable containing the signal data by using the getAsTall function.

tt = getAsTall(sig)

tt =

 Mx1 tall timetable

 Time Data
 ______________ ________

8 Objects

8-534

 0 sec 0.068493
 0.00056199 sec 0.092452
 0.0033719 sec 0.21101
 0.01 sec 0.48273
 0.02 sec 0.88522
 0.03 sec 1.2763
 0.04 sec 1.6563
 0.05 sec 2.0255
 : :
 : :

Input Arguments
sig — Signal to return as a tall timetable
Simulink.sdi.Signal object

Signal to return as a tall timetable, specified as a Simulink.sdi.Signal object.

Output Arguments
tt — Tall timetable
tall timetable

Data from the Simulink.sdi.Signal, returned as a tall timetable.

Version History
Introduced in R2017b

See Also
Simulink.sdi.Signal | export | Simulink.sdi.exportRun | tall

Topics
“Inspect and Compare Data Programmatically”

 getAsTall

8-535

plotOnSubPlot
Package: Simulink.sdi

Plot Simulink.sdi.Signal object on Simulation Data Inspector subplot

Syntax
plotOnSubPlot(sig,r,c,checked)

Description
plotOnSubPlot(sig,r,c,checked) plots or clears the signal that corresponds to the
Simulink.sdi.Signal object sig on the subplot specified by r and c.

Examples

Plot Signals from Simulation Run

This example demonstrates how to access the Simulink.sdi.Run object for a Simulation Data
Inspector run created by logging signals. From the Simulink.sdi.Run object you can get
Simulink.sdi.Signal objects that contain the logged signal data and metadata. You can use the
Signal objects and the plotOnSubPlot function to plot the data in the Simulation Data Inspector.

Create a Simulation Run and Access the Run Object

The ex_vdp model logs two signals. To create a simulation run containing the logged data, simulate
the model.

sim('ex_vdp');

The Simulation Data Inspector keeps track of runs by assigning a unique numeric run ID to each run
created by simulation, importing data, or opening a session. To access the run object for the
simulation you just performed, use the Simulink.sdi.getAllRunIDs function and take the last
run ID in the returned vector.

runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);

Once you have the run ID for the run, you can use the Simulink.sdi.getRun function to get the
Simulink.sdi.Run object that corresponds to the run. You can use the Run object to check the
metadata associated with the run, including the number of signals in the run.

vdpRun = Simulink.sdi.getRun(runID);

vdpRun.SignalCount

ans = int32
 2

8 Objects

8-536

Plot Data Using Signal Objects

Use the getSignalByIndex function to access signals from the Run object, vdpRun.

signal1 = getSignalByIndex(vdpRun,1);
signal2 = getSignalByIndex(vdpRun,2);

Use the Simulink.sdi.setSubPlotLayout function to specify a 2-by-1 layout.

Simulink.sdi.setSubPlotLayout(2,1)

Before plotting the data, use the Simulink.sdi.clearAllSubPlots function to clear any data that
is already plotted.

Simulink.sdi.clearAllSubPlots

Plot one signal on each subplot. To plot signals on the first subplot, you can set the checked property
for the signal. To plot signals on subplots other than the first subplot, use the plotOnSubPlot
function.

signal1.Checked = true;
plotOnSubPlot(signal2,2,1,true);

View the Plotted Data

To view the plots you just created, open the Simulation Data Inspector using the
Simulink.sdi.view function.

 plotOnSubPlot

8-537

Input Arguments
sig — Signal to plot
Simulink.sdi.Signal object

Signal to plot, specified as a Simulink.sdi.Signal object.

r — Row index
integer

Row index for the subplot, specified as an integer between 1 and 8, inclusive.
Example: 1

c — Column index
integer

Column index for the subplot, specified as an integer between 1 and 8, inclusive.
Example: 2

checked — Plot or clear signal
true | false

Plot or clear the signal on the subplot, specified as one of these values:

• true plots the signal on the subplot.

8 Objects

8-538

• false clears the signal from the subplot.

Data Types: logical

Alternatives
You can use the Simulation Data Inspector UI to modify the plot layout and plotted signals. For more
information, see “Inspect Simulation Data”.

Version History
Introduced in R2017b

See Also
Simulink.sdi.clearAllSubPlots | Simulink.sdi.setSubPlotLayout |
Simulink.sdi.Signal | Simulink.sdi.saveView | Simulink.sdi.save

Topics
“Inspect and Compare Data Programmatically”
“Create Plots Using the Simulation Data Inspector”

 plotOnSubPlot

8-539

Simulink.Signal
Specify instance-specific properties of signal or discrete state

Description
This object enables you to create workspace objects that you can use to assign or validate the
attributes of a signal or discrete state, such as its data type, numeric type, dimensions, and so on.

You can use a signal object to:

• Assign values to signal attributes that are left unassigned (have a value of -1 or auto) by the
signal source.

• Validate signal attributes whose values are explicitly assigned by the signal source. Such
attributes have values other than -1 or auto. Successful validation guarantees that the signal has
the attributes that you intended it to have.

You can create a Simulink.Signal object in the MATLAB workspace or in a model workspace.

Use signal objects to assign or validate signal or discrete state attributes by giving the signal or
discrete state the same name as the workspace variable that references the Simulink.Signal
object.

For more information about using signal objects, see “Use Simulink.Signal Objects to Specify and
Control Signal Attributes” and “Data Objects”.

To assign or validate the properties of signals based on an application-specific type, such as wind
velocity, use a Simulink.ValueType object.

Creation
Create a Simulink.Signal object:

• By using the Model Data Editor. See “For Signals”.
• By using the Model Explorer. See “Create Data Objects from Built-In Data Class Package

Simulink”.
• Directly from a signal properties dialog box or the Property Inspector in a model. See “Create

Signal Object from Signal Properties Dialog Box”.
• By using the Simulink.Signal function described here.

Syntax
signalObj = Simulink.Signal

Description

signalObj = Simulink.Signal returns a Simulink.Signal object with default property values.

8 Objects

8-540

Properties
CoderInfo — Specifications for generating code for signal
Simulink.CoderInfo object

This property is read-only.

Information used by Simulink Coder software for generating code for this signal. The value of this
property is a Simulink.CoderInfo object.

The storage class of a Simulink.Signal object in a model workspace must be 'Auto'.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder) and “Choose Storage Class for Controlling Data Representation in Generated Code”
(Embedded Coder).

Description — Custom description of signal
'' (default) | character vector | string scalar

Description of this signal. This field is intended for use in documenting this signal.

This property is used by the Simulink Report Generator and for code generation.

If you have an Embedded Coder license, you can add the signal description as a comment for the
variable declaration in generated code:

• Specify a storage class for the signal object other than 'Auto'.
• On the Code Generation > Comments pane of the model Configuration Parameters dialog box,

select the model configuration parameter Simulink data object descriptions. For more
information, see Simulink data object descriptions (Embedded Coder).

Example: 'This signal represents the rotation speed of the engine.'

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
object. The software uses the description of the Simulink.ValueType object instead.
Data Types: char | string

DataType — Data type of signal
'auto' (default) | character vector | string scalar

Character vector specifying the data type of this signal.

The default value, 'auto', specifies that the software should determine the data type.

You can specify a built-in data type, for example, 'uint8' or 'single'. For more options, see “Data
Types Supported by Simulink”.

To specify a fixed-point data type, use the fixdt function. For example, specify 'fixdt(1,16,5)'.

To specify a custom data type, enter a MATLAB expression that specifies the type, for example, a base
workspace variable that references a Simulink.NumericType object.

 Simulink.Signal

8-541

To specify an enumerated data type, use the name of the type preceded by Enum:. For example,
specify 'Enum: myEnumType'.

To specify a Simulink.ValueType object as the data type, use the name of the object preceded by
ValueType:. For example, specify 'ValueType: myValueType'.

To specify a Simulink.Bus object as the data type, use the name of the bus object preceded by
Bus:. For example, specify 'Bus: myBusObject'. See “Bus Support” for details about what you
need to do if you specify a bus object as the data type.

When you specify a Simulink.ValueType or Simulink.Bus object as the data type, some
properties of the Simulink.Signal object are ignored. For example, the Min, Max, and Unit
properties of the Simulink.Signal object are ignored. The software uses the corresponding
properties of the Simulink.ValueType object or Simulink.BusElement objects in the
Simulink.Bus object instead.
Example: 'auto'
Example: 'int8'
Example: 'fixdt(1,16,5)'
Example: 'myAliasTypeObject'
Example: 'Enum: myEnumType'
Example: 'ValueType: myValueType'
Example: 'Bus: myBusObject'
Tips

When you edit the data type interactively, to display the Data Type Assistant, click the Show data

type assistant button . For more information, see “Specify Data Types Using Data Type
Assistant”.
Data Types: char | string

Min — Minimum value of signal
[] (default) | real double scalar

Minimum value that this signal can have.

The default value is [] (unspecified). Specify a finite, real, double, scalar value.

The software uses this value in these ways:

• When updating the diagram or starting a simulation, the software generates an error if the initial
value of the signal is less than the minimum value or if the minimum value is outside the range for
the data type of the signal.

• When you enable the Simulation range checking diagnostic, the software alerts you during
simulation if the signal value is less than the minimum value (see “Simulation range checking”).

Example: -0.92
Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the minimum values specified by the

8 Objects

8-542

Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead.
Tips

For signal objects with a fixed-point data type, dialog boxes show the Stored Integer Minimum
property, which is the minimum value that the signal should have, specified as a stored integer value.
The value is derived from the real-world minimum value.
Data Types: double

Max — Maximum value of signal
[] (default) | real double scalar

Maximum value that this signal can have.

The default value is [] (unspecified). Specify a finite, real, double, scalar value.

The software uses this value in these ways:

• When updating the diagram or starting a simulation, the software generates an error if the initial
value of the signal is greater than the maximum value or if the maximum value is outside the
range of the data type of the signal.

• When you enable the Simulation range checking diagnostic, the software alerts you during
simulation if the signal value is greater than the maximum value (see “Simulation range
checking”).

Example: 5.32
Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the maximum values specified by the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead.
Tips

For signal objects with a fixed-point data type, dialog boxes show the Stored Integer Maximum
property, which is the maximum value that the signal should have, specified as a stored integer value.
The value is derived from the real-world maximum value.
Data Types: double

Unit — Physical unit of signal value
'' (default) | character vector | string scalar

Physical unit used for expressing this signal value, for example, inches.

For more information, see “Unit Specification in Simulink Models”.
Example: 'degC'
Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the units specified by the Simulink.ValueType object
or the Simulink.BusElement objects in the Simulink.Bus object instead.

 Simulink.Signal

8-543

Data Types: char | string

Dimensions — Dimensions of signal
-1 (default) | row vector | character vector | string scalar

Scalar or vector specifying the dimensions of this signal.

Valid values are -1 (default) specifying any dimensions, N specifying a vector signal of size N, or [M
N] specifying an MxN matrix signal.

To use symbolic dimensions, specify a character vector.
Example: [1 3]
Example: '[1 myDimParam]'

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
object. The software uses the dimensions specified by the Simulink.ValueType object instead.
Data Types: double | char | string

DimensionsMode — Dimension mode of signal
'auto' (default) | 'Fixed' | 'Variable'

Dimensions mode of the signal. Valid values are:

• 'auto' — Allows variable-size and fixed-size signals.
• 'Fixed' — Allows only fixed-size signals. Does not allow variable-size signals.
• 'Variable' — Allows only variable-size signals.

For information about variable-size signals, see “Variable-Size Signal Basics”.

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the dimensions modes specified by the
Simulink.ValueType object or the Simulink.BusElement objects in the Simulink.Bus object
instead.

Complexity — Numeric complexity of signal
'auto' (default) | 'real' | 'complex'

Character vector specifying the numeric type of this signal. Valid values are 'auto', 'real', or
'complex'.

The default value, 'auto', specifies that the software should determine the complexity.

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.ValueType
or Simulink.Bus object. The software uses the complexity specified by the Simulink.ValueType
object or the Simulink.BusElement objects in the Simulink.Bus object instead.

SampleTime — Sample time of signal
-1 (default) | double scalar or array

8 Objects

8-544

Rate at which the value of this signal should be updated.

See “Specify Sample Time” for details.
Example: 0.001
Example: 2
Data Types: double

InitialValue — Initial value of signal or state
'' (default) | character vector | string scalar

Signal or state value before a simulation takes its first time step.

You can specify any MATLAB expression, including the name of a workspace variable, that evaluates
to a numeric scalar value or array.

At the MATLAB Command Window or in a script, even if you use a number, specify the initial value as
a character vector.

mySigObject.InitialValue = '5.3';

mySigObject.InitialValue = 'myNumericVariable';

To specify an initial value for a signal that uses a numeric data type other than double, cast the
initial value to the signal data type. For example, you can specify 'single(73.3)' to use 73.3 as
the initial value for a signal of data type single.

If you use a bus object as the data type for the signal object, set InitialValue to a character vector
containing either 0 or a MATLAB structure that matches the bus object. See “Bus Support” for
details.

If the initial value evaluates to a MATLAB structure, in the Configuration Parameters dialog box, set
Underspecified initialization detection to Simplified.

If necessary, the software converts the initial value to ensure type, complexity, and dimension
consistency with the corresponding block parameter value. If you specify an invalid value or
expression, an error message appears when you update the model. Also, the software performs range
checking of the initial value. The software alerts you when the initial value of the signal lies outside a
range that corresponds to its specified minimum and maximum values and data type.

Classic initialization mode: In this mode, initial value settings for signal objects that represent
these signals and states override the corresponding block parameter initial values if undefined
(specified as []):

• Output signals of conditionally executed subsystems and Merge blocks
• Block states

Simplified initialization mode: In this mode, if a signal object is attached to the signal line
connected to the Outport block of a conditionally executed subsystem, the software uses the initial
value from the Simulink.Signal object.
Example: '15.23'
Example: 'myInitParam'
Data Types: char | string

 Simulink.Signal

8-545

Examples

Create Signal Object for Signal at Block Port

To use a signal object to control the characteristics of a signal in a model, create the object in a
workspace and use the same name as the signal.

Create a signal object named mySig.

mySig = Simulink.Signal;

Set the data type of the signal object to 'boolean'.

mySig.DataType = 'boolean';

Get a handle to the block port that creates the target signal.

portHandles = get_param('myModel/myBlock','portHandles');
outportHandle = portHandles.Outport;

Specify the name of the output signal to match the name of the signal object. Use the 'Name' port
parameter.

set_param(outportHandle,'Name','mySig')

Force the signal in the model to use the properties that the signal object stores by setting the
'MustResolveToSignalObject' port parameter to 'on'.

set_param(outportHandle,'MustResolveToSignalObject','on')

Create Signal Object for Signal at Root-Level Outport Block

To use a signal object to control the characteristics of a signal in a model, create the object in a
workspace and use the same name as the signal.

Create a signal object named mySig.

mySig = Simulink.Signal;

Set the data type of the signal object to 'boolean'.

mySig.DataType = 'boolean';

Specify the name of the output signal to match the name of the signal object. Use the 'SignalName'
block parameter.

set_param('myModel/myOutport','SignalName','mySig')

Force the signal in the model to use the properties that the signal object stores by setting the
'MustResolveToSignalObject' block parameter to 'on'.

set_param('myModel/myOutport','MustResolveToSignalObject','on')

8 Objects

8-546

Create Signal Object for State

You can use a signal object to control the characteristics of a block state, such as that of the Discrete-
Time Integrator block.

Create a signal object named myState.

myState = Simulink.Signal;

Set the data type of the signal object to 'int16'.

myState.DataType = 'int16';

Specify the name of the state to match the name of the signal object. Use the 'StateName' block
parameter.

set_param('myModel/myBlock','StateName','myState')

Force the state in the model to use the properties that the signal object stores by setting the
'StateMustResolveToSignalObject' block parameter to 'on'.

set_param('myModel/myBlock','StateMustResolveToSignalObject','on')

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

To control the appearance of a Simulink.Signal object in the generated code, use the Storage
class property.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Simulink.Parameter | Simulink.CoderInfo | AUTOSAR.Signal

Topics
“Use Simulink.Signal Objects to Specify and Control Signal Attributes”
“Determine Where to Store Variables and Objects for Simulink Models”
“Control Data Types of Signals”
“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)
“Define Data Classes”
“Signal Basics”
“Data Objects”
“Data Types Supported by Simulink”
“MPT Data Object Properties” (Embedded Coder)

 Simulink.Signal

8-547

Simulink.SimulationData.Dataset
Access logged simulation data or group simulation input data

Description
A Simulink.SimulationData.Dataset object groups related data. Logged simulation results are
often grouped in Dataset objects. You can also use a Dataset object to group simulation input data
when you load initial states and when you load external input data using Inport blocks or the Signal
Editor block.

A Dataset object created by logging simulation data contains one or more elements. Each element
contains data for one logged signal, output, data store, or state. Each element is an object, and the
type of the object depends on the data it contains.

• Signals and outputs — Simulink.SimulationData.Signal object
• States and final states — Simulink.SimulationData.State object
• Data stores — Simulink.SimulationData.DataStoreMemory object

When you create a Dataset object that groups simulation input data, each element contains data for
a signal, bus, or array of buses. You can add data in any format supported by the loading method you
use.

Type of Input Data Formats
Scalar, vector, or multidimensional signal • timeseries

• timetable
• Simulink.SimulationData.Signal
• matlab.io.datastore.SimulationDatas

tore
• matlab.io.datastore.sdidatastore
• Structure with one field called

signals.values that contains data for a
single signal and a field called time that
optionally includes time data

• Array where the first column contains time
data and subsequent columns contain data for
a signal

Bus • Structure of timeseries, timetable, or
matlab.io.datastore.SimulationDatas
tore objects that matches the hierarchy of
the bus

• Simulink.SimulationData.Signal
Array of buses • Array of structures

• Simulink.SimulationData.Signal

8 Objects

8-548

Type of Input Data Formats
Function-call signal • N-by-1 vector

• Simulink.SimulationData.Signal

Creation
Logging simulation data often creates a Simulink.SimulationData.Dataset object, including
when you:

• Log data using signal logging.
• Log outputs, states, or final states using the Dataset format.
• Log data stores.
• Log data to the workspace or a MAT file using the Record block.
• Log data in Dataset format using a Scope block.
• Log data using a Floating Scope or Scope Viewer.

To group external input data for a model in a Dataset object, you can:

• Create an empty Dataset object and add the input data using the addElement function.
• Use the createInputDataset to create a Dataset object that contains an element for each

root-level Inport block or In Bus Element block in a model. Then, specify the data for each
element.

• Use the Signal Editor to interactively create and edit Dataset objects that contain simulation
input data. For details, see “Create and Edit Signal Data”.

You can also create a Dataset object by converting data that uses another format to use the
Dataset format. Having all data in a common format can facilitate postprocessing. For details, see
“Convert timeseries object to Dataset object”.

Syntax
ds = Simulink.SimulationData.Dataset
ds = Simulink.SimulationData.Dataset(dataToConvert)
ds = Simulink.SimulationData.Dataset(dataToConvert,"DatasetName",dsName)

Description

ds = Simulink.SimulationData.Dataset creates an empty, unnamed Dataset object to which
you can add elements. Use this syntax to manually create a Dataset object that contains external
input data to load using Inport or In Bus Element blocks.

ds = Simulink.SimulationData.Dataset(dataToConvert) creates an unnamed Dataset
object that contains one or more elements that contain the data dataToConvert. Use this syntax to
convert data that uses another format to use the Dataset format. For details, see “Convert
timeseries object to Dataset object”.

The conversion process only converts data for one input at a time. To convert data for multiple
variables, convert each variable one at a time, then use the concat function to combine the resulting
Dataset objects.

 Simulink.SimulationData.Dataset

8-549

ds = Simulink.SimulationData.Dataset(dataToConvert,"DatasetName",dsName)
creates a Dataset object with the name specified by dsName that contains one or more elements
that contain the data dataToConvert. Use this syntax to convert data that uses another format to
use the Dataset format. For details, see “Convert timeseries object to Dataset object”.

Input Arguments

dataToConvert — Data to convert to Dataset format
timeseries object | structure | array | Simulink.ModelDataLogs object

Data to convert to Dataset format, specified as a timeseries object, a structure, an array, or a
Simulink.ModelDataLogs object. The results of conversion depend on the format of the input data.

Input Data Conversion Results
timeseries object Dataset object that contains one

Simulink.SimulationData.Signal object
with timeseries data in its Values property.

ModelDataLogs object Dataset object that contains one or more
Simulink.SimulationData.Signal objects
that contain the data for each signal in the input
object.

Structure that matches the Structure with
time logging format.

Dataset object that contains one or more
Simulink.SimulationData.Signal objects
that contain the data for each signal in the input
structure.

Structure that matches the Structure logging
format

Dataset object that contains one or more
Simulink.SimulationData.Signal objects
that contain the data for each signal in the input
structure.

Because the input does not contain time data, the
conversion creates a time vector for each signal
that starts at 0 and uses a sampling interval of 1.

Array Dataset object that contains one
Simulink.SimulationData.Signal object.
The Values property of the Signal object
contains a timeseries object, and the Data
property of the timeseries object contains the
entire array.

Because the input does not contain time data, the
conversion creates a time vector for the signal
that starts at 0 uses a sampling interval of 1.

For more information, see “Convert timeseries object to Dataset object” and “Convert Data to Dataset
Format”.

dsName — Dataset object name
string | character vector

Dataset object name, specified as a string or character vector.

8 Objects

8-550

Output Arguments

ds — Dataset object
Simulink.SimulationData.Dataset object

Dataset object, returned as a Simulink.SimulationData.Dataset object. The Dataset object
is empty when you do not specify input arguments. Create an empty Dataset object when you want
to group simulation input data in a single variable.

When you specify input arguments, the Dataset object contains one or more elements that contain
the input data. The results of conversion depend on the format of the input data.

Input Data Conversion Results
timeseries object Dataset object that contains one

Simulink.SimulationData.Signal object
with the timeseries data in its Values
property.

ModelDataLogs object Dataset object that contains one or more
Simulink.SimulationData.Signal objects
that contain the data for each signal in the input
object.

Structure that matches the Structure with
time logging format

Dataset object that contains one or more
Simulink.SimulationData.Signal objects
that contain the data for each signal in the input
structure.

Structure that matches the Structure logging
format

Dataset object that contains one or more
Simulink.SimulationData.Signal objects
that contain the data for each signal in the input
structure.

Because the input does not contain time data, the
conversion creates a time vector for each signal
that starts at 0 and uses a sampling interval of 1.

Array Dataset object that contains one
Simulink.SimulationData.Signal object.
The Values property of the Signal object
contains a timeseries object, and the Data
property of the timeseries object contains the
entire array.

Because the input does not contain time data, the
conversion creates a time vector for the signal
that starts at 0 uses a sampling interval of 1.

For more information, see “Convert timeseries object to Dataset object” and “Convert Data to Dataset
Format”.

Properties
Name — Dataset object name
string | character vector

 Simulink.SimulationData.Dataset

8-551

Dataset object name, specified as a string or character vector. When you create a Dataset object to
group simulation input data, you specify the name for the Dataset object. The name you specify does
not need to match the name of the variable that contains the Dataset object.

The Name property of Dataset objects created by logging simulation data is set to match the logging
variable name specified in the model configuration parameters.

• Output — Default: yout
• Signal logging — Default: logsout
• States — Default: xout
• Data stores — Default: dsmout
• Final states — Default: xFinal

Object Functions
addElement Add element to end of Simulink.SimulationData.Dataset object
concat Concatenate Simulink.SimulationData.Dataset object to another Dataset

object
exportToPreviousRelease Save a Dataset object to a MAT-file you can open in any release
extractTimetable Extract data from Simulink.SimulationData.Dataset or

Simulink.SimulationData.Signal objects into timetables
find Get element or collection of elements from

Simulink.SimulationData.Dataset object
get Get element or collection of elements from

Simulink.SimulationData.Dataset object
getElementNames Return names of all elements in Simulink.SimulationData.Dataset object
numElements Get number of elements in Simulink.SimulationData.Dataset object
plot Plot data in Simulink.SimulationData.Dataset object in the Simulation

Data Inspector
removeElement Remove element from Simulink.SimulationData.Dataset object
setElement Change Simulink.SimulationData.Dataset object element stored at

specified index

Examples

Access Data Logged Using Dataset Format

Open the model vdp. The model produces two outputs x1 and x2.

mdl = "vdp";
open_system(mdl);

8 Objects

8-552

Simulate the model, logging block states along with the output data.

out = sim(mdl,"SaveState","on");

All logged data is returned in the single variable out as a Simulink.SimulationOutput object.
The SimulationOutput object contains a Simulink.SimulationData.Dataset object that
groups each kind of logged data.

out

out =
 Simulink.SimulationOutput:

 tout: [64x1 double]
 xout: [1x1 Simulink.SimulationData.Dataset]
 yout: [1x1 Simulink.SimulationData.Dataset]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

Access the Dataset object yout that contains the logged output data using dot notation. The
Dataset object contains a Simulink.SimulationData.Signal object for each output.

outputs = out.yout

outputs =
Simulink.SimulationData.Dataset 'yout' with 2 elements

 Name BlockPath
 ____ _________
 1 [1x1 Signal] x1 vdp/Out1
 2 [1x1 Signal] x2 vdp/Out2

 - Use braces { } to access, modify, or add elements using index.

The Signal object has metadata about the signal, including the path to the block and index of the
port that produces the signal. Use the getElement function to access the Signal object that
contains the data for signal x1 by name. You can also use curly braces({}) to access elements in a
Dataset object by index.

outputX1 = getElement(outputs,'x1')

 Simulink.SimulationData.Dataset

8-553

outputX1 =
 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'x1'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'inport'
 PortIndex: 1
 Values: [1x1 timeseries]

 Methods, Superclasses

The signal data is stored in the Values property of the Signal object as a timeseries object.

outputValsX1 = outputX1.Values

 timeseries

 Common Properties:
 Name: 'x1'
 Time: [64x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [64x1 double]
 DataInfo: tsdata.datametadata

The time values are in the Time property of the timeseries object. The signal values are in the
Data property.

outputTimesX1 = outputValsX1.Time

outputTimesX1 = 64×1

 0
 0.0001
 0.0006
 0.0031
 0.0157
 0.0785
 0.2844
 0.5407
 0.8788
 1.2788
 ⋮

outputDataX1 = outputValsX1.Data

outputDataX1 = 64×1

 2.0000
 2.0000
 2.0000
 2.0000
 1.9998
 1.9943
 1.9379

8 Objects

8-554

 1.8155
 1.5990
 1.2687
 ⋮

You can also access the time values or data values by combining the steps into a single line of code.

outputDataX1 = getElement(out.yout,'x1').Values.Data

outputDataX1 = 64×1

 2.0000
 2.0000
 2.0000
 2.0000
 1.9998
 1.9943
 1.9379
 1.8155
 1.5990
 1.2687
 ⋮

Group Simulation Inputs Using Dataset Object

Create data for three simulation input signals and group them in a Dataset object. A simple model
loads the contents of the Dataset object using three root-level Inport blocks. Dashboard Scope
blocks in the model display each signal created using the loaded input data.

First, create the signal data to load into the model. Use the expression in this example to create the
evenly-spaced time vector for an input signal, especially when modeling discrete input signals.
MATLAB® supports several other methods for creating an evenly-spaced vector, but other methods
can introduce double-precision rounding errors in the time data, which can lead to unexpected
simulation results.

sampleTime = 0.01;
numSteps = 1001;
time = sampleTime*(0:numSteps-1);
time = time';

Create signal data for a sine signal, a cosine signal, and a linear signal.

sineVals = sin(2*pi/3*time);
cosVals = cos(2*pi/3*time);
lineVals = time;

Create a timeseries object to contain the data for each signal. Give each timeseries object a
descriptive name so signals are easy to identify once they are grouped in the Dataset object.

sineTS = timeseries(sineVals,time,'Name','Sine Wave');
cosTS = timeseries(cosVals,time,'Name','Cosine Wave');
lineTS = timeseries(lineVals,time,'Name','Line');

 Simulink.SimulationData.Dataset

8-555

Create a Dataset object and use the addElement function to add each timeseries object to the
Dataset object.

inputData = Simulink.SimulationData.Dataset;
inputData.Name = 'inputData';
inputData = addElement(inputData,sineTS);
inputData = addElement(inputData,cosTS);
inputData = addElement(inputData,lineTS)

inputData =
Simulink.SimulationData.Dataset 'inputData' with 3 elements

 Name BlockPath
 ___________ _________
 1 [1x1 timeseries] Sine Wave ''
 2 [1x1 timeseries] Cosine Wave ''
 3 [1x1 timeseries] Line ''

 - Use braces { } to access, modify, or add elements using index.

When you load external input data using root-level Inport blocks, you specify the data to load using
the Input parameter in the Model Configuration Parameters on the Data Import/Export pane. Open
the model LoadInputDataset and see that the Input parameter is specified as inputData.

open_system('LoadInputDataset.slx');

Simulate the model. The Dashboard Scope block connected to the first Inport block shows the sine
signal, the Dashboard Scope block connected to the second Inport block shows the cosine signal, and
the Dashboard Scope block connected to the third Inport block shows the linear signal.

out = sim('LoadInputDataset.slx');

8 Objects

8-556

You can swap the order of elements in the Dataset object and see the change reflected in how the
elements are mapped to the Inport blocks.

inputData{1} = lineTS;
inputData{3} = sineTS

inputData =
Simulink.SimulationData.Dataset 'inputData' with 3 elements

 Name BlockPath
 ___________ _________
 1 [1x1 timeseries] Line ''
 2 [1x1 timeseries] Cosine Wave ''
 3 [1x1 timeseries] Sine Wave ''

 - Use braces { } to access, modify, or add elements using index.

 Simulink.SimulationData.Dataset

8-557

Simulate the model again. The Dashboard Scope block that displays the first element now shows the
line, and the Dashboard Scope block that displays the third element shows the sine wave, reflecting
the new order of elements in the Dataset object.

out = sim('LoadInputDataset.slx');

Tips
• You can use curly braces ({}) to access, add, or modify an element in a Dataset object by index.
• To access, add, or modify an element of a Dataset object by name, use the getElement,

addElement, and setElement functions.
• When you group simulation inputs using Dataset objects, you can use the Signal Editor or the

Signal Editor block to easily change which Dataset object provides input for the simulation.
• When you load external input data from a Dataset object using root-level Inport blocks, you can

use the Root Inport Mapper to map each element in the Dataset object to an Inport block by

8 Objects

8-558

block name, block path, signal name, or port order. You can also write your own function to map
the data. For more information, see “Map Root Inport Signal Data”.

• When you save data in a Dataset object to a MAT file, consider saving to a Version 7.3 MAT file if
the contents of the Dataset object are too large to fit in memory. You can create a
Simulink.SimulationData.DatasetRef that references a Dataset object in a MAT file
without loading the data into memory for data processing or for loading big data. For more
information, see “Load Big Data for Simulations”.

• To save a Dataset object to a MAT file that you can open in an earlier release, use the
exportToPreviousRelease function instead of the save function.

• You can write your own reader to import data from a file into a Dataset object in the base
workspace, the model workspace, or the Signal Editor using the Simulink.io.FileType class.
For more information, see “Create Custom File Type for Import to Signal Editor”.

Version History
Introduced in R2011a

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Signal | timeseries |
timetable | Simulink.SimulationData.DatasetRef

Functions
createInputDataset | signalEditor

Model Settings
Signal logging | Output | States | Data stores | Final states | Format | Single simulation
output | Input

Topics
“Load Data to Root-Level Input Ports”
“Save Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Data to Dataset Format”

 Simulink.SimulationData.Dataset

8-559

addElement
Package: Simulink.SimulationData

Add element to end of Simulink.SimulationData.Dataset object

Syntax
ds = addElement(ds,el)
ds = addElement(ds,el,name)

Description
ds = addElement(ds,el) adds an element to the end of the
Simulink.SimulationData.Dataset object ds.

ds = addElement(ds,el,name) gives the element the name that you specify with the name
argument.

Examples

Add Elements to Data Set

You can use the addElement function to add elements to a data set. First, create an empty
Simulink.SimulationData.Dataset object.

time = 0.1*(0:100)';
ds = Simulink.SimulationData.Dataset;

Create three elements to add to the data set.

element1 = Simulink.SimulationData.Signal;
element1.Name = "A";
element1.Values = timeseries(sin(time),time);

element2 = Simulink.SimulationData.Signal;
element2.Name = "B";
element2.Values = timeseries(2*sin(time),time);

element3 = Simulink.SimulationData.Signal;
element3.Name = "C";
element3.Values = timeseries(3*sin(time),time);

Add the elements to the data set using the addElement function. You can rename the elements using
the name argument.

ds = addElement(ds,element1,"Element A");
ds = addElement(ds,element2,"Element B");
ds = addElement(ds,element3,"Element C")

ds =
Simulink.SimulationData.Dataset '' with 3 elements

8 Objects

8-560

 Name BlockPath
 _________ _________
 1 [1x1 Signal] Element A ''
 2 [1x1 Signal] Element B ''
 3 [1x1 Signal] Element C ''

 - Use braces { } to access, modify, or add elements using index.

Group Simulation Inputs Using Dataset Object

Create data for three simulation input signals and group them in a Dataset object. A simple model
loads the contents of the Dataset object using three root-level Inport blocks. Dashboard Scope
blocks in the model display each signal created using the loaded input data.

First, create the signal data to load into the model. Use the expression in this example to create the
evenly-spaced time vector for an input signal, especially when modeling discrete input signals.
MATLAB® supports several other methods for creating an evenly-spaced vector, but other methods
can introduce double-precision rounding errors in the time data, which can lead to unexpected
simulation results.

sampleTime = 0.01;
numSteps = 1001;
time = sampleTime*(0:numSteps-1);
time = time';

Create signal data for a sine signal, a cosine signal, and a linear signal.

sineVals = sin(2*pi/3*time);
cosVals = cos(2*pi/3*time);
lineVals = time;

Create a timeseries object to contain the data for each signal. Give each timeseries object a
descriptive name so signals are easy to identify once they are grouped in the Dataset object.

sineTS = timeseries(sineVals,time,'Name','Sine Wave');
cosTS = timeseries(cosVals,time,'Name','Cosine Wave');
lineTS = timeseries(lineVals,time,'Name','Line');

Create a Dataset object and use the addElement function to add each timeseries object to the
Dataset object.

inputData = Simulink.SimulationData.Dataset;
inputData.Name = 'inputData';
inputData = addElement(inputData,sineTS);
inputData = addElement(inputData,cosTS);
inputData = addElement(inputData,lineTS)

inputData =
Simulink.SimulationData.Dataset 'inputData' with 3 elements

 Name BlockPath
 ___________ _________
 1 [1x1 timeseries] Sine Wave ''

 addElement

8-561

 2 [1x1 timeseries] Cosine Wave ''
 3 [1x1 timeseries] Line ''

 - Use braces { } to access, modify, or add elements using index.

When you load external input data using root-level Inport blocks, you specify the data to load using
the Input parameter in the Model Configuration Parameters on the Data Import/Export pane. Open
the model LoadInputDataset and see that the Input parameter is specified as inputData.

open_system('LoadInputDataset.slx');

Simulate the model. The Dashboard Scope block connected to the first Inport block shows the sine
signal, the Dashboard Scope block connected to the second Inport block shows the cosine signal, and
the Dashboard Scope block connected to the third Inport block shows the linear signal.

out = sim('LoadInputDataset.slx');

You can swap the order of elements in the Dataset object and see the change reflected in how the
elements are mapped to the Inport blocks.

8 Objects

8-562

inputData{1} = lineTS;
inputData{3} = sineTS

inputData =
Simulink.SimulationData.Dataset 'inputData' with 3 elements

 Name BlockPath
 ___________ _________
 1 [1x1 timeseries] Line ''
 2 [1x1 timeseries] Cosine Wave ''
 3 [1x1 timeseries] Sine Wave ''

 - Use braces { } to access, modify, or add elements using index.

Simulate the model again. The Dashboard Scope block that displays the first element now shows the
line, and the Dashboard Scope block that displays the third element shows the sine wave, reflecting
the new order of elements in the Dataset object.

out = sim('LoadInputDataset.slx');

 addElement

8-563

Input Arguments
ds — Dataset object
Simulink.SimulationData.Dataset object

Dataset object to which to add the element, specified as a Simulink.SimulationData.Dataset
object.

el — Element to add
Simulink.SimulationData.Dataset object element

Element to add to the data set, specified as a Simulink.SimulationData.Dataset object
element.

When a Dataset object is created by logging simulation data, each element contains data for one
logged signal, output, data store, or state. Each element is an object, and the type of the object
depends on the data it contains.

• Signals and output — Simulink.SimulationData.Signal object
• States and final states — Simulink.SimulationData.State object
• Data stores — Simulink.SimulationData.DataStoreMemory object

When you create a Dataset object that groups simulation input data, each element contains data for
a signal, bus, or array of buses. You can add data in any format supported by the loading method you
use.

Type of Input Data Formats
Scalar, vector, or multidimensional signal • timeseries

• timetable
• Simulink.SimulationData.Signal
• matlab.io.datastore.SimulationDatas

tore
• matlab.io.datastore.sdidatastore
• Structure with one field called

signals.values that contains data for a
single signal and a field called time that
optionally includes time data

• Array where the first column contains time
data and subsequent columns contain data for
a signal

Bus • Structure of timeseries, timetable, or
matlab.io.datastore.SimulationDatas
tore objects that matches the hierarchy of
the bus

• Simulink.SimulationData.Signal
Array of buses • Array of structures

• Simulink.SimulationData.Signal

8 Objects

8-564

Type of Input Data Formats
Function-call signal • N-by-1 vector

• Simulink.SimulationData.Signal

name — Name for element
string | character vector

Name for element, specified as a string or character vector. If the object already has a name, the
element instead uses the name you specify.

Alternatives
To streamline indexing syntax, you can use curly braces ({}) to add an element to a Dataset object
instead of using addElement. For the index, use an integer that is greater than the number of
elements by one. The new element becomes the last element of the dataset.

time = 0.1*(0:100)';
ds = Simulink.SimulationData.Dataset;
element1 = Simulink.SimulationData.Signal;
element1.Name = "A";
element1.Values = timeseries(sin(time),time);
ds{1} = element1;
element2 = Simulink.SimulationData.Signal;
element2.Name = "B";
element2.Values = timeseries(2*sin(time),time);
ds{2} = element2;
element3 = Simulink.SimulationData.Signal;
element3.Name = "C";
element3.Values = timeseries(3*sin(time),time);
ds{3} = element3;

Version History
Introduced in R2011a

See Also
Objects
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Dataset |
Simulink.SimulationData.Signal | Simulink.SimulationData.DataStoreMemory |
matlab.io.datastore.SimulationDatastore

Functions
concat | find | get | getElementNames | numElements | plot | setElement

Topics
“Save Simulation Data”
“Save Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Data to Dataset Format”

 addElement

8-565

concat
Package: Simulink.SimulationData

Concatenate Simulink.SimulationData.Dataset object to another Dataset object

Syntax
dataset1 = concat(dataset1,dataset2)

Description
dataset1 = concat(dataset1,dataset2) concatenates the elements of the
Simulink.SimulationData.Dataset object dataset2 to the Dataset object dataset1.

Examples

Concatenate Dataset to Another Dataset

The vdp model logs data for the x1 and x2 signals. You can log additional signals using signal
logging. Mark the signal coming from the Mu block for logging. Then, simulate the model.

Simulink.sdi.markSignalForStreaming('vdp/Mu',1,'on')
out = sim("vdp");

By default, all logged data is returned in a single variable in the workspace as a
Simulink.SimulationOutput object. Logged output data is grouped in a Dataset object with the
default name yout. You can access the logged output data using dot notation.

ds1 = out.yout

ds1 =
Simulink.SimulationData.Dataset 'yout' with 2 elements

 Name BlockPath
 ____ _________
 1 [1x1 Signal] x1 vdp/Out1
 2 [1x1 Signal] x2 vdp/Out2

 - Use braces { } to access, modify, or add elements using index.

Signal logging data is grouped in a Dataset object with the default name logsout.

ds2 = out.logsout

ds2 =
Simulink.SimulationData.Dataset 'logsout' with 1 element

 Name BlockPath
 ____ _________
 1 [1x1 Signal] '' vdp/Mu

8 Objects

8-566

 - Use braces { } to access, modify, or add elements using index.

You can use the concat function to combine the signal logging Dataset object and the logged
output Dataset object into one concatenated Dataset object.

combinedDataset = concat(ds1,ds2)

combinedDataset =
Simulink.SimulationData.Dataset 'yout' with 3 elements

 Name BlockPath
 ____ _________
 1 [1x1 Signal] x1 vdp/Out1
 2 [1x1 Signal] x2 vdp/Out2
 3 [1x1 Signal] '' vdp/Mu

 - Use braces { } to access, modify, or add elements using index.

Input Arguments
dataset1 — Dataset object to concatenate to
Simulink.SimulationData.Dataset object

Dataset object to concatenate to, specified a Simulink.SimulationData.Dataset object.

dataset2 — Dataset object to concatenate
Simulink.SimulationData.Dataset object

Dataset object to concatenate, specified as Simulink.SimulationData.Dataset object.

Version History
Introduced in R2015a

See Also
Objects
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Signal |
Simulink.SimulationData.DataStoreMemory | Simulink.SimulationData.Dataset

Functions
addElement | find | get | getElementNames | numElements | setElement

Topics
“Save Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Data to Dataset Format”

 concat

8-567

exportToPreviousRelease
Package: Simulink.SimulationData

Save a Dataset object to a MAT-file you can open in any release

Syntax
exportToPreviousRelease(ds,filename,dsname)
exportToPreviousRelease(___ ,version)
exportToPreviousRelease(___ ,'–append')
exportToPreviousRelease(___ ,'–nocompression')

Description
exportToPreviousRelease(ds,filename,dsname) saves the
Simulink.SimulationData.Dataset object, ds, to the MAT-file specified by the filename input,
using the name specified by the dsname input. You can load the Dataset saved in the file in any
release that supports the Dataset format. When you do not use this function to save a Dataset
object to a file, you may not be able to load the data in releases prior to R2017a. When you do not
need to open and use the Dataset data in a release prior to R2017a, you can use the save function.

exportToPreviousRelease(___ ,version) saves data stored in a Dataset object to a MAT-file
you can load in a previous release, using the MAT-file version specified by version.

exportToPreviousRelease(___ ,'–append') adds data stored in a Dataset object to a MAT-file
you can load in a previous release without overwriting the contents of the MAT-file.

exportToPreviousRelease(___ ,'–nocompression') saves the Dataset object to a MAT-file
without compression. The '–nocompression' option only supports Version 7 and Version 7.3 MAT-
files.

Examples

Save a Dataset to a MAT-File to Load in a Prior Release

You can use the exportToPreviousRelease function to save data stored in a
Simulink.SimulationData.Dataset object in a MAT-file that you can load in a previous release.
This example saves data logged from a simulation in a MAT-file using the
exportToPreviousRelease function, and then appends another Dataset object containing data
logged from another simulation to the same MAT-file.

Save Dataset Data to a MAT-File

To create a Dataset object containing logged data, run a simulation of the ex_vdp model that logs
data for signals x1 and x2. The model is configured to generate a single simulation output containing
all simulation data, including the signal logging data stored in the Dataset object, logsout.

8 Objects

8-568

open_system('ex_vdp.slx')
out = sim('ex_vdp');
logsout = out.logsout;

Use the exportToPreviousRelease function to save the signal logging data to a MAT-file you can
share with colleagues and collaborators who may use different Simulink™ versions.

exportToPreviousRelease(logsout,'vdpLoggedData.mat','ex_vdpSim1')

Append Additional Data to the MAT-File

You can use the exportToPreviousRelease function to add data to a MAT-file. For example, if you
run another simulation that logs data and get new results you want to share. You can load the
Dataset object saved using the exportToPreviousRelease function in any release that supports
the Dataset format.

set_param('ex_vdp/Mu','Gain','0.5')
out = sim('ex_vdp');
logsout = out.logsout;

exportToPreviousRelease(logsout,'vdpLoggedData.mat','ex_vdpSim2','-append')

Input Arguments
ds — Dataset object containing data you want to load in an earlier release
Simulink.SimulationData.Dataset object

Simulink.SimulationData.Dataset object you want to save in a MAT-file and load in a previous
release.
Example: logsout

filename — Name of file to export data to
string | character array

Name of the file to export data to. If the file does not exist, the exportToPreviousRelease function
creates the file. When the file exists, you can overwrite the data in the file, or you can use the '–
append' input to append the Dataset data to the file.
Example: 'myfile.mat'
Data Types: char | string

dsname — Name to use for the saved Dataset object in the MAT-file
string | character array

Name to use for the Dataset object saved in the MAT-file. The name does not have to match the
name of the Dataset object containing the data you want to save in the MAT-file.
Example: 'myLoggedData'
Data Types: char | string

version — MAT-file version
'-v7' (default) | '-v7.3' | '-v6'

 exportToPreviousRelease

8-569

MAT-file version. By default, the exportToPreviousRelease function creates Version 7 MAT-files,
unless you have changed the preference for the default MAT-file version created by save operations.
For more information, see “MAT-File Versions”. You cannot save Dataset data to Version 4 MAT-files.
Data Types: char | string

Version History
Introduced in R2019b

See Also
Simulink.SimulationData.Dataset | save

Topics
“MAT-File Versions”

8 Objects

8-570

extractTimetable
Package: Simulink.SimulationData

Extract data from Simulink.SimulationData.Dataset or Simulink.SimulationData.Signal
objects into timetables

Syntax
TT = extractTimetable(ds)
TT = extractTimetable(ds,Name=Value)

Description
TT = extractTimetable(ds) extracts data from multiple elements of ds into a timetable. The
input argument ds is a Simulink.SimulationData.Dataset or
Simulink.SimulationData.Signal object.

TT = extractTimetable(ds,Name=Value) extracts data into one or more timetables according
to options that are specified by one or more name-value arguments. For example, the SignalNames
argument specifies the names of the signals to extract from ds.

You can return the data as:

• A single timetable that includes all elements that contain time series data, synchronized to the
union of the time stamps of all signals.

• A cell array of timetables that each contain data for signals that share the same sample time.
• A cell array of timetables that each contain time series data for a single signal.

Examples

Extract Signals into Timetable

Extract signals from a Simulink.SimulationData.Dataset object into a timetable.

First, create a Dataset object and add two signals to it. To calculate data for the signals, use the sin
and cos functions. Each signal is in its own timeseries object. These signals both have a 0.1-
second time step.

Time = 0.1*(0:99)';
ds = Simulink.SimulationData.Dataset;

element1 = Simulink.SimulationData.Signal;
element1.Name = "Sine";
element1.Values = timeseries(sin(Time),Time);
ds = addElement(ds,element1);

element2 = Simulink.SimulationData.Signal;
element2.Name = "Cosine";
element2.Values = timeseries(cos(Time),Time);
ds = addElement(ds,element2)

 extractTimetable

8-571

ds =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 ______ _________
 1 [1x1 Signal] Sine ''
 2 [1x1 Signal] Cosine ''

 - Use braces { } to access, modify, or add elements using index.

Next, extract data from ds and put the data into a timetable. The timetable TT has two variables,
Sine and Cosine, that contain data from both elements of ds.

TT = extractTimetable(ds)

TT=100×2 timetable
 Time Sine Cosine
 _______ ________ ________

 0 sec 0 1
 0.1 sec 0.099833 0.995
 0.2 sec 0.19867 0.98007
 0.3 sec 0.29552 0.95534
 0.4 sec 0.38942 0.92106
 0.5 sec 0.47943 0.87758
 0.6 sec 0.56464 0.82534
 0.7 sec 0.64422 0.76484
 0.8 sec 0.71736 0.69671
 0.9 sec 0.78333 0.62161
 1 sec 0.84147 0.5403
 1.1 sec 0.89121 0.4536
 1.2 sec 0.93204 0.36236
 1.3 sec 0.96356 0.2675
 1.4 sec 0.98545 0.16997
 1.5 sec 0.99749 0.070737
 ⋮

Add a third signal to ds with a time vector that has a 0.05-second time step.

Time2 = 0.05*(0:149)';
element3 = Simulink.SimulationData.Signal;
element3.Name = "Tangent";
element3.Values = timeseries(tan(Time2),Time2);
ds = addElement(ds,element3)

ds =
Simulink.SimulationData.Dataset '' with 3 elements

 Name BlockPath
 _______ _________
 1 [1x1 Signal] Sine ''
 2 [1x1 Signal] Cosine ''
 3 [1x1 Signal] Tangent ''

 - Use braces { } to access, modify, or add elements using index.

8 Objects

8-572

Extract the data from the three elements of ds. The elements have timeseries objects whose time
vectors do not match. Thus, the vector of row times of TT is the union of the time vectors of the three
timeseries objects. Then, the extractTimetable function synchronizes data from the three
signals to its row times. the function fills in missing values for the row times where Sine and Cosine
do not provide data.

TT2 = extractTimetable(ds)

TT2=175×3 timetable
 Time Sine Cosine Tangent
 ________ ________ _______ ________

 0 sec 0 1 0
 0.05 sec NaN NaN 0.050042
 0.1 sec 0.099833 0.995 0.10033
 0.15 sec NaN NaN 0.15114
 0.2 sec 0.19867 0.98007 0.20271
 0.25 sec NaN NaN 0.25534
 0.3 sec 0.29552 0.95534 0.30934
 0.35 sec NaN NaN 0.36503
 0.4 sec 0.38942 0.92106 0.42279
 0.45 sec NaN NaN 0.48306
 0.5 sec 0.47943 0.87758 0.5463
 0.55 sec NaN NaN 0.61311
 0.6 sec 0.56464 0.82534 0.68414
 0.65 sec NaN NaN 0.7602
 0.7 sec 0.64422 0.76484 0.84229
 0.75 sec NaN NaN 0.9316
 ⋮

Return Timetables for Each Sample Time and Synchronize Them

Extract data from signals that have time vectors with different sample times. To avoid returning a
timetable that contains NaNs, return the data in a cell array of timetables. Then, synchronize the
output timetables by using linear interpolation to fill gaps in the data.

Create a Dataset object that has three elements. The first two elements have the same time vector
and sample time. The third element has a time vector with a different sample time.

Time1 = 0.1*(0:99)';
ds = Simulink.SimulationData.Dataset;

element1 = Simulink.SimulationData.Signal;
element1.Name = "Sine";
element1.Values = timeseries(sin(Time1),Time1);
ds = addElement(ds,element1);

element2 = Simulink.SimulationData.Signal;
element2.Name ="Cosine";
element2.Values = timeseries(cos(Time1),Time1);
ds = addElement(ds,element2);

Time2 = 0.05*(0:149)';

 extractTimetable

8-573

element3 = Simulink.SimulationData.Signal;
element3.Name = "Tangent";
element3.Values = timeseries(tan(Time2),Time2);
ds = addElement(ds,element3)

ds =
Simulink.SimulationData.Dataset '' with 3 elements

 Name BlockPath
 _______ _________
 1 [1x1 Signal] Sine ''
 2 [1x1 Signal] Cosine ''
 3 [1x1 Signal] Tangent ''

 - Use braces { } to access, modify, or add elements using index.

Extract data from the signals into timetables. To avoid NaNs in the output, extract signals by sample
time.

TT = extractTimetable(ds,OutputFormat="cell-by-sampletime")

TT=1×2 cell array
 {150x1 timetable} {100x2 timetable}

Display the first timetable. The timetable contains the data from ds{3} and has a sample time of 0.05
seconds.

TT{1}

ans=150×1 timetable
 Time Tangent
 ________ ________

 0 sec 0
 0.05 sec 0.050042
 0.1 sec 0.10033
 0.15 sec 0.15114
 0.2 sec 0.20271
 0.25 sec 0.25534
 0.3 sec 0.30934
 0.35 sec 0.36503
 0.4 sec 0.42279
 0.45 sec 0.48306
 0.5 sec 0.5463
 0.55 sec 0.61311
 0.6 sec 0.68414
 0.65 sec 0.7602
 0.7 sec 0.84229
 0.75 sec 0.9316
 ⋮

Display the second timetable. The variables from the second timetable contain the data from ds{1}
and ds{2} because those two elements of ds have the same sample time, 0.1 seconds.

TT{2}

8 Objects

8-574

ans=100×2 timetable
 Time Sine Cosine
 _______ ________ ________

 0 sec 0 1
 0.1 sec 0.099833 0.995
 0.2 sec 0.19867 0.98007
 0.3 sec 0.29552 0.95534
 0.4 sec 0.38942 0.92106
 0.5 sec 0.47943 0.87758
 0.6 sec 0.56464 0.82534
 0.7 sec 0.64422 0.76484
 0.8 sec 0.71736 0.69671
 0.9 sec 0.78333 0.62161
 1 sec 0.84147 0.5403
 1.1 sec 0.89121 0.4536
 1.2 sec 0.93204 0.36236
 1.3 sec 0.96356 0.2675
 1.4 sec 0.98545 0.16997
 1.5 sec 0.99749 0.070737
 ⋮

Combine the two timetables in TT into one timetable by using the timetable synchronize method.
To avoid filling gaps with NaNs, use linear interpolation as the fill method.

combinedTT = synchronize(TT{2},TT{1},"union","linear")

combinedTT=175×3 timetable
 Time Sine Cosine Tangent
 ________ ________ _______ ________

 0 sec 0 1 0
 0.05 sec 0.049917 0.9975 0.050042
 0.1 sec 0.099833 0.995 0.10033
 0.15 sec 0.14925 0.98754 0.15114
 0.2 sec 0.19867 0.98007 0.20271
 0.25 sec 0.24709 0.9677 0.25534
 0.3 sec 0.29552 0.95534 0.30934
 0.35 sec 0.34247 0.9382 0.36503
 0.4 sec 0.38942 0.92106 0.42279
 0.45 sec 0.43442 0.89932 0.48306
 0.5 sec 0.47943 0.87758 0.5463
 0.55 sec 0.52203 0.85146 0.61311
 0.6 sec 0.56464 0.82534 0.68414
 0.65 sec 0.60443 0.79509 0.7602
 0.7 sec 0.64422 0.76484 0.84229
 0.75 sec 0.68079 0.73077 0.9316
 ⋮

Dataset with Timetable and timeseries Objects

A Dataset object can have some elements that contain timetables and other elements that contain
timeseries objects. The extractTimetable function extracts data from both sets of elements and
returns all data in one timetable.

 extractTimetable

8-575

Create a Dataset object with one element that has a timetable.

ds = Simulink.SimulationData.Dataset;
element1 = Simulink.SimulationData.Signal;
element1.Name = "TrigFuncs";
element1.Values = timetable(seconds(0:99)',sin(0:99)',cos(0:99)',...
 VariableNames=["Sine","Cosine"])

element1 =
 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'TrigFuncs'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'inport'
 PortIndex: 1
 Values: [100x2 timetable]

 Methods, Superclasses

ds = addElement(ds,element1);

Add another element that has a timeseries object.

element2 = Simulink.SimulationData.Signal;
element2.Name ="Tangent";
element2.Values = timeseries(tan(0:99),0:99)

element2 =
 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'Tangent'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'inport'
 PortIndex: 1
 Values: [1x1 timeseries]

 Methods, Superclasses

ds = addElement(ds,element2);

Extract all the data and return one timetable.

TT = extractTimetable(ds)

TT=100×3 timetable
 Time TrigFuncs.Sine TrigFuncs.Cosine Tangent
 ______ ______________ ________________ ________

 0 sec 0 1 0
 1 sec 0.84147 0.5403 1.5574
 2 sec 0.9093 -0.41615 -2.185

8 Objects

8-576

 3 sec 0.14112 -0.98999 -0.14255
 4 sec -0.7568 -0.65364 1.1578
 5 sec -0.95892 0.28366 -3.3805
 6 sec -0.27942 0.96017 -0.29101
 7 sec 0.65699 0.7539 0.87145
 8 sec 0.98936 -0.1455 -6.7997
 9 sec 0.41212 -0.91113 -0.45232
 10 sec -0.54402 -0.83907 0.64836
 11 sec -0.99999 0.0044257 -225.95
 12 sec -0.53657 0.84385 -0.63586
 13 sec 0.42017 0.90745 0.46302
 14 sec 0.99061 0.13674 7.2446
 15 sec 0.65029 -0.75969 -0.85599
 ⋮

Add another element that has a timeseries object with a different sample time. When you extract
the timetable, it has many NaN values filled in.

element3 = Simulink.SimulationData.Signal;
element3.Name ="Mini-Tangent";
element3.Values = timeseries(tan(0.5*(0:99)),0.5*(0:99));
ds = addElement(ds,element3);
TT = extractTimetable(ds)

TT=150×4 timetable
 Time TrigFuncs.Sine TrigFuncs.Cosine Tangent Mini-Tangent
 _______ ______________ ________________ ________ ____________

 0 sec 0 1 0 0
 0.5 sec NaN NaN NaN 0.5463
 1 sec 0.84147 0.5403 1.5574 1.5574
 1.5 sec NaN NaN NaN 14.101
 2 sec 0.9093 -0.41615 -2.185 -2.185
 2.5 sec NaN NaN NaN -0.74702
 3 sec 0.14112 -0.98999 -0.14255 -0.14255
 3.5 sec NaN NaN NaN 0.37459
 4 sec -0.7568 -0.65364 1.1578 1.1578
 4.5 sec NaN NaN NaN 4.6373
 5 sec -0.95892 0.28366 -3.3805 -3.3805
 5.5 sec NaN NaN NaN -0.99558
 6 sec -0.27942 0.96017 -0.29101 -0.29101
 6.5 sec NaN NaN NaN 0.22028
 7 sec 0.65699 0.7539 0.87145 0.87145
 7.5 sec NaN NaN NaN 2.706
 ⋮

To extract all data from elements with a one-second sample time, you must use different name-value
arguments because one element has a timetable and the others have timeseries objects.

• To extract data from timetables with a one-second sample time, use the TimeStep argument.
Specify the sample time as a duration value.

• To extract data from timeseries objects with a one-second sample time, use the SampleTime
argument. Specify the sample time as a numeric value.

TT = extractTimetable(ds,TimeStep=seconds(1),SampleTime=1)

 extractTimetable

8-577

TT=100×3 timetable
 Time TrigFuncs.Sine TrigFuncs.Cosine Tangent
 ______ ______________ ________________ ________

 0 sec 0 1 0
 1 sec 0.84147 0.5403 1.5574
 2 sec 0.9093 -0.41615 -2.185
 3 sec 0.14112 -0.98999 -0.14255
 4 sec -0.7568 -0.65364 1.1578
 5 sec -0.95892 0.28366 -3.3805
 6 sec -0.27942 0.96017 -0.29101
 7 sec 0.65699 0.7539 0.87145
 8 sec 0.98936 -0.1455 -6.7997
 9 sec 0.41212 -0.91113 -0.45232
 10 sec -0.54402 -0.83907 0.64836
 11 sec -0.99999 0.0044257 -225.95
 12 sec -0.53657 0.84385 -0.63586
 13 sec 0.42017 0.90745 0.46302
 14 sec 0.99061 0.13674 7.2446
 15 sec 0.65029 -0.75969 -0.85599
 ⋮

If you use only the SampleTime argument, then you extract data only from elements that have a
timeseries object. Similarly, if you specify only TimeStep, you extract data only from elements that
have a timetable.

TT = extractTimetable(ds,SampleTime=1)

TT=100×1 timetable
 Time Tangent
 ______ ________

 0 sec 0
 1 sec 1.5574
 2 sec -2.185
 3 sec -0.14255
 4 sec 1.1578
 5 sec -3.3805
 6 sec -0.29101
 7 sec 0.87145
 8 sec -6.7997
 9 sec -0.45232
 10 sec 0.64836
 11 sec -225.95
 12 sec -0.63586
 13 sec 0.46302
 14 sec 7.2446
 15 sec -0.85599
 ⋮

Match Template to Data

Create a Dataset object that has elements with different time vectors.

8 Objects

8-578

Time1 = 0.1*(0:99)';
ds = Simulink.SimulationData.Dataset;

element1 = Simulink.SimulationData.Signal;
element1.Name = "Sine";
element1.Values = timeseries(sin(Time1),Time1);
ds = addElement(ds,element1);

Time2 = 0.05*(0:99)';
element2 = Simulink.SimulationData.Signal;
element2.Name ="Cosine";
element2.Values = timeseries(cos(Time2),Time2);
ds = addElement(ds,element2);

Time3 = (0:99)';
element3 = Simulink.SimulationData.Signal;
element3.Name = "Tangent";
element3.Values = timeseries(tan(Time3),Time3);
ds = addElement(ds,element3)

ds =
Simulink.SimulationData.Dataset '' with 3 elements

 Name BlockPath
 _______ _________
 1 [1x1 Signal] Sine ''
 2 [1x1 Signal] Cosine ''
 3 [1x1 Signal] Tangent ''

 - Use braces { } to access, modify, or add elements using index.

If you have data stored in another Dataset object, then you can use one of its elements as a
template. You can extract data from elements of ds whose time properties match the time properties
of the template.

Create a second Dataset object with one element.

ds2 = Simulink.SimulationData.Dataset;
templ = Simulink.SimulationData.Signal;
templ.Name = "Template";
templ.Values = timeseries(randi(100,1),(0:99)');
ds2 = addElement(ds2,templ)

ds2 =
Simulink.SimulationData.Dataset '' with 1 element

 Name BlockPath
 ________ _________
 1 [1x1 Signal] Template ''

 - Use braces { } to access, modify, or add elements using index.

Return data from the elements of ds that match the time properties of ds2{1}. The template
matches the time properties of the third element of ds, named "Tangent".

TT = extractTimetable(ds,Template=ds2{1})

 extractTimetable

8-579

TT=100×1 timetable
 Time Tangent
 ______ ________

 0 sec 0
 1 sec 1.5574
 2 sec -2.185
 3 sec -0.14255
 4 sec 1.1578
 5 sec -3.3805
 6 sec -0.29101
 7 sec 0.87145
 8 sec -6.7997
 9 sec -0.45232
 10 sec 0.64836
 11 sec -225.95
 12 sec -0.63586
 13 sec 0.46302
 14 sec 7.2446
 15 sec -0.85599
 ⋮

Input Arguments
ds — Object that contains time series data
Simulink.SimulationData.Dataset object | Simulink.SimulationData.Signal object

Object that contains time series data, specified as a Simulink.SimulationData.Dataset or
Simulink.SimulationData.Signal object.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: TT = extractTimetable(ds,OutputFormat="cell-by-sampletime")

Arguments for All Inputs

OutputFormat — Output format and grouping
"timetable" (default) | "cell-by-signal" | "cell-by-sampletime" | "cell-by-timestep"

Output format and grouping of time series data, specified as one of the values described in the table.

Value Output Format
"timetable" Timetable that contains the synchronized union of

all signal data, padded with missing values.
"cell-by-signal" Cell array that contains a timetable for each

signal found in the input.

8 Objects

8-580

Value Output Format
"cell-by-sampletime"

"cell-by-timestep"

Cell array that contains a timetable for each
sample time found in the input.

Example: TT = extractTimetable(ds,OutputFormat="cell-by-signal") returns a cell array
where each element is a timetable that contains data from a corresponding element of ds.

SignalNames — Names of signals
string array | pattern object

Names of signals to extract the timetable, specified as a string array or a pattern object.
Example: TT = extractTimetable(ds,SignalNames=["Sensor1","Sensor2"]) extracts data
from signals named "Sensor1" or "Sensor2".
Example: TT = extractTimetable(ds,SignalNames="Sensor" + wildcardPattern)
extracts data from signals whose names start with "Sensor".

Template — Template to match to time properties of input
timeseries object | timetable | Simulink.SimulationData.Signal object | name of signal in ds

Template to match to time properties of input signals, specified as a timeseries object, timetable,
Simulink.SimulationData.Signal object, or the name of a signal in ds.

• If the template is or contains a timeseries object, then extractTimetable matches it only to
elements of ds that contain timeseries objects.

• If the template is or contains a timetable, then extractTimetable matches it only to elements of
ds that contain timetables.

Example: TT = extractTimetable(ds,Template=ds{1}) extracts data from all elements of ds
whose time properties match the time properties of the first element of ds.

Arguments for Inputs with Signals That Contain timeseries Objects

SampleTime — Sample time
one or more positive numeric values

Sample time, specified as one or more positive numeric values. When you specify the value of
SampleTime, this function extracts data from all signals in ds that have timeseries objects whose
time vectors have the specified sample time. The sample time is interpreted as a time interval in
seconds.

If you provide multiple sample times in a numeric array, then the output is a timetable synchronized
to the union of all signals that have timeseries objects with any of the specified sample times,
unless you also specify the value of OutputFormat.
Example: TT = extractTimetable(ds,SampleTime=0.5) extracts data from any signals that
have timeseries objects where the sample time is 0.5 seconds and returns the data in one
timetable.
Example: TT = extractTimetable(ds,SampleTime=[0.5,1.0],OutputFormat="cell-by-
sampletime") extracts data from signals that have timeseries objects where the sample time is
either 0.5 or 1.0 seconds and returns a cell array that contains two timetables.

 extractTimetable

8-581

TimeVector — Time vector
datetime vector | duration vector

Time vector, specified as a datetime vector or duration vector.

The output timetable contains data from all signals in ds that have timeseries objects whose time
vector matches the value of TimeVector.
Example: TT = extractTimetable(ds,TimeVector=seconds(0:99)) extracts data from
signals that have timeseries objects whose time vector is an array spanning 0–99 seconds with a
sample time of one second.

Arguments for Inputs with Signals That Contain Timetables

SampleRate — Sample rate
one or more positive numeric values

Sample rate, specified as one or more positive numeric values. When you specify the value of
SampleRate, this function extracts data from all signals in ds that have timetables with the specified
sample rate. The sample rate is interpreted as a rate in Hertz (Hz).

If you provide multiple sample rates in a numeric array, then the output is a timetable synchronized
to the union of all signals that have timetables with any of the specified sample rates, unless you also
specify the value of OutputFormat.

You can use this argument in combination with the StartTime name-value argument.
Example: TT = extractTimetable(ds,SampleRate=100) extracts data from any signals that
have timetables where the sample rate is 100 Hz and returns the data in one timetable.
Example: TT = extractTimetable(ds,SampleRate=[100,200],OutputFormat="cell-by-
sampletime") extracts data from signals that have timetables where the sample rate is either 100
or 200 Hz and returns a cell array that contains two timetables.
Example: TT = extractTimetable(ds,SampleRate=100,StartTime=seconds(25)) extracts
data from any signals that have timetables where the sample rate is 100 Hz and the signal starts at
25 seconds.

TimeStep — Time step
duration array

Time step, specified as a duration array. When you specify the value of TimeStep, this function
extracts the timetable that contains data from all signals in ds that have timetables with the specified
time step.

If you provide multiple time steps in an array, then the output is a timetable synchronized to the
union of all signals that have timetables with any of the specified time steps, unless you also specify
the value of OutputFormat.

You can use this argument in combination with the StartTime name-value argument.
Example: TT = extractTimetable(ds,TimeStep=seconds(0.5)) extracts data from any
signals that have timetables where the time step is 0.5 seconds and returns the data in one timetable.
Example: TT =
extractTimetable(ds,TimeStep=seconds([0.5,1.0]),OutputFormat="cell-by-
sampletime") extracts data from signals that have timetables where the time step is either 0.5 or
1.0 seconds and returns a cell array that contains two timetables.

8 Objects

8-582

Example: TT = extractTimetable(ds,TimeStep=seconds(0.5),StartTime=seconds(10))
extracts data from any signals that have timetables where the time step is 0.5 seconds and the signal
starts at 10 seconds.

RowTimes — Time vector
datetime vector | duration vector

Time vector, specified as a datetime vector or duration vector.

The output timetable contains data from all the signals in ds that have timetables whose row times
are in a time vector that matches the vector specified by RowTimes.
Example: TT = extractTimetable(ds,RowTimes=seconds(0:99)) extracts data from any
signals that have timetables whose time vector is an array spanning 0–99 seconds with a time step of
one second.

StartTime — Start time
datetime scalar | duration scalar

Start time, specified as a datetime scalar or duration scalar.

The output timetable contains data from all the signals in ds that have timetables whose row times
start with a value matches the value specified by StartTime.

You can use StartTime in combination with either the SampleRate or TimeStep name-value
arguments.
Example: TT = extractTimetable(ds,StartTime=seconds(50)) extracts data from any
signals that have timetables where the signal starts at 50 seconds.
Example: TT = extractTimetable(ds,SampleRate=100,StartTime=seconds(25)) extracts
data from any signals that have timetables where the sample rate is 100 Hz and the signal starts at
25 seconds.
Example: TT = extractTimetable(ds,TimeStep=seconds(0.5),StartTime=seconds(10))
extracts data from any signals that have timetables where the time step is 0.5 seconds and the signal
starts at 10 seconds.

Version History
Introduced in R2021b

See Also
timetable | timeseries | Simulink.SimulationData.Dataset |
Simulink.SimulationData.Signal

Topics
“Create Timetables”
“Resample and Aggregate Data in Timetable”
“Combine Timetables and Synchronize Their Data”
“Select Times in Timetable”

 extractTimetable

8-583

find
Package: Simulink.SimulationData

Get element or collection of elements from Simulink.SimulationData.Dataset object

Syntax
[dsOut,idx]=find(dsIn,prop,val,...)

[dsOut,idx]=find(dsIn,prop,val,logical,...prop,val,...)

[dsOut,idx]=find(dsIn,'-regexp',prop,val,...)

Description
[dsOut,idx]=find(dsIn,prop,val,...) returns a Simulink.SimulationData.Dataset
object containing the elements in the Dataset object dsIn that match one or more property type
and value pairs specified by prop and val. The function also returns the indices of those elements in
the Dataset object dsIn.

[dsOut,idx]=find(dsIn,prop,val,logical,...prop,val,...) applies the logical operator
logical to connect multiple property and value pairs. You can combine multiple logical operators.

[dsOut,idx]=find(dsIn,'-regexp',prop,val,...) matches elements using regular
expressions as if the value of the property is passed to the regexp function as

regexp(element.prop,val)

The find function applies regular expression matching to the prop and val arguments that appear
after -regexp. If the find function contains no -regexp argument, then the function matches
elements as if the value of the property is passed as

isequal(element.prop,val)

Examples

Find Elements in Dataset Object

Use the find function to access an element or collection of elements in a
Simulink.SimulationData.Dataset object. The model sldemo_clutch, which models a
rotating clutch system, logs ten signals in Dataset format. For more information about the model,
see “Building a Clutch Lock-Up Model” on page 13-156.

Simulate the model.

sim("sldemo_clutch");

The logged signal data is contained in a Dataset object named sldemo_clutch_output.

ds = sldemo_clutch_output

8 Objects

8-584

ds =
Simulink.SimulationData.Dataset 'sldemo_clutch_output' with 10 elements

 Name BlockPath
 ____________ _________________________________
 1 [1x1 Signal] Fn sldemo_clutch/Clutch Pedal
 2 [1x1 Signal] Tin sldemo_clutch/Engine Torque
 3 [1x1 Signal] LockedFlag sldemo_clutch/Friction Mode Logic
 4 [1x1 Signal] LockupFlag sldemo_clutch/Friction Mode Logic
 5 [1x1 Signal] UnlockFlag sldemo_clutch/Friction Mode Logic
 6 [1x1 Signal] Tfmaxk sldemo_clutch/Friction Model
 7 [1x1 Signal] Tfmaxs sldemo_clutch/Friction Model
 8 [1x1 Signal] ShaftSpeed sldemo_clutch/Locked
 9 [1x1 Signal] EngineSpeed sldemo_clutch/Unlocked
 10 [1x1 Signal] VehicleSpeed sldemo_clutch/Unlocked

 - Use braces { } to access, modify, or add elements using index.

Use the find function to return a Dataset object containing the element named EngineSpeed.

engSpeed = find(ds,"Name","EngineSpeed")

engSpeed =
Simulink.SimulationData.Dataset 'sldemo_clutch_output' with 1 element

 Name BlockPath
 ___________ ______________________
 1 [1x1 Signal] EngineSpeed sldemo_clutch/Unlocked

 - Use braces { } to access, modify, or add elements using index.

You can also use the find function to return a Dataset object that contains a collection of elements.
For example, use the find function to return all the elements in ds that are logged output signals
from the Friction Mode Logic block and get the corresponding indices in the Dataset object ds
for these elements.

[dsFml,idx] = find(ds,"BlockPath","sldemo_clutch/Friction Mode Logic")

dsFml =
Simulink.SimulationData.Dataset 'sldemo_clutch_output' with 3 elements

 Name BlockPath
 __________ _________________________________
 1 [1x1 Signal] LockedFlag sldemo_clutch/Friction Mode Logic
 2 [1x1 Signal] LockupFlag sldemo_clutch/Friction Mode Logic
 3 [1x1 Signal] UnlockFlag sldemo_clutch/Friction Mode Logic

 - Use braces { } to access, modify, or add elements using index.

idx = 1×3

 3 4 5

Use multiple property type and value pairs to narrow your results. For example, find the element
logged from the first port of the Friction Mode Logic block.

 find

8-585

dsFmlp1 = find(ds,"BlockPath","sldemo_clutch/Friction Mode Logic","PortIndex",1)

dsFmlp1 =
Simulink.SimulationData.Dataset 'sldemo_clutch_output' with 1 element

 Name BlockPath
 __________ _________________________________
 1 [1x1 Signal] LockedFlag sldemo_clutch/Friction Mode Logic

 - Use braces { } to access, modify, or add elements using index.

Use Logical Operator to Find Elements in Dataset Object

Use the find function to access a collection of elements in a Simulink.SimulationData.Dataset
object using the logical operator '-or'. The model sldemo_clutch, which models a rotating clutch
system, logs ten signals in Dataset format. For more information about the model, see “Building a
Clutch Lock-Up Model” on page 13-156.

Simulate the model.

sim("sldemo_clutch");

The logged signal data is contained in a Dataset object named sldemo_clutch_output.

ds = sldemo_clutch_output

ds =
Simulink.SimulationData.Dataset 'sldemo_clutch_output' with 10 elements

 Name BlockPath
 ____________ _________________________________
 1 [1x1 Signal] Fn sldemo_clutch/Clutch Pedal
 2 [1x1 Signal] Tin sldemo_clutch/Engine Torque
 3 [1x1 Signal] LockedFlag sldemo_clutch/Friction Mode Logic
 4 [1x1 Signal] LockupFlag sldemo_clutch/Friction Mode Logic
 5 [1x1 Signal] UnlockFlag sldemo_clutch/Friction Mode Logic
 6 [1x1 Signal] Tfmaxk sldemo_clutch/Friction Model
 7 [1x1 Signal] Tfmaxs sldemo_clutch/Friction Model
 8 [1x1 Signal] ShaftSpeed sldemo_clutch/Locked
 9 [1x1 Signal] EngineSpeed sldemo_clutch/Unlocked
 10 [1x1 Signal] VehicleSpeed sldemo_clutch/Unlocked

 - Use braces { } to access, modify, or add elements using index.

Use the find function to return a Dataset object that contains all the elements in ds that are
logged output signals from either the Unlocked subsystem or the Locked subsystem.

find(ds,"BlockPath","sldemo_clutch/Unlocked",'-or',"BlockPath","sldemo_clutch/Locked")

ans =
Simulink.SimulationData.Dataset 'sldemo_clutch_output' with 3 elements

 Name BlockPath
 ____________ ______________________

8 Objects

8-586

 1 [1x1 Signal] ShaftSpeed sldemo_clutch/Locked
 2 [1x1 Signal] EngineSpeed sldemo_clutch/Unlocked
 3 [1x1 Signal] VehicleSpeed sldemo_clutch/Unlocked

 - Use braces { } to access, modify, or add elements using index.

Use Regular Expressions to Find Elements in Dataset Object

Use the find function to access a collection of elements in a Simulink.SimulationData.Dataset
object using regular expressions. The model sldemo_clutch, which models a rotating clutch
system, logs ten signals in Dataset format. For more information about the model, see “Building a
Clutch Lock-Up Model” on page 13-156.

Simulate the model.

sim("sldemo_clutch");

The logged signal data is contained in a Dataset object named sldemo_clutch_output.

ds = sldemo_clutch_output

ds =
Simulink.SimulationData.Dataset 'sldemo_clutch_output' with 10 elements

 Name BlockPath
 ____________ _________________________________
 1 [1x1 Signal] Fn sldemo_clutch/Clutch Pedal
 2 [1x1 Signal] Tin sldemo_clutch/Engine Torque
 3 [1x1 Signal] LockedFlag sldemo_clutch/Friction Mode Logic
 4 [1x1 Signal] LockupFlag sldemo_clutch/Friction Mode Logic
 5 [1x1 Signal] UnlockFlag sldemo_clutch/Friction Mode Logic
 6 [1x1 Signal] Tfmaxk sldemo_clutch/Friction Model
 7 [1x1 Signal] Tfmaxs sldemo_clutch/Friction Model
 8 [1x1 Signal] ShaftSpeed sldemo_clutch/Locked
 9 [1x1 Signal] EngineSpeed sldemo_clutch/Unlocked
 10 [1x1 Signal] VehicleSpeed sldemo_clutch/Unlocked

 - Use braces { } to access, modify, or add elements using index.

Use the find function to return a Dataset object that contains all the elements in ds with a name
that contains the word Speed.

The regular expression "\w*Speed\w*" indicates that the Name property must contain the word
Speed, but the name can have any alphanumeric expression or underscore character before or after
the specified text.

find(ds,"-regexp","Name","\w*Speed\w*")

ans =
Simulink.SimulationData.Dataset 'sldemo_clutch_output' with 3 elements

 Name BlockPath
 ____________ ______________________

 find

8-587

 1 [1x1 Signal] ShaftSpeed sldemo_clutch/Locked
 2 [1x1 Signal] EngineSpeed sldemo_clutch/Unlocked
 3 [1x1 Signal] VehicleSpeed sldemo_clutch/Unlocked

 - Use braces { } to access, modify, or add elements using index.

Input Arguments
dsIn — Dataset object
Simulink.SimulationData.Dataset object

Dataset object in which to search for matching elements, specified as a
Simulink.SimulationData.Dataset object.

prop — Type of property to search
string | character vector

Type of property to search, specified as a string or character vector.

Each element in a Dataset object is an object. The type of each object depends on the data it
contains. An element must have the property type defined by prop to be included in the Dataset
object returned by the find function. For example, you can find
Simulink.SimulationData.Signal object elements in a Dataset object using any of the
properties of a Signal object:

• Name — Name of element
• PropagatedName — Propagated signal name
• BlockPath — Block path
• PortIndex — Port index
• PortType — Type of port logged
• Values — Logged time and data

The results returned by the find function are not limited to one object type. The find function can
return a Dataset object containing elements of any object type that have the specified property type
with the specified value. For example, suppose a Dataset object contains two elements with the
name myName, where one element is a Signal object and the other element is a timeseries object.
You can use the find function to search for both elements by specifying the property type as Name
and the property value as myName.

dsName = find(ds,"Name","myName")

dsName =

Simulink.SimulationData.Dataset 'myDataset' with 2 elements

 Name BlockPath
 ______ _________
 1 [1x1 timeseries] myName ''
 2 [1x1 Signal] myName ''

 - Use braces { } to access, modify, or add elements using index.

8 Objects

8-588

val — Property value to search for
string | character vector

Property value to search for, specified as a string or character vector. The property value can be a
regular expression when using the '-regexp' argument.

logical — Logical operator
'-and' | '-or'

Logical operator connecting multiple property type and value pairs, specified as '-and' or '-or'.

If you do not specify an operation, the function assumes '-and'.

Output Arguments
dsOut — Dataset object
Simulink.SimulationData.Dataset object

Dataset object that contains the elements that match one or more property type and value pairs,
returned as a Simulink.SimulationData.Dataset object. If no elements match the specified
property type and value, the returned Dataset object is empty.

idx — Indices
vector

Indices in the Dataset object dsIn of the elements that match the specified property name and
property value, returned as a vector. If no elements match the specified property type and value, then
idx is empty.

Alternatives
You can use curly braces to streamline the indexing syntax to access an element in a Dataset object
instead of using the find function. The index must be a positive integer that is not greater than the
number of elements in the variable. For example, find the second element of the logsout dataset.

logsout{2}

You can also use the get function to get an element or collection of elements from a dataset.

Version History
Introduced in R2015b

See Also
Objects
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Signal |
Simulink.SimulationData.DataStoreMemory | Simulink.SimulationData.Dataset

Functions
addElement | concat | get | getElementNames | numElements | removeElement | setElement

 find

8-589

Topics
“Save Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Data to Dataset Format”
“Load Big Data for Simulations”

8 Objects

8-590

get
Package: Simulink.SimulationData

Get element or collection of elements from Simulink.SimulationData.Dataset object

Syntax
element = get(dataset,index)
element = get(dataset,elName)
element = get(dataset,{elName})

Description
element = get(dataset,index) returns the element in the
Simulink.SimulationData.Dataset object datasetcorresponding to the index. The
getElement function uses the same syntax and behavior as the get function.

element = get(dataset,elName) returns the element or elements specified by elName.

• If only one element has the name elName, the function returns that element.
• If multiple elements have the name elName, the function returns a

Simulink.SimulationData.Dataset object containing those elements.

element = get(dataset,{elName}) returns a Dataset object containing one or more elements
with the name elName.

Examples

Access Data Programmatically

Access a Simulink.SimulationData.Dataset object and its elements.

Simulate the model sldemo_clutch, which models a rotating clutch system. Then, access the
Dataset object sldemo_clutch_output, which contains the signal logging data. For more
information about the model, see “Building a Clutch Lock-Up Model” on page 13-156.

sim("sldemo_clutch");
sldemo_clutch_output

sldemo_clutch_output =
Simulink.SimulationData.Dataset 'sldemo_clutch_output' with 10 elements

 Name BlockPath
 ____________ _________________________________
 1 [1x1 Signal] Fn sldemo_clutch/Clutch Pedal
 2 [1x1 Signal] Tin sldemo_clutch/Engine Torque
 3 [1x1 Signal] LockedFlag sldemo_clutch/Friction Mode Logic
 4 [1x1 Signal] LockupFlag sldemo_clutch/Friction Mode Logic
 5 [1x1 Signal] UnlockFlag sldemo_clutch/Friction Mode Logic
 6 [1x1 Signal] Tfmaxk sldemo_clutch/Friction Model

 get

8-591

 7 [1x1 Signal] Tfmaxs sldemo_clutch/Friction Model
 8 [1x1 Signal] ShaftSpeed sldemo_clutch/Locked
 9 [1x1 Signal] EngineSpeed sldemo_clutch/Unlocked
 10 [1x1 Signal] VehicleSpeed sldemo_clutch/Unlocked

 - Use braces { } to access, modify, or add elements using index.

To access Dataset object elements, you can use indexing with curly braces. For example, access the
Tin element of the signal logging Dataset object using the index 2.

el2 = sldemo_clutch_output{2}

el2 =
 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'Tin'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'
 PortIndex: 1
 Values: [1x1 timeseries]

 Methods, Superclasses

The signal data is stored in the Values property of the Simulink.SimulationData.Signal object
as a timeseries object. The time values are in the Time property of the timeseries object. The
signal values are in the Data property.

el2.Values

 timeseries

 Common Properties:
 Name: 'Tin'
 Time: [387x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [387x1 double]
 DataInfo: tsdata.datametadata

Access Dataset Elements By Index

Simulate the model GetDatasetElements, which logs data generated by three source blocks using
the Dataset format.

out = sim("GetDatasetElements");

By default, all logged data is returned in a single variable in the workspace as a
Simulink.SimulationOutput object named out. Logged output data is grouped in
Simulink.SimulationData.Dataset object with the default name yout. You can access the
logged output data using dot notation.

out.yout

8 Objects

8-592

ans =
Simulink.SimulationData.Dataset 'yout' with 3 elements

 Name BlockPath
 ________ _______________________
 1 [1x1 Signal] SameName GetDatasetElements/Out1
 2 [1x1 Signal] SameName GetDatasetElements/Out2
 3 [1x1 Signal] DifName GetDatasetElements/Out3

 - Use braces { } to access, modify, or add elements using index.

Use the get function to access the second element of the Dataset object using the index 2.

el = get(out.yout,2)

el =
 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'SameName'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'inport'
 PortIndex: 1
 Values: [1x1 timeseries]

 Methods, Superclasses

Access Dataset Elements By Name

The model GetDatasetElements logs data generated by three source blocks using the Dataset
format. In the model, the signals coming from the Sine Wave block and the Constant block share the
same name. The signal coming from the Pulse Generator block has a unique name.

open_system("GetDatasetElements")

Simulate the model.

out = sim("GetDatasetElements");

By default, all logged data is returned in a single variable in the workspace as a
Simulink.SimulationOutput object named out. Access the
Simulink.SimulationData.Dataset object that contains the logged output data using dot
notation.

out.yout

ans =
Simulink.SimulationData.Dataset 'yout' with 3 elements

 Name BlockPath
 ________ _______________________

 get

8-593

 1 [1x1 Signal] SameName GetDatasetElements/Out1
 2 [1x1 Signal] SameName GetDatasetElements/Out2
 3 [1x1 Signal] DifName GetDatasetElements/Out3

 - Use braces { } to access, modify, or add elements using index.

Use the get function to return the element with the name DifName. Because the name DifName is
unique, the function returns a Simulink.SimulationData.Signal object for that element.

el = get(out.yout,"DifName")

el =
 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'DifName'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'inport'
 PortIndex: 1
 Values: [1x1 timeseries]

 Methods, Superclasses

You can also use the get function when an element is not unique. Because the name SameName is not
unique, the function returns a Simulink.SimulationData.Dataset object containing the
elements with the name SameName.

ds = get(out.yout,"SameName")

ds =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 ________ _______________________
 1 [1x1 Signal] SameName GetDatasetElements/Out1
 2 [1x1 Signal] SameName GetDatasetElements/Out2

 - Use braces { } to access, modify, or add elements using index.

Access Dataset Elements With Cell Array

The model GetDatasetElements logs data generated by three source blocks using the Dataset
format. In the model, the signals coming from the Sine Wave block and the Constant block share the
same name. The signal coming from the Pulse Generator block has a unique name.

open_system("GetDatasetElements")

Simulate the model.

out = sim("GetDatasetElements");

8 Objects

8-594

By default, all logged data is returned in a single variable in the workspace as a
Simulink.SimulationOutput object named out. Access the
Simulink.SimulationData.Dataset object that contains the logged output data using dot
notation.

out.yout

ans =
Simulink.SimulationData.Dataset 'yout' with 3 elements

 Name BlockPath
 ________ _______________________
 1 [1x1 Signal] SameName GetDatasetElements/Out1
 2 [1x1 Signal] SameName GetDatasetElements/Out2
 3 [1x1 Signal] DifName GetDatasetElements/Out3

 - Use braces { } to access, modify, or add elements using index.

Use the get function with a cell array containing a character vector to return a Dataset object. If
the element name is unique, the get function returns a Dataset object containing one element. If
the element name is not unique, the get function returns a Dataset object containing all elements
with that name. For example, create a Dataset object containing the element named DifName.

ds = get(out.yout,{'DifName'})

ds =
Simulink.SimulationData.Dataset '' with 1 element

 Name BlockPath
 _______ _______________________
 1 [1x1 Signal] DifName GetDatasetElements/Out3

 - Use braces { } to access, modify, or add elements using index.

Access Bus Data Logged Using Dataset Format

The model AccessDatasetNestedBus contains nested arrays of buses. Two arrays of buses, Bus2
and Bus3, are marked for logging. topBus is logged using an Outport block. This example shows how
to access Dataset elements within the bus hierarchy.

 get

8-595

Open and simulate the model.

mdl = "AccessDatasetNestedBus";
open_system(mdl)
out = sim(mdl);

All logged data is returned in a single variable, out, as a Simulink.SimulationOutput object.
Access the Dataset object that contains signal logging data, logsout, using dot notation.

ds = out.logsout

ds =
Simulink.SimulationData.Dataset 'logsout' with 2 elements

 Name BlockPath
 ____ __
 1 [1x1 Signal] Bus3 ...ssDatasetNestedBus/Matrix Concatenate
 2 [1x1 Signal] Bus2 ...sDatasetNestedBus/Vector Concatenate1

 - Use braces { } to access, modify, or add elements using index.

Data for topBus is logged to the Dataset object yout.

ds2 = out.yout

ds2 =
Simulink.SimulationData.Dataset 'yout' with 1 element

 Name BlockPath
 ______ ___________________________
 1 [1x1 Signal] topBus AccessDatasetNestedBus/Out1

8 Objects

8-596

 - Use braces { } to access, modify, or add elements using index.

You can use the get function to access signal logging information for each element in the Dataset
object. For example, use the get function to return the Simulink.SimulationData.Signal object
for the array of buses named Bus2.

get(ds,"Bus2")

ans =
 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'Bus2'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'
 PortIndex: 1
 Values: [2x1 struct]

 Methods, Superclasses

The logged data values are stored in the Values property of the Signal object. For an array of
buses, the data is logged as an array of MATLAB® structures.

get(ds,"Bus2").Values

ans=2×1 struct array with fields:
 a
 b

You can access a specific structure using the index of the structure within the array. For example, to
access the structure that contains timeseries objects for the signals coming from the Constant
blocks Constant6 and Constant7, use the index 2.

get(ds,"Bus2").Values(2)

ans = struct with fields:
 a: [1x1 timeseries]
 b: [1x1 timeseries]

Access a timeseries object within the structure using dot notation. For example, access the
timeseries object for the signal coming from the Constant6 block.

get(ds,"Bus2").Values(2).a

 timeseries

 Common Properties:
 Name: 'a'
 Time: [51x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [51x1 double]
 DataInfo: tsdata.datametadata

 get

8-597

Signal values are stored in the Data property.

get(ds,"Bus2").Values(2).a.Data

ans = 51×1

 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 ⋮

Suppose that you did not want to mark Bus2 for logging. You can also get signal values for the signal
coming from the Constant6 block using the Dataset object element Bus3.

get(ds,"Bus3").Values(2,2).a.Data

ans = 51×1

 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 ⋮

Similarly, you can also access signal values for the signal coming from the Constant6 block using
the Dataset object element topBus.

get(ds2,"topBus").Values.Bus3(2,2).a.Data

ans = 51×1

 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 ⋮

8 Objects

8-598

Input Arguments
dataset — Dataset object
Simulink.SimulationData.Dataset object

Dataset object from which to get the element, specified as a
Simulink.SimulationData.Dataset object.

index — Index of element to get
positive integer

Index of element to get, specified as a positive integer.

elName — Name of Dataset object element to get
string | character array | cell array containing one character vector

Name of Dataset object element to get, specified as:

• A string reflecting the name of the Dataset object element.
• A character array reflecting the name of the Dataset object element.
• A cell array containing one character vector reflecting the name of the Dataset object element.

To return a Dataset object that can contain one element, use this format. Consider this form
when writing scripts.

Alternatives
Instead of using get or getElement, you can use curly braces to streamline the indexing syntax to
access an element in a Dataset object. The index must be a positive integer that is not greater than
the number of elements in the variable. For example, get the second element of the logsout dataset.

logsout{2}

You can also use the find function to get an element or collection of elements from a dataset.

Version History
Introduced in R2011a

See Also
Objects
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Signal |
Simulink.SimulationData.DataStoreMemory | Simulink.SimulationData.Dataset

Functions
addElement | concat | find | getElementNames | numElements | removeElement | setElement

Topics
“Save Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Data to Dataset Format”

 get

8-599

getElementNames
Package: Simulink.SimulationData

Return names of all elements in Simulink.SimulationData.Dataset object

Syntax
elementList = getElementNames(dataset)

Description
elementList = getElementNames(dataset) returns a cell array containing the names of all
elements in the Simulink.SimulationData.Dataset object dataset.

Examples

Return Names of Elements

Simulate the model sldemo_clutch, which models a rotating clutch system. The signal logging data
is contained in the Dataset object named sldemo_clutch_output.

sim("sldemo_clutch")

Use the getElementNames function to return a list of elements in the Dataset object
sldemo_clutch_output.

elList = getElementNames(sldemo_clutch_output)

elList = 10x1 cell
 {'Fn' }
 {'Tin' }
 {'LockedFlag' }
 {'LockupFlag' }
 {'UnlockFlag' }
 {'Tfmaxk' }
 {'Tfmaxs' }
 {'ShaftSpeed' }
 {'EngineSpeed' }
 {'VehicleSpeed'}

Input Arguments
dataset — Dataset object
Simulink.SimulationData.Dataset object

Dataset object from which to get the element names, specified as a
Simulink.SimulationData.Dataset object.

8 Objects

8-600

Version History
Introduced in R2011a

See Also
Objects
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Signal |
Simulink.SimulationData.DataStoreMemory | Simulink.SimulationData.Dataset

Functions
find | setElement | get | numElements | addElement | concat | setElement

Topics
“Save Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Data to Dataset Format”

 getElementNames

8-601

numElements
Package: Simulink.SimulationData

Get number of elements in Simulink.SimulationData.Dataset object

Syntax
length = numElements(dataset)

Description
length = numElements(dataset) returns the number of elements in the top-level
Simulink.SimulationData.Dataset object dataset. To get the number of elements in a nested
Dataset object, use numElements with the nested Dataset object.

Examples

Get Number of Elements

Get the number of elements in the signal logging Dataset object sldemo_clutch_outputfor the
model sldemo_clutch.

length = numElements(sldemo_clutch_output)

length =

 10

Input Arguments
dataset — Dataset object
Simulink.SimulationData.Dataset object

Dataset object from which to get the number of elements, specified as a
Simulink.SimulationData.Dataset object.

Version History
Introduced in R2011a

See Also
Objects
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Signal |
Simulink.SimulationData.DataStoreMemory | Simulink.SimulationData.Dataset

Functions
addElement | concat | find | get | getElementNames | removeElement | setElement

8 Objects

8-602

Topics
“Save Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Data to Dataset Format”
“Load Big Data for Simulations”

 numElements

8-603

plot
Package: Simulink.SimulationData

Plot data in Simulink.SimulationData.Dataset object in the Simulation Data Inspector

Syntax
plot(ds)
plot(ds,viewer)
runObj = plot(ds)

Description
plot(ds) plots the data in the Simulink.SimulationData.Dataset object or
Simulink.SimulationData.DatasetRef object ds in the Simulation Data Inspector. When
there are eight signals or fewer in the Dataset or DatasetRef object, the Simulation Data
Inspector plot layout changes to 1-by-n, where n is equal to the number of signals, and plots one
signal on each subplot. When the Dataset or DatasetRef object contains more than eight signals,
the Simulation Data Inspector plot layout changes to 1-by-1 and plots the first signal.

plot(ds,viewer) displays the plot in the Simulation Data Inspector or Signal Preview window
according to the value specified for viewer.

runObj = plot(ds) returns the corresponding Simulink.sdi.Run object.

Examples

Plot Dataset Object in Simulation Data Inspector

Create two timeseries objects.

ts1 = timeseries([0;20],[0;10]);
ts2 = timeseries([0;40],[0;10]);

Create a Dataset object. Then, add the timeseries objects to the Dataset object.

ds = Simulink.SimulationData.Dataset;
ds = addElement(ds,ts1,"timeseries1");
ds = addElement(ds,ts2,"timeseries2");

Plot the Dataset object in the Simulation Data Inspector.

plot(ds)

Input Arguments
ds — Dataset or DatasetRef object containing data to plot
Simulink.SimulationData.Dataset object | Simulink.SimulationData.DatasetRef object

8 Objects

8-604

Dataset or DatasetRef object containing data to plot, specified as a
Simulink.SimulationData.Dataset object or a Simulink.SimulationData.Datasetref
object.

viewer — Viewer to use to plot data
'datainspector' (default) | 'preview'

Viewer used to plot data, specified as 'datainspector' or 'preview'. When you do not specify
the viewer input, the plot function plots data in the Simulation Data Inspector.

• 'datainspector' — Plot data in the Simulation Data Inspector.
• 'viewer' — Plot data in the Signal Preview window. For more information, see “Preview Signal

Data”.

Output Arguments
runObj — Run object corresponding to the plotted data
Simulink.sdi.Run object

Run object corresponding to the plotted data, specified as a Simulink.sdi.Run object. When you
view data in a Signal Preview window, the plot function returns empty ([]).

Version History
Introduced in R2016b

R2019b: Not recommended
Not recommended starting in R2019b

Starting in R2019b, 'sdi' is not the recommended input to view plotted data in the Simulation Data
Inspector. Instead, for the plot function, specify the viewer argument as 'datainspector' to
view plotted data in the Simulation Data Inspector.

See Also
Objects
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Signal |
Simulink.SimulationData.DataStoreMemory | Simulink.SimulationData.Dataset

Functions
addElement | concat | find | get | getElementNames | numElements | removeElement |
setElement

Topics
“View and Inspect Signal Data”
“Save Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Data to Dataset Format”
“Load Big Data for Simulations”

 plot

8-605

setElement
Package: Simulink.SimulationData

Change Simulink.SimulationData.Dataset object element stored at specified index

Syntax
ds = setElement(ds,idx,el)
ds = setElement(ds,idx,el,name)

Description
ds = setElement(ds,idx,el) replaces the element stored at the specified index idswith the
element el. If idx is one greater than the number of elements in the Dataset object ds, the function
adds the element el to the end of the Dataset object ds.

ds = setElement(ds,idx,el,name) gives the element the name specified by name. You can use
name to identify an element that does not have a name. If the element already has a name, the
function replaces it with the name specified in the name argument.

Examples

Change and Rename Dataset Elements

Use the setElement function to:

• Change the name of a Simulink.SimulationData.Dataset object element.
• Add a new element to a Dataset object.
• Replace a Dataset object element with another element.

Create a Dataset object.

ds = Simulink.SimulationData.Dataset;

Create four Signal objects.

el1 = Simulink.SimulationData.Signal;
el1.Name = 'A';
el2 = Simulink.SimulationData.Signal;
el2.Name = 'B';
el3 = Simulink.SimulationData.Signal;
el3.Name = 'C';
el4 = Simulink.SimulationData.Signal;
el4.Name = 'D';

Add the Signal objects named A and B to the Dataset object.

ds = addElement(ds,el1);
ds = addElement(ds,el2)

8 Objects

8-606

ds =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 ____ _________
 1 [1x1 Signal] A ''
 2 [1x1 Signal] B ''

 - Use braces { } to access, modify, or add elements using index.

You can use the setElement function to change the name of a Dataset object element. Change the
name of the second signal from B to Bchanged.

ds = setElement(ds,2,el2,"Bchanged")

ds =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 ________ _________
 1 [1x1 Signal] A ''
 2 [1x1 Signal] Bchanged ''

 - Use braces { } to access, modify, or add elements using index.

Because the Dataset object ds contains two elements, you can use the setElement function with
the index 3 to add the element named C to the Dataset object.

ds = setElement(ds,3,el3)

ds =
Simulink.SimulationData.Dataset '' with 3 elements

 Name BlockPath
 ________ _________
 1 [1x1 Signal] A ''
 2 [1x1 Signal] Bchanged ''
 3 [1x1 Signal] C ''

 - Use braces { } to access, modify, or add elements using index.

You can also use the setElement function to replace one element with another. Replace the element
named A with the element named D.

ds = setElement(ds,1,el4)

ds =
Simulink.SimulationData.Dataset '' with 3 elements

 Name BlockPath
 ________ _________
 1 [1x1 Signal] D ''
 2 [1x1 Signal] Bchanged ''
 3 [1x1 Signal] C ''

 setElement

8-607

 - Use braces { } to access, modify, or add elements using index.

Input Arguments
ds — Dataset object
Simulink.SimulationData.Dataset object

Dataset object for which to set the element, specified as a Simulink.SimulationData.Dataset
object.

idx — Index
positive integer

Index of element, specified as positive integer.

• To change an existing element, the index must be less than or equal to the number of elements in
the Dataset object.

• To add an element, the index must be one more than the number of elements in the Dataset
object.

el — Element to replace existing element
Simulink.SimulationData.Dataset object element

Element to replace existing element or to add to the data set, specified as a
Simulink.SimulationData.Dataset object element.

When a Dataset object is created by logging simulation data, each element contains data for one
logged signal, output, data store, or state. Each element is an object, and the type of the object
depends on the data it contains.

• Signals and output — Simulink.SimulationData.Signal object
• States and final states — Simulink.SimulationData.State object
• Data stores — Simulink.SimulationData.DataStoreMemory object

When you create a Dataset object that groups simulation input data, each element contains data for
a signal, bus, or array of buses. You can add data in any format supported by the loading method you
use.

8 Objects

8-608

Type of Input Data Formats
Scalar, vector, or multidimensional signal • timeseries

• timetable
• Simulink.SimulationData.Signal
• matlab.io.datastore.SimulationDatas

tore
• matlab.io.datastore.sdidatastore
• Structure with one field called

signals.values that contains data for a
single signal and a field called time that
optionally includes time data

• Array where the first column contains time
data and subsequent columns contain data for
a signal

Bus • Structure of timeseries, timetable, or
matlab.io.datastore.SimulationDatas
tore objects that matches the hierarchy of
the bus

• Simulink.SimulationData.Signal
Array of buses • Array of structures

• Simulink.SimulationData.Signal
Function-call signal • N-by-1 vector

• Simulink.SimulationData.Signal

name — Element name
string | character vector

Element name, specified as a string or character vector.

Output Arguments
ds — Data set
character vector

Data set in which to change an element, specified as a character vector.

Alternative
You can use curly braces to streamline indexing syntax to change an element in a Dataset object
instead of using setElement. The index must be a positive integer that is not greater than the
number of elements in the variable. For example, change the name of second element of the logsout
Dataset object.

logsout{2}.Name = 'secondSignal'

 setElement

8-609

Version History
Introduced in R2011a

See Also
Objects
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Signal |
Simulink.SimulationData.DataStoreMemory | Simulink.SimulationData.Dataset

Functions
addElement | concat | find | get | getElementNames | numElements | removeElement

Topics
“Save Signal Data Using Signal Logging”
“Log Data Stores”
“Convert Data to Dataset Format”

8 Objects

8-610

removeElement
Package: Simulink.SimulationData

Remove element from Simulink.SimulationData.Dataset object

Syntax
ds = removeElement(ds,ind)

Description
ds = removeElement(ds,ind) removes the elements at the indices specified by ind from the
Simulink.SimulationData.Dataset object ds.

Examples

Remove Signal from Dataset Object

Open the model LogDataDatasetFormat. The model logs the data generated by three source blocks
using the Dataset format.

open_system("LogDataDatasetFormat.slx");

Simulate the model.

out = sim("LogDataDatasetFormat.slx");

By default, all logged data is returned in a single variable in the workspace as a
Simulink.SimulationOutput object.

out

out =
 Simulink.SimulationOutput:

 tout: [101x1 double]
 yout: [1x1 Simulink.SimulationData.Dataset]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

Check the contents of the Simulink.SimulationData.Dataset object, yout, that contains the
logged output data.

yout = out.yout

yout =
Simulink.SimulationData.Dataset 'yout' with 3 elements

 Name BlockPath

 removeElement

8-611

 ___________ _________________________
 1 [1x1 Signal] Sine Wave LogDataDatasetFormat/Out1
 2 [1x1 Signal] Pulse LogDataDatasetFormat/Out2
 3 [1x1 Signal] White Noise LogDataDatasetFormat/Out3

 - Use braces { } to access, modify, or add elements using index.

Suppose you want to use the logged outputs as input for another simulation that does not use the
White Noise signal. To create a Dataset object that you can load as external input data for that
simulation, remove the White Noise signal from the Dataset object yout. The White Noise
signal is the third signal in the Dataset object, so specify the index as 3. Then, rename the Dataset
object with the input data.

inputData = removeElement(yout,3);
inputData.Name = "Input Data";
inputData

inputData =
Simulink.SimulationData.Dataset 'Input Data' with 2 elements

 Name BlockPath
 _________ _________________________
 1 [1x1 Signal] Sine Wave LogDataDatasetFormat/Out1
 2 [1x1 Signal] Pulse LogDataDatasetFormat/Out2

 - Use braces { } to access, modify, or add elements using index.

The value of the variable yout remains unchanged. To modify the value of the variable yout, assign
the return from the removeElement function back to yout.

yout = removeElement(yout,3)

yout =
Simulink.SimulationData.Dataset 'yout' with 2 elements

 Name BlockPath
 _________ _________________________
 1 [1x1 Signal] Sine Wave LogDataDatasetFormat/Out1
 2 [1x1 Signal] Pulse LogDataDatasetFormat/Out2

 - Use braces { } to access, modify, or add elements using index.

The original Dataset object in the SimulationOutput object remains unchanged. To modify the
data in the SimulationOutput object, access the Dataset object through the SimulationOutput
object instead of assigning it to a separate variable.

out.yout = removeElement(out.yout,3);
out.yout

ans =
Simulink.SimulationData.Dataset 'yout' with 2 elements

 Name BlockPath
 _________ _________________________
 1 [1x1 Signal] Sine Wave LogDataDatasetFormat/Out1

8 Objects

8-612

 2 [1x1 Signal] Pulse LogDataDatasetFormat/Out2

 - Use braces { } to access, modify, or add elements using index.

Input Arguments
ds — Data set from which to remove element
Simulink.SimulationData.Dataset object

Data set from which to remove element, specified as a Simulink.SimulationData.Dataset
object.

ind — Index of element to remove from data set
scalar | vector

Index of element to remove from data set, specified as a scalar or a vector. To remove more than one
element from the data set, specify a vector that contains the index for each element you want to
remove.
Example: 1
Example: [1 3]

Output Arguments
ds — Data set with element removed
Simulink.SimulationData.Dataset object

Data set with element removed, returned as a Simulink.SimulationData.Dataset object.

Version History
Introduced in R2011a

See Also
Objects
Simulink.SimulationData.Dataset

Functions
addElement | setElement | get | find | numElements

 removeElement

8-613

Simulink.SimulationData.DatasetRef
Create Simulink.SimulationData.DatasetRef object

Description
To use a reference for accessing a Simulink.SimulationData.Dataset object stored in a MAT-
file, create a Simulink.SimulationData.DatasetRef object. You can use this reference to avoid
running out of memory by retrieving data signal by signal for data that you log to persistent storage.
You can stream a DatasetRef object into a root-level input port. Or you can use a DatasetRef
object to create a SimulationDatastore object to use for streaming. For details, see “Load Big
Data for Simulations”.

For parallel simulations, for which you specify an array of Simulink.SimulationInput objects, if
you are logging to file, the software:

• Creates Simulink.SimulationData.DatasetRef objects to access output data in the MAT-file
and includes those objects in the SimulationOutput object data

• Enables the CaptureErrors argument for simulation

Tip To get the names of Dataset object variables in the MAT-file, the
Simulink.SimulationData.DatasetRef.getDatasetVariableNames function processes faster
than using the who or whos functions.

Creation
Syntax
DSRefObj = Simulink.SimulationData.DatasetRef(location,identifier)

Description

DSRefObj = Simulink.SimulationData.DatasetRef(location,identifier) creates a
reference to the contents of a Simulink.SimulationData.Dataset object variable stored in a
MAT-file.

Input Arguments

location — MAT-file containing Simulink.SimulationData.Dataset object to reference
string | character vector

MAT-file containing Simulink.SimulationData.Dataset object to reference, specified as a string
or character vector. The string or character vector is a path to the MAT-file. Do not use a file name
from one locale in a different locale.
Example: "out.mat"

identifier — Name of Simulink.SimulationData.Dataset variable in MAT-file
string | character vector

8 Objects

8-614

Name of a Simulink.SimulationData.Dataset variable in MAT-file, specified as a string or
character vector. When you log to persistent storage, the software uses the variable names specified
for each type of logging.

Suppose that you use the default variable name for signal logging logsout and the default MAT-file
name for persistent storage logging mat.out. After you simulate the model, to create a reference to
the Dataset object for signal logging, at the MATLAB command line, enter:

sigLogRef = Simulink.SimulationData.DatasetRef("out.mat","logsout");

Example: "logsout"

Output Arguments

DSRefObj — Reference to Dataset object
Simulink.SimulationData.DatasetRef object

Reference to Dataset object, returned as a Simulink.SimulationData.DatasetRef object.

Properties
Location — MAT-file containing Simulink.SimulationData.Dataset object to reference
character vector

This property is read-only.

MAT-file containing Simulink.SimulationData.Dataset object to reference, returned as a
character vector. The character vector is a path to the MAT-file.

Identifier — Name of variable in MAT-file
character vector

This property is read-only.

Name of a Simulink.SimulationData.Dataset variable in MAT-file, return as character vector.
When you log to persistent storage, the software uses the variable names specified for each kind of
logging. For example, signal logging data has the default variable name logsout.

Object Functions
get Get element or collection of elements

from Simulink.SimulationData.Dataset
object

getElementNames Return names of all elements in
Simulink.SimulationData.Dataset object

numElements Get number of elements in
Simulink.SimulationData.Dataset object

plot Plot data in
Simulink.SimulationData.Dataset object
in the Simulation Data Inspector

getAsDatastore Get
matlab.io.datastore.SimulationDatastore
representation of element from
referenced Dataset object

 Simulink.SimulationData.DatasetRef

8-615

Simulink.SimulationData.DatasetRef.getDatasetVariableNames List names of variables in MAT file that
contain
Simulink.SimulationData.Dataset
objects

Examples

Create References to Persistent Storage Dataset Objects

You can construct and use Simulink.SimulationData.DatasetRef objects to access data for a
model that logs to persistent storage. This example shows the basic steps for logging to persistent
storage. This example does not represent a realistic situation for logging to persistent storage
because it shows a short simulation with small memory requirements.

Open the vdp model.

mdl = "vdp";
open_system(mdl)

In the model, mark the signal x1 for signal logging.

1 Right-click the signal x1.
2 Select Log Selected Signals.

Alternatively, you can mark the signal for logging programmatically.

Simulink.sdi.markSignalForStreaming("vdp/x1",1,"on")

Configure the model to log data to persistent storage.

In the Configuration Parameters > Data Import/Export pane:

1 Select the States parameter.
2 Select the Log Dataset data to file parameter.
3 Click OK.

Click Run to simulate the model.

Alternatively, you can select the parameters programmatically using name-value arguments.

sim(mdl,"SaveState","on","LoggingToFile","on")

ans =
 Simulink.SimulationOutput:

 tout: [64x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

Get a list of Dataset object variable names in the out.mat file.

varNames = Simulink.SimulationData.DatasetRef.getDatasetVariableNames("out.mat")

8 Objects

8-616

varNames = 1x3 cell
 {'logsout'} {'xout'} {'yout'}

Create a reference to the logged states data that is stored in out.mat. The variable for the logged
states data is xout.

statesLogRef = Simulink.SimulationData.DatasetRef("out.mat","xout")

statesLogRef =
 Simulink.SimulationData.DatasetRef
 Characteristics:
 Location: out.mat (C:\TEMP\Bdoc23a_2213998_3568\ib570499\35\tpa88bc75b\simulink-ex68096319\out.mat)
 Identifier: xout

 Resolved Dataset: 'xout' with 2 elements

 Name BlockPath
 ____ _________
 1 '' vdp/x1
 2 '' vdp/x2

Create a reference to the signal logging data that is stored in out.mat. The variable for the signal
logging data is logsout.

sigLogRef = Simulink.SimulationData.DatasetRef("out.mat","logsout")

sigLogRef =
 Simulink.SimulationData.DatasetRef
 Characteristics:
 Location: out.mat (C:\TEMP\Bdoc23a_2213998_3568\ib570499\35\tpa88bc75b\simulink-ex68096319\out.mat)
 Identifier: logsout

 Resolved Dataset: 'logsout' with 1 element

 Name BlockPath
 ____ _________
 1 x1 vdp/x1

Use the numElements function to access the number of elements in the logged states Datasetref
object.

numElements(statesLogRef)

ans = 2

Use curly braces to access the first element of the signal logging Datasetref object.

sigLogRef{1}

ans =
 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'x1'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'

 Simulink.SimulationData.DatasetRef

8-617

 PortIndex: 1
 Values: [1x1 matlab.io.datastore.SimulationDatastore]

 Methods, Superclasses

If you delete the persistent storage MAT-file and try to use one the DatasetRef objects, the software
returns an error because the file does not exist. The statesLogRef variable still exists, but it is a
reference to a Dataset object that is in a file that no longer exists.

Version History
Introduced in R2016a

See Also
Objects
matlab.io.datastore.SimulationDatastore | Simulink.SimulationData.Dataset

Functions
get | getElementNames | numElements | plot | getAsDatastore |
Simulink.SimulationData.DatasetRef.getDatasetVariableNames

Topics
“Log Data to Persistent Storage”
“Load Big Data for Simulations”
“Convert Data to Dataset Format”

8 Objects

8-618

getAsDatastore
Package: Simulink.SimulationData

Get matlab.io.datastore.SimulationDatastore representation of element from referenced
Dataset object

Syntax
element = getAsDatastore(dsr,idx)
element = getAsDatastore(dsr,elName)
element = getAsDatastore(dsr,bp)

Description
element = getAsDatastore(dsr,idx) returns a
matlab.io.datastore.SimulationDatastore representation of an element from the
Simulink.SimulationData.DatasetRef object dsr based on the index idx.

You can get a SimulationDatastore representation of a Dataset element if the element was
placed into the MAT-file by:

• Logging Dataset format data to persistent storage
• Placing the element into a Simulink.SimulationData.Dataset object and saving the

Dataset object to a Version 7.3 MAT-file

Note You cannot create a SimulationDatastore representation for Dataset elements that
contain array data.

You can use SimulationDatastore objects to:

• Refer to logged simulation data that is stored on disk in a MAT-file.
• Specify signals to stream incrementally from disk to a simulation.
• Provide a basis for big data analysis using MATLAB functions.

element = getAsDatastore(dsr,elName) returns a SimulationDatastore representation of
an element or collection of elements from the referenced Dataset object based on the element name
elName.

element = getAsDatastore(dsr,bp) returns a SimulationDatastore representation of an
element or collection of elements from the referenced Dataset object based on the block path bp.

Examples

Use SimulationDatastore Object to Reference Data in DatasetRef Object

Open the SineWave model, which contains a Sine Wave block connected to an Outport block.

 getAsDatastore

8-619

mdl = "SineWave";
open_system(mdl)

Configure the model to log output data to persistent storage and simulate a model.

1 In the Configuration Parameters > Data Import/Export pane, select the Log Dataset data
to file parameter. Then, click OK.

2 Click Run to simulate the model.

Alternatively, you can configure the model to log Dataset data to a file and simulate the model
programmatically. By default, the data is saved to a MAT-file named out.mat.

sim(mdl,"LoggingToFile","on");

Create a DatasetRef object for the logged output data from the SineWave model.

sigLogRef = Simulink.SimulationData.DatasetRef("out.mat","yout")

sigLogRef =
 Simulink.SimulationData.DatasetRef
 Characteristics:
 Location: out.mat (C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex98930208\out.mat)
 Identifier: yout

 Resolved Dataset: 'yout' with 1 element

 Name BlockPath
 _______ _____________
 1 sineSig SineWave/Out1

Use the getAsDatastore function to create a SimulationDatastore object for the sineSig
signal. The SimulationDatastore object exists in the Values property of the returned
Simulink.SimulationData.Signal object.

sineSig_dst = getAsDatastore(sigLogRef,"sineSig")

sineSig_dst =
 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'sineSig'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'inport'
 PortIndex: 1
 Values: [1x1 matlab.io.datastore.SimulationDatastore]

 Methods, Superclasses

sineSig_dst.Values

8 Objects

8-620

ans =
 SimulationDatastore with properties:

 ReadSize: 100
 NumSamples: 51
 FileName: 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\25\tp056c2d8e\simulink-ex98930208\out.mat'

 Data Preview:

 Time Data
 _______ _______

 0 sec 0
 0.2 sec 0.19867
 0.4 sec 0.38942
 0.6 sec 0.56464
 0.8 sec 0.71736
 : :

The model MultByTwo contains a Gain block that multiplies input data by 2 and logs the data using
an Outport block.

Load the data referenced from the SineWave model into the MultByTwo model. Because the Values
property of the sineSig_dst Signal object is a SimulationDatastore object, the signal data
streams into your model.

mdl2 = "MultByTwo";
open_system(mdl2)
multByTwoOut = sim(mdl2,"LoadExternalInput","on","ExternalInput","sineSig_dst");

The Dashboard Scope block in the MultByTwo model shows that the input streamed from the
SineWave model is a sine wave with an amplitude of 1 and the output is a sine wave with an
amplitude of 2.

 getAsDatastore

8-621

Input Arguments
dsr — Reference to Dataset object
Simulink.SimulationData.DatasetRef object

Reference to a Dataset object stored in a MAT-file, specified as a
Simulink.SimulationData.DatasetRef object.

idx — Index of DatasetRef object element to get as SimulationDatastore representation
positive integer

Index of DatasetRef object element to get as SimulationDatastore representation, specified as a
positive integer.

elName — Name of DatasetRef object element to get as SimulationDatastore
representation
string (default) | character vector

Name of DatasetRef object element to get as SimulationDatastore representation, specified as
a string or character vector.

bp — Block path of DatasetRef object element to get as SimulationDatastore
representation
Simulink.BlockPath object | Simulink.SimulationData.BlockPath object

Block path of DatasetRef object element to get as SimulationDatastore representation,
specified as a Simulink.BlockPath object or Simulink.SimulationData.BlockPath object.

Output Arguments
element — SimulationDatastore representation of element from referenced Dataset
object
matlab.io.datastore.SimulationDatastore object | Simulink.SimulationData.Signal,
Simulink.SimulationData.State, or similar object whose Values parameter contains a
matlab.io.datastore.SimulationDatastore object

SimulationDatastore representation of element from referenced Dataset object, specified as a
matlab.io.datastore.SimulationDatastore object or Simulink.SimulationData.Signal,
Simulink.SimulationData.State, or similar object whose Values parameter contains a
matlab.io.datastore.SimulationDatastore object.

Alternative
You can use curly braces to streamline the indexing syntax to obtain a SimulationDatastore
object for DatasetRef object signal values instead of using the getAsDatastore function. The
requirements and results are the same when using curly braces as when using the getAsDatastore
function. For example, suppose you configure a model to log signal data to persistent storage by
selecting the Log Dataset data to file configuration parameter and simulate that model. You can use
curly braces to get a SimulationDatastore object for the first element in the referenced Dataset
object. The SimulationDatastore object exists in the Values property of the returned
Simulink.SimulationData.Signal object.

8 Objects

8-622

sigLogRef = Simulink.SimulationData.DatasetRef('out.mat','logsout');
firstSig = sigLogRef{1}

ans =

 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'x1'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'
 PortIndex: 1
 Values: [1×1 matlab.io.datastore.SimulationDatastore]

Version History
Introduced in R2017a

See Also
Simulink.SimulationData.DatasetRef | matlab.io.datastore.SimulationDatastore |
Simulink.SimulationData.Dataset

Topics
“Load Big Data for Simulations”

 getAsDatastore

8-623

Simulink.SimulationData.LoggingInfo
Signal logging override settings

Description
Use a Simulink.SimulationData.LoggingInfo object to specify the LoggingInfo property of a
Simulink.SimulationData.SignalLoggingInfo object. You can use this object to set signal
logging override settings such as decimation, logging name, and the number of data points.

Creation
Syntax
logInfoObj = Simulink.SimulationData.LoggingInfo
logInfoObj = Simulink.SimulationData.LoggingInfo(logInfo)

Description

logInfoObj = Simulink.SimulationData.LoggingInfo creates a
Simulink.SimulationData.LoggingInfo object with default property values.

logInfoObj = Simulink.SimulationData.LoggingInfo(logInfo) creates a
Simulink.SimulationData.LoggingInfo object that copies the property values from the signal
logging override object that you specify with the logInfo argument.

Input Arguments

logInfo — Signal logging override setting object
Simulink.SimulationData.LoggingInfo object | Simulink.LoggingInfo object

Signal logging override setting object whose property values the constructor uses for the new
Simulink.SimulationData.LoggingInfo object, specified as a
Simulink.SimulationData.LoggingInfo object or Simulink.LoggingInfo object.

Properties
DataLogging — Signal logging mode
true or 1 (default) | false or 0

Signal logging mode, specified as a numeric or logical 1 (true) or 0 (false).

• true –– Logging is enabled for this signal.
• false –– Logging is not enabled for this signal.

NameMode — Source of signal logging name
false or 0 (default) | true or 1

Source of signal logging name, specified as a numeric or logical 1 (true) or 0 (false).

8 Objects

8-624

• true — Signal logging name is a custom name.
• false — Signal logging name is the same as the signal name.

LoggingName — Custom signal logging name
string (default) | character vector

Custom signal logging name to use for the signal if the NameMode property is true, specified as a
string or character vector.

DecimateData — Option to log a subset of sample points
false or 0 (default) | true or 1

Option to log a subset of sample points, specified as a numeric or logical 1 (true) or 0 (false).

• true — Log a subset of sample points selecting data points at a specified interval. The first
sample point is always logged.

• false — Log all sample points.

Decimation — Decimation value
positive integer

Decimation value (n), specified as a positive integer. If the DecimateData property is true, then the
software logs every nth data point.

LimitDataPoints — Option to limit number of logged data points
false or 0 (default) | true or 1

Option to limit number of logged data points, specified as a numeric or logical 1 (true) or 0 (false).

• true — Limit the number of logged data points. The limit is the last number of data points
generated by the simulation as specified by the MaxPoints property.

• false — Log all data points.

MaxPoints — Maximum number of data points to log
positive integer

Maximum number of data points to log (N), specified as a positive integer. If the LimitDataPoints
property is true, then the set of logged data points includes the last N data points generated by the
simulation.

Examples

Log Subset of Sample Points

You can use a Simulink.SimulationData.LoggingInfo object to create a set of signal logging
override settings for a signal. For example, you can change the decimation settings to log a subset of
sample points in a signal.

Open the model sldemo_mdlref_bus. By default, the model does not decimate data. For more
information about the model, see “Interface Specification Using Bus Objects” on page 13-420.

mdl = "sldemo_mdlref_bus";
open_system(mdl)

 Simulink.SimulationData.LoggingInfo

8-625

You can override signal logging settings so the software logs only a subset of sample points in the
COUNTERBUS signal by specifying a decimation factor in the LoggingInfo property of a signal
logging override object. First, create a Simulink.SimulationData.LoggingInfo object with
default settings.

logInfo = Simulink.SimulationData.LoggingInfo;

Change the DecimateData and Decimation properties to log every tenth data point, starting with
the first sample point.

logInfo.DecimateData = true;
logInfo.Decimation = 10;

Create a Simulink.SimulationData.SignalLoggingInfo object for the COUNTERBUS signal.
Then, to log only the subset of data points in the COUNTERBUS signal, set the LoggingInfo property
of the signal logging override object to logInfo.

blkPath = "sldemo_mdlref_bus/Concatenate";
sigInfo = Simulink.SimulationData.SignalLoggingInfo(blkPath);
sigInfo.LoggingInfo = logInfo;

Create an empty Simulink.SimulationData.ModelLoggingInfo object. Then, assign the signal
logging override settings sigInfo to the model logging information object.

mdlInfo = Simulink.SimulationData.ModelLoggingInfo(mdl);
mdlInfo.Signals = sigInfo;

Apply the model override object settings using the set_param function.

set_param(mdl,'DataLoggingOverride',mdlInfo)

Version History
Introduced in R2012b

See Also
Objects
Simulink.SimulationData.ModelLoggingInfo |
Simulink.SimulationData.SignalLoggingInfo | Simulink.BlockPath |
Simulink.SimulationData.Signal | Simulink.SimulationData.DataStoreMemory

Functions
Simulink.SimulationData.ModelLoggingInfo.createFromModel | findSignal |
setLogAsSpecifiedInModel | getLogAsSpecifiedInModel | verifySignalAndModelPaths

Topics
“Override Signal Logging Settings from MATLAB”
“Save Signal Data Using Signal Logging”
“Log Data Stores”

8 Objects

8-626

Simulink.SimulationData.ModelLoggingInfo
Signal logging override settings for model

Description
Use a Simulink.SimulationData.ModelLoggingInfo object to override signal logging settings
for a model without changing the model in the Simulink Editor.

Simulink.SimulationData.ModelLoggingInfo objects are a collection of
Simulink.SimulationData.SignalLoggingInfo objects that specify all signal logging override
settings for a model.

Use object functions and properties of this object to:

• Turn off logging for a signal or a Model block.
• Change logging settings for any signals that are marked for logging within a model.

You can control whether a top model and referenced models override signal logging settings or use
the signal logging settings specified by the model. Use the LoggingMode and
LogAsSpecifiedByModels properties to control which logging settings to apply.

Logging Mode for Models Property Settings
For top model and all referenced
models, use logging settings specified
in the model.

Set LoggingMode to LogAllAsSpecifiedInModel.

For top model and all referenced
models, use override signal logging
settings.

Set LoggingMode to OverrideSignals.

For top model and referenced models,
use a mix of override signal logging
settings and the signal logging
settings specified in the model.

Set LoggingMode to OverrideSignals.

Include models you want to ignore override signal logging
settings in the LogAsSpecifiedByModels cell array.

If you use the Simulink.SimulationData.ModelLoggingInfo constructor, specify a
Simulink.SimulationData.SignalLoggingInfo object for each logged signal for which you
want to override logging settings.

To check that you have specified valid signal logging override settings for a model, use the
verifySignalAndModelPaths function with the
Simulink.SimulationData.ModelLoggingInfo object for the model.

Creation

Syntax
mdlInfo = Simulink.SimulationData.ModelLoggingInfo(mdl)

 Simulink.SimulationData.ModelLoggingInfo

8-627

Description

mdlInfo = Simulink.SimulationData.ModelLoggingInfo(mdl)creates a
Simulink.SimulationData.ModelLoggingInfo object for the specified top model.

Input Arguments

mdl — Name of top model
string (default) | character vector

Name of top model for which to create a Simulink.SimulationData.ModelLoggingInfo object,
specified as a string or character vector.

Properties
LoggingMode — Signal logging override status
'OverrideSignals' (default) | 'LogAllAsSpecifiedInModel'

Signal logging override status, specified as 'OverrideSignals' or
'LogAllAsSpecifiedInModel'.

• 'OverrideSignals' — Uses the logging settings for signals as specified in the Signals
property. For models where getLogAsSpecifiedInModel is:

• true — Simulink logs all signals as specified in the model.
• false — Simulink logs only the signals specified in the Signals property of the

Simulink.SimulationData.ModelLoggingInfo object.
• 'LogAllAsSpecifiedInModel' — Logs signals in the top model and all referenced models as
specified in the model. Simulink honors the signal logging indicators (blue antennae) and ignores
the Signals property.

To change the logging mode for an individual model, such as the top model or a given referenced
model, use the setLogAsSpecifiedInModel function. To quickly change the logging mode for the
top model and all referenced models, set the LoggingMode property to
'LogAllAsSpecifiedInModel'. For example, to set the model sldemo_mdlref_bus.slx and all
referenced models to log signals as specified in the model, you can set the LoggingMode property of
the Simulink.SimulationData.ModelLoggingInfo object to 'LogAllAsSpecifiedInModel'.

mdlInfo = Simulink.SimulationData.ModelLoggingInfo("sldemo_mdlref_bus");
mdlInfo.LoggingMode = 'LogAllAsSpecifiedInModel'

LogAsSpecifiedByModels — Source of signal logging settings for top model or top-level
Model block
cell array

Source of signal logging settings for the top model or a top-level Model block, specified as a cell
array.

When LoggingMode is set to 'OverrideSignals', the LogAsSpecifiedByModels cell array
specifies the top models and top-level Model blocks that ignore the 'OverrideSignals' setting and
log signals as specified in the models or Model blocks.

• For the top model and top-level Model blocks that the cell array includes, the software ignores the
Signals property overrides.

8 Objects

8-628

• For a model or Model block that the cell array does not include, the software uses the Signals
property to determine which signals to log.

When LoggingMode is set to 'LogAllAsSpecifiedInModel', the software ignores the
LogAsSpecifiedByModels property.

Use the getLogAsSpecifiedInModel function to determine whether the top model or top-level
Model block logs signals as specified in the model (default logging). Use
setLogAsSpecifiedInModel to turn default logging on and off for a top model or top-level Model
block.

Signals — Signals that have signal override settings
vector of Simulink.SimulationData.SignalLoggingInfo objects

Signals that have signal override settings, specified as a vector of
Simulink.SimulationData.SignalLoggingInfo objects.

Object Functions
Simulink.SimulationData.ModelLoggingInfo.createFromModel Create

Simulink.SimulationData.ModelLoggingInfo
object for top model with override settings
for each logged signal in model

findSignal Find index of signals in Signals property
vector

getLogAsSpecifiedInModel Determine whether model logs as specified
in model or uses override settings

setLogAsSpecifiedInModel Set logging mode for top model or top-level
Model block

verifySignalAndModelPaths Verify paths in
Simulink.SimulationData.ModelLoggingInfo
object

Examples

Log Top-Level and Referenced Models as Specified in Model

You can control whether a top-level model and referenced models use override signal logging settings
or use the signal logging settings specified by the model. This example shows how to log all signals as
specified in the top model and all referenced models.

The model sldemo_mdlref_bus has four signals marked for logging. For more information about
the model, see “Interface Specification Using Bus Objects” on page 13-420.

mdl = "sldemo_mdlref_bus";
open_system(mdl)

Create a model logging override object.

mdlInfo = Simulink.SimulationData.ModelLoggingInfo(mdl);

To specify whether to use the signal logging settings as specified in the model and all referenced
models, or to override those settings, use the LoggingMode property of the model logging override
object.

 Simulink.SimulationData.ModelLoggingInfo

8-629

mdlInfo.LoggingMode = 'LogAllAsSpecifiedInModel'

mdlInfo =
 ModelLoggingInfo with properties:

 Model: 'sldemo_mdlref_bus'
 LoggingMode: 'LogAllAsSpecifiedInModel'
 LogAsSpecifiedByModels: {}
 Signals: [0x0 Simulink.SimulationData.SignalLoggingInfo]

Use the set_param function to apply the model override object settings. The software saves the
settings when you save the model.

set_param(mdl,'DataLoggingOverride',mdlInfo);

Simulate the model. The signal logging output is stored in topOut.

sim(mdl);
topOut

topOut =
Simulink.SimulationData.Dataset 'topOut' with 4 elements

 Name BlockPath
 ____________ __
 1 [1x1 Signal] COUNTERBUS sldemo_mdlref_bus/Concatenate
 2 [1x1 Signal] OUTERDATA sldemo_mdlref_bus/CounterA
 3 [1x1 Signal] INCREMENTBUS sldemo_mdlref_bus/IncrementBusCreator
 4 [1x1 Signal] INNERDATA ...erA|sldemo_mdlref_counter_bus/COUNTER

 - Use braces { } to access, modify, or add elements using index.

Set Logging Mode of Model Logging Override Object

You can use the setLogAsSpecifiedInModel function to override signal logging settings specified
in a model. For example, you can log only the top model or only a referenced model in a model
hierarchy. The model sldemo_mdlref_bus contains a Model block named CounterA that references
the model sldemo_mdlref_counter_bus. In total, four signals are marked for logging. The top
model has three signals marked for logging: COUNTERBUS, INCREMENTBUS, and OUTERDATA. The
referenced model has one signal marked for logging: INNERDATA.

mdl = 'sldemo_mdlref_bus';
mdlInner = 'sldemo_mdlref_bus/CounterA';
open_system(mdl)

Create an empty Simulink.SimulationData.ModelLoggingInfo object so that no signals are
logged when the logging mode is set to the override settings specified in the Signals property.

mdlInfo = Simulink.SimulationData.ModelLoggingInfo(mdl);

You can use the setLogAsSpecifiedInModel function to log only signals in the top model using the
logging settings specified in that model. Set the outer model to log signals as specified in the model.
Then, set the inner model to use override settings. Since the Signals property vector is empty, no
signals are logged when override settings are applied.

8 Objects

8-630

mdlInfo = setLogAsSpecifiedInModel(mdlInfo,mdl,true);
mdlInfo = setLogAsSpecifiedInModel(mdlInfo,mdlInner,false);

The getLogAsSpecifiedInModel function returns the logging mode.

outerLogMode = getLogAsSpecifiedInModel(mdlInfo,mdl)

outerLogMode = logical
 1

innerLogMode = getLogAsSpecifiedInModel(mdlInfo,mdlInner)

innerLogMode = logical
 0

Apply the model override object settings. Then, simulate the model. The software logs only those
signals marked for logging in the top model.

set_param(mdl,'DataLoggingOverride',mdlInfo);
sim(mdl);
topOut

topOut =
Simulink.SimulationData.Dataset 'topOut' with 3 elements

 Name BlockPath
 ____________ _____________________________________
 1 [1x1 Signal] COUNTERBUS sldemo_mdlref_bus/Concatenate
 2 [1x1 Signal] OUTERDATA sldemo_mdlref_bus/CounterA
 3 [1x1 Signal] INCREMENTBUS sldemo_mdlref_bus/IncrementBusCreator

 - Use braces { } to access, modify, or add elements using index.

You can also use the setLogAsSpecifiedInModel function to log only signals in the referenced
model using the logging settings specified in that model. Set the outer model to use override settings.
Then, set the inner model to log signals as specified in the model.

mdlInfo = setLogAsSpecifiedInModel(mdlInfo,mdl,false);
mdlInfo = setLogAsSpecifiedInModel(mdlInfo,mdlInner,true);

To verify that the logging mode for the top model and inner model have changed, you can use the
getLogAsSpecifiedInModel function .

outerLogMode = getLogAsSpecifiedInModel(mdlInfo,mdl)

outerLogMode = logical
 0

innerLogMode = getLogAsSpecifiedInModel(mdlInfo,mdlInner)

innerLogMode = logical
 1

Apply the model override object settings. Then, simulate the model. This time, the software logs only
the INNERDATA signal.

 Simulink.SimulationData.ModelLoggingInfo

8-631

set_param(mdl,'DataLoggingOverride',mdlInfo);
sim(mdl);
topOut

topOut =
Simulink.SimulationData.Dataset 'topOut' with 1 element

 Name BlockPath
 _________ __
 1 [1x1 Signal] INNERDATA ...erA|sldemo_mdlref_counter_bus/COUNTER

 - Use braces { } to access, modify, or add elements using index.

Override Signal Logging Settings for Specific Signal

You can use Simulink.SignalData.SignalLoggingInfo objects to programmatically override
logging settings for specific signals. For example, you can create a
Simulink.SimulationData.SignalLoggingInfo object to override the signal logging settings
such that only one of several signals marked for logging is logged.

This example uses a model of a rotating clutch system. In the model, ten signals are marked for
logging. For more information about the model, see “Building a Clutch Lock-Up Model” on page 13-
156.

mdl = "sldemo_clutch_override";
open_system(mdl);

You can use a Simulink.SimulationData.SignalLoggingInfo object to log only the
VehicleSpeed signal. The VehicleSpeed signal is connected the second output port of the
Unlocked subsystem. Create a Simulink.SimulationData.SignalLoggingInfo object for the
VehicleSpeed signal by using the BlockPath and OutputPortIndex properties.

blkPath = "sldemo_clutch_override/Unlocked";
portNum = 2;
sigInfo = Simulink.SimulationData.SignalLoggingInfo(blkPath,portNum);

Create an empty Simulink.SimulationData.ModelLoggingInfo object. Then, assign the signal
logging override settings sigInfo to the model logging information object.

mdlInfo = Simulink.SimulationData.ModelLoggingInfo(mdl);
mdlInfo.Signals(1) = sigInfo;

Use the verifySignalAndModelPaths function to ensure that you specified valid signal logging
settings for the model.

verifiedObj = verifySignalAndModelPaths(mdlInfo)

verifiedObj =
 ModelLoggingInfo with properties:

 Model: 'sldemo_clutch_override'
 LoggingMode: 'OverrideSignals'
 LogAsSpecifiedByModels: {}

8 Objects

8-632

 Signals: [1x1 Simulink.SimulationData.SignalLoggingInfo]

Apply the model override object settings using the set_param function.

set_param(mdl,'DataLoggingOverride',mdlInfo)

Simulate the model. Verify that VehicleSpeed is the only signal logged by accessing the
Simulink.SimulationData.Dataset object sldemo_clutch_output.

sim(mdl);
sldemo_clutch_output

sldemo_clutch_output =
Simulink.SimulationData.Dataset 'sldemo_clutch_output' with 1 element

 Name BlockPath
 ____________ _______________________________
 1 [1x1 Signal] VehicleSpeed sldemo_clutch_override/Unlocked

 - Use braces { } to access, modify, or add elements using index.

Version History
Introduced in R2012b

See Also
Objects
Simulink.SimulationData.SignalLoggingInfo | Simulink.BlockPath |
Simulink.SimulationData.LoggingInfo | Simulink.SimulationData.Signal |
Simulink.SimulationData.DataStoreMemory

Functions
Simulink.SimulationData.ModelLoggingInfo.createFromModel | findSignal |
setLogAsSpecifiedInModel | getLogAsSpecifiedInModel | verifySignalAndModelPaths

Topics
“Override Signal Logging Settings from MATLAB”
“Save Signal Data Using Signal Logging”
“Log Data Stores”

 Simulink.SimulationData.ModelLoggingInfo

8-633

findSignal
Package: Simulink.SimulationData

Find index of signals in Signals property vector

Syntax
sigIdx = findSignal(mdlInfo,blkPath)
sigIdx = findSignal(mdlInfo,blkPath, portIdx)

Description
sigIdx = findSignal(mdlInfo,blkPath) creates a vector of numeric indices corresponding to
the Signals vector of the model logging override settings object mdlInfo for the signals specified
by the block path blkPath.

• To find a single instance of a signal within a referenced model, use a Simulink.BlockPath
object or a cell array with a full path.

• To find all instances of a signal within a referenced model, use a character vector with the relative
path of the signal within the referenced model.

• To find a logged chart signal within a Stateflow chart, use a Simulink.BlockPath object and set
the SubPath property to the name of the Stateflow chart signal.

sigIdx = findSignal(mdlInfo,blkPath, portIdx) finds the indices of the output signal for
the specified port.

Do not use the portIdx argument for Stateflow chart signals. For an example that uses the
findSignal function with a Stateflow chart, see “Override Logging Properties with the Command-
Line API” (Stateflow).

Examples

Find Index of Signal in Model Logging Override Object

You can use the findSignal function to find the index of a signal in a model logging override object.
This example uses the model sldemo_mdlref_bus which logs four signals. Three of the logged
signals are located in the top model. The fourth signal is located in the referenced model
sldemo_mdlref_counter_bus.

mdl = 'sldemo_mdlref_bus';
open_system(mdl)

Create a model logging override object with override settings for each logged signal in model.

mdlInfo = Simulink.SimulationData.ModelLoggingInfo.createFromModel(mdl)

mdlInfo =
 ModelLoggingInfo with properties:

8 Objects

8-634

 Model: 'sldemo_mdlref_bus'
 LoggingMode: 'OverrideSignals'
 LogAsSpecifiedByModels: {}
 Signals: [1x4 Simulink.SimulationData.SignalLoggingInfo]

The INCREMENTBUS signal is located in the top model sldemo_mdlref_bus.slx. Using the block
path to the IncrementBusCreator block, you can find the index of the INCREMENTBUS signal in the
Signals property of the model logging override object mdlInfo.

blkPath = 'sldemo_mdlref_bus/IncrementBusCreator';
sigIdx = findSignal(mdlInfo,blkPath)

sigIdx = 3

You can also use the findSignal function to find a signal in a specific instance of a referenced
model. For example, the INNERDATA signal is located in the referenced model CounterA. Using a
block path to the Model block COUNTER in the sldemo_mdlref_counter_bus model, you can find
the index of the INNERDATA signal in the Signals property of the model logging override object
mdlInfo.

blkPathRef = {'sldemo_mdlref_bus/CounterA','sldemo_mdlref_counter_bus/COUNTER'};
sigIdxRef = findSignal(mdlInfo,blkPathRef)

sigIdxRef = 4

Input Arguments
mdlInfo — Model logging override object
Simulink.SimulationData.ModelLoggingInfo object

Model logging override object, specified as a Simulink.SimulationData.ModelLoggingInfo
object.

blkPath — Source block to search
character vector | cell array of character vectors | Simulink.BlockPath object

Source block to search, specified as a character vector, cell array of character vectors, or
Simulink.Blockpath object.

portIdx — Index of output port to search
positive integer

Index of the output port to search, specified as a positive integer.

Version History
Introduced in R2012b

See Also
Objects
Simulink.SimulationData.ModelLoggingInfo |
Simulink.SimulationData.SignalLoggingInfo | Simulink.BlockPath

 findSignal

8-635

Functions
Simulink.SimulationData.ModelLoggingInfo.createFromModel |
setLogAsSpecifiedInModel | getLogAsSpecifiedInModel | verifySignalAndModelPaths

Topics
“Override Signal Logging Settings from MATLAB”
“Save Signal Data Using Signal Logging”

8 Objects

8-636

getLogAsSpecifiedInModel
Package: Simulink.SimulationData

Determine whether model logs as specified in model or uses override settings

Syntax
logMode = getLogAsSpecifiedInModel(mdlInfo,mdl)

Description
logMode = getLogAsSpecifiedInModel(mdlInfo,mdl) returns one of these values:

• 1 (true) — The model specified by mdl is logged as specified in the model.
• 0 (false) — The model specified by mdl is logged using the override settings specified in the

Signals property of the model logging override object mdlInfo.

Examples

Set Logging Mode of Model Logging Override Object

You can use the setLogAsSpecifiedInModel function to override signal logging settings specified
in a model. For example, you can log only the top model or only a referenced model in a model
hierarchy. The model sldemo_mdlref_bus contains a Model block named CounterA that references
the model sldemo_mdlref_counter_bus. In total, four signals are marked for logging. The top
model has three signals marked for logging: COUNTERBUS, INCREMENTBUS, and OUTERDATA. The
referenced model has one signal marked for logging: INNERDATA.

mdl = 'sldemo_mdlref_bus';
mdlInner = 'sldemo_mdlref_bus/CounterA';
open_system(mdl)

Create an empty Simulink.SimulationData.ModelLoggingInfo object so that no signals are
logged when the logging mode is set to the override settings specified in the Signals property.

mdlInfo = Simulink.SimulationData.ModelLoggingInfo(mdl);

You can use the setLogAsSpecifiedInModel function to log only signals in the top model using the
logging settings specified in that model. Set the outer model to log signals as specified in the model.
Then, set the inner model to use override settings. Since the Signals property vector is empty, no
signals are logged when override settings are applied.

mdlInfo = setLogAsSpecifiedInModel(mdlInfo,mdl,true);
mdlInfo = setLogAsSpecifiedInModel(mdlInfo,mdlInner,false);

The getLogAsSpecifiedInModel function returns the logging mode.

outerLogMode = getLogAsSpecifiedInModel(mdlInfo,mdl)

 getLogAsSpecifiedInModel

8-637

outerLogMode = logical
 1

innerLogMode = getLogAsSpecifiedInModel(mdlInfo,mdlInner)

innerLogMode = logical
 0

Apply the model override object settings. Then, simulate the model. The software logs only those
signals marked for logging in the top model.

set_param(mdl,'DataLoggingOverride',mdlInfo);
sim(mdl);
topOut

topOut =
Simulink.SimulationData.Dataset 'topOut' with 3 elements

 Name BlockPath
 ____________ _____________________________________
 1 [1x1 Signal] COUNTERBUS sldemo_mdlref_bus/Concatenate
 2 [1x1 Signal] OUTERDATA sldemo_mdlref_bus/CounterA
 3 [1x1 Signal] INCREMENTBUS sldemo_mdlref_bus/IncrementBusCreator

 - Use braces { } to access, modify, or add elements using index.

You can also use the setLogAsSpecifiedInModel function to log only signals in the referenced
model using the logging settings specified in that model. Set the outer model to use override settings.
Then, set the inner model to log signals as specified in the model.

mdlInfo = setLogAsSpecifiedInModel(mdlInfo,mdl,false);
mdlInfo = setLogAsSpecifiedInModel(mdlInfo,mdlInner,true);

To verify that the logging mode for the top model and inner model have changed, you can use the
getLogAsSpecifiedInModel function .

outerLogMode = getLogAsSpecifiedInModel(mdlInfo,mdl)

outerLogMode = logical
 0

innerLogMode = getLogAsSpecifiedInModel(mdlInfo,mdlInner)

innerLogMode = logical
 1

Apply the model override object settings. Then, simulate the model. This time, the software logs only
the INNERDATA signal.

set_param(mdl,'DataLoggingOverride',mdlInfo);
sim(mdl);
topOut

topOut =
Simulink.SimulationData.Dataset 'topOut' with 1 element

8 Objects

8-638

 Name BlockPath
 _________ __
 1 [1x1 Signal] INNERDATA ...erA|sldemo_mdlref_counter_bus/COUNTER

 - Use braces { } to access, modify, or add elements using index.

Input Arguments
mdlInfo — Model logging override object
Simulink.SimulationData.ModelLoggingInfo object

Model logging override object, specified as a Simulink.SimulationData.ModelLoggingInfo
object.

mdl — Target model
character vector

Target model, specified as a character vector. You can define the target model using one of these
options:

• Name of the top model
• Block path of a Model block in the top model

Version History
Introduced in R2012b

See Also
Objects
Simulink.SimulationData.ModelLoggingInfo |
Simulink.SimulationData.SignalLoggingInfo

Functions
Simulink.SimulationData.ModelLoggingInfo.createFromModel | findSignal |
setLogAsSpecifiedInModel | verifySignalAndModelPaths

Topics
“Override Signal Logging Settings from MATLAB”
“Save Signal Data Using Signal Logging”

 getLogAsSpecifiedInModel

8-639

setLogAsSpecifiedInModel
Package: Simulink.SimulationData

Set logging mode for top model or top-level Model block

Syntax
setLogAsSpecifiedInModel(mdlInfo,mdl,logMode)

Description
setLogAsSpecifiedInModel(mdlInfo,mdl,logMode) sets the LoggingMode property logMode
of the model logging override object mdlInfo for a top model or a Model block in the top model, mdl.

Examples

Set Logging Mode of Model Logging Override Object

You can use the setLogAsSpecifiedInModel function to override signal logging settings specified
in a model. For example, you can log only the top model or only a referenced model in a model
hierarchy. The model sldemo_mdlref_bus contains a Model block named CounterA that references
the model sldemo_mdlref_counter_bus. In total, four signals are marked for logging. The top
model has three signals marked for logging: COUNTERBUS, INCREMENTBUS, and OUTERDATA. The
referenced model has one signal marked for logging: INNERDATA.

mdl = 'sldemo_mdlref_bus';
mdlInner = 'sldemo_mdlref_bus/CounterA';
open_system(mdl)

Create an empty Simulink.SimulationData.ModelLoggingInfo object so that no signals are
logged when the logging mode is set to the override settings specified in the Signals property.

mdlInfo = Simulink.SimulationData.ModelLoggingInfo(mdl);

You can use the setLogAsSpecifiedInModel function to log only signals in the top model using the
logging settings specified in that model. Set the outer model to log signals as specified in the model.
Then, set the inner model to use override settings. Since the Signals property vector is empty, no
signals are logged when override settings are applied.

mdlInfo = setLogAsSpecifiedInModel(mdlInfo,mdl,true);
mdlInfo = setLogAsSpecifiedInModel(mdlInfo,mdlInner,false);

The getLogAsSpecifiedInModel function returns the logging mode.

outerLogMode = getLogAsSpecifiedInModel(mdlInfo,mdl)

outerLogMode = logical
 1

innerLogMode = getLogAsSpecifiedInModel(mdlInfo,mdlInner)

8 Objects

8-640

innerLogMode = logical
 0

Apply the model override object settings. Then, simulate the model. The software logs only those
signals marked for logging in the top model.

set_param(mdl,'DataLoggingOverride',mdlInfo);
sim(mdl);
topOut

topOut =
Simulink.SimulationData.Dataset 'topOut' with 3 elements

 Name BlockPath
 ____________ _____________________________________
 1 [1x1 Signal] COUNTERBUS sldemo_mdlref_bus/Concatenate
 2 [1x1 Signal] OUTERDATA sldemo_mdlref_bus/CounterA
 3 [1x1 Signal] INCREMENTBUS sldemo_mdlref_bus/IncrementBusCreator

 - Use braces { } to access, modify, or add elements using index.

You can also use the setLogAsSpecifiedInModel function to log only signals in the referenced
model using the logging settings specified in that model. Set the outer model to use override settings.
Then, set the inner model to log signals as specified in the model.

mdlInfo = setLogAsSpecifiedInModel(mdlInfo,mdl,false);
mdlInfo = setLogAsSpecifiedInModel(mdlInfo,mdlInner,true);

To verify that the logging mode for the top model and inner model have changed, you can use the
getLogAsSpecifiedInModel function .

outerLogMode = getLogAsSpecifiedInModel(mdlInfo,mdl)

outerLogMode = logical
 0

innerLogMode = getLogAsSpecifiedInModel(mdlInfo,mdlInner)

innerLogMode = logical
 1

Apply the model override object settings. Then, simulate the model. This time, the software logs only
the INNERDATA signal.

set_param(mdl,'DataLoggingOverride',mdlInfo);
sim(mdl);
topOut

topOut =
Simulink.SimulationData.Dataset 'topOut' with 1 element

 Name BlockPath
 _________ __
 1 [1x1 Signal] INNERDATA ...erA|sldemo_mdlref_counter_bus/COUNTER

 setLogAsSpecifiedInModel

8-641

 - Use braces { } to access, modify, or add elements using index.

Input Arguments
mdlInfo — Model logging override object
Simulink.SimulationData.ModelLoggingInfo object

Model logging override object, specified as a Simulink.SimulationData.ModelLoggingInfo
object.

mdl — Target model
character vector

Target model, specified as a character vector. You can define the target model using one of these
options:

• Name of the top model
• Block path of a Model block in the top model

logMode — Logging mode
true or 1 (default) | false or 0

Logging mode, specified as a numeric or logical 1 (true) or 0 (false).

• true — The model specified by mdl is logged as specified in the model.
• false — The model specified by mdl is logged using the override settings specified in the

Signals property of the Simulink.SimulationData.ModelLogginIfo object.

Version History
Introduced in R2012b

See Also
Objects
Simulink.SimulationData.ModelLoggingInfo |
Simulink.SimulationData.SignalLoggingInfo

Functions
Simulink.SimulationData.ModelLoggingInfo.createFromModel | findSignal |
getLogAsSpecifiedInModel | verifySignalAndModelPaths

Topics
“Override Signal Logging Settings from MATLAB”
“Save Signal Data Using Signal Logging”

8 Objects

8-642

verifySignalAndModelPaths
Package: Simulink.SimulationData

Verify paths in Simulink.SimulationData.ModelLoggingInfo object

Syntax
verifiedObj = verifySignalAndModelPaths(mdlInfo)
verifiedObj = verifySignalAndModelPaths(mdlInfo,action)

Description
verifiedObj = verifySignalAndModelPaths(mdlInfo) returns a verified model logging
override object, verifiedObj, if the function detects no invalid paths for the model logging override
object mdlInfo. If an invalid path is found, verifySignalAndModelPaths returns an error.

For a Simulink.SimulationData.ModelLoggingInfo object, the
verifySignalAndModelPaths function verifies that:

• All character vectors in the LogAsSpecifiedByModels property are either the name of the top
model or the block path of a Model block in the top model.

• The block paths for signals in the Signals property refer to valid blocks within the hierarchy of
the top model.

• The OutputPortIndex property for all signals in the Signals property are valid for the given
block.

• All signals in the Signals property refer to logged signals.

If you use the Simulink.SimulationData.ModelLoggingInfo constructor and specify a
Simulink.SimulationData.SignalLoggingInfo object for each signal, you can use the
verifySignalAndModelPaths function to verify that your object definitions are valid.

verifiedObj = verifySignalAndModelPaths(mdlInfo,action) specifies what action the
verifySignalAndModelPaths function performs if an invalid path is found.

Examples

Override Signal Logging Settings for Specific Signal

You can use Simulink.SignalData.SignalLoggingInfo objects to programmatically override
logging settings for specific signals. For example, you can create a
Simulink.SimulationData.SignalLoggingInfo object to override the signal logging settings
such that only one of several signals marked for logging is logged.

This example uses a model of a rotating clutch system. In the model, ten signals are marked for
logging. For more information about the model, see “Building a Clutch Lock-Up Model” on page 13-
156.

 verifySignalAndModelPaths

8-643

mdl = "sldemo_clutch_override";
open_system(mdl);

You can use a Simulink.SimulationData.SignalLoggingInfo object to log only the
VehicleSpeed signal. The VehicleSpeed signal is connected the second output port of the
Unlocked subsystem. Create a Simulink.SimulationData.SignalLoggingInfo object for the
VehicleSpeed signal by using the BlockPath and OutputPortIndex properties.

blkPath = "sldemo_clutch_override/Unlocked";
portNum = 2;
sigInfo = Simulink.SimulationData.SignalLoggingInfo(blkPath,portNum);

Create an empty Simulink.SimulationData.ModelLoggingInfo object. Then, assign the signal
logging override settings sigInfo to the model logging information object.

mdlInfo = Simulink.SimulationData.ModelLoggingInfo(mdl);
mdlInfo.Signals(1) = sigInfo;

Use the verifySignalAndModelPaths function to ensure that you specified valid signal logging
settings for the model.

verifiedObj = verifySignalAndModelPaths(mdlInfo)

verifiedObj =
 ModelLoggingInfo with properties:

 Model: 'sldemo_clutch_override'
 LoggingMode: 'OverrideSignals'
 LogAsSpecifiedByModels: {}
 Signals: [1x1 Simulink.SimulationData.SignalLoggingInfo]

Apply the model override object settings using the set_param function.

set_param(mdl,'DataLoggingOverride',mdlInfo)

Simulate the model. Verify that VehicleSpeed is the only signal logged by accessing the
Simulink.SimulationData.Dataset object sldemo_clutch_output.

sim(mdl);
sldemo_clutch_output

sldemo_clutch_output =
Simulink.SimulationData.Dataset 'sldemo_clutch_output' with 1 element

 Name BlockPath
 ____________ _______________________________
 1 [1x1 Signal] VehicleSpeed sldemo_clutch_override/Unlocked

 - Use braces { } to access, modify, or add elements using index.

Input Arguments
mdlInfo — Model logging override object
Simulink.SimulationData.ModelLoggingInfo object

8 Objects

8-644

Model logging override object, specified as a Simulink.SimulationData.ModelLoggingInfo
object.

action — Action performed if verification fails
'error' (default) | 'warnAndRemove' | 'remove'

Action performed if verification fails, specified as 'error', 'warnAndRemove', or 'remove'.
Specify one of the following values:

• 'error' — Return an error when verification fails.
• 'warnAndRemove' — Issue a warning when verification fails, and update the

Simulink.SimulationData.ModelLoggingInfo object.
• 'remove' — Silently update the Simulink.SimulationData.ModelLoggingInfo object.

Version History
Introduced in R2012b

See Also
Objects
Simulink.SimulationData.ModelLoggingInfo |
Simulink.SimulationData.SignalLoggingInfo

Functions
Simulink.SimulationData.ModelLoggingInfo.createFromModel | findSignal |
setLogAsSpecifiedInModel | getLogAsSpecifiedInModel

Topics
“Override Signal Logging Settings from MATLAB”
“Save Signal Data Using Signal Logging”

 verifySignalAndModelPaths

8-645

Simulink.SimulationData.Parameter
Stores logged parameter data and metadata

Description
The Simulink.SimulationData.Parameter object stores data and metadata for logged block
parameters. Tunable parameters connected to Dashboard blocks are logged to the Simulation Data
Inspector during simulation. To access logged parameter data, you can export the simulation run
from the Simulation Data Inspector using the user interface (UI) or the Simulink.sdi.exportRun
function. For more information about exporting simulation runs with the Simulation Data Inspector
UI, see “Export Data to the Workspace or a File”.

Creation

Syntax
dataset = Simulink.sdi.exportRun(runID)

Description

dataset = Simulink.sdi.exportRun(runID) returns a
Simulink.SimulationData.Dataset object, dataset. When the run corresponding to runID
contains logged parameter data, the dataset contains a Simulink.SimulationData.Parameter
object as an element for each logged parameter. Each Simulink.SimulationData.Parameter
element takes the name of the logged parameter. You can access a
Simulink.SimulationData.Parameter object using the get function.

Input Arguments

runID — Run ID for run with logged parameter data
integer

Run ID for run with logged parameter data, specified as an integer. Run IDs are assigned by the
Simulation Data Inspector. You can get the run ID for a simulation run using the
Simulink.sdi.getAllRunIDs or Simulink.sdi.getRunIDByIndex function.

Properties
Name — Name of logged parameter as it appears in Dashboard block label
character vector

Name of logged parameter as it appears in Dashboard block label, specified as a character vector.
Example: 'Mu:Gain'

BlockPath — Path of block associated with parameter
Simulink.SimulationData.BlockPath object

8 Objects

8-646

Path of block associated with parameter, specified as a Simulink.SimulationData.BlockPath
object.
Example: vdp/Mu

ParameterName — Name of logged parameter as it appears in block dialog box
character vector

Name of logged parameter as it appears in block dialog box, specified as a character vector. For
variables, the ParameterName property is empty.
Example: 'Gain'

VariableName — Name of logged variable
character vector

Name of logged variable, specified as a character vector. For parameters, the VariableName
property is empty.
Example: 'Zw'

Values — Timeseries of parameter values
timeseries object

Timeseries of parameter values, specified as a timeseries object. For logged variables, the
timeseries object name is the variable name. For logged parameters, the timeseries object name
is empty.

Examples

Access Logged Parameter Data

Parameter data automatically logs to the Simulation Data Inspector when you connect a Dashboard
block to a block parameter. Parameter data does not export to the workspace with other simulation
data at the end of simulation. You can access the logged parameter data by exporting the associated
run from the Simulation Data Inspector.

Run a simulation of the model ex_vdp_param, a modified version of the vdp model with an Edit
block connected to the gain parameter of the Mu block. The parameter data logs with the signal data
for signals marked for logging.

sim("ex_vdp_param");

Use the Simulation Data Inspector programmatic interface to get the run ID for the ex_vdp_param
simulation. Then, export the run.

index = Simulink.sdi.getRunCount;
runID = Simulink.sdi.getRunIDByIndex(index);

dataset = Simulink.sdi.exportRun(runID);

Use the get function to access the Simulink.SimulationData.Parameter object for the logged
parameter data. The Values property contains the timeseries data for the parameter.

muGain = get(dataset,"Mu:Gain")

 Simulink.SimulationData.Parameter

8-647

muGain =
 Simulink.SimulationData.Parameter
 Package: Simulink.SimulationData

 Properties:
 Name: 'Mu:Gain'
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 Values: [1x1 timeseries]

 Methods, Superclasses

Version History
Introduced in R2018a

See Also
Simulink.SimulationData.Dataset | Simulink.SimulationData.BlockPath | get

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“View Data in the Simulation Data Inspector”

8 Objects

8-648

Simulink.SimulationData.Signal
Container for signal logging information

Description
The software uses Simulink.SimulationData.Signal objects to store signal logging information
during simulation. Simulink.SimulationData.Signal objects contain information about the
source block for the signal, including the port type and index.

Creation
Simulating a model that has signals marked for logging creates one or more
Simulink.SimulationData.Signal objects.

Syntax
sigobj = Simulink.SimulationData.Signal

Description

sigobj = Simulink.SimulationData.Signal creates an empty
Simulink.SimulationData.Signal object. Use this syntax to manually create a Signal object
that contains external input data to load using Inport or In Bus Element blocks.

Properties
BlockPath — Block path of source block for Signal object
Simulink.SimulationData.BlockPath object

Block path of source block for Signal object, specified as a
Simulink.SimulationData.BlockPath object.

Name — Name of Signal object
string | character vector

Name of Signal object to use for name-based access, specified as a string or character vector.

PropagatedName — Propagated name of Signal object
string | character vector

Propagated name of Signal object, specified as a string or character vector.

Signal logging captures the propagated signal name if the logging format is Dataset and you:

• Mark the signal for signal logging.
• Enable Configuration Parameters > Data Import/Export > Signal logging.
• Select Show Propagated Signals in the Signal Properties dialog box.

 Simulink.SimulationData.Signal

8-649

The propagated signal name does not include angle brackets (<>).

For more information, see “Signal Label Propagation”.

PortIndex — Port index
positive integer

Port index of logged signal, specified as a positive integer.

PortType — Type of port
'outport' | 'inport'

Type of port, specified as 'outport' or 'inport'.

• When you log data using signal logging, the port type is 'outport'.
• When you create a Signal object to use as input to a model, the port type is 'inport'.

Values — Logged time and data
timeseries object | timetable object | structure of timeseries or timetable objects | array of
structures of timeseries or timetable objects | array of timeseries objects | cell array of
timetable objects | ...

Logged time and data, specified as:

• A MATLAB timeseries object
• A MATLAB timetable object
• A structure of MATLAB timeseries objects (for bus signals)
• A structure of MATLAB timetable objects (for bus signals)
• An array of structures of MATLAB timeseries objects (for array of buses signals)
• An array of structures of MATLAB timetable objects (for array of buses signals)
• An array of MATLAB timeseries objects (for nonbus signals in a For Each subsystem)
• A cell array of MATLAB timetable objects (for nonbus signals in a For Each subsystem)

For an example of how to use the Values property and plot logged signal data, see “Logging
Intervals” on page 13-369.

Examples

Create Signal Object

Create a Simulink.SimulationData.Signal object. Specify the signal name and data values.

Time = 0.1*(0:99)';

sig = Simulink.SimulationData.Signal;
sig.Name = "Sine";
sig.Values = timeseries(sin(Time),Time)

sig =

 Simulink.SimulationData.Signal

8 Objects

8-650

 Package: Simulink.SimulationData

 Properties:
 Name: 'Sine'
 PropagatedName: ''
 BlockPath: [1×1 Simulink.SimulationData.BlockPath]
 PortType: 'inport'
 PortIndex: 1
 Values: [1×1 timeseries]

 Methods, Superclasses

Access Signal Object

When you simulate a model with signals marked for logging, the software saves signal logging
information in one or more Simulink.SimulationData.Signal objects.

Open the model sldemo_fuelsys that has several signals marked for logging. Then, simulate the
model.

mdl = "sldemo_fuelsys";
open_system(mdl)
sim(mdl);

The logged simulation data is grouped in a Simulink.SimulationData.Dataset object named
sldemo_fuelsys_output.

sldemo_fuelsys_output

sldemo_fuelsys_output =
Simulink.SimulationData.Dataset 'sldemo_fuelsys_output' with 10 elements

 Name BlockPath
 ______________ __
 1 [1x1 Signal] '' sldemo_fuelsys/EGO Fault Switch
 2 [1x1 Signal] air_fuel_ratio sldemo_fuelsys/Engine Gas Dynamics
 3 [1x1 Signal] '' sldemo_fuelsys/Engine Speed Fault Switch
 4 [1x1 Signal] speed sldemo_fuelsys/Engine_Speed_Selector
 5 [1x1 Signal] '' sldemo_fuelsys/MAP Fault Switch
 6 [1x1 Signal] map sldemo_fuelsys/MAP_Selector
 7 [1x1 Signal] ego sldemo_fuelsys/O2_Voltage_Selector
 8 [1x1 Signal] '' ...o_fuelsys/Throttle Angle Fault Switch
 9 [1x1 Signal] throttle sldemo_fuelsys/Throttle_Angle_Selector
 10 [1x1 Signal] fuel sldemo_fuelsys/To Plant

 - Use braces { } to access, modify, or add elements using index.

Access the Signal object named speed.

get(sldemo_fuelsys_output,"speed")

ans =
 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Simulink.SimulationData.Signal

8-651

 Properties:
 Name: 'speed'
 PropagatedName: ''
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'
 PortIndex: 1
 Values: [1x1 timeseries]

 Methods, Superclasses

Version History
Introduced before R2006a

See Also
Simulink.BlockPath | Simulink.SimulationData.Dataset | timeseries | plot |
extractTimetable

Topics
“View and Access Signal Logging Data”
“Loading MATLAB Timeseries Data to Root-Level Inputs”
“Load Bus Data to Root-Level Input Ports”
“Log Signals in For-Each Subsystems”

8 Objects

8-652

Simulink.SimulationData.SignalLoggingInfo
Signal logging override settings for signal

Description
Use a Simulink.SimulationData.SignalLoggingInfo object to override signal logging settings
for a single logged signal without changing the model in the Simulink Editor.

Creation

Syntax
sigInfo = Simulink.SimulationData.SignalLoggingInfo
sigInfo = Simulink.SimulationData.SignalLoggingInfo(blkPath)
sigInfo = Simulink.SimulationData.SignalLoggingInfo(blkPath, portIdx)

Description

sigInfo = Simulink.SimulationData.SignalLoggingInfo creates a
Simulink.SimulationData.LoggingInfo object that contains default logging settings for a
signal.

sigInfo = Simulink.SimulationData.SignalLoggingInfo(blkPath) specifies the
BlockPath parameter and sets the output port index to 1.

sigInfo = Simulink.SimulationData.SignalLoggingInfo(blkPath, portIdx) specifies
the OutputPortIndex parameter.

Properties
BlockPath — Block path
Simulink.BlockPath | character vector | string

Block path of source block of the signal to log, specified as a Simulink.BlockPath object, a
character vector, or a string. The block path represents the full model reference hierarchy.

For a model that uses model referencing, specify a specific instance of a signal by using an absolute
path that reflects the model reference hierarchy, starting at the top model. For example:
openExample('sldemo_mdlref_basic')
sig_log_info = Simulink.SimulationData.SignalLoggingInfo(...
{'sldemo_mdlref_basic/CounterA','sldemo_mdlref_counter/Switch'})

OutputPortIndex — Output port index
1 (default) | positive integer

Output port index to which the signal logging override settings apply, specified as a positive integer.

 Simulink.SimulationData.SignalLoggingInfo

8-653

LoggingInfo — Logging override settings
Simulink.SimulationData.LoggingInfo object

Logging override settings, specified as a Simulink.SimulationData.LoggingInfo object. The
logging settings specify whether signal logging is overridden for this signal. The logging settings also
can specify a logging name, a decimation factor, and a maximum number of data points.

Examples

Override Signal Logging Settings for Specific Signal

You can use Simulink.SignalData.SignalLoggingInfo objects to programmatically override
logging settings for specific signals. For example, you can create a
Simulink.SimulationData.SignalLoggingInfo object to override the signal logging settings
such that only one of several signals marked for logging is logged.

This example uses a model of a rotating clutch system. In the model, ten signals are marked for
logging. For more information about the model, see “Building a Clutch Lock-Up Model” on page 13-
156.

mdl = "sldemo_clutch_override";
open_system(mdl);

You can use a Simulink.SimulationData.SignalLoggingInfo object to log only the
VehicleSpeed signal. The VehicleSpeed signal is connected the second output port of the
Unlocked subsystem. Create a Simulink.SimulationData.SignalLoggingInfo object for the
VehicleSpeed signal by using the BlockPath and OutputPortIndex properties.

blkPath = "sldemo_clutch_override/Unlocked";
portNum = 2;
sigInfo = Simulink.SimulationData.SignalLoggingInfo(blkPath,portNum);

Create an empty Simulink.SimulationData.ModelLoggingInfo object. Then, assign the signal
logging override settings sigInfo to the model logging information object.

mdlInfo = Simulink.SimulationData.ModelLoggingInfo(mdl);
mdlInfo.Signals(1) = sigInfo;

Use the verifySignalAndModelPaths function to ensure that you specified valid signal logging
settings for the model.

verifiedObj = verifySignalAndModelPaths(mdlInfo)

verifiedObj =
 ModelLoggingInfo with properties:

 Model: 'sldemo_clutch_override'
 LoggingMode: 'OverrideSignals'
 LogAsSpecifiedByModels: {}
 Signals: [1x1 Simulink.SimulationData.SignalLoggingInfo]

Apply the model override object settings using the set_param function.

set_param(mdl,'DataLoggingOverride',mdlInfo)

8 Objects

8-654

Simulate the model. Verify that VehicleSpeed is the only signal logged by accessing the
Simulink.SimulationData.Dataset object sldemo_clutch_output.

sim(mdl);
sldemo_clutch_output

sldemo_clutch_output =
Simulink.SimulationData.Dataset 'sldemo_clutch_output' with 1 element

 Name BlockPath
 ____________ _______________________________
 1 [1x1 Signal] VehicleSpeed sldemo_clutch_override/Unlocked

 - Use braces { } to access, modify, or add elements using index.

Version History
Introduced in R2012b

See Also
Objects
Simulink.SimulationData.ModelLoggingInfo | Simulink.BlockPath |
Simulink.SimulationData.LoggingInfo | Simulink.SimulationData.Signal |
Simulink.SimulationData.DataStoreMemory

Functions
Simulink.SimulationData.ModelLoggingInfo.createFromModel | findSignal |
setLogAsSpecifiedInModel | getLogAsSpecifiedInModel | verifySignalAndModelPaths

Topics
“Override Signal Logging Settings from MATLAB”
“Save Signal Data Using Signal Logging”
“Log Data Stores”

 Simulink.SimulationData.SignalLoggingInfo

8-655

Simulink.SimulationInput
Creates SimulationInput objects to make changes to model for multiple or individual simulations

Description
The Simulink.SimulationInput object allows you to make changes to a model and run
simulations with those changes. These changes are temporarily applied to the model. Using a
Simulink.SimulationInput object, you can change initial state, model parameters, block
parameters, external inputs, and variables. Through the Simulink.SimulationInput object, you
can also specify MATLAB functions to run at the start and the end of each simulation by using the
setPreSimFcn function and the setPostSimFcn.

Creation
simIn = Simulink.SimulationInput('ModelName') creates a Simulink.SimulationInput
for the given model. You can then use the functions below on the Simulink.SimulationInput
object to modify the simulation parameters and simulate the model.

Properties
ModelName — Name of model
character vector

Name of the model for which the SimulationInput object is created.

InitialState — Initial state
Simulink.op.ModelOperatingPoint object

Initial state of the model for a simulation, specified as a Simulink.op.ModelOperatingPoint
object.

ExternalInput — External input
Simulink.SimulationData.Dataset object | timeseries object | numerical array

External inputs added to the model for a simulation.

BlockParameters — Block parameters
array of Simulink.Simulation.BlockParameter objects

Block parameters of the model that are modified.

Variables — Variables
array of Simulink.Simulation.Variable objects

Variables of the model that are modified.

ModelParameters — Model parameters
array of Simulink.Simulation.ModelParameter objects

8 Objects

8-656

Model parameters of the model that are modified.

PreSimFcn — Presimulation function
MATLAB function

MATLAB function to run before the start of the simulation.

PostSimFcn — Post simulation function
MATLAB function

MATLAB function to run after each simulation.

UserString — User string
character array | string

Brief description of the simulation specified as a character array or a string.

Object Functions
Method Purpose
setModelParameter Set model parameters to be used for a specific simulation

through SimulationInput object.
setBlockParameter Set block parameters to be used for a specific simulation

through SimulationInput object.
setInitialState Set initial state to be used for a specific simulation through

SimulationInput object.
setExternalInput Set external inputs for a simulation through

SimulationInput object.
setVariable Set variables for a simulation through SimulationInput

object.
setPreSimFcn Specify a MATLAB function to run before start of each

simulation through SimulationInput object.
setPostSimFcn Specify a MATLAB function to run after each simulation is

complete through SimulationInput object.
applyToModel Apply changes to the model specified through a

SimulationInput object.
validate Validate the contents of the SimulationInput object.
loadVariablesFromMATFile Load variables from MAT file into a

Simulink.SimulationInput object.

Examples

Create a Simulink.SimulationInput Object

Create a SimulationInput object.

Open the model.

 Simulink.SimulationInput

8-657

openExample('simulink/OpenTheModelExample');
open_system('ex_sldemo_househeat');
load_system('ex_sldemo_househeat')

Create a single SimulationInput object for a model.

model = 'ex_sldemo_househeat';
simIn = Simulink.SimulationInput(model);

Create Array of Simulink.SimulationInput Objects

This example shows you how to create an array of SimulationInput objects.

Create an array of SimulationInput objects by using a for loop.

model = 'vdp';
for k = 10:-1:1
 simIn(k) = Simulink.SimulationInput(model);
end

Set Block Parameters Using Array of Simulink.SimulationInput Objects

This example modifies the block parameters of a model through the SimulationInput object.

Open the model.

openExample("simulink_general/sldemo_househeatExample")

Create a SimulationInput object for this model.

mdl = 'sldemo_househeat';
simIn = Simulink.SimulationInput(mdl);

Modify block parameter.

simIn = setBlockParameter(simIn,'sldemo_househeat/Set Point',...,
 'Value','300');

Simulate the model.

out = sim(simIn);

Use Dataset as External Input with Simulink.SimulationInput Objects

This example shows how use Dataset objects to set external inputs with
Simulink.SimulationInput objects.

Open the model

mdl = 'sldemo_mdlref_counter';
open_system(mdl);

Create a Dataset object for this model.

t = (0:0.01:10)';
ds = Simulink.SimulationData.Dataset;

8 Objects

8-658

ds = setElement(ds,1,timeseries(5*ones(size(t)),t));
ds = setElement(ds,2,timeseries(10*sin(t),t));
ds = setElement(ds,3,timeseries(-5*ones(size(t)),t));

Create a Simulink.SimulationInput object and set the external inputs.

simIn = Simulink.SimulationInput('sldemo_mdlref_counter');
simIn = setExternalInput(simIn,ds);

Simulate the model.

out = parsim(simIn);

Version History
Introduced in R2017a

See Also
Functions
sim | parsim | batchsim

Tools
Simulation Manager

Objects
Simulink.SimulationOutput

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

 Simulink.SimulationInput

8-659

applyToModel
Package: Simulink

Apply configuration specified on Simulink.SimulationOutput object to model

Syntax
applyToModel(simIn)
applyToModel(simIn,'EnableConfigSetRefUpdate',configUpdate)

Description
applyToModel(simIn) applies the configuration specified on the Simulink.SimulationInput
object simIn to the model specified in the object. Use this function to debug or interactively analyze
a simulation.

applyToModel(simIn,'EnableConfigSetRefUpdate',configUpdate) applies the
configuration specified in the Simulink.SimulationInput object simIn to the model specified in
the object.

Examples

Apply Simulink.SimulationInput Object Configuration to Model

This example shows how to modify a model to use the options specified in a
Simulink.SimulationInput object and save those modifications.

Open the model and create a SimulationInput object.

openExample('simulink_general/sldemo_househeat');
in = Simulink.SimulationInput('sldemo_househeatExample');

Specify block parameter, model parameter, and variable values on a Simulink.SimulationInput
object.

simIn = setBlockParameter(simIn,'sldemo_househeat/Set Point',...,
 'Value','75');
simIn = setVariable(simIn,'cost',50,'Workspace','sldemo_househeat');
simIn = setModelParameter(simIn,'StartTime','1','StopTime','5');

Apply the values specified on the Simulink.SimulationInput object to the model.

applyToModel(simIn)

Input Arguments
simIn — Simulation inputs and configuration
Simulink.SimulationInput object

Simulation inputs and configuration, specified as a Simulink.SimulationInput object.

8 Objects

8-660

configUpdate — Option to enable ConfigSetRef parameter to be updated in
Simulink.SimulationInput object
'off' (default) | 'on'

Specify EnableConfigSetRefUpdate flag to 'on' to apply the ConfigSetRefs settings to the
Simulink.SimulationInput object, for the model that uses reference configuration sets.

Version History
Introduced in R2017a

See Also
Objects
Simulink.SimulationInput

Functions
sim | parsim | batchsim | setBlockParameter | setModelParameter | setInitialState |
setExternalInput | setVariable | validate | setPreSimFcn | setPostSimFcn |
loadVariablesFromMATFile

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

 applyToModel

8-661

loadVariablesFromMATFile
Package: Simulink

Load variables from MAT file into Simulink.SimulationInput object

Syntax
simIn = loadVariablesFromMATFile(simIn,filename)
simIn = loadVariablesFromMATFile(simIn,filename,'Append', 'on')

Description
simIn = loadVariablesFromMATFile(simIn,filename) loads variables from the MAT file
filename into the Variables property of the Simulink.SimulationInput simIn.

simIn = loadVariablesFromMATFile(simIn,filename,'Append', 'on') loads variables
from the MAT file filename into the Variables property of the Simulink.SimulationInput
simIn, while adding to the existing variables in the Variables property instead of replacing them.

Examples

Load Variables from MAT File into Simulink.SimulationInput Object

Load variables from a MAT file into a Simulink.SimulationInput object using the
loadVariablesFromMATFile function.

Create a Simulink.SimulationInput object for the model.

mdl = "ex_loadVar_sldemo_househeat";
simIn = Simulink.SimulationInput(mdl);

Use the loadVariablesFromMATFile function to load variables from a MAT file into the
Variables property of the Simulink.SimulationInput object.

simIn = loadVariablesFromMATFile(simIn,"sldemo_househeat_data.mat")

simIn =
 SimulationInput with properties:

 ModelName: "ex_loadVar_sldemo_househeat"
 InitialState: [0x0 Simulink.op.ModelOperatingPoint]
 ExternalInput: []
 ModelParameters: [0x0 Simulink.Simulation.ModelParameter]
 BlockParameters: [0x0 Simulink.Simulation.BlockParameter]
 Variables: [1x25 Simulink.Simulation.Variable]
 PreSimFcn: []
 PostSimFcn: []
 UserString: ''

The simulation uses the variables loaded into the Simulink.SimulationInput object.

8 Objects

8-662

out = sim(simIn);

Input Arguments
simIn — Simulation inputs and configuration
Simulink.SimulationInput object

Simulation inputs and configuration, specified as a Simulink.SimulationInput object.

filename — Name of MAT file
character vector | string

Name of MAT file, specified as a character vector or a string.
Example: 'myFile'

Append — Append to existing variables in Simulink.SimulationInput object
'off' (default) | 'on'

Option to append new loaded variables to existing variables in Simulink.SimulationInput object,
specified as 'off' or 'on'

Output Arguments
simIn — Simulation configuration with variables from MAT file added
Simulink.SimulationInput object

Simulation configuration with variables from MAT file added, returned as a
Simulink.SimulationInput object.

Version History
Introduced in R2017a

See Also
Objects
Simulink.SimulationInput

Functions
sim | parsim | batchsim | setVariable

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

 loadVariablesFromMATFile

8-663

loadVariablesFromExternalSource
Package: Simulink

Load variables from a custom file into Simulink.SimulationInput object

Syntax
simIn = loadVariablesFromExternalSource(simIn,'filename')
simIn = loadVariablesFromExternalSource(simIn,'filename',Name,Value)

Description
simIn = loadVariablesFromExternalSource(simIn,'filename') loads variables from the
custom file filename into the Variables property of the Simulink.SimulationInput object
simIn using the custom adapter registered for the file format.

simIn = loadVariablesFromExternalSource(simIn,'filename',Name,Value) loads
variables from a custom file into the Variables property of a Simulink.SimulationInput object
simIn with options specified using one or more name-value arguments.

For information on writing a custom file adapter, see “Create External File Adapter for Loading
Variables into Simulink.SimulationInput Object”.

Examples

Load Variables from Custom File Format for Multiple Simulations

This example shows how you can load variables into a Simulink.SimulationInput object from a
custom file source, and run parallel simulations with those variables. To enable this, write and
register an adapter. In this example, we use a model of a road suspension system. that we want to
simulate with different sets of variables. The set of variables and their values for simulations is stored
in the Excel files CompactAndMidsizeCar.xls and LargeCars.xls

For the simulations, we have stored different sets of varibale values in the Excel files
CompactAndMidsizeCar.xls and LargeCars.xls. Normally, you write a script to load variables
into the base workspace, and then run your simulation. In this example, you load the variables
directly into a Simulink.SimulationInput object and run simulations without changing the base
workspace.

Register Adapter

To load the variables from a custom file format, you first must to write and register an adapter.
Simulink.data.adapters.excel_example_adapter enables loading data from your custom file
format. For more information on creating and registering adapters, see..

Simulink.data.adapters.registerAdapter('Simulink.data.adapters.excel_example_adapter')

ans = logical
 1

8 Objects

8-664

Create Simulink.SimulationInput Object

First, create the Simulink.SimulationInput object for the ex_loadvar_sldemo_suspn_3dof
model.

mdl = 'ex_loadvar_sldemo_suspn_3dof';
in = Simulink.SimulationInput(mdl)

in =
 SimulationInput with properties:

 ModelName: 'ex_loadvar_sldemo_suspn_3dof'
 InitialState: [0x0 Simulink.op.ModelOperatingPoint]
 ExternalInput: []
 ModelParameters: [0x0 Simulink.Simulation.ModelParameter]
 BlockParameters: [0x0 Simulink.Simulation.BlockParameter]
 Variables: [0x0 Simulink.Simulation.Variable]
 PreSimFcn: []
 PostSimFcn: []
 UserString: ''

Load Variables from External File Source

You can now use the adapter to load variables from Excel files into a SimulationInput object by
using the loadVariablesFromExternalSource function.

Multiple variable sets are saved in different files and in different sheets. To load the variables, first
create a cell array named fileAndSectionNames of file-section paris. Each row in this cell array
represents the data for a single simulation. Section represents the sheet or sheets present in the
excel files.

fileAndSectionNames = {
 {'CompactAndMidsizeCar.xls', 'CompactCar'};
 {'CompactAndMidsizeCar.xls', 'Midsize'};
 {'LargeCars.xls', 'LargeCar'};
 {'LargeCars.xls', 'LargeSUV'};
 }

fileAndSectionNames=4×1 cell array
 {1x2 cell}
 {1x2 cell}
 {1x2 cell}
 {1x2 cell}

Next, create an array of Simulink.SimulationInput objects and use the
loadVariablesFromExternalSource method to load the variable sets into the array. To load
variables from specific sheets from the excel files, use the 'Section' argument of the
loadVariablesFromExternalSource method.

simIn = Simulink.SimulationInput.empty(length(fileAndSectionNames), 0);
for i = 1 : length(fileAndSectionNames)
 simIn(i) = Simulink.SimulationInput(mdl);
 simIn(i) = simIn(i).loadVariablesFromExternalSource(fileAndSectionNames{i}{1}, ...
 'Section', fileAndSectionNames{i}{2})
end

 loadVariablesFromExternalSource

8-665

simIn =
 SimulationInput with properties:

 ModelName: 'ex_loadvar_sldemo_suspn_3dof'
 InitialState: [0x0 Simulink.op.ModelOperatingPoint]
 ExternalInput: []
 ModelParameters: [0x0 Simulink.Simulation.ModelParameter]
 BlockParameters: [0x0 Simulink.Simulation.BlockParameter]
 Variables: [1x5 Simulink.Simulation.Variable]
 PreSimFcn: []
 PostSimFcn: []
 UserString: ''

simIn=1×2 object
 1x2 SimulationInput array with properties:

 ModelName
 InitialState
 ExternalInput
 ModelParameters
 BlockParameters
 Variables
 PreSimFcn
 PostSimFcn
 UserString

simIn=1×3 object
 1x3 SimulationInput array with properties:

 ModelName
 InitialState
 ExternalInput
 ModelParameters
 BlockParameters
 Variables
 PreSimFcn
 PostSimFcn
 UserString

simIn=1×4 object
 1x4 SimulationInput array with properties:

 ModelName
 InitialState
 ExternalInput
 ModelParameters
 BlockParameters
 Variables
 PreSimFcn
 PostSimFcn
 UserString

8 Objects

8-666

Run Multiple Simulations

To run multiple simulations, use the parsim function with the Simulink.SimulationInput object.
Data in each file is isolated and has no impact on simulations that use data from the other files,
regardless of the order in which the files are specified.

simOut = parsim(simIn)

[04-Mar-2023 01:43:46] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to parallel pool with 20 workers.
[04-Mar-2023 01:46:42] Starting Simulink on parallel workers...
[04-Mar-2023 01:47:02] Configuring simulation cache folder on parallel workers...
[04-Mar-2023 01:47:02] Loading model on parallel workers...
[04-Mar-2023 01:47:12] Running simulations...
[04-Mar-2023 01:47:27] Completed 1 of 4 simulation runs
[04-Mar-2023 01:47:27] Completed 2 of 4 simulation runs
[04-Mar-2023 01:47:27] Completed 3 of 4 simulation runs
[04-Mar-2023 01:47:28] Completed 4 of 4 simulation runs
[04-Mar-2023 01:47:28] Cleaning up parallel workers...

simOut =
1x4 Simulink.SimulationOutput array

To plot the results, plotResult uses a MATLAB® timeseries object. The timeseries object ts stores
the time and data values for the logged signal. The plot function plots the data against the
simulation time. The plot shows the results for the simulations that uses the variable values loaded
from the Excel files.

plotResult(fileAndSectionNames, simOut)

 loadVariablesFromExternalSource

8-667

As the last step, unregister the adapter.

Simulink.data.adapters.unregisterAdapter('Simulink.data.adapters.excel_example_adapter')

ans = logical
 1

Input Arguments
simIn — Simulation inputs and configuration
Simulink.SimulationInput object

Simulation inputs and configuration, specified as a Simulink.SimulationInput object.

filename — Name of custom external file
character vector | string

Name of custom external file, specified as a character vector or a string.

To use a custom file format, register an adapter that the method
loadVariablesFromExternalSource uses to load variables from filename into the
Simulink.SimulationInput object. filename must be specified with its extension.
Example: 'myFile'

8 Objects

8-668

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: simIn =
loadVariablesFromExternalSource(simIn,'filename','Append','on')

Section — Section names in custom file
character vector

Section names in custom file from which variables are loaded, specified as a character vector or a
string.

Append — Option to append new loaded variables
'off' (default) | 'on'

Option to append new loaded variables to existing variables in a Simulink.SimulationInput
object, specified as 'off' or 'on'.

By default, the loaded variables and their values override the variables and values already present in
the Variable property of the Simulink.SimulationInput object.

Workspace — Workspace for loaded variables
'global-workspace' (default) | 'modelName'

Workspace for loaded variables, specified as 'global-workspace' or 'modelName'.

Context — Context for loaded variables within global workspace
'modelName'

Context for loaded variables within global workspace, specified as a string.

When the parameter 'EnforceDataConsistency' is set to off, the current model and the models
below it in the model hierarchy can use variables with the same name but different values as long as
each model in the hierarchy can see only one definition of the variable. These variables that have the
same name are only attached to their respective models. In such a case, the Context option allows
you to set the scope of the variable.

Output Arguments
simIn — Simulation configuration with variables from custom file format added
Simulink.SimulationInput object

Simulation configuration with variables from custom file format added, returned as a
Simulink.SimulationInput object.

Version History
Introduced in R2022b

 loadVariablesFromExternalSource

8-669

See Also
Objects
Simulink.SimulationInput

Functions
sim | parsim | batchsim | setVariable | loadVariablesFromMATFile

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

8 Objects

8-670

removeVariable
Package: Simulink

Remove variable from Simulink.SimulationInput object

Syntax
simIn = removeVariable(simIn,varName)
simIn = removeVariable(simIn,varName,'Workspace',wkspace)

Description
simIn = removeVariable(simIn,varName) removes the variable with the name varName from
the Simulink.SimulationInput object simIn.

simIn = removeVariable(simIn,varName,'Workspace',wkspace) removes the variable with
the name varName specified in the workspace wkspace from the Simulink.SimulationInput
object simIn.

Examples

Modify and Remove Variable in Simulink.SimulationOutput Object

Open the model.

openExample('simulink/OpenTheModelExample');
open_system('ex_sldemo_househeat');

Create a SimulationInput object for this model.

in = Simulink.SimulationInput(mdl);

Set the cost variable value to 50.

in = setVariable(simIn,'cost',50);

By default, this variable is placed in the global workspace scope.

Suppose you want to simulate using the variable value saved in the model. Remove the variable from
the Simulink.SimulationInput object.

in = removeVariable(simIn,'cost');

Input Arguments
simIn — Simulation inputs and configuration
Simulink.SimulationInput object

Simulation inputs and configuration, specified as a Simulink.SimulationInput object.

 removeVariable

8-671

varName — Name of variable to remove
string | character vector

Name of variable to remove, specified as a string or a character vector.
Example: 'Gain'

wkspace — Workspace from which to remove variable
string | character vector

Workspace from which to remove variable, specified as a string or a character vector.
Example: 'Workspace', 'sldemo_househeat'

Output Arguments
simIn — Simulation configuration with variable removed
Simulink.SimulationInput object

Simulation configuration with variable removed, returned as a Simulink.SimulationInput object.

Version History
Introduced in R2019a

See Also
Objects
Simulink.SimulationInput

Functions
sim | parsim | batchsim | loadVariablesFromMATFile | validate

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

8 Objects

8-672

setBlockParameter
Package: Simulink

Set block parameter values on Simulink.SimulationInput object

Syntax
simIn = setBlockParameter(simIn,blkPath,blkParam,
paramVal,...,blkPathN,blkParamN,paramValN)

Description
simIn = setBlockParameter(simIn,blkPath,blkParam,
paramVal,...,blkPathN,blkParamN,paramValN) sets one or more block parameter values on
the Simulink.SimulationInput object simIn.

You can use the setBlockParameter function to specify block parameters for blocks throughout a
model reference hierarchy. You can set multiple block parameters on a
Simulink.SimulationInput object.

You can use getBlockParameter(blkPath,blkParam) to get the value of a block parameter and
removeBlockParameter(blkPath,blkParam) to remove a block parameter from the
Simulink.SimulationInput object.

Examples

Modify Block Parameter Value for Simulation

Modify a block parameter for a simulation using a Simulink.SimulationInput object.

Open the model

openExample("simulink_general/sldemo_househeatExample");

Create a SimulationInput object for this model.

mdl = "sldemo_househeat";
simIn = Simulink.SimulationInput(mdl);

Modify block parameter value.

simIn = setBlockParameter(simIn,'sldemo_househeat/Set Point',...,
 'Value','300');

Simulate the model.

out = sim(simIn);

 setBlockParameter

8-673

Modify Multiple Block Parameter Values for Simulation

Modify multiple block parameter values for a simulation using a Simulink.SimulationInput
object.

Open the model

mdl = 'vdp';
open_system(mdl);

Create a SimulationInput object for this model.

simIn = Simulink.SimulationInput(mdl);

Modify the Gain parameter value for the Mu block and the position of the Product block.
simIn = setBlockParameter(simIn,'vdp/Mu','Gain','40',...,
 'vdp/Product','Position',[50 100 110 120]);

Simulate the model.

out = sim(simIn);

Input Arguments
simIn — Simulation inputs and configuration
Simulink.SimulationInput object

Simulation inputs and configuration, specified as a Simulink.SimulationInput object.

blkPath — Path of the block
string | character vector

Path of the block, specified as a string or a character vector.
Example: 'sldemo_househeat/Set Point'

blkParam — Block parameter name
string | character vector

Block parameter name, specified as a string or a character vector.
Example: 'Value', '350'

paramVal — Block parameter value
character vector

Block parameter value, typically specified as a character vector.
Example: 'Value', '350'

Output Arguments
simIn — Simulation configuration with block parameter values added
Simulink.SimulationInput object

Simulation configuration with block parameter values added, returned as a
Simulink.SimulationInput object.

8 Objects

8-674

Version History
Introduced in R2017a

See Also
Objects
Simulink.SimulationInput

Functions
sim | parsim | batchsim | setModelParameter | applyToModel | validate

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

 setBlockParameter

8-675

setExternalInput
Package: Simulink

Set external inputs for simulation on SimulationInput object

Syntax
simIn = setExternalInput(simIn,inVals)

Description
simIn = setExternalInput(simIn,inVals) sets external input data inVals on the
Simulink.SimulationInput object simIn. The external input data defines the values loaded by
root-level input ports in the model specified on the Simulink.SimulationInput object.

Examples

Specify Arrays as External Input Using Simulink.SimulationInput Object

Specify an array of external input data on a Simulink.SimulationInput object.

Open the model

open_system('sldemo_mdlref_counter');

Create a SimulationInput object for this model.

simIn = Simulink.SimulationInput('sldemo_mdlref_counter');

Create array of external input data.

t = (0:0.01:10)';
u1 = 5*ones(size(t));
u2 = 10*sin(t);
u3 = -5*ones(size(t));

Set external inputs on the Simulink.SimulationInput object.

simIn = setExternalInput(simIn,[t u1 u2 u3]);

Simulate the model.

out = sim(simIn);

Input Arguments
simIn — Simulation inputs and configuration
Simulink.SimulationInput object

Simulation inputs and configuration, specified as a Simulink.SimulationInput object.

8 Objects

8-676

inVals — External input data
Simulink.SimulationData.Dataset object | array | timeseries object

External input data, specified as a Simulink.SimulationData.Dataset object, an array, or a
timeseries object. The external input data specifies the values loaded by root-level input ports in
the model. Use a timeseries object only when the model contains one input port.

Output Arguments
simIn — Simulation configuration with external inputs added
Simulink.SimulationInput object

Simulation configuration with external inputs added, returned as a Simulink.SimulationInput
object.

Version History
Introduced in R2017a

See Also
Objects
Simulink.SimulationInput

Functions
parsim | applyToModel | setBlockParameter | setInitialState | setVariable | validate

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

 setExternalInput

8-677

setInitialState
Package: Simulink

Configure Simulink.SimulationInput object to set initial state for simulation

Syntax
simIn = setInitialState(simIn,xInitial)

Description
simIn = setInitialState(simIn,xInitial) sets the value of the InitialState property for
the Simulink.SimulationInput object simIn using the contents of the variable xInitial.
Simulations run using the SimulationInput object simIn start from the initial state or operating
point stored in the InitialState property of the object.

Examples

Save and Restore Model Operating Point

Open the model sldemo_tonegen.

model = "sldemo_tonegen";
open_system(model);

Create a Simulink.SimulationInput object to specify parameter values to use in simulation.

simIn = Simulink.SimulationInput(model);

Configure the simulation to stop after ten seconds and save the final operating point in a variable
named finalOP.

simIn = setModelParameter(simIn,"StopTime","10",...
 "SaveFinalState","on","SaveOperatingPoint","on",...
 "FinalStateName","finalOP");

Simulate the model using the settings configured on the SimulationInput object.

out = sim(simIn);

Access the saved operating point, returned as part of the single Simulink.SimulationOutput
object.

finalOP = out.finalOP

finalOP =
 Simulink.op.ModelOperatingPoint

 Operating point of the model 'sldemo_tonegen' at simulation time 10.

 Properties

8 Objects

8-678

 loggedStates
 description
 startTime (Read-only)
 snapshotTime (Read-only)

 Methods

 get
 set

Create a SimulationInput object to configure another simulation that uses the operating point
saved from the first simulation.

simIn2 = Simulink.SimulationInput(model);

Configure the model to simulate to a stop time of twenty seconds.

simIn2 = setModelParameter(simIn2,"StopTime","20");

Use the setInitialState function to specify the initial state for the simulation using the
Simulink.op.ModelOperatingPoint object saved from the first simulation.

simIn2 = setInitialState(simIn2,finalOP);

Simulate the model from the initial operating point.

out2 = sim(simIn2);

Input Arguments
simIn — Simulation input to specify initial state
Simulink.SimulationInput object

Simulation input to specify initial state, specified as a Simulink.SimulationInput object.

xInitial — Initial state or operating point
Simulink.op.ModelOperatingPoint object | Simulink.SimulationData.Dataset object |
structure

Initial state or operating point, specified as a Simulink.op.ModelOperatingPoint object, a
Simulink.SimulationData.Dataset object, or a structure that matches the Structure or
Structure with Time logging format.

Output Arguments
simIn — Simulation configuration with initial states added
Simulink.SimulationInput object

Simulation configuration with initial states added, returned as a Simulink.SimulationInput
object.

 setInitialState

8-679

Version History
Introduced in R2017a

See Also
Objects
Simulink.SimulationInput | Simulink.op.ModelOperatingPoint |
Simulink.SimulationData.Dataset

Functions
sim | parsim

Model Settings
Initial state | Final states | Save final operating point

Topics
“Specify Initial State for Simulation”
“Save Block States and Simulation Operating Points”
“Use Model Operating Point for Faster Simulation Workflow”
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

8 Objects

8-680

setModelParameter
Package: Simulink

Specify parameter values for simulation configured using Simulink.SimulationInput object

Syntax
simIn = setModelParameter(simIn,Name,Value)

Description
simIn = setModelParameter(simIn,Name,Value) sets configuration parameter values on the
Simulink.SimulationInput object simIn according to one or more name-value arguments.

You can use the setModelParameter function to configure the value for any model configuration
parameter on a Simulink.SimulationInput object by passing the parameter name and value as a
name-value argument.

Use getModelParameter('ParameterName') to get the value of a configuration parameter. Use
removeModelParameter('ParameterName') to remove a configuration parameter from the
Simulink.SimulationInput object.

Examples

Configure Model Parameter Value for Simulation

Configure model parameter values for a simulation using a Simulink.SimulationInput object.

Open the model.

openExample('simulink_general/sldemo_househeatExample')

Create a SimulationInput object for the model.

mdl = "sldemo_househeat";
simIn = Simulink.SimulationInput(mdl);

Specify a simulation timeout of 5 seconds then specify the start and stop time for the simulation.

simIn = setModelParameter(simIn,"Timeout",5);
simIn = setModelParameter(simIn,"StartTime","1","StopTime","4");

Simulate the model.

out = sim(simIn);

Input Arguments
simIn — Simulation inputs and configuration
Simulink.SimulationInput object

 setModelParameter

8-681

Simulation inputs and configuration, specified as a Simulink.SimulationInput object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: simIn = setModelParameter(simIn,"StopTime","100") configures a
Simulink.SimulationInput object with a simulation stop time of 100.

In addition to the name-value arguments listed in this page, you can specify the value for any model
configuration parameter as a name-value argument.

RapidAcceleratorUpToDateCheck — Option to disable rebuilding rapid accelerator target
'on' (default) | 'off'

Option to disable rebuilding rapid accelerator target, specified as 'on' or 'off'. When you specify
this argument as 'on', changes that require rebuilding the rapid accelerator target are ignored.
When you use this option, modify only options that do not require rebuilding the rapid accelerator
target.
Example: simIn = setModelParameter(simIn,"RapidAcceleratorUpToDateCheck","off")
configures a Simulink.SimulationInput object to disable rebuilding the rapid accelerator target.
Data Types: char | string

TimeOut — Maximum simulation run time
positive scalar

Maximum simulation run time, specified as a positive scalar. Specify the time, in seconds, to allow the
simulation to run. If the simulation runs for longer than the value you specify, the software issues a
warning and stops the simulation. For example, if you specify TimeOut as 30, the software stops the
simulation and issues a warning if computing simulation results takes more than 30 seconds.

The TimeOut parameter specifies a limit on the amount of clock time for a simulation to run. To
specify the maximum time value to simulate, use the Stop time parameter.
Example: simIn = setModelParameter(simIn,"TimeOut",60) configures a
Simulink.SimulationInput object with a maximum simulation run time of 60 seconds.
Data Types: char | string

Output Arguments
simIn — Simulation configuration with model parameters added
Simulink.SimulationInput object

Simulation configuration with model parameters added, returned as a Simulink.SimulationInput
object.

Version History
Introduced in R2017a

8 Objects

8-682

See Also
Objects
Simulink.SimulationInput

Functions
sim | parsim | batchsim | setBlockParameter | applyToModel | validate

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

 setModelParameter

8-683

setPostSimFcn
Package: Simulink

Set MATLAB function to run after each simulation

Syntax
simIn = setPostSimFcn(simIn,func)

Description
simIn = setPostSimFcn(simIn,func) configures the post simulation function associated with
the function handle func on the Simulink.SimulationInput object simIn. The
Simulink.SimulationOutput object is passed as an argument to this function. func is any
MATLAB function and can be used to do the post processing on the output. To return post processed
data, you must return it as values in a structure. These values are then packed into the
Simulink.SimulationOutput output to replace the usual logged data or add new data to the
Simulink.SimulationOutput object.

Examples

Specify MATLAB Function to Process Simulation results

This example specifies a post simulation function for a simulation using a
Simulink.SimulationInput object.

Create a PostSimFcn that calculates the mean for logged outputs.

function newout = postsim(out);
newout.mean = mean(out.yout);
end

Create a SimulationInput object for the model vdp.

simIn = Simulink.SimulationInput('vdp');
simIn = setPostSimFcn(simIn,@(x) postsim(x));
simIn = setModelParameter(simIn,'SaveOutput','on');

Simulate the model.

out = sim(simIn);

View the result from the post simulation function.

out.mean

8 Objects

8-684

As a best practice, avoid using ErrorMessage and SimulationMetadata as field names in the
function.

Input Arguments
simIn — Simulation inputs and configuration
Simulink.SimulationInput object

Simulation inputs and configuration, specified as a Simulink.SimulationOutput object.

func — Function to run after each simulation completes
function handle | function name

Function to run after each simulation completes, specified as a function handle or a function name.
The software passes the Simulink.SimulationOutput object. For example:

simIn = simIn.setPostSimFcn(@myPostSim)

where myPostSim is a MATLAB function.

function newSimOut = myPostSim(simOut); %the function can change the contents of the output object before returning to the client
newSimOut.meanValue = (simOut.yout(:,1)); %we post process the output for only the relevant values.
newSimOut = simOut;
end

You can also specify the post-simulation function as a function handle with additional arguments.

function newSimOut = myPostSim_additionalArgs(simOut,additionalArg1,additionalArg2) %the function can change the contents of the simulation input after parsim runs the simulation
 newSimOut = simOut;
end

Output Arguments
simIn — Simulation configuration with post simulation function added
Simulink.SimulationInput object

Simulation configuration with post simulation function added, returned as a
Simulink.SimulationInput object.

Version History
Introduced in R2017a

See Also
Objects
Simulink.SimulationInput

Functions
sim | parsim | batchsim | setPreSimFcn

Topics
“Running Multiple Simulations”

 setPostSimFcn

8-685

“Run Parallel Simulations for a Thermal Model of a House Using parsim”

8 Objects

8-686

setPreSimFcn
Package: Simulink

Specify MATLAB function to run before start of each simulation on Simulink.SimulationInput
object

Syntax
simIn = setPreSimFcn(simIn,func)

Description
simIn = setPreSimFcn(simIn,func) registers the callback function associated with the function
handle func before each simulation starts. The Simulink.SimulationInput object is passed as an
argument to this function. func is any MATLAB function and can be used to modify the
Simulink.SimulationInput object. If you use func to modify the Simulink.SimulationInput
object, you must return the Simulink.SimulationInput object as the only output argument.

Input Arguments
simIn — Simulation inputs and configuration
Simulink.SimulationInput object

Simulation inputs and configuration, specified as a Simulink.SimulationInput object.

func — Function to run before each simulation
function handle | function name

Function to run before each simulation, specified as a function handle or a function name.
setPreSimFcn passes the Simulink.SimulationInput object in the shape of x argument. The
output of func has to be a Simulink.SimulationInput object to be used in a simulation. For
example:

simIn = setPreSimFcn(simIn,@myPreSim)

where myPreSim is a MATLAB function such as

function newIn = myPreSim(simIn); %the function can change the contents of the simulation input before parsim runs the simulation
 newSimIn = simIn; %start by preserving the information already in the simulation input
 newSimIn.setModelParameter("myParameter","StopTime","10"); now we could, for example, add a new model parameter to our simulation input in the preSimFcn
end

You can also specify the pre-simulation function as a function handle with additional inputs.

function newSimIn = myPreSim_additionalArgs(simIn,additionalArg1,additionalArg2) %the function can change the contents of the simulation input before parsim runs the simulation
 newSimIn = simIn; %start by preserving the information already in the simulation input
 newSimIn = newSimIn.setModelParameter("StopTime",additionalArg1); %now we can add a new model parameter to simIn as an additional argument.
end

 setPreSimFcn

8-687

Output Arguments
simIn — Simulation configuration with presimulation function added
Simulink.SimulationInput object

Simulation configuration with presimulation function added, returned as a
Simulink.SimulationInput object.

Version History
Introduced in R2017a

See Also
Objects
Simulink.SimulationInput

Functions
sim | parsim | batchsim | setPostSimFcn | applyToModel | validate

Topics
“Parallel Simulations Using Parsim: Test-Case Sweep” on page 13-594
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

8 Objects

8-688

setVariable
Package: Simulink

Set variable value on SimulationInput object

Syntax
simIn = setVariable(simIn,varName,varValue)
simIn = setVariable(simIn,varName,varValue,'Workspace',wkspace)

Description
simIn = setVariable(simIn,varName,varValue) sets the variable varName with the value
varValue on the Simulink.SimulationInput object simIn. You can configure a
Simulink.SimulationInput object with multiple variables. When you use the setVariable
function, specify only one variable at a time.

simIn = setVariable(simIn,varName,varValue,'Workspace',wkspace) assigns the value
varValue to variable varName. Variables that are defined through the SimulationInput object are
placed in the global workspace scope by default. The term global workspace is specific to the
Simulink.SimulationInput object and its functions. Variables in the global workspace scope take
precedence if a variable with the same name exists in the base workspace or the data dictionary. The
variables in the model workspace take precedence over the global workspace scope. To change the
value of a model workspace variable, set the scope by specifying the model name when you add the
variable to the SimulationInput object.

You can use getVariable(simIn,varName) to get a variable value and
removeVariable(simIn,varName) to remove a variable from the Simulink.SimulationInput
object

For information on using nonscalar variables, structure variables, and parameter objects, see “Sweep
Nonscalars, Structures, and Parameter Objects”.

Examples

Modify Variable for Simulation

Specify the value for a variable using a Simulink.SimulationInput object.

Open the model.

openExample('simulink/OpenTheModelExample');

Create a SimulationInput object for this model.

simIn = Simulink.SimulationInput('ex_sldemo_househeat');

Set the cost variable value to 50.

simIn = setVariable(simIn,'cost',50);

 setVariable

8-689

By default, this variable has global workspace scope.

Simulate the model.

out = sim(simIn);

Modify Variable in Model Workspace

Modify the value of a variable in the model workspace using a Simulink.SimulationInput object.

Open the model

openExample('simulink/OpenTheModelExample');

Create a SimulationInput object for this model.

simIn = Simulink.SimulationInput('ex_sldemo_househeat');

Set the cost variable value to 50 and set the scope to the model workspace.

simIn = setVariable(simIn,'cost',50,'Workspace','ex_sldemo_househeat');

Simulate the model.

out = sim(simIn);

Input Arguments
simIn — Simulation inputs and configuration
Simulink.SimulationInput object

Simulation inputs and configuration, specified as a Simulink.SimulationInput object.

varName — Variable name
string | character vector

Variable name, specified as a string or a character vector.

varValue — Variable value
MATLAB expression

Variable value, specified as a MATLAB expression.

wkspace — Variable scope
model name

Variable scope, specified as the model name.
Example: 'Workspace','sldemo_househeat'

Output Arguments
simIn — Simulation configuration with variable added
Simulink.SimulationInput object

8 Objects

8-690

Simulation configuration with variable added, returned as a Simulink.SimulationInput object.

Version History
Introduced in R2017a

See Also
Objects
Simulink.SimulationInput

Functions
sim | parsim | batchsim | loadVariablesFromMATFile | validate

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

 setVariable

8-691

showContents
Package: Simulink

View contents of Simulink.SimulationInput object

Syntax
showContents(simIn)

Description
showContents(simIn) displays the contents of the Simulink.SimulationInput object simIn as
a table. The function lets you view all the information such as block parameters, variables, model
parameters, external Inputs and the initial states that are set in the Simulink.SimulationInput
object. You can view the contents of a single Simulink.SimulationInput object at a given time.

Examples

View Contents of Simulink.SimulationInput Object

Use the showContents function to view the simulation configuration stored in a
Simulink.SimulationInput object.

Open the model .

open_system('ex_sldemo_househeat')

Create a Simulink.SimulationInput object for the model ex_sldemo_househeat.

simIn = Simulink.SimulationInput('ex_sldemo_househeat');

Configure a variable value and model parameter values on the Simulink.SimulationInput object.

simIn = setVariable(simIn,'cost',50);
simIn = setModelParameter(simIn,'Start','0','Stop','50');

View the configuration stored on the Simulink.SimulationInput object.

showContents(simIn)

 ModelName: 'ex_sldemo_househeat'

 ModelParameters:
 Index Name Value
 _____ _____ _____

 1 Start '0'
 2 Stop '50'

 Variables:

8 Objects

8-692

 Index Name Value Workspace Context
 _____ ____ _____ ________________ ___________

 1 cost 50 global-workspace <undefined>

 RuntimeFcns: 1x1 RuntimeFcns

Input Arguments
simIn — Simulation inputs and configuration
Simulink.SimulationInput object

Simulation inputs and configuration, specified as a Simulink.SimulationInput object.

Version History
Introduced in R2020a

See Also
Objects
Simulink.SimulationInput

Functions
parsim | applyToModel | setBlockParameter | setModelParameter | setInitialState |
setExternalInput | loadVariablesFromMATFile | setPreSimFcn | setPostSimFcn |
validate

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

 showContents

8-693

validate
Package: Simulink

Validate contents of SimulationInput object

Syntax
validate(simIn)

Description
validate(simIn) validates the changes made to the model through the SimulationInput object
simIn.

Examples

Validate Changes Made Using SimulationInput Object

Configure a Simulink.SimulationInput object with modifications to make in a model for a
simulation then validate the object.

Open the model.

openExample('simulink/OpenTheModelExample');
mdl = 'ex_sldemo_househeat';
open_system(mdl);

Create a SimulationInput object for this model

simIn = Simulink.SimulationInput(mdl);

Specify the value for an invalid model parameter using the setModelParameter function.

simIn = setModelParameter(simIn,'InvalidParamName','5');

Validate the Simulink.SimulationInput object.

validate(simIn)

Input Arguments
simIn — Simulation inputs and configuration
Simulink.SimulationInput object

Simulation inputs and configuration, specified as a Simulink.SimulationInput object.

Version History
Introduced in R2017a

8 Objects

8-694

See Also
Objects
Simulink.SimulationInput

Functions
sim | parsim | batchsim | applyToModel

Topics
“Running Multiple Simulations”
“Run Parallel Simulations for a Thermal Model of a House Using parsim”

 validate

8-695

Simulink.SimulationOutput
Access simulation outputs and metadata

Description
The Simulink.SimulationOutput object provides a single point of access for all data associated
with a simulation. Properties on the object contain all data logged from simulation and complete
simulation metadata, including information about the model configuration, simulation timing, and
errors or warnings that occur during simulation. Accessing simulation results in a single object helps
distinguish the simulation results from other workspace data and makes it easier to manage data
from multiple simulations.

Creation
Simulating a model creates one or more Simulink.SimulationOutput objects in any of these
situations:

• You enable the Single simulation output parameter.

By default, the Single simulation output parameter is enabled when you create a new model.
You can enable the parameter using the Configuration Parameters dialog box. On the Modeling
tab, under Settings, click Model Settings. Then, in the Configuration Parameters dialog box,
select Data Import/Export and select Single simulation output.

• You run a set of simulations using the Multiple Simulations pane.
• You simulate the model programmatically using one or more Simulink.SimulationInput

objects.

You can configure simulations using SimulationInput objects when you run simulations using
the sim, parsim, and batchsim functions.

• You simulate the model using a sim function syntax that returns results as a single simulation
output.

For more information, see sim.

Properties
Logged Data Properties

A Simulink.SimulationOutput object contains a property for each logging variable created in
simulation. The name of the property matches the name you specify for the logging variable. For
example, when you log data using signal logging and use the default variable name logsout, the
Simulink.SimulationOutput object has the property logsout that contains the logged signal
data.

Configure data to log and variable names using the Data Import/Export pane of the Configuration
Parameters dialog box or by adding logging blocks, such as the To Workspace block, to your model.
The table summarizes the default property name for several common logging techniques.

8 Objects

8-696

Default Property Name Logging Source Value
tout Time logging Format specified by the Format

parameter.
yout Output logging Format specified by the Format

parameter.
xout States logging Format specified by the Format

parameter.
xFinal Final states logging When you select Save final

operating point, final states
are saved as a
Simulink.op.ModelOperati
ngPoint object.

When Save final operating
point is not selected, final
states are saved according to
the value of the Format
parameter.

For more information, see “Save
Block States and Simulation
Operating Points”.

logsout Signal logging Simulink.SimulationData.
Dataset object.

dsmout Data stores logging Simulink.SimulationData.
Dataset object.

simout To Workspace block Format specified by the Save
format block parameter.

recordout Record, XY Graph block Simulink.SimulationData.
Dataset object.

ScopeData Scope block Format specified by the Save
format block parameter.

Data you log to a file using To File blocks, Record blocks, or the Log Dataset data to file parameter
is not captured as a property of the Simulink.SimulationOutput object.

Custom Properties

You can add properties to a Simulink.SimulationOutput object to store additional data or
metadata. For example, when you run parallel simulations using parsim or batchsim, you can
define properties on the Simulink.SimulationOutput object to send data from parallel workers to
the client.

Adding a property to a Simulink.SimulationOutput object is similar to defining a field in a
structure. For example, this code adds the property NewProperty with a value of 1 to the
Simulink.SimulationOutput object simOut.

simOut.NewProperty = 1;

 Simulink.SimulationOutput

8-697

Simulation Metadata Properties

SimulationMetadata — Information about simulation
Simulink.SimulationMetadata object

This property is read-only.

Information about simulation, returned as a Simulink.SimulationMetadata object. The
SimulationMetadata object contains:

• Detailed information about the model, including the model version and the version of software
used to create the model

• Warnings and errors that occur during simulation
• Timing information, such as the amount of time spent in the initialization and execution phases of

the simulation

ErrorMessage — Message for errors from simulation
character vector

This property is read-only.

Message for errors from simulation, returned as a character vector. When a simulation runs without
error, the ErrorMessage property is empty.

Tips

When you run a simulation using the sim function, specify the CaptureErrors name-value
argument as 'on' to capture error messages in the ErrorMessage property. By default, errors are
reported in the MATLAB Command Window and not captured in the Simulink.SimulationOutput
object.

Object Functions
find Query and access properties on Simulink.SimulationOutput object
get Access simulation results in Simulink.SimulationOutput object
getSimulationMetadata Access simulation metadata in Simulink.SimulationOutput object
plot Plot simulation results in Simulation Data Inspector
removeProperty Remove property from Simulink.SimulationOutput object
setUserData Add data to metadata in Simulink.SimulationOutput object
setUserString Add string to metadata in Simulink.SimulationOutput object
who Get names of editable properties on Simulink.SimulationOutput object

Examples

Access Data in Simulink.SimulationOutput Object

When you simulate a model in a way that returns simulation results as a single object, you access all
logged data and simulation metadata using the Simulink.SimulationOutput object.

The model in this example has the Single simulation output parameter enabled and logs data using
several different logging methods.

• The output of the Sine Wave block is logged using signal logging.

8 Objects

8-698

• The output of the Gain block is logged using a To Workspace block.
• The outputs of the Gain, Chirp Signal, and Square Wave Generator blocks are logged using a

Record block.
• The output of the Square Wave Generator block is logged using output logging.

The model is also configured to log time data.

Open the model.

mdl = "LoggingBlocks";
open_system(mdl)

Create a Simulink.SimulationInput object to configure the simulation for the model. Use the
setModelParameter function to set the StopTime parameter to 20.

simIn = Simulink.SimulationInput(mdl);
simIn = setModelParameter(simIn,'StopTime','20');

Simulate the model. The sim function output out is a Simulink.SimulationOutput object that
contains all data logged from the simulation. The data for each block and each type of logging is
stored as a property that matches the name of the logging variable specified in the block or model.

out = sim(simIn);

You can access logged data using dot notation, the get function, or the find function.

Use dot notation to access the Big Sine signal logged using the To Workspace block.

simout = out.simout

 timeseries

 Common Properties:
 Name: 'Big Sine'
 Time: [51x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [51x1 double]
 DataInfo: tsdata.datametadata

Use the get function to access the Sine signal logged using signal logging.

 Simulink.SimulationOutput

8-699

logsout = get(out,"logsout")

logsout =
Simulink.SimulationData.Dataset 'logsout' with 1 element

 Name BlockPath
 ____ _______________________
 1 [1x1 Signal] Sine LoggingBlocks/Sine Wave

 - Use braces { } to access, modify, or add elements using index.

Use the find function to access the Square Wave signal logged using output logging.

yout = find(out,"yout")

yout =
Simulink.SimulationData.Dataset 'yout' with 1 element

 Name BlockPath
 ___________ _____________________
 1 [1x1 Signal] Square Wave LoggingBlocks/Outport

 - Use braces { } to access, modify, or add elements using index.

You can access the simulation metadata using dot notation or using the getSimulationMetadata
function.

simMetadata = getSimulationMetadata(out)

simMetadata =
 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: ''
 UserData: []

The simulation metadata is returned as a Simulink.SimulationMetadata object. The
SimulationMetadata object groups information about the simulation in properties with structure
values and has properties that allow you to specify a string and additional data related to the
simulation.

Access the ExecutionInfo property on the SimulationMetadata object. The execution
information shows that the simulation ran through its stop time of 20 without warnings or errors.

simMetadata.ExecutionInfo

ans = struct with fields:
 StopEvent: 'ReachedStopTime'
 StopEventSource: []
 StopEventDescription: 'Reached stop time of 20'
 ErrorDiagnostic: []
 WarningDiagnostics: [0x1 struct]

8 Objects

8-700

Modify Contents of Simulink.SimulationOutput Object

A Simulink.SimulationOutput object represents the result of a simulation. The
SimulationOutput object contains simulation metadata and all data logged from simulation. You
can modify the contents of a Simulink.SimulationOutput object by adding or removing data
logging and custom properties.

Open the model LoggingBlocks, which logs several input signals using multiple logging techniques.

• The output of the Sine Wave block is logged using signal logging.
• The output of the Gain block is logged using a To Workspace block.
• The outputs of the Gain, Chirp Signal, and Square Wave Generator blocks are logged using a

Record block.
• The output of the Square Wave Generator block is logged using output logging.

The model is also configured to log time data.

mdl = "LoggingBlocks"

mdl =
"LoggingBlocks"

open_system(mdl);

Use the get_param function to save the values of the Amplitude and Frequency parameters of the
Sine Wave block. Store the values in the structure sinConfig.

sinConfig.sinAmp = get_param(strcat(mdl,"/Sine Wave"),"Amplitude");
sinConfig.sinFreq = get_param(strcat(mdl,"/Sine Wave"),"Frequency");

Simulate the model.

simOut = sim(mdl);

The simulation results contain all logging variables created in simulation. Use the who function to get
a list of properties you can modify.

props = who(simOut)

 Simulink.SimulationOutput

8-701

props = 5x1 cell
 {'logsout' }
 {'recordout'}
 {'simout' }
 {'tout' }
 {'yout' }

For this simulation, suppose you want to save only the data for the signal path related to the Sine
Wave block. Use the removeProperty function to remove the recordout and yout properties.

simOut = removeProperty(simOut,["recordout" "yout"]);
who(simOut)

This Simulink.SimulationOutput object contains these editable properties:

 logsout simout tout

You can also add data to a Simulink.SimulationOutput object by adding your own properties to
the object or by using the setUserData function to specify the value for the UserData property on
the Simulink.SimulationMetadata object.

Suppose you want to save the parameter values for the Sine Wave block as a property on the
Simulink.SimulationOutput object. Add the property SineWaveParameters by using dot
notation the same way you add a field to a structure.

simOut.SineWaveParameters = sinConfig;
who(simOut)

This Simulink.SimulationOutput object contains these editable properties:

 SineWaveParameters logsout simout tout

Display Errors in Diagnostic Viewer

You can use the sldiagviewer.reportSimulationMetadataDiagnostics function to display
error and warning messages captured in a Simulink.SimulationOutput object using the
Diagnostic Viewer.

Open the model ex_sldemo_bounce.

model = "ex_sldemo_bounce";
open_system(model)

Introduce an error into the model by specifying the Value parameter for the block Initial
Velocity as the undefined variable z.

set_param("ex_sldemo_bounce/Initial Velocity","Value","z");

Create a Simulink.SimulationInput object to configure the simulation.

simIn = Simulink.SimulationInput(model);

Simulate the model. When you specify the StopOnError option as off, errors and warnings that
occur during simulation are captured in the SimulationOutput object are not reported in the
Command Window or script and do not interrupt the process of the script.

8 Objects

8-702

simOut = sim(simIn,"StopOnError","off","ShowProgress","off");

Warning: One or more simulations completed with errors. For more information, inspect the SimulationOutput objects at these indices:
[1]

Use the sldiagviewer.reportSimulationMetadataDiagnostics function to display the
warning and error messages from the simulation in the Diagnostic Viewer.

sldiagviewer.reportSimulationMetadataDiagnostics(simOut)

Version History
Introduced in R2009b

See Also
Objects
Simulink.SimulationMetadata | Simulink.SimulationData.Dataset

Functions
sim | parsim | batchsim | sldiagviewer.reportSimulationMetadataDiagnostics |
loadIntoMemory

Model Settings
Single simulation output

Topics
“Save Simulation Data”

 Simulink.SimulationOutput

8-703

find
Package: Simulink

Query and access properties on Simulink.SimulationOutput object

Syntax
res = find(simOut,varName)

Description
res = find(simOut,varName) returns the simulation data specified by varName from the
Simulink.SimulationOutput object simOut. If no property exists with the name varName, the
return value is empty.

You can also access data inside a Simulink.SimulationOutput object using the get function or
using dot notation. When you use either of these options to access a property, the software issues a
diagnostic if the specified property does not exist on the specified object.

Examples

Access Data in Simulink.SimulationOutput Object

When you simulate a model in a way that returns simulation results as a single object, you access all
logged data and simulation metadata using the Simulink.SimulationOutput object.

The model in this example has the Single simulation output parameter enabled and logs data using
several different logging methods.

• The output of the Sine Wave block is logged using signal logging.
• The output of the Gain block is logged using a To Workspace block.
• The outputs of the Gain, Chirp Signal, and Square Wave Generator blocks are logged using a

Record block.
• The output of the Square Wave Generator block is logged using output logging.

The model is also configured to log time data.

Open the model.

mdl = "LoggingBlocks";
open_system(mdl)

8 Objects

8-704

Create a Simulink.SimulationInput object to configure the simulation for the model. Use the
setModelParameter function to set the StopTime parameter to 20.

simIn = Simulink.SimulationInput(mdl);
simIn = setModelParameter(simIn,'StopTime','20');

Simulate the model. The sim function output out is a Simulink.SimulationOutput object that
contains all data logged from the simulation. The data for each block and each type of logging is
stored as a property that matches the name of the logging variable specified in the block or model.

out = sim(simIn);

You can access logged data using dot notation, the get function, or the find function.

Use dot notation to access the Big Sine signal logged using the To Workspace block.

simout = out.simout

 timeseries

 Common Properties:
 Name: 'Big Sine'
 Time: [51x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [51x1 double]
 DataInfo: tsdata.datametadata

Use the get function to access the Sine signal logged using signal logging.

logsout = get(out,"logsout")

logsout =
Simulink.SimulationData.Dataset 'logsout' with 1 element

 Name BlockPath
 ____ _______________________
 1 [1x1 Signal] Sine LoggingBlocks/Sine Wave

 - Use braces { } to access, modify, or add elements using index.

Use the find function to access the Square Wave signal logged using output logging.

 find

8-705

yout = find(out,"yout")

yout =
Simulink.SimulationData.Dataset 'yout' with 1 element

 Name BlockPath
 ___________ _____________________
 1 [1x1 Signal] Square Wave LoggingBlocks/Outport

 - Use braces { } to access, modify, or add elements using index.

You can access the simulation metadata using dot notation or using the getSimulationMetadata
function.

simMetadata = getSimulationMetadata(out)

simMetadata =
 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: ''
 UserData: []

The simulation metadata is returned as a Simulink.SimulationMetadata object. The
SimulationMetadata object groups information about the simulation in properties with structure
values and has properties that allow you to specify a string and additional data related to the
simulation.

Access the ExecutionInfo property on the SimulationMetadata object. The execution
information shows that the simulation ran through its stop time of 20 without warnings or errors.

simMetadata.ExecutionInfo

ans = struct with fields:
 StopEvent: 'ReachedStopTime'
 StopEventSource: []
 StopEventDescription: 'Reached stop time of 20'
 ErrorDiagnostic: []
 WarningDiagnostics: [0x1 struct]

Input Arguments
simOut — Simulation results
Simulink.SimulationOutput object

Simulation results, specified as a Simulink.SimulationOutput object.

varName — Simulation data to return
string | character vector

Simulation data to return, specified as a string or a character vector.

8 Objects

8-706

Use the find function to access data logged from simulation, such as signal logging data, logged
outputs, and states, by specifying the name of the logging variable. For example, when you use the
default signal logging variable name logsout, specify "logsout" to access the signal logging data.
Example: "logsout"
Data Types: char | string

Output Arguments
res — Simulation results
Simulink.SimulationData.Dataset object | timeseries object | timetable | array | structure

Simulation results, returned in one of these forms:

• Simulink.SimulationData.Dataset object
• timeseries object
• timetable
• Simulink.op.ModelOperatingPoint object
• array
• structure

The form of the return argument depends on the type of data you access and the configuration of the
model for the simulation.

Version History
Introduced in R2009b

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Dataset | timeseries |
timetable | Simulink.op.ModelOperatingPoint

Functions
get | who | getSimulationMetadata | sim | parsim | batchsim

 find

8-707

get
Package: Simulink

Access simulation results in Simulink.SimulationOutput object

Syntax
res = get(simOut,varName)

Description
res = get(simOut,varName) returns the simulation data specified by varName from the
Simulink.SimulationOutput object simOut.

You can also access data inside a Simulink.SimulationOutput object using dot notation.

Examples

Access Data in Simulink.SimulationOutput Object

When you simulate a model in a way that returns simulation results as a single object, you access all
logged data and simulation metadata using the Simulink.SimulationOutput object.

The model in this example has the Single simulation output parameter enabled and logs data using
several different logging methods.

• The output of the Sine Wave block is logged using signal logging.
• The output of the Gain block is logged using a To Workspace block.
• The outputs of the Gain, Chirp Signal, and Square Wave Generator blocks are logged using a

Record block.
• The output of the Square Wave Generator block is logged using output logging.

The model is also configured to log time data.

Open the model.

mdl = "LoggingBlocks";
open_system(mdl)

8 Objects

8-708

Create a Simulink.SimulationInput object to configure the simulation for the model. Use the
setModelParameter function to set the StopTime parameter to 20.

simIn = Simulink.SimulationInput(mdl);
simIn = setModelParameter(simIn,'StopTime','20');

Simulate the model. The sim function output out is a Simulink.SimulationOutput object that
contains all data logged from the simulation. The data for each block and each type of logging is
stored as a property that matches the name of the logging variable specified in the block or model.

out = sim(simIn);

You can access logged data using dot notation, the get function, or the find function.

Use dot notation to access the Big Sine signal logged using the To Workspace block.

simout = out.simout

 timeseries

 Common Properties:
 Name: 'Big Sine'
 Time: [51x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [51x1 double]
 DataInfo: tsdata.datametadata

Use the get function to access the Sine signal logged using signal logging.

logsout = get(out,"logsout")

logsout =
Simulink.SimulationData.Dataset 'logsout' with 1 element

 Name BlockPath
 ____ _______________________
 1 [1x1 Signal] Sine LoggingBlocks/Sine Wave

 - Use braces { } to access, modify, or add elements using index.

Use the find function to access the Square Wave signal logged using output logging.

 get

8-709

yout = find(out,"yout")

yout =
Simulink.SimulationData.Dataset 'yout' with 1 element

 Name BlockPath
 ___________ _____________________
 1 [1x1 Signal] Square Wave LoggingBlocks/Outport

 - Use braces { } to access, modify, or add elements using index.

You can access the simulation metadata using dot notation or using the getSimulationMetadata
function.

simMetadata = getSimulationMetadata(out)

simMetadata =
 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: ''
 UserData: []

The simulation metadata is returned as a Simulink.SimulationMetadata object. The
SimulationMetadata object groups information about the simulation in properties with structure
values and has properties that allow you to specify a string and additional data related to the
simulation.

Access the ExecutionInfo property on the SimulationMetadata object. The execution
information shows that the simulation ran through its stop time of 20 without warnings or errors.

simMetadata.ExecutionInfo

ans = struct with fields:
 StopEvent: 'ReachedStopTime'
 StopEventSource: []
 StopEventDescription: 'Reached stop time of 20'
 ErrorDiagnostic: []
 WarningDiagnostics: [0x1 struct]

Input Arguments
simOut — Simulation results
Simulink.SimulationOutput object

Simulation results, specified as a Simulink.SimulationOutput object.

varName — Simulation data to return
string | character vector

Simulation data to return, specified as a string or a character vector.

8 Objects

8-710

Use the get function to access data logged from simulation, such as signal logging data, logged
outputs, and states, by specifying the name of the logging variable. For example, when you use the
default signal logging variable name logsout, specify "logsout" to access the signal logging data.
Example: "logsout"
Data Types: char | string

Output Arguments
res — Simulation results
Simulink.SimulationData.Dataset object | timeseries object | timetable | array | structure

Simulation results, returned in one of these forms:

• Simulink.SimulationData.Dataset object
• timeseries object
• timetable
• Simulink.op.ModelOperatingPoint object
• array
• structure

The form of the return argument depends on the type of data you access and the configuration of the
model for the simulation.

Version History
Introduced in R2010a

R2020a: Warns if specified object does not have specified property
Warns starting in R2020a

The get function issues a warning and returns empty ([]) if the specified
Simulink.SimulationOutput object does not have the specified property.

R2023a: Issues error if specified object does not have specified property
Behavior changed in R2023a

Prior to R2020a, the get function returned empty ([]) if the specified
Simulink.SimulationOutput object did not have the specified property. Since R2020a, the get
function has issued a warning and returned empty ([]) in this situation. Starting in R2023a, the get
function issues an error and no longer returns an output argument.

To query whether a Simulink.SimulationOutput object has a given property, use the find
function. The find function returns empty ([]) and does not issue a diagnostic when the object does
not have the property.

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Dataset | timeseries |
timetable | Simulink.op.ModelOperatingPoint

 get

8-711

Functions
find | who | getSimulationMetadata | sim | parsim | batchsim

8 Objects

8-712

getSimulationMetadata
Package: Simulink

Access simulation metadata in Simulink.SimulationOutput object

Syntax
simMeta = getSimulationMetadata(simOut)

Description
simMeta = getSimulationMetadata(simOut) returns the simulation metadata stored in the
Simulink.SimulationOutput object simOut. The simulation metadata includes information about
the model, simulation execution and timing, and details about errors and warnings that occurred
during the simulation.

You can also get the simulation metadata using a dot to access the value of the
SimulationMetadata property.

simMeta = simOut.SimulationMetadata;

Examples

Access Data in Simulink.SimulationOutput Object

When you simulate a model in a way that returns simulation results as a single object, you access all
logged data and simulation metadata using the Simulink.SimulationOutput object.

The model in this example has the Single simulation output parameter enabled and logs data using
several different logging methods.

• The output of the Sine Wave block is logged using signal logging.
• The output of the Gain block is logged using a To Workspace block.
• The outputs of the Gain, Chirp Signal, and Square Wave Generator blocks are logged using a

Record block.
• The output of the Square Wave Generator block is logged using output logging.

The model is also configured to log time data.

Open the model.

mdl = "LoggingBlocks";
open_system(mdl)

 getSimulationMetadata

8-713

Create a Simulink.SimulationInput object to configure the simulation for the model. Use the
setModelParameter function to set the StopTime parameter to 20.

simIn = Simulink.SimulationInput(mdl);
simIn = setModelParameter(simIn,'StopTime','20');

Simulate the model. The sim function output out is a Simulink.SimulationOutput object that
contains all data logged from the simulation. The data for each block and each type of logging is
stored as a property that matches the name of the logging variable specified in the block or model.

out = sim(simIn);

You can access logged data using dot notation, the get function, or the find function.

Use dot notation to access the Big Sine signal logged using the To Workspace block.

simout = out.simout

 timeseries

 Common Properties:
 Name: 'Big Sine'
 Time: [51x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [51x1 double]
 DataInfo: tsdata.datametadata

Use the get function to access the Sine signal logged using signal logging.

logsout = get(out,"logsout")

logsout =
Simulink.SimulationData.Dataset 'logsout' with 1 element

 Name BlockPath
 ____ _______________________
 1 [1x1 Signal] Sine LoggingBlocks/Sine Wave

 - Use braces { } to access, modify, or add elements using index.

Use the find function to access the Square Wave signal logged using output logging.

8 Objects

8-714

yout = find(out,"yout")

yout =
Simulink.SimulationData.Dataset 'yout' with 1 element

 Name BlockPath
 ___________ _____________________
 1 [1x1 Signal] Square Wave LoggingBlocks/Outport

 - Use braces { } to access, modify, or add elements using index.

You can access the simulation metadata using dot notation or using the getSimulationMetadata
function.

simMetadata = getSimulationMetadata(out)

simMetadata =
 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: ''
 UserData: []

The simulation metadata is returned as a Simulink.SimulationMetadata object. The
SimulationMetadata object groups information about the simulation in properties with structure
values and has properties that allow you to specify a string and additional data related to the
simulation.

Access the ExecutionInfo property on the SimulationMetadata object. The execution
information shows that the simulation ran through its stop time of 20 without warnings or errors.

simMetadata.ExecutionInfo

ans = struct with fields:
 StopEvent: 'ReachedStopTime'
 StopEventSource: []
 StopEventDescription: 'Reached stop time of 20'
 ErrorDiagnostic: []
 WarningDiagnostics: [0x1 struct]

Input Arguments
simOut — Simulation results
Simulink.SimulationOutput object

Simulation results, specified as a Simulink.SimulationOutput object.

Output Arguments
simMeta — Simulation metadata
Simulink.SimulationMetadata object

 getSimulationMetadata

8-715

Simulation metadata, returned as a Simulink.SimulationMetadata object.

Tips
You can view the contents of the Simulink.SimulationMetadata object using the Variables editor
in MATLAB. In the Workspace pane, double-click the variable that contains the
Simulink.SimulationOutput object with metadata you want to view. Then, in the Variables editor,
select Explore SimulationMetadata to open a pane that displays the information in the
SimulationMetadata object using a tree structure.

Version History
Introduced in R2015a

See Also
Objects
Simulink.SimulationMetadata | Simulink.SimulationOutput

Functions
get | sim | parsim | batchsim | sldiagviewer.reportSimulationMetadataDiagnostics

8 Objects

8-716

removeProperty
Package: Simulink

Remove property from Simulink.SimulationOutput object

Syntax
simOut = removeProperty(simOut,prop)

Description
simOut = removeProperty(simOut,prop) removes one or more properties prop from the
Simulink.SimulationOutput object simOut.

You can use the removeProperty function to remove data logging properties and custom properties
from a Simulink.SimulationOutput object. You cannot use the removeProperty function to
remove read-only properties.

Examples

Modify Contents of Simulink.SimulationOutput Object

A Simulink.SimulationOutput object represents the result of a simulation. The
SimulationOutput object contains simulation metadata and all data logged from simulation. You
can modify the contents of a Simulink.SimulationOutput object by adding or removing data
logging and custom properties.

Open the model LoggingBlocks, which logs several input signals using multiple logging techniques.

• The output of the Sine Wave block is logged using signal logging.
• The output of the Gain block is logged using a To Workspace block.
• The outputs of the Gain, Chirp Signal, and Square Wave Generator blocks are logged using a

Record block.
• The output of the Square Wave Generator block is logged using output logging.

The model is also configured to log time data.

mdl = "LoggingBlocks"

mdl =
"LoggingBlocks"

open_system(mdl);

 removeProperty

8-717

Use the get_param function to save the values of the Amplitude and Frequency parameters of the
Sine Wave block. Store the values in the structure sinConfig.

sinConfig.sinAmp = get_param(strcat(mdl,"/Sine Wave"),"Amplitude");
sinConfig.sinFreq = get_param(strcat(mdl,"/Sine Wave"),"Frequency");

Simulate the model.

simOut = sim(mdl);

The simulation results contain all logging variables created in simulation. Use the who function to get
a list of properties you can modify.

props = who(simOut)

props = 5x1 cell
 {'logsout' }
 {'recordout'}
 {'simout' }
 {'tout' }
 {'yout' }

For this simulation, suppose you want to save only the data for the signal path related to the Sine
Wave block. Use the removeProperty function to remove the recordout and yout properties.

simOut = removeProperty(simOut,["recordout" "yout"]);
who(simOut)

This Simulink.SimulationOutput object contains these editable properties:

 logsout simout tout

You can also add data to a Simulink.SimulationOutput object by adding your own properties to
the object or by using the setUserData function to specify the value for the UserData property on
the Simulink.SimulationMetadata object.

Suppose you want to save the parameter values for the Sine Wave block as a property on the
Simulink.SimulationOutput object. Add the property SineWaveParameters by using dot
notation the same way you add a field to a structure.

8 Objects

8-718

simOut.SineWaveParameters = sinConfig;
who(simOut)

This Simulink.SimulationOutput object contains these editable properties:

 SineWaveParameters logsout simout tout

Input Arguments
simOut — Simulation results
Simulink.SimulationOutput object

Simulation results, specified as a Simulink.SimulationOutput object.

prop — Property to remove
string | string array | character vector | cell array of character vectors

Property to remove, specified as a string, a string array, a character vector, or a cell array of
character vectors. To delete a single property, specify the name of the property as a string or a
character vector. To delete multiple properties, specify the names of the properties as a string array
or a cell array of character vectors.

You cannot remove read-only properties, such as the SimulationMetadata and ErrorMessage
properties, from a Simulink.SimulationOutput object. To get a list of properties that you can
remove, use the who function.
Example: simOut = removeProperty(simOut,"MyProperty")
Data Types: char | string

Output Arguments
simOut — Simulation results with property removed
Simulink.SimulationOutput object

Simulation results with property removed, returned as a Simulink.SimulationOutput object.

Tips
• Modifying the contents of simulation results in a Simulink.SimulationOutput object using a

post-simulation function can be useful in parallel computing workflows. For example, you can
remove data logging properties and send only a subset of logged data from the worker back to the
client. For more information, see setPostSimFcn.

• Use the removeElement function to remove logged data from a
Simulink.SimulationData.Dataset object.

Version History
Introduced in R2019a

 removeProperty

8-719

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Dataset

Functions
who | removeElement

8 Objects

8-720

setUserData
Package: Simulink

Add data to metadata in Simulink.SimulationOutput object

Syntax
simOut = setUserData(simOut,userData)

Description
simOut = setUserData(simOut,userData) adds the data userData to the simulation metadata
stored in the Simulink.SimulationOutput object simOut.

Use this function to add additional information about the simulation that created the
Simulink.SimulationOutput object. For example, you could add some of the model configuration
parameter values used in the simulation.

Examples

Add Data to Simulation Metadata

The Simulink.SimulationOutput object contains a Simulink.SimulationMetadata object
that captures information about the simulation. You can specify additional information about the
simulation in the UserData and UserString properties. For example, you can save the
Simulink.SimulationInput object used to configure the simulation in the UserData property
and specify the UserString as a description of the simulation.

Open the model ex_sldemo_bounce. This model simulates the motion of a bouncing ball based on
an initial velocity.

mdl = "ex_sldemo_bounce";
open_system(mdl);

Create a Simulink.SimulationInput object to configure a simulation of the model. Use the
setBlockParameter function to specify the initial velocity as 20.

simIn = Simulink.SimulationInput(mdl);
simIn = setBlockParameter(simIn,"ex_sldemo_bounce/Initial Velocity",...
 "Value","20");

Simulate the model.

simOut = sim(simIn);

Use the setUserData function to add the Simulink.SimulationInput object to the simulation
metadata.

simOut = setUserData(simOut,simIn);

Use the setUserString function to add a description for the simulation.

 setUserData

8-721

simOut = setUserString(simOut,"Initial Velocity = 20");

Inspect the simulation metadata.

simMetadata = getSimulationMetadata(simOut)

simMetadata =
 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: "Initial Velocity = 20"
 UserData: [1x1 Simulink.SimulationInput]

Input Arguments
simOut — Simulation results to which to add data
Simulink.SimulationOutput object

Simulation results to which to add data, specified as a Simulink.SimulationOutput object.

userData — Data to add to simulation metadata
MATLAB variable | MATLAB expression

Data to add to simulation metadata, specified as a MATLAB variable or a MATLAB expression.

Output Arguments
simOut — Simulation results with user data
Simulink.SimulationOutput object

Simulation results with user data, returned as a Simulink.SimulationOutput object. The
SimulationOutput object stores simulation metadata as a Simulink.SimulationMetadata
object. The data you specify is added to the UserData property of the
Simulink.SimulationMetadata object.

simMetadata = simOut.SimulationMetadata;
userData = simMetadata.UserData;

Version History
Introduced in R2015a

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationMetadata

Functions
setUserString | getSimulationMetadata | sim | parsim | batchsim

8 Objects

8-722

setUserString
Package: Simulink

Add string to metadata in Simulink.SimulationOutput object

Syntax
simOut = setUserString(simOut,str)

Description
simOut = setUserString(simOut,str) adds the text str to the metadata stored in the
Simulink.SimulationOutput object simOut.

You can use this function to add a description about the simulation that produced the
Simulink.SimulationOutput object or a description of the results.

Examples

Add Data to Simulation Metadata

The Simulink.SimulationOutput object contains a Simulink.SimulationMetadata object
that captures information about the simulation. You can specify additional information about the
simulation in the UserData and UserString properties. For example, you can save the
Simulink.SimulationInput object used to configure the simulation in the UserData property
and specify the UserString as a description of the simulation.

Open the model ex_sldemo_bounce. This model simulates the motion of a bouncing ball based on
an initial velocity.

mdl = "ex_sldemo_bounce";
open_system(mdl);

Create a Simulink.SimulationInput object to configure a simulation of the model. Use the
setBlockParameter function to specify the initial velocity as 20.

simIn = Simulink.SimulationInput(mdl);
simIn = setBlockParameter(simIn,"ex_sldemo_bounce/Initial Velocity",...
 "Value","20");

Simulate the model.

simOut = sim(simIn);

Use the setUserData function to add the Simulink.SimulationInput object to the simulation
metadata.

simOut = setUserData(simOut,simIn);

Use the setUserString function to add a description for the simulation.

 setUserString

8-723

simOut = setUserString(simOut,"Initial Velocity = 20");

Inspect the simulation metadata.

simMetadata = getSimulationMetadata(simOut)

simMetadata =
 SimulationMetadata with properties:

 ModelInfo: [1x1 struct]
 TimingInfo: [1x1 struct]
 ExecutionInfo: [1x1 struct]
 UserString: "Initial Velocity = 20"
 UserData: [1x1 Simulink.SimulationInput]

Input Arguments
simOut — Simulation results to which to add text
Simulink.SimulationOutput object

Simulation results to which to add text, specified as a Simulink.SimulationOutput object.

str — Text to add to metadata
string | character vector

Text to add to metadata, specified as a string or a character vector.
Data Types: char | string

Output Arguments
simOut — Simulation results with text added
Simulink.SimulationOutput object

Simulation results with text added, returned as a Simulink.SimulationOutput object. The
SimulationOutput object stores simulation metadata as a Simulink.SimulationMetadata
object. The data you specify is added to the UserString property of the
Simulink.SimulationMetadata object.

simMetadata = simOut.SimulationMetadata;
userData = simMetadata.UserString;

Version History
Introduced in R2015a

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationMetadata

8 Objects

8-724

Functions
setUserData | getSimulationMetadata | sim | parsim | batchsim

 setUserString

8-725

who
Package: Simulink

Get names of editable properties on Simulink.SimulationOutput object

Syntax
who(simOut)
props = who(simOut)

Description
who(simOut) lists the names of user-added properties and properties that contain logged data on
the Simulink.SimulationOutput object simOut.

props = who(simOut) returns a cell array of character vectors that contains the names of user-
added properties and properties that contain logged data on the Simulink.SimulationOutput
object simOut.

Examples

Inspect Contents of Simulink.SimulationOutput Object

A Simulink.SimulationOutput object contains all data logged from simulation as well as
simulation metadata and error messages that occur during simulation. You can use the who function
to list properties on a Simulink.SimulationOutput object created by logging data from
simulation or by a user.

Open the model LoggingBlocks, which uses multiple blocks and signal logging to log simulation
data.

mdl = "LoggingBlocks";
open_system(mdl);

Create a Simulink.SimulationInput object to configure a simulation that runs to a stop time of
20.

simIn = Simulink.SimulationInput(mdl);
simIn = setModelParameter(simIn,"StopTime","20");

Simulate the model.

simOut = sim(simIn);

Use the who function to inspect the contents of the simulation results.

dataLogs = who(simOut)

dataLogs = 5x1 cell
 {'logsout' }
 {'recordout'}

8 Objects

8-726

 {'simout' }
 {'tout' }
 {'yout' }

Use the get function to access the data for the variable simout.

simout = get(simOut,dataLogs{3})

 timeseries

 Common Properties:
 Name: 'Big Sine'
 Time: [51x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [51x1 double]
 DataInfo: tsdata.datametadata

Input Arguments
simOut — Simulation results
Simulink.SimulationOutput object

Simulation results, specified as a Simulink.SimulationOutput object.

Output Arguments
props — Names of user-added properties and properties that contain logged data
cell array of character vectors

Names of user-added properties and properties that contain logged data, returned as a cell array of
character vectors.

Version History
Introduced in R2009b

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationMetadata

Functions
get | find | getSimulationMetadata | sim | parsim | batchsim

 who

8-727

sltrace.Graph
Provide tracing information as graph for structure analysis

Description
An sltrace.Graph object stores tracing information generated by the sltrace function.

Creation
You can create sltrace.Graph object using the sltrace function.

Properties
TraceGraph — Tracing graph with edges and nodes
digraph

Tracing graph with edges and nodes, returned as a digraph object. A node in the graph is decided
by a block port on the tracing path and shown as 'NodeIndex'. For each node, TraceGraph.Nodes
provides a table with more details, including Block, PortNumber and PortType. If 'BlockPath' is
set to 'on' in sltrace, then the Block column of the TraceGraph.Nodes table will be shown as
Simulink.BlockPath.

TraceGraph.Edges shows a table that contains the EndNodes of the digraph object, and the
Segments between them. Segments is an array of segment handles that are connected together to
form a line between two blocks. If the EndNodes belong to the same block, their Segments is marked
as 'Internal'. If the end nodes are from connectionless block pairs, such as the pair formed by
'From' and 'Goto', then their Segments is marked as 'Hidden'.

SrcBlocks, DstBlocks — Blocks on the tracing path
array of block handles | Simulink.BlockPath array

Blocks on tracing path, specified as an array of block handles or Simulink.BlockPath objects. If
tracing in the direction of source, source blocks are returned in g.SrcBlocks. If tracing in the
direction of the destination, destination blocks are returned in g.DstBlocks.

Object Functions
highlight Highlight tracing results
removeHighlight Remove highlighted tracing results

Examples

Trace All Sources in Model

This example shows how to trace from the first inport of the block vdp/x1 to all sources.

8 Objects

8-728

open_system('vdp')
G = sltrace('vdp/x1', 'Source','Port', 1, 'TraceAll','on');

Highlight the tracing results and plot the trace graph.

highlight(G)

plot(G.TraceGraph)

 sltrace.Graph

8-729

Highlight the block vdp/Scope and the line connecting to the inport of vdp/Scope.

bh = get_param('vdp/Scope','Handle');
inportH = get_param('vdp/Scope','PortHandles').Inport;
lh = get_param(inportH,'line');
highlight(G,[bh, lh])

8 Objects

8-730

Remove the highlighting.

removeHighlight(G)

 sltrace.Graph

8-731

Version History
Introduced in R2021b

See Also
sltrace

Topics
“Find Shortest Control Path in Simulink Model” on page 13-648

8 Objects

8-732

highlight
Package: sltrace

Highlight tracing results

Syntax
highlight(g)
highlight(g,target)

Description
highlight(g) highlights all tracing results, blocks and lines in the sltrace.Graph object g.

highlight(g,target) highlights the blocks and lines specified in target.

Examples

Trace All Sources in Model

This example shows how to trace from the first inport of the block vdp/x1 to all sources.

open_system('vdp')
G = sltrace('vdp/x1', 'Source','Port', 1, 'TraceAll','on');

Highlight the tracing results and plot the trace graph.

highlight(G)

 highlight

8-733

plot(G.TraceGraph)

8 Objects

8-734

Highlight the block vdp/Scope and the line connecting to the inport of vdp/Scope.

bh = get_param('vdp/Scope','Handle');
inportH = get_param('vdp/Scope','PortHandles').Inport;
lh = get_param(inportH,'line');
highlight(G,[bh, lh])

 highlight

8-735

Remove the highlighting.

removeHighlight(G)

8 Objects

8-736

Input Arguments
g — Graph object
sltrace.Graph object

Graph created by sltrace function, specified as a sltrace.Graph object.

target — Items to highlight
block handle | line handle | array of block or line handles

Specific items to highlight, specified as a block handle, a line handle, or an array of block and line
handles.
Example: g.highlight([bh, seg]);

Version History
Introduced in R2021b

 highlight

8-737

See Also
removeHighlight | sltrace.Graph | sltrace

8 Objects

8-738

removeHighlight
Package: sltrace

Remove highlighted tracing results

Syntax
removeHighlight(g)

Description
removeHighlight(g) removes all highlighting in a model created by the highlight function of
sltrace.Graph object g.

Examples

Trace All Sources in Model

This example shows how to trace from the first inport of the block vdp/x1 to all sources.

open_system('vdp')
G = sltrace('vdp/x1', 'Source','Port', 1, 'TraceAll','on');

Highlight the tracing results and plot the trace graph.

highlight(G)

 removeHighlight

8-739

plot(G.TraceGraph)

8 Objects

8-740

Highlight the block vdp/Scope and the line connecting to the inport of vdp/Scope.

bh = get_param('vdp/Scope','Handle');
inportH = get_param('vdp/Scope','PortHandles').Inport;
lh = get_param(inportH,'line');
highlight(G,[bh, lh])

 removeHighlight

8-741

Remove the highlighting.

removeHighlight(G)

8 Objects

8-742

Input Arguments
g — Graph object
sltrace.Graph object

Graph created by sltrace function, specified as a sltrace.Graph object.

Version History
Introduced in R2021b

See Also
highlight | sltrace.Graph | sltrace

 removeHighlight

8-743

Simulink.SubsysDataLogs
(Not recommended) Access data for signals logged inside subsystems

Note The ability to log and load data using the ModelDataLogs format has been removed. Use
another supported format, such as Dataset, instead. For more information, see “Compatibility
Considerations”.

Description
The Simulink.SubsysDataLogs object contains the data for each signal, mux, and bus logged
inside a subsystem.

Creation
Prior to R2016a, you could configure a model to log data using the ModelDataLogs format.
Simulating a model with the Signal logging format parameter set to ModelDataLogs created a
Simulink.ModelDataLogs object that contained the data for all logged signals. You could specify
the name for the ModelDataLogs object using the Signal logging name parameter.

A ModelDataLogs object contains a Simulink.SubsysDataLogs object for each subsystem in the
model that contains logged data.

Properties
Logged Data Properties

The Simulink.SubsysDataLogs object contains properties with the signal data logged inside the
subsystem the object represents. The number, type, and names of the properties that contain logged
data depend on subsystem contents and the logging configuration.

Property Name Source Logged Data Source Value
Model name Top model or model reference Simulink.ModelDataLogs
Subsystem name Subsystem Simulink.SubsysDataLogs
Signal name Signal Simulink.Timeseries
Mux or virtual bus name Mux or virtual bus Simulink.TSArray
Bus object Nonvirtual bus Simulink.TSArray

Subsystem Properties

Name — Name of subsystem represented by object
character vector

Name of subsystem represented by object, specified as a character vector.

8 Objects

8-744

Object Functions
unpack (Not recommended) Extract signal data from ModelDataLogs, SubsysDataLogs, or TSArray

object into workspace variables
who (Not recommended) List names of objects inside ModelDataLogs, SubsysDataLogs, or

TSArray object
whos (Not recommended) List name and type of objects inside ModelDataLogs, SubsysDataLogs,

or TSArray object

Examples

Access Data Logged Inside Subsystem Using ModelDataLogs Format

Suppose you have data logged in a release prior to R2016a for a model that marked signals for
logging inside the subsystem Subsystem. The Simulink.ModelDataLogs object logsout has the
property Subsystem that contains the logged data for signals marked for logging inside the
subsystem. You can view the contents of the Simulink.SubsysDataLogs object by using a dot to
access the Subsystem property. In this example, the signal a and the bus m were marked for logging
inside the subsystem.

logsout.Subsystem

Simulink.SubsysDataLogs (Subsystem):
 Name elements Simulink Class

 a 1 Timeseries
 m 2 TsArray

You can access the data for the signal or bus by using the unpack function to assign the value of each
property to a variable in the base workspace with the same name.

unpack(logsout,'all');
data = a.Data;

Version History
Introduced before R2006a

R2022b: Loading data saved in the ModelDataLogs format no longer supported
Errors starting in R2022b

Starting in R2022b, you can no longer load data stored in the ModelDataLogs format, including data
stored in Simulink.Timeseries, Simulink.TSArray, and Simulink.SubsysDataLogs objects.

You can convert data stored in the ModelDataLogs format to the Dataset format. For more
information, see “Convert Data to Dataset Format”.

R2021a: Loading data saved in the ModelDataLogs format will not be supported
Warns starting in R2021a

When you load data that uses the ModelDataLogs format as input for simulation, the software issues
a warning that support for loading data in the ModelDataLogs format will be removed in a future
release.

 Simulink.SubsysDataLogs

8-745

R2020b: Loading data saved in the ModelDataLogs format will not be supported
Not recommended starting in R2020b

In a future release, the ability to load data that uses the ModelDataLogs format as input for
simulation will be removed.

R2016a: Logging data using ModelDataLogs format no longer supported

Starting in R2016a, you can no longer log data using the ModelDataLogs format, and signal logging
always uses the Dataset format. When you open a model from a previous release that had logged
data using ModelDataLogs format, the model configuration parameters are updated to log data
using the Dataset format instead.

You can still use and access data logged using the ModelDataLogs format in previous releases,
including data in Simulink.SubsysDataLogs, Simulink.TSArray, and Simulink.Timeseries
objects. You can also convert data saved in the ModelDataLogs format to the Dataset format,
which can simplify data processing. For more information, see “Convert Data to Dataset Format”.

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Dataset

Topics
“Convert Data to Dataset Format”

8 Objects

8-746

Simulink.TimeInfo
(Not recommended) Metadata for time data in Simulink.Timeseries object

Note The ability to log and load data using the ModelDataLogs format has been removed. Use
another supported format, such as Dataset format, instead. For more information, see
“Compatibility Considerations”.

Description
The Simulink.TimeInfo object contains metadata for the time data in a Simulink.Timeseries
object, including the units and the start and stop times.

Creation
Prior to R2016a, you could configure a model to log data using the ModelDataLogs format.
Simulating a model with the Signal logging format parameter set to ModelDataLogs created a
Simulink.ModelDataLogs object that contained the data for all logged signals. You could specify
the name for the ModelDataLogs object using the Signal logging name parameter.

A ModelDataLogs object contains a Simulink.Timeseries object for each logged signal, mux
element, and bus element in a model. Each Simulink.Timeseries object contains a
Simulink.TimeInfo object.

Properties
Units — Time data units
character vector

Time data units, specified as a character vector.
Example: 'seconds'

Start — Start time for time data
scalar | array

Start time for time data, specified as a scalar or an array.

• For a signal that is not in a conditionally executed subsystem, the value is a scalar that matches
the start time for the simulation that produced the Simulink.Timeseries object.

• For a signal inside a conditionally executed subsystem, the value is an array that contains the
times at which the subsystem became active.

End — End time for time data
scalar | array

End time for time data, specified as a scalar or an array.

 Simulink.TimeInfo

8-747

• For a signal that is not in a conditionally executed subsystem, the value is a scalar that matches
the end time for the simulation that produced the Simulink.Timeseries object.

• For a signal inside a conditionally executed subsystem, the value is an array that contains the
times at which the subsystem became inactive.

Increment — Sample rate
NaN | scalar

Sample rate, returned as NaN or a scalar.

• The value is NaN for signals with continuous sample time logged in simulations that use a variable-
step solver.

• The value is a scalar for a signal with a discrete sample time and signals logged in simulations
that use a fixed-step solver.

Length — Length of time data vector
integer

This property is read-only.

Length of time data vector, specified as an integer. The length of the vector indicates the number of
samples logged from simulation.

Version History
Introduced before R2006a

R2022b: Loading data saved in the ModelDataLogs format no longer supported
Errors starting in R2022b

Starting in R2022b, you can no longer load data stored in the ModelDataLogs format, including data
stored in Simulink.Timeseries, Simulink.TSArray, and Simulink.SubsysDataLogs objects.

You can convert data stored in the ModelDataLogs format to the Dataset format. For more
information, see “Convert Data to Dataset Format”.

R2021a: Loading data saved in the ModelDataLogs format will not be supported
Warns starting in R2021a

When you load data that uses the ModelDataLogs format as input for simulation, the software issues
a warning that support for loading data in the ModelDataLogs format will be removed in a future
release.

R2020b: Loading data saved in the ModelDataLogs format will not be supported
Not recommended starting in R2020b

In a future release, the ability to load data that uses the ModelDataLogs format as input for
simulation will be removed.

R2016a: Logging data using ModelDataLogs format no longer supported

Starting in R2016a, you can no longer log data using the ModelDataLogs format, and signal logging
always uses the Dataset format. When you open a model from a previous release that had logged

8 Objects

8-748

data using ModelDataLogs format, the model configuration parameters are updated to log data
using the Dataset format instead.

You can still use and access data logged using the ModelDataLogs format in previous releases,
including data in Simulink.SubsysDataLogs, Simulink.TSArray, and Simulink.Timeseries
objects. You can also convert data saved in the ModelDataLogs format to the Dataset format,
which can simplify data processing. For more information, see “Convert Data to Dataset Format”.

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Dataset

Topics
“Convert Data to Dataset Format”

 Simulink.TimeInfo

8-749

Simulink.Timeseries
(Not recommended) Access logged signal data

Note The ability to log and load data using the ModelDataLogs format has been removed. Use
another supported format, such as Dataset format, instead. For more information, see
“Compatibility Considerations”.

Description
The Simulink.Timeseries object contains the data logged from simulation for a signal along with
metadata. Logged data for a mux or bus is stored as a Simulink.TSArray object that contains a
Simulink.Timeseries object for each element.

Creation
Prior to R2016a, you could configure a model to log data using the ModelDataLogs format.
Simulating a model with the Signal logging format parameter set to ModelDataLogs created a
Simulink.ModelDataLogs object that contained the data for all logged signals. You could specify
the name for the ModelDataLogs object using the Signal logging name parameter.

The structure of the Simulink.ModelDataLogs object reflects the structure of the model.

• One or more Simulink.Timeseries objects contain data for one or more signals logged in the
model the ModelDataLogs object represents.

• One or more Simulink.TSArray objects contain the Simulink.Timeseries and
Simulink.TSArray objects for one or more muxes or buses logged in the model the
ModelDataLogs object represents.

• One or more Simulink.SubsysDataLogs objects contain the Simulink.Timeseries,
Simulink.TSArray, Simulink.SubsysDataLogs, and Simulink.ModelDataLogs objects for
data logged inside subsystems in the model the ModelDataLogs object represents.

• One or more Simulink.ModelDataLogs objects contain the Simulink.Timeseries,
Simulink.TSArray, Simulink.SubsysDataLogs, and Simulink.ModelDataLogs objects for
data logged inside model references in the model the ModelDataLogs object represents.

Properties
Name — Name for logged signal data
character vector

Name for logged signal data, specified as a character vector.

BlockPath — Path to block that produces signal in model
character vector

Path to block that produces signal in model, specified as a character vector.

8 Objects

8-750

PortIndex — Index of port on block that produces signal in model
integer

Index of port on block that produces signal in model, specified as an integer.

SignalName — Name of signal in model
character vector

Name of signal in model, specified as a character vector

ParentName — Name of parent for mux or bus element
character vector

Name of parent for mux or bus element, specified as a character vector. For a signal that is not part
of a mux or bus, the ParentName property is the same as the SignalName property.

TimeInfo — Time metadata
Simulink.TimeInfo object

Time metadata, specified as a Simulink.TimeInfo object.

Time — Logged time values
array

Logged time values, specified as an array.

Data — Logged signal values
array

Logged signal values, specified as an array.

Version History
Introduced before R2006a

R2022b: Loading data saved in the ModelDataLogs format no longer supported
Errors starting in R2022b

Starting in R2022b, you can no longer load data stored in the ModelDataLogs format, including data
stored in Simulink.Timeseries, Simulink.TSArray, and Simulink.SubsysDataLogs objects.

You can convert data stored in the ModelDataLogs format to the Dataset format. For more
information, see “Convert Data to Dataset Format”.

R2021a: Loading data saved in the ModelDataLogs format will not be supported
Warns starting in R2021a

When you load data that uses the ModelDataLogs format as input for simulation, the software issues
a warning that support for loading data in the ModelDataLogs format will be removed in a future
release.

R2020b: Loading data saved in the ModelDataLogs format will not be supported
Not recommended starting in R2020b

 Simulink.Timeseries

8-751

In a future release, the ability to load data that uses the ModelDataLogs format as input for
simulation will be removed.

R2016a: Logging data using ModelDataLogs format no longer supported

Starting in R2016a, you can no longer log data using the ModelDataLogs format, and signal logging
always uses the Dataset format. When you open a model from a previous release that had logged
data using ModelDataLogs format, the model configuration parameters are updated to log data
using the Dataset format instead.

You can still use and access data logged using the ModelDataLogs format in previous releases,
including data in Simulink.SubsysDataLogs, Simulink.TSArray, and Simulink.Timeseries
objects. You can also convert data saved in the ModelDataLogs format to the Dataset format,
which can simplify data processing. For more information, see “Convert Data to Dataset Format”.

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Dataset

Topics
“Convert Data to Dataset Format”

8 Objects

8-752

Simulink.TSArray
(Not recommended) Access logged data for mux or bus

Note The ability to log and load data using the ModelDataLogs format has been removed. Use
another supported format, such as Dataset, instead. For more information, see “Compatibility
Considerations”.

Description
The Simulink.TSArray object contains the data for a logged mux or bus.

Creation
Prior to R2016a, you could configure a model to log data using the ModelDataLogs format.
Simulating a model with the Signal logging format parameter set to ModelDataLogs created a
Simulink.ModelDataLogs object that contained the data for all logged signals. You could specify
the name for the ModelDataLogs object using the Signal logging name parameter.

A ModelDataLogs and object contains a Simulink.TSArray object for each mux or bus logged in
the model the object represents. A SubsysDataLogs object contains a Simulink.TSArray object
for each mux or bus logged in the subsystem the object represents.

Properties
Logged Data Properties

The Simulink.TSArray object contains properties with the data logged for each element of the bus
or mux the object represents. The number, type, and names of the properties that contain logged data
depend on the structure of the mux or bus the object represents.

Property Name Source Logged Data Source Value
Signal name Mux or bus element Simulink.Timeseries object
Nested mux or virtual bus name Nested mux or virtual bus Simulink.TSArray object
Bus object Nested nonvirtual bus Simulink.TSArray object

Metadata Properties

Name — Signal logging name
character vector

Signal logging name, specified as a character vector.

 Simulink.TSArray

8-753

Object Functions
unpack (Not recommended) Extract signal data from ModelDataLogs, SubsysDataLogs, or TSArray

object into workspace variables
who (Not recommended) List names of objects inside ModelDataLogs, SubsysDataLogs, or

TSArray object
whos (Not recommended) List name and type of objects inside ModelDataLogs, SubsysDataLogs,

or TSArray object

Examples

Access Data for Bus Logged Using ModelDataLogs Format

Suppose you have data logged in a release prior to R2016a using ModelDataLogs format. The
Simulink.ModelDataLogs object logsout contains a Simulink.TSArray object for the bus b2.
You can view the contents of the Simulink.TSArray object by using a dot to access the b2 property
of the Simulink.ModelDataLogs object. The bus b2 contains the signal x1 and the nested bus b1.

logsout.b2

Simulink.TsArray (untitled/Bus Creator1):
 Name elements Simulink Class

 x1 1 Timeseries
 b1 2 TsArray

To access the logged signal data for the signal x1, you can use the unpack function to assign the
contents of the ModelDataLogs property to a variable in the workspace with the same name. Then,
you can use a dot to inspect the property values for the Simulink.Timeseries object that contains
the signal data.

unpack(logsout,'all');
data = x1.Data;

Version History
Introduced before R2006a

R2022b: Loading data saved in the ModelDataLogs format no longer supported
Errors starting in R2022b

Starting in R2022b, you can no longer load data stored in the ModelDataLogs format, including data
stored in Simulink.Timeseries, Simulink.TSArray, and Simulink.SubsysDataLogs objects.

You can convert data stored in the ModelDataLogs format to the Dataset format. For more
information, see “Convert Data to Dataset Format”.

R2021a: Loading data saved in the ModelDataLogs format will not be supported
Warns starting in R2021a

When you load data that uses the ModelDataLogs format as input for simulation, the software issues
a warning that support for loading data in the ModelDataLogs format will be removed in a future
release.

8 Objects

8-754

R2020b: Loading data saved in the ModelDataLogs format will not be supported
Not recommended starting in R2020b

In a future release, the ability to load data that uses the ModelDataLogs format as input for
simulation will be removed.

R2016a: Logging data using ModelDataLogs format no longer supported

Starting in R2016a, you can no longer log data using the ModelDataLogs format, and signal logging
always uses the Dataset format. When you open a model from a previous release that had logged
data using ModelDataLogs format, the model configuration parameters are updated to log data
using the Dataset format instead.

You can still use and access data logged using the ModelDataLogs format in previous releases,
including data in Simulink.SubsysDataLogs, Simulink.TSArray, and Simulink.Timeseries
objects. You can also convert data saved in the ModelDataLogs format to the Dataset format,
which can simplify data processing. For more information, see “Convert Data to Dataset Format”.

See Also
Objects
Simulink.SimulationOutput | Simulink.SimulationData.Dataset

Topics
“Convert Data to Dataset Format”

 Simulink.TSArray

8-755

Simulink.ValueType
Specify properties of signals based on application-specific value types

Description
A Simulink.ValueType object is an application-specific set of properties that you define once and
reuse for each signal that represents the same value type. For example, you can specify the unit,
minimum value, maximum value, and dimensions of wind velocity, tire pressure, or water
temperature.

To create and modify ValueType objects in the base workspace or a data dictionary, you can use the
Model Explorer or MATLAB commands. You cannot store ValueType objects in model workspaces.

Specify a ValueType object:

• At an interface with Inport, Outport, In Bus Element, or Out Bus Element blocks
• In a model with Signal Specification blocks
• In a Simulink.BusElement, Simulink.Signal, or Simulink.Parameter object

Use ValueType objects to validate the properties of a signal and enforce consistency between
connected blocks at an interface.

Creation
You can create a Simulink.ValueType object several ways.

• Interactively create a value type using the Type Editor or Model Explorer.
• Programmatically create a value type using the Simulink.ValueType function described here.

Syntax
vt = Simulink.ValueType

Description

vt = Simulink.ValueType returns a ValueType object with default property values.

Properties
DataType — Data type
'double' (default) | character vector | string scalar

Data type, specified as a character vector or string scalar.

You can specify any of these options:

• Built-in Simulink data type — For example, specify 'single' or 'uint8'. See “Data Types
Supported by Simulink”.

8 Objects

8-756

• Fixed-point data type — Use the fixdt function. For example, specify 'fixdt(1,16,0)'.
• Enumerated data type — Use the name of the type preceded by Enum:. For example, specify

'Enum: myEnumType'.
• Custom data type — Use a MATLAB expression that specifies the type. For example, you can

specify a Simulink.NumericType object whose DataTypeMode property is set to a value other
than 'Fixed-point: unspecified scaling'.

• Bus data type — Use the name of a Simulink.Bus object preceded by Bus:. For example, specify
'Bus: myBusObject'.

When you specify a Simulink.Bus object as the data type, some properties of the
Simulink.ValueType object are ignored. For example, the Min, Max, and Unit properties of the
Simulink.ValueType object are ignored. The software uses the corresponding properties of the
Simulink.BusElement objects in the Simulink.Bus object instead.
Data Types: char | string

Min — Minimum value
[] (default) | scalar

Minimum value, specified as a finite real double scalar.

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.Bus object.
The software uses the minimum values specified by the Simulink.BusElement objects in the
Simulink.Bus object instead.
Data Types: double

Max — Maximum value
[] (default) | scalar

Maximum value, specified as a finite real double scalar.

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.Bus object.
The software uses the maximum values specified by the Simulink.BusElement objects in the
Simulink.Bus object instead.
Data Types: double

Unit — Physical unit
'' (default) | character vector | string scalar

Physical unit, specified as a character vector or string scalar.

For more information, see “Unit Specification in Simulink Models”.
Example: 'inches'

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.Bus object.
The software uses the units specified by the Simulink.BusElement objects in the Simulink.Bus
object instead.

 Simulink.ValueType

8-757

Data Types: char | string

Complexity — Numeric type
'real' (default) | 'complex'

Numeric type, specified as 'real' or 'complex'.

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.Bus object.
The software uses the complexity specified by the Simulink.BusElement objects in the
Simulink.Bus object instead.
Data Types: char | string

Dimensions — Dimensions
1 (default) | scalar | vector

Dimensions, specified as a scalar or vector.

Tips

To specify an array of buses, set DataType to a Simulink.Bus object and Dimensions to the
dimensions of the array.
Data Types: double

DimensionsMode — Option to allow only fixed-size or variable-size signals
'Fixed' (default) | 'Variable'

Option to allow only fixed-size or variable-size signals, specified as 'Fixed' or 'Variable',
respectively.

Dependencies

The software ignores the value of this property when DataType specifies a Simulink.Bus object.
The software uses the dimensions modes specified by the Simulink.BusElement objects in the
Simulink.Bus object instead.
Data Types: char | string

Description — Description
'' (default) | character vector | string scalar

Description, specified as a character vector or string scalar. Use the description to document
information about the ValueType object, such as the kind of signal it applies to. This information
does not affect Simulink processing.
Data Types: char | string

Examples

Specify Signal Properties for Value Type

In the MATLAB Command Window, define a reusable set of properties that correspond to wind
velocity by using the Simulink.ValueType function.

8 Objects

8-758

Create a ValueType object with default properties.

windVelocity = Simulink.ValueType

windVelocity =
 ValueType with properties:

 DataType: 'double'
 Min: []
 Max: []
 Unit: ''
 Complexity: 'real'
 Dimensions: 1
 DimensionsMode: 'Fixed'
 Description: ''

Specify the desired property values for wind velocity.

windVelocity.DataType = 'single';
windVelocity.Min = 11;
windVelocity.Max = 17;
windVelocity.Unit = 'm/s';
windVelocity.Dimensions = [2 4 3];
windVelocity.Description = 'Wind velocity value type'

windVelocity =
 ValueType with properties:

 DataType: 'single'
 Min: 11
 Max: 17
 Unit: 'm/s'
 Complexity: 'real'
 Dimensions: [2 4 3]
 DimensionsMode: 'Fixed'
 Description: 'Wind velocity value type'

Define Value Type for Array of Buses

To define a recurring type of value that you model as an array of buses, use a Simulink.ValueType
object with a Simulink.Bus object data type and nonscalar dimensions.

Create a Simulink.Bus object that represents red, green, and blue (RGB) color values. Name it RGB.

r = Simulink.BusElement;
r.Name = 'r';

g = Simulink.BusElement;
g.Name = 'g';

b = Simulink.BusElement;
b.Name = 'b';

 Simulink.ValueType

8-759

RGB = Simulink.Bus;
RGB.Elements = [r g b];

Create a Simulink.ValueType object that represents an image. Name it myImage.

myImage = Simulink.ValueType;

Assign the bus object named RGB as the data type of myImage.

myImage.DataType = 'Bus: RGB';

Specify that the value type represents a matrix of RGB values by setting the dimensions of myImage
to a matrix.

myImage.Dimensions = [1024 1024];

When you use the myImage value type in a model, it defines an array of buses. For more information
about arrays of buses, see “Group Nonvirtual Buses in Arrays of Buses”.

Version History
Introduced in R2021b

See Also
Tools
Type Editor

Objects
Simulink.BusElement | systemcomposer.ValueType

Topics
“Specify Application-Specific Signal Properties”
“Display Signal Attributes”
“Signal Basics”

8 Objects

8-760

Simulink.VariableUsage
Store information about the relationship between variables and blocks in models

Description
A Simulink.VariableUsage object describes where a variable is used in models.

Use this information to:

• Prepare to permanently store the variables in files and workspaces. For more information about
storing variables for a model, see “Determine Where to Store Variables and Objects for Simulink
Models”.

• Reduce the number of variables that you need to store by eliminating unused variables.
• Prepare to partition variables and establish variable ownership when you work in a team.

To analyze variable usage in models, use Simulink.VariableUsage objects together with the
Simulink.findVars function. The function returns and accepts Simulink.VariableUsage
objects as arguments. For more information, see Simulink.findVars.

A Simulink.VariableUsage object can also describe the usage of an enumerated data type.

Only a Simulink.VariableUsage constructor or the Simulink.findVars function can set
property values in a Simulink.VariableUsage object. The properties are otherwise read only.

Creation
The Simulink.findVars function returns Simulink.VariableUsage objects.

To create variable usage objects for use as a filter when using Simulink.findVars, use the
Simulink.VariableUsage function described below.

Syntax
variableUsageObj = Simulink.VariableUsage(varNames,sourceName)

Description

variableUsageObj = Simulink.VariableUsage(varNames,sourceName) creates an array of
Simulink.VariableUsage objects to describe the variables varNames. The constructor sets the
Name property of each object to one of the variable names specified by varNames, and sets the
Source property of all the objects to the source specified by sourceName. You can specify varNames
with variables that are not used in any loaded models.

Input Arguments

varNames — Names of target variables
character vector | cell array of character vectors

 Simulink.VariableUsage

8-761

Names of target variables, specified as a character vector or a cell array of character vectors. The
constructor creates a Simulink.VariableUsage object for each variable name.
Example: 'k'
Example: {'k','asdf','fuelFlow'}
Data Types: char | cell

sourceName — Name of variable source
character vector

Name of the source that defines the target variables, specified as a character vector. For example,
you can specify the MATLAB base workspace or a data dictionary as a source. The constructor also
determines and sets the SourceType property of each of the returned Simulink.VariableUsage
objects.
Example: 'base workspace'
Example: 'myModel'
Example: 'myDictionary.sldd'
Data Types: char

Properties
Name — Name of variable or enumerated type
'' (empty character vector) (default) | character vector

This property is read-only.

The name of the variable or enumerated data type the object describes, returned as a character
vector.

Source — Name of defining workspace
'' (empty character vector) (default) | character vector

This property is read-only.

The name of the workspace or data dictionary that defines the described variable, returned as a
character vector. The table shows some examples.

Source Value Meaning
'base workspace' MATLAB base workspace
'MyModel' Model workspace for the model MyModel
'MyModel/Mask1' Mask workspace for the masked block Mask1 in the model

MyModel
'sldemo_fuelsys_dd_controller.sldd' The data dictionary named

'sldemo_fuelsys_dd_controller.sldd'

The table shows some examples if you created the Simulink.VariableUsage object by using the
Simulink.findVars function to find enumerated data types.

8 Objects

8-762

Source Value Meaning
'BasicColors.m' The enumerated type is defined in the MATLAB file

'BasicColors.m'.
'' The enumerated type is defined dynamically and has no source.
'sldemo_fuelsys_dd_controller.sldd' The enumerated type is defined in the data dictionary named

'sldemo_fuelsys_dd_controller.sldd'.

SourceType — Type of defining workspace
'unknown source' (default) | 'base workspace' | 'model workspace' | 'mask workspace' |
'data dictionary'

This property is read-only.

The type of the workspace that defines the variable, returned as a character vector. The possible
values are:

• 'base workspace'
• 'model workspace'
• 'mask workspace'
• 'data dictionary'

If you created the Simulink.VariableUsage object by using the Simulink.findVars function to
find enumerated data types, the possible values are:

• 'MATLAB file'
• 'dynamic class'
• 'data dictionary'

Users — Blocks that use the variable or models that use the enumerated type
{} (empty cell array) (default) | cell array of character vectors

This property is read-only.

Blocks that use the variable or models that use the enumerated type, returned as a cell array of
character vectors. Each character vector names a block or model that uses the variable or
enumerated type. The Simulink.findVars function populates this property.

Object Functions
intersect Return intersection of two arrays of Simulink.VariableUsage objects
setdiff Return difference between two arrays of Simulink.VariableUsage objects
union Return union of two arrays of Simulink.VariableUsage objects

Examples

Create Object That Represents Variable in Base Workspace

Return a Simulink.VariableUsage object for a variable k in the base workspace.

var = Simulink.VariableUsage('k','base workspace');

 Simulink.VariableUsage

8-763

You can use var as a filter for the Simulink.findVars function.

Represent All Variables in the Base Workspace

Return an array of Simulink.VariableUsage objects containing one object for each variable
returned by the whos command in the base workspace.

vars = Simulink.VariableUsage(whos,'base workspace')

Represent All Variables in a Model Workspace

Return an array of Simulink.VariableUsage objects that describes all the variables in a model
workspace.

hws = get_param('mymodel','ModelWorkspace');
vars = Simulink.VariableUsage(hws.whos,'MyModel')

Represent All Variables in a Mask Workspace

Return an array of Simulink.VariableUsage objects that describes all the variables in a mask
workspace.

maskVars = get_param('mymodel/maskblock','MaskWSVariables');
vars = Simulink.VariableUsage(maskVars,'mymodel/maskblock');

Version History
Introduced in R2012b

See Also
Simulink.findVars | Simulink.data.existsInGlobal

Topics
“Manage Design Data”
“Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139

8 Objects

8-764

intersect
Package: Simulink

Return intersection of two arrays of Simulink.VariableUsage objects

Syntax
VarsOut = intersect(VarsIn1,VarsIn2)

Description
VarsOut = intersect(VarsIn1,VarsIn2) returns an array that identifies the variables
described in VarsIn1 and in VarsIn2, which are arrays of Simulink.VariableUsage objects. If a
variable is described by a Simulink.VariableUsage object in VarsIn1 and in VarsIn2, the
function returns a Simulink.VariableUsage object that stores the variable usage information
from both objects in the Users property.

intersect compares the Name, Source, and SourceType properties of the
Simulink.VariableUsage objects in VarsIn1 with the same properties of the objects in VarsIn2.
If VarsIn1 and VarsIn2 each contain Simulink.VariableUsage objects that have the same
values for these three properties, they both describe the same variable.

To create Simulink.VariableUsage objects that describe the usage of variables in a model, use
the Simulink.findVars function.

Examples

Compare Variables Used by Models

Given two models, discover the variables needed by both models.

model1Vars = Simulink.findVars('model1');
model2Vars = Simulink.findVars('model2');
commonVars = intersect(model1Vars,model2Vars);

Input Arguments
VarsIn1 — First array of variables for comparison
array of Simulink.VariableUsage objects

First array of variables for comparison, specified as an array of Simulink.VariableUsage objects.

VarsIn2 — Second array of variables for comparison
array of Simulink.VariableUsage objects

Second array of variables for comparison, specified as an array of Simulink.VariableUsage
objects.

 intersect

8-765

Output Arguments
VarsOut — Variables described in both input arrays
array of Simulink.VariableUsage objects

Variables that are described in both input arrays, returned as an array of
Simulink.VariableUsage objects. The function returns an object for each variable that is
described in VarsIn1 and in VarsIn2.

Version History
Introduced in R2012b

See Also
Simulink.findVars | Simulink.VariableUsage | setdiff | union

Topics
“Manage Design Data”

8 Objects

8-766

setdiff
Package: Simulink

Return difference between two arrays of Simulink.VariableUsage objects

Syntax
VarsOut = setdiff(VarsIn1,VarsIn2)

Description
VarsOut = setdiff(VarsIn1,VarsIn2) returns an array that identifies the variables described
in VarsIn1 but not in VarsIn2, which are arrays of Simulink.VariableUsage objects. If a
variable is described by a Simulink.VariableUsage object in VarsIn1 but not in VarsIn2, the
function returns a copy of the object.

setdiff compares the Name, Source, SourceType, and Users properties of the
Simulink.VariableUsage objects in VarsIn1 with the same properties of the objects in VarsIn2.
If VarsIn1 and VarsIn2 each contain a Simulink.VariableUsage object with the same values for
these three properties, the objects describe the same variable, and setdiff does not return an
object to describe it.

To create Simulink.VariableUsage objects that describe the usage of variables in a model, use
the Simulink.findVars function.

Examples

Determine Variable Usage Difference Between Models

Given two models, discover the variables that are needed by the first model but not the second model.

model1Vars = Simulink.findVars('model1');
model2Vars = Simulink.findVars('model2');
differentVars = setdiff(model1Vars,model2Vars);

Find Variables Not Used by Model

Locate all variables in the base workspace that are not used by a loaded model that has been recently
compiled.

models = find_system('type','block_diagram','LibraryType','None');
base_vars = Simulink.VariableUsage(who,'base workspace');

 setdiff

8-767

used_vars = Simulink.findVars(models,'WorkspaceType','base');
unusedVars = setdiff(base_vars,used_vars);

Input Arguments
VarsIn1 — First array of variables for comparison
array of Simulink.VariableUsage objects

First array of variables for comparison, specified as an array of Simulink.VariableUsage objects.

VarsIn2 — Second array of variables for comparison
array of Simulink.VariableUsage objects

Second array of variables for comparison, specified as an array of Simulink.VariableUsage
objects.

Output Arguments
VarsOut — Variables described in first array but not second array
array of Simulink.VariableUsage objects

Variables that are described in the first input array but not in the second input array, returned as an
array of Simulink.VariableUsage objects. The function returns an object for each variable that is
described in VarsIn1 but not in VarsIn2.

Version History
Introduced in R2012b

See Also
Simulink.findVars | Simulink.VariableUsage | intersect | union

Topics
“Manage Design Data”

8 Objects

8-768

union
Package: Simulink

Return union of two arrays of Simulink.VariableUsage objects

Syntax
VarsOut = union(VarsIn1,VarsIn2)

Description
VarsOut = union(VarsIn1,VarsIn2) returns an array that is a combined set of the variables
from VarsIn1 and VarsIn2, which are arrays of Simulink.VariableUsage objects. The output
array does not contain duplicates. If a variable is described by a Simulink.VariableUsage object
in VarsIn1 and in VarsIn2, the function returns a Simulink.VariableUsage object that stores
the variable usage information from both objects in the Users property.

To create Simulink.VariableUsage objects that describe the usage of variables in a model, use
the Simulink.findVars function.

Examples

Find the Union of Variables Used by Models

Given two models, discover the combined set of variables from both models.

model1Vars = Simulink.findVars('model1');
model2Vars = Simulink.findVars('model2');
unionVars = union(model1Vars,model2Vars);

Input Arguments
VarsIn1 — First array of variables for union
array of Simulink.VariableUsage objects

First array of variables for union, specified as an array of Simulink.VariableUsage objects.

VarsIn2 — Second array of variables for union
array of Simulink.VariableUsage objects

Second array of variables for union, specified as an array of Simulink.VariableUsage objects.

Output Arguments
VarsOut — Combined set of variables described in input arrays
array of Simulink.VariableUsage objects

 union

8-769

Combined set of variables that are described in input arrays, returned as an array of
Simulink.VariableUsage objects. The function returns an object for each variable that is
described in VarsIn1 or in VarsIn2.

Version History
Introduced in R2019b

See Also
Simulink.findVars | Simulink.VariableUsage | setdiff | intersect

Topics
“Manage Design Data”

8 Objects

8-770

Simulink.WorkspaceVar
Store information about workspace variables and blocks that use them

Note Simulink.WorkspaceVar is not recommended. Use Simulink.VariableUsage instead.

Description
A Simulink.WorkspaceVar object describes attributes of a workspace variable and lists the blocks
that use the variable.

Creation
The Simulink.findVars function returns one or more Simulink.WorkspaceVar objects that
embody the results of searching for variables.

Only the Simulink.WorkspaceVar function can set any field value in a Simulink.WorkspaceVar
object. The fields are otherwise read-only.

Syntax
varObj = Simulink.WorkspaceVar(varNames,wkspName)

Description

varObj = Simulink.WorkspaceVar(varNames,wkspName) creates an array of
Simulink.WorkspaceVar objects to describe the variables varNames. The constructor sets the
Name property of each object to one of the variable names specified by varNames, and sets the
Workspace property of all the objects to the workspace specified by wkspName. You can specify
varNames with variables that are not used in any loaded models.

Input Arguments

varNames — Names of target variables
character vector | cell array of character vectors

Names of target variables, specified as a character vector or a cell array of character vectors. The
constructor creates a Simulink.WorkspaceVar object for each variable name. You can specify
varNames with variables that are not used in any loaded models.
Example: 'k'
Example: {'k','asdf','fuelFlow'}
Data Types: char | cell

wkspName — Name of containing workspace
character vector

 Simulink.WorkspaceVar

8-771

Name of the workspace that defines the target variables, specified as a character vector. For example,
you can specify the MATLAB base workspace. The constructor also determines and sets the
WorkspaceType property of each of the returned Simulink.WorkspaceVar objects.
Example: 'base workspace'
Example: 'myModel'
Example: 'myDictionary.sldd'
Data Types: char

Properties
Name — Name of variable
'' (empty character vector) (default) | character vector

This property is read-only.

Name of the variable described by the object, returned as a character vector.

Workspace — Name of workspace that contains variable
'' (empty character vector (default) | character vector

This property is read-only.

Name of the workspace that contains the variable, returned as a character vector. For example:

Workspace value Meaning
'base workspace' The MATLAB base workspace
'MyModel' The model workspace for the model MyModel.
'MyModel/Mask1' The mask workspace for the masked block Mask1 in the model

MyModel.

WorkspaceType — Type of workspace containing variable
'unknown' (default) | 'base' | 'model' | 'mask'

This property is read-only.

Type of workspace that contains the variable, returned as a character vector. The possible values are:

• 'base' — The base workspace
• 'model' — A model workspace
• 'mask' — A mask workspace

UsedByBlocks — Users of variable
{} (empty cell array) (default) | cell array of character vectors

This property is read-only.

Users of the variable, returned as a cell array of character vectors. Each character vector identifies a
block that uses the variable. The Simulink.findVars function populates this property.

8 Objects

8-772

Object Functions
intersect Return intersection of two arrays of Simulink.VariableUsage objects
setdiff Return difference between two arrays of Simulink.VariableUsage objects

Examples

Create Object That Represents Variable in Base Workspace

Return a Simulink.WorkspaceVar object for a variable k in the base workspace.

var = Simulink.WorkspaceVar('k', 'base workspace');

Represent All Variables in the Base Workspace

Return an array of Simulink.WorkspaceVar objects containing one object for each variable
returned by the whos command in the base workspace.

vars = Simulink.WorkspaceVar(who,WkspName)

Represent All Variables in a Model Workspace

Return an array of Simulink.WorkspaceVar objects that describes all the variables in a model
workspace.

hws = get_param('mymodel', 'ModelWorkspace');
vars=Simulink.WorkspaceVar(hws.whos, 'MyModel')

Represent All Variables in a Mask Workspace

Return an array of Simulink.WorkspaceVar objects that describes all the variables in a mask
workspace.

maskVars = get_param('mymodel/maskblock', 'MaskWSVariables');
vars = Simulink.WorkspaceVar(maskVars, 'mymodel/maskblock');

Version History
Introduced in R2010a

See Also
Simulink.findVars | setdiff | intersect

 Simulink.WorkspaceVar

8-773

TimeScopeConfiguration
Control Scope block appearance and behavior

Description
Scope configuration properties control the appearance and behavior of a scope block. Create a scope
configuration object with get_param, and then change property values using the object with dot
notation.

Creation
myScopeConfiguration = get_param(gcbh,'ScopeConfiguration') creates a scope
configuration object for the selected scope block.

Properties
Name — Title on a scope window
block name (default) | character vector | string scalar

Title on a scope window, specified as a character vector or string scalar.

Position — Size and location of the scope
[left bottom width height]

Size and location of scope window, specified as a four-element vector consisting of the left, bottom,
width, and height positions, in pixels.

By default, a scope window appears in the center of your screen with a width of 560 pixels and height
of 420 pixels.

Visible — Visibility of scope window
true (default) | false

Set this property to true to make the scope window visible.

OpenAtSimulationStart — Open scope when starting simulation
true (default for Time Scope) | false (default for Scope)

Set this property to true to open the scope when the simulation starts.

DisplayFullPath — Display full path
false (default) | true

Set this property to true to display the full path of the scope relative to the model on top of the scope
window. If you set this property to false, only the name of the scope block appears on top of the
scope window.

PreserveColorsForCopyToClipboard — Preserve colors for copy to clipboard
false (default) | true

8 Objects

8-774

Set this property to true to maintain the background color of the scope and the signal colors while
copying the scope to clipboard. When you paste this scope to a document or print this scope, the
colors are retained. If you set this property to false and copy the scope to clipboard, colors change
to a toner friendly version when you paste or print the scope.

NumInputPorts — Number of input ports
'1' (default) | character vector

Number of input ports on a scope block, specified as a character vector or string scalar. The
maximum number of input ports is 96.

LayoutDimensions — Number of display rows and columns
[1 1] (default) | [numberOfRows numberOfColumns]

Number of display rows and columns, specified with as a two-element vector. The maximum layout
dimension is 16-by-16.

• If the number of displays is equal to the number of ports, signals from each port appear on
separate displays.

• If the number of displays is less than the number of ports, signals from additional ports appear on
the last y-axis.

SampleTime — Time interval
'-1' (default) | character vector | string scalar

Time interval between Scope block updates during a simulation, specified as a character vector or
string scalar. This property does not apply to floating scopes and scope viewers.

FrameBasedProcessing — Frame-based processing of signals
false (default for Time Scope block) | true (default for Scope block)

Set this property to true to process signals as frame-based.

• false — Process signal values in a channel at each time interval (sample based).
• true — Process signal values in a channel as a group of values from multiple time intervals

(frame based). Frame-based processing is available only with discrete input signals.

MaximizeAxes — Maximize size of signal plots
'Auto' (default) | 'On' | 'Off'

Specify whether or not to maximize the size of signal plots:

• 'Auto' — If Title and YLabel are not specified, maximize all plots.
• 'On' — Maximize all plots. Values in Title and YLabel are hidden.
• 'Off' — Do not maximize plots.

Each of the plots expands to fit the full display. Maximizing the size of signal plots removes the
background area around the plots.

MinimizeControls — Hide menu and toolbar
false (default) | true

Set this property to true to hide the menu and toolbar.

 TimeScopeConfiguration

8-775

If you dock the scope, this property is inactive.

AxesScaling — How to scale y-axes
'Manual' (default) | 'Auto' | 'Updates'

How to scale y-axes, specified as one of these values:

• 'Manual' — Manually scale y-axes with the Scale Y-axis Limits button.
• 'Auto' — Scale y-axes during and after simulation.
• 'Updates' — Scale y-axes after specified number of block updates (time intervals).

Dependency

If this property is set to 'Updates', also specify the property AxesScalingNumUpdates

AxesScalingNumUpdates — Number of updates before scaling y-axes
'10' (default) | character vector | string scalar

Number of updates before scaling y-axes, specified as a character vector or string scalar.

Dependency

Activate this property by setting AxesScaling to 'Updates'.

TimeSpan — Length of x-axis range to display
'0' (default) | character vector | string scalar | 'Auto'

Length of x-axis range to display, specified as one of these values:

• Positive real number — Any value less than the total simulation time specified as a character
vector or string scalar.

• 'Auto' — Difference between the simulation start and stop times.

The block calculates the beginning and end times of the x-axis range using the TimeDisplayOffset
and TimeSpan properties. For example, if you set TimeDisplay to 10 and the TimeSpan to 20, the
scope sets the x-axis range from 10 to 30.

TimeSpanOverrunAction — How to display data
'Wrap' (default) | 'Scroll'

How to display data beyond the visible x-axis range, specified as one of these values:

• 'Wrap' — Draw a full screen of data from left to right, clear the screen, and then restart drawing
of data.

• 'Scroll' — Move data to the left as new data is drawn on the right. This mode is graphically
intensive and can affect run-time performance.

You can see the effects of this option only when plotting is slow with large models or small step sizes.

TimeUnits — Units to display on the x-axis
'Metric' (default for Time Scope block) | 'None' (default for Scope block) | 'Seconds'

Units to display on the x-axis, specified as one of these values:

• 'Metric' — Display time units based on the length of the TimeSpan property.

8 Objects

8-776

• 'None' — Display Time on the x-axis.
• 'Seconds' — Display Time (seconds) on the x-axis.

TimeDisplayOffset — x-axis range offset
'0' (default) | character vector | string scalar

x-axis range offset number, specified as a character vector or string scalar. For input signals with
multiple channels, enter a scalar or vector of offsets.

• Scalar — Offset all channels of an input signal by the same value.
• Vector — Independently offset the channels.

TimeAxisLabels — How x-axis labels display
'All' (default for Time Scope block) | 'Bottom' (default for Scope block) | 'None'

How x-axis labels display, specified as one of these values:

• 'All' — Display x-axis labels on all displays.
• 'Bottom' — Display x-axis labels only on the bottom display.
• 'None' — Do not display labels and deactivate ShowTimeAxisLabel property.

Dependency

Set the ActiveDisplay property before specifying this property.

Set ShowTimeAxisLabel to true and set Maximize axes to 'Off'.

ShowTimeAxisLabel — Display or hide x-axis labels
true (default for Time Scope block) | false (default for Scope block)

Set this property to true to display the x-axis labels.
Dependency

Set the ActiveDisplay property before setting this property.

If this property is set to true, also set TimeAxisLabels. If TimeAxisLabels is set to 'None', this
property is inactive.

ActiveDisplay — Display for setting display-specific properties
'1' (default) | character vector

Display for setting display-specific properties, specified as a character vector or string. The number
of a display corresponds to its column-wise placement index. For multi-column layouts, the displays
are numbered down and then across.
Dependency

Setting this property selects the display for setting the properties ShowGrid, ShowLegend, Title,
PlotAsMagnitudePhase, YLabel, and YLimits.

Title — Title for display
'%<SignalLabel>' (default) | character vector | string scalar

Title for a display, specified as a character vector or string scalar. The default value
%<SignalLabel> uses the input signal name for the title.

 TimeScopeConfiguration

8-777

Dependency

Set the ActiveDisplay property before setting this property.

ShowLegend — Signal legend
false (default) | true

Set this property to true to display the legend.

Names listed in the legend are the signal names from the model. For signals with multiple channels, a
channel index is appended after the signal name. See the Scope block reference for an example.
Dependency

Set the ActiveDisplay property before setting this property.

ShowGrid — Vertical and horizontal grid lines
true (default) | false

Set this property to true to display vertical and horizontal grid lines.
Dependency

Set the ActiveDisplay property before setting this property.

PlotAsMagnitudePhase — Magnitude and phase plots
false (default) | true

Specify whether or not to display the magnitude and phase plots:

• false — Display signal plot.

If the signal is complex, plot the real and imaginary parts on the same y-axis (display).
• true — Display magnitude and phase plots.

If the signal is real, plot the absolute value of the signal for the magnitude. The phase is 0 degrees
for positive values and 180 degrees for negative values.

Dependency

Set the ActiveDisplay property before setting this property.

YLimits — Minimum and maximum values of y-axis
[-10 10] (default) | [ymin ymax]

Minimum and maximum values of y-axis, specified as a two-element numeric vector.
Dependency

Set the ActiveDisplay property before setting this property.

When PlotAsMagnitudePhase is true, this property specifies the y-axis limits for the magnitude
plot. The y-axis limits of the phase plot are always [-180 180].

YLabel — Y-axis label
'' (default) | character vector | string scalar

y-axis label for active display, specified as a character vector or string scalar.

8 Objects

8-778

Dependency

Set the ActiveDisplay property before setting this property.

If PlotAsMagnitudePhase is true, the value of YLabel is hidden and plots are labeled Magnitude
and Phase.

DataLogging — Save scope data
false (default) | true

Set this property to true to save scope data to a variable in the MATLAB workspace.

This property does not apply to floating scopes and scope viewers.
Dependency

If this property is set to true, you must also specify the properties DataLoggingVariableName and
DataLoggingSaveFormat.

DataLoggingVariableName — Variable name for saving scope data
'ScopeData' (default) | character vector | string scalar

Variable name for saving scope data in the MATLAB workspace, specified as a character vector or
string scalar. This property does not apply to floating scopes and scope viewers.
Dependency

Activate this property by setting DataLogging to true.

DataLoggingLimitDataPoints — Limit buffered data
false (default) | true

Set to true to limit buffered data before plotting and saving data.

For simulations with Stop time set to inf, always set this parameter to true.
Dependency

If this property is set to true, also specify the number of data values to plot and save with the
property DataLoggingMaxPoints.

DataLoggingMaxPoints — Maximum number of data values
'5000' (default) | character vector | string scalar

Maximum number of data values to plot and save, specified as a character vector or string scalar. The
data values that are plotted and saved are from the end of a simulation. For example, setting this
property to 100 saves the last 100 data points.
Dependency

Activate this property by setting DataLoggingLimitDataPoints to true. Specifying this property
limits the data values a scope plots and the data values saved in the MATLAB variable specified in
DataLoggingVariableName.

DataLoggingDecimateData — Reduce scope data
false (default) | true

Set this property to true to reduce scope data before plotting and saving.

 TimeScopeConfiguration

8-779

Dependency

If this property is set to true, you must also specify the DataLoggingDecimation property.

DataLoggingDecimation — Decimation factor
'1' (default) | character vector | string scalar

Decimation factor applied to the signal data before plotting and saving, specified as a character
vector or string scalar. The scope buffers every Nth data point, where N is the decimation factor you
specify. A value of 1 buffers all data values.

Dependency

Activate this property by setting DataLoggingDecimateData to true.

DataLoggingSaveFormat — Variable format for saving scope data
'Dataset' (default) | 'Structure With Time' | 'Structure' | 'Array'

Variable format for saving scope data to the MATLAB workspace, specified as one of these values:

• 'Dataset' — Save data as a dataset object. This format does not support variable-size data, MAT-
file logging, or external mode archiving. See Simulink.SimulationData.Dataset.

• 'StructureWithTime' — Save data as a structure with associated time information. This format
does not support single- or multiport frame-based data, or multirate data.

• 'Structure' — Save data as a structure. This format does not support multirate data.
• 'Array' — Save data as an array with associated time information. This format does not support

multiport sample-based data, single- or multiport frame-based data, variable-size data, or
multirate data.

This property does not apply to floating scopes and scope viewers.

Dependency

Activate this property by setting DataLogging to true.

Examples

Create Scope Configuration Object

This example creates a scope configuration object using the 'vdp' model which models the van der
Pol equation.

open_system('vdp')
myScopeConfiguration = get_param('vdp/Scope','ScopeConfiguration');
myScopeConfiguration.NumInputPorts = '2';

Version History
Introduced in R2013a

See Also
Scope | Floating Scope | Time Scope

8 Objects

8-780

Topics
“Control Scope Blocks Programmatically”

 TimeScopeConfiguration

8-781

Model Advisor Checks

9

Simulink Checks

In this section...
“Simulink Check Overview” on page 9-4
“Migrating to Simplified Initialization Mode Overview” on page 9-4
“Identify unconnected lines, input ports, and output ports” on page 9-5
“Check root model Inport block specifications” on page 9-5
“Check optimization settings” on page 9-6
“Check diagnostic settings ignored during accelerated model reference simulation” on page 9-8
“Check for parameter tunability information ignored for referenced models” on page 9-9
“Check for implicit signal resolution” on page 9-9
“Check for optimal bus virtuality” on page 9-10
“Check for Discrete-Time Integrator blocks with initial condition uncertainty” on page 9-10
“Identify disabled library links” on page 9-11
“Check for large number of function arguments from virtual bus across model reference boundary”
on page 9-12
“Identify parameterized library links” on page 9-12
“Identify unresolved library links” on page 9-13
“Identify configurable subsystem blocks for converting to variant subsystem blocks” on page 9-14
“Identify Variant Model blocks and convert those to Variant Subsystem containing Model block
choices” on page 9-14
“Identify Variant blocks using Variant objects with empty conditions” on page 9-15
“Check usage of function-call connections” on page 9-15
“Check Data Store Memory blocks for multitasking, strong typing, and shadowing issues” on page 9-
15
“Check if read/write diagnostics are enabled for data store blocks” on page 9-16
“Check data store block sample times for modeling errors” on page 9-17
“Check for potential ordering issues involving data store access” on page 9-18
“Check structure parameter usage with bus signals” on page 9-19
“Check Delay, Unit Delay and Zero-Order Hold blocks for rate transition” on page 9-20
“Check for calls to slDataTypeAndScale” on page 9-22
“Check bus signals treated as vectors” on page 9-23
“Check for potentially delayed function-call subsystem return values” on page 9-23
“Identify block output signals with continuous sample time and non-floating point data type” on page
9-24
“Check usage of Merge blocks” on page 9-25
“Check usage of Outport blocks” on page 9-27
“Check usage of Discrete-Time Integrator blocks” on page 9-34
“Check model settings for migration to simplified initialization mode” on page 9-35

9 Model Advisor Checks

9-2

In this section...
“Check S-functions in the model” on page 9-36
“Check for non-continuous signals driving derivative ports” on page 9-37
“Runtime diagnostics for S-functions” on page 9-38
“Identify unit mismatches in the model” on page 9-39
“Identify automatic unit conversions in the model” on page 9-39
“Identify disallowed unit systems in the model” on page 9-39
“Identify undefined units in the model” on page 9-40
“Identify ambiguous units in the model” on page 9-40
“Check model for block upgrade issues” on page 9-41
“Check model for block upgrade issues requiring compile time information” on page 9-41
“Check if SLX file compression is off” on page 9-42
“Check that the model or library is saved in current version” on page 9-43
“Check model for SB2SL blocks” on page 9-43
“Check Model History properties” on page 9-44
“Identify Model Info blocks that can interact with external source control tools” on page 9-45
“Check model for upgradable SerDes Toolbox blocks” on page 9-45
“Check model for legacy 3DoF or 6DoF blocks” on page 9-46
“Check model for Aerospace Blockset navigation blocks” on page 9-46
“Check and update masked blocks in library to use promoted parameters” on page 9-47
“Check and update mask image display commands with unnecessary imread() function calls” on
page 9-48
“Check and update mask to affirm icon drawing commands dependency on mask workspace” on
page 9-48
“Identify masked blocks that specify tabs in mask dialog using MaskTabNames parameter” on page
9-49
“Identify questionable operations for strict single-precision design” on page 9-50
“Check get_param calls for block CompiledSampleTime” on page 9-51
“Check if all simulation outputs are returned as a single Simulink.SimulationOutput object” on page
9-52
“Check model for parameter initialization and tuning issues” on page 9-53
“Check for virtual bus across model reference boundaries” on page 9-54
“Check model for custom library blocks that rely on frame status of the signal” on page 9-55
“Check model for S-function upgrade issues” on page 9-55
“Update System object syntax” on page 9-56
“Check Rapid accelerator signal logging” on page 9-57
“Check virtual bus inputs to blocks” on page 9-58
“Check for root outports with constant sample time” on page 9-61
“Analyze model hierarchy and continue upgrade sequence” on page 9-61
“Check Access to Data Stores” on page 9-62

 Simulink Checks

9-3

In this section...
“Check relative execution orders for Data Store Read and Data Store Write blocks” on page 9-63
“Check for case mismatches in references to models and libraries” on page 9-64
“Check model for Signal Builder blocks” on page 9-64
“Check output dimensions of MATLAB Function blocks” on page 9-64
“Check model for RF Blockset Divider blocks using Wilkinson power divider component with broken
connections” on page 9-65
“Identify Environment Controller Blocks and Replace Them with Variant Source Blocks” on page 9-
66
“Identify variant blocks with VariantActivation set to "Inherit From Simulink.VariantControl" but
does not use Simulink.VariantControl” on page 9-67
“Check for machine-parented data” on page 9-67
“Identify clones from the linked library” on page 9-69
“Refactor Bus Selector and Bus Creator blocks to In Bus Element and Out Bus Element blocks” on
page 9-70

Simulink Check Overview

Use the Simulink Model Advisor checks to configure your model for simulation.

See Also

• “Run Model Advisor Checks”
• “Model Advisor Checks” (Simulink Coder)
• “Simulink Check Checks” (Simulink Check)

Migrating to Simplified Initialization Mode Overview

Simplified initialization mode was introduced in R2008b to improve the consistency of simulation
results. This mode is especially important for models that do not specify initial conditions for
conditionally executed subsystem output ports. For more information, see “Simplified Initialization
Mode” and “Classic Initialization Mode”.

Use the Model Advisor checks in Migrating to Simplified Initialization Mode to help migrate your
model to simplified initialization mode.

See Also

• “Simplified Initialization Mode”
• “Classic Initialization Mode”
• “Underspecified initialization detection”
• “Check usage of Merge blocks” on page 9-25
• “Check usage of Outport blocks” on page 9-27
• “Check usage of Discrete-Time Integrator blocks” on page 9-34

9 Model Advisor Checks

9-4

• “Check model settings for migration to simplified initialization mode” on page 9-35

Identify unconnected lines, input ports, and output ports

Check ID: mathworks.design.UnconnectedLinesPorts

Check for unconnected lines or ports.

Description

This check lists unconnected lines or ports. These can have difficulty propagating signal attributes
such as data type, sample time, and dimensions.

Note Ports connected to ground/terminator blocks will pass this test.

Results and Recommended Actions

Condition Recommended Action
Lines, input ports, or output ports are unconnected. Connect the signals. Double-click the list

of unconnected items to locate failure.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

Tips

Use the PortConnectivity command to obtain an array of structures describing block input or
output ports.

See Also

“Common Block Properties” on page 6-12 for information on the PortConnectivity command.

“Model Advisor Exclusion Overview” (Simulink Check)

Check root model Inport block specifications

Check ID: mathworks.design.RootInportSpec

Check that root model Inport blocks fully define dimensions, sample time, and data type.

Description

Using root model Inport blocks that do not fully define dimensions, sample time, or data type can lead
to undesired simulation results. Simulink software back-propagates dimensions, sample times and
data types from downstream blocks unless you explicitly assign them values.

 Simulink Checks

9-5

Results and Recommended Actions

Condition Recommended Action
Root-level Inport blocks have undefined attributes. Fully define the attributes of the root-

level Inport blocks.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

Tips

The following configurations pass this check:

• Configuration Parameters > Solver > Periodic sample time constraint is set to Ensure
sample time independent

• For export-function models, inherited sample time is not flagged.

See Also

• “About Data Types in Simulink”.
• “Determine Signal Dimensions”.
• “Specify Sample Time”.
• “Model Advisor Exclusion Overview” (Simulink Check)

Check optimization settings

Check ID: mathworks.design.OptimizationSettings

Check for optimizations that can lead to non-optimal code generation and simulation.

Description

This check reviews the status of optimizations that can improve code efficiency and simulation time.

9 Model Advisor Checks

9-6

Results and Recommended Actions

Condition Recommended Action
The specified
optimizations are off.

Select the following optimization check boxes on the Optimization pane in the
Configuration Parameters dialog box:

• Remove root level I/O zero initialization (Embedded Coder)
• Remove internal data zero initialization (Embedded Coder)

Select the following optimization check boxes on the Optimization pane in the
Configuration Parameters dialog box:

• Inline invariant signals (Simulink Coder) (only if you have a Simulink Coder
license)

Select the following optimization check boxes in the Configuration Parameters
dialog box:

• “Block reduction”
• “Conditional input branch execution”
• “Implement logic signals as Boolean data (vs. double)”
• Use memset to initialize floats and doubles to 0.0 (Simulink Coder)
• Remove code from floating-point to integer conversions that wraps out-of-range

values (Simulink Coder) (only if you have a Simulink Coder license)
• Signal storage reuse (Simulink Coder) (only if you have a Simulink Coder

license)
• Enable local block outputs (Simulink Coder)
• Reuse local block outputs (Simulink Coder)
• Eliminate superfluous local variables (Expression folding) (Simulink Coder)

Select the following optimization check boxes on the Optimization pane in the
Configuration Parameters dialog box:

Note Model Advisor checks these parameters only if there is a Stateflow chart in
the model.

• Use bitsets for storing state configuration (Simulink Coder)
• Use bitsets for storing Boolean data (Simulink Coder)

“Application lifespan
(days)” is set as infinite.
This could lead to
expensive 64-bit counter
usage.

Choose a stop time if this is not intended.

 Simulink Checks

9-7

Condition Recommended Action
The specified diagnostics,
which can increase the
time it takes to simulate
your model, are set to
warning or error.

Select none for:

• Solver data inconsistency
• Array bounds exceeded
• Diagnostics > Data Validity > Simulation range checking

The specified Embedded
Coder parameters are off.

If you have an Embedded Coder license and you are using an ERT-based system
target file:

• Select Single output/update function. For details, see Single output/update
function (Simulink Coder).

• Select Ignore test point signals. For details, see Ignore test point signals
(Embedded Coder).

• Set Pass reusable subsystem outputs as to Individual arguments. For
details, see Pass reusable subsystem outputs as (Embedded Coder).

Tips

If the system contains Model blocks and the referenced model is in Accelerator mode, simulating the
model requires generating and compiling code.

check

See Also

• “Model Configuration Parameters: Code Generation Optimization” (Simulink Coder)

Check diagnostic settings ignored during accelerated model reference
simulation

Check ID: mathworks.design.ModelRefSIMConfigCompliance

Checks for referenced models for which Simulink changes configuration parameter settings during
accelerated simulation.

Description

For models referenced in accelerator mode, Simulink ignores the settings of the following
configuration parameters that you set to a value other than None.

• Array bounds exceeded
• Diagnostics > Data Validity > Inf or NaN block output
• Diagnostics > Data Validity > Division by singular matrix
• Diagnostics > Data Validity > Wrap on overflow

Also, for models referenced in accelerator mode, Simulink ignores the following Configuration
Parameters > Diagnostics > Data Validity > Data Store Memory block parameters if you set
them to a value other than Disable all. For details, see “Data Store Diagnostics”.

9 Model Advisor Checks

9-8

• Detect read before write
• Detect write after read
• Detect write after write

Results and Recommended Actions

Condition Recommended Action
You want to see the results of running the identified
diagnostics with settings to produce warnings or errors.

Simulate the model in Normal mode and
resolve diagnostic warnings or errors.

Check for parameter tunability information ignored for referenced
models

Check ID: mathworks.design.ParamTunabilityIgnored

Checks if parameter tunability information is included in the Model Parameter Configuration dialog
box.

Description

Simulink software ignores tunability information specified in the Model Parameter Configuration
dialog box. This check identifies those models containing parameter tunability information that
Simulink software will ignore if the model is referenced by other models.

Results and Recommended Actions

Condition Recommended Action
Model contains ignored parameter tunability information. Click the links to convert to equivalent

Simulink parameter objects in the
MATLAB workspace.

See Also

• “Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder)

Check for implicit signal resolution

Check ID: mathworks.design.ImplicitSignalResolution

Identify models that attempt to resolve named signals and states to Simulink.Signal objects.

Description

Requiring Simulink software to resolve all named signals and states is inefficient and slows
incremental code generation and model reference. This check identifies those signals and states for
which you may turn off implicit signal resolution and enforce resolution.

 Simulink Checks

9-9

Results and Recommended Actions

Condition Recommended Action
Not all signals and states are resolved. Turn off implicit signal resolution and

enforce resolution for each signal and
state that does resolve.

See Also

“Resolve Signal Objects for Output Variables”.

Check for optimal bus virtuality

Check ID: mathworks.design.OptBusVirtuality

Identify virtual buses that could be made nonvirtual. Making these buses nonvirtual improves
generated code efficiency.

Description

This check identifies blocks incorporating virtual buses that cross a subsystem boundary. Changing
these to nonvirtual improves generated code efficiency.

Results and Recommended Actions

Condition Recommended Action
Blocks that specify a virtual bus crossing a subsystem
boundary.

Change the highlighted bus to
nonvirtual.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

See Also

• “Signal Basics”
• “Composite Interface Guidelines”
• “Model Advisor Exclusion Overview” (Simulink Check)

Check for Discrete-Time Integrator blocks with initial condition
uncertainty

Check ID: mathworks.design.DiscreteTimeIntegratorInitCondition

Identify Discrete-Time Integrator blocks with state ports and initial condition ports that are fed by
neither an Initial Condition nor a Constant block.

9 Model Advisor Checks

9-10

Description

Discrete-Time Integrator blocks with state port and initial condition ports might not be suitably
initialized unless they are fed from an Initial Condition or Constant block. This is more likely to
happen when Discrete-Time Integrator blocks are used to model second-order or higher-order
dynamic systems.

Results and Recommended Actions

Condition Recommended Action
Discrete-Time Integrator blocks are not initialized during
the model initialization phase.

Add a Constant or Initial Condition block
to feed the external Initial Condition
port.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

See Also

• IC block
• Discrete-Time Integrator block
• Constant block
• “Model Advisor Exclusion Overview” (Simulink Check)

Identify disabled library links

Check ID: mathworks.design.DisabledLibLinks

Search model for disabled library links.

Description

Disabled library links can cause unexpected simulation results. Resolve disabled links before saving a
model.

Note This check may overlap with “Check model for block upgrade issues” on page 9-41.

Results and Recommended Actions

Condition Recommended Action
Library links are disabled. Click the Library Link > Resolve link

option in the context menu.

Capabilities and Limitations

You can:

 Simulink Checks

9-11

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

Tips

• Use the Model Browser to find library links.
• To enable a broken link, right-click a block in your model to display the context menu. Select

Library Link > Resolve link.

See Also

“Restore Disabled Links”

“Model Advisor Exclusion Overview” (Simulink Check)

Check for large number of function arguments from virtual bus across
model reference boundary

Check ID: mathworks.design.CheckVirtualBusAcrossModelReferenceArgs

Checks virtual bus signals that cross model reference boundaries and flags cases where using virtual
buses across a model reference boundary increases the number of function arguments significantly.

Description

To improve the speed of the code generation process, you can use this check to reduce the number of
generated function arguments. If the check finds a model that where many arguments will be
generated for a function, you can click Update Model to modify the model so that it generates fewer
arguments.

Results and Recommended Action

Methods that generate many function arguments as the result of a virtual bus signal crossing model
reference boundary slow down the code generation process.

Condition Recommended Action
Methods are listed that generate a large number of
arguments for the current the model configuration that
this check can reduce by modifying the model.

Click Update Model.

Clicking Update Model resets Inport and Outport block parameters and inserts Signal Conversion
blocks, as necessary, to reduce the number of generated function arguments for the model.

See Also

“Use Buses at Model Interfaces”

Identify parameterized library links

Check ID: mathworks.design.ParameterizedLibLinks

9 Model Advisor Checks

9-12

Search model for parameterized library links.

Description

Parameterized library links that are unintentional can result in unexpected parameter settings in your
model. This can result in improper model operation.

Results and Recommended Actions

Condition Recommended Action
Parameterized links are listed. Verify that the links are intended to be

parameterized.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

Tips

• Right-click a block in your model to display the context menu. Choose Link Options and click
Go To Library Block to see the original block from the library.

• To parameterize a library link, choose Look Under Mask, from the context menu and select the
parameter.

See Also

“Restore Disabled Links”

“Model Advisor Exclusion Overview” (Simulink Check)

Identify unresolved library links

Check ID: mathworks.design.UnresolvedLibLinks

Search the model for unresolved library links, where the specified library block cannot be found.

Description

Check for unresolved library links. Models do not simulate while there are unresolved library links.

Results and Recommended Actions

Condition Recommended Action
Library links are unresolved. Locate missing library block or an alternative.

Capabilities and Limitations

You can:

 Simulink Checks

9-13

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

See Also

“Fix Unresolved Library Links”

“Model Advisor Exclusion Overview” (Simulink Check)

Identify configurable subsystem blocks for converting to variant
subsystem blocks

Check ID: mathworks.design.CSStoVSSConvert

Search the model to identify configurable subsystem blocks at the model or subsystem level.

Results and Recommended Actions

Condition Recommended Action
Configurable subsystem blocks are identified. Convert these blocks to variant

subsystem blocks to avoid compatibility
issues. See Configurable Subsystem.

Capabilities and Limitations

You can run this check on your library models.

See Also

“Convert to Variant Subsystem” on page 1-232

Identify Variant Model blocks and convert those to Variant Subsystem
containing Model block choices

Check ID: mathworks.design.ConvertMdlrefVarToVSS

Search the model to identify Variant Model blocks.

Results and Recommended Actions

Condition Recommended Action
Variant Model blocks available in the model are listed. Convert these blocks to Variant

Subsystem blocks.

See Also

Simulink.VariantManager.convertToVariant

9 Model Advisor Checks

9-14

Identify Variant blocks using Variant objects with empty conditions

Check ID: mathworks.design.emptyVariantObjects

Search the model to identify the Variant blocks or library having empty Variant objects.

Results and Recommended Actions

Condition Recommended Action
The Variant blocks in the model or library having empty
Variant objects are listed.

Use valid conditions in the variant
objects.

See Also

“Introduction to Variant Controls”

Check usage of function-call connections

Check ID: mathworks.design.CheckForProperFcnCallUsage

Check model diagnostic settings that apply to function-call connectivity and that might impact model
execution.

Description

Check for connectivity diagnostic settings that might lead to non-deterministic model execution.

Results and Recommended Actions

Condition Recommended Action
Configuration parameter “Context-dependent
inputs” is set to Warning. This might lead to non-
deterministic model execution.

Set Configuration parameter “Context-dependent
inputs” to Error.

See Also

Function-Call Subsystem

Check Data Store Memory blocks for multitasking, strong typing, and
shadowing issues

Check ID: mathworks.design.DataStoreMemoryBlkIssue

Look for modeling issues related to Data Store Memory blocks.

Description

Checks for multitasking data integrity, strong typing, and shadowing of data stores of higher scope.

 Simulink Checks

9-15

Results and Recommended Actions

Condition Recommended Action
The Duplicate data store names check is
set to none or warning.

Consider setting the “Duplicate data store names”
check to error in the Configuration Parameters dialog
box, on the Diagnostics > Data Validity pane.

The data store variable names are not
strongly typed in one of the following:

• Signal Attributes pane of the Block
Parameters dialog for the Date Store
Memory block

• Global data store name

Specify a data type other than auto by taking one of the
following actions:

• Choose a data type other than Inherit: auto on
the Signal Attributes pane of the Block
Parameters dialog for the Date Store Memory
block.

• If you are using a global data store name, then
specify its data type in the Simulink.Signal
object.

The Multitask data store check is set to
none or warning.

Consider setting the “Multitask data store” check to
error in the Configuration Parameters dialog box, on
the Diagnostics > Data Validity pane.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

• “Local and Global Data Stores”
• “Storage Classes for Data Store Memory Blocks” (Simulink Coder)
• Data Store Memory
• Data Store Read
• Data Store Write
• “Duplicate data store names”
• “Multitask data store”
• “Model Advisor Exclusion Overview” (Simulink Check)

Check if read/write diagnostics are enabled for data store blocks

Check ID: mathworks.design.DiagnosticDataStoreBlk

For data store blocks in the model, enable the read-and-write diagnostics order checking to detect
run-time issues.

Description

Check for the read-and-write diagnostics order checking. By enabling the read-and-write diagnostics,
you detect potential run-time issues.

9 Model Advisor Checks

9-16

Results and Recommended Actions

Condition Recommended Action
The Detect read before write check is disabled. Consider enabling “Detect read before write” in

the Configuration Parameter dialog box
Diagnostics> Data Validity pane.

The Detect write after read check is disabled. Consider enabling “Detect write after read” in
the Configuration Parameter dialog box
Diagnostics> Data Validity pane.

The Detect write after write check is disabled. Consider enabling “Detect write after write” in
the Configuration Parameter dialog box
Diagnostics> Data Validity pane.

Capabilities and Limitations

Exclude blocks and charts from this check if you have a Simulink Check license.

Tips

.

• The run-time diagnostics can slow simulations down considerably. Once you have verified that
Simulink does not generate warnings or errors during simulation, set them to Disable all.

See Also

• “Local and Global Data Stores”
• Data Store Memory
• Data Store Read
• Data Store Write
• “Detect read before write”
• “Detect write after read”
• “Detect write after write”
• “Check for potential ordering issues involving data store access” on page 9-18
• “Model Advisor Exclusion Overview” (Simulink Check)

Check data store block sample times for modeling errors

Check ID: mathworks.design.DataStoreBlkSampleTime

Identify modeling errors due to the sample times of data store blocks.

Description

Check data store blocks for continuous or fixed-in-minor-step sample times.

 Simulink Checks

9-17

Results and Recommended Actions

Condition Recommended Action
Data store blocks in your model have continuous
or fixed-in-minor-step sample times.

Consider making the listed blocks discrete or
replacing them with either Memory or Goto and
From blocks.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

• “Local and Global Data Stores”
• Data Store Memory
• Data Store Read
• Data Store Write
• “Fixed-in-Minor-Step”
• “Model Advisor Exclusion Overview” (Simulink Check)

Check for potential ordering issues involving data store access

Check ID: mathworks.design.OrderingDataStoreAccess

Look for read/write issues which may cause inaccuracies in the results.

Description

During an Update Diagram, identify potential issues relating to read-before-write, write-after-read,
and write-after-write conditions for data store blocks.

Results and Recommended Actions

Condition Recommended Action
Reading and writing (read-before-write or write-
after-read condition) occur out of order.

Consider restructuring your model so that the
Data Store Read block executes before the Data
Store Write block.

Multiple writes occur within a single time step. Change the model to write data only once per
time step or refer to the following Tips section.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

Tips

This check performs a static analysis which might not identify every instance of improper usage.
Specifically, Function-Call Subsystems, Stateflow Charts, MATLAB for code generation, For Iterator
Subsystems, and For Each Subsystems can cause both missed detections and false positives. For a
more comprehensive check, consider enabling the following diagnostics on the Diagnostics > Data

9 Model Advisor Checks

9-18

Validity pane in the Configuration Parameters dialog box: “Detect read before write”, “Detect write
after read”, and “Detect write after write”.

See Also

• “Local and Global Data Stores”
• Data Store Memory
• Data Store Read
• Data Store Write
• “Detect read before write”
• “Detect write after read”
• “Detect write after write”
• “Model Advisor Exclusion Overview” (Simulink Check)

Check structure parameter usage with bus signals

Check ID: mathworks.design.MismatchedBusParams

Identify blocks and Simulink.Signal objects that initialize bus signals by using mismatched
structures.

Description

In a model, you can use a MATLAB structure to initialize a bus signal. For example, if you pass a bus
signal through a Unit Delay block, you can set the Initial condition parameter to a structure. For
basic information about initializing buses by using structures, see “Specify Initial Conditions for Bus
Elements”.

Run this check to generate efficient and readable code by matching the shape and numeric data types
of initial condition structures with those of bus signals. Matching these characteristics avoids
unnecessary explicit typecasts and replaces field-by-field structure assignments with, for example,
calls to memcpy.

Partial Structures

This check lists blocks and Simulink.Signal objects that initialize bus signals by using partial
structures. During the iterative process of creating a model, you can use partial structures to focus
on a subset of signal elements in a bus. For a mature model, use full structures to:

• Generate readable and efficient code.
• Support a modeling style that explicitly initializes unspecified signals. When you use partial

structures, Simulink implicitly initializes unspecified signals.

For more information about full and partial structures, see “Create Full Structures for Initialization”
and “Create Partial Structures for Initialization”.

Data Type Mismatches

This check lists blocks and Simulink.Signal objects whose initial condition structures introduce
data type mismatches. The fields of these structures have numeric data types that do not match the
data types of the corresponding bus signal elements.

 Simulink Checks

9-19

This check does not detect a mismatch for blocks, such as the Unit Delay block, that implicitly
convert the data type of initial condition to the input signal.

When you configure an initial condition structure to appear as a tunable global structure in the
generated code, avoid unnecessary explicit typecasts by matching the data types. See “Generate
Tunable Initial Condition Structure for Bus Signal” (Simulink Coder).

Results and Recommended Actions

Condition Recommended Action
Block or signal object uses partial
structure

Consider using the function
Simulink.Bus.createMATLABStructure to create a full initial
condition structure.

Data types of structure fields do
not match data types of
corresponding signal elements

Consider defining the structure as a Simulink.Parameter
object, and creating a Simulink.Bus object to use as the data
type of the bus signal and of the parameter object. To control
numeric data types, use the Simulink.BusElement objects in the
bus object.

See Also

• “Specify Initial Conditions for Bus Elements”
• “Generate Tunable Initial Condition Structure for Bus Signal” (Simulink Coder)
• “Data Stores with Signal Objects”
• Simulink.Bus.createMATLABStruct
• Simulink.Signal

Check Delay, Unit Delay and Zero-Order Hold blocks for rate transition

Check ID: mathworks.design.ReplaceZOHDelayByRTB

Identify Delay, Unit Delay, or Zero-Order Hold blocks that are used for rate transition. Replace these
blocks with actual Rate Transition blocks.

Description

If a model uses Delay, Unit Delay, or Zero-Order Hold blocks to provide rate transition between input
and output signals, Simulink makes a hidden replacement of these blocks with built-in Rate
Transition blocks. In the compiled block diagram, a yellow symbol and the letters “RT” appear in the
upper-left corner of a replacement block. This replacement can affect the behavior of the model, as
follows:

• These blocks lose their algorithmic design properties to delay a signal or implement zero-order
hold. Instead, they acquire rate transition behavior.

• This modeling technique works only in specific transition configurations (slow-to-fast for Delay
and Unit Delay blocks, and fast-to-slow for Zero-Order Hold block). Set the block sample time to
be equal to the slower rate (source for the Delay and Unit Delay blocks and destination for the
Zero-Order Hold block).

• When the block sample time of a downstream or upstream block changes, these Delay, Unit Delay
and Zero-Order Hold blocks might not perform rate transition. For example, setting the source

9 Model Advisor Checks

9-20

and destination sample times equal stops rate transition. The blocks then assume their original
algorithmic design properties.

• The block sample time shows incomplete information about sample time rates. The block code
runs at two different rates to handle data transfer. However, the block sample time and sample
time color show it as a single-rate block. Tools and MATLAB scripts that use sample time
information base their behavior on this information.

An alternative is to replace Delay, Unit Delay, or Zero-Order Hold blocks with actual Rate Transition
blocks.

• The technique ensures unambiguous results in block behavior. Delay, Unit Delay, or Zero-Order
Hold blocks act according to their algorithmic design to delay and hold signals respectively. Only
Rate Transition blocks perform actual rate transition.

• Using an actual Rate Transition block for rate transition offers a configurable solution to handle
data transfer if you want to specify deterministic behavior or the type of memory buffers to
implement.

Use this check to identify instances in your model where Delay, Unit Delay or Zero-Order Hold blocks
undergo hidden replacement to provide rate transition between signals. Click Upgrade Model to
replace these blocks with actual Rate Transition blocks.

Results and Recommended Actions

Condition Recommended Action
Model has no instances of Delay,
Unit Delay, or Zero-Order Hold
blocks used for rate transition.

No action required.

Model has instances of Delay, Unit
Delay, or Zero-Order Hold blocks
used for rate transition.

The check identifies these instances and allows you to upgrade
the model.

1 Click Upgrade Model to replace with actual Rate Transition
blocks.

2 Save changes to your model.

If you do not choose to replace the Delay, Unit Delay, and/or Zero-Order Hold blocks with actual Rate
Transition blocks, Simulink continues to perform a hidden replacement of these blocks with built-in
rate transition blocks.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

See Also

• “Run Model Advisor Checks”
• “Model Upgrades”
• Rate Transition
• “Model Advisor Exclusion Overview” (Simulink Check)

 Simulink Checks

9-21

Check for calls to slDataTypeAndScale

Check ID: mathworks.design.CallslDataTypeAndScale

Identify calls to the internal function slDataTypeAndScale.

Description

In some previous versions of Simulink, opening a model that had been saved in an earlier version
triggers an automatic upgrade to code for data type handling. The automatic upgrade inserts calls to
the internal function slDataTypeAndScale. Although Simulink continues to support some uses of
the function, if you eliminate calls to it, you get cleaner and faster code.

Simulink does not support calls to slDataTypeAndScale when:

• The first argument is a Simulink.AliasType object.
• The first argument is a Simulink.NumericType object with property IsAlias set to true.

Running Check for calls to slDataTypeAndScale identifies calls to slDataTypeAndScale that are
required or recommended for replacement. In most cases, running the check and following the
recommended action removes the calls. You can ignore calls that remain. Run the check unless you
are sure there are not calls to slDataTypeAndScale.

Results and Recommended Actions

Condition Recommended Action
Required Replacement Cases Manually or automatically replace calls to

slDataTypeAndScale. Cases listed require you to replace calls
to slDataTypeAndScale.

Recommended Replacement
Cases

For the listed cases, it is recommended that you manually or
automatically replace calls to slDataTypeAndScale.

Manual Inspection Cases Inspect each listed case to determine whether it should be
manually upgraded.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

Tips

• Do not manually insert a call to slDataTypeAndScale into a model. The function was for internal
use only.

• Running Check for calls to slDataTypeAndScale calls the Simulink function
slRemoveDataTypeAndScale. Calling this function directly provides a wider range of
conversion options. However, you very rarely need more conversion options.

See Also

• For more information about upgrading data types and scales, in the MATLAB Command Window,
execute the following:

9 Model Advisor Checks

9-22

• help slDataTypeAndScale
• help slRemoveDataTypeAndScale

• “Model Advisor Exclusion Overview” (Simulink Check)

Check bus signals treated as vectors

Check ID: mathworks.design.BusTreatedAsVector

Identify bus signals that Simulink treats as vectors.

Description

You cannot use bus signals that the Simulink software implicitly converts to vectors. Instead, either
insert a Bus to Vector conversion block between the bus signal and the block input port that it feeds,
or use the Simulink.BlockDiagram.addBusToVector command.

Results and Recommended Actions

Condition Recommended Action
Bus signals are implicitly
converted to vectors.

Use Simulink.BlockDiagram.addBusToVector or insert a
Bus to Vector block.

Model is not configured to identify
bus signals that Simulink treats as
vectors.

In the Configuration Parameters dialog box, on the Diagnostics
> Connectivity pane, set Bus signal treated as vector to
error.

Action Results

Clicking Modify inserts a Bus to Vector block at the input ports of blocks that implicitly convert bus
signals to vectors.

Tips

• Run this check before running Check consistency of initialization parameters for Outport
and Merge blocks.

• For more information, see “Identify Automatic Bus Conversions”.

See Also

• “Identify Automatic Bus Conversions”
• Bus to Vector block
• “Bus signal treated as vector”
• “Migrating to Simplified Initialization Mode Overview” on page 9-4
• Simulink.BlockDiagram.addBusToVector

Check for potentially delayed function-call subsystem return values

Check ID: mathworks.design.DelayedFcnCallSubsys

 Simulink Checks

9-23

Identify function-call return values that might be delayed because Simulink software inserted an
implicit Signal Conversion block.

Description

So that signals reside in contiguous memory, Simulink software can automatically insert an implicit
Signal Conversion block in front of function-call initiator block input ports. This can result in a one-
step delay in returning signal values from calling function-call subsystems. The delay can be avoided
by ensuring the signal originates from a signal block within the function-call system. Or, if the delay is
acceptable, insert a Unit Delay block in front of the affected input ports.

Results and Recommended Actions

Condition Recommended Action
The listed block input ports could have an implicit Signal
Conversion block.

Decide if a one-step delay in returning
signal values is acceptable for the listed
signals.

• If the delay is not acceptable, rework
your model so that the input signal
originates from within the calling
subsystem.

• If the delay is acceptable, insert a
Unit Delay block in front of each
listed input port.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

Signal Conversion block

Unit Delay block

“Model Advisor Exclusion Overview” (Simulink Check)

Identify block output signals with continuous sample time and non-
floating point data type

Check ID: mathworks.design.OutputSignalSampleTime

Find continuous sample time, non-floating-point output signals.

Description

Non-floating-point signals might not represent continuous variables without loss of information.

9 Model Advisor Checks

9-24

Results and Recommended Actions

Condition Recommended Action
Signals with continuous sample times have a non-floating-
point data type.

On the identified signals, either change
the sample time to be discrete or fixed-
in-minor-step ([0 1]).

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

“What Is Sample Time?”.

“Model Advisor Exclusion Overview” (Simulink Check)

Check usage of Merge blocks

Check ID: mathworks.design.MergeBlkUsage

Identify Merge blocks with parameter settings that can lead to unexpected behavior, and help
migrate your model to simplified initialization mode.

Note Run this check along with the other checks in the “Migrating to Simplified Initialization Mode
Overview” on page 9-4.

Description

Simplified initialization mode was introduced in R2008b to improve the consistency of simulation
results. For more information, see “Simplified Initialization Mode” and “Classic Initialization Mode”.

This Model Advisor check identifies settings in the Merge blocks in your model that can cause
problems if you use classic initialization mode. It also recommends settings for consistent behavior of
Merge blocks. The results of the subchecks contain two types of statements: Failed and Warning.
Failed statements identify issues that you must address manually before you can migrate the model to
the simplified initialization mode. Warning statements identify issues or changes in behavior that can
occur after migration.

Results and Recommended Actions

Condition Recommended Action
Check the run-time diagnostic setting of the
Merge block.

1 In the Configuration Parameters dialog box,
set “Detect multiple driving blocks executing
at the same time step” to error.

2 Verify that the model simulates without
errors before running this check again.

 Simulink Checks

9-25

Condition Recommended Action
Check for Model blocks that are using the PIL
simulation mode.

The simplified initialization mode does not
support the Processor-in-the-loop (PIL) simulation
for model references.

Check for library blocks with instances that
cannot be migrated.

Examine the failed subcheck results for each
block to determine the corrective actions.

Check for single-input Merge blocks. Replace both the Mux block used to produce the
input signal and the Merge block with one multi-
input Merge block.

Single-input Merge blocks are not supported in
the simplified initialization mode.

Check for root Merge blocks that have an
unspecified Initial output value.

If you do not specify an explicit value for the
Initial output parameter of root Merge blocks,
then Simulink uses the default initial value of the
output data type.

A root Merge block is a Merge block with an
output port that does not connect to another
Merge block. For information on the default
initial value, see “Initialize Signal Values”.

Check for Merge blocks with nonzero input port
offsets.

Clear the Allow unequal port widths parameter
of the Merge block.

Note Consider using Merge blocks only for
signal elements that require true merging. You
can combine other elements with merged
elements using the Concatenate block.

Check for Merge blocks that have unconnected
inputs or that have inputs from non-conditionally
executed subsystems.

Set the Number of inputs parameter of the
Merge block to the number of Merge block
inputs. You must connect each input to a signal.

Verify that each Merge block input is driven by a
conditionally executed subsystem. Merge blocks
cannot be driven directly by an Iterator
Subsystem or a block that is not a conditionally
executed subsystem.

Check for Merge blocks with inputs that are
combined or reordered outside of conditionally
executed subsystems.

Verify that combinations or reordering of Merge
block input signals takes place within a
conditionally executed subsystem. Such designs
may use Mux, Bus Creator, or Selector blocks.

Check for Merge blocks with multiple input ports
that are driven by a single source.

Verify that the Merge block does not have
multiple input signals that are driven by the same
conditionally executed subsystem or conditionally
executed Model block.

9 Model Advisor Checks

9-26

Condition Recommended Action
Check for Merge blocks that use signal objects to
specify the Initial output value.

Verify that the following behavior is acceptable.

In the simplified initialization mode, signal
objects cannot specify the Initial output
parameter of the Merge block. While you can still
initialize the output signal for a Merge block
using a signal object, the initialization result may
be overwritten by that of the Merge block.

Note Simulink generates a warning that the
initial value of the signal object has been ignored.

See Also

• “Migrating to Simplified Initialization Mode Overview” on page 9-4
• “Model Advisor Exclusion Overview” (Simulink Check)

Check usage of Outport blocks

Check ID: mathworks.design.InitParamOutportMergeBlk

Identify Outport blocks and conditional subsystems with parameter settings that can lead to
unexpected behavior, and help migrate your model to simplified initialization mode.

Note Run this check along with the other checks in the “Migrating to Simplified Initialization Mode
Overview” on page 9-4.

Description

Simplified initialization mode was introduced in R2008b to improve the consistency of simulation
results. This mode is especially important for models that do not specify initial conditions for
conditionally executed subsystem output ports. For more information, see “Simplified Initialization
Mode” and “Classic Initialization Mode”.

This Model Advisor check identifies Outport blocks and conditional subsystems in your model that
can cause problems if you use the simplified initialization mode. It also recommends settings for
consistent behavior of Outport blocks. The results of the subchecks contain two types of statements:
Failed and Warning. Failed statements identify issues that you must address manually before you can
migrate the model to the simplified initialization mode. Warning statements identify issues or changes
in behavior can occur after migration.

 Simulink Checks

9-27

Results and Recommended Actions

Condition Recommended Action
Check for blocks inside of the Iterator Subsystem
that require elapsed time.

Within an Iterator Subsystem hierarchy, do not
use blocks that require a service that maintains
the time that has elapsed between two
consecutive executions.

Since an Iterator Subsystem can execute multiple
times at a given time step, the concept of elapsed
time is not well-defined between two such
executions. Using these blocks inside of an
Iterator Subsystem can cause unexpected
behavior.

Check for Outport blocks that have conflicting
signal buffer requirements.

The Outport block has a function-call trigger or
function-call data dependency signal passing
through it, along with standard data signals.
Some of the standard data signals require an
explicit signal buffer for the initialization of the
output signal of the corresponding subsystem.
However, buffering function-call related signals
lead to a function-call data dependency violation.

Consider modifying the model to pass function-
call related signals through a separate Outport
block. For examples of function-call data
dependency violations, see “Simulink Subsystem
Semantics” on page 13-377.

A standard data signal may require an additional
signal copy for one of the following reasons:

• The Outport block is driven by a block with
output that cannot be overwritten. The
Ground block and the Constant block are
examples of such blocks.

• The Outport block shares the same signal
source with another Outport block in the same
subsystem or in one nested within the current
subsystem but having a different initial output
value.

• The Outport block connects to the input of a
Merge block

• One of the input signals of the Outport block
is specifying a Simulink.Signal object with
an explicit initial value.

9 Model Advisor Checks

9-28

Condition Recommended Action
Check for Outport blocks that are driven by a bus
signal and whose Initial output value is not
scalar.

For Outport blocks driven by bus signals, classic
initialization mode does not support Initial
Condition (IC) structures, while simplified
initialization mode does. Hence, when migrating
a model from classic to simplified mode, specify a
scalar for the Initial Output parameter. After
migration completes, to specify different initial
values for different elements of the bus signal,
use IC structures. For more information, see
“Create Initial Condition Structures”.

Check for Outport blocks that require an explicit
signal copy.

An explicit copy of the bus signal driving the
Outport block is required for the initialization of
the output signal of the corresponding
subsystem. Insert a Signal Conversion block
before the Outport block, then set the Output
parameter of the Signal Conversion block to Bus
copy.

A standard data signal may require an additional
signal copy for one or more of the following
reasons:

• A block with output that cannot be
overwritten is driving the Outport block. The
Ground block and the Constant block are
examples of such blocks.

• The Outport block shares the same signal
source with another Outport block in the same
subsystem or in one nested within the current
subsystem but having a different initial output
value.

• The Outport block connects to the input of a
Merge block

• One of the input signals of the Outport block
is specifying a Simulink.Signal object with
an explicit initial value.

Check for merged Outport blocks that inherit the
Initial Output value from Outport blocks that
have been configured to reset when the blocks
become disabled.

When Outport blocks are driving a Merge block,
do not set their Output when disabled
parameters to reset.

Check for merged Outport blocks that are driven
by nested conditionally executed subsystems.

Determine if the new behavior of the Outport
blocks is acceptable. If it is not acceptable,
modify the model to account for the new behavior
before migrating to the simplified initialization
mode.

 Simulink Checks

9-29

Condition Recommended Action
Check for merged Outport blocks that reset when
the blocks are disabled.

Set the Output when disabled parameter of the
Outport block to held. This setting is required
because the Outport block connects to a Merge
block.

For more information, see Outport.
Check for Outport blocks that have an undefined
Initial output value with invalid initial condition
sources.

Verify that the following behavior is acceptable.

When the Initial output parameter is
unspecified ([]), it inherits the initial output from
the source blocks. If at least one of the sources of
the Outport block is not a valid source to inherit
the initial value, the block uses the default initial
value for that data type.

For simplified initialization mode, valid sources
an Outport blocks can inherit the Initial output
value from are: Constant, Initial Condition, Merge
(with initial output), Stateflow chart, function-call
model reference, or conditionally executed
subsystem blocks.

Check Outport blocks that have automatic rate
transitions.

Simulink has inserted a Rate Transition block at
the input of the Outport block. Specify the Initial
output parameter for each Outport block.

Otherwise, perform the following procedure:

1 In the Configuration Parameters dialog box,
on the Solver pane, clear the option
Automatically handle rate transition for data
transfer.

2 Run this Model Advisor check again.
Check Outport blocks that have a special signal
storage requirement and have an undefined
Initial output value.

Verify that the following behavior is acceptable.

Specify the Initial output parameter for the
Outport block. Set this value to [] (empty matrix)
to use the default initial value of the output data
type.

Check the Initial output setting of Outport
blocks that reset when they are disabled.

Specify the Initial output parameter of the
Outport block.

You must specify the Initial output value for
blocks that are configured to reset when they
become disabled.

9 Model Advisor Checks

9-30

Condition Recommended Action
Check the Initial output setting for Outport
blocks that pass through a function-call data
dependency signal.

You cannot specify an Initial output value for
the Outport block because function-call data
dependency signals are passing through it. To set
the Initial output value:

1 Set the Initial output parameter of the
Outport block to [].

2 Provide the initial value at the source of the
data dependency signal rather than at the
Outport block.

Check for Outport blocks that use signal objects
to specify the Initial output value.

Verify that the following behavior is acceptable.

In the simplified initialization mode, signal
objects cannot specify the Initial output
parameter of an Outport block. You can still
initialize the input or output signals for an
Outport block using signal objects, but the
initialization results may be overwritten by those
of the Outport block.

Note If you are working with a conditionally
executed subsystem Outport block, Simulink
generates a warning that the initial value of the
signal object has been ignored.

Check for library blocks with instances that have
warnings.

Examine the warning subcheck results for each
block before migrating to the simplified
initialization mode.

Check for merged Outport blocks that are either
unconnected or connected to a Ground block.

Verify that the following behavior is acceptable.

The Outport block is driving a Merge block, but
its inputs are either unconnected or connected to
Ground blocks. In the classic initialization mode,
unconnected or grounded outports do not update
the merge signal even when their parent
conditionally executed subsystems are executing.
In the simplified initialization mode, however,
these outports will update the merge signal with
a value of zero when their parent conditionally
executed subsystems are executing.

 Simulink Checks

9-31

Condition Recommended Action
Check for Outport blocks that obtain the Initial
output value from an input signal when they are
migrated.

Verify that the following behavior is acceptable.

The Initial output parameter of the Outport
block is not specified. As a result, the simplified
initialization mode will assume that the Initial
output value for the Outport block is derived
from the input signal. This assumption may result
in different initialization behavior.

If this behavior is not acceptable, modify your
model before you migrate to the simplified
initialization mode.

Check for outer Outport blocks that have an
explicit Initial output.

Verify that the following behavior is acceptable.

In classic initialization mode, the Initial output
and Output when disabled parameters of the
Outport block must match those of their source
Outport blocks.

In simplified initialization mode, Simulink sets the
Initial output parameter of outer Outport blocks
to [] (empty matrix) and Output when disabled
parameter to held.

Check for blocks that read input from
conditionally executed subsystems during
initialization.

Verify that the following behavior is acceptable.

Some blocks, such as the Discrete-Time
Integrator block, read their inputs from
conditionally executed subsystems during
initialization in the classic initialization mode.
Simulink performs this step as an optimization
technique.

This optimization is not allowed in the simplified
initialization mode because the output of a
conditionally executed subsystem at the first time
step after initialization may be different than the
initial value declared in the corresponding
Outport block. In particular, this discrepancy
occurs if the subsystem is active at the first time
step.

9 Model Advisor Checks

9-32

Condition Recommended Action
Check for a migration conflict for Outport blocks
that use a Dialog as the Source of initial
output value.

Other instances of Outport blocks with the same
library link either cannot be migrated or are
being migrated in a different manner. Review the
results from the Check for library blocks with
instances that cannot be migrated to learn
about the different migration paths for other
instances of each Outport block.

The Outport block will maintain its current
settings and use its specified Initial output
value.

Check for a migration conflict for Outport blocks
that use Input signal as the Source of initial
output value.

Other instances of Outport blocks with the same
library link either cannot be migrated or are
being migrated in a different manner. Review the
results from the Check for library blocks with
instances that cannot be migrated to learn
about the different migration paths for other
instances of each Outport block.

The Outport block currently specifies an Initial
output of [] (empty matrix), and the Output
when disabled as held. This means that each
outport does not perform initialization, but
implicitly relies on source blocks to initialize its
input signal.

After migration, the parameter Source of initial
output value will be set to Input signal to
reflect this behavior.

Check for a migration conflict for Outport blocks
that have SimEvents semantics.

Other instances of Outport blocks with the same
library link either cannot be migrated or are
being migrated in a different manner. Review the
results from the Check for library blocks with
instances that cannot be migrated to learn
about the different migration paths for other
instances of each Outport block.

The Outport blocks will continue to use an Initial
output value of [] (empty matrix) and an
Output when disabled setting of held.
Simulink will maintain these settings because
their parent conditionally executed subsystems
are connected to SimEvents blocks.

 Simulink Checks

9-33

Condition Recommended Action
Check for a migration conflict for innermost
Outport blocks with variable-size input and
unspecified Initial output.

For these Outport blocks, the signal size varies
only when the parent subsystem of the block is
re-enabled. Therefore, Simulink implicitly
assumes that the Initial output parameter is
equal to 0, even though the parameter is
unspecified, []. Consequently, unless you specify
the parameter, the Model Advisor will explicitly
set the parameter to 0 when the model is
migrated to the simplified initialization mode.

Other instances of Outport blocks with the same
library link either cannot be migrated or are
being migrated in a different manner. Review the
results from the Check for library blocks with
instances that cannot be migrated to learn
about the different migration paths for other
instances of each Outport block.

Check for a migration conflict for Outport blocks
that use a default ground value as the Initial
output.

The parameter Initial output is set to [] (empty
matrix) and the source of the Outport is an
invalid initial condition source. Thus, the block
uses the default initial value as the initial output
in the simplified initialization mode. Other
instances of Outport blocks with the same library
link either have errors or are being migrated
differently.

Check for a migration conflict for merged Outport
blocks without explicit specification of Initial
output.

Review the results from the subcheck Check for
library blocks with instances that cannot be
migrated to learn about different migration
paths for other instances of each Outport block.
For the remaining Outport blocks, Initial output
is set to [] (empty matrix) and Output when
disabled is set to held respectively, in simplified
initialization mode.

See Also

• “Migrating to Simplified Initialization Mode Overview” on page 9-4
• “Model Advisor Exclusion Overview” (Simulink Check)

Check usage of Discrete-Time Integrator blocks

Check ID: mathworks.design.DiscreteBlock

Identify Discrete-Time Integrator blocks with parameter settings that can lead to unexpected
behavior, and help migrate your model to simplified initialization mode.

Note Run this check along with the other checks in the “Migrating to Simplified Initialization Mode
Overview” on page 9-4.

9 Model Advisor Checks

9-34

Description

Simplified initialization mode was introduced in R2008b to improve the consistency of simulation
results. For more information, see “Simplified Initialization Mode” and “Classic Initialization Mode”.

This Model Advisor check identifies settings in Discrete-Time Integrator blocks in your model that can
cause problems if you use the simplified initialization mode. It also recommends settings for
consistent behavior of Discrete-Time Integrator blocks. The results of the subchecks contain two
types of statements: Failed and Warning. Failed statements identify issues that you must address
manually before you can migrate the model to the simplified initialization mode. Warning statements
identify issues or changes in behavior that can occur after migration.

Results and Recommended Actions

Condition Recommended Action

Check for Discrete-Time Integrator blocks whose
parameter Initial condition setting is set to
Output.

Determine if the new behavior of the Discrete-
Time Integrator blocks is acceptable. If it is not
acceptable, modify the model to account for the
new behavior before migrating to the simplified
initialization mode.

Check for Discrete-Time Integrator blocks whose
Initial condition setting parameter is set to
State (most efficient) and are in a
subsystem that uses triggered sample time.

Use periodic sample time for the block, or set
Initial Condition setting to Output.

Check for blocks inside of the Iterator Subsystem
that require elapsed time.

Within an Iterator Subsystem hierarchy, do not
use blocks that require a service that maintains
the time that has elapsed between two
consecutive executions.

Since an Iterator Subsystem can execute multiple
times at a given time step, the concept of elapsed
time is not well-defined between two such
executions. Using these blocks inside of an
Iterator Subsystem can cause unexpected
behavior.

See Also

• “Migrating to Simplified Initialization Mode Overview” on page 9-4
• “Model Advisor Exclusion Overview” (Simulink Check)

Check model settings for migration to simplified initialization mode

Note Do not run this check in isolation. Run this check along with the other checks in the “Migrating
to Simplified Initialization Mode Overview” on page 9-4.

Check ID: mathworks.design.ModelLevelMessages

 Simulink Checks

9-35

Identify settings in Model blocks and model configuration parameters that can lead to unexpected
behavior, and help migrate your model to simplified initialization mode.

Description

Simplified initialization mode was introduced in R2008b to improve consistency of simulation results.
For more information, see “Simplified Initialization Mode” and “Classic Initialization Mode”.

This Model Advisor check identifies issues in the model configuration parameters and Model blocks in
your model that can cause problems when you migrate to simplified initialization mode. The results of
the subchecks contain two types of statements: Failed and Warning. Failed statements identify issues
that you must address manually before you can migrate the model to simplified initialization mode.
Warning statements identify issues or changes in behavior that can occur after migration.

After running this Model Advisor consistency check, if you click Explore Result button, the
messages pertain only to blocks that are not library-links.

Note Because it is difficult to undo these changes, select File > Save Restore Point As to back up
your model before migrating to the simplified initialization mode.

For more information, see “Model Configuration Parameters: Connectivity Diagnostics”.

Results and Recommended Actions

Condition Recommended Action

Verify that all Model blocks are using the
simplified initialization mode.

Migrate the model referenced by the Model block
to the simplified initialization mode, then migrate
the top model.

Verify simplified initialization mode setting

Set Configuration Parameters >
Underspecified initialization detection to
Simplified.

Action Results

Clicking Modify Settings causes the following:

• The Model parameter is set to simplified
• If an Outport block has the Initial output parameter set to the empty character vector, [], then

the SourceOfInitialOutputValue parameter is set to Input signal.
• If an Outport has an empty Initial output and a variable-size signal, then the Initial output is

set to zero.

See Also

• “Migrating to Simplified Initialization Mode Overview” on page 9-4
• “Model Advisor Exclusion Overview” (Simulink Check)

Check S-functions in the model

9 Model Advisor Checks

9-36

Check ID: mathworks.design.SFuncAnalyzer

Perform quality checks on S-functions in Simulink models or subsystems.

Description

The S-function analyzer performs quality checks on S-functions to identify improvements and
potential problems in the specified model. The checks displays an error when the build dependency
cannot be automatically derived, for example, when the source code is not in the current folder.

Results and Recommended Actions

Condition Recommended Action
Continuous states are modified in mdlOutputs
method.

Modify Continuous States at a major time step
and use ssSetSolverNeedsReset function in S-
function code.

Continuous states are modified in the mdlUpdate
method.

Modify Continuous States only at a major time
step and use ssSetSolverNeedsReset function
in S-function code.

S-function discrete states are modified in the
mdlOutputs at a minor step.

Modify the discrete states only at a major step
guarded by ssIsMajorTimeStep function.

S-function mode vector is modified in the
mdlOutputs method at a minor step.

Modify the mode vector only at a major step
guarded by sslsMajorTimeStep function.

S-function is using static or global variables to
declare internal states.

Declare the states explicitly using
ssSetNumDiscStates function or “Model
Global Data by Creating Data Stores”.

S-function has continuous states but sample time
is not declared continuous.

Specify continuous sample time using
ssSetSampleTime function.

S-function has discrete states but the
mdlOutputs and mdlUpdate methods are
combined.

Define the mdlOutputs and mdlUpdate methods
separately and modify discrete states only in
mdlUpdate method.

S-function sets the
SS_OPTION_CAN_BE_CALLED_CONDITIONALLY
option when having state-like data or multiple
sample times.

Remove the options when the S-function has
state-like data or multiple sample times.

MEX compilers do not exist on the machine. Check for the presence or install MEX compilers
on the machine.

S-function encounters errors while compiling the
model.

Check the Diagnostic Viewer output and
recompile the model.

Check for non-continuous signals driving derivative ports

Check ID: mathworks.design.NonContSigDerivPort

Identify noncontinuous signals that drive derivative ports.

 Simulink Checks

9-37

Description

Noncontinuous signals that drive derivative ports cause the solver to reset every time the signal
changes value, which slows down simulation.

Results and Recommended Actions

Condition Recommended Action
There are noncontinuous signals in the model
driving derivative ports.

• Make the specified signals continuous.
• Replace the continuous blocks receiving these

signals with discrete state versions of the
blocks.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

• “Simulink Models” on page 11-6
• “Simulation Phases in Dynamic Systems”
• “Model Advisor Exclusion Overview” (Simulink Check)

Runtime diagnostics for S-functions

Check ID: mathworks.design.DiagnosticSFcn

Check array bounds and solver consistency if S-Function blocks are in the model.

Description

Validates whether S-Function blocks adhere to the ODE solver consistency rules that Simulink applies
to its built-in blocks.

Results and Recommended Actions

Condition Recommended Action
Solver data inconsistency is set to none. In the Configuration Parameters dialog box, set

Solver data inconsistency to warning or
error.

Array bounds exceeded is set to none. In the Configuration Parameters dialog box, set
Array bounds exceeded to warning or error

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

• “What Is an S-Function?”

9 Model Advisor Checks

9-38

• “How S-Functions Work”
• “Model Advisor Exclusion Overview” (Simulink Check)

Identify unit mismatches in the model

Check ID: mathworks.design.UnitMismatches

Identify instances of unit mismatches between ports in the model.

Description

Check for instances of unit mismatches between ports in the model.

Results and Recommended Actions

Condition Recommended Action
Unit mismatches found Change one of the mismatched unit

settings to match the unit settings for
the other port.

See Also

• “Unit Specification in Simulink Models”.

Identify automatic unit conversions in the model

Check ID: mathworks.design.AutoUnitConversions

Identify instances of automatic unit conversions in the model.

Description

Identify instances of automatic unit conversions in the model.

Results and Recommended Actions

Condition Recommended Action
Automatic unit conversions found Check that the converted units are

expected for the model.

See Also

• “Unit Specification in Simulink Models”.

Identify disallowed unit systems in the model

Check ID: mathworks.design.DisallowedUnitSystems

Identify instances of disallowed unit systems in the model.

 Simulink Checks

9-39

Description

Identify instances of disallowed unit systems in the model.

Results and Recommended Actions

Condition Recommended Action
Disallowed unit systems found Either choose a unit that conforms to

the configured unit system, or select
another unit system. For more
information, see “Restricting Unit
Systems”.

See Also

• “Unit Specification in Simulink Models”.

Identify undefined units in the model

Check ID: mathworks.design.UndefinedUnits

Identify instances of unit specifications, not defined in the unit database, in the model.

Description

Identify instances of unit specifications, not defined in the unit database, in the model.

Results and Recommended Actions

Condition Recommended Action
Undefined units found Change the unit to one that Simulink

supports.

See Also

• “Unit Specification in Simulink Models”.
• Allowed Units

Identify ambiguous units in the model

Check ID: mathworks.design.AmbiguousUnits

Identify instances of ambiguous unit specifications, such as duplicate unit names in the unit database,
in the model.

Description

Identify instances of ambiguous unit specifications, such as duplicate unit names in the unit database,
in the model.

9 Model Advisor Checks

9-40

matlab:showunitslist

Results and Recommended Actions

Condition Recommended Action
Ambiguous units found You can ignore the warning or specify

the unit with corresponding unit system
using the format
unit_system::unit_name.

See Also

• “Unit Specification in Simulink Models”.
• Allowed Units

Check model for block upgrade issues

Check ID: mathworks.design.Update

Check for common block upgrade issues.

Description

Check blocks in the model for compatibility issues resulting from using a new version of Simulink
software.

Results and Recommended Actions

Condition Recommended Action
Blocks with compatibility issues found. Click Modify to fix the detected block

issues.
Check update status for the Level 2 API S-functions. Consider replacing Level 1 S-functions

with Level 2.

Action Results

Clicking Modify replaces blocks from a previous release of Simulink software with the latest
versions.

See Also

• “Write Level-2 MATLAB S-Functions”.
• “Consult the Upgrade Advisor”.
• “Model Upgrades”

Check model for block upgrade issues requiring compile time
information

Check ID: mathworks.design.UpdateRequireCompile

Check for common block upgrade issues.

 Simulink Checks

9-41

matlab:showunitslist

Description

Check blocks for compatibility issues resulting from upgrading to a new version of Simulink software.
Some block upgrades require the collection of information or data when the model is in the compile
mode. For this check, the model is set to compiled mode and then checked for upgrades.

Results and Recommended Actions

Condition Recommended Action
Model contains Lookup Table or Lookup Table (2-D) blocks
and some of the blocks specify Use Input Nearest or Use
Input Above for a lookup method.

Replace Lookup Table blocks and
Lookup Table (2-D) blocks with n-D
Lookup Table blocks. Do not apply Use
Input Nearest or Use Input Above for
lookup methods; select another option.

Model contains Lookup Table or Lookup Table (2-D) blocks
and some blocks perform multiplication first during
interpolation.

Replace Lookup Table blocks and
Lookup Table (2-D) blocks with n-D
Lookup Table blocks. However, because
the n-D Lookup Table block performs
division first, this replacement might
cause a numerical difference in the
result.

Model contains Lookup Table or Lookup Table (2-D) blocks.
Some of these blocks specify Interpolation-
Extrapolation as the Lookup method but their input and
output are not the same floating-point type.

Replace Lookup Table blocks and
Lookup Table (2-D) blocks with n-D
Lookup Table blocks. Then change the
extrapolation method or the port data
types for block replacement.

Model contains Unit Delay blocks with Sample time set to
-1 that inherit a continuous sample time.

Replace Unit Delay blocks with Memory
blocks.

Check Data Store Memory blocks for multitasking

Action Results

Clicking Modify replaces blocks from a previous release of Simulink software with the latest
versions.

See Also

• n-D Lookup Table
• Unit Delay
• “Consult the Upgrade Advisor”
• “Model Upgrades”

Check if SLX file compression is off

Check ID: mathworks.design.CheckSLXFileCompressionLevel

Check if SLX file compression is turned off to reduce Git™ repository size.

9 Model Advisor Checks

9-42

Description

Check whether compression for the SLX model is turned off.

Results and Recommended Actions

Condition Recommended Action
Model, library, or subsystem is saved in SLX format. File
compression is turned on.

Consider turning off file compression to
optimize storage under source control.

Capabilities and Limitations

You can run this check on models, libraries, and subsystems checked in to Git source control.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”

Check that the model or library is saved in current version

Check ID: mathworks.design.CheckSavedInCurrentVersion

Check that the model, library, or subsystem is saved in the current version of Simulink.

Description

Check whether the model file is saved in the current Simulink release.

Results and Recommended Actions

Condition Recommended Action
Model, library, or subsystem not saved in the current
version of Simulink.

Consider resaving the model file in the
current version of Simulink.

Capabilities and Limitations

You can run this check on your models, libraries, and subsystems.

Tips

Projects can help you save all the models and libraries in your project to the current Simulink release.
See “Upgrade All Project Models, Libraries, and MATLAB Code Files”.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”
• “Upgrade All Project Models, Libraries, and MATLAB Code Files”

Check model for SB2SL blocks

 Simulink Checks

9-43

Check ID: mathworks.simulink.SB2SL.Check

Check that the model does not have outdated SB2SL blocks.

Description

Check if the model contains outdated SB2SL blocks.

Results and Recommended Actions

Condition Recommended Action
Model contains outdated SB2SL blocks Consider upgrading the model to

current SB2SL blocks.

Action Results

Clicking Update SB2SL Blocks replaces blocks with the latest versions.

See Also

• “Consult the Upgrade Advisor”.

Check Model History properties

Check ID: mathworks.design.SLXModelProperties

Check for edited model history properties

Description

Check models for edited Model History property values that could be used with source control tool
keyword substitution. This keyword substitution is incompatible with SLX file format.

In the MDL file format you can configure some model properties to make use of source control tool
keyword substitution. If you save your model in SLX format, source control tools cannot perform
keyword substitution. Information in the model file from such keyword substitution is cached when
you first save the MDL file as SLX, and is not updated again. The Model Properties History pane and
Model Info blocks in your model show stale information from then on.

Results and Recommended Actions

Condition Recommended Action
Edited model history properties Manually or automatically reset the

properties to the default values. Click
the button to reset, or to inspect and
change these properties manually, open
the Model Properties dialog and look in
the History pane.

Capabilities and Limitations

You can run this check on your library models.

9 Model Advisor Checks

9-44

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”

Identify Model Info blocks that can interact with external source
control tools

Check ID: mathworks.design.ModelInfoKeywordSubstitution

Use this check to find Model Info blocks that can be altered by external source control tools through
keyword substitution.

Description

This check searches for character vectors in the Model Info block enclosed within dollar signs that
can be overwritten by an external source control tool. Using third-party source control tool keyword
expansion might corrupt your model files when you submit them. Keyword substitution is not
available in SLX model file format.

For a more flexible interface to source control tools, use a Simulink project instead of the Model Info
block. See “About Source Control with Projects”.

Results and Recommended Actions

Condition Recommended Action
The Model Info block contains fields like this: $keyword$ Review the list of fields in the report,

then remove the keyword character
vectors from the Model Info block.

See Also

• “Consult the Upgrade Advisor”.
• “About Source Control with Projects”

Check model for upgradable SerDes Toolbox blocks

Check ID: mathworks.design.serdesUpgrades

Lists blocks saved in a previous version of SerDes Toolbox™ that are outdated.

Description

This check searches for and lists SerDes Toolbox blocks that can be upgraded for compatibility with
the current release.

 Simulink Checks

9-45

Results and Recommended Actions

Condition Recommended Action
Blocks saved in older versions of
SerDes Toolbox are found.

Click Upgrade SerDes Toolbox Blocks to upgrade the
SerDes Toolbox blocks to be compatible with the current
release.

Action Results

Clicking Upgrade SerDes Toolbox Blocks upgrades the outdated SerDes Toolbox blocks to be
compatible with the current release.

See Also

• “Design and Simulate SerDes Systems” (SerDes Toolbox)

Check model for legacy 3DoF or 6DoF blocks

Check ID: mathworks.design.Aeroblks.CheckDOF

Lists 3DoF and 6DoF blocks are outdated.

Description

This check searches for 3DoF and 6DoF blocks from library versions prior to 3.13 (R2014a).

Results and Recommended Actions

Condition Recommended Action
Blocks configured with old versions of
3DoF or 6DoF blocks found.

Click Replace 3DoF and 6DoF Blocks to replace the
blocks with latest versions.

Action Results

Clicking Replace 3DoF and 6DoF Blocks replaces blocks with the latest versions.

See Also

• “Equations of Motion” (Aerospace Blockset)

Check model for Aerospace Blockset navigation blocks

Check ID: mathworks.design.Aeroblks.CheckNAV

Searches for Three-Axis Inertial Measurement Unit, Three-Axis Gyroscope, and Three-Axis
Accelerometer blocks prior to 3.21 (R2018a).

Description

This check searches for Three-Axis Inertial Measurement Unit, Three-Axis Gyroscope, and Three-Axis
Accelerometer blocks that have been updated in R2018a.

9 Model Advisor Checks

9-46

Results and Recommended Actions

Condition Recommended Action
Three-Axis Inertial Measurement Unit,
Three-Axis Gyroscope, and Three-Axis
Accelerometer blocks prior to R2018a.

In R2018a or later, if you did not previously solve for steady
state conditions, save the model now. If you previously
solved for steady state conditions for the model, solve for
these steady state conditions again, and then save the
model.

See Also

• Three-axis Accelerometer
• Three-axis Gyroscope
• Three-axis Inertial Measurement Unit

Check and update masked blocks in library to use promoted
parameters

Check ID: mathworks.design.CheckAndUpdateOldMaskedBuiltinBlocks

Check for libraries that should be updated to use promoted parameters.

Description

This check searches libraries created before R2011b for masked blocks that should be updated to use
promoted parameters. Since R2011b, if a block parameter is not promoted, its value in the linked
block is locked to its value in the library block. This check excludes blocks of type Subsystem, Model
reference, S-Function and M-S-Function.

Results and Recommended Actions

Condition Recommended Action
Libraries that need to be updated are found Click Update. Once the libraries have

been updated, run the check again

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”
• “Model Advisor Exclusion Overview” (Simulink Check)

 Simulink Checks

9-47

Check and update mask image display commands with unnecessary
imread() function calls

Check ID: mathworks.design.CheckMaskDisplayImageFormat

Check identifies masks using image display commands with unnecessary calls to the imread()
function.

Description

This check searches for the mask display commands that make unnecessary calls to the imread()
function, and updates them with mask display commands that do not call the imread() function.
Since 2013a, a performance and memory optimization is available for mask images specified using
the image path instead of the RGB triple matrix.

Results and Recommended Actions

Condition Recommended Action
Mask display commands that make unnecessary calls to
the imread() function are found.

Click Update. Once the blocks have
been updated, run the check again.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”
• “Model Advisor Exclusion Overview” (Simulink Check)

Check and update mask to affirm icon drawing commands dependency
on mask workspace

Check ID: mathworks.design.CheckMaskRunInitFlag

Check identifies if the mask icon drawing commands have dependency on the mask workspace.

Description

This check identifies if the mask icon drawing commands have dependency on the mask workspace
and updates the RunInitForIconRedraw property accordingly. If there is no mask workspace
dependency, the value of RunInitForIconRedraw is set to off, whereas, if there is mask
workspace dependency the values is set to on.

9 Model Advisor Checks

9-48

Setting the values of RunInitForIconRedraw to off when there is no mask workspace dependency
optimizes the performance by not executing the mask initialization code before drawing the block
icon.

Results and Recommended Actions

Condition Recommended Action
Mask drawing commands that are dependent or
independent of the mask workspace are found.

Click Update. Once the blocks have
been updated, run the check again.

Capabilities and Limitations

You can:

• Run this check on your library models.
• Exclude blocks and charts from this check if you have a Simulink Check license.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”
• “Model Advisor Exclusion Overview” (Simulink Check)

Identify masked blocks that specify tabs in mask dialog using
MaskTabNames parameter

Check ID: mathworks.design.CheckAndUpdateOldMaskTabnames

This check identifies masked blocks that specify tabs in mask dialog using the MaskTabNames
parameter.

Description

This check identifies masked blocks that use the MaskTabNames parameter to programmatically
create tabs in the mask dialog. Since R2013b, dialog controls are used to group parameters in a tab
on the mask dialog.

Results and Recommended Actions

Condition Recommended Action
Masked blocks that use the MaskTabNames parameter to
create tabs programmatically in the mask dialog are found.

Click Upgrade available in the Action
section. Once the blocks have been
updated, run the check again.

Capabilities and Limitations

You can run this check on your library models.

See Also

• “Consult the Upgrade Advisor”.

 Simulink Checks

9-49

• “Model Upgrades”

Identify questionable operations for strict single-precision design

Check ID: mathworks.design.StowawayDoubles

For a strict single-precision design, this check identifies the blocks that introduce double-precision
operations, and non-optimal model settings.

Description

For a strict single-precision design, this check identifies the blocks that introduce double-precision
operations, and non-optimal model settings.

Results and Recommended Actions

Condition Recommended Action
Double-precision floating-point operations found in model. Verify that:

• Block input and output data types
are set correctly.

• In the Configuration Parameters
dialog box, Default for
underspecified data type is set to
single.

Model uses a library standard that is not optimal for strict-
single designs.

Verify that:

• All target-specific math libraries
used by the model support single-
precision implementations.

Set Configuration Parameters >
Language standard to C99 (ISO).

Logic signals are not implemented as Boolean data. Verify that:

• In the Configuration Parameters
dialog box, Implement logic
signals as Boolean data is
selected.

Capabilities and Limitations

If you have a Simulink Check license, you can exclude blocks and charts from this check.

See Also

• “Validate a Floating-Point Embedded Model”
• “Consult the Upgrade Advisor”.
• “Model Upgrades”
• “Model Advisor Exclusion Overview” (Simulink Check)

9 Model Advisor Checks

9-50

Check get_param calls for block CompiledSampleTime

Check ID: mathworks.design.CallsGetParamCompiledSampleTime

Use this check to identify MATLAB files in your working environment that contain get_param
function calls to return the block CompiledSampleTime parameter.

Description

For multi-rate blocks (including subsystems), Simulink returns the block compiled sample time as a
cell array of the sample rates in the block. The return value is a cell array of pairs of doubles.
MATLAB code that accepts this return value only as pairs of doubles can return an error when called
with a multi-rate block. Use this check to identify such code in your environment. Modify these
instances of code to accept a cell array of pairs of doubles instead.

For example, consider a variable blkTs, which has been assigned the compiled sample time of a multi-
rate block.

blkTs = get_param(block,'CompiledSampleTime');

Here are some examples in which the original code works only if blkTs is a pair of doubles and the
block is a single-rate block:

• Example 1

if isinf(blkTs(1))
 disp('found constant sample time')
end

Since blkTs is now a cell array, Simulink gives this error message:

Undefined function 'isinf' for input arguments of type 'cell'

Instead, use this code, for which blkTs can be a cell array or a pair of doubles.

if isequal(blkTs, [inf,0])
 disp('found constant sample time')
end

• Example 2

if all(blkTs == [-1,-1])
 disp('found triggered sample time')
end

For the above example, since blkTs is now a cell array, Simulink gives this error:

Undefined function 'eq' for input arguments of type 'cell'

Instead, use this code, for which blkTs can be a cell array or a pair of doubles.

if isequal(blkTs, [-1,-1])
 disp('found triggered sample time')
end

• Example 3

 Simulink Checks

9-51

if (blkTs(1) == -1)
 disp('found a triggered context')
end

Again, since blkTs is now a cell array, Simulink gives this error:

Undefined function 'eq' for input arguments of type 'cell'

Instead, use this code.

if ~iscell(blkTs)
 blkTs = {blkTs};
end
for idx = 1:length(blkTs)
 thisTs = blkTs{idx};
 if (thisTs(1) == -1)
 disp('found a triggered context')
 end
end

The above code checks for a triggered type sample time (triggered or async). In cases in which a
block has constant sample time ([inf,0]) in addition to triggered or async or when a block has
multiple async rates, this alternative property detects the triggered type sample time.

This check scans MATLAB files in your environment. If the check finds instances of MATLAB code
that contain get_param calls to output the block compiled sample time, Upgrade Advisor displays
these results. It suggests that you modify code that accepts the block compiled sample time from
multi-rate blocks.

Results and Recommended Actions

Condition Recommended Action
No MATLAB files call
get_param(block,CompiledSampleTime)

None

Some MATLAB files call
get_param(block,CompiledSampleTime)

If files use the block CompiledSampleTime
parameter from multi-rate blocks, modify these
files to accept the parameter as a cell array of
pairs of doubles

See Also

• “Sample Times in Subsystems”
• “Block Compiled Sample Time”

Check if all simulation outputs are returned as a single
Simulink.SimulationOutput object

Check ID: mathworks.design.CheckSingleSimulationOutput

Use this check to identify if the simulation result is returned as a single
Simulink.SimulationOutput object.

9 Model Advisor Checks

9-52

Description

This check scans your model to verify if the parameter ReturnWorkspaceOutputs is enabled.
Enabling this parameter, returns simulation outputs in a Simulink.SimulationOutput when
simulating interactively. Simulation outputs include signal, state, output, DSM logging, and scope and
To Workspace block logging.

When ReturnWorkspaceOutputs is enabled, it provides:

• Easier management of simulation data.
• Automatic access to SimulationMetadata.
• Compatibility with multiple parallel simulations and batch simulations.

Results and Recommended Actions

Condition Recommended Action
Simulation outputs are not returned as a single
Simulink.SimulationOutput object

Return all simulation outputs as a single
Simulink.SimulationOutput object

See Also

• Single simulation output
• Simulink.SimulationOutput

Check model for parameter initialization and tuning issues

Check ID: mathworks.design.ParameterTuning

Use this check to identify issues in the model that occur when you initialize parameters or tune them.

Description

This check scans your model for parameter initialization and tuning issues like:

• Rate mismatch between blocks
• Divide by zero issue in conditionally executed subsystems
• Invalid control port value in Index Vector blocks

Results and Recommended Actions

Condition Recommended Action
The model has rate transition issues. Select Automatically handle rate transition

for data transfer in the Solver pane of the
model configuration parameters.

The model has a divide by zero issue in a
conditionally executed subsystem with a control
port.

At the command prompt, run

set_param(control_port,'DisallowConstTsAndPrmTs', 'on')

 Simulink Checks

9-53

Condition Recommended Action
The model has an invalid control port value in a
conditionally executed subsystem.

At the command prompt, run

set_param(control_port,'DisallowConstTsAndPrmTs', 'on')

Action Results

Select Upgrade model to resolve issues in the model related to parameter initialization and tuning.

See Also

• “Automatic Rate Transition”

Check for virtual bus across model reference boundaries

Check ID: mathworks.design.CheckVirtualBusAcrossModelReference

Check virtual bus signals that cross model reference boundaries.

Description

This check identifies root-level Inport and Outport blocks in referenced models and Model blocks with
virtual bus outputs that require updates to change to nonvirtual bus signals.

If the check identifies issues, click Update Model to convert root-level Inport and Outport blocks
configured for virtual buses to use nonvirtual buses in these situations:

• For root-level Inport blocks — Enable the Output as nonvirtual bus parameter and insert a
Signal Conversion block after the Inport block. The Signal Conversion block is configured to
output a virtual bus.

• For root-level Outport blocks — Enable the Output as nonvirtual bus in parent model
parameter.

• For Model blocks — For ports whose Outport blocks were updated to address issues, insert a
Signal Conversion block after the corresponding ports of the Model block. The Signal Conversion
block is configured to output a virtual bus.

Recommended Action and Results

To resolve issues, click Upgrade Model.

Note Run the Analyze model hierarchy and continue upgrade sequence check on the top-level
model and then down through the model reference hierarchy.

Clicking Upgrade Model converts affected root-level Inport and Outport blocks configured for
virtual buses to use nonvirtual buses in models where you:

• Use function prototype control
• Perform C++ code generation with the I/O arguments step method option.

Alternatively, you can change the C++ code generation function specification setting to Default
step method:

9 Model Advisor Checks

9-54

1 In the Configuration Parameters > Code Generation > Interface pane, click Configure C
++ Class Interface.

2 In the dialog box, set the Function specification parameter to Default step method.
• Use buses that have variable-dimension signals
• Use an associated non-auto storage class for Outport block signals

• The conversion for non-auto storage class occurs only if you have the target generation license
that the model requires. For example, an ERT target requires an Embedded Coder license.

• Use Export-function models where an Outport block is driven by a nonvirtual bus
• Have Model blocks that reference models containing Outport blocks that have been fixed —

Clicking Upgrade Model updates Model blocks referencing the models that had Outport blocks
fixed by the Analyze model hierarchy and continue upgrade sequence check.

See Also

• “Use Buses at Model Interfaces”

Check model for custom library blocks that rely on frame status of the
signal

Check ID: mathworks.design.DSPFrameUpgrade

This check identifies custom library blocks in the model that depend on the frame status of the signal.

Description

This check searches for the custom library blocks in a model that depend on the frame status of the
signal. The check analyzes the blocks, recommends fixes, and gives reasons for the fixes. You must
make the fixes manually.

Results and Recommended Actions

Condition Recommended Action
The check finds custom library blocks that
depend on the frame status of the signal.

Follow the recommendation given by the Upgrade
Advisor.

Capabilities and Limitations

You can run this check only on custom library blocks in your model.

You must make the fixes manually.

This check appears only if you have the DSP System Toolbox installed.

See Also

“Frame-based processing” (DSP System Toolbox)

Check model for S-function upgrade issues

 Simulink Checks

9-55

Check ID: 'mathworks.design.CheckForSFcnUpgradeIssues'

Use this check on your model to identify your S-function's upgrade compatibility issues. These issues
may include the use of 32-bit APIs, compilation with incompatible options, or use of deprecated
separate complex APIs. Some common issues and information related to the fixes are described in
results and recommendations section below.

Description

When upgrading your S-functions to use the features in the latest release, this check scans your
model to warn against S-function upgrade incompatibility issues. If the result of this check gives a
warning or error, fix your C MEX S-functions according to the description.

Results and Recommended Actions

Condition Recommended Action
Custom-built S-functions are not supported. Recompile your S-function with available

compatible options. See “Custom-built MEX File
Not Supported In Current Release” for more
information.

S-function is not compiled with the latest API
(mex -R2018a).

Recompile using the latest flag (mex -R2018a).
See “MEX File Is Compiled With Outdated
Option” for more information.

S-function uses 32-bit functions. Modify your code according to the instructions in
“MEX File Calls A 32-bit Function”.

S-function is using deprecated separate complex
APIs (mxGetPi, mxSetPi, mxGetImagData,
mxSetImagData).

Use interleaved complex APIs and recompile your
code with the latest flag (mex -R2018a). See
“Upgrade MEX Files to Use Interleaved Complex
API” for more information.

S-function is using deprecated type-unsafe data
API (mxGetData, mxSetData).

Use type-safe data APIs and recompile your code.
See “MEX File Calls An Untyped Data Access
Function” for more information.

S-function is compiled with a future release and
not supported in current release.

See “MEX File Built In MATLAB Release Not
Supported In Current Release” to recompile your
files.

See Also

• “MATLAB Data in C S-Functions”

Update System object syntax

Check ID: 'mathworks.design.CheckSystemObjectUpdate'

Use this check to identify and update any custom MATLAB System object in your model that have
outdated syntax.

9 Model Advisor Checks

9-56

Description

This check scans your model to identify outdated System object syntax. If the check passes, all the
syntax is up to date. If the check fails, you can update the syntax.

Results and Recommended Actions

Condition Recommended Action
System object syntax is up to date. None.
System object syntax requires update. A report is generated for each unique System

object associated with a MATLAB System block.
Use Update to update the syntax.

See Also

• “Consult the Upgrade Advisor”

Check Rapid accelerator signal logging

Check ID: mathworks.design.CheckRapidAcceleratorSignalLogging

When simulating your model in rapid accelerator mode, use this check to find signals logged in your
model that are globally disabled. Rapid accelerator mode supports signal logging. Use this check to
enable signal logging globally.

Description

This check scans your model to see if a simulation is in rapid accelerator mode and whether the
model contains signals with signal logging. If the check finds an instance and signal logging is
globally disabled, an option to turn on signal logging globally appears.

Results and Recommended Actions

Condition Recommended Action
Simulation mode is not rapid accelerator. None. You can enable signal logging in rapid

accelerator mode.
Simulation mode is rapid accelerator. Upgrade
Advisor did not find signals with signal logging
enabled.

None. The model does not use signal logging.
Enable signal logging for signals and globally if
you want to log signals.

Simulation mode is rapid accelerator. Upgrade
Advisor found signals with signal logging
enabled. However, global setting for signal
logging was disabled.

Enable signal logging globally if you want to log
signals with signal logging enabled.

Signal logging was already globally enabled. None.

Action Results

Selecting Modify enables signal logging globally in your model.

 Simulink Checks

9-57

See Also

• “Consult the Upgrade Advisor”.

Check virtual bus inputs to blocks

Check ID: mathworks.design.VirtualBusUsage

Check bus input signals for a set of blocks.

Description

Check bus input signals for a set of blocks.

Starting in R2015b, virtual bus signal inputs to blocks that require nonbus or nonvirtual bus input
can cause an error. Examples of blocks that can specify a bus object as their output data type include
a Bus Creator block and a root Inport block. The blocks that cause an error when they have a virtual
bus input in this situation are:

• Assignment
• Delay

The Delay block causes an error only if you use the Block Parameters dialog box to:

• Set an initial condition that is a MATLAB structure or zero.
• Specify a value for State name.

• Permute Dimension
• Reshape
• Selector
• Unit Delay

The Unit Delay block causes an error only if you use the Block Parameters dialog box to:

• Set an initial condition that is a MATLAB structure or zero.
• Specify a value for State name.

• Vector Concatenate

9 Model Advisor Checks

9-58

Results and Recommended Actions

Condition Recommended Action
Virtual bus signal input to these blocks:

• Assignment
• Delay (if you specify an initial condition from the

dialog box that is a MATLAB structure or zero and
the value for State name is not empty)

• Permute Dimension
• Reshape
• Selector
• Unit Delay (if you specify an initial condition that is

a MATLAB structure or zero and the value for
State name is not empty)

• Vector Concatenate

In the Upgrade Advisor, click Modify.

The check inserts a Bus to Vector block to
attempt to convert virtual bus input signals
to vector signals. For issues that the
Upgrade Advisor identifies but cannot fix,
modify the model manually. For details, see
“Identify Automatic Bus Conversions”.

Action Results

Clicking Modify inserts a Bus to Vector block at the input ports of blocks.

For many models, running the Upgrade Advisor modifies your model so that bus signals are not
treated as vectors. However, for some models you can encounter compatibility issues even after
running the check. Modify your model manually to address those issues.

After you compile the model using Upgrade Advisor, the Simulink Editor sometimes indicates that you
need to save the model (the model is dirty), even though you did not make changes. To prevent this
issue from reoccurring for this model, save the model.

Modeling Pattern Issue Solution
Data Store Memory block
with Data Type set to
Inherit: auto

A Data Store Memory block whose
associated Data Store Read or Data
Store Write blocks read or write bus
signal data must use a bus object.

In the Data Store Memory block, set
the Data Type signal attribute to
Bus: <BusObject>.

Signal Conversion block
Output parameter
matches input bus type

A Signal Conversion block whose
Output parameter is set to
Nonvirtual bus requires a virtual
bus input.

A Signal Conversion block whose
Output parameter is set to
Virtual bus requires a nonvirtual
bus input.

To create a copy of the input signal,
set Output to Signal copy.

Merge, Switch, or
Multiport Switch block
with multiple bus inputs

Merge, Switch, or Multiport Switch
blocks with multiple bus inputs
require those inputs to have the
same names and hierarchy.

Reconfigure the model so that the
bus inputs have the same names and
hierarchy.

 Simulink Checks

9-59

Modeling Pattern Issue Solution
Root Inport block
outputting a virtual bus
and specifying a value for
Port dimensions

A root Inport block that outputs to a
virtual bus must inherit the
dimensions.

Set the Inport block Port
dimensions signal attribute to 1 or
-1 (inherit).

Mux block with nonvirtual
bus inputs

A Mux block cannot accept
nonvirtual bus signals.

To treat the output as an array,
replace the Mux block with a Vector
Concatenate block.

If you want a virtual bus output, use
a Bus Creator block to combine the
signals.

Bus to Vector block
without a virtual bus
signal input

A nonbus signal does not need a Bus
to Vector block.

Remove the Bus to Vector block.

Assignment block with
virtual bus inputs

The Upgrade Advisor converts the
Assignment block Y0 port bus input
to a vector.

Add a Bus to Vector block before the
Assignment block.

S-function using a
nonvirtual bus

An S-function that is not a Level-2 C
S-function does not support
nonvirtual bus signals.

Change the S-function to be a
Level-2 C S-function.

Consider using an S-Function
Builder block to create a Level-2 C
S-function.

Stateflow chart with
parameterized data type

In a Stateflow chart, you cannot
parameterize the data type of an
input or output in terms of another
input or output if the data type is a
bus object.

For the parameterized port, set
Data Type to Bus: <object
name>.

Subsystem with bus
operations in a Stateflow
chart

An Inport block inside a subsystem
in a Stateflow chart requires a bus
object data type if its signal is a bus.

In the Inport block, set Data type to
Bus: <object name>.

Ground block used as a
bus source

The output signal of a Ground block
cannot be a source for a bus.

Use a Constant block with Constant
value set to 0 and the Output data
type signal attribute set to Bus:
<object name>.

Root Outport block with a
single-element bus object
data type

The input to the Outport block must
be a bus if it specifies a bus object
as its data type.

In the Outport block, set Data type
to Inherit: auto.

See Also

• Bus to Vector block
• “Identify Automatic Bus Conversions”
• “Migrating to Simplified Initialization Mode Overview” on page 9-4
• Simulink.BlockDiagram.addBusToVector

9 Model Advisor Checks

9-60

Check for root outports with constant sample time

Check ID: mathworks.design.CheckConstRootOutportWithInterfaceUpgrade

Use this check to identify root outports with a constant sample time used with an AUTOSAR target,
Function Prototype Control, or the model C++ class interface.

Description

Root outports with constant sample time are not supported when using an AUTOSAR target, Function
Prototype Control, or the model C++ class interface. Use this check to identify root Outport blocks
with this condition and modify the blocks as recommended.

Results and Recommended Actions

Condition Recommended Action
Root outport with constant sample time used with an
AUTOSAR target, Function Prototype Control or the model
C++ class interface.

Consider one of the following:

• Set the sample time of the block to
the fundamental sample time.

• Identify the source of the constant
sample time and set its sample time
to the fundamental sample time.

• Place a Rate Transition block with
inherited sample time (-1) before the
block.

See Also

• “Consult the Upgrade Advisor”.

Analyze model hierarchy and continue upgrade sequence

Check ID: com.mathworks.Simulink.UpgradeAdvisor.UpgradeModelHierarchy

Check for child models and guide you through upgrade checks.

Description

This check identifies child models of this model, and guides you through upgrade checks to run both
non-compile and compile checks. The Advisor provides tools to help with these tasks:

• If the check finds child models, it offers to run the Upgrade Advisor upon each child model in turn
and continue the upgrade sequence. If you have a model hierarchy you need to check and update
each child model in turn.

• If there are no child models, you still need to continue the check sequence until you have run both
non-compile and compile checks.

You must run upgrade checks in this order: first the checks that do not require compile time
information and do not trigger an Update Diagram, then the compile checks.

 Simulink Checks

9-61

Click Continue Upgrade Sequence to run the next checks. If there are child models, this will open
the next model. Keep clicking Continue Upgrade Sequence until the check passes.

Results and Recommended Actions

Condition Recommended Action
Child models found Click Continue Upgrade Sequence to

run the next checks. If there are child
models, this will close the current
Upgrade Advisor session, and open
Upgrade Advisor for the next model in
the hierarchy.

No child models, but more checks to run If there are no child models, click
Continue Upgrade Sequence to
refresh the Upgrade Advisor with
compilation checks selected. The
compile checks trigger an Update
Diagram (marked with ^). Run the next
checks and take advised actions. When
you return to this check, click Continue
Upgrade Sequence until this check
passes.

Tips

Best practice for upgrading a model hierarchy is to check and upgrade each model starting at the leaf
end and working up to the root model.

When you click Continue Upgrade Sequence, the Upgrade Advisor opens the leaf model as far
inside the hierarchy as it can find. Subsequent steps guide you through upgrading your hierarchy
from leaf to root model.

When you open the Upgrade Advisor, the checks that are selected do not require compile time
information and do not trigger an Update Diagram. Checks that trigger an Update Diagram are not
selected to run by default, and are marked with ^. When you use the Upgrade Advisor on a hierarchy,
keep clicking Continue Upgrade Sequence to move through this sequence of analysis:

1 The Upgrade Advisor opens each model and library in turn, from leaf to root, and selects the non-
compile checks. Run the checks, take any advised actions, then click Continue Upgrade
Sequence to open the next model and continue.

2 When you reach the root end of the hierarchy, the Upgrade Advisor then opens each model again
in the same order (but not libraries) and selects only the checks that require a model compile.
Run the checks, take any advised actions, then click Continue Upgrade Sequence to open the
next model. Continue until you reach the end of the hierarchy and this check passes.

See Also

• “Consult the Upgrade Advisor”.
• “Model Upgrades”

Check Access to Data Stores

9 Model Advisor Checks

9-62

Check ID: mathworks.design.ConflictsForDataStoreReadWriters

Identify potential execution order sensitivity when reading and writing to data stores.

Description

The execution order of blocks that read and write to the same data store can change the simulation
result. When blocks in the same hierarchy access the same data store, the execution order is not
deterministic.

Results and Recommended Actions

Condition Recommended Action
Data Store Memory block
accessed by multiple blocks in the
same hierarchy.

To enforce execution order for the blocks, consider the following:

• Add a data dependency between the blocks.
• Set block priority.
• Move blocks into separate Function-Call Subsystem blocks

and schedule them.

See Also

• “Local and Global Data Stores”
• Data Store Memory
• Data Store Read
• Data Store Write

Check relative execution orders for Data Store Read and Data Store
Write blocks

Check ID: mathworks.design.TaskBasedSorting

Check relative execution order changes between legacy and task-based sorting for Data Store Read
and Data Store Write blocks.

Description

Legacy models used block sorting to determine block execution order. With task-based sorting, the
relative execution order involving Data Store Memory blocks can change. This check detects the
changes and provides an option to update your model with the original execution order.

Results and Recommended Actions

Condition Recommended Action
Execution order with a Data Store Memory block
changes. You want the original execution order.

Click the Modify button.

See Also

• “Control and Display Execution Order”

 Simulink Checks

9-63

Check for case mismatches in references to models and libraries

Check ID: mathworks.design.CaseSensitiveBlockDiagramNames

Identify and fix case-insensitive references to models and libraries.

Description

Starting R2020a, Simulink model and library names are case-sensitive. This check detects and
provides an option to fix case-insensitive references to models and libraries.

Results and Recommended Actions

Condition Recommended Action
The check finds case mismatches in references to
models and libraries.

Follow the recommendation given by the Upgrade
Advisor.

See Also

• “Consult the Upgrade Advisor”

Check model for Signal Builder blocks

Check ID: mathworks.design.Sigbldr.upgradeCheck

Searches for Signal Builder blocks in models.

Description

Find Signal Builder blocks in models and replace them with equivalently configured Signal Editor
blocks.

Results and Recommended Actions

Condition Recommended Action
Model contains one or more Signal Builder blocks. To replace all Signal Builder blocks with

equivalent Signal Editor blocks, click
the associated link.

See Also

• Signal Editor
• “Consult the Upgrade Advisor”

Check output dimensions of MATLAB Function blocks

Check ID:mathworks.simulink.MLFBOutputDimensions

9 Model Advisor Checks

9-64

Check lists all the MATLAB Function blocks that have the Interpret output column vectors as
one-dimensional data property enabled. If the property is enabled, the block converts output
column vectors of size N-by-1 to one-dimensional signals with a signal size equal to N.

Results and Recommended Actions

Condition Recommended Action
MATLAB Function block produces
one-dimensional output data and has
property enabled

Clicking the Fix It button does not disable the property for
the MATLAB function block. To disable the property:

1 Select the MATLAB Function block.
2 Open the Property Inspector. In the Modeling tab, in

the Design section, click Property Inspector.
3 In the General tab, clear the Interpret output column

vectors as one-dimensional data property.

Check the simulation behavior of the model, as disabling the
property changes the size propagation of the MATLAB
function block.

MATLAB Function block does not
produce one-dimensional data and has
property enabled

Click the Fix It button to disable the property for the
MATLAB function block.

See Also

• “Consult the Upgrade Advisor”
• “Interpret output column vectors as one-dimensional data”

Check model for RF Blockset Divider blocks using Wilkinson power
divider component with broken connections

Check ID: mathworks.design.rfblockset.ce.checkDisconnectedDividerBlocks

Search the model and list the RF Blockset™ Divider blocks using the Wilkinson power divider
component with broken port connections on port 3.

Description

Starting R2021a, port positions of the RF Blockset Divider blocks using the Wilkinson power divider
component are changed. This check searches and lists the Divider blocks using the Wilkinson power
divider component model with broken port connections on port 3 prior to R2021a. You can then
rewire the connections using the Modify button.

 Simulink Checks

9-65

Results and Recommended Actions

Condition Recommended Action
Models have RF Blockset Divider
blocks using the Wilkinson power
divider component with broken port
connections on port 3.

Click the Modify button to rewire the broken connections on
port 3 of the RF Blockset Divider blocks.

Action Results

Clicking Modify rewires the broken port connections on port 3 of the RF Blockset Divider blocks.

Note The Modify button will attempt to automatically rewire all the broken connections at port 3 of
the Divider blocks using the Wilkinson power divider component in your model. To ensure accuracy,
you must subsequently:

• Examine the details listed under the Result pane of the Upgrade Advisor.
• The first list enumerates the RF Blockset Divider blocks using the Wilkinson power divider

component that require manual rewiring due to model complexity.
• The second list enumerates the automatically rewired blocks.
• Fixed and unfixed Divider blocks are temporarily highlighted in colors green and red, respectively.

Click the Remove all temporary block highlighting link at the bottom of the Result pane to
remove the highlights.

See Also

• “Consult the Upgrade Advisor”

Identify Environment Controller Blocks and Replace Them with Variant
Source Blocks

Check ID:mathworks.design.ReplaceEnvironmentControllerBlk

Search for Environment Controller blocks in the model.

Description

Find Environment Controller blocks in the model and replace them with Variant Source blocks with
the Variant control mode parameter set to 'sim codegen switching'.

Results and Recommended Actions

Condition Recommended Action
Model contains one or more
Environment Controller blocks.

Replace Environment Controller blocks with Variant Source
blocks with the Variant control mode parameter set to
'sim codegen switching'.

9 Model Advisor Checks

9-66

Capabilities and Limitations

• You can run this check on your library models.
• You cannot use this check to identify Environment Controller blocks in referenced models and

linked blocks.

See Also

• “Environment Controller block has been removed” on page 1-647
• Variant Source

Identify variant blocks with VariantActivation set to "Inherit From
Simulink.VariantControl" but does not use Simulink.VariantControl

Check ID: mathworks.simulink.InheritVATFromSlVarCtrlCheck

Identify variant blocks in the model that have no variant control variables of type
Simulink.VariantControl to inherit activation time.

Description

Identify variant blocks with Variant activation time set to inherit from
Simulink.VariantControl but no variant control variables of type Simulink.VariantControl.

Results and Recommended Actions

Condition Recommended Action
Variant block with inherit from
Simulink.VariantControl
activation time has no variant control
variables of type
Simulink.VariantControl.

Change the type of at least one variant control variable to
Simulink.VariantControl.

Capabilities and Limitations

• You can run this check on your library models.

See Also

• Simulink.VariantControl
• “Types of Variant Activation Time in Variant Blocks and Variant Parameters”

Check for machine-parented data

Check ID: mathworks.stateflow.MachineParentedData.check

Check the model for instances of machine-parented data.

Description

Machine-parented data prevents models from reusing generated code and other code optimizations.
Machine-parented data is also incompatible with many Simulink and Stateflow features. To make

 Simulink Checks

9-67

Stateflow data accessible to other charts and blocks in a model, use chart-parented data of scope
Data Store Memory. For more information, see “Access Data Store Memory from a Chart”
(Stateflow).

Note Starting in R2023a, Stateflow charts no longer support machine-parented data. Use the
Upgrade Advisor to convert machine-parented data to chart-parented data store memory. For more
information, see “Consult the Upgrade Advisor” and “Check for machine-parented data” on page 9-
67.

Results and Recommended Actions

Condition Recommended Action
A Simulink model contains Stateflow machine-
parented data.

Upgrade the model by converting machine-
parented data to chart-parented data with values
in the model workspace.

Action Results

Clicking Upgrade model creates chart-parented data in the charts that use machine-parented data.

• If a machine-parented data object has a scope of Parameter, the new chart-parented data object
has a scope of Parameter. The value is stored as a Simulink.Parameter object in the model
workspace.

• If a machine-parented data object has any other scope, the new chart-parented data object has a
scope of Data Store Memory. The value is stored as a Simulink.Signal object in the model
workspace.

Capabilities and Limitations

Automatic conversion fails when:

• The model workspace contains a Simulink.Parameter or Simulink.Signal object with the
same name as the machine-parented data.

• The model contains chart-parented data, events, or messages with the same name as the machine-
parented data.

• The machine-parented data uses Stateflow semantics that do not have an equivalent for
Simulink.Parameter or Simulink.Signal objects.

Tips

If your model contains a library chart or an atomic subchart linked from a library, you must upgrade
every model that uses the library before you upgrade the library.

1 Open and upgrade each top model that uses the library.

Upgrading the top model creates a Simulink.Parameter or Simulink.Signal object in the
model workspace for each machine-parented data in the library.

2 Save and close the top models.
3 Open and upgrade the library model.

9 Model Advisor Checks

9-68

Upgrading the library model creates chart-parented data that replaces the machine-parented
data in the library.

4 Save and close the library model.

See Also

• “Share Parameters with Simulink and the MATLAB Workspace” (Stateflow)
• “Access Data Store Memory from a Chart” (Stateflow)
• “Best Practices for Using Data in Charts” (Stateflow)
• “Consult the Upgrade Advisor”

Identify clones from the linked library

Check ID:mathworks.cloneDetection.libraryEdittime

Identify clones in the model from linked library file.

Description

Clones are modeling patterns that have identical block types and connections. The Clone Detector
(Simulink Check) identifies clones across the model. You can reuse components in your model by
identifying clone patterns and replacing clones with links to the library blocks.

This check highlights the clones present in the model from linked library.

Results and Recommended Actions

Condition Recommended Action
Model contains a clone pattern from
the linked library.

Replace the clones with links to the library file from Clone
Detector app.

Capabilities

You can run this check to:

• Highlight both Exact and Similar clones from the linked library. For more information, see “Exact
Clones and Similar Clones” (Simulink Check).

• Highlight both subsystem clones and clones across the model from the linked library. For more
information, see “Specify Where to Detect Clones” (Simulink Check).

Limitations

• The check cannot identify clones in variants and Stateflow chart in the model.
• The check does not highlight clones if a subsystem contains nested subsystem which is more than

two-level deep.
• You cannot undo the change if you replace clones in the model.

Action Results

Fix button opens the Clone Detector app. Click Replace Clones and this replaces clones with links to
the linked library file.

 Simulink Checks

9-69

See Also

• “Enable Component Reuse by Using Clone Detection” (Simulink Check)
• “Replace Exact Clones with Subsystem Reference” (Simulink Check)

Refactor Bus Selector and Bus Creator blocks to In Bus Element and
Out Bus Element blocks

Check ID:mathworks.m2m_edittime.BusPortsXform

Refactor Bus Selector and Bus Creator blocks to In Bus Element and Out Bus Element blocks.

Description

To simplify your model, it is recommended to use In Bus Element and Out Bus Element blocks instead
of Bus Selector blocks for inputs and Bus Creator blocks for outputs. For more information, see
“Simplify Subsystem and Model Interfaces with Bus Element Ports”.

This check highlights the Bus Selector and Bus Creator blocks in the model and you can transform
those blocks to In Bus Element and Out Bus Element blocks.

Results and Recommended Actions

Condition Recommended Action
Model contains Bus Selector and Bus
Creator blocks.

Replace the Bus Selector and Bus Creator blocks to In Bus
Element and Out Bus Element blocks.

Capabilities and Limitations

• You can refactor the model by clicking Fix button in Model Advisor.
• You cannot undo the changes once you transform the model.

Action Results

Fix button transforms the model by replacing the suitable Bus Selector and Bus Creator blocks to In
Bus Element and Out Bus Element blocks.

See Also

• Check Model Compliance Using Edit-Time Checking (Simulink Check)
• “Simplify Subsystem and Model Interfaces with Bus Element Ports”

9 Model Advisor Checks

9-70

Performance Advisor Checks

10

Simulink Performance Advisor Checks

In this section...
“Simulink Performance Advisor Check Overview” on page 10-2
“Baseline” on page 10-3
“Checks that Require Update Diagram” on page 10-3
“Checks that Require Simulation to Run” on page 10-3
“Check Simulation Modes Settings” on page 10-3
“Check Compiler Optimization Settings” on page 10-3
“Check Hardware Acceleration Settings” on page 10-3
“Create baseline” on page 10-4
“Identify resource-intensive diagnostic settings” on page 10-4
“Check optimization settings” on page 10-4
“Identify inefficient lookup table blocks” on page 10-4
“Check MATLAB System block simulation mode” on page 10-5
“Identify Interpreted MATLAB Function blocks” on page 10-5
“Identify simulation target settings” on page 10-6
“Check model reference rebuild setting” on page 10-6
“Identify Scope blocks” on page 10-6
“Identify active instrumentation settings on the model” on page 10-6
“Check model reference parallel build” on page 10-7
“Check Delay block circular buffer setting” on page 10-8
“Check continuous and discrete rate coupling” on page 10-8
“Check zero-crossing impact on continuous integration” on page 10-9
“Check discrete signals driving derivative port” on page 10-9
“Check solver type selection” on page 10-9
“Select multi-thread co-simulation setting on or off” on page 10-10
“Identify co-simulation signals for numerical compensation” on page 10-11
“Check Dataflow Domain Settings” on page 10-11
“Select simulation mode” on page 10-11
“Select compiler optimizations on or off” on page 10-12
“Select hardware acceleration setting” on page 10-12
“Final Validation” on page 10-13

Simulink Performance Advisor Check Overview
Use Performance Advisor checks to improve model simulation time.

See Also

“Improve Simulation Performance Using Performance Advisor”

10 Performance Advisor Checks

10-2

Baseline

Establish a measurement to compare the performance of a simulation after Performance Advisor
implements improvements.

See Also

“Create a Performance Advisor Baseline Measurement”

Checks that Require Update Diagram

These checks require that Update Diagram occurs in order to run.

See Also

“Improve Simulation Performance Using Performance Advisor”

Checks that Require Simulation to Run

These checks require simulation to run in order to collect sufficient performance data. Performance
Advisor reports the results after simulation completes.

See Also

“Improve Simulation Performance Using Performance Advisor”

Check Simulation Modes Settings

These checks evaluate simulation modes (Normal, Accelerator, Rapid Accelerator, Rapid Accelerator
with up-to-date check off) and identify the optimal mode to achieve fastest simulation.

See Also

“What Is Acceleration?”

Check Compiler Optimization Settings

Use these checks to select compiler optimization settings for improved performance.

See Also

“Compiler optimization level”

Check Hardware Acceleration Settings

Use the check to compare three hardware acceleration options based on their simulation times.

 Simulink Performance Advisor Checks

10-3

See Also

“Hardware acceleration”

Create baseline

Select this check to create a baseline when Performance Advisor runs. You can also create a baseline
manually. A baseline is the measurement of simulation performance before you run checks in
Performance Advisor. The baseline includes the time to run the simulation and the simulation results
(signals logged). Before you create a baseline for a model, in the Data Import/Export pane of the
Configuration Parameters dialog box:

• Select the States check box.
• Set the Format parameter to Structure with time.

See Also

“Create a Performance Advisor Baseline Measurement”

Identify resource-intensive diagnostic settings

To improve simulation speed, disable diagnostics where possible. For example, some diagnostics,
such as Solver data inconsistency or Array bounds exceeded, incur run-time overheads during
simulations.

See Also

• “Diagnostics”
• “Improve Simulation Performance Using Performance Advisor”

Check optimization settings

To improve simulation speed, enable optimizations where possible. For example, if some
optimizations, such as Block Reduction, are disabled, enable these optimizations to improve
simulation speed.

You can also trade off compile-time speed for simulation speed by setting the compiler optimization
level. Compiler optimizations for accelerations are disabled by default. Enabling them accelerates
simulation runs but results in longer build times. The speed and efficiency of the C compiler used for
Accelerator and Rapid Accelerator modes also affects the time required in the compile step.

See Also

• “Model Configuration Parameters: Code Generation Optimization” (Simulink Coder)
• “Improve Simulation Performance Using Performance Advisor”

Identify inefficient lookup table blocks

10 Performance Advisor Checks

10-4

To improve simulation speed, use properly configured lookup table blocks.

See Also

• “Lookup Tables”
• “Optimize Generated Code for Lookup Table Blocks”
• “Optimize Breakpoint Spacing in Lookup Tables”
• “Improve Simulation Performance Using Performance Advisor”

Check MATLAB System block simulation mode

In general, to improve simulation speed, choose Code generation for the Simulate using
parameter of the MATLAB System block. Because data exchange between MATLAB and Simulink
passes through several software layers, Interpreted execution usually slows simulations,
particularly if the model needs many data exchanges.

This check identifies which MATLAB System blocks can generate code and changes the Simulate
using parameter value to Code generation where possible.

While Code generation does not support all MATLAB functions, the subset of the MATLAB
language that it does support is extensive. By using this Code generation, you can improve
performance.

See Also

• MATLAB System
• “Simulation Modes”
• “Improve Simulation Performance Using Performance Advisor”

Identify Interpreted MATLAB Function blocks

To improve simulation speed, replace Interpreted MATLAB Function blocks with MATLAB Function
blocks where possible. Because data exchange between MATLAB and Simulink passes through
several software layers, Interpreted MATLAB Function blocks usually slow simulations, particularly if
the model needs many data exchanges.

Additionally, because you cannot compile an Interpreted MATLAB Function, an Interpreted MATLAB
Function block impedes attempts to use an acceleration mode to speed up simulations.

While MATLAB Function blocks do not support all MATLAB functions, the subset of the MATLAB
language that it does support is extensive. By replacing your interpreted MATLAB code with code
that uses only this embeddable MATLAB subset, you can improve performance.

See Also

• MATLAB Function
• “Improve Simulation Performance Using Performance Advisor”

 Simulink Performance Advisor Checks

10-5

Identify simulation target settings

To improve simulation speed, disable simulation target settings where possible. For example, in the
Configuration Parameters dialog box, clear the Simulation Target > Echo expression without
semicolons check box to improve simulation speed.

See Also

• “Model Configuration Parameters: Simulation Target”
• “Improve Simulation Performance Using Performance Advisor”

Check model reference rebuild setting

To improve simulation speed, in the Configuration Parameters dialog box, verify that the Model
Referencing > Rebuild parameter is set to If changes in known dependencies detected.

See Also

• Rebuild
• “Improve Simulation Performance Using Performance Advisor”

Identify Scope blocks

Opened and uncommented Scope blocks can impact simulation performance. To improve simulation
performance, close and comment out Scope blocks. Right-click a scope block, and then select
Comment Out.

For opened Scopes, you can improve simulation speed by reducing updates. From the Scope
Simulation menu, select Reduce Updates to Improve Performance.

See Also

• “Improve Simulation Performance Using Performance Advisor”

Identify active instrumentation settings on the model

Identify active instrumentation settings on the model. The fixed-point instrumentation mode controls
which objects log minimum, maximum, and overflow data during simulation. Instrumentation is
required to collect simulation ranges using the Fixed-Point Tool. These ranges are used to propose
data types for the model (requires Fixed-Point Designer). When you are not actively converting your
model to fixed point, disable the fixed-point instrumentation to restore the maximum simulation speed
to your model.

In the Apps tab, select Fixed-Point Tool. Under System under design, click Continue.

In the Model Hierarchy pane, the Fixed-Point Tool denotes systems that currently have
instrumentation turned on with (mmo), or (o). Right-click the system in the model hierarchy and,
under Fixed-point instrumentation mode, select Use local settings or Force off.

10 Performance Advisor Checks

10-6

See Also

• Fixed-Point Instrumentation and Data Type Override (Fixed-Point Designer)

Check model reference parallel build

To improve simulation, verify the number of referenced models in the model. If there are two or more
referenced models, build the model in parallel if possible.

Performance Advisor analyzes the model and estimates the build time on the current computer as if it
were using several cores. It also estimates the parallel build time for the model in the same way an
estimation would be performed if Parallel Computing Toolbox or MATLAB Parallel Server software
were installed on the computer. Performance Advisor performs this estimate as follows:

1 Search the model for referenced models that do not refer to other referenced models.
2 Calculate the average number of blocks in each of the referenced models that do not refer to

other referenced models.
3 Of the list of referenced models that do not refer to others, select a referenced model whose

number of blocks is closest to the calculated average.
4 Build this model to obtain the build time.
5 Based on the number of blocks and the build time for this referenced model, estimate the build

time for all other referenced models.
6 Based on these build times, estimate the parallel build time for the top model.

 Simulink Performance Advisor Checks

10-7

To calculate the overhead time introduced by the parallel build mechanism, set the Parallel Build
Overhead Time Estimation Factor. Performance Advisor calculates the estimated build time with
overhead as:

(1 + Parallel Build Overhead Time Estimation Factor)*(Build time on a single machine)

See Also

• Enable parallel model reference builds
• “Improve Simulation Performance Using Performance Advisor”

Check Delay block circular buffer setting

To improve simulation, check that each Delay block in the model uses the appropriate buffer type. By
default, the block uses an array buffer (the Use circular buffer for state option is not selected).
However, when the delay length is large, a circular buffer can improve execution speed by keeping
the number of copy operations constant.

If the Delay block is currently using an array buffer, and all of the following conditions are true,
Performance Advisor selects a circular buffer:

• The Delay block is in sample-based mode, i.e,either the Input processing parameter is set to
Elements as channels (sample based), or the input signal type is set to Sample based.

• The value or upper limit of the delay length is 10 or greater.
• The size of the state—equal to the delay length multiplied by the total of all output signal widths—

is 1000 or greater.

See Also

• Delay
• “Improve Simulation Performance Using Performance Advisor”

Check continuous and discrete rate coupling

If your model contains both discrete and continuous rates, the coupling between these rates can slow
down simulation. Performance Advisor checks for these conditions in your model.

• The model is using a variable step solver.
• The model contains both continuous and discrete rates.
• The fastest discrete rate is relatively smaller than Max step size determined by the solver.

Setting the DecoupledContinuousIntegration parameter to on might speed up simulation.

See Also

• “Solver Selection Criteria”
• “Speed Up Simulation”
• “Improve Simulation Performance Using Performance Advisor”

10 Performance Advisor Checks

10-8

Check zero-crossing impact on continuous integration

If your model contains zero-crossings which do not impact the continuous integration, the simulation
might slow down when all the following conditions are satisfied:

• The model uses a variable-step solver.
• The model contains blocks that have continuous states and zero-crossings.
• Some of the zero-crossings do not affect the integration of the continuous states.

Setting the MinimalZcImpactIntegration parameter to On might speed up simulation.

See Also

• “Speed Up Simulation”
• “Solver Selection Criteria”
• “Improve Simulation Performance Using Performance Advisor”

Check discrete signals driving derivative port

Run this check if your simulation has many unnecessary resets. A discrete signal driving a block with
continuous states triggers a reset at every sample time hit of the block. These resets are
computationally expensive. Performance Advisor checks for these signals and blocks and provides a
list of the same.

You can edit the model around the discovered discrete signals that drive these blocks to remove such
cases. For example, inserting a Zero Order Hold block between the discrete signal and the
corresponding block with continuous states might help resolve the issue.

See Also

• “Speed Up Simulation”
• “Modeling Techniques That Improve Performance”

Check solver type selection

To improve simulation, check that the model uses the appropriate solver type.

Explicit vs. Implicit Solvers

Selecting a solver depends on the approximation of the model stiffness at the beginning of the
simulation. A stiff system has both slowly and quickly varying continuous dynamics. Implicit solvers
are specifically designed for stiff problems, whereas explicit solvers are designed for non-stiff
problems. Using non-stiff solvers to solve stiff systems is inefficient and can lead to incorrect results.
If a non-stiff solver uses a very small step size to solve your model, check to see if you have a stiff
system.

 Simulink Performance Advisor Checks

10-9

Model Recommended Solver
Represents a stiff system ode15s
Does not represent a stiff system ode45

Performance Advisor uses the heuristic shown in the table to choose between explicit and implicit
solvers.

Original Solver Performance Advisor Action
Variable step solver Calculates the system stiffness at 0 first. Then:

• If the stiffness is greater than 1000, Performance Advisor
chooses ode15s.

• If the stiffness is less than 1000, Performance Advisor
chooses ode45.

Fixed-step continuous solver • If the stiffness is greater than 1000, Performance Advisor
chooses ode14x.

• If the stiffness is less than 1000, Performance Advisor
chooses ode3.

This heuristic works best if the system stiffness does not vary during simulation. If the system
stiffness varies with time, choose the most appropriate solver for that system rather than the one
Performance Advisor suggests.

See Also

• “Solver Selection Criteria”
• “Speed Up Simulation”
• “Improve Simulation Performance Using Performance Advisor”

Select multi-thread co-simulation setting on or off

Adjust co-simulation settings for better performance and accuracy.

• Validate and revert changes if simulation time increases — Performance Advisor reverts previous
co-simulation settings when the simulation time increases.

• Validate and revert changes if degree of accuracy is greater than tolerance — Performance
Advisor reverts previous co-simulation settings if the degree of accuracy is greater than tolerance.

Tip You can use the tic and toc functions to measure the simulation time.

See Also

• tic
• toc
• sim

10 Performance Advisor Checks

10-10

Identify co-simulation signals for numerical compensation

Identify co-simulation signals that may need explicit numerical compensation.

• Validate and revert changes if time of simulation increases — Performance Advisor reverts
previous co-simulation settings the simulation time increases.

• Validate and revert changes if degree of accuracy is greater than tolerance — Performance
Advisor reverts co-simulations if the degree of accuracy is greater than tolerance.

Tip You can use the tic and toc functions to measure the simulation time.

See Also

• tic
• toc
• sim

Check Dataflow Domain Settings

To increase the throughput of a dataflow domain, it can be advantageous to increase the latency of
the system. The Performance Advisor analyzes the dataflow domains in your model and finds the
optimal latency settings. The analysis also identifies any other multithreading limitations in the
dataflow domains.

The dataflow analysis is a multistep process where the analysis may simulate the model with run-time
profiling enabled for each block inside the dataflow domains before running partitioning analysis.

After the analysis completes, the Performance Advisor suggests a latency value that optimizes the
throughput of the system for the multicore CPU architecture of the host computer and identifies any
other multithreading limitations in the dataflow domains

See Also

• “Dataflow Domain” (DSP System Toolbox)

Select simulation mode

To achieve fastest simulation time, use this check to evaluate the following modes and identify the
optimal selection:

• Normal
• Accelerator
• Rapid Accelerator
• Rapid Accelerator with up-to-date check off

 Simulink Performance Advisor Checks

10-11

In Normal mode, Simulink interprets your model during each simulation run. If you change the model
frequently, this is generally the preferred mode to use because it requires no separate compilation
step. It also offers the most flexibility to make changes to your model.

In Accelerator mode, Simulink compiles a model into a binary shared library or DLL where possible,
eliminating the block-to-block overhead of an interpreted simulation in Normal mode. Accelerator
mode supports the debugger and profiler, but not runtime diagnostics.

In Rapid Accelerator mode, simulation speeds are fastest but this mode only works with models
where C-code is available for all blocks in the model. Also, this mode does not support the debugger
or profiler.

When choosing Rapid Accelerator with up-to-date check off, Performance Advisor does not perform
an up-to-date check during simulation. You can run the Rapid Accelerator executable repeatedly
while tuning parameters without incurring the overhead of up-to-date checks. For instance, if you
have a large model or a model that makes extensive use of model reference, this method of execution
can increase efficiency.

For models with 3–D signals, Normal or Accelerator modes work best.

See Also

• “How Acceleration Modes Work”
• “Choosing a Simulation Mode”
• “Comparing Performance”
• “Run Simulations Programmatically”

Select compiler optimizations on or off

Use this check to determine whether performing compiler optimization can help improve simulation
speed. The optimization can only be performed in Accelerator or Rapid Accelerator modes.

Note This check will be skipped if MATLAB is not configured to use an optimizing compiler.

See Also

• “How Acceleration Modes Work”
• “Choosing a Simulation Mode”
• “Comparing Performance”
• “Improve Simulation Performance Using Performance Advisor”

Select hardware acceleration setting

This check will compare three hardware acceleration options based on their simulation times.

• Off — Hardware acceleration is disabled and no SIMD is used.

10 Performance Advisor Checks

10-12

• Leverage generic hardware (Faster, no rebuild) — Leverage SIMD instructions for
hardware generic to Simulink system requirements. This option does not require rebuilding the
model for simulation when the host computer changes.

• Leverage native hardware (Fastest, rebuild allowed) — Leverage SIMD instructions
for hardware native to the host computer. This option may require rebuilding the model for
simulation when the host computer changes.

You can select the hardware acceleration based on the comparison.

See Also

• “Hardware acceleration”

Final Validation

This check validates the overall performance improvement of simulation time and accuracy in a
model. If the performance is worse than the original model, Performance Advisor discards all changes
to the model and loads the original model.

Global settings for validation do not apply to this check. If you have not validated the performance
improvement from changes resulting from other checks, use this check to perform a final validation
of all changes to a model.

See Also

• “Comparing Performance”
• “Improve Simulation Performance Using Performance Advisor”

 Simulink Performance Advisor Checks

10-13

Simulink Limits

• “Maximum Size Limits of Simulink Models” on page 11-2
• “Systems and Models” on page 11-3
• “Simulink Models” on page 11-6
• “Simulink Simulation” on page 11-28
• “Simulink Tools” on page 11-33
• “Programming Constructs in Simulink” on page 11-44
• “Model Development Processes” on page 11-46
• “What is Simulink Online?” on page 11-49

11

Maximum Size Limits of Simulink Models
The following table documents some limits on the size and complexity of Simulink models.

Model Feature Limit
Maximum number of levels in a block diagram 1024
Maximum number of branches in a line 1024
Maximum length of a parameter name 63
Maximum length of a parameter character vector
value

32768

Maximum size of a model window, as determined
by supported coordinates

-1073740824 to 1073740823, inclusive

Maximum number of bytes for a single logged
data point

90 MB

Maximum number of bytes of logged simulation
data

Limited by available hard drive space

Maximum number of bytes for an individual block
I/O buffer length

2^31-1 bytes

Maximum number of bytes for an individual
DWork buffer length

2^31-1 bytes

Maximum length of integer and fixed-point data
types

128 bits

Maximum length of string data type 32,766 characters

11 Simulink Limits

11-2

Systems and Models
The concepts in this topic provide a consistent and common language for using Simulink software
tools.

System
A system is a group of interdependent physical and functional parts with measurable characteristics
that change over time.

For example, a vehicle is a system with multiple parts. Measurable characteristics include the linear
speed of the vehicle and the rotational speed of the wheels.

System Component
A system component is part of a system that interacts with the other parts of the system. The
interactions between components define the structure and behavior of the system.

For example, a cruise control module is a system component in a vehicle system. A microcontroller
and the hardware associated with it define the structure while a software algorithm to control speed
defines the behavior.

Model
A model is a mathematical description of a system derived either from physical laws or experimental
data. The description typically uses a set of variables with a set of differential and difference
equations that define the relationships between the variables.

In the following example for a vehicle, u(t) is the force (N) moving a vehicle forward, v(t) is the
velocity (m/s), b is a drag coefficient (Nׂׂ·s/m), and m is the mass of the vehicle (kg).

The vehicle is a continuous system. For continuous systems, differential equations describe the rate of
change for variables with the equations defined for all values of time. The velocity of the vehicle
v(t)and its acceleration v'(t) are defined with the following first order differential equation.

mv'(t) + bv(t) = u(t)

You can create a Simulink model for this equation by adding blocks, specifying block behavior, and
using signal lines to connect the blocks to each other. The following Simulink block diagram
implements the differential equation.

 Systems and Models

11-3

Model Component
A model component is part of a model that interacts with the other parts through an interface of
inputs and outputs. Simulink implements model components using Subsystem and Model blocks. A
Model block references another Simulink model saved in a separate file.

In the following example, the control model was saved in the Simulink model file
control_model.slx, and then referenced from a Model block in a second Simulink model. A
Subsystem block was added for modeling the vehicle mechanics.

Typically, controllers are built with discrete systems using a computer to implement the control
algorithm. For discrete systems, difference equations describe the rate of change for variables
defined only at specific times. For example, the control signal for a simple discrete PI (proportional–
integral) controller can be defined with the following difference equation.

PI[n] = e[n]Kp + (e[n]+integral[n-1])Ki

Where e[n] is the error between a signal whose value is controlled (velocity) and the specified value
(set velocity), Kp is the proportion constant, Ki is the integration constant, and n is the time step.

The following Simulink block diagram implements the difference equation.

See also: “Model a Continuous System”, “Component-Based Modeling Guidelines”, “Create Custom
Library”, “Model Reference Basics”.

11 Simulink Limits

11-4

Differential Algebraic Equations
Some systems of equations contain additional constraints that involve the independent variable and
the state vector in addition to differential equations. Such systems are called differential algebraic
equations (DAEs).

The term algebraic refers to equations that do not involve derivatives.

In Simulink models, algebraic loops represent algebraic constraints. Models with algebraic loops
define a system of differential algebraic equations.

For example, consider this model that implements a simple system of DAEs. The inner loop
represents an algebraic constraint, while the outer loop represents a differential equation.

The model implements this system of DAEs.
x' = x
0 = u - x - 2xa

 Systems and Models

11-5

Simulink Models
A model is an abstract and simplified description of a system using mathematical equations and
diagrams. The modeling concepts in this topic provide context for understanding the process of
mathematically describing a system with Simulink software tools.

Block Diagram
A block diagram is a visual representation of a model in the Simulink Editor. The editor allows you to
add blocks selected from block libraries representing elementary model components. Elementary
components include integrator, gain, and sum blocks. Blocks are connected to each other with signal
and event lines to visually construct the model equations.

Block Diagram Semantics

A classic block diagram of a system is drawn graphically with blocks and lines. The history of these
block diagrams is derived from engineering areas such as Feedback Control Theory and Signal
Processing. A block within a block diagram defines a model in itself. The relationships between
elementary models are represented by signal lines connecting the blocks. The blocks and lines in a
block diagram collectively describe the overall model of a system.

Simulink extends classic block diagrams by:

• Adding a set of equations (block methods) to each block that defines the time-based relationships
between the input signals, output signals, and block state variables.

• Adding parameters to each block that specify the coefficients from the model equations.
• Providing an engine for numerical solution of the block diagram by evaluating the relationships

over time, where time starts at a user-specified “start time” and ends at a user-specified “stop
time.”

See also: “Simulink Block Diagrams”, “Simulation”.

11 Simulink Limits

11-6

Blocks
A block is a basic modeling construct of the Simulink Editor. Add blocks from the built-in Simulink
libraries to perform specific operations. You can also create custom blocks. Some blocks have input
signals, output signals, and states. Most blocks have parameters that you use to specify block
behavior. Whether a block has parameters and the nature of those parameters is specific to each
block.

Each block represents a set of equations for the Simulink engine. The equations are represented as
block methods. The blocks shown above have the following block methods.

Block methods are evaluated during the simulation of a block diagram. The evaluation of the block
methods is performed within a simulation loop, where each cycle through the simulation loop
represents the evaluation of the block diagram at a given point in time.

Virtual Blocks

Virtual blocks organize and provide graphical hierarchy in a model. During model simulation,
Simulink expands the blocks in place before execution, a process known as flattening. This expansion
is similar to the way macros work in a programming language such as C or C++.

Simulink defines the following virtual blocks:

• Virtual Subsystem – Use a virtual subsystem to encapsulate related and functional parts within a
larger model. A Virtual Subsystem block has the check box for the parameter Treat as atomic
unit cleared.

• Inport and Outport – Use port blocks to move data (signals) and events (function calls) from
outside a Subsystem block or Model block to within the block, and vice versa.

 Simulink Models

11-7

• Bus Creator, Bus Assignment, Bus Selector – Bus blocks combine signals into a virtual bus and
manage the routing of signals around a complex block diagram. Virtual buses are a graphical
convenience and do not change the behavior of the model.

See “Nonvirtual and Virtual Blocks”, “Signal Types”, “Composite Interface Guidelines”.

Nonvirtual Blocks

Nonvirtual blocks provide execution control and graphical hierarchy in a model. Simulink defines the
following nonvirtual Subsystem and Model blocks:

• Atomic Subsystem and Model – Blocks within an Atomic Subsystem block or a Model block that
references a model execute as a single unit (atomic execution) at each time step. For an Atomic
Subsystem block, the check box for the parameter Treat as atomic unit is selected.

You can place any Simulink block in an Atomic Subsystem or referenced model, including blocks
with different execution rates. This flexibility provides the advantage of grouping functional
aspects of a model at the execution level.

In the following example, the vehicle model is an Atomic Subsystem block containing blocks that
model the mechanics of a car. The control model is referenced from a Model block.

11 Simulink Limits

11-8

• Enabled and/or Triggered – Atomic Subsystem or Model block whose execution is controlled by
external data from a signal. Contains an Enable or Trigger block, or both. For the Trigger block,
the parameter Trigger type is set to rising, falling, or either.

• Function-Call – Atomic Subsystem or Model block whose execution is controlled by an event from
a function-call initiator (such as a Stateflow chart or a Function-Call Generator, S-Function, or Hit
Crossing block). Contains a Trigger block with Trigger type set to function-call.

Simulink defines the following nonvirtual components only for Subsystem blocks.

• Action Subsystem – Atomic Subsystem block whose execution is controlled by an event from an
action initiator (e.g., If or Switch Case block). Contains an Action Port block within the Subsystem
block.

 Simulink Models

11-9

• While Iterator Subsystem – Atomic Subsystem block that runs multiple iterations during each
model time step. Contains a While Iterator block that controls the number of iterations by
evaluating a logical condition.

A while iterator subsystem is similar to a function-call subsystem in that it can run for any number
of iterations at a given time step. The while iterator subsystem differs from a function-call
subsystem in that there is no separate initiator.

• For Iterator Subsystem – Atomic Subsystem block that runs a fixed number of iterations during
each model time step. Contains a For Iterator block that controls the number of iterations.

See “Nonvirtual and Virtual Blocks”.

Block Mask

A block mask is a custom block parameter interface that displays only selected block parameters. A
mask for a Subsystem block allows you to provide an interface for setting parameters on blocks inside
the Subsystem block without having to navigate the model hierarchy.

See “Masking Fundamentals”.

Custom Blocks

Custom blocks are new blocks that extend the built-in functionality of Simulink. You can create
libraries of custom blocks to use in your model.

The following blocks define the algorithm of a custom block either graphically with a block diagram
or programmatically:

• MATLAB Function – Code a MATLAB function using the MATLAB language that runs in a Simulink
model. See “Implement MATLAB Functions in Simulink with MATLAB Function Blocks”.

• MATLAB System – Bring existing System objects based on matlab.System into Simulink. See
“MATLAB System Block”.

• Subsystem – Draw a block diagram representing an algorithm, wrap this diagram in an instance of
the Simulink Subsystem block, then provide the block with a parameter dialog using a Simulink
block mask. See Subsystem.

• C Caller – Integrate your external C code into a Simulink model. See “Integrate C Code Using C
Caller Blocks”.

• S-Function – Create a custom block programmatically by creating a MATLAB file or a MEX file
that contains the block's system functions. The resulting file is called an S-function. You then
associate the S-function with instances of the Simulink S-Function block in your model. See S-
Function.

See “Types of Custom Blocks”, “Block Authoring and Simulation Integration”.

Lines
A line is a basic modeling construct of the Simulink Editor. Lines connect the output ports of blocks
with the input ports of other blocks.

Signal Lines

Signal lines transfer data during a simulation from one block to another block. Signals are time-
varying quantities that have values at all points in time (continuous) or at specified time points

11 Simulink Limits

11-10

(discrete). The source of a signal corresponds to the block that writes to the signal during evaluation
of its block output method. The destination of a signal is the block that reads the signal during the
evaluation of its block input method.

You can specify signal attributes, including signal name, data type (e.g., double, 32-bit integer),
numeric type (e.g., real, complex) and dimension (e.g., one-dimensional, two-dimensional, multi-
dimension array). Many blocks can accept or output a signal of any data type or dimensionality. Other
blocks impose restrictions on the attributes of the signals they can handle.

During a simulation, save data from a signal by logging the signals.

Event Lines

In response to a function-call or action initiator, event lines send an event to a Subsystem or Model
block. The block that receives the event executes the blocks within it one or more times during a time
step. Function-call initiators include Stateflow charts, Function-Call Generator blocks, S-Function
blocks, and Hit Crossing blocks. Action initiators include If and Switch Case blocks.

See “Signals” and “Signal Basics”.

Data
Data includes the parameter and input signal values that Simulink uses to produce the output values
resulting from simulating the behavior of a model.

Types of data:

• Model parameters – Variables to specify block and signal parameters in a model. Includes
MATLAB variables, parameter and signal data objects, data type objects, and bus objects.

• Model configuration parameters – Parameters that determine how your model runs by specifying
the settings that control model behavior.

 Simulink Models

11-11

• Simulation data – Input data to drive a simulation and output data generated by a simulation.
• Data Objects – Instances of data classes that allow you to specify characteristics of signals, states,

and block parameters. Use the Simulink.Signal and Simulink.Parameter classes to create
data objects. See “Data Objects”.

Location of data:

• Block parameters – Use block parameters to directly specify numerical values. You can also
enter a variable name and define its value in the Simulink model workspace, a Simulink data
dictionary, or the MATLAB base workspace.

• MATLAB base workspace – Use the MATLAB base workspace to save variables that are separate
from the model in a MAT-file or MATLAB script.

Simulink treats the base workspace and the data dictionary as a single global name space. If the
base workspace and a referenced data dictionary have identical variable names, Simulink uses the
variable value in the data dictionary.

The MATLAB base workspace contains variables that are global and visible to all Simulink models.

11 Simulink Limits

11-12

See “Comparison of Signal Loading Techniques”, “Save Simulation Data”.
• Simulink model workspace – Use the model workspace to define and store local data variables.

Variables defined in a model workspace are visible only within the scope of the model with a
unique name space. Therefore, you can use the same variable name in multiple model workspaces
and you can assign a unique variable value to the name in each model.

Define variables in the data dictionary using Model Explorer. In the Modeling tab, click Model
Explorer . In the left pane, select Model Workspace.

Values for the model workspace variables are initialized from values saved with the model, from a
separate MAT-file or MATLAB file, or using MATLAB code saved with the model.

 Simulink Models

11-13

See “Model Workspaces”, “Specify Source for Data in Model Workspace”.

• Simulink data dictionary – Use a data dictionary to define and store global data, share data
between models, and track changes made to the data. Data is saved in a file separate from the
model.

Create a data dictionary file. In the Modeling tab, under Design, click Data Dictionary .
Click New and enter a file name with an extension .sldd.

Define variables in the data dictionary using Model Explorer. In the Modeling tab, click Model
Explorer . In the left pane, select Design Data.

See “What Is a Data Dictionary?”.

11 Simulink Limits

11-14

• Imported and exported data – Import signals for a simulation from the MATLAB base
workspace, a MAT-file, or a spreadsheet. Create input signals using a source block or the Signal
Editor block. Use signal logging to export simulation results. Signals are saved as vectors [t, X,
Y] for time, state and output at each major time step.

See also: “Determine Where to Store Variables and Objects for Simulink Models”, “Symbol
Resolution”.

Parameters
Parameters are Simulink model characteristics that affect the simulation and code generation result.

Model Configuration Parameters

Model configuration parameters specify model behavior during compilation, simulation, and code
generation, such as the solver to use and the types of errors and warnings to display.

To specify model configuration parameters, in the Modeling tab, click Model Settings. The
Configuration Parameters dialog box opens.

See “Set Model Configuration Parameters for a Model”.

Block Parameters

Block parameters define model dynamics and mathematics. Whether a block has parameters that you
can set and the nature of those parameters is specific to each block. To specify block parameters,
open the block parameter dialog box, or in the Modeling tab, under Design, click one of the
following:

 Simulink Models

11-15

• Property Inspector – Specify block parameters directly or enter a variable name for a parameter
value.

• Model Data Editor – Specify block parameters with variables.
• Model Explorer – Specify block parameters with variables.

See “Set Block Parameter Values”.

Block Parameter Variables

If you have a single parameter used in many locations across a large model, updating every instance
of that parameter can be a difficult task. Instead, enter a variable name as the value of a parameter,
then define the variable once using one of the following methods:

• Simulink Model Workspace – Create model workspace variables and assign values to the variables.
The parameters you define are specific to the model and saved with the model. Use a MATLAB
variable for ease of maintenance. Use a Simulink.Parameter object to control additional
properties including data type, dimensions, and units. See “Edit and Manage Workspace Variables
by Using Model Explorer”.

• Simulink Data Dictionary – Create design data variables in a data dictionary and link the
dictionary to a model. During model simulation, Simulink retrieves data from the data dictionary.

• MATLAB Base Workspace – In the MATLAB base workspace, define parameters using any MATLAB
mechanism for defining a variable. For example, you can use a MAT-file and load the variables
when you open the model. Use MATLAB expressions to specify parameter variable values.
Simulink evaluates the expressions before running a simulation. See “Save and Load Workspace
Variables”.

Using the MATLAB base workspace or a Simulink data dictionary to define variables is useful when
you are using the same set of parameters for more than one model. This mechanism also allows you
to use different sets of parameter values for the same model.

See also: “Share and Reuse Block Parameter Values by Creating Variables”, “Create, Edit, and
Manage Workspace Variables”.

Model Argument and Instance Parameters

When you reference the same model from multiple Model blocks, you create instances of the model.
You can set block parameters to use the same value or a different value for each instance of the
model.

To use different values,

1 In the model workspace for the referenced model, create a MATLAB variable or
Simulink.Parameter object.

2 Enter a parameter name and a default parameter Value. Select the Argument check box to
create a model argument.

3 For a block in the referenced model, enter the name of the model argument for the value of a
block parameter.

4 For each Model block, open the block parameters dialog box, select the Instance parameters
tab, and enter a value for the instance parameter with the model argument name.

See also: “Parameterize Instances of a Reusable Referenced Model”.

11 Simulink Limits

11-16

Tunable Block Parameters

You can change the value of a tunable block parameter during a simulation. This allows you to
determine interactively the most suitable value for a parameter. When you change the value of a
tunable parameter, the change takes effect at the start of the next time step. For example, the gain
parameter of the Gain block is tunable. You can change the block gain while a simulation is running.
See “Tune and Experiment with Block Parameter Values”.

Setting Block Parameters with the Property Inspector

To specify parameters, in the Modeling tab, under Design, click Property Inspector. Click a block
to display the block parameters and properties.

See also: “Specify Block Properties”.

Properties
Properties are Simulink model characteristics that generally do not affect the simulation result. To
specify properties, in the Modeling tab, under Design, click Property Inspector.

Model Properties

With the Property Inspector opened, click a blank space within a block diagram, or in the Modeling
tab, select Model Settings > Model Properties. Model properties include:

• General – Name and location of model file.
• Design Data – Variables defined outside the model that parameterize the model and its blocks and

signals.
• Callbacks – Commands that execute when a specific model event occurs.

See “Manage Model Versions and Specify Model Properties”.

 Simulink Models

11-17

Block Properties

With the Property Inspector opened, select a block, then select the Properties tab. Block properties
include:

• Block Annotation – Values of selected block parameters displayed below the block.
• Callbacks – Commands that execute when a specific block event occurs. For example, you can set

up a MATLAB script to load and define block parameter variables using expressions.
• Priority – Set the relative execution order of blocks. A lower value executes the block before a

larger priority value.
• Tags – Block identifiers that are programmatically searchable.

Port Properties

With the Property Inspector opened, select a port, then select the Properties tab. You can modify
properties of port objects, signals, and port blocks with the Property Inspector. The ports on a
subsystem block also have a port block tab, which contains properties of the associated port block.

• The port block properties are displayed for these subsystem blocks:

• Subsystem, Atomic Subsystem, CodeReuse Subsystem
• Variant Subsystem, Variant Model
• For Each
• For Iterator Subsystem
• Function-Call Feedback Latch
• Function-Call Subsystem
• Function-Call Generator
• Function-Call Split
• If

11 Simulink Limits

11-18

• While Iterator Subsystem
• The ports on these blocks show a tab with the same name as the type of port block and list the

properties that are shown in the Model Explorer window. For example, an EnablePort Block tab
is shown for ports on an Enable block, and Data, Message, or Event tabs are shown for ports on
Stateflow blocks.

• Enable block
• Trigger block
• Function Call block
• Reset block
• Action Port block
• Chart
• Truth Table
• State Transition Table
• Test Sequence
• matlabFunctionBlock

 Simulink Models

11-19

• The port properties of read-only blocks are not editable. For example, the port properties of locked
linked library blocks, masked blocks, and protected referenced models are read-only.

• The port block properties on Model blocks are shown only if the model is loaded.

Setting Model and Block Properties with Property Inspector

To set properties, in the Simulation tab, under Prepare, click Property Inspector. Click an empty
space to display the model properties. Click a block to display the block properties.

11 Simulink Limits

11-20

See also: “Specify Block Properties”, “Customize Model Behavior with Callbacks”.

State variables
The state of a model is defined by the values of its state variables. State variables are the set of
variables whose values at time zero, along with the values of model inputs and the model equations,
can determine the behavior of a model during a simulation. Examples of state variables include motor
position and velocity, inductor current, capacitor voltage, solution temperature, and gas pressure.

If the current output value of a block is a function of the previous output value, the block defines a
state variable that needs to be saved between time steps. Computing a block output hence entails
saving the value of the state variable at the current time step for use in computing the output at a
subsequent time step.

Working with States

The following facilities are provided for determining, initializing, and logging model states during
simulation:

• The Data Import/Export pane of a model's Configuration Parameters dialog box (see “Save Block
States and Simulation Operating Points”) allows you to specify initial values for model states, and
to record the values of the states at each time step during simulation as an array or structure
variable in the MATLAB workspace.

Open the Configuration Parameters dialog box. Select the States check block for logging to the
MATLAB variable xout.

In the MATLAB Command Window, list the logged values for state of the Integrator block at each
time step.

 >> xout{1}.Values.Data

 ans =

 0.0000
 1.8127

 Simulink Models

11-21

 3.2968
 4.5119 . . .

• You can use the name of a model as a programmatic interface to display information about the
states defined by a model, including the total number of states and the block that defines each
state with its initial value.

List blocks in the model vehicle_model with states. In the MATLAB Command Window, enter
the model function, then list blocks with states.

 [sys,x0,blks,ts] = vehicle_model([],[],[],'sizes');
 blks

blks =
 {'vehicle_model/Integrator'}

• The Simulink debugger displays the value of a state at each time step during a simulation, and the
states function for the Simulink debugger displays information about the current states (see
“Debug Simulations Programmatically”).

In the MATLAB Command Window, start the Simulink debugger, then enter the command states.

 sldebug 'vehicle_model'
 (sldebug @0): >> states

 Continuous States for 'vehicle_model':
 Idx Value (system:block:element Name 'BlockName')
 0. 0 (0:0:0 CSTATE 'vehicle_model/Integrator')

• Using the Block Parameters dialog box or the get_param function with the
ContinuousStateAttributes parameter, you can name states for blocks that have continuous
states, such as the Integrator block. Naming states can simplify analyzing logged states data,
especially when a block has multiple states.

Continuous States

A continuous state is defined for all values of time. An example of a continuous state would be the
speed of a car shown on an analog speedometer with a needle position that changes continuously
with the rotation of a tire.

11 Simulink Limits

11-22

Blocks with continuous states and the block parameter Initial condition include:

• Integrator
• State-Space
• Transfer Fcn

In general, excluding simple models, analytical methods do not exist for integrating states
represented by ordinary differential equations. Integrating the states requires the use of numerical
methods.

Discrete States

A discrete state is defined only at specific times. It is an approximation of a continuous state where
the state is updated at periodic or aperiodic time intervals. An example of a discrete state would be
the speed of a car shown on a digital speedometer that is updated every second as opposed to
continuously.

Blocks with discrete states include:

• Discrete-Time Integrator
• Discrete State-Space
• Discrete Transfer Fcn
• Delay

Computing the discrete state for a block requires knowing its value at the previous time step and also
the current input value to the block. Simulink provides two types of discrete solvers:

• Fixed-step discrete solver – determines a fixed step size that hits all the sample times for all the
model's discrete states, regardless of whether the states actually change value at the sample time
hits.

• Variable-step discrete solver – varies the step size to ensure that sample time hits occur only at
times when the states change value.

Modeling Hybrid Systems

A hybrid model has both continuous and discrete states. Solving such a model entails choosing a step
size that satisfies both the precision constraint on the continuous state integration and the sample
time interval constraint on the discrete states. Simulink meets this requirement by passing the next
sample time interval for the discrete solver as an additional constraint on the continuous solver. The
continuous solver chooses a step size that advances the simulation up to but not beyond the time of
the next discrete sample time. The continuous solver can take a time step short of the next sample
time hit to meet its accuracy constraint but it cannot take a step beyond the next sample time hit
even if its accuracy constraint allows it to.

You can simulate hybrid systems using any of the integration methods, but certain methods are more
effective than others. For most hybrid systems, ode23 and ode45 are superior to the other solvers in
terms of efficiency. Because of discontinuities associated with the sample and hold of the discrete
blocks, do not use the ode15s and ode113 solvers for hybrid systems.

 Simulink Models

11-23

Sample Time
Sample time is the time interval that specifies the rate (1 / sample time) for executing block methods
to produce outputs and update the internal states of blocks. Time is an inherent component of a block
diagram in that the simulation results of a block diagram change with time.

Sample time is specified as:

• Continuous – Blocks run at variable times based on solver settings.
• Discrete – Blocks run at specific times that are explicitly specified.

In the following example, the controller runs at a discrete rate specified with a sample time of 0.01
seconds while Simulink determines the vehicle model to have a continuous sample time.

Determining a system's behavior over time thus entails repeatedly solving the model at intervals,
called time steps or time intervals, from the start of the time span to the end of the time span. The
process of solving a model at successive time steps is referred to as simulating the system that the
model represents.

See also “What Is Sample Time?”, “Types of Sample Time”, “Specify Sample Time”, “View Sample
Time Information”.

Block Sample Times

Every Simulink block has a sample time which defines when the block will execute. Most blocks allow
you to specify the sample time via a SampleTime parameter. Common choices include discrete,
continuous, and inherited sample times.

11 Simulink Limits

11-24

Common Sample Time Types Sample Time Examples
Discrete [Ts, To] Unit Delay, Digital Filter
Continuous [0, 0] Integrator, Derivative
Inherited [–1, 0] Gain, Sum

For discrete blocks, the sample time is a vector [Ts, To] where Ts is the time interval or period
between consecutive sample times and To is an initial offset to the sample time. In contrast, the
sample times for nondiscrete blocks are represented by ordered pairs that use zero, a negative
integer, or infinity to represent a specific type of sample time. For example, continuous blocks have a
nominal sample time of [0, 0] and are used to model systems in which the states change continuously
(e.g., a car accelerating), whereas you indicate the sample time type of an inherited block
symbolically as [–1, 0], and Simulink then determines the actual value based upon the context of the
inherited block within the model.

Note that not all blocks accept all types of sample times. For example, a discrete block cannot accept
a continuous sample time.

For a visual aid, Simulink allows the optional color-coding and annotation of any block diagram to
indicate the type and speed of the block sample times. You can capture all of the colors and the
annotations within a legend (see “View Sample Time Information”).

For a more detailed discussion of sample times, see “Sample Time”.

Units
Units are used to measure the total amount of a quantity.

Simulink units are specified as an Inport block or Outport block parameter at the boundaries of a
Simulink model component. Simulink model components include Subsystem blocks, Model blocks,
Stateflow charts, and Simulink to Simscape converter blocks. To display units on a model, in the
Debug tab, select Information Overlays > Units.

See also: “Unit Specification in Simulink Models”, “Converting Units”.

Direct Feedthrough
Direct feedthrough is where the output port signal of a block is computed from the values of its input
port signals. The output signal value is a function of the input signal values.

Blocks with direct feedthrough include the Gain, Product, Sum, and Math Function blocks.

 Simulink Models

11-25

Algebraic Loop
A signal loop between blocks with direct feedthrough is called an algebraic loop. An algebraic loop
generally occurs when an input port of a block with direct feedthrough is driven directly by the
output port of the same block or indirectly through other blocks with direct feedthrough.

In the following model, the two Gain blocks with direct feedthrough create an algebraic loop:

See also: “Algebraic Loop Concepts”.

Artificial Algebraic Loops

An artificial algebraic loop occurs when an atomic subsystem or Model block causes Simulink to
detect an algebraic loop, even though the contents of the subsystem do not contain a direct
feedthrough from the input to the output. When you create an atomic subsystem, all Inport blocks are
direct feedthrough, resulting in an algebraic loop.

Start with the included model, which represents a simple proportional control of the plant described
by

which can be rewritten in state-space form as

The system has neither algebraic variables nor direct feedthrough and does not contain an algebraic
loop.

11 Simulink Limits

11-26

Modify the model as described in the following steps:

1 Enclose the Controller and Plant blocks in a subsystem.
2 In the subsystem dialog box, select Treat as atomic unit to make the subsystem atomic.
3 In the Diagnostics pane of the Model Configuration Parameters, set the Algebraic Loop

parameter to error.

When simulating this model, an algebraic loop occurs because the subsystem is direct feedthrough,
even though the path within the atomic subsystem is not direct feedthrough. Simulation stops with an
algebraic loop error.

Zero-Crossing Detection
Simulink uses a technique known as zero-crossing detection to accurately locate a discontinuity
without resorting to excessively small time steps during a simulation. Usually this technique improves
simulation run times.

See Also

Related Examples
• Use Block Diagrams To Graphically Represent Dynamic Systems

 Simulink Models

11-27

https://www.mathworks.com/discovery/block-diagram.html

Simulink Simulation
Simulating the model of a dynamic system allows you to gain insight about the behavior of a proposed
system design without the time consuming process of actually building the system. The concepts in
this topic provide a context for understanding how to control a model simulation with Simulink
software tools.

Compilation
Compilation is the Simulink process where the block diagram is translated to an internal
representation that interacts with the Simulink engine.

There are no model-level sets of differential equations that are solved numerically as a whole.
Instead, the model-level equations correspond to the individual block equations that are solved
numerically in a specific order.

Block Methods

The functionality of a single block is defined by multiple equations. These equations are represented
as block methods. These block methods are evaluated (executed) during the execution of a block
diagram. The evaluation of these block methods is performed within a simulation loop, where each
cycle through the simulation loop represent the evaluation of the block diagram at a given point in
time. Common block methods include:

• Derivative – Computes the derivatives of the block's continuous states at the current time step,
given the block inputs and the values of the states at the previous time step.

• Update – Computes the value of the block's discrete states at the current time step, given its
inputs at the current time step and its discrete states at the previous time step.

• Output – Computes the outputs of a block given its inputs at the current time step and its states at
the previous time step.

Model Method

In addition to block methods, a set of methods is provided that compute the model properties and its
outputs. The Simulink software similarly invokes these methods during simulation to determine a
model's properties and its outputs. The model methods generally perform their tasks by invoking
block methods of the same type. For example, the model Outputs method invokes the Outputs
methods of the blocks that it contains in the order specified by the model to compute its outputs. The
model Derivatives method similarly invokes the Derivatives methods of the blocks that it contains to
determine the derivatives of its states.

See also: “Simulation Phases in Dynamic Systems”.

11 Simulink Limits

11-28

Callback
Callbacks are MATLAB expressions that execute in response to a specific modeling action. Simulink
provides model, block, and port callback parameters that identify specific kinds of modeling actions.
You provide the code for callback parameters. Simulink executes the callback code when the
associated modeling action occurs.

Model Callback

Model callback parameters include:

• PreloadFcn – Executes before a model loads. For example, you can provide code that loads the
variable values a model uses into the MATLAB workspace.

See “Model Callbacks”.

Block Callback

Block callback parameters include:

• OpenFcn – Execute when you open a Subsystem block.
• LoadFcn – Execute after a diagram is loaded. For a Subsystem blocks, also execute block callback

parameters for the blocks within Subsystem block.

Port Callback

Port callback parameter:

• ConnectionCallback - Execute code every time the connectivity of a port changes.

See “Port Callbacks”.

Execution Order
The Execution order is the sequence in which block output methods are called after evaluating direct
feedthrough of each input port. To display execution order, in the Debug tab, select Information
Overlays > Execution Order.

In the following model, the Integrator block output runs first, and then the loop of blocks connected
to the Integrator block input. Missing execution numbers in a sequence are usually due to so-called
"hidden buffer" blocks; see “Ensure Output Port Is Virtual”.

See also: “Control and Display Execution Order”, “Simulation Phases in Dynamic Systems”.

 Simulink Simulation

11-29

Simulation
Simulation is the process after model compilation where block method outputs and states are
computed at successive time steps over a specified time range using a numerical solver.

During each simulation loop, Simulink calculates a Δt to determine the time step t(k+1) = t(k) +
Δt. The size of Δt is based on an estimated error between the simulated solution and the actual
solution. At the end of a simulation, data results are given as vectors [t, X, Y] for time, state and
output at each time step.

See also: “Simulation Phases in Dynamic Systems”, “Simulate a Model Interactively”, “Speed Up
Simulation”.

Solver
A Solver finds an approximate solution for a set of model equations. Simulink uses established
numerical solvers for this task.

Solver step size can be fixed or variable:

• Fixed step – Time step T(k+1) = T(k) + Δt where Δt is constant. If step size is too large,
simulation results can have a large error. In the following example, a step size of 2 distorts the
shape of a sine wave signal. You can specify the size of the time step in the case of fixed-step
solvers, or the solver can automatically determine the step size in the case of variable-step
solvers.

11 Simulink Limits

11-30

• Variable step – Variable step solvers iterate to reach a solution based on an error tolerance. Time
step T(k+1) = T(k) + Δtₖ where Δtₖ changes from one simulation step to the next depending
on the estimated error. Smaller time steps increase the accuracy of the simulation results. To
minimize the computation workload, a variable-step solver chooses the largest step size consistent
with achieving an overall level of precision specified by the error tolerance and observing zero-
crossings. This ensures that all model states are computed to the accuracy specified by the user.

Choosing a solver method depends on the nature of the model equations. Euler's method is a simple
numerical solver that calculates the next value of y by using the slope (y') of a tangent line to y. If y
is a function that integrates a ramp function x with a slope of 1, y' = x, and a numerical solver
would use the following equations.

x[n+1] = x[n] + Δt*1
y[n+1] = y[n] + Δt*x[n+1]

Decreasing the step size increases the accuracy of the results. but it increases the time to complete a
simulation. In the following example, a step size of 2 shows an error of about 20 percent after 10
seconds while a step size of 0.5 produces a result that is closer to the actual solution.

 Simulink Simulation

11-31

See also: “Simulation Phases in Dynamic Systems”, “Compare Solvers”, “Check and Improve
Simulation Accuracy”, “Choose a Solver”.

.

11 Simulink Limits

11-32

Simulink Tools
Code Generation Advisor – Simulink tool that checks a model for how objectives such as efficiency,
traceability, and safety, map to code generation options in a model configuration set. To open and run
the advisor, in the Modeling tab, click Model Advisor, and then click Code Generation Advisor.

Configuration Parameter dialog – Simulink tool to select and specify model parameters. To open
the dialog box, in the Simulation tab, under Configuration & Simulation, click Model Settings.

 Simulink Tools

11-33

Performance Advisor – Simulink tool that checks for conditions that might slow down a simulation.
The advisor can automatically make changes to a model to address these conditions or you can
review and apply suggested changes manually. To open the advisor, in the Debug tab, click
Performance Advisor.

11 Simulink Limits

11-34

Property Inspector – Simulink tool to define and edit parameters and properties for models and
blocks. To open the inspector in a Simulink Editor pane, in the Modeling tab, under Design, click
Property Inspector.

 Simulink Tools

11-35

Simulation Data Inspection – Simulink tool to visualize simulation results and compare results
from multiple simulations. Select signals to log by right-clicking a signal and then selecting Log

Selected Signals. After running a simulation, open the inspector by clicking the toolbar icon .

Upgrade Advisor – Simulink tool to identify new feature benefits and needed changes to your model
when upgrading to a new release. To open the advisor, in the Modeling tab, select Model Advisor >
Upgrade Advisor.

11 Simulink Limits

11-36

debugger, Simulink debugger – Simulink tool to troubleshoot model simulations by stepping
through calls to the block-level methods. To open the debugger, in the Debug tab, select
Breakpoints List > Debug Model.

 Simulink Tools

11-37

Diagnostic Viewer – Simulink tool that displays error, warning, and information messages for
conditions detected during a Simulink operation. To open the viewer, in the Debug tab, click
Diagnostics.

Library Browser, Simulink Library Browser – Simulink tool for searching and selecting model

blocks. To open the browser, click the Simulink Editor toolbar icon .

11 Simulink Limits

11-38

Model Advisor – Simulink tool that checks a Simulink model for conditions and configuration
settings that cause inaccurate or inefficient simulation of a model. To open and run the advisor, in the
Modeling tab, click Model Advisor.

 Simulink Tools

11-39

Model Browser – Simulink tool to view and navigate the structure of a model. To open the Model
Browser in a Simulink Editor pane, in the Modeling tab, select Environment > Model Browser.

Model Data Editor – Simulink tool to define and edit data items in a list that you can sort, group,
and filter. For example, enter property and parameter values, such as data types and dimensions
without having to locate the items in the block diagram. To open the Model Data Editor, in the
Simulink Editor, in the Modeling tab, under Design, click Model Data Editor.

11 Simulink Limits

11-40

Model Dependency Viewer – Simulink tool to graph the models and libraries referenced directly or
indirectly by the parent model. To open the viewer, in the Modeling tab, select Compare >
Dependencies > Models & Libraries. In the following example, the plant_model is referenced
from the parent cruise_control model.

 Simulink Tools

11-41

Model Explorer – Simulink tool to view and modify elements of a Simulink model, Stateflow chart, or
model workspace variables. To open the explorer window, in the Modeling tab, click Model
Explorer.

11 Simulink Limits

11-42

 Simulink Tools

11-43

Programming Constructs in Simulink
Simulink command – MATLAB command that is specific to Simulinkmodeling or simulation. Enter
Simulink commands in the MATLAB Command Window or use in MATLAB scripts for testing a model
programmatically. The following commands set simulation parameters, run a simulation, and saves
the simulation results. In the first statement, sim is a Simulink command for running a simulation.

simOut = sim('cruise_control','SimulationMode','normal',...
 'AbsTol','1e-5','SaveState','on',...
 'StateSaveName','xout','SaveOutput','on',...
 'OutputSaveName','yout','SaveFormat', 'Dataset');
outputs = simOut.get('yout')

callback, model callback – MATLAB code that executes in response to a specific model or block
action. To add a model callback, in the Modeling tab, under Design, click Property Inspector, then
in the Properties tab, select a function from the Callbacks list, and then enter MATLAB code or the
name of a MATLAB script.

In the following example, when Simulink loads a model it also loads a file into the MATLAB
workspace with parameters values for the model.

Simulink function – Computational unit that calculates a set of outputs when provided with a set of
inputs. A common text interface between function caller and function definition allows various
definition formats using a Simulink Function block, exported Stateflow graphical function, or
exported Stateflow MATLAB function.

MATLAB Function –

S-function, system-function – Computer language description of a Simulink S-Function block
written in MATLAB code, C, C++, or Fortran. C, C++, and Fortran S-functions are compiled as MEX
files using the MATLAB mex utility.

11 Simulink Limits

11-44

 Programming Constructs in Simulink

11-45

Model Development Processes
model-based design – Development process that uses a system model as an executable specification
throughout development. The process supports model and model component design, model
simulation of dynamic behavior, code generation from the model, and continuous test and verification.

software-in-the-loop (SIL) simulation – Development process where compiled source code on a
development computer executes as a separate process from the rest of the Simulink model. Typical
goals include initial source code testing and verification by comparing software-in-the-loop results
with model simulation results and system requirements.

11 Simulink Limits

11-46

In the following example, to run a software-in-the-loop simulation for the controller, right-click the
Model block labeled control model and then select Block parameters. From the Simulation
mode list, select Software-in-the-loop (SIL).

processor-in-the-loop (PIL) simulation – Development process that cross-compiles source code
and runs the resulting object code on a target processor using hardware-specific data attributes and
sample time attributes. Typical goals include object code verification by comparing processor-in-the-
loop results with model simulation and software-in-the-loop (SIL) results.

hardware-in-the-loop (HIL) simulation – Development process that pairs physical components,
such as the hardware and software for a controller, with a virtual real-time implementation of a
physical component, such as a plant.

In the following example, code for the controller model is generated and downloaded to the
production controller hardware. Code is generated for the plant model and downloaded to a real-time
hardware computer (e.g. Simulink Realtime).

 Model Development Processes

11-47

Test Harness
Simulink model that provides a framework for testing the simulation behavior and outputs of another
model or model component. Objectives of the test harness are to automate the testing process,
execute a test suite with multiple test cases, and analyze results.

In the following model, a Signal Editor block provides test signals while outputs are logged for
analysis in the Scope block.

11 Simulink Limits

11-48

What is Simulink Online?
Simulink Online™ provides access to the latest version of Simulink from a standard web browser
using MathWorks hosted computing resources and storage.

With Simulink Online, you can:

• Access the latest version of Simulink with all the latest features available to you through your
current license.

• Use Simulink in your web browser without any downloads, installation, or maintenance.
• Store MATLAB and Simulink files in your MATLAB Drive™.
• Collaborate with other Simulink users by giving them view-only or can-edit access to your files.
• Create a link to your work and share it globally.
• Synchronize your desktop files with Simulink Online and MATLAB Drive using the MATLAB Drive

Connector.

To start using Simulink Online, go to https://matlab.mathworks.com/.

For more information about Simulink Online, including supported license types, specifications,
limitations, and system requirements, see Simulink Online.

 What is Simulink Online?

11-49

https://matlab.mathworks.com/
https://www.mathworks.com/products/simulink-online.html

Block Reference Page Examples

• “Function-Call Subsystems with Multiple Initiators” on page 12-6
• “Extract Output Elements of Feedback System” on page 12-8
• “Programmatically Create Bus Element Ports” on page 12-10
• “Manage Bus-to-Vector Conversions” on page 12-16
• “Initialize Your Model Using the Callback Button Block” on page 12-18
• “Control a Parameter Value with Callback Button Blocks” on page 12-19
• “Control the Duty Cycle of a PWM Signal Using Dashboard Blocks” on page 12-21
• “Control Merging Signals with the Push Button Block” on page 12-23
• “Tune the Relative Slip for an Anti-Lock Braking System” on page 12-25
• “Interactively Simulate a Vehicle Climate Control System” on page 12-27
• “Interactively Simulate a Thermal Model of a House” on page 12-30
• “Create a Realistic Dashboard Using the Circular Gauge Block” on page 12-32
• “Solve a Linear System of Algebraic Equations” on page 12-35
• “Model a Planar Pendulum” on page 12-36
• “Improved Linearization with Transfer Fcn Blocks” on page 12-39
• “View Dead Zone Output on Sine Wave” on page 12-40
• “View Backlash Output on Sine Wave” on page 12-41
• “Prelookup With External Breakpoint Specification” on page 12-42
• “Prelookup with Evenly Spaced Breakpoints” on page 12-43
• “Configure the Prelookup Block to Output Index and Fraction as a Bus” on page 12-44
• “Approximating the sinh Function Using the Lookup Table Dynamic Block” on page 12-45
• “Create a Logarithm Lookup Table” on page 12-46
• “Providing Table Data as an Input to the Direct Lookup Table Block” on page 12-47
• “Specifying Table Data in the Direct Lookup Table Block Dialog Box” on page 12-48
• “Using the Quantizer and Saturation blocks in sldemo_boiler” on page 12-49
• “Scalar Expansion with the Coulomb and Viscous Friction Block” on page 12-50
• “Sum Block Reorders Inputs” on page 12-51
• “Iterated Assignment with the Assignment Block” on page 12-52
• “View Sample Time Using the Digital Clock Block” on page 12-53
• “Bit Specification Using a Positive Integer” on page 12-54
• “Bit Specification Using an Unsigned Integer Expression” on page 12-55
• “Track Running Minimum Value of Chirp Signal” on page 12-56
• “Unary Minus of Matrix Input” on page 12-57
• “Sample Time Math Operations Using the Weighted Sample Time Math Block” on page 12-58
• “Construct Complex Signal from Real and Imaginary Parts” on page 12-59

12

• “Construct Complex Signal from Magnitude and Phase Angle” on page 12-60
• “Find Nonzero Elements in an Array” on page 12-61
• “Calculate the Running Minimum Value with the MinMax Running Resettable Block”

on page 12-62
• “Find Maximum Value of Input” on page 12-64
• “Permute Array Dimensions” on page 12-66
• “Multiply Inputs of Different Dimensions with the Product Block” on page 12-67
• “Multiply and Divide Inputs Using the Product Block” on page 12-68
• “Divide Inputs of Different Dimensions Using the Divide Block” on page 12-69
• “Complex Division Using the Product of Elements Block” on page 12-70
• “Element-Wise Multiplication and Division Using the Product of Elements Block” on page 12-71
• “sin Function with Floating-Point Input” on page 12-72
• “sincos Function with Fixed-Point Input” on page 12-73
• “Trigonometric Function Block Behavior for Complex Exponential Output” on page 12-74
• “Control Algorithm Execution Using Enumerated Signal” on page 12-75
• “Integer and Enumerated Data Type Support in the Ground Block” on page 12-77
• “Fixed-Point Data Type Support in the Ground Block” on page 12-78
• “Read 2-D Signals in Structure Format From Workspace” on page 12-79
• “Eliminate Singleton Dimension with the Squeeze Block” on page 12-80
• “Difference Between Time- and Sample-Based Pulse Generation” on page 12-81
• “Specify a Waveform with the Repeating Sequence Block” on page 12-83
• “Tune Phase Delay on Pulse Generator During Simulation” on page 12-84
• “Difference Sine Wave Signal” on page 12-85
• “Discrete-Time Derivative of Floating-Point Input” on page 12-86
• “First-Order Sample-and-Hold of a Sine Wave” on page 12-87
• “Calculate and Display Simulation Step Size using Memory and Clock Blocks” on page 12-88
• “Capture the Velocity of a Bouncing Ball with the Memory Block” on page 12-89
• “Implement a Finite-State Machine with the Combinatorial Logic and Memory Blocks”

on page 12-91
• “Discrete-Time Integration Using the Forward Euler Integration Method” on page 12-92
• “Signal Routing with the From, Goto, and Goto Tag Visibility Blocks” on page 12-93
• “Zero-Based and One-Based Indexing with the Index Vector Block” on page 12-95
• “Noncontiguous Values for Data Port Indices of Multiport Switch Block” on page 12-96
• “Using Variable-Size Signals on the Delay Block” on page 12-97
• “Buses with the Delay Block for Frame-Based Processing” on page 12-98
• “Control Execution of Delay Block with Enable Port” on page 12-99
• “Zero-Based Indexing for Multiport Switch Data Ports” on page 12-100
• “One-Based Indexing for Multiport Switch Data Ports” on page 12-101
• “Enumerated Names for Data Port Indices of the Multiport Switch Block” on page 12-102

12 Block Reference Page Examples

12-2

• “Prevent Block Windup in Multiloop Control” on page 12-103
• “Bumpless Control Transfer” on page 12-104
• “Bumpless Control Transfer with a Two-Degree-of-Freedom PID Controller” on page 12-105
• “Using a Bit Set block” on page 12-106
• “Using a Bit Clear block” on page 12-107
• “Two-Input AND Logic” on page 12-108
• “Circuit Logic” on page 12-109
• “Unsigned Inputs for the Bitwise Operator Block” on page 12-110
• “Signed Inputs for the Bitwise Operator Block” on page 12-111
• “Merge Block with Input from Atomic Subsystems” on page 12-112
• “Index Options with the Selector Block” on page 12-113
• “Switch Block with a Boolean Control Port Example” on page 12-114
• “Merge Block with Unequal Input Widths Example” on page 12-115
• “Detect Rising Edge of Signals” on page 12-117
• “Detect Falling Edge Using the Detect Fall Nonpositive Block” on page 12-119
• “Detect Increasing Signal Values with the Detect Increase Block” on page 12-120
• “Extract Bits from Stored Integer Value” on page 12-121
• “Detect Signal Values Within a Dynamically Specified Interval” on page 12-122
• “Model a Digital Thermometer Using the Polynomial Block” on page 12-124
• “Convert Data Types in Simulink Models” on page 12-125
• “Control Data Types with the Data Type Duplicate Block” on page 12-127
• “Probe Sample Time of a Signal” on page 12-128
• “Convert Signals Between Continuous Time and Discrete Time” on page 12-129
• “Remove Scaling from a Fixed-Point Signal” on page 12-131
• “Stop Simulation Block with Relational Operator Block” on page 12-132
• “Output Simulation Data with Blocks” on page 12-133
• “Increment and Decrement Real-World Values” on page 12-137
• “Increment and Decrement Stored Integer Values” on page 12-139
• “Specify a Vector of Initial Conditions for a Discrete Filter Block” on page 12-140
• “Generate Linear Models for a Rising Edge Trigger Signal” on page 12-142
• “Generate Linear Models at Predetermined Times” on page 12-144
• “Capture Measurement Descriptions in a DocBlock” on page 12-146
• “Square Root of Negative Values” on page 12-147
• “Signed Square Root of Negative Values” on page 12-148
• “rSqrt of Floating-Point Inputs” on page 12-149
• “rSqrt of Fixed-Point Inputs” on page 12-150
• “Model a Series RLC Circuit” on page 12-151
• “Detect Change in Signal Values” on page 12-154
• “Detect Fall to Negative Signal Values” on page 12-155

 What is Simulink Online?

12-3

• “Detect Decreasing Signal Values” on page 12-156
• “Function-Call Blocks Connected to Branches of the Same Function-Call Signal” on page 12-157
• “Function-Call Feedback Latch on Feedback Signal Between Child and Parent” on page 12-158
• “Single Function-Call Subsystem” on page 12-159
• “Function-Call Subsystem with Merged Signal As Input” on page 12-160
• “Partitioning an Input Signal with the For Each Block” on page 12-161
• “Specifying the Concatenation Dimension in the For Each Block” on page 12-162
• “Working with the Initialize Function, Reset Function, and Terminate Function Blocks”

on page 12-163
• “Reading and Writing States with the Initialize Function and Terminate Function Blocks”

on page 12-164
• “Use Parameter Writer Block to Change Parameter of Block Inside Referenced Model”

on page 12-165
• “Use Parameter Writer Block to Change Block Parameters” on page 12-166
• “PWM Control of a Boost Converter” on page 12-167
• “Voltage Controlled Oscillator” on page 12-170
• “Check Signal Lower Bound with Check Dynamic Lower Bound Block” on page 12-172
• “Check Signal Upper Bound with Check Dynamic Upper Bound Block” on page 12-174
• “Check Signal Lower Bound with Check Static Lower Bound Block” on page 12-176
• “Check Signal Range with Check Static Range Block” on page 12-178
• “Check Signal Upper Bound with Check Static Upper Bound Block” on page 12-180
• “Check Signal Slope with Check Discrete Gradient Block” on page 12-182
• “Check Signal Value with Check Dynamic Gap Block” on page 12-184
• “Check Signal Value with Check Static Gap Block” on page 12-186
• “Check Signal Range with Check Dynamic Range Block” on page 12-188
• “Check Signal Resolution with Check Input Resolution Block” on page 12-190
• “Generate Unit-Diagonal and Identity Matrices” on page 12-193
• “Extract 3-by-2 Submatrix from Input Signal” on page 12-194
• “Generate Diagonal Matrix from Vector Input” on page 12-196
• “Permute Matrix by Row or Column” on page 12-197
• “Extract Diagonal of Matrix” on page 12-198
• “Calculate Optical Flow by Using Neighborhood Processing Subsystem Blocks” on page 12-199
• “Perform Fog Rectification by Using Neighborhood Processing Subsystem Blocks” on page 12-205
• “Perform Corner Detection by Using Neighborhood Processing Subsystem Blocks” on page 12-214
• “Convert RGB Image to Grayscale by Using a Neighborhood Processing Subsystem Block”

on page 12-222
• “Perform Edge Detection by Using a Neighborhood Processing Subsystem Block” on page 12-227
• “Model Constant Propagation Delay” on page 12-231
• “Model Variable Propagation Delay” on page 12-235
• “Schedule When Traffic Camera Takes Snapshot” on page 12-237

12 Block Reference Page Examples

12-4

• “Model Effect of Temperature and Jitter on Crystal Oscillation Frequency” on page 12-240
• “Behavior of Right Bit Shifts” on page 12-243
• “Effect of Binary Point Shifts” on page 12-244
• “Sign Block Behavior for Real Inputs” on page 12-245
• “Sign Block Behavior for Complex Issues” on page 12-246
• “Working with the Reinitialize Function Block” on page 12-247

 What is Simulink Online?

12-5

Function-Call Subsystems with Multiple Initiators

This example shows a function-call subsystem that is called by multiple different function-call
initiators that are grouped by a Mux block.

Open the example model FunctionCallSubsystemMultipleInitiators.

The model contains a function-call subsystem, f, that receives a mux signal at its function-call input
port. The Mux block groups function-call signals from the Stateflow charts Chart1 and Chart2 into
the mux signal.

The data connection between port out1 of Chart1 and port d1 of Chart2 guarantees that Chart1
executes before Chart2.

When you create function-call subsystems with multiple callers, clearly define the relative execution
order of each chart that calls f(). For example, if you remove the data connection between Chart1
and Chart2, add priorities to Chart1 and Chart2 to specify the relative execution order of these
charts.

Ambiguity does not cause an error because it may be valid for specific cases. For example, if you
remove all states from subsystem f and delete the line from out1 of Chart1 to d1 of Chart2, then
the order in which Chart1 and Chart2 execute does not matter.

See Also
Mux

12 Block Reference Page Examples

12-6

More About
• “Composite Interface Guidelines”
• “Control and Display Execution Order”

 Function-Call Subsystems with Multiple Initiators

12-7

Extract Output Elements of Feedback System

This example demonstrates how to extract the output elements of a state-space system that uses
vector signals.

Open the example model.

These equations define the state-space system:

To ensure that the system is stable, the state feedback vector is chosen such that the eigenvalues
of equal , , , and .

The Demux block extracts the two elements from the output vector . Then, the Scope block
separately plots each element it receives.

12 Block Reference Page Examples

12-8

See Also
Demux

 Extract Output Elements of Feedback System

12-9

Programmatically Create Bus Element Ports

This example shows how to create bus element ports by adding In Bus Element and Out Bus Element
blocks with the add_block function. To get and set the attribute values for an element of a bus
element port, this example uses the get_param and set_param functions.

Open a new model.

open_system(new_system);

Programmatically Create Input Bus Element Ports

Add an In Bus Element block to the model.

add_block('simulink/Ports & Subsystems/In Bus Element',...
 [gcs '/In Bus Element']);

When you do not specify the port or element name, the new block uses the default names. By default,
the input bus element port is named InBus, and the bus element is named signal1.

Add another In Bus Element block to the model. Instead of specifying a new block name, have the
function make the block name unique with the MakeNameUnique argument. To avoid overlapping
blocks, use the Position argument.

add_block('simulink/Ports & Subsystems/In Bus Element',...
 [gcs '/In Bus Element'],...
 'MakeNameUnique','on',...
 'Position','[230 35 240 45]');

The new block duplicates the previous block. Both blocks use the same default names.

Add a block for an element of the port named chirp, and replace the default port name with a
custom name, such as Input1. Optionally, specify additional block parameters, such as background
color, and element attributes, such as data type.

add_block('simulink/Ports & Subsystems/In Bus Element',...
 [gcs '/In Bus Element'], ...
 'MakeNameUnique','on',...
 'Position','[230 65 240 75]', ...
 'PortName','Input1', ...
 'Element','chirp',...
 'BackgroundColor','cyan',...
 'OutDataTypeStr','int32');

12 Block Reference Page Examples

12-10

When you programmatically add an In Bus Element block with a nondefault port name, In Bus
Element blocks that use the default port name update to use the nondefault port name.

To add an In Bus Element block for an existing port, copy the corresponding In Bus Element block
from your model. For example, create a block that selects an element named sine from the port you
previously created.

add_block([gcs '/In Bus Element'],...
 [gcs '/In Bus Element'],...
 'MakeNameUnique','on',...
 'Position','[230 95 240 105]', ...
 'Element','sine',...
 'BackgroundColor','magenta');

To add an In Bus Element block for a new port, add the In Bus Element block from the Simulink®
library and specify the new port name. For example, create a block that selects an element named
pulse from a port named Input2.

add_block('simulink/Ports & Subsystems/In Bus Element',...
 [gcs '/In Bus Element'],...
 'MakeNameUnique','on',...
 'Position','[230 125 240 135]', ...
 'PortName','Input2',...
 'Element','pulse')

Programmatically Create Output Bus Element Ports

Add an Out Bus Element block to the model.

add_block('simulink/Ports & Subsystems/Out Bus Element',...
 [gcs '/Out Bus Element'],...
 'Position','[290 5 300 15]');

 Programmatically Create Bus Element Ports

12-11

When you do not specify the port or element name, the new block uses the default names. By default,
the output bus element port is named OutBus, and the bus element is named signal1.

Add another Out Bus Element block to the model.

add_block('simulink/Ports & Subsystems/Out Bus Element',...
 [gcs '/Out Bus Element'],...
 'MakeNameUnique','on',...
 'Position','[290 35 300 45]');

The new block adds an element to the output port. Both blocks use the same default port name, but
the new block increments the element name to avoid a conflict.

Add a block for an element of the port named chirp, and replace the default port name with a
custom name, such as Output1. Optionally, specify additional block parameters, such as background
color, and element attributes, such as data type.

add_block('simulink/Ports & Subsystems/Out Bus Element',...
 [gcs '/Out Bus Element'],...
 'MakeNameUnique','on',...
 'Position','[290 65 300 75]', ...
 'PortName','Output1', ...
 'Element','chirp',...
 'BackgroundColor','green',...
 'OutDataTypeStr','int32');

12 Block Reference Page Examples

12-12

When you programmatically add an Out Bus Element block with a nondefault port name, Out Bus
Element blocks that use the default port name update to use the nondefault port name.

To add an Out Bus Element block for an existing port, copy the corresponding Out Bus Element block
from your model. For example, create a block that outputs an element named sine to the port you
previously created.

add_block([gcs '/Out Bus Element'],...
 [gcs '/Out Bus Element'],...
 'MakeNameUnique','on',...
 'Position','[290 95 300 105]', ...
 'Element','sine',...
 'BackgroundColor','yellow');

To add an Out Bus Element block for a new port, add the Out Bus Element block from the Simulink
library and specify the new port name. For example, create a block that outputs an element named
pulse to a port named Output2.

add_block('simulink/Ports & Subsystems/Out Bus Element',...
 [gcs '/Out Bus Element'],...
 'MakeNameUnique','on',...
 'Position','[290 125 300 135]', ...
 'PortName','Output2',...
 'Element','pulse')

Programmatically Change Port Parameters

When you change a port parameter, the change applies to all blocks that correspond to the port.

For example, rename the first output port from Output1 to Out1 with the set_param function.

set_param([gcs '/Out Bus Element'],'PortName','Out1')

 Programmatically Create Bus Element Ports

12-13

The labels of the Out Bus Element blocks that correspond with the port update to say Out1 instead of
Output1.

The new port name must be unique within the model component.

Programmatically Change Block Parameters

When you change a block parameter, the change applies to only the specified block.

For example, change the background color from black to orange for the first In Bus Element block
you added by using the set_param function.

set_param([gcs '/In Bus Element'],'BackgroundColor','orange')

Programmatically Change Element Attributes

By specifying a combination of the model component and the element label, you can change the value
of an attribute of an existing top-level bus, nested bus, signal, or message at a bus element port.

For example, set the minimum and maximum values of the element Input1.sine to -1 and 1,
respectively, with the get_param function.

set_param([gcs '/Out1.sine'],'OutMin','-1','OutMax','1')

To check the value of each attribute, use the get_param function.

get_param([gcs '/Out1.sine'],'OutMin')

ans =
'-1'

get_param([gcs '/Out1.sine'],'OutMax')

12 Block Reference Page Examples

12-14

ans =
'1'

See Also
Blocks
In Bus Element | Out Bus Element

Functions
add_block | set_param | get_param | Simulink.Bus.addElementToPort | add_line

Related Examples
• “Simplify Bus Interfaces in Subsystems and Models”

External Websites
• Reduced Bus Wiring: Bus Element Ports (2 min, 7 sec)

 Programmatically Create Bus Element Ports

12-15

https://www.mathworks.com/videos/reduced-bus-wiring-bus-element-ports-1487889625625.html

Manage Bus-to-Vector Conversions

This example shows how to find and manage implicit bus-to-vector conversions.

Blocks that do not accept buses may implicitly convert buses to vectors. When a bus is treated as a
vector, bus elements become inaccessible.

Some buses cannot convert to vectors. For more information, see Bus to Vector.

Identify Implicit Bus-to-Vector Conversions

Open and simulate model ex_bus_to_vector.

To accept the bus, the Gain blocks implicitly convert the bus to a vector.

To identify buses treated as vectors before simulation, use function
Simulink.BlockDiagram.addBusToVector.

[blocks] = Simulink.BlockDiagram.addBusToVector('ex_bus_to_vector')

Processing block diagram 'ex_bus_to_vector'
Number of blocks left that are connected to a bus being used as a vector: 2
Done processing block diagram 'ex_bus_to_vector'

blocks =

 1x2 struct array with fields:

 BlockPath
 InputPort
 LibPath

To identify buses treated as vectors during simulation, set the Bus signal treated as vector
configuration parameter to warning or error. The default setting for Bus signal treated as vector
is none, which generates no warning or error message when a block implicitly converts a bus to a
vector.

Explicitly Define Bus-To-Vector Conversions

To insert Bus to Vector blocks where blocks implicitly convert buses to vectors, use function
Simulink.BlockDiagram.addBusToVector with reportOnly set to false. When you use
function Simulink.BlockDiagram.addBusToVector with reportOnly set to false, the function
saves the model. To create a writable copy of model ex_bus_to_vector, this example uses the
save_system function.

12 Block Reference Page Examples

12-16

save_system('ex_bus_to_vector','ex_bus_to_vector_blocks');

[blocks,busToVectors] =
Simulink.BlockDiagram.addBusToVector('ex_bus_to_vector_blocks',true,false);

The Gain blocks no longer implicitly convert the bus to a vector. The inserted Bus to Vector blocks
perform the conversion explicitly.

Bus to Vector blocks are virtual and do not affect simulation results, code generation, or performance.

Function Simulink.BlockDiagram.addBusToVector returns no remaining implicit bus-to-vector
conversions.

[blocks] = Simulink.BlockDiagram.addBusToVector('ex_bus_to_vector_blocks')

###No buses used as vectors left to process

blocks =

 1x0 empty struct array with fields:

 BlockPath
 InputPort
 MixedAttributes

By specifying acceptable bus-to-vector conversions with Bus to Vector blocks, you can more easily
identify unexpected conversions. Having configuration parameter Bus signal treated as vector set
to warning or error alerts you when an unexpected bus-to-vector conversion occurs.

 Manage Bus-to-Vector Conversions

12-17

Initialize Your Model Using the Callback Button Block

This example shows how to use the Callback Button block to perform initialization routines on your
model.

Explore the Model

The example model builds on the sldemo_fuelsys featured model. When you open the model, to
bind the workspace variables to their Dashboard blocks, you have to update the model diagram.
Here, the Callback Button block at the bottom of the Dashboard subsystem in the model has been
configured to update the diagram on the release of the mouse button when you click the block.

You do not need to start a simulation for the Callback Button to react to your input. Just select and
then click the Callback Button to run the initialization code. Double-click the Callback Button block to
view and edit its parameters, including the press and click scripts.

See Also

More About
• “Model a Fault-Tolerant Fuel Control System” on page 13-124

12 Block Reference Page Examples

12-18

Control a Parameter Value with Callback Button Blocks

This example models control of a system that consists of two masses attached on either side of a
spring. A control loop damps the oscillation of the spring that results when an external force acts on
the system. The model uses Callback Button blocks to provide an interface for you to adjust the
frequency of the external force before and during simulation.

Explore the Model

The model for this example adds two Callback Button blocks, labeled Frequency + and Frequency
- to the Double Mass-Spring System model. When you simulate the model, an animation visualizes
the system.

Click the button labeled Frequency + to increase the oscillation frequency. When you adjust the
frequency of the external force, the Callback Button block displays a message in the command
window indicating the new frequency value. You can adjust the parameter during a simulation and
while the model is idle.

Both Callback Button blocks in this model are configured with a ClickFcn that responds to your
clicks and a PressFcn that executes when you press the Callback Button block. Double-click the
Frequency + Callback Button block to view its parameters.

 Control a Parameter Value with Callback Button Blocks

12-19

When you click the Frequency + Callback Button block, the ClickFcn increases the frequency of
the external force by 0.1. If you press the Callback Button block for more than the 500 ms Press
Delay, the PressFcn increases the frequency of the external force by 0.1 every second.

12 Block Reference Page Examples

12-20

Control the Duty Cycle of a PWM Signal Using Dashboard
Blocks

This example shows how a simulation dashboard built using Dashboard blocks controls the duty cycle
of a PWM signal generated by the model. The example is a modified version of the sfcndemo_pwm
example. The PWM Generator block takes a duty cycle and period as inputs to generate a PWM
output. You can control the source for the duty cycle using a switch.

Build the Dashboard Subsystem

To create the Dashboard subsystem in this example:

1. Add a Subsystem block to the model.

2. Delete the pre-populated contents of the subsystem.

3. Add the contents of the dashboard. The dashboard in this example includes a Rocker Switch block
and a Knob block, which allow you to modify variables during simulation. The Dashboard Scope block
displays the generated PWM signal.

Use areas in the Dashboard subsystem to group and label Dashboard blocks. For more information
about creating areas, see “Visually Organize Models Using Areas”.

Connect Blocks in the Model

In this model, the Rocker Switch block in the Dashboard subsystem provides the interface for
selecting the duty cycle source. A Switch block with a Constant block as its control input replaces the

 Control the Duty Cycle of a PWM Signal Using Dashboard Blocks

12-21

Manual Switch in the sfcndemo_pwm model. Replacing the Manual Switch block requires three
blocks but allows you to gather model controls and visualizations in a single view. The Rocker Switch
block connects to the value of the Constant block. In this model, the Constant block value is set by
the variable duty_cycle_source.

This model also uses the variable duty_cycle to set the magnitude of the duty cycle for both the
duty cycle (constant) and duty cycle (varying) sources. The Knob block in the Dashboard subsystem
connects to the duty_cycle variable, allowing you to modify its value during simulation.

The Dashboard Scope block displays the output of the PWM Generator block, allowing you to observe
the generated PWM signal during simulation.

Interactively Simulate

This model uses simulation pacing to slow model execution so you can interact with the model during
simulation. For more information, see “Simulation Pacing”.

Run the simulation. Use the Rocker Switch block to select the varying duty cycle input and observe
the resulting PWM waveform on the Dashboard Scope block. Change the magnitude of the duty cycle
using the Knob block and observe the effect on the generated PWM signal.

12 Block Reference Page Examples

12-22

Control Merging Signals with the Push Button Block

This example model is a modified version of the “Merging Signals” on page 13-335 example. The
mergedemo model illustrates how to use Simulink® to merge two different signals using source
blocks and triggered subsystems. In the mergedemo model, a square wave enables and disables the
triggered subsystems that provide input to the Merge block. In this model, you can control the enable
signal for the triggered subsystems using the Signal Select Push Button block.

Model Modifications

To create this model from the mergedemo example:

1. Delete the Discrete Pulse Generator block controlling the triggered subsystem and the Scope
block.

2. Add a Push Button block, an Outport block, a Constant block, and a Dashboard Scope block.

3. Connect the Outport block to the output of the Merge block.

4. Display the output signal of the Merge block on the Dashboard Scope.

5. Connect the Constant block to the input of the Data Type Conversion block and specify a variable
name as its value. This model uses the variable name signal_select. Click the Unrecognized
functions or variables error, and create the variable in the Model Workspace.

 Control Merging Signals with the Push Button Block

12-23

Now, the variable signal_select controls the triggered subsystems.

6. Press Ctrl+D to update the diagram so the variable you just created is available for connection.

7. Connect the Push Button block to the signal_select variable.

In this example, the On Value for the Push Button block is set to 0. When you press the Push Button
block, the value of signal_select changes to 0, enabling the triggered subsystem connected to the
sawtooth wave. If you want pressing the Push Button block to enable the triggered subsystem
connected to the sine wave, set the On Value for the Push Button block to 1.

Interactive Simulation

This model uses simulation pacing to slow model execution so you can interact with the model during
simulation. For more information about simulation pacing, see “Simulation Pacing”.

Run the simulation. As the model simulates, press and hold the Signal Selection Push Button block.
You can observe the effect of pressing the Push Button block on the Dashboard Scope block.

12 Block Reference Page Examples

12-24

Tune the Relative Slip for an Anti-Lock Braking System

This example shows how to use a subsystem made of Dashboard blocks to tune the value of the
Desired relative slip for the “Modeling an Anti-Lock Braking System” on page 13-172
example. You can use the Slider block or the Edit block to change the value of the Desired
relative slip and observe the results during simulation on the Dashboard Scope block.

Build the Dashboard Subsystem

This model uses a Subsystem block to gather the controls and displays for the model in a single
interface. To create the subsystem for this model:

1. Add a Subsystem block to the sldemo_absbrake model.

2. Delete the pre-populated contents of the subsystem. A subsystem of Dashboard blocks does not
need Inport or Outport blocks because Dashboard blocks do not use ports to make connections.

3. Add the components of the dashboard.

The dashboard for this model includes an Edit block and a Slider block that both control the value of
the Desired relative slip input. The Dashboard Scope block displays the resulting slip value,
slp throughout the simulation.

You can use areas in the subsystem to group and label related controls and displays. For more
information about creating areas, see “Visually Organize Models Using Areas”.

Interactively Simulate

You can use the Dashboard subsystem as a convenient interface to configure separate simulations
that use different values for the Desired relative slip.

 Tune the Relative Slip for an Anti-Lock Braking System

12-25

The Slider block and the Edit block both change the value of the Desired relative slip input.
Use the Slider block to fine tune the value of the relative slip input, and use the Edit block to enter an
exact value.

12 Block Reference Page Examples

12-26

Interactively Simulate a Vehicle Climate Control System

In this example, you use a Dashboard of controls and displays to interactively simulate a climate
control system of a car. You can adjust the fan and air recycling controls as well as set the internal
temperature and modify the external temperature. A Linear Gauge block, a Dashboard Scope block,
and a Display block show the internal temperature of the car. The model in this example adds the
Dashboard to the sldemo_auto_climatecontrol model. For more information about the
underlying model, see “Simulating Automatic Climate Control Systems” on page 13-197.

Build the Dashboard Subsystem

This model uses a Subsystem block to gather the controls and displays in a single interface for the
model. To create the subsystem in this example:

1. Add a Subsystem block to the sldemo_auto_climatecontrol model.

2. Delete the prepopulated contents of the subsystem. The subsystem does not need inports or
outports because the Dashboard blocks do not use ports to make connections.

3. Add the contents of the dashboard.

In the dashboard for this model:

• Two Check Box blocks turn the fans and air recycling on and off.

 Interactively Simulate a Vehicle Climate Control System

12-27

• A Knob block sets the internal temperature.
• An Edit block allows you to specify the external temperature.
• A Dashboard Scope block displays the value of the internal temperature over time.
• A Linear Gauge block displays the instantaneous internal temperature value.
• A Display block shows the instantaneous internal temperature value.

You can use areas in the subsystem to group and label related controls and displays. For more
information about creating areas, see “Visually Organize Models Using Areas”.

Connect Blocks in the Model

To explore connections between each block in the Dashboard subsystem and the model, you can
select a block in the dashboard, pause on the ellipsis that appears above it, and click Jump to
Connected Element. The Simulink® editor navigates to and highlights the block or signal connected
to that block in the dashboard.

The Check Box blocks connect to the dist_req and recycle_air constant blocks. In the
sldemo_auto_climatecontrol model, the fan and air recycling signals are controlled by Manual
Switch blocks with two Constant blocks as inputs.

To replace a Manual Switch block in the sldemo_auto_climatecontrol model with a Check Box
block:

1. Delete the Manual Switch block and one of the Constant blocks.

2. Connect the other Constant block directly to the Mux block.

3. Specify a variable as the Constant block value.

This model uses the variable dist_req to control the fans and the variable recycle_air to control
air recycling.

4. Click the Unrecognized functions or variables error, and create the variable in the Model
Workspace.

Now, the variable dist_req holds the state of the fans.

5. Press Ctrl+D to update the diagram so the variable you just created is available for connection.

6. Connect the Check Box block to the dist_req variable.

Follow a similar process to replace the air recycling manual switch.

The Knob block connects to the USet parameter of the User Setpoint in Celsius masked subsystem.
Similarly, the Edit block connects to the x parameter of the External Temperature in Celsius masked

12 Block Reference Page Examples

12-28

subsystem. The Dashboard Scope, Linear Gauge, and Display blocks all connect to the output signal
of the Kelvin to Celsius subsystem.

Interactive Simulation

This model uses simulation pacing to slow model execution so you can interact with the model during
simulation. For more information, see “Simulation Pacing”.

Run the simulation. Use the Check Box blocks to control the fans and air recycling. Use the Knob
block to adjust the internal temperature set point, and specify the external temperature with the Edit
block. You can observe the resulting internal temperature on the Dashboard Scope block, the Linear
Gauge block, and the Display block.

 Interactively Simulate a Vehicle Climate Control System

12-29

Interactively Simulate a Thermal Model of a House

This example uses a dashboard of controls and indicators to configure and then interactively simulate
a thermal model of a house. You can configure the simulation to use either traditional or renewable
energy sources and to use an outdoor temperature setpoint based on the season. During the
simulation, you can adjust the thermostat and monitor the indoor temperature and heat cost. The
model in this example adds a subsystem named Dashboard to the sldemo_househeat model. For
more information about the underlying model, see “Thermal Model of a House” on page 13-21.

Build the Dashboard Subsystem

This model uses a Subsystem block to organize the controls and displays for the model in a single
interface. To create the subsystem in this example:

1. Add a Subsystem block to the model.

2. Delete the prepopulated contents of the subsystem. A subsystem of Dashboard blocks does not
require Inport or Outport blocks because Dashboard blocks do not use ports to make connections.

3. Add the components of the dashboard.

The dashboard for this model includes a Knob block, a Radio Button block, and a Combo Box block to
modify simulation parameters. A Linear Gauge block, three Display blocks, and a Dashboard Scope
block display key signals during simulation.

You can use areas in the subsystem to group and label related controls and displays. For more
information about creating areas, see “Visually Organize Models Using Areas”.

12 Block Reference Page Examples

12-30

Connect Dashboard Blocks to the Model

To explore connections between each block in the Dashboard subsystem and the model, you can
select a block in the dashboard, pause on the ellipsis that appears above it, and click Jump to
Connected Element. The Simulink® editor navigates to and highlights the block or signal connected
to that block in the dashboard.

• The Knob block connects to the Set Point block and allows you to adjust the thermostat set point
in the model during simulation.

• The Radio Button Block connects to the Avg Outdoor Temp block and maps seasonal average
temperatures for Boston, MA, to season labels. Right- click the Radio Button block and select
Block Parameters from the context menu to modify the average temperature value used for each
season.

• The Display block in the Avg Outdoor Temperature area shows the outdoor temperature value
used in the simulation based on the selected season.

• The Combo Box block connects to the Gain block used to calculate the cost during simulation.
Right-click the Combo Box block and select Block Parameters from the context menu to view or
modify the cost, specified in units of cents per Joule.

• The Linear Scale and Display blocks in the Indoor Temperature area provide analog and digital
indications of the instantaneous value of the house temperature during simulation.

• The Display block in the Heat Cost area shows the cumulative cost of heating the house over the
course of the simulation is shown on a Display block.

• The Dashboard Scope block displays the heat cost, indoor temperature, and outdoor temperature
in the same plot.

Interactively Simulate

This model uses simulation pacing to slow model execution so you can interact with the model during
simulation. For more information, see “Simulation Pacing”.

The simulation is set up to run for 48 hours. Within that time period, it makes sense to use the Radio
Button block and Combo Box block to configure a simulation for a particular season and energy
source. If you want to run another type of simulation where you interactively modify the season or
energy source, consider lengthening the simulation time to something more realistic for those types
of changes.

Choose the season and energy source for a 48-hour simulation, and then run the simulation. During
the simulation, use the Knob block to adjust the set point for the house thermostat, and observe the
effect of the change on the indoor temperature and heat cost.

 Interactively Simulate a Thermal Model of a House

12-31

Create a Realistic Dashboard Using the Circular Gauge Block

You can use the Circular Gauge block to create a dashboard of controls and indicators for your model
that looks how it would in a real system. This example model uses four Circular Gauge blocks and a
MultiStateImage block to create a dashboard for the sf_car model like one you might see in a real
car.

Explore the Model

To understand the connections between the Dashboard subsystem and the model, you can select each
block and jump to the signal it displays in the model. To jump to the connected signal, first select a
block. For example, select the speedometer gauge on the left. Select the Gauge tab that appears in
the toolstrip and then select Show Connection. The model navigates to where the connected signal
exists and briefly highlights the signal.

The Circular Gauge block on the left displays the vehicle speed signal, acting as a speedometer on
the dashboard. The block uses the default Circular Gauge appearance and a value arc you can see
when you simulate the model.

12 Block Reference Page Examples

12-32

The Circular Gauge blocks at the top of the model display the throttle and brake signals. You can
create this type of gauge by deleting the background image and needle image from the default
Circular Gauge. Then, adjust the scale arc and select colors for the tick marks, scale, and value arc.

The Circular Gauge block on the right displays the engine RPM signal on a custom gauge face. You
can create a gauge like this by deleting the background image in the default Circular Gauge and
uploading your own.

 Create a Realistic Dashboard Using the Circular Gauge Block

12-33

The MultiStateImage block on the bottom displays the gear signal using seven segment display style
number images that correspond to the value of the gear signal.

Monitor System During Simulation

You can use the dashboard to monitor the system response during simulation. The User Inputs block
includes several simulation inputs to model different vehicle maneuvers. To change the simulation
input, navigate to the top level of the model and open User Inputs. You can use the drop-down menu
to choose the vehicle action for the model to simulate. Choose between a passing maneuver, gradual
acceleration, hard braking, and coasting. To monitor the system response during simulation, navigate
back to the Dashboard subsystem and press the play button to simulate the model.

12 Block Reference Page Examples

12-34

Solve a Linear System of Algebraic Equations

Use the Algebraic Constraint block to solve the system

The model represents the problem in a vectorized form as

The signal fed to the Algebraic Constraint block is a vector of the form

The block is configured to constrain to 0. Thus solving for yields the solution

 Solve a Linear System of Algebraic Equations

12-35

Model a Planar Pendulum

Consider a point mass m suspended by a massless rod of length l under the influence of gravity. The
position of the mass can be expressed in Cartesian coordinates by (x,y).

Modeling the System

A force balance of the mass gives the equations of motion in the x and y directions.

Let (u, v) be the velocities in (x, y) respectively. The system can be rewritten as a system of first order
ODEs

where F is the tension in the rod. The system also possesses the geometric constraint

Differentiate (7) twice with respect to time t to arrive at

12 Block Reference Page Examples

12-36

This relationship is useful since it allows F to determined at every step for use in modeling the
kinematics of the system.

Simulating the System

The system is simulated as shown in the figure below

Equation (8) contains one unknown F and is of the form f(z) = 0 where
. The Algebraic Constraint block constrains f(z) to 0 and solves for F

in accordance with (8).

 Model a Planar Pendulum

12-37

References

Hairer, Ernst, Christian Lubich, and Michel Roche. "The Numerical Solution Of Differential-Algebraic
Systems By Runge-Kutta Methods." Lecture Notes in Mathematics. Vol. 1409, Berlin: Springer-Verlag,
1989: pp. 8-9.

12 Block Reference Page Examples

12-38

Improved Linearization with Transfer Fcn Blocks

The Laplace domain transfer function for the operation of differentiation is:

This equation is not a proper transfer function, nor does it have a state-space representation. As such,
the Simulink software linearizes this block as an effective gain of 0 unless you explicitly specify that a
proper first-order transfer function should be used to approximate the linear behavior of this block.

To improve linearization, you can also try to incorporate the derivative term in other blocks. For
example, if you have a Derivative block in series with a Transfer Fcn block, try using a single Transfer
Fcn block of the form

For example, you can replace the first set of blocks in this figure with the blocks below them:

 Improved Linearization with Transfer Fcn Blocks

12-39

View Dead Zone Output on Sine Wave

This example shows the effect of the Dead Zone block on a sine wave. The model uses a dead zone
lower limit of -0.5 and an upper limit as 0.5. Set these values through the parameters Start of
Dead Zone and End of Dead Zone .

12 Block Reference Page Examples

12-40

View Backlash Output on Sine Wave

This example shows the effect of the Backlash block on a sine wave using default parameters. The
initial Deadband width is 1 and the Initial output is 0.

The initial deadband is centered around 0 and has a width of 1, which extends .5 in each direction.
The output from the Backlash block begins at 0 and does not change until the input reaches the edge
of the deadzone at .5. Then the output engages in a positive direction and changes an equal amount
as the input. After the input reaches a value of 1, it starts moving in a negative direction. At this point
the output disengages and stays flat until the input passes through the deadband width of 1. Once the
input reaches the end of the deadband zone at 0, then the output engages and starts moving in a
negative direction with the input.

 View Backlash Output on Sine Wave

12-41

Prelookup With External Breakpoint Specification

This example shows how to feed a breakpoint dataset from a Constant block to the bp input port of
the Prelookup block.

The Prelookup block inherits the following breakpoint attributes from the bp input port:

• Minimum: Inf
• Maximum: Inf
• Data type: single

Similarly, a Constant block feeds the table data values to the T input port of the Interpolation Using
Prelookup block, which inherits the following attributes:

• Minimum: Inf
• Maximum: Inf
• Data type: single

Simulink® uses double-precision, floating-point data to perform the computations in this model.
However, the model stores the breakpoint and table data as single-precision, floating-point data.
Using a lower-precision data type to store breakpoint and table data reduces the memory
requirement.

12 Block Reference Page Examples

12-42

Prelookup with Evenly Spaced Breakpoints

This example shows how to specify evenly spaced breakpoint data in the Prelookup block.

In the Breakpoints data section, the Specification parameter is set to Even spacing. The
parameters First point, Spacing, and Number of points are set to 25, 12, and 4 respectively.
Specifying these parameters creates four evenly spaced breakpoints: [25, 37, 49, 61].

An alternative way to specify evenly spaced breakpoints is to set Specification to Explicit
values and set Value to [25:12:61].

Simulink® uses double-precision, floating-point data to perform the computations in this model.
However, the model stores the breakpoints and table data as double.

 Prelookup with Evenly Spaced Breakpoints

12-43

Configure the Prelookup Block to Output Index and Fraction as
a Bus

This example shows how to output a bus containing the index (k) and fraction (f) from the Prelookup
block. The bus object can then be used as an input to the Interpolation Using Prelookup block. The
example also shows how to get the same results without using a bus object.

Open and simulate the model.

At the top of the model, open the dialog box for the Prelookup block. In the Main tab, note that
Output selection is set to Index and fraction as bus. In the Data Types tab, note that
Output is set to Bus: myBus. In the Simulink® Editor, select Modeling>Model Settings>Model
Properties and open the Callbacks tab. In the model's PreLoadFcn, the code defines the bus object
myBus, which specifies the index as the first bus element and the fraction as the second element.

Open the dialog box for the Interpolation Using Prelookup block. In the Main tab, note that Require
index and fraction as bus check box is selected. That option configures the block to use the bus
output from the Prelookup block.

12 Block Reference Page Examples

12-44

Approximating the sinh Function Using the Lookup Table
Dynamic Block

This example shows how to use the Lookup Table Dynamic block to approximate the sinh function.
The breakpoint data is given by the vector [-5:5] and the table data is given by the vector
sinh([-5:5]). The input x is provided by the Constant block as a 1-by-3 vector containing values
that are below, within, and above the breakpoint data values.

To see how each lookup method handles input values that are below, within, and above the breakpoint
data values, change the value of the Lookup Method parameter on the Lookup Table Dynamic block.

The Lookup Table Dynamic block outputs the following values when using the specified lookup
methods and inputs.

 Approximating the sinh Function Using the Lookup Table Dynamic Block

12-45

Create a Logarithm Lookup Table

This example shows how to use the n-D Lookup Table block to create a logarithm lookup table. The
lookup table allows you to approximate the common logarithm (base 10) over the input range [1,10]
without performing an expensive computation.

12 Block Reference Page Examples

12-46

Providing Table Data as an Input to the Direct Lookup Table
Block

This example shows how to provide table data as an input to the Direct Lookup Table block. In the
following model, a is a 4-D array of linearly increasing values that you define with the following
model preload function:

a = reshape(1:2800, [4 5 20 7]);

When you run the model, you get the following results:

The block labeled TableData feeds a 4-D array to the Direct Lookup Table (n-D) block, with a data
type of double. Because the Direct Lookup Table (n-D) block uses zero-based indexing, the output is:

a(:,2,4,3)

The output has the same data type as the table data input signal: double.

 Providing Table Data as an Input to the Direct Lookup Table Block

12-47

Specifying Table Data in the Direct Lookup Table Block Dialog
Box

This example shows how to specify table data on the dialog box of the Direct Lookup Table (n-D)
block. In the following model, the table data is a is a 4-D array of linearly increasing values that you
define with the following model preload function:

a = reshape(1:2800, [4 5 20 7]);

When you run the model, you get the following results:

Because the Direct Lookup Table (n-D) block uses zero-based indexing, the output is:

a(:,2,4,3)

The output data type matches the Direct Lookup Table block's Table data type, which is set to
int16.

12 Block Reference Page Examples

12-48

Using the Quantizer and Saturation blocks in sldemo_boiler

This example shows how the Quantizer and Saturation blocks are used in the model ex_sldemo_boiler.
The ADC subsystem digitizes the input analog voltage by:

• Multiplying the analog voltage by 256/5 with the Gain block
• Rounding the value to integer floor with the Quantizer block
• Limiting the output to a maximum of 255 (the largest unsigned 8-bit integer value) with the

Saturation block

 Using the Quantizer and Saturation blocks in sldemo_boiler

12-49

Scalar Expansion with the Coulomb and Viscous Friction Block

This example shows a model with a scalar input to a Coulomb & Viscous Friction block that uses
scalar expansion to output a vector.

Double click the friction block to see the parameters. Coefficient of viscous friction (Gain) is a
scalar value 2, but Coulomb friction value (Offset) is a vector value [1 3 2 0] . Therefore, the
block uses element-wise scalar expansion to compute the output.

Each output is calculated using this formula.

For example, the first offset 1 is calculated as follows.

If the dimensions for the input and Offset are the same, then no expansion is necessary.

12 Block Reference Page Examples

12-50

Sum Block Reorders Inputs

This example shows how the Sum block reorders inputs. If you use a - sign as the first operation, the
block reorders the inputs, if possible, to use a + operation. For example, in the expression output =
-a-b+c, the Sum block reorders the input so that output = c-a-b. To initialize the accumulator,
the Sum block uses the first + input port.

The block avoids performing a unary minus operation on the first operand a because doing so can
change the value of a for fixed-point data types. In that case, the output value differs from the result
of accumulating the values for a , b , and c .

Both the constant inputs use int8 data types The Sum block also uses int8 for the accumulator and
output data types and has Saturate on integer overflow turned on. The Sum block reorders the
inputs to give the ideal result of 127.

1 Reorders inputs from (-Input1 + Input2) to (Input2 - Input1).
2 Initializes the accumulator by using the first + input port. Accumulator = int8(-1) = -1
3 Continues to accumulate values. Accumulator = Accumulator - int8(-128) = 127
4 Calculates the block output. Output = int8(127) = 127

If the Sum block does not reorder the inputs, then you get the nonideal result of 126.

1 Initializes the accumulator by using the first input port. Accumulator = int8(-(-128)) =
127

2 Because saturation is on, the initial value of the accumulator saturates at 127 and does not wrap.
3 Continues to accumulate values. Accumulator = Accumulator + int8(-1) = 126
4 Calculates the block output. Output = int8(126) = 126

To explicitly specify a unary minus operation for output = -a-b+c, you can use the Unary Minus
block in the Math Operations library.

 Sum Block Reorders Inputs

12-51

Iterated Assignment with the Assignment Block

This example shows using the Assignment block to assign values computed in a For or While Iterator
loop to successive elements. You can use vector, matrix or multidimensional signals and do the
assignment in a single time step. In this model, the For Iterator block creates a vector signal each of
whose elements equals where is the index of the element.

The iterator generates indices for the Assignment block. On the first iteration, the Assignment block
copies the first input (Y0) to the output (Y) and assigns the second input (U) to the output Y(E1). On
successive iterations, the Assignment block assigns the current value of U to Y(Ei), that is, without
first copying Y0 to Y. These actions occur in a single time step.

12 Block Reference Page Examples

12-52

View Sample Time Using the Digital Clock Block

This example shows how to view the simulation sample time at a specified sampling interval using the
Digital Clock block. In this model, the Scope shows the output of a Digital Clock block with the
Sample time set to 0.2.

In this configuration, the Digital Clock block outputs the simulation time every 0.2 seconds.
Otherwise, the block holds the output at the previous value.

 View Sample Time Using the Digital Clock Block

12-53

Bit Specification Using a Positive Integer

This example shows how to specify the Number of bits in the Counter Free-Running block as a
positive integer.

At t = 255, the counter reaches the maximum value of (2^8)-1. If you increase the stop time of the
simulation to 256, the counter wraps to zero.

12 Block Reference Page Examples

12-54

Bit Specification Using an Unsigned Integer Expression

This example shows how to specify the Number of bits in the Counter Free-Running block as an
unsigned integer expression.

At t = 254, the counter reaches the maximum value of uint8(2^(uint8(8))-1). If you increase
the stop time of the simulation to 255, the counter wraps to zero.

 Bit Specification Using an Unsigned Integer Expression

12-55

Track Running Minimum Value of Chirp Signal

This example shows how to track the running minimum value of a signal generated by the Chirp
Signal block.

The Chirp Signal block generates a sine wave whose frequency increases at a linear rate with time.
The MinMax Running Resettable block tracks the minimum value of that chirp signal over time. The
running minimum value is reset every 5 seconds by the Pulse Generator block.

12 Block Reference Page Examples

12-56

Unary Minus of Matrix Input

This example shows how to compute the unary minus of a matrix input.

 Unary Minus of Matrix Input

12-57

Sample Time Math Operations Using the Weighted Sample
Time Math Block

This example shows how to add the sample time value to a signal using the Weighted Sample Time
Math block.

Using the Weighted Sample Time block, you can see the sample time of this model is 0.2. When you
set the Operation parameter to + and the Weight value to 1 on the Weighted Sample Time Math
block, the block adds the sample time value of 0.2 to the input signal. When you set the Weight
value to 3 in the Weighted Sample Time Math1 block, the block adds Ts*3 to the input signal, thus
increasing each value by 0.6.

12 Block Reference Page Examples

12-58

Construct Complex Signal from Real and Imaginary Parts

This example shows how to use the Real-Imag to Complex block to construct a complex-valued signal
from real and imaginary parts. You can provide both the real and imaginary parts as block inputs, or
provide one value as an input, and the other on the block dialog box.

 Construct Complex Signal from Real and Imaginary Parts

12-59

Construct Complex Signal from Magnitude and Phase Angle

This example shows how to use the Magnitude-Angle to Complex block to construct a complex-valued
signal. You can provide both the magnitude and phase angle as block inputs, or provide one value as
an input, and the other on the block dialog box.

12 Block Reference Page Examples

12-60

Find Nonzero Elements in an Array

This example shows how to use the Find block to find nonzero elements in an array. In the following
model, the block is configured to output both the one-based linear index and the value of each
nonzero element.

ans =

 Simulink.SimulationOutput:
 tout: [51x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

 Find Nonzero Elements in an Array

12-61

Calculate the Running Minimum Value with the MinMax
Running Resettable Block

This example shows how to use the MinMax Running Resettable block to calculate the running
minimum value. To watch how the running minimum value changes at each time step, you can use the
Step Forward button to advance the simulation one step at a time.

After running the full simulation, you can view the results in the Scope. The initial value of the
running minimum is 0. It begins tracking the Sine Wave signal when the sine wave values turn
negative. When the MinMax Running Resettable block receives a reset signal at T=8, the block resets
the running minimum value to 0. The running minimum value tracks at 0 for a few time steps, until
the sine wave values turn negative again.

ans =

 Simulink.SimulationOutput:
 tout: [26x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

12 Block Reference Page Examples

12-62

 Calculate the Running Minimum Value with the MinMax Running Resettable Block

12-63

Find Maximum Value of Input

This example shows how to use the MinMax block to output the maximum value of two sine waves.

After running the full simulation, you can view the results in the Scope. Initially, the maximum value
(orange line) tracks SineWave2. When the SineWave2 values turn negative, the maximum value
begins tracking SineWave1. When the SineWave2 values become positive again, the maximum value
resumes tracking SineWave2.

ans =

 Simulink.SimulationOutput:
 tout: [57x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

12 Block Reference Page Examples

12-64

 Find Maximum Value of Input

12-65

Permute Array Dimensions

This example shows how to use the Permute Dimensions block to permute the first and third
dimensions of a 3-by-4-by-5 input array.

When you set the Order parameter to [3,2,1], the block permutes the first and third dimensions,
and outputs a 5-by-4-by-3 array.

12 Block Reference Page Examples

12-66

Multiply Inputs of Different Dimensions with the Product Block

This example shows how to perform element-wise (.*) multiplication of inputs using the Product
block. In this example, the Product block multiplies two scalars, a scalar and a vector, and two 2x2
matrices.

 Multiply Inputs of Different Dimensions with the Product Block

12-67

Multiply and Divide Inputs Using the Product Block

This example shows how to multiply and divide several input signals using the Product block.

12 Block Reference Page Examples

12-68

Divide Inputs of Different Dimensions Using the Divide Block

This example shows how to perform element-wise (.*) division of two inputs using the Divide block.
In this example, the Divide block divides two scalars, a vector by a scalar, a scalar by a vector, and
two matrices.

 Divide Inputs of Different Dimensions Using the Divide Block

12-69

Complex Division Using the Product of Elements Block

This example shows how to perform element-wise complex division using the Product of Elements
block.

The top Product of Elements block collapses the matrix input to a scalar by taking successive inverses
of the four elements:

• y = ((((1/2+i)/3)/4-i)/5)

The bottom Product of Elements block collapses the matrix input to a vector by taking successive
inverses along the second dimension:

• y(1) = ((1/2+i)/3)
• y(2) = ((1/4-i)/5)

12 Block Reference Page Examples

12-70

Element-Wise Multiplication and Division Using the Product of
Elements Block

This example shows how to use the Product of Elements block to perform element-wise multiplication
and division of inputs.

 Element-Wise Multiplication and Division Using the Product of Elements Block

12-71

sin Function with Floating-Point Input

This example shows how to use the Trigonometric Function block to compute the sine of a floating-
point input. The output of the Trigonometric Function block has the same data type as the input
because the input data type is floating-point and the Approximation method is none.

12 Block Reference Page Examples

12-72

sincos Function with Fixed-Point Input

This example shows how to use the Trigonometric Function block to compute the CORDIC
approximation of sincos for a fixed-point input signal.

The Trigonometric Function block parameters are:

• Function: sincos
• Approximation method: CORDIC
• Number of iterations: 11

When using the CORDIC approximation method, the input to the Trigonometric Function block must
be in the range [-2pi,2pi). The output type of the Trigonometric Function block is
fixdt(1,13,11) because the input is a fixed-point signal and the Approximation method is set to
CORDIC. The output fraction length equals the input word length minus two.

 sincos Function with Fixed-Point Input

12-73

Trigonometric Function Block Behavior for Complex
Exponential Output

This example compares the complex exponential output for two different configurations of the
Trigonometric Function block.

When the Approximation method is CORDIC, the input data type can be fixed point, in this case:
fixdt(1,16,2). The output data type is fixdt(1,16,14) because the output fraction length
equals the input word length minus two.

When the Approximation method is None, the input data type must be floating point. The output
data type is the same as the input data type.

12 Block Reference Page Examples

12-74

Control Algorithm Execution Using Enumerated Signal

This example shows how to use a signal of an enumerated data type to control the execution of a
block algorithm. For basic information about using enumerated data types in models, see “Use
Enumerated Data in Simulink Models”.

Define Enumerated Type

Copy the enumerated type definition ex_SwitchCase_MyColors into a script file in your current
folder.

classdef ex_SwitchCase_MyColors < Simulink.IntEnumType
 enumeration
 Red(0)
 Yellow(1)
 Blue(2)
 Mauve(3)
 end
end

Alternatively, you can use the function Simulink.defineIntEnumType to define the type.

Simulink.defineIntEnumType('ex_SwitchCase_MyColors',...
{'Red','Yellow','Blue','Mauve'},[0;1;2;3])

Explore Example Model

Open the example model ex_enum_switch_case.

open_system('ex_enum_switch_case')

Open the Enumerated Constant block dialog box. The constant output value is
ex_SwitchCase_MyColors.Blue.

 Control Algorithm Execution Using Enumerated Signal

12-75

Open the Switch Case block dialog box. The Case conditions box is specified as a cell array
containing three of the four possible enumeration members. The block has four outputs
corresponding to the three specified enumeration members and a default case.

Open the Switch Case Action Subsystem blocks. The subsystems each contain a Constant block that
uses a different constant value.

Control Execution During Simulation

Simulate the model. The Display block shows the value 5, which corresponds to the case
ex_SwitchCase_MyColors.Blue.

In the Enumerated Constant block dialog box, specify Value as ex_SwitchCase_MyColors.Red and
click Apply. The Display block shows 19.

Specify Value as ex_SwitchCase_MyColors.Mauve and click Apply. The Display block shows 3,
which corresponds to the default case.

12 Block Reference Page Examples

12-76

Integer and Enumerated Data Type Support in the Ground
Block

This example shows how to use the Ground block to ground block input ports that have integer and
enumerated data types. In top row of this example, the output of the Constant block determines the
data type (int8) of the port to which the Ground block is connected. That port determines the output
data type of the Ground block, and the Ground block outputs a signal with zero value, and data type
int8.

In the bottom row of this example, the Ground block is connected to a port with an enumerated data
type. For enumerated data types, the Ground block outputs the default value of the enumeration. This
behavior applies whether or not:

• The enumeration can represent zero
• The default value of the enumeration is zero

If the enumerated type does not have a default value, the Ground block outputs the first enumeration
value in the type definition.

 Integer and Enumerated Data Type Support in the Ground Block

12-77

Fixed-Point Data Type Support in the Ground Block

This example shows how to use the Ground block to ground block input ports that have fixed-point
data types. The top row of this example illustrates the Ground block behavior when the fixed-point
data type can represent zero. In that case, the Ground block outputs a signal with zero value, and the
same fixed-point data type as the port it is connected to.

In the bottom row of this example, the output of the Constant block determines the data type of the
port to which the Ground block is connected (fixdt(0,8,1,1)). Because zero cannot be
represented exactly by the data type fixdt(0,8,1,1), the Ground block outputs a nonzero value
that is the closest possible value to zero (in this case, 1).

12 Block Reference Page Examples

12-78

Read 2-D Signals in Structure Format From Workspace

This example shows how to read a 2-D structure from the MATLAB workspace. When you open the
model, the following code is executed by a PreLoadFcn callback:

t1 = 0.2 * [0:49]';
m = magic(10);
M = repmat(m,[1 1 length(t1)]);
data.time=t1;
data.signals.values = M;
data.signals.dimensions=[10 10];

This code creates 10-by-10 matrix (2-D signal) by using the magic function, and then creates a 3-D
matrix by adding a time vector. The time vector must be a column vector. The signals.values field
is a 3-D matrix where the third dimension corresponds to time. The signals.dimensions field is a
two-element vector. The first element is the number of rows and the second element is the number of
columns in the signals.values field.

When you run the model, the From Workspace block reads the structure data from the workspace.

 Read 2-D Signals in Structure Format From Workspace

12-79

Eliminate Singleton Dimension with the Squeeze Block

This example shows a model using the Squeeze block to eliminate a dimension of size 1.

The Squeeze block converts a multidimensional array from the Constant block of size 3-by-1-by-2 into
a 3-by-2 signal.

12 Block Reference Page Examples

12-80

Difference Between Time- and Sample-Based Pulse Generation

This example shows the difference in behavior of the Pulse Generator block in time-based and
sample-based modes.

Consider this model, with two Pulse Generator blocks. One block has the Pulse type parameter set to
Time based, and the other to Sample based. Both blocks are configured to output a pulse with an
amplitude of one that is on for five seconds, followed by off for five seconds. The simulation time
runs from three seconds to a stop time of 18 seconds. Notice the time offset notice in the lower right
corner.

ans =

 Simulink.SimulationOutput:
 tout: [16x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

 Difference Between Time- and Sample-Based Pulse Generation

12-81

Notice that the time-based Pulse Generator produces an on signal for only two seconds and then
switches to off. This is due to the block starting to compute the output from t=0 even though it does
not output the simulation until t=3. The sample-based block outputs a pulse of five seconds on
followed by five seconds off. In this case, the block output does not depend on simulation time and
starts only when the simulation starts.

12 Block Reference Page Examples

12-82

Specify a Waveform with the Repeating Sequence Block

This example shows how you specify a waveform with the Repeating Sequence block. In this model,
the block defines the Time values parameter as [0:0.1:0.5] and the Output values parameter as
[0 15 25 09 13 17]. The stop time of the simulation is 0.7 second.

• Input period is 0.5.
• Output at any time t is the output at time t = t-0.5n, where n = 0,1,2, and so on.
• Sequence repeats at t = 0.5n.

At t = 0.5, the expected output is equal to the output at t = 0, which is 0. Therefore, the last value
in the Output values parameter vector [0 15 25 09 13 17] does not appear.

 Specify a Waveform with the Repeating Sequence Block

12-83

Tune Phase Delay on Pulse Generator During Simulation

This example shows how to modify a model so that you can change a phase delay for a Pulse
Generation block during simulation. You cannot tune the value of the Phase delay parameter during
simulation. As a workaround, add a Constant block and a Variable Time Delay block.

In the Pulse Generator block, set the value of the Phase delay parameter to zero. Use the Constant
block to specify the delay time in seconds. To tune the delay time during simulation, change the value
stored in the Constant block.

12 Block Reference Page Examples

12-84

Difference Sine Wave Signal

This example shows how to calculate the difference in a sine wave signal at each time step. The input
is a 1-by-2 vector of sine waves, with amplitude 1 and 3. The difference block calculates the
difference in each sine wave signal at every time step. The Scope block displays both the original sine
waves and the output of the difference block.

 Difference Sine Wave Signal

12-85

Discrete-Time Derivative of Floating-Point Input

This example shows how to use the Discrete Derivative block to compute the discrete-time derivative
of a floating-point input signal. The unfiltered discrete-time derivative is compared to a filtered
discrete-time derivative that is computed by the Discrete Filter block.

12 Block Reference Page Examples

12-86

First-Order Sample-and-Hold of a Sine Wave

This example shows how to perform a first-order sample-and-hold of a sine wave signal using the
First-Order Hold block.

 First-Order Sample-and-Hold of a Sine Wave

12-87

Calculate and Display Simulation Step Size using Memory and
Clock Blocks

This example shows how to use the Memory and Clock blocks to calculate and display the step size in
a simulation. The Sum block subtracts the time at the previous time step, which the Memory block
generates, from the current time, which the Clock block generates.

Because Inherit sample time is not selected for the Memory block, the block sample time depends
on the type of solver for simulating the model. In this case, the model uses a fixed-step solver.
Therefore, the sample time of the Memory block is the solver step size, or 1.

If you replace the Memory block with a Unit Delay block, you get the same results. The Unit Delay
block inherits a discrete sample time of 1.

12 Block Reference Page Examples

12-88

Capture the Velocity of a Bouncing Ball with the Memory Block

The sldemo_bounce example shows how to use the Second-Order Integrator and Memory blocks to
capture the velocity of a bouncing ball just before it hits the ground.

open_system('sldemo_bounce');

Because Inherit sample time is not selected for the Memory block, the block sample time depends
on the type of solver for simulating the model. In this case, the model uses a variable-step (ode23)
solver. Therefore, the sample time of the Memory block is continuous but fixed in minor time step: [0,
1]. When you run the model, you get these results.

sim('sldemo_bounce');

 Capture the Velocity of a Bouncing Ball with the Memory Block

12-89

If you replace the Memory block with a Unit Delay block, you get the same results. However, a
warning also appears due to the discrete Unit Delay block inheriting a continuous sample time.

For more information, see the model description.

12 Block Reference Page Examples

12-90

Implement a Finite-State Machine with the Combinatorial Logic
and Memory Blocks

The ex_sldemo_clutch example shows how you can use the Memory block with the Combinatorial
Logic block to implement a finite-state machine. This construct appears in the Friction Mode
Logic/Lockup FSM subsystem:

Because Inherit sample time is not selected for the Memory block, the block sample time depends
on the type of solver for simulating the model. In this case, the model uses a variable-step (ode23)
solver. Therefore, the sample time of the Memory block is continuous but fixed in minor time step:
[0, 1].

See Also

More About
• “Building a Clutch Lock-Up Model” on page 13-156

 Implement a Finite-State Machine with the Combinatorial Logic and Memory Blocks

12-91

Discrete-Time Integration Using the Forward Euler Integration
Method

The sldemo_fuelsys model uses a Discrete-Time Integrator block in the fuel_rate_control/
airflow_calc subsystem. This block uses the Forward Euler integration method.

When the Switch block feeds a nonzero value into the Discrete-Time Integrator block, integration
occurs. Otherwise, integration does not occur.

See Also

More About
• “Model a Fault-Tolerant Fuel Control System” on page 13-124

12 Block Reference Page Examples

12-92

Signal Routing with the From, Goto, and Goto Tag Visibility
Blocks

This example shows how to use the From, Goto, and Goto Tag Visibility blocks to route signals in your
model. The GotoGlobal block at the top-level of the model has the Goto tag parameter set to G and
the Tag visibility set to global. Thus, the G tag can be seen by From and Goto blocks at any level of
the model hierarchy, except locations that span nonvirtual subsystem boundaries (like the Atomic
Subsystem in this model). The From block at the top level of the model can see and connect to the
global G tag, but cannot see or connect to the scoped S tag or L local tag that are specified on Goto
blocks further down in the model hierarchy.

Inside of the Main Subsystem, the Goto block with Goto tag set to S has a Tag visibility of scoped.
The Goto Tag Visibility block placed at the same level as that Goto block indicates the S tag can be
seen by all From and Goto blocks at that level and below, except for locations that cross a nonvirtual
subsystem boundary (i.e. the boundary with the Atomic Subsystem). Inside of Subsystem1 and
Subsystem2, the From blocks can see and connect to the global Goto tag G, and the scoped Goto tag
S.

 Signal Routing with the From, Goto, and Goto Tag Visibility Blocks

12-93

12 Block Reference Page Examples

12-94

Zero-Based and One-Based Indexing with the Index Vector
Block

This example shows how the Index Vector block works with zero-based and one-based indexing.

The Index Vector block is from the Simulink Signal Routing library. It is a special configuration of the
Multiport Switch block. To configure the Multiport Switch block as an Index Vector block, set the
Number of data ports to 1 and Data port order to Zero-based contiguous.

 Zero-Based and One-Based Indexing with the Index Vector Block

12-95

Noncontiguous Values for Data Port Indices of Multiport Switch
Block

This example shows how to use a Multiport Switch block that specifies noncontiguous integer values
for data ports. The values of the indices are visible on the data port labels. You do not have to open
the block dialog box to determine which value maps to each data port.

When you set Data port for default case to Additional data port, an extra port with a * label
appears. This port corresponds to the default case, which applies when the control input does not
match the data port indices 3, 5, 0, or 18. When that happens in this example, the Multiport Switch
block outputs a value of 1.

12 Block Reference Page Examples

12-96

Using Variable-Size Signals on the Delay Block

This example shows how the Delay block supports variable-size signals for sample-based processing.
The Switch block controls whether the input signal to the enabled subsystem is a 3-by-3 or 3-by-2
matrix.

The Delay block appears inside the enabled subsystem.

The model follows these rules for variable-size signals while using sample-based processing.

• Signal dimensions change only during state reset when the block is enabled.
• Initial condition must be scalar.

The rules are implemented by these blocks.

• Enable block sets Propagate sizes of variable-size signals to Only when enabling.
• Delay block sets the Initial condition to the scalar value 0.0.

 Using Variable-Size Signals on the Delay Block

12-97

Buses with the Delay Block for Frame-Based Processing

This example shows how the Delay block supports buses for frame-based processing.

Each Constant block supplies an input signal to the Bus Creator block, which outputs a two-
dimensional bus. After the Delay block delays the bus by three sample periods, the Bus Selector block
separates the bus back into the two original signals.

The model follows these rules for buses:

• For the initial condition, set the value on the dialog box.
• For frame-based processing, signal dimensions of the data input port u cannot be larger than two.

The model implements the rules by:

• Setting Initial condition to a scalar value of 0.
• Setting bus input to the Delay block as two dimensions.

12 Block Reference Page Examples

12-98

Control Execution of Delay Block with Enable Port

This example shows how you can enable or disable the execution of the Delay block using an enable
port. In this model, a ramp input signal feeds into a Delay block. The execution of the block is
controlled by an enabling signal from the Pulse Generator block.

The blue line shows that the Delay block outputs the input signal value delayed by one time step
while the enabling signal has a value of one. At t=5 the enabling signal transitions to zero and the
Delay block stops executing. The output is held at the last value until the block is enabled again.

 Control Execution of Delay Block with Enable Port

12-99

Zero-Based Indexing for Multiport Switch Data Ports

This example shows a Multiport Switch block that uses uses zero-based indexing for contiguous
ordering of three data ports.

The indices are visible on the data port labels. You do not have to open the block dialog box to
determine if the data ports use zero-based or one-based indexing.

When you set Data port for default case to Last data port, the last data port includes a * on the
label (in this case, the label is *,2). The comma after the * indicates that the data port index has a
value. This port corresponds to the default case, which applies when the control input does not match
the data port indices. In this example, the Multiport Switch block outputs a value of -0.1 when the
control input does not match the data port indices of 0, 1, or 2.

12 Block Reference Page Examples

12-100

One-Based Indexing for Multiport Switch Data Ports

The sf_semantics_hotel_checkin model uses a Multiport Switch block. This block uses one-based
indexing for contiguous ordering of three data ports.

When you increase the size of the block icon, the indices are visible on the data port labels. You do
not have to open the block dialog box to determine whether the data ports use zero-based or one-
based indexing.

 One-Based Indexing for Multiport Switch Data Ports

12-101

Enumerated Names for Data Port Indices of the Multiport
Switch Block

The sldemo_fuelsys model uses a Multiport Switch block in the fuel_rate_control/fuel_calc/
feedforward_fuel_rate subsystem. This block uses the enumerated type sld_FuelModes to
specify three data port indices: LOW, RICH, and DISABLED.

When you set Data port for default case to Last data port, the last data port includes a * on the
label. The comma and ellipsis after the * indicate that the data port index has a value. This port
corresponds to the default case, which applies when the control input does not match the data port
indices LOW, RICH, or DISABLED. In this case, the Multiport Switch block outputs a value of 0.

See Also

More About
• “Model a Fault-Tolerant Fuel Control System” on page 13-124

12 Block Reference Page Examples

12-102

Prevent Block Windup in Multiloop Control

This example shows how to use signal tracking to prevent block windup in a two-loop control system.

The Inner Loop subsystem contains a saturation limit:

In this example, the inner loop has an effective gain of 1 when it does not saturate. When the inner
loop does saturate, however, the integrator in the PID Controller can begin to wind up.

If the PID controller tracks the output of the inner loop, then its output never exceeds the saturated
inner-loop output. To achieve this tracking, connect the Saturation block output to the tracking input
of the PID Controller.

 Prevent Block Windup in Multiloop Control

12-103

Bumpless Control Transfer

This example shows how to use signal tracking to achieve bumpless control transfer in a system that
switches between a PID Controller block and another controller. You can make the PID controller
track the output of the other controller by connecting the signal you want to track to the TR port of
the PID Controller block. For example:

The input In1 takes a reference signal that feeds both controllers. The output Out1 drives a
controlled system (not shown). A switch transfers control between the Active controller block (a Zero-
Pole block) and the PID Controller block. When the Active controller is in the loop, the PID Controller
block tracks its output. Thus, the two controllers have the same output when you switch to PID
control, ensuring smooth operation.

12 Block Reference Page Examples

12-104

Bumpless Control Transfer with a Two-Degree-of-Freedom PID
Controller

This example shows how to use signal tracking to achieve bumpless control transfer in a system that
switches between a PID Controller (2DOF) block and another controller. You can make the PID
controller track the output of the other controller by connecting the signal you want to track to the
TR port of the PID Controller block. For example:

The input Ref takes a reference signal, and the input y takes the measured feedback from the plant.
These signals feed the 2DOF controller, and the difference between them feeds the Active controller
block (a Zero-Pole block). The output u drives the plant. A switch transfers control between the active
controller and the PID Controller (2DOF) block. When the Active controller is in the loop, the PID
Controller (2DOF) block tracks its output. Thus, the two controllers have the same output when you
switch to PID control, ensuring smooth operation.

 Bumpless Control Transfer with a Two-Degree-of-Freedom PID Controller

12-105

Using a Bit Set block

If the Bit Set block is turned on for bit 2 is set to 1.

A vector of constants 2.^[0 1 2 3 4] is represented in binary as [00001 00010 00100 01000 10000].

With bit 2 set to 1, the result is [00101 00110 00100 01100 10100], which is represented in decimal
as [5 6 4 12 20].

12 Block Reference Page Examples

12-106

Using a Bit Clear block

If the Bit Clear block is turned on for bit 2, bit 2 is set to 0.

A vector of constants 2.^[0 1 2 3 4] is represented in binary as [00001 00010 00100 01000 10000].

With bit 2 set to 1, the result is [00101 00110 00100 01100 10100], which is represented in decimal
as [5 6 4 12 20].

With bit 2 set to 0, the result is [00001 00010 00000 01000 10000], which is represented in decimal
as [1 2 0 8 16]

 Using a Bit Clear block

12-107

Two-Input AND Logic

This example builds a two-input AND function, which returns 1 when both input elements are 1, and
0 otherwise. To implement this function, specify the Truth table parameter value as [0; 0; 0; 1] The
portion of the model that provides the inputs to and the output from the Combinatorial Logic block
might look like this:

The following table indicates the combination of inputs that generate each output. The input signal
labeled Input corresponds to the column in the table labeled Input 1. Similarly, the input signal
Input 2 corresponds to the column with the same name. The combination of these values
determines the row of the Output column of the table that is passed as block output. For example, if
the input vector is [1 0], the input references the third row:

(2^1*1 + 1) The output value is 0.

12 Block Reference Page Examples

12-108

Circuit Logic

This sample circuit has three inputs: the two bits (a and b) to be summed and a carry-in bit (c). It has
two outputs: the carry-out bit (c') and the sum bit (s).

The truth table and corresponding outputs for each combination of input values for this circuit appear
in the following table.

To implement this adder with the Combinatorial Logic block, you enter the 8-by-2 matrix formed by
columns c' and s as the Truth table parameter. You can also implement sequential circuits (that is,
circuits with states) with the Combinatorial Logic block by including an additional input for the state
of the block and feeding the output of the block back into this state input.

 Circuit Logic

12-109

Unsigned Inputs for the Bitwise Operator Block

The following model shows how the Bitwise Operator block works for unsigned inputs.

Each Constant block outputs an 8-bit unsigned integer (uint8). To determine the binary value of each
Constant block output, use the dec2bin function. The results for all logic operations appear in the
next table.

12 Block Reference Page Examples

12-110

Signed Inputs for the Bitwise Operator Block

The following model shows how the Bitwise Operator block works for signed inputs.

Each Constant block outputs an 8-bit signed integer (int8) . To determine the binary value of each
Constant block output, use the dec2bin function. The results for all logic operations appear in the
next table.

 Signed Inputs for the Bitwise Operator Block

12-111

Merge Block with Input from Atomic Subsystems

This example shows a Merge block with inputs from two atomic subsystems.

Each Atomic Subsystem block contains an enabled subsystem. This satisfies the requirement that
inputs to a Merge block are from a conditionally executed subsystem.

12 Block Reference Page Examples

12-112

Index Options with the Selector Block

This example shows two Selector blocks with the same kind of input signals, but two different Index
Option settings.

Both Selector blocks select 7 values from the input signal that feeds the input port. The Selector1
block outputs a fixed-size signal, whereas the Selector2 block outputs a variable-size signal whose
compiled signal dimension is 10 instead of 7.

The Selector1 block sets Index Option to Index vector (port), which uses the input signal
from Constant1 as the index vector. The dimension of the input signal is 7, so the Display block
shows the 7 values of the Constant1 block. The Selector2 block sets the Input port size
parameter to 10, which is the size of the largest input signal to the Selector2 block.

The Selector2 block also sets the Index Option to Starting and ending indices (port).
The output is then set to the size of Input port size parameter (10), even though the size of the input
signal is 7.

 Index Options with the Selector Block

12-113

Switch Block with a Boolean Control Port Example

This example shows a Switch block with a Boolean input for the control port.

open_system('sldemo_fuelsys');
open_system('sldemo_fuelsys/fuel_rate_control/airflow_calc');

The value of the control port on the Switch block determines whether or not the feedback correction
occurs. The control port value depends on the output of the Logical Operator block. When the Logical
Operator block output is true, then the Switch block control port is 1 and the feedback control
occurs. If the Logical Operator block output is false then the feedback control does not occur.

See Also

More About
• “Model a Fault-Tolerant Fuel Control System” on page 13-124

12 Block Reference Page Examples

12-114

Merge Block with Unequal Input Widths Example

This example shows how to use the Merge block with inputs ports that have different widths. If you
select Allow unequal port widths, the block accepts scalar and vector inputs having differing
numbers of elements. You can specify an offset for each input signal relative to the beginning of the
output signal. The width of the output signal is:

where are the widths of the input signals, and are the offsets.

 Merge Block with Unequal Input Widths Example

12-115

The Merge block has the following output width.

In this example, the offset of is 0 and the offset of is 1. The Merge block maps the elements of
 to the first two elements of and the elements of to the last two elements of . Only the

second element of is effectively merged, as show in the scope output.

If you use Simplified Initialization Mode, you must clear the Allow unequal port widths check
box. The input port offsets for all signals must be zero.

12 Block Reference Page Examples

12-116

Detect Rising Edge of Signals

This example shows how to detect the rising edge of a signal using the Detect Rise Nonnegative and
Detect Rise Positive blocks.

 Detect Rising Edge of Signals

12-117

With a fixed-step size of 0.25, this example illustrates the difference between the Detect Rise
Nonnegative and Detect Rise Positive blocks. The Detect Rise Nonnegative block outputs true (1) at
t=1 because the input signal increased from a negative value to a nonnegative value (0). The Detect
Rise Positive block outputs true (1) at t=1.25 because the input signal increased from a nonpositive
value (0) to a strictly positive value.

12 Block Reference Page Examples

12-118

Detect Falling Edge Using the Detect Fall Nonpositive Block

This example shows how to use the Detect Fall Nonpositive block to detect a falling edge in the input
signal. The block detects a falling edge when the signal value decreases from a strictly positive value
to a nonpositive value. In this example, the Initial condition of the Detect Fall Nonpositive block is
set to 1. This means that the Boolean expression U/z <= 0 evaluates to true and the block assumes
the initial value of the input signal is nonpositive.

 Detect Falling Edge Using the Detect Fall Nonpositive Block

12-119

Detect Increasing Signal Values with the Detect Increase Block

This example shows how to use the Detect Increase Block to detect increasing signal values. Because
the Initial condition is set to -1, the block detects an increasing signal value starting at time t=0. If
you change the Initial condition parameter to a nonnegative value, the block detects the first
increasing signal value at t=0.25.

12 Block Reference Page Examples

12-120

Extract Bits from Stored Integer Value

This example shows how to extract specific bits from the stored integer value of an input signal.

 Extract Bits from Stored Integer Value

12-121

Detect Signal Values Within a Dynamically Specified Interval

This example shows how to detect when an input signal falls within a dynamically specified interval.
The interval is defined by two Sine Wave blocks. When the input to the Interval Test Dynamic block
falls between those sine waves, the Interval Test Dynamic block outputs true (1).

12 Block Reference Page Examples

12-122

 Detect Signal Values Within a Dynamically Specified Interval

12-123

Model a Digital Thermometer Using the Polynomial Block

This example shows how the ex_sldemo_boiler model uses the Polynomial block.

In the Boiler Plant model/digital thermometer subsystem, the Polynomial Block models a
first-order polynomial using the coefficients [0.05 0.75]

12 Block Reference Page Examples

12-124

Convert Data Types in Simulink Models

This example shows three different methods of converting data types in your model using the Data
Type Conversion and Data Type Conversion Inherited blocks. In this model, a Sine Wave block
generates the input signal. The Sine Wave block only outputs double-precision data types, so to
generate a sine wave with a data type of single, you must perform a data type conversion.

In the first row, the Data Type Conversion Inherited block uses the data type coming from the
Constant block (single) as the reference data type, and converts the sine wave to single.

 Convert Data Types in Simulink Models

12-125

In the second row, the Data Type Conversion block has the Output data type set to single, and the
sine wave is converted accordingly.

In the third row, the Data Type Conversion1 block has the Output data type set to Inherit:
Inherit via back propagation. Because the downstream Gain2 block has a data type of single,
the Data Type Conversion1 block converts the sine wave to a data type of single.

12 Block Reference Page Examples

12-126

Control Data Types with the Data Type Duplicate Block

This example shows how to control data types in your model using the Data Type Duplicate block. In
this model, the data type of the Constant block (currently single) drives the data types throughout
the model.

The Constant1 block has its Output data type parameter set to Inherit: Inherit via back
propagation. Because the Constant1 and Constant blocks are both connected to the Data Type
Duplicate block, the Constant1 block can inherit its data type from the Constant block. The Sum block
has its Output data type set to Inherit: Same as first input, so it is also able to inherit its
data type from the Constant block.

If you change the data type of the Constant block from single to int32, the int32 data type
propagates throughout the model.

 Control Data Types with the Data Type Duplicate Block

12-127

Probe Sample Time of a Signal

The sldemo_fuelsys model shows how to check the sample time of a signal using the Probe block. This
enables you to verify that the sample time matches the assumed value of the design.

See Also

More About
• “Model a Fault-Tolerant Fuel Control System” on page 13-124

12 Block Reference Page Examples

12-128

Convert Signals Between Continuous Time and Discrete Time

The sldemo_fuelsys model shows how to use the Rate Transition block to convert signals between
continuous time and discrete time.

In the To Controller subsystem, the Rate Transition block converts the signal from continuous
time to discrete time. This discrete-time signal can then be processed by the fuel_rate_control
subsystem.

 Convert Signals Between Continuous Time and Discrete Time

12-129

The To Plant subsystem uses the Rate Transition block to convert the discrete-time output of the
fuel_rate_control subsystem back to continuous time.

See Also

More About
• “Model a Fault-Tolerant Fuel Control System” on page 13-124

12 Block Reference Page Examples

12-130

Remove Scaling from a Fixed-Point Signal

This example shows how to strip the scaling from a fixed-point input signal. To do so, the Data Type
Scaling Strip block maps the input to the smallest built-in data type that has enough data bits to hold
the input. The stored integer value of the input is the value of the output.

 Remove Scaling from a Fixed-Point Signal

12-131

Stop Simulation Block with Relational Operator Block

This example shows how to control when a simulation stops by using a Stop Simulation block with a
Relational Operator block. When you simulate the model, the model stops simulation when the
simulation time reaches 10.

12 Block Reference Page Examples

12-132

Output Simulation Data with Blocks

This example shows how To Workspace and To File blocks write data to the workspace and to a file
respectively.

Open Example Model

open_system('ex_ToWorkspace_ToFile');

Simulate with Default Parameter Values

1. To name the output variables and file, modify the Variable name and File name block parameter
values by using the Block Parameters dialog boxes or the command line.

set_param('ex_ToWorkspace_ToFile/To Workspace',...
 'VariableName','simoutToWorkspace')

set_param('ex_ToWorkspace_ToFile/To File',...
 'FileName','simoutToFile.mat',...
 'MatrixName','simoutToFileVariable')

2. Simulate the model.

out = sim('ex_ToWorkspace_ToFile');

3. To view the input signal for the To Workspace and To File blocks, open the scope viewer.

4. To access the data stored by the To File block, load the output file.

load('simoutToFile.mat')

5. Plot the data stored by the To Workspace and To File blocks.

subplot(2,1,1)
plot(out.simoutToWorkspace,'-o')
legend('simoutToWorkspace')

subplot(2,1,2)
plot(simoutToFileVariable,'-o')
legend('simoutToFileVariable')

 Output Simulation Data with Blocks

12-133

As shown by the plots, the data stored by each block is the same given the default block parameter
values.

Simulate with Custom Parameter Values

1. To keep the data from the previous simulation, specify new names for the output variables and file.

set_param('ex_ToWorkspace_ToFile/To Workspace',...
 'VariableName','simoutToWorkspace2')

set_param('ex_ToWorkspace_ToFile/To File',...
 'FileName','simoutToFile2.mat',...
 'MatrixName','simoutToFileVariable2')

2. To change the amount of data collected, modify the Limit data points to last, Decimation, and
Sample time block parameter values.

set_param('ex_ToWorkspace_ToFile/To Workspace',...
 'MaxDataPoints','3',...
 'Decimation','20',...
 'SampleTime','0.5')

set_param('ex_ToWorkspace_ToFile/To File',...
 'Decimation','20',...
 'SampleTime','1')

The To File block does not provide the option to limit data points to the last data points collected.

12 Block Reference Page Examples

12-134

3. Select Single simulation output, then modify the Logging intervals configuration parameter
value.

set_param('ex_ToWorkspace_ToFile',...
 'ReturnWorkspaceOutputs','on',...
 'LoggingIntervals','[20,90]')

4. Simulate the model.

out = sim('ex_ToWorkspace_ToFile');

5. To access the data stored by the To File block, load the output file.

load('simoutToFile2.mat')

6. Plot the data stored by the To Workspace and To File blocks.

subplot(2,1,1)
hold on
plot(out.simoutToWorkspace2,'-*','DisplayName','simoutToWorkspace2')
hold off

subplot(2,1,2)
hold on
plot(simoutToFileVariable2,'-*','DisplayName','simoutToFileVariable2')
hold off

In this example, the To Workspace block collects data at 20, 30, 40, ..., 90 seconds. The data
represents every 20th sample time within the logging intervals. When the simulation is completed or

 Output Simulation Data with Blocks

12-135

paused, the To Workspace block writes only the last three collected sample points to the workspace:
70, 80, and 90 seconds.

The To File block collects data at 20, 40, 60, and 80 seconds. The data similarly represents every 20th
sample time within the logging intervals. However, the sample time for the To File block is double the
sample time for the To Workspace block.

12 Block Reference Page Examples

12-136

Increment and Decrement Real-World Values

This example shows how to increase and decrease the real-world value of a signal using the following
blocks:

• Increment Real World
• Decrement Real World
• Decrement Time To Zero
• Decrement To Zero

The Scope block shows the output of a Sine Wave block with amplitude 5, as well as the real-world
value of that signal incremented and decremented by one.

 Increment and Decrement Real-World Values

12-137

The Scope1 block shows the output of a Sine Wave block with amplitude 3, as well as the output of
the Decrement To Zero and Decrement Time To Zero blocks:

• The Decrement To Zero block decreases the input sine wave signal by one, and ensures the value
never goes below zero.

• The Decrement Time To Zero block decreases the input sine wave signal by the sample time, Ts,
and ensures that the value never goes below zero.

12 Block Reference Page Examples

12-138

Increment and Decrement Stored Integer Values

This example shows how to increase and decrease the stored integer value of a signal by one.

• The Increment Stored Integer block increases the stored integer value of the input signal by one.
• The Decrement Stored Integer block decreases the stored integer value of the input signal by one.

If you change the value of the input signal to 127 (the maximum value representable by an int8 data
type), incrementing the stored integer value by one causes an overflow. Because overflows in the
Increment and Decrement Stored Integer blocks always wrap, the Increment Stored Integer block
will output a value of -128.

 Increment and Decrement Stored Integer Values

12-139

Specify a Vector of Initial Conditions for a Discrete Filter Block

This example shows how to specify a vector of non-zero initial conditions for the Discrete Filter block.

12 Block Reference Page Examples

12-140

The Scope shows that with the Initial states of the Discrete Filter block set to [1 2], the difference
between the signal filtered by the Discrete Filter block and the signal from the filter's building blocks
is zero. This demonstrates that you can enter the initial conditions of the Discrete Filter block as a
vector of [1 2]. As an alternative, to achieve the same result, you can set the initial condition of Unit
Delay to 1 and Unit Delay1 to 2.

 Specify a Vector of Initial Conditions for a Discrete Filter Block

12-141

Generate Linear Models for a Rising Edge Trigger Signal

You can use state and simulation time logging to extract the model states at operating points. In this
example, the model is configured to get the states when the x1 signal triggers the Trigger-Based
Linearization block on a rising edge.

In this model, the Trigger type of the Trigger-Based Linearization block is set to rising. On the
Data Import/Export pane of the Model Configuration Parameters dialog box, the States and Time
check boxes are selected.

12 Block Reference Page Examples

12-142

After simulating the model, the following variables appear in the MATLAB workspace:

• ex_vdp_triggered_linearization_Trigger_Based_Linearization
• tout
• xout

To get the index to the first operating point time, execute the following command:

ind1 = find(ex_vdp_triggered_linearization_Trigger_Based_Linearization(1).OperPoint.t==tout);

To get the state vector at this operating point, execute the following command:

x1 = xout(ind1,:);

 Generate Linear Models for a Rising Edge Trigger Signal

12-143

Generate Linear Models at Predetermined Times

This example shows how to use the Timed-Based Linearization block to generate linear models at
predetermined times.

In this model, the Linearization time of the Timed-Based Linearization block is set to [2 5]. On the
Data Import/Export pane of the Model Configuration Parameters dialog box, the States and Time
check boxes are selected. These settings enable you to get the states of the model at the simulation
times of 2 and 5 seconds.

After simulating the model, the following variables appear in the MATLAB workspace:

• ex_f14_linearization_Timed_Based_Linearization
• tout
• xout

To get the indices to the operating point times, execute the following command:

ind1 = find(ex_f14_linearization_Timed_Based_Linearization(1).OperPoint.t==tout);

To get the state vectors at the operating points, execute the following command:

12 Block Reference Page Examples

12-144

ind2 = find(ex_f14_linearization_Timed_Based_Linearization(1).OperPoint.t==tout);

 Generate Linear Models at Predetermined Times

12-145

Capture Measurement Descriptions in a DocBlock

This example shows how to use a DocBlock to capture information about a model. In the
sldemo_fuelsys model, a DocBlock labeled Sensor Info is used to document measurement
descriptions inside of the To Controller subsystem.

See Also

More About
• “Model a Fault-Tolerant Fuel Control System” on page 13-124

12 Block Reference Page Examples

12-146

Square Root of Negative Values

This example shows how to compute the square root of a negative-valued input signal as complex-
valued output.

ans =

 Simulink.SimulationOutput:
 tout: [51x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

By setting the Function to sqrt and Output signal type to complex, the block produces the
correct result of 0 + 10i for an input of -100. If you change the Output signal type to auto or
real, the block outputs NaN.

 Square Root of Negative Values

12-147

Signed Square Root of Negative Values

This example shows how to compute the signed square root of a negative-valued input signal.

ans =

 Simulink.SimulationOutput:
 tout: [51x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

When the block input is negative and you set the Function to signedSqrt, the Sqrt block output is
the same for any setting of the Output signal type parameter. By setting the Numerica display
format of the first Display block to decimal (Stored Integer), you can see the value of the
imaginary part for the complex output.

12 Block Reference Page Examples

12-148

rSqrt of Floating-Point Inputs

This example shows how to compute the rSqrt of a floating-point input signal. The Sqrt block has the
following settings:

• Method = Newton-Raphson
• Number of iterations = 1
• Intermediate results data type = Inherit: Inherit from input

After one iteration of the Newton-Raphson algorithm, the block output is within 0.0004 of the final
value (0.4834).

ans =

 Simulink.SimulationOutput:
 tout: [51x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

 rSqrt of Floating-Point Inputs

12-149

rSqrt of Fixed-Point Inputs

This example shows how to compute the rSqrt of a fixed-point input signal. The Sqrt block has the
following settings:

• Method = Newton-Raphson
• Number of iterations = 1
• Intermediate results data type = Inherit: Inherit from input

After one iteration of the Newton-Raphson algorithm, the block output is within 0.0459 of the final
value (0.4834).

ans =

 Simulink.SimulationOutput:
 tout: [51x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

12 Block Reference Page Examples

12-150

Model a Series RLC Circuit

Physical systems can be described as a series of differential equations in an implicit form,

, or in the implicit state-space form

If is nonsingular, then the system can be easily converted to a system of ordinary differential
equations (ODEs) and solved as such:

Many times, states of a system appear without a direct relation to their derivatives, usually
representing physical conservation laws. For example:

In this case, is singular and cannot be inverted. This class of systems are commonly called
descriptor systems and the equations are called differential-algebraic equations (DAEs).

Series RLC Circuit

Consider the simple series RLC circuit.

From Kirchoff's Voltage Law, the voltage drop across the circuit is equalt to the sum of the voltage
drop across each of its elements:

From Kirchoff's Current Law:

where the subscripts , , and denote the resistance, inductance, and capacitance respectively.

 or

 Model a Series RLC Circuit

12-151

 or

In Implicit State-Space Form

Model the system in Simulink with , , to find the voltage
across the resistor . To use the Descriptor State-Space block, the system can be written in the
implicit, or descriptor, state-space form as shown below.

where is the state vector.

Set since the voltage across the resistor is being measured.

Compare this to modeling the system with an algebraic loop in order to find .

The simulation of both models produces identical results. However, the Descriptor State-Space block
allows you to make a simpler block diagram and avoid algebraic loops.

12 Block Reference Page Examples

12-152

See Also

“Algebraic Loop Concepts”

“Model Differential Algebraic Equations”

 Model a Series RLC Circuit

12-153

Detect Change in Signal Values

This example shows how to detect a change in signal values using the Detect Change block. When the
input from the Pulse Generator block remains the same, the Detect Change block outputs zero (false),
indicating that there was no change in signal values. When the value of the Pulse Generator block
changes, the Detect Change block outputs one (true) indicating that the current signal value does not
equal its previous value.

See Also
Detect Change | Pulse Generator | Scope

12 Block Reference Page Examples

12-154

Detect Fall to Negative Signal Values

This example shows how to detect when a signal value decreases to a strictly negative value from a
value that was greater than or equal to zero.

See Also
Detect Fall Negative | Scope | Sine Wave

 Detect Fall to Negative Signal Values

12-155

Detect Decreasing Signal Values

This example shows how to determine if an input signal is strictly less than its previous value using
the Detect Decrease block. When the current input to the Detect Decrease block is less than its
previous value, the block outputs one (true). When the current input is greater than or equal to the
previous signal value, the Detect Decrease block outputs zero (false).

See Also
Detect Decrease | Scope | Sine Wave

12 Block Reference Page Examples

12-156

Function-Call Blocks Connected to Branches of the Same
Function-Call Signal

In this model, a Function-Call Feedback Latch block is on the feedback signal between the branched
blocks. As a result, the latch block delays the signal at the input of the destination function-call block,
and the destination function-call block executes prior to the source function-call block of the latch
block.

See Also
Function-Call Feedback Latch | Function-Call Generator | Function-Call Subsystem | Function-Call
Split

 Function-Call Blocks Connected to Branches of the Same Function-Call Signal

12-157

Function-Call Feedback Latch on Feedback Signal Between
Child and Parent

In this model, the Function-Call Feedback Latch block is on the feedback signal between the child and
the parent. This arrangement prevents the signal value, read by the parent (FCSS1), from changing
during execution of the child. In other words, the parent reads the value from the previous execution
of the child (FCSS2).

See Also
Function-Call Feedback Latch | Function-Call Generator | Function-Call Subsystem | Digital Clock

12 Block Reference Page Examples

12-158

Single Function-Call Subsystem

In this example, a single function-call subsystem output serves as its own input.

See Also
Function-Call Feedback Latch | Function-Call Generator | Function-Call Subsystem | Digital Clock

 Single Function-Call Subsystem

12-159

Function-Call Subsystem with Merged Signal As Input

In this model a merged signal serves as the input to a function-call subsystem. Latching is necessary
if one of the signals entering the Merge block forms a feedback loop with the function-call subsystem.
In this example, one of the output signals from FCSS2 combines with the output of an Enabled
Subsystem block and then feeds back into an inport of FCSS2.

See Also
Function-Call Feedback Latch | Function-Call Generator | Function-Call Subsystem | Merge | Enabled
Subsystem | Pulse Generator | Digital Clock

12 Block Reference Page Examples

12-160

Partitioning an Input Signal with the For Each Block

The following model demonstrates the partitioning of an input signal by a For Each block. Each row
of this 2-by-3 input array contains three integers that represent the (x, y, z)-coordinates of a point.
The goal is to translate each of these points based on a new origin at (-20, -10, -5) and to
display the results.

By placing the process of summing an input signal and the new origin inside of a For Each Subsystem
block, you can operate on each set of coordinates by partitioning the input signal into two row
vectors. To accomplish such partitioning, use the default settings of 1 for both the partition dimension
and the partition width. If you also use the default concatenation dimension of 1, each new set of
coordinates stacks in the d1 direction, making your display a 2-by-3 array.

See Also
For Each | For Each Subsystem

 Partitioning an Input Signal with the For Each Block

12-161

Specifying the Concatenation Dimension in the For Each Block

This example shows how to specify a concatenation dimension in the For Each block. When you
specify a Concatenation Dimension of 2 on the Output Concatenation tab, each set of results
stacks in the d2 direction, and the result is a single row vector.

To learn how the For Each block and subsystem handle a model with states, see the For Each
Subsystem block reference page.

See Also
For Each | For Each Subsystem

12 Block Reference Page Examples

12-162

Working with the Initialize Function, Reset Function, and
Terminate Function Blocks

This example shows how to use the Initialize Function, Reset Function, and Terminate Function
blocks to read and write states in a Simulink model. For more information on configuring the block
settings, see “Using Initialize, Reinitialize, Reset, and Terminate Functions”.

See Also
Initialize Function | Reset Function | Terminate Function | Event Listener | State Writer | State
Reader | Discrete-Time Integrator

Related Examples
• “Using Initialize, Reinitialize, Reset, and Terminate Functions”

 Working with the Initialize Function, Reset Function, and Terminate Function Blocks

12-163

Reading and Writing States with the Initialize Function and
Terminate Function Blocks

In this example, the Initialize Function block uses the State Writer block to set the initial condition of
a Discrete Integrator block to 10. The Terminate Function block includes a State Reader block, which
reads the state of the Discrete Integrator block. The Event type parameter of the Event Listener
block for the initialize and terminate functions is set to Initialize and Terminate, respectively.

See Also
Initialize Function | Terminate Function | Event Listener | State Writer | State Reader | Discrete-Time
Integrator

Related Examples
• “Using Initialize, Reinitialize, Reset, and Terminate Functions”

12 Block Reference Page Examples

12-164

Use Parameter Writer Block to Change Parameter of Block
Inside Referenced Model

This example shows how to use a Parameter Writer block inside an Initialize Function block to change
the Gain parameter of a Gain block in a referenced model.The Gain parameter is configured to
change at every instance of the model.

In this example, the Gain parameter is the modeI instance parameter, and the Gain block is the
parameter owner block. For more information about instance parameters, see Model.

For a step-by-step procedure to create this model, see “Writing to Model Instance Parameters”.

Open the model.

open_system("ParamRw_Top")

See Also
Initialize Function | Event Listener | Parameter Writer | Model | Gain

Related Examples
• “Writing to Model Instance Parameters”

 Use Parameter Writer Block to Change Parameter of Block Inside Referenced Model

12-165

Use Parameter Writer Block to Change Block Parameters

This example shows how to use the Parameter Writer block to change the values of block parameters.

This example provides five different use cases in which the Parameter Writer block is used to:

• Change a tunable parameter.
• Change a Model block instance parameter.
• Change a masked subsystem parameter.
• Change a block parameter based on a function-call event.
• Change a model workspace variable.

Open the model.

open_system("ex_Parameter_writer_block_patterns")

See Also
Gain | Model | Subsystem | Function-Call Subsystem | Initialize Function | Parameter Writer

Related Examples
• “Create a Simple Mask”

12 Block Reference Page Examples

12-166

PWM Control of a Boost Converter

This example shows you how to control a boost converter using the PWM block in Simulink. the boost
converter in this model uses the Boost Converter (Simscape Electrical) block from the Simscape™
Electrical™ library.

A PWM signal is used to control the switching device, or gate, of the boost converter. The PID
controller generates the command signal, or the duty cycle, to track the desired step-up voltage
(Vref) of 18V

This is a relatively high frequency application; the switching gate operates at around 200kHz.
Therefore, a pulse period of 1/200,000 or 5e-6s is chosen for the PWM signal.

Given the small time steps, the boostconverter_pwm model provided with the example is loaded
from a steady state at 0.069s.

 PWM Control of a Boost Converter

12-167

A visualization of the boost converter operation around the 0.1s mark is shown below.

12 Block Reference Page Examples

12-168

For alternate physical modeling implementations of PWM control, see “Pulse Width Modulation”
(Simscape Electrical).

See Also
PWM | Variable Pulse Generator

Related Examples
• “Voltage Controlled Oscillator” on page 12-170

More About
• “Pulse Width Modulation” (Simscape Electrical)

 PWM Control of a Boost Converter

12-169

Voltage Controlled Oscillator

This example shows you how to model an ideal voltage controlled oscillator using the Variable Pulse
Generator block to create the frequency oscillations.

A voltage controlled oscillator uses an input tuning voltage to produce waveforms of varying
frequency. Over a small range of voltages, the relationship between the input voltage ()and the
output oscillation frequency () is proportional and can be expressed as

where

• is the oscillator sensitivity in Hz/V
• is the quiescent frequency, or nominal frequency of the oscillator at

In the included vco_using_vpg model, the desired oscillation frequency signal F_{in}(t) is
generated using the formula shown in equation (1). In this model, the tuning voltage is a
sinusoidal waveform.

12 Block Reference Page Examples

12-170

See Also
PWM | Variable Pulse Generator

More About
• “Pulse Width Modulation” (Simscape Electrical)
• “PWM Control of a Boost Converter” on page 12-167

 Voltage Controlled Oscillator

12-171

Check Signal Lower Bound with Check Dynamic Lower Bound
Block

Using the Check Dynamic Lower Bound block, you can check if an input signal falls below a changing
lower bound during a simulation.

In this example, the Check Dynamic Lower Bound block compares the value of a tested input signal
from a Step block at the u port to a Sine Wave block at the min port. The Check Dynamic Lower
Bound block checks if the value of the signal at the min port is less than the value of the tested input
sigal. If it is, the block asserts true (1). Because the Output assertion signal parameter of the
Check Dynamic Lower Bound block is selected, the block outputs the assertion value. Run the
simulation to observe the model output.

12 Block Reference Page Examples

12-172

At the start of the simulation, the Check Dynamic Lower Bound block outputs 0 because the value of
the Sine Wave block is greater than the value of the Step block. At a time of 3.14, the sine wave dips
below 0, causing the value of the Step block to exceed the sine wave. The Check Dynamic Lower
Bound block recognizes this change and outputs 1.

At a time of 5, the Step block outputs a value of 0.5, which is still greater than the sine wave. The
Step block value stays greater than the sine wave until the time reaches 6.81. The Check Dynamic
Lower Bound block recognizes this change and the assertion fails. The assertion stays at 0 until the
time reaches 8.90, where the sine wave goes below the value of the Step block.

See Also
Assertion | Check Dynamic Lower Bound

 Check Signal Lower Bound with Check Dynamic Lower Bound Block

12-173

Check Signal Upper Bound with Check Dynamic Upper Bound
Block

Using the Check Dynamic Upper Bound block, you can check if an input signal rises above a changing
upper bound during a simulation.

In this example, the Check Dynamic Upper Bound block compares the value of a tested input signal
from a Step block at the u port to a Sine Wave block at the max port. The Check Dynamic Upper
Bound block checks if the value of the signal at the max port is greater than the value of the tested
input sigal. If it is, the block asserts true (1). Because the Output assertion signal parameter of
the Check Dynamic Upper Bound block is selected, the block outputs the assertion value. Run the
simulation to observe the model output.

12 Block Reference Page Examples

12-174

At the start of the simulation, the Check Dynamic Upper Bound block outputs 1 because the value of
the Sine Wave block is greater than the value of the Step block. At a time of 3.14, the sine wave dips
below 0, causing the value of the Step block to exceed the sine wave. The Check Dynamic Upper
Bound block recognizes this change and outputs 0.

At a time of 5, the Step block outputs a value of 0.5, which is still greater than the sine wave. The
Step block value stays greater than the sine wave until the time reaches 6.81. The Check Dynamic
Upper Bound block recognizes this change and the assertion passes. The output stays at 1 until the
time reaches 8.90, where the sine wave goes below the value of the Step block.

See Also
Assertion | Check Dynamic Upper Bound

 Check Signal Upper Bound with Check Dynamic Upper Bound Block

12-175

Check Signal Lower Bound with Check Static Lower Bound
Block

Using the Check Static Lower Bound block, you can check if an input signal falls below a defined
value.

In this example, the Check Static Lower Bound block compares the value of a Sine Wave block to the
value entered in the Lower bound parameter, which is 0.5. The Constant block, labeled Bound,
illustrates this parameter in the Scope block but does not affect the parameter value. The Check
Static Lower Bound block checks if the value of the input signal is greater than the Lower bound. If
it is, the block asserts true (1). Because the Output assertion signal parameter of the block is
selected, the block outputs the assertion value. Run the simulation to observe the model output.

12 Block Reference Page Examples

12-176

At the start of the simulation, the Check Static Lower Bound block outputs 0 because the value of the
Sine Wave block is less than the bound. At a time of 0.52, the sine wave exceeds 0.5. The Check
Static Lower Bound block recognizes this change and outputs 1. When the time reaches 2.62, the
sine wave falls below the bound and the assertion is false. This pattern repeats until the simulation
end time.

See Also
Assertion | Check Static Lower Bound

 Check Signal Lower Bound with Check Static Lower Bound Block

12-177

Check Signal Range with Check Static Range Block

Using the Check Static Range block, you can check if an input signal falls outside of an unchanging
range of values.

In this example, the Check Static Range block compares the value of a Sine Wave block to the values
entered in the Upper bound and Lower bound parameters, which are 0.5 and -0.5. The Constant
blocks, labeled Upper Bound and Lower Bound, illustrate these parameters in the Scope block but do
not affect the parameter values. The Check Static Range block checks if the value of the input signal
is greater than the Lower bound value or less than the Upper bound value. If it is, the block asserts
true (1). Because the Output assertion signal parameter of the block is selected, the block
outputs the assertion value. Run the simulation to observe the model output.

12 Block Reference Page Examples

12-178

At the start of the simulation, the Check Static Range block outputs 1 because the value of the Sine
Wave block is less than the Upper bound value. At a time of 0.52, the sine wave exceeds 0.5. The
Check Static Range block recognizes this change and outputs 0. When the time reaches 2.62, the
sine wave falls below the Upper bound value and the assertion is true. When the time reaches
3.67, the sine wave falls below the Lower bound value. The Check Static Range block recognizes
this change and outputs 0. The output stays at 0 until the time is 5.76, when the sine wave then
exceeds the Lower bound value. This pattern repeats until the simulation end time.

See Also
Assertion | Check Static Range

 Check Signal Range with Check Static Range Block

12-179

Check Signal Upper Bound with Check Static Upper Bound
Block

Using the Check Static Upper Bound block, you can check if an input signal exceeds a defined value.

In this example, the Check Static Upper Bound block compares the value of a Sine Wave block to the
value entered in the Upper bound parameter, which is 0.5. The Constant block, labeled Bound,
illustrates this parameter in the Scope block but does not affect the parameter value. The Check
Static Upper Bound block checks if the value of the input signal is less than the Upper bound. If it is,
the block asserts true (1). Because the Output assertion signal parameter of the block is
selected, the block outputs the assertion value. Run the simulation to observe the model output.

12 Block Reference Page Examples

12-180

At the start of the simulation, the Check Static Upper Bound block outputs 1 because the value of the
Sine Wave block is less than the bound. At a time of 0.52, the sine wave exceeds 0.5. The Check
Static Upper Bound block recognizes this change and outputs 0. When the time reaches 2.62, the
sine wave falls below the bound and the assertion is true. This pattern repeats until the simulation
end time.

See Also
Assertion | Check Static Upper Bound

 Check Signal Upper Bound with Check Static Upper Bound Block

12-181

Check Signal Slope with Check Discrete Gradient Block

Using the Check Discrete Gradient block, you can check if the absolute value of the difference
between successive samples of a signal is less than a defined value.

In this example, the Check Discrete Gradient block compares the value of an input signal from a Sine
Wave block to the Maximum gradient parameter value, which is 0.1. If the absolute value of the
difference between successive samples of the signal is less than 0.1, the block asserts true (1).
Because the Output assertion signal parameter of the block is selected, the block outputs the
assertion value. The block requires a fixed-step discrete solver, which has been selected in the model.
Run the simulation to observe the model output.

12 Block Reference Page Examples

12-182

The block asserts true when the sine wave is near a maximum or minimum. In these sections of the
signal, the absolute value of the gradient is less than the Maximum gradient value 0.1. This
pattern repeats until the simulation end time.

See Also
Assertion | Check Discrete Gradient

 Check Signal Slope with Check Discrete Gradient Block

12-183

Check Signal Value with Check Dynamic Gap Block

This example shows how to check if an input signal falls inside a dynamic upper and lower bound
using the Check Dynamic Gap block. In this example, the Check Dynamic Gap block compares the
value of a tested input signal from a Sine Wave block at the u port to a Ramp block at the max port
and a Step block at the min port.

The Check Dynamic Gap block checks if the value of the signal at the max port is less than the value
of the test sigal, and if the value of the signal at the min port is greater than the value of the test
signal. If it is, the block asserts true (1). Because the Output assertion signal parameter of the
Check Dynamic Gap block is selected, the block outputs the assertion value. Run the simulation to
observe the model output.

12 Block Reference Page Examples

12-184

At the start of the simulation, the Check Dynamic Gap block output is 1. The output stays at 1 until
the simulation time is 2.47, when the sine wave falls below the value of the Ramp block. The block
output stays at 0 until the simulation time reaches 3.14, when the sine wave falls below the value of
the Step block. The Step block activates when the simulation time reaches 3.5, placing the sine wave
between the bounds. The Check Dynamic Gap block recognizes this change and sets the output to 0.

See Also
Assertion | Check Dynamic Gap

 Check Signal Value with Check Dynamic Gap Block

12-185

Check Signal Value with Check Static Gap Block

Using the Check Static Gap block, you can check if an input signal enters an unchanging gap of
values.

In this example, the Check Static Gap block compares the value of a Sine Wave block to the values
entered in the Upper bound and Lower bound parameters, which are 0.5 and 0. The Constant
blocks, labeled Upper Bound and Lower Bound, illustrate these parameters in the Scope block but do
not affect the parameter values. The Check Static Gap block checks if the value of the input signal is
less than the Lower bound value or greater than the Upper bound value. If it is, the block asserts
true (1). Because the Output assertion signal parameter of the block is selected, the block
outputs the assertion value. Run the simulation to observe the model output.

12 Block Reference Page Examples

12-186

At the start of the simulation, the Check Static Gap block outputs 0 because the value of the Sine
Wave block is less than the Upper bound value. At a time of 0.52, the sine wave exceeds 0.5. The
Check Static Gap block recognizes this change and outputs 1. When the time reaches 2.62, the sine
wave falls below the Upper bound value and the assertion is false. When the time reaches 3.14,
the sine wave falls below the Lower bound value. The Check Static Gap block recognizes this change
and outputs 1. The output stays at 1 until the time is 6.28, when the sine wave then exceeds the
Lower bound value. This pattern repeats until the simulation end time.

See Also
Assertion | Check Static Gap

 Check Signal Value with Check Static Gap Block

12-187

Check Signal Range with Check Dynamic Range Block

You can check if an input signal falls outside of a dynamic upper and lower bound by using the Check
Dynamic Range block.

This model uses a Sine Wave block as a dynamic test signal. The Check Dynamic Range block
determines if the value of the sine wave exceeds the signal from the Ramp block or falls below the
signal from the Step block at each time step. In the Check Dynamic Range block, the Output
assertion signal parameter is selected, so the output signal indicates if the assertion condition is
true (1) or false (0). Press Run to observe the model output.

12 Block Reference Page Examples

12-188

In the Scope block, you can see that the Check Dynamic Range block outputs 0 until the sine wave
falls below the value of the Ramp block when the simulation time is 2.47. The block output stays at 1
until the simulation time reaches 3.14, when the sine wave falls below the value of the Step block.
The Step block activates when the simulation time reaches 3.5, placing the sine wave between the
bounds. The Check Dynamic Range block recognizes this change and outputs 1.

See Also
Assertion | Check Dynamic Range

 Check Signal Range with Check Dynamic Range Block

12-189

Check Signal Resolution with Check Input Resolution Block

You can use a Check Input Resolution block to check when a signal has a specified resolution. The
block can help verify if a signal is quantized within specification, such as when checking the output of
an analog-to-digital converter.

In this example, a Repeating Sequence Stair block outputs the values [0 1 2 2.5 3] in sequence
starting at 0. During simulation, the block outputs each value in the vector for a time of 1.

First, the Check Input Resolution block calculates a modulus by calculating the remainder of the
input value over the value of the Resolution parameter, which is set to 2.5. To illustrate this
calculation, this example also uses a Math Function block, labeled Modulus, with the Function
parameter set to mod. The Modulus block takes the value of the Repeating Sequence Stair block over
the value of a Constant block, labeled Resolution, which has the same value as the Resolution
parameter.

Then the Check Input Resolution block checks if the modulus is smaller than a tolerance of 0.01. If it
is, the block asserts true (1). Because the Output assertion signal parameter of the Check Input
Resolution Block is selected, the block outputs the assertion value. Run the simulation to observe the
model output, or use the Step Forward button to step through each step.

12 Block Reference Page Examples

12-190

When you run the model, the Scope block plots the Repeating Sequence Stair block output, the
Modulus block output, and the Check Input Resolution block output. If you use the Step Forward
button, the data populates the three Display blocks at each time step.

1 Initially, the modulus of the Repeating Sequence Stair block over the resolution is 0, so the Check
Input Resolution block outputs 1.

2 When the simulation time reaches 1, the Repeating Sequence Stair block outputs 1. The modulus
rises to 1, which is larger than the tolerance, causing the Check Input Resolution block to output
0.

3 The assertion stays at 0 until the time is 3, when the Repeating Sequence Stair block outputs
2.5. The modulus drops to 0, and the assertion returns to 1.

4 Finally, the Repeating Sequence Stair block outputs 3 when the time is 4, which causes the
assertion to be 1.

 Check Signal Resolution with Check Input Resolution Block

12-191

The model repeats this pattern until the simulation end time.

See Also
Assertion | Check Input Resolution | Display

12 Block Reference Page Examples

12-192

Generate Unit-Diagonal and Identity Matrices

This example shows how to generate a 3-by-6 unit-diagonal matrix and a 5-by-5 identity matrix using
the Identity Matrix block.

See Also
Identity Matrix

 Generate Unit-Diagonal and Identity Matrices

12-193

Extract 3-by-2 Submatrix from Input Signal

This example shows how to use the Submatrix block to extract a 3-by-2 submatrix from the lower-
right corner of a 5-by-7 input matrix. The following figure illustrates the operation of the Submatrix
block with a 5-by-7 input matrix of random integer elements, randi([0 9],5,7).

Here are the settings used for the Submatrix block in this example.

12 Block Reference Page Examples

12-194

There are often several possible parameter combinations that you can use to select the same
submatrix from the input. For example, in the case of a 5-by-7 input matrix, instead of specifying
Last for Ending column, you could select the same submatrix by specifying:

• Ending column = Index
• Ending column index = 7

Open and simulate the model. You can see that the 3-by-2 submatrix from the lower-right corner of a
5-by-7 input matrix has been extracted.

 Extract 3-by-2 Submatrix from Input Signal

12-195

Generate Diagonal Matrix from Vector Input

This example shows how to use the Create Diagonal Matrix block.

Open the Simulink model.

The Create Diagonal Matrix block creates a diagonal matrix from the input values. The output
matrix in the model has the input vector as its diagonal.

Run the model to verify the output.

12 Block Reference Page Examples

12-196

Permute Matrix by Row or Column

This example shows how to use the Permute Block to permute blocks by row or column.

In the model, the top Permute Matrix block places the second row of the input matrix in the first and
fifth rows of the output matrix. The block places the third row of the input matrix in the three middle
rows of the output matrix. The bottom Permute Matrix block places the second column of the input
matrix in the first and fifth columns of the output matrix. It places the third column of the input
matrix in the three middle columns of the output matrix.

Rows and columns of A can appear any number of times in the output, or not at all depending on the
index vector.

 Permute Matrix by Row or Column

12-197

Extract Diagonal of Matrix

This example shows how to use the Extract Diagonal block.

Open the Simulink model.

The Extract Diagonal block returns the main diagonal of the input matrix. The main diagonal of the
input matrix is [1,5,9].

Run the model to verify.

12 Block Reference Page Examples

12-198

Calculate Optical Flow by Using Neighborhood Processing
Subsystem Blocks

This example shows how to calculate optical flow in a video by using Neighborhood Processing
Subsystem blocks. Optical flow is the distribution of the apparent velocities of objects in an image.
Use optical flow to identify and track objects in a video.

Inspect Model

Open the model.

model = 'OpticalFlowNeighborhoodExample';
open_system(model);

The model references a video input, rhinos.avi, by using the From Multimedia File block from
Computer Vision Toolbox. At each iteration, the model passes the current and previous frames of the
video to the DUT subsystem, which performs the optical flow calculation. This calculation outputs an
optical flow matrix which represents the apparent motion at each pixel of the video. The model
overlays these calculated motion vectors over the input video.

Open the DUT subsystem.

 Calculate Optical Flow by Using Neighborhood Processing Subsystem Blocks

12-199

This example calculates optical flow by using the Lucas-Kanade method. The Lucas-Kanade method
requires the values Ix, Iy, and It, which are the derivatives of pixel brightness along the horizontal
direction, vertical direction, and time, respectively.

The Compute Ix Neighborhood Processing Subsystem calculates Ix by using a 1-by-5 neighborhood
and these blocks. The Neighborhood control block NeighborhoodConfig specifies the neighborhood
size using its Neighborhood size parameter.

12 Block Reference Page Examples

12-200

The Compute Iy subsystem calculates Iy with the same blocks and a 5-by-1 neighborhood. The
model calculates It as the difference between the current video frame and previous video frame by
using a Sum block.

The horizontal optical flow u and vertical optical flow v represent the solution to this equation.

Ixu + Iyv + It = 0

To solve this equation, the Lucas-Kanade method divides the input image into smaller sections and
assumes a constant velocity in each section. Then it performs a weighted, least-square fit of the
optical flow constraint equation to a constant model for u v T in each section Ω. The method achieves
this fit by minimizing this equation, where W is a window function that emphasizes the constraints at
the center of each section:

∑
x ∈ Ω

W2 Ixu + Iyv + It
2

The solution to the minimization problem is:

∑W2Ix2 ∑W2IxIy

∑W2IxIy ∑W2Iy
2

u
v

= −
∑W2IxIy

∑W2IyIt

The example calculates Ix2, IxIy, Iy
2, IxIy, and IyIt by using Product blocks. The example implements W

by using Neighborhood Processing Subsystem blocks with 5-by-5 neighborhoods.

 Calculate Optical Flow by Using Neighborhood Processing Subsystem Blocks

12-201

Open the LK Method subsystem.

The Calculate Eigenvalues Neighborhood Processing Subsystem calculates the eigenvalues of

A =
a b
c d

=
∑W2Ix2 ∑W2IxIy

∑W2IxIy ∑W2Iy
2

 by solving the equation λi = a + c
2 ± 4b2 + a + c 2

2 ; i = 1, 2.

The example implements the rest of the Lucas-Kanade method by using the Conditions subsystem
and a MATLAB Function block. For information about these calculations, see opticalFlowLK
(Computer Vision Toolbox).

12 Block Reference Page Examples

12-202

Simulation and Results

Simulate the model.

evalc(model);

The model displays the input video with vectors overlaid, representing the optical flow.

See Also
Neighborhood Processing Subsystem | opticalFlowLK (Computer Vision Toolbox)

Related Examples
• “Perform Edge Detection by Using a Neighborhood Processing Subsystem Block” on page 12-

227
• “Perform Corner Detection by Using Neighborhood Processing Subsystem Blocks” on page 12-

214
• “Perform Fog Rectification by Using Neighborhood Processing Subsystem Blocks” on page 12-

205
• “Convert RGB Image to Grayscale by Using a Neighborhood Processing Subsystem Block” on

page 12-222
• “Generate HDL Code from Frame-Based Models by Using Neighborhood Modeling Methods”

(HDL Coder)

 Calculate Optical Flow by Using Neighborhood Processing Subsystem Blocks

12-203

• “Use Neighborhood, Reduction, and Iterator Patterns with a Frame-Based Model or Function for
HDL Code Generation” (HDL Coder)

12 Block Reference Page Examples

12-204

Perform Fog Rectification by Using Neighborhood Processing
Subsystem Blocks

This example shows how to remove fog from images captured under foggy conditions. Such images
have low visibility and poor contrast, which leads to poor vision algorithm performance. Fog
rectification is an important step for applications in autonomous driving and object recognition
because it improves input image quality.

For more information about fog rectification algorithms, see “Fog Rectification” (Vision HDL Toolbox).

Inspect Model

Open the model.

mdl = "FogRectificationNeighborhoodExample";
open_system(mdl);

The model references an input image and passes the red, blue, and green channels of that image to
the Stage 1 subsystem, which performs fog removal. This process estimates the amount of fog in
each pixel and creates an image with the fog removed. This image has a reduced range of intensity
for each color channel, so the Stage 2 subsystem performs contrast enhancement to stretch the
dynamic range of the image and improve the contrast between features of the image. The result is a
defogged image with high contrast.

Inspect Fog Removal

Open the Stage 1 subsystem, which performs fog removal in these steps.

1. Dark Channel Estimation — The pixels that represent the non-sky region of an image have low
intensities in at least one color component. These low intensities form a dark channel. In a

 Perform Fog Rectification by Using Neighborhood Processing Subsystem Blocks

12-205

normalized, fog-free image, the intensity of dark channel pixels is nearly zero. In a foggy image, the
fog causes the intensity of dark channel pixels to be relatively high. The Dark Channel
Estimation subsystem estimates the dark channel Idark

c x, y by finding the pixel-wise minimum
across all three components of the input image Ic x, y where c ∈ r, g, b .

The Dark Channel Estimation subsystem contains these blocks.

The Neighborhood Processing Subsystem uses a 1-by-1 neighborhood and calculates the minimum
value across the color channels by using a Min block. This creates a two-dimensional dark channel
output matrix consisting of the lowest channel intensity for each input image pixel.

2. Airlight Map Calculation — The white effect fog produces in an image is known as airlight.
Airlight map calculation multiplies the dark channel by a value z, representing the amount of haze to
remove. z is a value between 0 and 1; a higher value removes more fog in the final image.

Iair x, y = z × min
c ∈ r, g, b

Idark
c x, y

The model uses a Gain block with a z value of 0.9 for airlight map calculation.

3. Airlight Map Refinement — The Refine Dark Channel subsystem reduces visual noise in the
image. The subsystem contains a sequence of three identical Neighborhood Processing Subsystem
blocks.

12 Block Reference Page Examples

12-206

Each Neighborhood Processing Subsystem implements anisotropic diffusion.

By repeating this process three times, the Refine Dark Channel subsystem reduces visual noise
and strengthens the clarity of details in the image. This yields a refined image, Irefined x, y .

4. Restoration — This step counteracts over-smoothing from the previous step by implementing
these equations.

Ireduced x, y = m × min Iair x, y , Irefined x, y

Irestored x, y = 255 ×
Ic x, y − Ireduced x, y

255− Ireduced x, y

The value m represents the mid-line of changing the dark regions of the airlight map from dark to
bright values. This example uses an empiraclly derived value of m = 0 . 6.

 Perform Fog Rectification by Using Neighborhood Processing Subsystem Blocks

12-207

The model uses a Min block inside a Neighborhood Processing Subsystem to derive the minimum
between the airlight map and the refined image, then uses a Gain block to multiply that matrix by
0.6.

The MATLAB Function block subtracts the reduced airlight map from the original input image, then
multiplies by the factor 255

255− Ireduced x, y . This yields Irestored x, y , which represents the defogged
image.

5. RGB to Grayscale Conversion — The last Neighborhood Processing Subsystem in Stage 1, RGB
to Grayscale, converts Irestored x, y to a grayscale image, Igray x, y .

12 Block Reference Page Examples

12-208

This grayscale image is necessary for the next stage of the model.

Inspect Contrast Enhancement

The Stage 1 subsystem produces an image with the fog removed, but the output image has a limited
dynamic range compared to the input image. The Stage 2 subsystem stretches the output image
brightness values to span the dynamic range of the input image. This improves contrast between
features of the output image.

Return to the root model and open the Stage 2 subsystem.

 Perform Fog Rectification by Using Neighborhood Processing Subsystem Blocks

12-209

The subsystem uses a MATLAB Function block to perform contrast enhancement. For information
about the calculations involved in this step, see “Fog Rectification” (Vision HDL Toolbox).

Simulate Model

Simulate the model.

simout = sim(mdl);

12 Block Reference Page Examples

12-210

 Perform Fog Rectification by Using Neighborhood Processing Subsystem Blocks

12-211

The model outputs the original image and the modified image. The modified image lacks the fog from
the original image and has high contrast.

See Also
Neighborhood Processing Subsystem | “Fog Rectification” (Vision HDL Toolbox)

Related Examples
• “Convert RGB Image to Grayscale by Using a Neighborhood Processing Subsystem Block” on

page 12-222

12 Block Reference Page Examples

12-212

• “Calculate Optical Flow by Using Neighborhood Processing Subsystem Blocks” on page 12-199
• “Perform Edge Detection by Using a Neighborhood Processing Subsystem Block” on page 12-

227
• “Perform Corner Detection by Using Neighborhood Processing Subsystem Blocks” on page 12-

214
• “Generate HDL Code from Frame-Based Models by Using Neighborhood Modeling Methods”

(HDL Coder)
• “Use Neighborhood, Reduction, and Iterator Patterns with a Frame-Based Model or Function for

HDL Code Generation” (HDL Coder)

 Perform Fog Rectification by Using Neighborhood Processing Subsystem Blocks

12-213

Perform Corner Detection by Using Neighborhood Processing
Subsystem Blocks

This example shows how to detect corners in an image by using Neighborhood Processing Subsystem
blocks. Use corner detection to identify features and objects in an image.

Inspect Model

1. Open the model.

mdl = 'CornerDetectionNeighborhoodExample';
open_system(mdl);

The model performs Harris corner detection. Harris corner detection calculates a value R for each
pixel. The R value computes the rate of change of brightness in multiple directions around a pixel and
reflects whether the pixel represents an edge, corner, or flat region in the image.

• A flat region has low rates of change in all directions and yields an R value near zero.
• An edge has a high rate of change in only one direction and yields a negative R value.
• A corner has high rates of change in all directions and yields a positive R value.

The model marks any pixel with a positive R values as a corner, and uses two Video Viewer blocks
from Computer Vision Toolbox to display the image with and without the corner markings.

2. Return to the model root and open the Compute Gradients subsystem.

12 Block Reference Page Examples

12-214

The Ix and Iy Neighborhood Processing Subsystem blocks compute the gradients of brightness with
respect to the horizontal and vertical directions respectively, Ix and Iy. The Ixx, Iyy, and Ixy
Neighborhood Processing Subsystem blocks each contain a Product block and compute the products
of the brightness gradients, Ix2, Iy

2, and IxIy.

3. Return to the model root and open the Corner Strength Function subsystem.

The subsystem computes R for each pixel. Consider the change function E u, v :

E u, v = ∑
x, y

w x, y I x + u, y + v − I x, y 2.

For a neighborhood w x, y , E u, v calculates the weighted sum of squared differences between the
brightness in the neighborhood, I x, y , and the brightness in a neighborhood of the same size shifted
by u, v , I x + u, y + v . Applying Taylor expansion yields this approximation:

 Perform Corner Detection by Using Neighborhood Processing Subsystem Blocks

12-215

E u, v ≈ u v ∑ Ix2 IxIy

IxIy Iy
2

u
v

.

The Sxx, Syy, and Sxy Neighborhood Processing Subsystem blocks each contain a Sum of Elements
block and compute the sums of the brightness gradient products ∑ Ix2, ∑ Iy

2, and ∑ IxIy.

Consider the matrix M:

M = ∑w x, y
Ix2 IxIy

IxIy Iy
2

.

Computing the eigenvalues of M yields the rates of change in brightness around the neighborhood
w x, y . Computing eigenvalues directly is computationally expensive, so the subsystem calculates the
determinant and trace of M, which relate to the eigenvalues λ1 and λ2 in these ways:

• det M = λ1λ2

• trace M = λ1 + λ2

4. Open the det subsystem to see how the subsystem calculates the determinant of M, det M .

5. Return to the Corner Strength Function subsystem and open the trace subsystem to see
how the subsystem calculates the trace of M, trace M .

12 Block Reference Page Examples

12-216

6. Return to the Corner Strength Function subsystem and open the harris subsystem to see
how the subsystem calculates R.

The harris subsystem calculates R using this equation:

R = det M − 0 . 04 × trace M 2.

7. Return to the model root and open the Check Exceeds Threshold subsystem.

 Perform Corner Detection by Using Neighborhood Processing Subsystem Blocks

12-217

The subsystem uses a Switch block to identify pixels with positive R values, which represent corners.
The neighborhood subsystem returns the value 0.5 for these pixels, which creates a moderate shade
of gray in the output image.

8. Return to the model root and open the Overlay Original Image subsystem.

The subsystem uses a Switch block to overlay the corner markings and the original image.

12 Block Reference Page Examples

12-218

Simulate and View Results

Simulate the model.

simout = evalc('sim(mdl)');

The Before Video Viewer block displays the original checkerboard image.

The After Video Viewer block displays the checkerboard image with gray dots marking the corners.

 Perform Corner Detection by Using Neighborhood Processing Subsystem Blocks

12-219

The upper left and lower right corners do not have markers because the Neighborhood Processing
Subsystem blocks in the model use the Constant padding option with a padding value of 0. The
Padding option block parameter controls how the Neighborhood Processing Subsystem block treats
pixels in neighborhoods that extend beyond the input image. The parameters in the model configure
the Neighborhood Processing Subsystem blocks to use the value 0 outside the input image, which
treats the image as if it is surrounded by black pixels. Thus, the model recognizes only the white and
gray corners of the image as corners.

For more information about the Padding option block parameter, see Neighborhood.

See Also
Neighborhood Processing Subsystem

Related Examples
• “Calculate Optical Flow by Using Neighborhood Processing Subsystem Blocks” on page 12-199
• “Perform Edge Detection by Using a Neighborhood Processing Subsystem Block” on page 12-

227
• “Perform Fog Rectification by Using Neighborhood Processing Subsystem Blocks” on page 12-

205
• “Convert RGB Image to Grayscale by Using a Neighborhood Processing Subsystem Block” on

page 12-222
• “Generate HDL Code from Frame-Based Models by Using Neighborhood Modeling Methods”

(HDL Coder)

12 Block Reference Page Examples

12-220

• “Use Neighborhood, Reduction, and Iterator Patterns with a Frame-Based Model or Function for
HDL Code Generation” (HDL Coder)

 Perform Corner Detection by Using Neighborhood Processing Subsystem Blocks

12-221

Convert RGB Image to Grayscale by Using a Neighborhood
Processing Subsystem Block

This example shows how to convert an RGB image to grayscale by using a Neighborhood Processing
Subsystem block. Converting images to grayscale is an important step in image processing tasks such
as corner detection. This example implements grayscale conversion using both the mean and
luminosity methods, which weigh the red, green, and blue color channels differently. The luminosity
method accounts for the different sensitivities that human eyes have for these colors, and the mean
method does not.

Inspect Model

1. Open the model.

mdl = 'RGBToGrayscaleNeighborhoodExample';
open_system(mdl);

The model imports an image by using an Image From File block from Computer Vision Toolbox. The
model uses two Neighborhood Processing Subsystem blocks to convert the image to grayscale in two
different ways. Each Neighborhood Processing Subsystem block uses the Valid option for the
Padding option parameter. The Valid option configures the Neighborhood Processing Subsystem
block to output a matrix that is smaller than the input matrix by excluding elements whose
neighborhoods extend beyond the input matrix. By using a Neighborhood size parameter of [1 1
3] and the Valid option, each Neighborhood Processing Subsystem block converts its RGB input to
a single-channel output with the same horizontal and vertical dimensions as the input image.

The model displays the original image and each output image using Video Viewer blocks from
Computer Vision Toolbox.

12 Block Reference Page Examples

12-222

2. Open the MeanRGB2Gray subsystem.

The subsystem uses a Sum of Elements block to add the three channel values together, then
multiplies the sum by 1/3 to calculate the mean brightness value of the pixel.

3. Open the LuminosityMethodRGB2Gray subsystem.

The subsystem calculates a weighted mean to account for the different sensitivities human eyes have
for red, blue, and green light by:

1 Converting the 1-by-1-by-3 neighborhood to a 3-by-1 column vector by using a Reshape block
2 Multiplying the 3-by-1 column vector by the row vector [0.2126 0.7152 0.0722]
3 Passing the product through a Sum of Elements block

Simulate Model and View Results

Simulate the model.

 Convert RGB Image to Grayscale by Using a Neighborhood Processing Subsystem Block

12-223

sim(mdl);

12 Block Reference Page Examples

12-224

 Convert RGB Image to Grayscale by Using a Neighborhood Processing Subsystem Block

12-225

Each Neighborhood Processing Subsystem block produces a single-channel grayscale version of the
three-channel RGB input image.

See Also
Neighborhood Processing Subsystem

Related Examples
• “Perform Fog Rectification by Using Neighborhood Processing Subsystem Blocks” on page 12-

205
• “Calculate Optical Flow by Using Neighborhood Processing Subsystem Blocks” on page 12-199
• “Perform Edge Detection by Using a Neighborhood Processing Subsystem Block” on page 12-

227
• “Perform Corner Detection by Using Neighborhood Processing Subsystem Blocks” on page 12-

214
• “Generate HDL Code from Frame-Based Models by Using Neighborhood Modeling Methods”

(HDL Coder)
• “Use Neighborhood, Reduction, and Iterator Patterns with a Frame-Based Model or Function for

HDL Code Generation” (HDL Coder)

12 Block Reference Page Examples

12-226

Perform Edge Detection by Using a Neighborhood Processing
Subsystem Block

This example shows how to detect edges in an image by using a Neighborhood Processing Subsystem
block to implement Laplacian edge detection. Use edge detection to identify objects and features in
an image.

Inspect Model

1. Open the model.

mdl = 'EdgeDetectionNeighborhoodExample';
open_system(mdl);

The model uses an Image From File (Computer Vision Toolbox) block to import an image of the moon,
a Neighborhood Processing Subsystem block to perform edge detection, and two Video Viewer
(Computer Vision Toolbox) blocks to display the image before and after processing.

2. Open the Neighborhood Processing Subsystem block.

 Perform Edge Detection by Using a Neighborhood Processing Subsystem Block

12-227

The Neighborhood Processing Subsystem operates over a 3-by-3 neighborhood. To implement
Laplacian edge detection, it uses a Gain block to multiply each neighborhood by this kernel:

−1 −1 −1
−1 8 −1
−1 −1 −1

The Neighborhood Processing Subsystem block then uses a Sum of Elements block to sum the
resulting matrix into a scalar value, then uses a Saturation block to saturate that scalar to the range
[0, 255]. Pixels that represent edges in the image will have high values and saturate to 255
because they are different in brightness from the surrounding pixels.

Simulate Model and View Results

Simulate the model.

sim(mdl);

12 Block Reference Page Examples

12-228

 Perform Edge Detection by Using a Neighborhood Processing Subsystem Block

12-229

The modified image has bright pixels corresponding to areas in the original image that have high
rates of change in brightness and dark pixels corresponding to areas that have low rates of change.

See Also
Neighborhood Processing Subsystem

Related Examples
• “Calculate Optical Flow by Using Neighborhood Processing Subsystem Blocks” on page 12-199
• “Perform Corner Detection by Using Neighborhood Processing Subsystem Blocks” on page 12-

214
• “Perform Fog Rectification by Using Neighborhood Processing Subsystem Blocks” on page 12-

205
• “Convert RGB Image to Grayscale by Using a Neighborhood Processing Subsystem Block” on

page 12-222
• “Generate HDL Code from Frame-Based Models by Using Neighborhood Modeling Methods”

(HDL Coder)
• “Use Neighborhood, Reduction, and Iterator Patterns with a Frame-Based Model or Function for

HDL Code Generation” (HDL Coder)

12 Block Reference Page Examples

12-230

Model Constant Propagation Delay

Open the model ConstantPropagationDelay. The model uses a Propagation Delay block to delay
the output from a Sine Wave block by a constant value specified using a Constant block. The Sine
Wave block is configured with a phase shift of pi/2, so the output is a cosine wave.

mdl = "ConstantPropagationDelay";
open_system(mdl)

Simulate the model.

out = sim(mdl);

The Cosine and Delayed Cosine signals are plotted on the Dashboard Scope block. The Initial
output value for the block is 0, so the value for the Delayed Cosine signal is 0 until the simulation
time reaches 1 second. Then, the output becomes the first delayed Cosine value.

To understand how the Propagation Delay block affects the output signal sample time, display the
sample time colors on the model and the timing legend. Then, update the block diagram.

1 On the Debug tab, under Diagnostics, click Information Overlays.
2 From the menu that appears, under Sample Time, select Colors and Timing Legend.

 Model Constant Propagation Delay

12-231

3 Press Ctrl+D to update the block diagram.

Alternatively, use the set_param function to enable the SampleTimeColors parameter for the
model and to update the block diagram.

set_param(mdl,"SampleTimeColors","on")
set_param(mdl,"SimulationCommand","update")

The sample time colors show that:

• The Cosine signal has a discrete sample rate of 0.2, defined by the Sine Wave block Sample
time parameter.

• The Delay signal has constant sample time, defined by the Constant block Sample time
parameter.

• The Propagation Delay block has multirate sample time.
• The Delayed Sine Wave signal has fixed-in-minor-step sample time.

The Timing Legend shows that the Propagation Delay block introduces an additional sample time,
which is one of the rates for the multirate block. The additional variable sample time for the block
allows the Propagation Delay block to update the output value as soon as the delay for a particular
sample elapses in a variable-step simulation.

Now, run a fixed-step simulation using a different constant delay value and initial output value.

Configure the model to use a fixed-step solver.

1 On the Modeling tab, under Setup, click Model Settings.
2 In the Configuration Parameters dialog box, on the Solver tab, for the solver Type select Fixed-

step.
3 In the Configuration Parameters dialog box, click OK.

Alternatively, use the set_param function to specify the SolverType parameter as Fixed-step.

set_param(mdl,"SolverType","Fixed-step")

When you use a fixed-step solver, you must configure the Propagation Delay block to run at a discrete
rate.

1 Double-click the block to open the Block Parameters dialog box, or select the block and press
Ctrl+Shift+I to display the Property Inspector.

12 Block Reference Page Examples

12-232

2 Select Run at fixed time intervals.
3 Specify the Sample time as 0.1.

Alternatively, use the set_param function to configure the RunAtFixedTimeIntervals parameter
and the SampleTime parameter.

set_param("ConstantPropagationDelay/Propagation Delay",...
 "RunAtFixedTimeIntervals","on","SampleTime","0.1")

For this simulation, in addition to using a fixed-step solver, specify a different value for the constant
delay and initial output.

Specify the Initial output value for the Propagation Delay block as 0.5 using the Block Parameters
dialog box, the Property Inspector, or the set_param function.

set_param("ConstantPropagationDelay/Propagation Delay",...
 "InitialOutput","0.5")

Configure the constant delay value as 0.5.

Specify the Value parameter for the Constant block as 0.5 using the Block Parameters dialog box,
the Property Inspector, or the set_param function.

set_param("ConstantPropagationDelay/Constant Delay","Value","0.5")

Simulate the model again.

out = sim(mdl);

At the start of the simulation, the Delayed Sine signal value is 0.5. After the initial delay of 0.5
seconds, the output changes from the Initial output value to the delayed signal samples.

The sample time colors show that:

• The Cosine Wave signal has the discrete sample time of 0.2, defined by the Sine Wave Sample
time parameter.

 Model Constant Propagation Delay

12-233

• The Delay signal has constant sample time, defined by the Constant block Sample time
parameter.

• The Propagation Delay block has multirate sample time.
• The Delayed Sine Wave signal has discrete sample time.

The Timing Legend shows that the discrete sample time for the Delayed Sine Wave signal is 0.1,
the same as the Sample time parameter value for the Propagation Delay block. The Propagation
Delay block also introduces a controllable discrete rate with a minimum step size, or base rate, of
0.1.

See Also
Propagation Delay

Related Examples
• “Model Variable Propagation Delay” on page 12-235
• “Types of Sample Time”

12 Block Reference Page Examples

12-234

Model Variable Propagation Delay

Open the model VariablePropagationDelay. The model uses the Propagation Delay block to
delay the output from a Sine Wave block. The delay signal is modeled using a Step block.

The Sine Wave and Delay signals are logged using signal logging. The Delayed Sine Wave signal
is logged using output logging.

mdl = "VariablePropagationDelay";
open_system(mdl)

Simulate the model. Then, open the Simulation Data Inspector and use the
Simulink.sdi.loadView function to load the view VariablePropDelayView.mldatx.

out = sim(mdl);
Simulink.sdi.view
Simulink.sdi.loadView("VariablePropDelayView.mldatx");

The delay signal value must be greater than zero throughout the simulation, so the Step block is
configured to step from an initial value of 0.2 to a value of 1 at a simulation time of 2 seconds.

For the first simulation step, at 0 seconds, the Delayed Sine Wave signal value is the Initial
output value defined for the Propagation Delay block, 0.1.

On the next time step, the delay of 0.2 seconds has elapsed, and the Propagation Delay block output
is determined by the delayed sample values.

When the simulation reaches 2 seconds, the step occurs, and the delay becomes 1 second instead of
0.2 seconds. The Propagation Delay block holds the output value for the 1 second delay. Then, the
output updates to the sample taken when the step occured. For the rest of the simulation, the delay
between the input and output is 1 second, and the Propagation Delay block output is determined by
input signal samples.

 Model Variable Propagation Delay

12-235

See Also
Propagation Delay

Related Examples
• “Model Constant Propagation Delay” on page 12-231

12 Block Reference Page Examples

12-236

Schedule When Traffic Camera Takes Snapshot

You can use the Hit Scheduler block to schedule time hits for a variable-step solver during simulation
based on the runtime behavior of a system. For example, some roads and highways have monitoring
devices and systems to deter speeding and capture information about cars that speed.

At an intersection with a traffic light, such a monitoring system might consist of these components:

• Sensors that detect an approaching car and measure its speed
• A camera embedded in the traffic light that can capture an image of each speeding car

To ensure the camera captures a consistent image, the system needs to determine when the camera
shutter activates based on the speed of each car.

This example shows how you can use the Hit Scheduler block to schedule when a traffic camera in
this type of system captures an image.

Open and Explore Model

Open the model TrafficCam. The model implements the scheduling for a traffic camera on a two-
lane road with a speed limit of 65 miles per hour using the Hit Scheduler block an a triggered
subsystem.

mdl = "TrafficCam";
open_system(mdl)

The blocks Lane 1 and Lane 2 are masked subsystems that contain logic to generate signals that
represent car detection and the speed of the detected car. The car detection signals are random. The
car speeds vary randomly around a nominal value of 64 miles per hour.

The car detection blocks and a Constant block that indicates the speed limit for the road feed a
subsystem with scheduling logic that determines whether a speeding car has been detected. If a
speeding car is detected in both lanes at the same time, the logic schedules the camera shutter to
capture an image of the faster car.

 Schedule When Traffic Camera Takes Snapshot

12-237

The Speeding Car Detected output of the Scheduling Logic subsystem drives the enable port
for the Hit Scheduler block so that the block schedules a time step each time a speeding car is
detected.

The Car Speed output of the Schedule Logic subsystem connects to another subsystem that uses
the speed of the car and the distance of the car from the camera to calculate the delay between the
current time and when the camera should capture an image of the speeding car.

The Hit Scheduler block produces a function-call event on each scheduled time step that drives the
trigger port for the Camera Shutter subsystem.

Simulate Model and Analyze Results

Simulate the model. Then, open the Simulation Data Inspector and use the
Simulink.sdi.loadView function to load the view file TrafficCamView.mldatx.

out = sim(mdl);
Simulink.sdi.view
Simulink.sdi.loadView("TrafficCamView.mldatx");

12 Block Reference Page Examples

12-238

On the first time step, a speeding car is detected. From the speed of the car, the delay time for the
camera to capture a picture of the car is calculated as 0.1822 seconds.

logsout = out.logsout;
dt = getElement(logsout,"dt");
dt0 = dt.Values.Data(1)

dt0 = 0.1822

The Hit Scheduler block schedules a time step to occur at 0.1822 seconds. On the scheduled time
step, the block produces a function-call event that triggers the Camera Shutter subsystem.

The shutter activates for the first time on the third time step in the simulation, which is the time step
the Hit Scheduler block scheduled at the start of the simulation.

yout = out.yout;
shutter = getElement(yout,"Shutter");
t3 = shutter.Values.Time(3)

t3 = 0.1822

Use the cursors in the Simulation Data Inspector to continue analyzing the Speeding Car
Detected, dt, and Shutter signals and analyze how the Hit Scheduler block controls the action of
the camera.

See Also
Hit Scheduler | Triggered Subsystem

Related Examples
• “Model Effect of Temperature and Jitter on Crystal Oscillation Frequency” on page 12-240

 Schedule When Traffic Camera Takes Snapshot

12-239

Model Effect of Temperature and Jitter on Crystal Oscillation
Frequency

Many digital clocks use a crystal oscillator. The oscillator has a nominal frequency. Based on this
frequency, the clock can calculate elapsed time by tracking the crystal oscillations.

The oscillator frequency can vary with environmental conditions such as electronic noise, or jitter,
and the ambient temperature. You can use a Hit Scheduler block to model and simulate the effect of
time-varying environmental conditions on the oscillation frequency.

Open and Analyze Model

Open the model ClockDrift.

mdl = "ClockDrift";
open_system(mdl)

The model uses a Signal Editor block to load input data for different ambient temperature scenarios.
Based on the current ambient temperature, the Oscillation Period subsystem calculates the
oscillation period using the equation

Δf = f0 1− k T0− Tamb
2 ,

where:

• Δf is the frequency shift due to temperature.
• f0 is the nominal frequency for the crystal, 32 kHz in this example.
• k is a physical constant that represents the peak temperature drift, 0.04 in this example.
• T0is the nominal temperature, 25 Celsius in this example.
• Tamb is the ambient temperature.

Create a Simulink.SimulationInput object that sets the values of f0, k, and T0for the simulation.

simIn = Simulink.SimulationInput(mdl);
simIn = setVariable(simIn,"f0",32000);
simIn = setVariable(simIn,"k",0.04);
simIn = setVariable(simIn,"T0",25);

A Random Number block generates variation in the oscillation period due to noise. The sum of the
oscillation period calculated based on the ambient temperature and the variation due to noise

12 Block Reference Page Examples

12-240

represents the delay to the next oscillation. This sum also provides the delay input for the Hit
Scheduler block.

The Hit Scheduler block is configured to generate a signal output. On a time step scheduled by the
Hit Scheduler block, the output value is 1, and on other time steps, the value is 0. The signal output
represents the oscillations and provides the enable input for scheduling each time hit.

The model calculates the time for the clock that uses the oscillator by counting the oscillations and
multiplying by the nominal period for the oscillator. Due to the temperature variation and jitter, the
nominal period is an estimation and the calculated time is not exact. A Clock block provides an
indication of the true time for each time step.

Simulate Drift for High Ambient Temperature

As saved, the Signal Editor block loads data for a constant ambient temperature of 100 C. Simulate
the model using this scenario.

out = sim(simIn);

Two Display blocks show the calculated and actual time for each time step. The Dashboard Scope
block shows the difference between the calculated time and actual time over the duration of the
simulation. The drift error accumulates, resulting in a calculated time of 1.9996 seconds for the final
simulation time of 2 seconds.

Simulate Drift for Nominal Temperature

To simulate the clock drift when the ambient temperature is 25 C, change the scenario the Signal
Editor block loads.

1 Double-click the Signal Editor block.
2 In the Block Parameters dialog box, from the Active scenario list, select Celsius25.
3 Click OK.

 Model Effect of Temperature and Jitter on Crystal Oscillation Frequency

12-241

Alternatively, use the setBlockParameter function to modify the block parameter for the
Simulink.SimulationInput object simIn.

simIn = setBlockParameter(simIn,"ClockDrift/Ambient Temp","ActiveScenario","Celsius25");

Simulate the model again.

out = sim(simIn);

At the nominal temperature, the oscillator frequency has no drift due to temperature. All the drift
comes from the system noise, or jitter. For a simulation time of 2 seconds, the jitter in the system has
no perceptible effect on the calculated time.

See Also
Hit Scheduler | Signal Editor

Related Examples
• “Schedule When Traffic Camera Takes Snapshot” on page 12-237

12 Block Reference Page Examples

12-242

Behavior of Right Bit Shifts

This example shows a comparison of the behavior of right bit shifts using the dialog box versus the
block input port.

model='ex_shift_arithmetic_block_right_bit_shifts';
open_system(model)

See Also
Shift Arithmetic

Related Examples
• “Effect of Binary Point Shifts” on page 12-244

 Behavior of Right Bit Shifts

12-243

Effect of Binary Point Shifts

This example shows the effect of binary point shifts.

model='ex_shift_arithmetic_block_binary_point_shifts';
open_system(model)

See Also
Shift Arithmetic

Related Examples
• “Behavior of Right Bit Shifts” on page 12-243

12 Block Reference Page Examples

12-244

Sign Block Behavior for Real Inputs

This example shows how, for vector and matrix inputs, the block outputs a vector or matrix where
each element is the sign of the corresponding input element.

model='ex_sign_block_matrix_input_real.slx';
open_system(model)

See Also
Sign

Related Examples
• “Sign Block Behavior for Complex Issues” on page 12-246

 Sign Block Behavior for Real Inputs

12-245

Sign Block Behavior for Complex Issues

This example shows how, when an element of a vector or matrix input is complex, the block uses the
same formula that applies to scalar input.

model='ex_sign_block_matrix_input_complex.slx';
open_system(model)

See Also
Sign

Related Examples
• “Sign Block Behavior for Real Inputs” on page 12-245

12 Block Reference Page Examples

12-246

Working with the Reinitialize Function Block

This example shows how to use a Reinitialize Function block to reset the initial condition of a
Discrete-Time Integrator block for every function-call event received by a subsystem. In this example,
the Reinitialize Function block is inside a subsystem, and the subsystem receives a function-call event
at every five simulation time steps.

In this example, a State Writer block inside the Reinitialize Function block is configured to set the
initial condition of one of the Discrete-Time Integrator blocks to 10.

For a step-by-step procedure to create this model, see “Reinitialize States of Blocks in Subsystem”.

Open the model.

open_system("ex_Reinitialize_Function")

See Also
Reinitialize Function | State Writer | Discrete-Time Integrator | Subsystem

Related Examples
• “Reinitialize States of Blocks in Subsystem”

 Working with the Reinitialize Function Block

12-247

Simulink Featured Examples

• “Simulation of Bouncing Ball” on page 13-6
• “Single Hydraulic Cylinder Simulation” on page 13-11
• “Thermal Model of a House” on page 13-21
• “Approximating Nonlinear Relationships: Type S Thermocouple” on page 13-26
• “Digital Waveform Generation: Approximating a Sine Wave” on page 13-35
• “Simulate DC Motor Step Response Using Local Solver” on page 13-45
• “Accurate Zero-Crossing Detection” on page 13-54
• “Spiral Galaxy Formation Simulation Using MATLAB Function Blocks” on page 13-55
• “Counters Using Conditionally Executed Subsystems” on page 13-59
• “Friction Model with Hard Stops” on page 13-61
• “State Events” on page 13-63
• “Bang-Bang Control Using Temporal Logic” on page 13-64
• “Inverted Pendulum with Animation” on page 13-65
• “Double Spring Mass System” on page 13-67
• “Tank Fill and Empty with Animation” on page 13-69
• “Simulating Systems with Variable Transport Delay Phenomena” on page 13-72
• “Modeling a Foucault Pendulum” on page 13-76
• “Foucault Pendulum Model with VRML Visualization” on page 13-84
• “Explore Variable-Step Solvers with Stiff Model” on page 13-87
• “Exploring the Solver Jacobian Structure of a Model” on page 13-93
• “Double Bouncing Ball: Use of Adaptive Zero-Crossing Location” on page 13-102
• “Four Hydraulic Cylinder Simulation” on page 13-109
• “Two Cylinder Model with Load Constraints” on page 13-115
• “Van der Pol Oscillator” on page 13-121
• “Model a Fault-Tolerant Fuel Control System” on page 13-124
• “Using a Data Dictionary to Manage the Data for a Fuel Control System” on page 13-139
• “Modeling Engine Timing Using Triggered Subsystems” on page 13-142
• “Engine Timing Model with Closed Loop Control” on page 13-152
• “Building a Clutch Lock-Up Model” on page 13-156
• “Modeling Clutch Lock-Up Using If Blocks” on page 13-167
• “Modeling an Anti-Lock Braking System” on page 13-172
• “Automotive Suspension” on page 13-178
• “Model an Automatic Transmission Controller” on page 13-184
• “Vehicle Electrical System” on page 13-195
• “Simulating Automatic Climate Control Systems” on page 13-197

13

• “Vehicle Electrical and Climate Control Systems” on page 13-202
• “Power Window Control Project” on page 13-208
• “Developing the Apollo Lunar Module Digital Autopilot” on page 13-215
• “Designing a High Angle of Attack Pitch Mode Control” on page 13-225
• “Six Degrees of Freedom (6-DoF) Motion Platform” on page 13-238
• “Aircraft Longitudinal Flight Control” on page 13-241
• “Simulink® Model Discretizer” on page 13-243
• “Radar Tracking Using MATLAB Function Block” on page 13-244
• “Optical Sensor Image Generation” on page 13-246
• “Air Traffic Control Radar Design” on page 13-255
• “Design a Guidance System in MATLAB and Simulink” on page 13-260
• “Airframe Trim and Linearize” on page 13-276
• “Anti-Windup Control Using PID Controller Block” on page 13-281
• “Bumpless Control Transfer Between Manual and PID Control” on page 13-297
• “Two Degree-of-Freedom PID Control for Setpoint Tracking” on page 13-306
• “Data Typing in Simulink” on page 13-312
• “Data Typing Filter” on page 13-316
• “Explore Simulink Bus Capabilities” on page 13-318
• “Model Arrays of Buses” on page 13-326
• “Matrix Signals” on page 13-328
• “Variable-Size Signal Basic Operations” on page 13-329
• “Variable-Size Signal Length Adaptation” on page 13-331
• “Multimode Variable-Size Signal” on page 13-332
• “Parallel Channel Power Allocation” on page 13-333
• “Merging Signals” on page 13-335
• “Share Data Store Between Instances of a Reusable Algorithm” on page 13-348
• “Attaching Input Data to External Inputs via Custom Input Mappings” on page 13-353
• “Using Mapping Modes with Custom-Mapped External Inputs” on page 13-357
• “Create Harness-Free Models with MAT File Input Data” on page 13-361
• “Logging States in Structure Format” on page 13-366
• “Logging Intervals” on page 13-369
• “Working with Big Data” on page 13-372
• “Simulink Subsystem Semantics” on page 13-377
• “If-Then-Else Blocks” on page 13-378
• “Triggered Subsystems” on page 13-380
• “Enabled Subsystems” on page 13-382
• “Advanced Enabled Subsystems” on page 13-384
• “Resettable Subsystems” on page 13-387
• “Discrete and Continuous Resettable Subsystems” on page 13-389

13 Simulink Featured Examples

13-2

• “Block Priority” on page 13-392
• “Monitoring Ink Status on a Shared Printer Using Simulink Functions” on page 13-393
• “Model Reusable Components Using Multiply Instanced Simulink Functions” on page 13-395
• “Dynamic Priority Scheduling of Functions” on page 13-397
• “Component-Based Modeling with Model Reference” on page 13-398
• “Viewing Signals in Model Reference Instances” on page 13-402
• “Visualize Model Reference Hierarchies” on page 13-410
• “Perform Block-Level Impact Analysis Using Dependency Analyzer” on page 13-415
• “Introduction to Managing Data with Model Reference” on page 13-418
• “Interface Specification Using Bus Objects” on page 13-420
• “Convert Subsystem to Referenced Model” on page 13-427
• “Use Data Stores Across Multiple Models” on page 13-429
• “Model Reference Function-Call” on page 13-435
• “Explore Protected Model Capabilities” on page 13-437
• “Model Reference Variants” on page 13-442
• “Assign Tasks to Cores for Multicore Programming” on page 13-446
• “Implement an FFT on a Multicore Processor and an FPGA” on page 13-449
• “Multicore Programming of a Field-Oriented Control on Zynq” on page 13-453
• “Multicore Deployment of a Plant Model” on page 13-459
• “Modeling Objects with Identical Dynamics Using For Each Subsystem” on page 13-463
• “Vectorizing a Scalar Algorithm with a For Each Subsystem” on page 13-468
• “Tiled Processing of 2D Signals with For Each Subsystem” on page 13-470
• “Using a Project with SVN” on page 13-471
• “Using a Project with Git” on page 13-476
• “Get Started with MATLAB Projects” on page 13-480
• “Perform Impact Analysis with a Project” on page 13-484
• “Work with Referenced Projects” on page 13-491
• “Automate Label Management in a Project” on page 13-494
• “Run Custom Tasks with a Project” on page 13-497
• “Upgrade Simulink Models Using a Project” on page 13-500
• “Share Subset of Project Files Using Labels” on page 13-502
• “Create and Reference a Project Programmatically” on page 13-505
• “Organize Projects into Components Using References and Git Submodules” on page 13-509
• “Compare and Merge Simulink Models” on page 13-516
• “Compare and Merge Simulink Models Containing Stateflow” on page 13-518
• “Resolve Conflicts with Simulink Three-Way Merge” on page 13-521
• “Call C Functions Using C Caller Block” on page 13-527
• “Use Custom Image Filter Algorithms as Reusable Blocks in Simulink” on page 13-531
• “Custom Code and Hand Coded Blocks Using the S-function API” on page 13-533

 Working with the Reinitialize Function Block

13-3

• “Inputs Passed by Value or Address to Legacy Functions” on page 13-534
• “Output Passed by Return Argument from Legacy Functions” on page 13-537
• “Fixed Point Signals in Legacy Functions” on page 13-539
• “Fixed Point Parameters in Legacy Functions” on page 13-542
• “Lookup Tables Implemented in Legacy Functions” on page 13-545
• “Start and Terminate Actions Within Legacy Functions” on page 13-548
• “Using Buses with Legacy Functions Having Structure Arguments” on page 13-552
• “Inherited Signal Dimensions for Legacy Function Arguments” on page 13-555
• “C++ Object Methods as Legacy Functions” on page 13-558
• “Persistent Memory Within Legacy Functions” on page 13-561
• “Multi-Dimensional Signals in Legacy Functions” on page 13-564
• “Complex Signals in Legacy Function” on page 13-566
• “Specified or Inherited Sample Time with Legacy Functions” on page 13-568
• “Illustration of Law of Large Numbers” on page 13-571
• “Using Buses with MATLAB System Blocks” on page 13-573
• “Run Quality Checks on S-Functions” on page 13-575
• “Using the Prelookup and Interpolation Blocks” on page 13-577
• “Saving Memory in Prelookup and Interpolation Blocks by Using Smaller Data” on page 13-582
• “Model Advisor” on page 13-583
• “Introduction to Profiling Models” on page 13-584
• “Introduction to Accelerating Models” on page 13-587
• “Determine Why Simulink Accelerator Is Regenerating Code” on page 13-589
• “Parallel Simulations Using Parsim: Test-Case Sweep” on page 13-594
• “Parallel Simulations Using Parsim: Parameter Sweep in Normal Mode” on page 13-598
• “Parallel Simulations Using Parsim: Parameter Sweep in Rapid Accelerator Mode” on page 13-602
• “Rapid Accelerator Simulations Using Parsim” on page 13-606
• “Multiple Simulations Workflow Tips” on page 13-610
• “Streamline Simulink Blockset Authoring Process with Blockset Designer” on page 13-614
• “Import Co-Simulation FMU into Simulink” on page 13-615
• “Importing a Model Exchange FMU into Simulink” on page 13-616
• “Simplify Interface for Structured Data with FMU Import Block” on page 13-617
• “Co-Simulation Signal Compensation” on page 13-619
• “Using Numerical Compensation for Co-Simulation Integration” on page 13-625
• “Multithread Co-Simulation” on page 13-631
• “Pulse Width Modulation Using MATLAB System Block” on page 13-633
• “Modeling Cyber-Physical Systems” on page 13-634
• “Power Analysis of Spring Mass Damper System” on page 13-639
• “Schedule an Export-Function Model Using the Schedule Editor” on page 13-642
• “Graph-Based Multithread Simulation” on page 13-646

13 Simulink Featured Examples

13-4

• “Find Shortest Control Path in Simulink Model” on page 13-648
• “Use Fixed-Step Zero-Crossing Detection for Faster Simulations” on page 13-653

 Working with the Reinitialize Function Block

13-5

Simulation of Bouncing Ball

This example uses two models of a bouncing ball to show different approaches to modeling hybrid
dynamic systems with Zeno behavior. Zeno behavior is informally characterized by an infinite number
of events occurring in a finite time interval for certain hybrid systems. As the ball loses energy, the
ball collides with the ground in successively smaller intervals of time.

Hybrid Dynamic Systems

A bouncing ball model is an example of a hybrid dynamic system. A hybrid dynamic system is a
system that involves both continuous dynamics and discrete transitions where the system dynamics
can change and the state values can jump. The continuous dynamics of a bouncing ball are given by
these equations:

where is the acceleration due to gravity, is the position of the ball, and is the velocity. The
system has two continuous states: the position and the velocity .

The hybrid system aspect of the model originates from the modeling of a collision of the ball with the
ground. If one assumes a partially elastic collision with the ground, then the velocity before the
collision, , and velocity after the collision, , can be related by the coefficient of restitution of the
ball, , as follows:

The bouncing ball therefore displays a jump in a continuous state (velocity) at the transition
condition, . The image shows a ball thrown up with a velocity of 0 m/s from a height of 25 m.

Use Two Integrator Blocks to Model Bouncing Ball

The sldemo_bounce_two_integrators model uses two Integrator blocks to model a bouncing
ball. The Integrator block on the left is the velocity integrator modeling the first equation. The
Integrator block on the right is the position integrator. Open the Block Parameters dialog box for the

13 Simulink Featured Examples

13-6

position integrator to see that the block has a lower limit of zero. This condition represents the
constraint that the ball cannot go below the ground.

The state port of the position integrator and the corresponding comparison result are used to detect
when the ball hits the ground and to reset both integrators. The state port of the velocity integrator is
used for the calculation of .

To observe the Zeno behavior of the system, modify solver configuration parameters.

1 To open the Configuration Parameters dialog box, on the Modeling tab, under Setup, click
Model Settings.

2 Select the Solver pane.
3 Set the Stop time to 25.
4 Click the arrow next to Solver details to view additional solver parameters.
5 Under Zero-crossing options, set Algorithm to Nonadaptive.

Simulate the model.

As the ball hits the ground more frequently and loses energy, the simulation exceeds the default
Number of consecutive zero crossings limit of 1000.

In the Configuration Parameters dialog box, set Algorithm to Adaptive. The adaptive algorithm
introduces a sophisticated treatment for chattering behavior. You can now simulate the system
beyond 20 seconds. The chatter of the states between 21 seconds and 25 seconds is still large, and
the software issues a warning around 20 seconds.

 Simulation of Bouncing Ball

13-7

Use Second-Order Integrator Block to Model Bouncing Ball

The sldemo_bounce model uses a single Second-Order Integrator block to model a bouncing ball. In
this model, the second equation is internal to the Second-Order Integrator block. Open the
Second-Order Integrator block dialog box and see that has a lower limit of zero. On the Attributes
tab, select Reinitialize dx/dt when x reaches saturation. This parameter allows you to
reinitialize (in the bouncing ball model) to a new value when reaches its saturation limit.
So, in the bouncing ball model, when the ball hits the ground, its velocity can be set to a different
value, such as to the velocity after the impact. Note the loop for calculating the velocity after a
collision with the ground. To capture the velocity of the ball just before the collision, the
output port of the Second-Order Integrator block and a Memory block are used. is then used to
calculate the rebound velocity .

13 Simulink Featured Examples

13-8

In the Configuration Parameters dialog box, go to the Solver pane.

• In Simulation time, set Stop time to 25.
• Expand Solver details. In Zero-crossing options, set Algorithm to Nonadaptive .

Simulate the model.

Note that the simulation encounters no problems. You can simulate the model without experiencing
excessive chatter after 20 seconds and without setting Algorithm to Adaptive.

Compare Approaches to Modeling Bouncing Ball

You can analytically calculate the exact time when the ball settles down to the ground with zero
velocity by summing the time required for each bounce. This time is the sum of an infinite geometric
series given by:

 Simulation of Bouncing Ball

13-9

where and are initial conditions for position and velocity, respectively. The velocity and the
position of the ball must be identically zero for . The figure shows results from both simulations
near . The vertical red line in the plot is for the given model parameters. For and far away
from , both models produce accurate and identical results. Only a magenta line from the second
model is visible in the plot. However, the simulation results from the first model are inexact after .
The plot continues to display excessive chattering behavior for . In contrast, the model that uses
the Second-Order Integrator block settles to exactly zero for .

The model that uses the Second-Order Integrator block has superior numerical characteristics
compared to the first model because the second differential equation is internal to the
Second-Order Integrator block. The block algorithms can leverage this relationship between the two
states and use heuristics to clamp down chattering behavior for certain conditions. These heuristics
become active when the two states are no longer mutually consistent due to integration errors and
chattering behavior. You can thus use physical knowledge of the system to prevent simulations
getting stuck in a Zeno state for certain classes of Zeno models.

See Also
Integrator | Second-Order Integrator | Memory

Related Examples
• “View Data in the Simulation Data Inspector”

13 Simulink Featured Examples

13-10

Single Hydraulic Cylinder Simulation

This example shows how to use Simulink® to model a hydraulic cylinder. You can apply these
concepts to applications where you need to model hydraulic behavior. See two related examples that
use the same basic components: four cylinder model and two cylinder model with load constraints.

• Note: This is a basic hydraulics example. You can more easily build hydraulic and automotive
models using Simscape™ Driveline™ and Simscape Fluids™.

• Simscape Fluids provides component libraries for modeling and simulating fluid systems. It
includes models of pumps, valves, actuators, pipelines, and heat exchangers. You can use these
components to develop fluid power systems such as front-loader, power steering, and landing gear
actuation systems. Engine cooling and fuel supply systems can also be developed with Simscape
Fluids. You can integrate mechanical, electrical, thermal, and other systems using components
available in the Simscape product family.

• Simscape Driveline provides component libraries for modeling and simulating one-dimensional
mechanical systems. It includes models of rotational and translational components, such as worm
gears, planetary gears, lead screws, and clutches. You can use these components to model the
transmission of mechanical power in helicopter drivetrains, industrial machinery, vehicle
powertrains, and other applications. Automotive components, such as engines, tires,
transmissions, and torque converters, are also included.

Analysis and Physics of the Model

Figure 1 shows a schematic diagram of the basic model. The model directs the pump flow, Q, to
supply pressure, p1, from which laminar flow, q1ex, leaks to exhaust. The control valve for the
piston/cylinder assembly is modeled as turbulent flow through a variable-area orifice. Its flow, q12,
leads to intermediate pressure, p2, which undergoes a subsequent pressure drop in the line
connecting it to the actuator cylinder. The cylinder pressure, p3, moves the piston against a spring
load, resulting in position x.

Figure 1: Schematic diagram of the basic hydraulic system

At the pump output, the flow is split between leakage and flow to the control valve. We model the
leakage, q1ex, as laminar flow (see Equation Block 1).

 Single Hydraulic Cylinder Simulation

13-11

Equation Block 1

We modeled turbulent flow through the control valve with the orifice equation. The sign and absolute
value functions accommodate flow in either direction (see Equation Block 2).

Equation Block 2

The fluid within the cylinder pressurizes due to this flow, q12 = q23, minus the compliance of the
piston motion. We also modeled fluid compressibility in this case (see Equation Block 3).

Equation Block 3

13 Simulink Featured Examples

13-12

We neglected the piston and spring masses because of the large hydraulic forces. We completed the
system of equations by differentiating this relationship and incorporating the pressure drop between
p2 and p3. Equation Block 3 models laminar flow in the line from the valve to the actuator. Equation
block 4 gives the force balance at the piston.

Equation Block 4

Modeling

Figure 2 shows the top level diagram of the model. The pump flow and the control valve orifice area
are simulation inputs. The model is organized as two subsystems: the 'Pump' and the 'Valve/Cylinder/
Piston/Spring Assembly'.

Opening the Model and Running the Simulation

To open this model, type sldemo_hydcyl at MATLAB® terminal (click on the hyperlink if you are
using MATLAB Help). Press the "Play" button on the model toolbar to run the simulation.

The model logs relevant data to MATLAB workspace, into the Simulink.SimulationOutput object out.
The signal logging data is stored in the out object, in a structure called sldemo_hydcyl_output.
Logged signals have a blue indicator (see the model). For more information, see “View and Access
Signal Logging Data”.

 Single Hydraulic Cylinder Simulation

13-13

13 Simulink Featured Examples

13-14

Figure 2: Single cylinder model and simulation results

'Pump' Subsystem

Right-click the Pump masked subsystem and select Mask > Look Under Mask. The pump model
computes the supply pressure as a function of the pump flow and the load (output) flow (Figure 3).
Qpump is the pump flow data (saved in the model workspace). A matrix with column vectors of time
points and the corresponding flow rates [T, Q] specifies the flow data. The model calculates
pressure p1 as indicated in Equation Block 1. Because Qout = q12 is a direct function of p1 (via the
control valve), an algebraic loop is formed. An estimate of the initial value, p10, enables a more
efficient solution.

Figure 3: The pump subsystem

We masked the 'Pump' subsystem in Simulink to allow the user to easily access the parameters (see
Figure 4). The parameters to be specified are T, Q, p10, and C2. We then assigned the masked block
the icon shown in Figure 2, and saved it in a Simulink library.

 Single Hydraulic Cylinder Simulation

13-15

Figure 4: Entering pump parameters

'Valve/Cylinder/Piston/Spring Assembly' Subsystem

Right-click the 'Valve/Cylinder/Piston/Spring Assembly' subsystem and select Mask > Look Under
Mask to see the Actuator subsystem (see Figure 5). A system of differential-algebraic equations
models the cylinder pressurization with the pressure p3, which appears as a derivative in Equation
Block 3 and is used as the state (integrator). If we neglect piston mass, the spring force and piston
position are direct multiples of p3 and the velocity is a direct multiple of p3's time derivative. This
latter relationship forms an algebraic loop around the 'Beta' Gain block. The intermediate pressure
p2 is the sum of p3 and the pressure drop due to the flow from the valve to the cylinder (Equation
Block 4). This relationship also imposes an algebraic constraint through the control valve and the
1/C1 gain.

The control valve subsystem computes the orifice (Equation Block2). It uses as inputs the upstream
and downstream pressures and the variable orifice area. The 'Control Valve Flow' Subsystem
computes the signed square root:

13 Simulink Featured Examples

13-16

Three nonlinear functions are used, two of which are discontinuous. In combination, however, y is a
continuous function of u.

Figure 5: The valve/cylinder/piston/spring subsystem

Results

Simulation Parameters

We simulated the model using the following data. The information is loaded from a MAT-file -
sldemo_hydcyl_data.mat, which is also used for the other two hydraulic cylinder models. The
users can enter data via the Pump and Cylinder Masks shown in Figures 4 and 6.

T = [0 0.04 0.04 0.05 0.05 0.1] sec

 Single Hydraulic Cylinder Simulation

13-17

Q = [0.005 0.005 0 0 0.005 0.005] m^3/sec

13 Simulink Featured Examples

13-18

Figure 6: Entering valve/cylinder/piston/spring assembly parameters

Plotting Simulation Results

The system initially steps to a pump flow of 0.005 m^3/sec=300 l/min, abruptly steps to zero at
t=0.04 sec, then resumes its initial flow rate at t=0.05 sec.

The control valve starts with zero orifice area and ramps to 1e-4 sq.m. during the 0.1 sec
simulation time. With the valve closed, all of the pump flow goes to leakage so the initial pump
pressure increases to p10 = Q/C2 = 1667 kPa.

As the valve opens, pressures p2 and p3 build up while p1 decreases in response to the load increase
as shown in Figure 7. When the pump flow cuts off, the spring and piston act like an accumulator and
p3 decreases continuously. Then the flow reverses direction, so p2, though relatively close to p3, falls
abruptly. At the pump itself, all of the back-flow leaks and p1 drops radically. The behavior reverses as
the flow is restored.

The piston position is directly proportional to p3, where the hydraulic and spring forces balance.
Discontinuities in the velocity at 0.04 sec and 0.05 sec indicate negligible mass. The model reaches
a steady state when all of the pump flow again goes to leakage, now due to zero pressure drop across
the control valve (which means p3 = p2 = p1 = p10).

Figure 7: Simulation Results: System Pressures

 Single Hydraulic Cylinder Simulation

13-19

Figure 8: Simulation Results: Hydraulic Cylinder Piston Position

Closing the Model

Close the model and clear generated data.

See Also

Related Examples
• “Four Hydraulic Cylinder Simulation” on page 13-109
• “Two Cylinder Model with Load Constraints” on page 13-115

More About
• “Decide How to Visualize Simulation Data”

13 Simulink Featured Examples

13-20

Thermal Model of a House

This example shows how to use Simulink® to create the thermal model of a house. This system
models the outdoor environment, the thermal characteristics of the house, and the house heating
system.

The sldemo_househeat_data.m file initializes data in the model workspace. To make changes, you
can edit the model workspace directly or edit the file and re-load the model workspace. To view the
model workspace, from the Simulink Editor, on the Modeling tab, click Model Explorer.

Open Model

Open the sldemo_househeat model.

Initialize Model

This model calculates heating costs for a generic house. Opening the model loads the information
about the house from the sldemo_househeat_data.m file. The file:

• Defines the house geometry (size, number of windows)
• Specifies the thermal properties of house materials
• Calculates the thermal resistance of the house
• Provides the heater characteristics (temperature of the hot air, flow-rate)
• Defines the cost of electricity (0.09$/kWhr)
• Specifies the initial room temperature (20 ºC = 68 ºF)

 Thermal Model of a House

13-21

Model Components

Set Point

The Set Point is a Constant block that specifies the temperature that must be maintained indoors.
By default, it is 70 ºF. Temperatures are given in ºF. The model converts the temperature to ºC.

Thermostat

The Thermostat subsystem contains a Relay block. The thermostat allows fluctuations of 5 ºF above
or below the desired room temperature. If air temperature drops below 65 ºF, the thermostat turns on
the heater.

Open the Thermostat subsystem.

Heater

The Heater subsystem models a constant air flow rate, Mdot, which is specified in the
sldemo_househeat_data.m file. The thermostat signal turns the heater on or off. When the heater
is on, it blows hot air at temperature THeater (50 ºC = 122 ºF by default) at a constant flow rate of
Mdot (1kg/sec = 3600kg/hr by default). Equation 1 expresses the heat flow into the room.

Equation 1

Open the Heater subsystem.

13 Simulink Featured Examples

13-22

Cost Calculator

The Cost Calculator is a Gain block that integrates the heat flow over time and multiplies it by
the energy cost. The model plots the heating cost in the PlotResults scope.

House

The House is a subsystem that calculates room temperature variations. It takes into consideration the
heat flow from the heater and heat losses to the environment. Heat losses and the temperature time
derivative are expressed by Equation 2.

Equation 2

Open the House subsystem.

 Thermal Model of a House

13-23

Model the Environment

To simulate the environment, the model uses a heat sink with infinite heat capacity and time varying
temperature, Tout. The Constant block Avg Outdoor Temp specifies the average air temperature
outdoors. The block named Daily Temp Variation Sine Wave generates daily outdoor
temperature fluctuations. You can vary these parameters to see how they affect the heating costs.

Run Simulation and Visualize Results

Run the simulation. Use the PlotResults scope to visualize the results. The scope plots the heat
cost and indoor versus outdoor temperatures. The temperature outdoor varies sinusoidally. The
indoors temperature remains within 5 ºC of the Set Point. The time axis is in seconds.

According to this model, heating the house for two days would cost about $30. Try varying the
parameters and observe the system response.

13 Simulink Featured Examples

13-24

Modify Model

This model calculates the heating costs only. If the temperature of the outside air is higher than the
room temperature, the room temperature will exceed the desired Set Point.

You can modify this model to include an air conditioner. You can implement the air conditioner as a
modified heater. To do this, add parameters such as the following to sldemo_househeat_data.m.

• Cold air output
• Temperature of the stream from the air conditioner
• Air conditioner efficiency

To control both the air conditioner and the heater, modify the thermostat.

See Also
Sine Wave | Sine Wave Function

More About
• “Run Parallel Simulations for a Thermal Model of a House Using parsim”

 Thermal Model of a House

13-25

Approximating Nonlinear Relationships: Type S Thermocouple

This example shows how to approximate nonlinear relationships of a type S thermocouple.

Thermocouple Modeling and Signal Conversion

The thermocouple is one of the popular analog transducers today, along with other devices such as
position sensors, strain gages, pressure transducers, and resistance temperature devices (RTDs).
Operating under the principle of the Seebeck effect (a.k.a. thermoelectric effect), thermocouples have
an empirically determined nonlinear behavior that is well known over each junction type's useful
operating range. If you run the model, you will be able to see the cumulative effect of each
component on dynamic measurement accuracy. This example will focus on models for each of these
components in a dynamic temperature measurement system for a Type S (Platinum-10% Rhodium(+)
versus Platinum(-)) : a thermocouple device and probe assembly, a signal conditioning method, an
analog to digital converter (ADC), and a software specification for converting the ADC output into a
temperature value. An additional section shows how to obtain and use standard NIST ITS-90
thermocouple data with Simulink® models. Look-up tables and a polynomial block are used in this
design to capture the nonlinear behavior of the thermocouple. Note that the polynomial block is a
viable alternative to look-up tables for some applications, minimizing ROM usage at the cost of some
additional computation for the full polynomial representation.

open_system('sldemo_tc')

13 Simulink Featured Examples

13-26

Figure 1: Temperature measurement system: a chain of components from physical phenomenon to
software values

Simulating the Thermocouple Signal

The two main features of the thermocouple model are the probe and bead dynamics and the
thermocouple's conversion of temperature into a millivolt signal. The probe+bead dynamics are
modeled as a 30 msec first order system, and the nonlinear thermocouple behavior is modeled using
the segment 1 polynomial data from NIST Standard Database 60 for a Type S thermocouple from -50
to 1063 degC. For numerical stability, the coefficients were scaled to return microvolts from the
polynomial block. The output of the 1 Type S Thermocouple model subsystem is then converted to
volts with a Unit Conversion block. Note that units are specified on the subsystem input and output
ports and displayed on the subsystem icons. To learn more about units, see “Unit Specification in
Simulink Models”.

An alternative implementation to using the polynomial is an interpolated look-up table. Table data
could be used in a look-up table block in place of the polynomial block. Sample data was constructed
from NIST Standard Database 60 for a Type S thermocouple in file
sldemo_create_tc_tabledata.m. Access to this database is described below in the section titled
"Thermocouple Reference Data Download and Import Procedure".

 Approximating Nonlinear Relationships: Type S Thermocouple

13-27

Anti-Aliasing Filter and Analog to Digital Converter (ADC) Models

The ADC in this model expects a 0 to 5 volt signal, so the raw thermocouple sense voltage is biased
and amplified corresponding to a range of -0.235 mV to 18.661 mV (-50 degC to 1765 degC). A third
order Butterworth anti-aliasing filter was designed for Wn = 15 Hz using the Signal Processing
Toolbox™:

[num,den] = butter(3, 15*2*pi, 'low', 's')

The output of the anti-aliasing filter feeds a sample-and-hold device that drives the quantization
model. Since the sample period is 20 msec in this example, the conversion time is ignored as it is
typically 2 orders of magnitude smaller for devices currently available. (Note: if the conversion time
were an appreciable fraction of the sample period, it could not be ignored as it would significantly
affect the system's dynamics.)

The quantization algorithm in the model takes in a 0 to 5 volt signal and outputs a 12-bit digital word
in a 16-bit signed integer. A value of 0 corresponds to 0 Volts and a value of 4096 would correspond to
5 Volts. A change in the least significant bit (LSB) is about 1.2 mV. As 12 bits can only reach the value
of 4095, the highest voltage that can be read by this device is approximately 4.9988 Volts. In order to
have no more than 1/2 LSB error within the operating range, the quantizer changes values midway
between each voltage point, resulting in a 1/2-width interval at 0 Volts and a 3/2-width interval just
below 5 Volts. The last interval has 1 full LSB due to its 3/2-width size.

Understanding Data Converters

The sldemo_adc_quantize model allows you to explore the A/D converter component in more
detail:

open_system('sldemo_adc_quantize')

13 Simulink Featured Examples

13-28

Figure 2: Details of ADC quantization modeling (zero conversion time)

sim('sldemo_adc_quantize')
set(gcf,'Color',[1,1,1]);

 Approximating Nonlinear Relationships: Type S Thermocouple

13-29

Figure 3: Quantization characteristic of ADC

ax = get(gcf,'Children');
set(ax(1), 'xlim', [4085, 4100]);

13 Simulink Featured Examples

13-30

Figure 4: Quantization characteristic of ADC: zoomed in to top of range to reveal 1 LSB error
behavior at high end (rest of range only has 1/2 LSB max error)

Software Specification for Converting ADC Output to Temperature Values

The input conversion subsystem requires a 16 bit unsigned integer input from the ADC whose full
scale range is 0 to 4095 counts, corresponding to -0.235 mV and 18.6564 mV thermocouple loop
voltage. The best accuracy and fastest algorithm for input conversion is a direct look-up table. Since
the input is an integer from 0 to 4095, a table can be constructed that gives the thermocouple
temperature corresponding to each possible input value, so the conversion process can be reduced to
indexing into a table. This however, requires one number per ADC output value and for a 12-bit ADC,
this can be a burden in memory constrained environments. For double precision data, this is a 16 kB
ROM requirement. See file sldemo_create_tc_tabledata.m for the method used to construct the
direct look-up table from the Type S thermocouple reference data. The error associated with this
approach is entirely isolated to the table construction process as there is an output value associated
with every possible input value - the run-time look-up process introduces no additional error.

An interpolated table was also put into the model, using only 664 bytes. This is a big reduction in
ROM required compared to the direct table look-up, but it takes a bit longer to compute than an
indirect memory access and introduces error into the measurement, which goes down as the number
of points in the table increases.

open_system(sprintf('sldemo_tc/3 Software specification\nfor converting\nADC values to temperature'))

 Approximating Nonlinear Relationships: Type S Thermocouple

13-31

Thermocouple Reference Data Download and Import Procedure

Using the NIST ITS-90 Thermocouple Database (Standard Reference Database 60 from NIST
Monograph 175), you can access the standard reference data describing the behavior for the eight
standard thermocouple types. This database relates thermocouple output to the International
Temperature Scale of 1990. Follow these steps to acquire and read in the data needed to fully
exercise the support files included with this example:

1. Visit the NIST Standard database 60 site on the Internet and download the file all.tab to a local
directory. This file is the one under the All Thermocouple Types hyperlink. After the download is
complete, return to this page.

2. cd to the directory where you downloaded the all.tab thermocouple database

3. Parse the database and convert it to a MATLAB structure array using the conversion tool
readstdtcdata.m:

tcdata = readstdtcdata('all.tab');
save thermocouple_its90.mat tcdata;

(tip: highlight the above MATLAB code and use right mouse menuitem "Evaluate Selection" to
execute it)

You now have a complete set of temperature (T, degC) vs. voltage (E, mV) data, approximating
polynomial coefficients, and inverse polynomial coefficients for the standard thermocouple types B, E,
J, K, N, R, S, and T in the tcdata variable of file thermocouple_its90.mat. The MATLAB script in
sldemo_create_tc_tabledata.m uses this data to prepare lookup table block parameters used in
the example model.

13 Simulink Featured Examples

13-32

https://srdata.nist.gov/its90/main/
https://srdata.nist.gov/its90/download/download.html
https://srdata.nist.gov/its90/download/all.tab

Conditioning Reference Data for Use in a Look-Up Table

If you review the thermocouple data tables in the tcdata structure or in all.tab, you will probably
notice a few things:

• Repeated 0 degC temperature points in the data
• Repeated voltage points in the data due to the 3-digit output format
• Non-monotonic behavior with two temperatures having the same output, e.g., for the Type B

thermocouple, T(E) won't work but E(T) does work

The readstdtcdata() routine will remove the repeated 0 degC temperature points from the data, but
the repeated voltages due to the data format and non-monotonic behavior of some of the curve ends
must be dealt with on an individual basis. A reference model named sldemo_tc_blocks was
constructed using sldemo_tc_blocks_data.mat. It contains look-up tables with data populated from the
interpolating polynomials for the eight standard thermocouples in all.tab:

open_system('sldemo_tc_blocks')

Figure 5: Full-Range 2 degrees Celsius Interpolated Thermocouple Tables created from ITS-90
Interpolating Polynomials

References

1. NIST ITS-90 Thermocouple Database

 Approximating Nonlinear Relationships: Type S Thermocouple

13-33

https://srdata.nist.gov/its90/main/

2. "Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated
Thermocouple Types Based on the ITS-90". National Institute of Standards and Technology
Monograph 175; 1993. 630 p.

3. The International Temperature Scale of 1990 (ITS-90), Consultative Committee for Thermometry
(CCT) of the International Committee for Weights and Measures (CIPM)

4. Thermoelectric Effects in Metals: Thermocouples, S. O. Kasap 1997

NOTE: for determining empirical relationships of complex systems such as engines and for fitting
models to measured data, MathWorks® offers the Model Based Calibration Toolbox which employs
the Design of Experiments methodology for optimized table database creation, plus value extraction
and automated table filling components.

13 Simulink Featured Examples

13-34

https://www.mathworks.com/products/mbc

Digital Waveform Generation: Approximating a Sine Wave

This example shows some of the main steps needed to design and evaluate a sine wave data table for
use in digital waveform synthesis applications in embedded systems and arbitrary waveform
generation instruments.

Real-Time direct digital synthesis of analog waveforms using embedded processors and digital signal
processors (DSPs) connected to digital-to-analog converters (DACs) is becoming pervasive even in the
smallest systems. Developing waveforms for use in embedded systems or laboratory instruments can
be streamlined using the tight integration of MATLAB® and Simulink®. You can develop and analyze
the waveform generation algorithm and its associated data at your desktop before implementing it
with Simulink® Coder™ on target hardware.

When feasible, the most accurate way to digitally synthesize a sine wave is to compute the full
precision sin() function directly for each time step, folding omega*t into the interval 0 to 2*pi. In real-
time systems, the computational burden is typically too large to permit this approach. One popular
way around this obstacle is to use a table of values to approximate the behavior of the sin() function,
either from 0 to 2*pi, or even half wave or quarter wave data to leverage symmetry.

Tradeoffs to consider include algorithm efficiency, data ROM size required, and accuracy/spectral
purity of the implementation. Similar analysis is needed when performing your own waveform
designs. The table data and look-up algorithm alone do not determine performance in the field.
Additional considerations such as the accuracy and stability of the real-time clock, and digital to
analog converter are also needed in order to assess overall performance. The Signal Processing
Toolbox™ and the DSP System Toolbox™ complement the capabilities of MATLAB and Simulink for
work in this area.

Another popular way to approximate the behavior of the sine wave is to use the CORDIC
approximation method. CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens
rotation-based CORDIC algorithm is one of the most hardware-efficient algorithms because it
requires only shift-add iterative operations.

The distortion analysis in this example is based on principles presented in "Digital Sine-Wave
Synthesis Using the DSP56001/DSP56002", by Andreas Chrysafis, Motorola® Inc. 1988

Create a Table in Double Precision Floating Point

The following commands make a 256 point sine wave and measure its total harmonic distortion when
sampled first on the points and then by jumping with a delta of 2.5 points per step using linear
interpolation. Similar computations are done by replacing the sine values with CORDIC sine
approximation. For frequency-based applications, spectral purity can be more important than
absolute error in the table.

The file ssinthd.m is the core function in this example. It is used for calculating total harmonic
distortion (THD) for digital sine wave generation with or without interpolation. This THD algorithm
proceeds over an integral number of waves to achieve accurate results. The number of wave cycles
used is A. Since the step size 'delta' is A/B and traversing A waves will hit all points in the table at
least one time, which is needed to accurately find the average THD across a full cycle.

The relationship used to calculate THD is:

 THD = (ET - EF) / ET

 Digital Waveform Generation: Approximating a Sine Wave

13-35

where ET = total energy, and EF = fundamental energy

The energy difference between ET and EF is spurious energy.

N = 256;
angle = 2*pi * (0:(N-1))/N;

s = sin(angle)';
thd_ref_1 = ssinthd(s, 1, N, 1, 'direct')
thd_ref_2p5 = ssinthd(s, 5/2, 2*N, 5, 'linear')

cs = cordicsin(angle, 50)';
thd_ref_1c = ssinthd(cs, 1, N, 1, 'direct')
thd_ref_2p5c = ssinthd(cs, 5/2, 2*N, 5, 'linear')

thd_ref_1 =

 4.8049e-32

thd_ref_2p5 =

 1.4176e-09

thd_ref_1c =

 1.2577e-30

thd_ref_2p5c =

 1.4176e-09

Put the Sine Wave Approximations in a Model

You can put the sine wave designed above into a Simulink model and see how it works as a direct
lookup, with linear interpolation, and with CORDIC approximation. This model compares the output
of the floating point tables to the sin() function. As expected from the THD calculations, the linear
interpolation has a lower error than the direct table lookup in comparison to the sin() function. The
CORDIC approximation shows a lower error margin when compared to the linear interpolation
method. This margin depends on the number of iterations when computing the CORDIC sin
approximation. You can typically achieve greater accuracy by increasing the number of iterations
(corresponding to a longer computation time). The CORDIC approximation eliminates the need for
explicit multipliers. It is used when multipliers are less efficient or non-existent in hardware.

Open the sldemo_tonegen model

open_system('sldemo_tonegen');
set_param('sldemo_tonegen', 'StopFcn','');
out = sim('sldemo_tonegen');
currentFig = figure('Color',[1,1,1]);
subplot(3,1,1), plot(out.tonegenOut.time, out.tonegenOut.signals(1).values); grid
title({'Difference between direct look-up', 'and reference signal'});
subplot(3,1,2), plot(out.tonegenOut.time, out.tonegenOut.signals(2).values); grid

13 Simulink Featured Examples

13-36

title({'Difference between interpolated look-up', 'and reference signal'});
subplot(3,1,3), plot(out.tonegenOut.time, out.tonegenOut.signals(3).values); grid
title({'Difference between CORDIC sine', 'and reference signal'});

 Digital Waveform Generation: Approximating a Sine Wave

13-37

Taking a Closer Look at Waveform Accuracy

Zooming in on the signals between 4.8 and 5.2 seconds of simulation time (for example), you can see
a different characteristic due to the different algorithms used:

ax = get(currentFig,'Children');
set(ax(3),'xlim',[4.8, 5.2])
set(ax(2),'xlim',[4.8, 5.2])
set(ax(1),'xlim',[4.8, 5.2])

13 Simulink Featured Examples

13-38

The Same Table, Implemented in Fixed Point

Now convert the floating point table into a 24 bit fractional number using 'nearest' rounding. The new
table is tested for total harmonic distortion in direct lookup mode at 1, 2, and 3 points per step, then
with fixed point linear interpolation.

bits = 24;
is = num2fixpt(s, sfrac(bits), [], 'Nearest', 'on');

thd_direct1 = ssinthd(is, 1, N, 1, 'direct')
thd_direct2 = ssinthd(is, 2, N, 2, 'direct')
thd_direct3 = ssinthd(is, 3, N, 3, 'direct')

thd_linterp_2p5 = ssinthd(is, 5/2, 2*N, 5, 'fixptlinear')

thd_direct1 =

 2.6423e-15

thd_direct2 =

 2.8660e-15

thd_direct3 =

 Digital Waveform Generation: Approximating a Sine Wave

13-39

 2.6423e-15

thd_linterp_2p5 =

 1.4175e-09

Compare Results for Different Tables and Methods

Choosing a table step rate of 8.25 points per step (33/4), jump through the double precision and fixed
point tables in both direct and linear modes and compare distortion results:

thd_double_direct = ssinthd(s, 33/4, 4*N, 33, 'direct')
thd_sfrac24_direct = ssinthd(is, 33/4, 4*N, 33, 'direct')

thd_double_linear = ssinthd(s, 33/4, 4*N, 33, 'linear')
thd_sfrac24_linear = ssinthd(is, 33/4, 4*N, 33, 'fixptlinear')

thd_double_direct =

 4.7061e-05

thd_sfrac24_direct =

 4.7061e-05

thd_double_linear =

 7.9741e-10

thd_sfrac24_linear =

 8.1751e-10

Using Preconfigured Sine Wave Blocks

Simulink also includes a Sine Wave source block with continuous and discrete modes, plus fixed point
Sin and Cosine function blocks that implement the function approximation with a linearly interpolated
lookup table that exploits the quarter wave symmetry of sine and cosine. Example
sldemo_tonegen_fixpt uses a sampled sine wave source as the reference signal and compares it with a
lookup table with or without interpolation, and with CORDIC sine approximation in fixed point data
types.

Open the sldemo_tonegen_fixpt model

open_system('sldemo_tonegen_fixpt');
set_param('sldemo_tonegen_fixpt', 'StopFcn','');
out = sim('sldemo_tonegen_fixpt');
figure('Color',[1,1,1]);
subplot(3,1,1), plot(out.tonegenOut.time, out.tonegenOut.signals(1).values); grid
title({'Difference between direct look-up', 'and reference signal'});
subplot(3,1,2), plot(out.tonegenOut.time, out.tonegenOut.signals(2).values); grid

13 Simulink Featured Examples

13-40

title({'Difference between interpolated look-up', 'and reference signal'});
subplot(3,1,3), plot(out.tonegenOut.time, out.tonegenOut.signals(3).values); grid
title({'Difference between CORDIC sine', 'and reference signal'});

 Digital Waveform Generation: Approximating a Sine Wave

13-41

Use of Sine Function with a Clock Input

The model also compares the sine wave source reference with the sin() function whose input angle in
radians is time based (computed using a clock). This section tests the assumption that the clock input
would return repeatable results from the sin() function for period 2*pi. The following plot shows that
the sin() function accumulates error when its input is time based. This also shows that a sampled sine
wave source is more accurate to use as a waveform generator.

subplot(1,1,1), plot(out.tonegenOut.time, out.tonegenOut.signals(4).values); grid
title({'Difference between time based sin()', 'and reference signal'});

13 Simulink Featured Examples

13-42

Survey of Behavior for Direct Lookup and Linear Interpolation

The file sldemo_sweeptable_thd.m performs a full frequency sweep of the fixed point tables and will
let us more thoroughly understand the behavior of this design. Total harmonic distortion of the 24-bit
fractional fixed point table is measured at each step size, moving through it D points at a time, where
D is a number from 1 to N/2, incrementing by 0.25 points. N is 256 points in this example; the 1, 2,
2.5, and 3 cases were done above. Frequency is discrete and therefore a function of the sample rate.

Notice the modes of the distortion behavior in the plot. They match with common sense: when
retrieving from the table precisely at a point, the error is smallest; linear interpolation has a smaller
error than direct lookup in between points. What is not intuitive is that the error is relatively constant
for each of the modes up to the Nyquist frequency.

figure('Color',[1,1,1])
tic, sldemo_sweeptable_thd(24, 256), toc

Elapsed time is 0.680823 seconds.

 Digital Waveform Generation: Approximating a Sine Wave

13-43

Next Steps

To take this example further, try different table precision and element counts to see the effect of each.
Using CORDIC approximation, try different numbers of iterations to see the effects on accuracy and
computation time. You can investigate different implementation options for waveform synthesis
algorithms using automatic code generation available from the Simulink Coder and production code
generation using Embedded Coder™. Embedded Target products offer direct connections to a variety
of real-time processors and DSPs, including connection back to the Simulink diagram while the target
is running in real-time. The Signal Processing Toolbox and DSP System Toolbox offer prepackaged
capabilities for designing and implementing a wide variety of sample-based and frame-based signal
processing systems with MATLAB and Simulink.

bdclose('sldemo_tonegen');
bdclose('sldemo_tonegen_fixpt')

13 Simulink Featured Examples

13-44

Simulate DC Motor Step Response Using Local Solver

This example shows how using a local solver can improve simulation performance for a model
hierarchy that contains components that operate on different time scales. The model in this example
simulates the step response of a DC motor driving a mechanical load.

Subcomponents of dynamic systems can operate on different time scales. For example, in this DC
motor model, the electrical physics of the step response operate on a time scale close to a
microsecond, while the mechanical motion occurs on a time scale of miliseconds.

When you use referenced models to represent system components, you can configure the referenced
models to use local solvers. For example, the referenced model that represents the mechanical
motion can run with a larger solver step size than the rest of the DC motor model.

Analyze System Dynamics

To determine whether your system might benefit from using a local solver, analyze the dynamics of
your system. Local solvers can provide performance improvements by increasing the step size for
components with slower dynamics compared to other parts of the system or allowing you to use a
different solver that is better suited to that component.

Open the model DCMotorLocalSolver. The model implements the system using two referenced
models:

• The model DCMotorElectrical models the electrical response of the motor.
• The model DCMotorMechanical models the mechanical response of the motor.

The electrical and mechanical systems are coupled by the motor current and the angular speed of the
motor and load.

topMdl = "DCMotorLocalSolver";
mechRef = "DCMotorMechanical";
elecRef = "DCMotorElectrical";

 Simulate DC Motor Step Response Using Local Solver

13-45

open_system(topMdl)
load_system(mechRef)
load_system(elecRef)

To analyze the electrical component, open the referenced model named DCMotorElectrical in the
Simulink™ Editor by double-clicking the Model block named Electrical. The electrical dynamics of
the motor are modeled as a series RL circuit.

The input voltage v can be expressed as the sum of the voltage on the motor resistance iR, the
voltage on the motor inductance L di

dt , and the voltage due to the motor electrical constant Ke and the

angular velocity dθ
dt .

v = iR + L di
dt + Ke

dθ
dt

The electrical component in the model calculates the value of the current, which the mechanical
system uses to calculate the speed of the motor and load.

di
dt = v

L −
R
L i−

Ke
L

dθ
dt

The motor inductance and resistance determine the electrical time constant te for the system.

te = L
R

The motor in this model has an inductance of 2 . 5μH and a resistance of 3Ω, resulting in an electrical
time constant of 200ns.

13 Simulink Featured Examples

13-46

To analyze the mechanical component, navigate back to the top model by clicking the back arrow .
Then, open the referenced model named DCMotorMechanical in the Simulink Editor by double-
clicking the Model block named Mechanical.

The mechanical system models the rotational motion that results from the torque produced by the
motor current. The total rotational moment of inertia from the motor and the load J times the angular
acceleration dθ

dt2
 is equal to the sum of the forces in the system. The motor current i and the magnetic

field in the armature coil create a force scaled by the motor torque constant KT. For this example,
assume the magnetic field is constant. The angular speed dƟ

dt creates a force scaled by the viscous
friction of the motor b.

J dθ
dt2 = KTi− bdƟ

dt

The mechanical component in the model integrates the angular acceleration to calculate the angular
speed of the motor and load, which the electrical system uses to calculate the current.

dθ
dt2 =

KT
J i− bJ

dƟ
dt

The motor resistance, the inertia of the motor and load, the electrical constant, and the torque
constant for the motor determine the mechanical time constant tm [1] on page 13-52.

tm = R J
KeKT

The motor in this model has a resistance of 3Ω, an electrical constant of 0 . 025 Vs
rad , and a torque

constant of 0 . 25Nm
A . The total moment of inertia for the system is 3 . 2μNms2, resulting in a

mechanical time constant of 15 . 4ms.

Run Baseline Simulation

Simulate the model using a single solver to create a baseline for the simulation outputs and timing.
Using a single solver, the whole system must run using the same time step. The electrical time
constant drives the choice of the step size. The step size must be small enough to capture the
dynamics of the electrical response.

For this example, the model uses the ode3 fixed-step solver with a step size equal to the electrical
time constant, 200ns. Simulate the model to create a baseline for the simulation results and execution
time.

 Simulate DC Motor Step Response Using Local Solver

13-47

set_param(mechRef,"UseModelRefSolver","off")
baselineOut = sim(topMdl);

To see the amount of time required to execute the simulation, check the
ExecutionElaspedWallTime field of the TimingInfo structure in the simulation metadata. The
Simulink.SimulationOutput object baselineOut contains a Simulink.SimulationMetadata
object with information about the model and simulation, including the structure TimingInfo.

Using a single configuration for the ode3 solver with a step size of 200ns, the execution phase of the
simulation runs for several seconds.

baseExec = baselineOut.SimulationMetadata.TimingInfo.ExecutionElapsedWallTime

baseExec = 14.0843

The Record block in the model logs the position and speed data to the Simulation Data Inspector.
Access the run created in the Simulation Data Inspector and change the name to Baseline:
DCMotorLocalSolver.

baseRun = Simulink.sdi.Run.getLatest;
baseRun.Name = "Baseline: DCMotorLocalSolver";

Simulate Using Local Solver

To see the performance benefit and impact on the model outputs, configure the mechanical model to
use a local solver. The dynamics of the mechanical system operate on a longer time scale. When you
configure the model to use a local solver, you can specify a larger time step so that the mechanical
system calculations do not occur more frequently than required for capturing the system response.

In the top model, continue to use the 200ns step size. Configure the DCMotorMechanical model to
use the ode3 solver as a local solver with a step size of 2ms. You can configure the settings for the
model reference from the top model, using the Property Inspector or the Block Parameters dialog
box.

1 In the top model, select the Model block that references the DCMotorMechanical model.
2 Open the Property Inspector. On the Modeling tab, expand the Design section and select

Property Inspector, or press Ctrl+Shift+I.
3 In the Property Inspector, expand the Solver section.
4 Click the hyperlink next to the Use local solver parameter. The Configuration Parameters dialog

box for the referenced model opens.
5 In the Configuration Parameters dialog box for the DCMotorMechanical model, on the Model

Referencing pane, select Use local solver when referencing model.
6 To configure the solver settings for the referenced model, select the Solver pane.
7 Set the Solver to ode3 (Bogacki-Shampine).
8 Set the Fixed step size (fundamental sample time) to 0.002.
9 Click OK.

In the model, the Model block indicates the local solver selected for the referenced model.

13 Simulink Featured Examples

13-48

Alternatively, you can configure the model settings programmatically using the set_param function.

set_param(mechRef,"UseModelRefSolver","on","SolverType","Fixed-step",...
 "Solver","ode3","FixedStep","0.002");

The Model block parameters Input signal handling and Output signal handling specify how the
local solver processes inputs from the top model and provides outputs to the top model. For this
simulation, use the default values.

mdlBlkPath = append(topMdl,"/Mechanical");
set_param(mdlBlkPath,"InputSignalHandling","Auto",...
 "OutputSignalHandling","Use solver interpolant")

Simulate the model using the local solver.

localOut = sim(topMdl);

Check the simulation metadata to see the amount of time the simulation spent in the execution phase.
When you use a local solver to execute the mechanical system at a slower rate, the simulation runs
faster.

localExec = localOut.SimulationMetadata.TimingInfo.ExecutionElapsedWallTime

localExec = 12.0383

Access the run created in the Simulation Data Inspector. Change the name to Local Solver:
DCMotorLocalSolver.

localRun = Simulink.sdi.Run.getLatest;
localRun.Name = "LocalSolver: DCMotorLocalSolver";

Analyze Simulation Results

To see whether using a local solver affected the simulation results, plot the position and speed data
from both simulations in the Simulation Data Inspector.

On the Simulation tab, under Review Results, click Data Inspector. Alternatively, use the
Simulink.sdi.view function.

Simulink.sdi.view

In the Simulation Data Inspector, plot the speed and position signals from the two runs. Alternatively,
use the Simulink.sdi.loadView function to load the saved view for this example, which is named
DCMotorLocalSolver1.

 Simulate DC Motor Step Response Using Local Solver

13-49

Simulink.sdi.loadView("DCMotorLocalSolver1");

The results from the local solver simulation are nearly the same as the results from the baseline
simulation that used a single solver and step size. The solid line shows the baseline result. The dotted
line shows the local solver result.

The biggest difference occurs in the Angular Speed signal at the start of the simulation. The local
solver determines required state and signal values from the top model using extrapolation. The first
time the local solver takes a step, the local solver does not have enough history for extrapolation. On
the second step, the local solver can extrapolate values from the top model and compensate in the
output value.

13 Simulink Featured Examples

13-50

Use Zero-Order Hold Input and Output Handling

Because the execution of the local solver is decoupled from the top solver, the local solver
extrapolates values it uses from the top model and provides interpolated values for the top solver to
use. You can use the Input signal handling and Output signal handling to configure how the local
solver extrapolates the incoming and inteprolates outgoing values.

By default, the Input signal handling parameter value is Auto. The software determines how to
extrapolate the data that the local solver uses from the top model. The default value for the Output
signal handling parameter is Use solver interpolant, which means that the local solver
provides output values that are compensated using the solver interpolant.

You can specify each parameter as Zero-order hold instead. Configure the Model block that
references the DCMotorMechanical model to use Zero-order hold input and output signal
handling.

set_param(mdlBlkPath,"InputSignalHandling","Zero-order hold",...
 "OutputSignalHandling","Zero-order hold")

To see the effect of the input and output signal handling on the simulation results, simulate the model
again.

zohOut = sim(topMdl);

Check the execution time for the simulation. Using the simpler extrapolation method further reduces
the execution time.

zohExec = zohOut.SimulationMetadata.TimingInfo.ExecutionElapsedWallTime

zohExec = 10.7883

Access the run created in the Simulation Data Inspector. Change the name to Local Solver ZOH:
DCMotorMechanical.

zohRun = Simulink.sdi.Run.getLatest;
zohRun.Name = "Local Solver ZOH: DCMotorMechanical";

The Simulation Data Inspector replaces the signals from the first local solver run with the signals
from the zero-order hold run. The signal values are similar between the baseline run and the zero-
order hold run. The signals from the zero-order hold run have steps that reflect the zero-order hold
and the step size for the local solver.

 Simulate DC Motor Step Response Using Local Solver

13-51

Reference

[1] Younkin, George W. "Electric Servo Motor Equations and Time Constants." https://
support.controltechnologycorp.com/customer/elearning/younkin/driveMotorEquations.pdf.

See Also
Blocks
Model

13 Simulink Featured Examples

13-52

Model Settings
Use local solver when referencing model | Solver | Fixed-step size (fundamental sample
time)

Related Examples
• “Use Local Solvers in Referenced Models”

 Simulate DC Motor Step Response Using Local Solver

13-53

Accurate Zero-Crossing Detection

This example shows how zero crossings work in Simulink®. In this model, three shifted sine waves
are fed into an absolute value block and saturation block. At exactly t = 5, the output of the switch
block changes from the absolute value to the saturation block. Zero crossings in Simulink will
automatically detect exactly when the switch block changes its output, and the solver will step to the
exact time that the event happens. This can be seen by examining the output in the scope.

13 Simulink Featured Examples

13-54

Spiral Galaxy Formation Simulation Using MATLAB Function
Blocks

This model was inspired by the classic paper "Galactic Bridges and Tails" (Toomre & Toomre 1972).
The original paper explained how disc shaped galaxies could develop spiral arms. Two disc shape
galaxies originally are far apart. They then fly by each other and almost collide. Once the galaxies are
close enough, mutual gravitational forces cause spiral arms to form.

Except for the "PlotAll" visualization block's use of plotting routines, all MATLAB® function blocks in
this model support code generation with Simulink® Coder™ and Embedded Coder™.

• Requirements: For this example, Simulink® generates code for the simulation in a Simulink
project directory created in the current working directory (pwd). If you do not want to affect the
current directory (or if you cannot generate files in this directory), you should change your
working directory.

Opening the Model and Running the Simulation

Open the model and run the simulation by executing the code below. If you are using MATLAB®
Help, select the code you want to execute and press F9 (or select code, right click on selection and
select "Evaluate Selection"). The Simulink model will load, compile, and run.

model = 'sldemo_eml_galaxy';
open_system(model);
sim(model);

 Spiral Galaxy Formation Simulation Using MATLAB Function Blocks

13-55

Model Description

This section describes the model in detail and explains the role of each block in the model. The green
blocks initialize the simulation, the orange blocks are the core of the simulation, and the yellow block
makes the galaxy animation view.

Initial Conditions

The model requires initial conditions for each galaxy. The initial conditions are: galaxy radius in
parsecs (rp), galaxy mass in solar mass units (cm), galaxy position in parsecs (pos), and galaxy
velocity in m/s (vel).

In the model, constant blocks specify the initial conditions. The initial conditions have been chosen
such that the galaxies will nearly collide at some point in time.

"ConstructGalaxy" Blocks

The initial conditions are passed to the MATLAB function blocks Construct Galaxy 1 and Construct
Galaxy 2. These MATLAB function blocks contain MATLAB code that builds the galaxy models.

In a typical galaxy, most of the mass is concentrated in its center as a super-massive black hole and/or
star agglomeration. We model the galaxy as a disc with radius r with most of its mass concentrated in
the inner circle of radius r/3. In addition to this super-massive nucleus, the "ConstructGalaxy"
MATLAB function block creates 349 random stars with masses ranging from 4 to 24 solar masses.
These stars are randomly positioned within distance r/3 and r from the center of the galaxy. The stars
initially move in circular orbits around the galaxy core. Every object (star or galaxy core) has mass,
position (x, y, z), and velocity (Vx, Vy, Vz).

13 Simulink Featured Examples

13-56

"Matrix Concatenation" Block

This block joins information about both galaxies. At this point the model has 700 objects: 1 core for
each galaxy and 349 stars around each core. These 700 objects interact according to Newtonian
mechanics.

"Partition" Block

This MATLAB function block separates all 700 objects into two groups: heavy bodies and light bodies.
The heavy bodies are the galaxy cores. The light bodies are the stars. Because the galaxy cores are
much heavier than individual stars, the model will consider only the heavy-heavy and heavy-light
interactions. We can ignore the light-light body interactions. This will save a lot of time since 698 out
of 700 bodies in the model are light.

"ApplyGravity" Block

This MATLAB function block uses Newtonian mechanics to compute the velocities and positions of the
bodies at each step. The "combine" block is also a MATLAB function block. It merges the data about
heavy and light objects together.

"PlotAll" Block

This MATLAB function block plots the bodies in a figure and updates the position of each star at every
step in the simulation.

Closing the Model

Close the model without saving any changes. Clear data generated by simulation/example.

close_system(model,0);
clear model sldemo_eml_galaxy_output;

Note:

• In this model, signal logging is turned on (observe that the 'GalaxyBodies' signal has a little blue
signal logging antenna on it). The model saves output data in a Dataset object. Any other data is
saved/modified in the model workspace to avoid cluttering the MATLAB workspace.

• To modify signal logging settings, right-click on the signal line and select "Signal Properties". In
this example, the signal name is 'GalaxyBodies' and the "Log signal data" checkbox is checked.

• The logged data is saved to the MATLAB workspace as a Dataset object with the name
'sldemo_eml_galaxy_output'. Information on the 'GalaxyBodies' signal can be retrieved from this
object by typing sldemo_eml_galaxy_output.get('GalaxyBodies') which returns a
Simulink.SimulationData.Signal object. See more about working with these objects in the
"Simulink.SimulationData.Signal" documentation.

Comments About the Model

Despite its simplicity, this model provides insight into how our own galaxy evolved. This example
allows the user to maximally simplify the model and run a fast simulation. The user can easily modify
this example by adding more galaxies.

 Spiral Galaxy Formation Simulation Using MATLAB Function Blocks

13-57

References

Toomre, Alar; Toomre, Juri; "Galactic Bridges and Tails"; Astrophysical Journal, Vol. 178, pp. 623-666
(1972); 12/1972;

13 Simulink Featured Examples

13-58

Counters Using Conditionally Executed Subsystems

This model shows the contrast between enabled subsystems and triggered subsystems for the same
control signal, through the use of counter circuits. After running the simulation, the scope shows
three plots.

The first of these plots shows the control signal which is the output of the discrete pulse generator.

The second plot shows the output of the counter circuit in the enabled subsystem. The counter
increments while the subsystem is enabled and then holds its output when the subsystem is disabled.
The counter resets to zero when the subsystem is re-enabled because the enable port was configured
to reset states when enabling.

The third plot shows the output of the counter circuit in the triggered subsystem. The counter
increments every rising edge of the control signal.

The signals are shown in a Signal Viewer scope that does not require a scope block to be put into the
block diagram. Instead, the "scope" icon notation on the ports show that a Signal Viewer is attached.
Double click on the scope icon to make the Signal Viewer appear if it is hidden.

 Counters Using Conditionally Executed Subsystems

13-59

13 Simulink Featured Examples

13-60

Friction Model with Hard Stops

This example shows how to model friction one way in Simulink®. The two integrators in the model
calculate the velocity and position of the system, which is then used in the Friction Model to calculate
the friction force.

Running the simulation shows the initial condition response on the Scope.

 Friction Model with Hard Stops

13-61

13 Simulink Featured Examples

13-62

State Events

This example shows how to handle state events. Run the simulation and see the phase plane plot,
where the state x1 is along the X-axis and the state x2 is along the Y-axis.

 State Events

13-63

Bang-Bang Control Using Temporal Logic

This example shows how to use Stateflow® to model a bang-bang temperature control system for a
boiler. The boiler dynamics are modeled in Simulink®.

The Bang-Bang Controller Stateflow chart shows how to use functions and Subcharts within
Stateflow.

See Also
Lamp | Vertical Gauge

More About
• “Decide How to Visualize Simulation Data”
• “Tune and Visualize Your Model with Dashboard Blocks”

13 Simulink Featured Examples

13-64

Inverted Pendulum with Animation

This example shows how to model an inverted pendulum. The animation is created using MATLAB®
Handle Graphics®. The animation block is a masked S-function. For more information, use the
context menu to look under the Animation block's mask and open the S-function for editing.

 Inverted Pendulum with Animation

13-65

13 Simulink Featured Examples

13-66

Double Spring Mass System

This example shows how to model a double spring-mass-damper system with a periodically varying
forcing function. The model uses an S-Function block to animate the mass system during simulation.
In the system, the only sensor is attached to the mass on the left, and the actuator is attached to the
mass on the left. The example uses state estimation and linear-quadratic regulator (LQR) control.

 Double Spring Mass System

13-67

See Also
S-Function | State-Space

Related Examples
• “Design an LQR Servo Controller in Simulink” (Control System Toolbox)
• “Double Mass-Spring-Damper in Simulink and Simscape” (Simscape)

External Websites
• Mass-Spring-Damper Systems (MathWorks Teaching Resources)

13 Simulink Featured Examples

13-68

https://www.mathworks.com/matlabcentral/fileexchange/94585-mass-spring-damper-systems

Tank Fill and Empty with Animation

This example shows how to model the dynamics of liquid in a tank. The animation provides a
graphical display of the tank as it empties and refills, based on tank parameters. When you click
START SIM, the tank fills up and empties. When the simulation ends, review the plot showing the
liquid height and the states of the two valves.

 Tank Fill and Empty with Animation

13-69

13 Simulink Featured Examples

13-70

 Tank Fill and Empty with Animation

13-71

Simulating Systems with Variable Transport Delay Phenomena

This example shows two cases where you can use Simulink® to model variable transport delay
phenomena.

Vertical Wheel Displacement on a One-Dimensional Car

Figure 1: Illustration of a car with speed v(t).

A car is running along a road with speed v(t). A sensor is installed at the front wheel to measure the
vertical displacement Hi(t) of the front wheel caused by the road profile. If the wheels and road never
lose contact, then the vertical displacement of the rear wheel, Ho(t), can be seen as a variable
transport delay of Hi(t), which is determined by the length L between the two wheels and the speed
v(t).

13 Simulink Featured Examples

13-72

 Simulating Systems with Variable Transport Delay Phenomena

13-73

Figure 2: Vertical displacement of the wheels.

Incompressible Flow Through a Fixed Length Pipe

Figure 3: Illustration of a fixed-length pipe.

An incompressible flow goes through a pipe of length L with speed v(t). At the inlet, the flow
temperature is Ti. We can model the temperature at the outlet To as a variable transport delay of Ti.
At time t=0, the pipe is empty and until t=2, there is no flow at the outlet. Thus, the output
temperature before t=2 is the initial output temperature.

Open this model:

13 Simulink Featured Examples

13-74

Figure 4: Incompressible flow through a fixed-length pipe.

 Simulating Systems with Variable Transport Delay Phenomena

13-75

Modeling a Foucault Pendulum

This example shows how to model a Foucault pendulum. The Foucault pendulum was the brainchild of
the French physicist Leon Foucault. It was intended to prove that Earth rotates around its axis. The
oscillation plane of a Foucault pendulum rotates throughout the day as a result of axial rotation of the
Earth. The plane of oscillation completes a whole circle in a time interval T, which depends on the
geographical latitude.

Foucault's most famous pendulum was installed inside the Paris Pantheon. This was a 28kg metallic
sphere attached to a 67 meter long wire. This example simulates a 67 meter long pendulum at the
geographic latitude of Paris.

Simulink® Model

The simplest way to solve the Foucault pendulum problem in Simulink® is to build a model that
solves the coupled differential equations for the system. This model is shown in Figure 1. The
equations that describe the Foucault pendulum are given below. For details on the physics of the
model and the derivation of these equations, see Analysis and Physics.

Opening the Model

Type sldemo_foucault in MATLAB® Command Window to open this model. This model logs
simulation data to the variable sldemo_foucault_output. Logged signals have a blue indicator.
For more information, see “Mark Signals for Logging”.

13 Simulink Featured Examples

13-76

Figure 1: The Foucault pendulum model

Initial Conditions

This model loads the constants and initial conditions from the sldemo_foucault_data.m file. The
contents of this file are shown in Table 1 below. You can modify simulation parameters directly in
MATLAB workspace. The initial amplitude of the pendulum must be small compared to pendulum
length, because the differential equations are valid only for small oscillations.

Table 1: Initial conditions

g = 9.83; % acceleration of gravity (m/sec^2)
L = 67; % pendulum length (m)
initial_x = L/100; % initial x coordinate (m)
initial_y = 0; % initial y coordinate (m)
initial_xdot = 0; % initial x velocity (m/sec)
initial_ydot = 0; % initial y velocity (m/sec)
Omega=2*pi/86400; % Earth's angular velocity of rotation about its axis (rad/sec)
lambda=49/180*pi; % latitude in (rad)

 Modeling a Foucault Pendulum

13-77

Running the Simulation

Press the "Play" button on the toolbar in the model window to run the simulation. The simulation will
use a variable step stiff solver, ode23t. It will simulate a Foucault pendulum for 3600 seconds (you
can change the simulation time). The model uses a default relative tolerance RelTol = 1e-6.

Figure 2: Foucault pendulum simulation results (simulation time of 3600 sec)

Results

The simulation results are shown in Figure 2 above. The simulation calculates the pendulum x and y
coordinates, and the x and y velocity components of the pendulum.

The pendulum oscillation plane completes a 360 degree sweep in more than 24 hours. The sweep
period is a function of geographic latitude lambda (see derivation in Analysis and Physics).

13 Simulink Featured Examples

13-78

Figure 3: The Animation block shows how much the pendulum oscillation plane rotates in an hour

After you run the simulation, double click the animation block to animate the results.

• Note: The "Animate Results" portion of the example requires Signal Processing Toolbox™. Double-
clicking on the animation block will cause an error if it is not installed. All other parts of the
example will function correctly without the Signal Processing Toolbox.

The sldemo_foucault_animate.m file plots the position of the pendulum bob at different points in
time. You can clearly see how the pendulum oscillation plane rotates.

• Note: If you are running the simulation at a large relative tolerance, the result will be numerically
unstable over a long period of time. Make sure that you are using a stiff variable-step solver. Read
more about numerical instability of stiff problems and solver performance in the "Exploring
Variable-Step Solvers Using a Stiff Model" example.

Closing the Model

Close the model. Clear generated data.

Analysis and Physics

This section analyzes the Foucault pendulum and describes the physics behind it. The pendulum can
be modeled as a point mass suspended on a wire of length L. The pendulum is located at the
geographical latitude lambda. It is convenient to use the reference frames shown in Figure 4: the
inertial frame I (relative to the center of the Earth), and the non-inertial frame N (relative to an
observer on Earth's surface). The non-inertial frame accelerates as a result of rotation.

 Modeling a Foucault Pendulum

13-79

Figure 4: The Inertial and Non-Inertial Frames for the Problem

Point O is the origin of the non-inertial frame N. It is the point on the surface of the earth beneath the
point of suspension of the pendulum. The non inertial frame is chosen such that the z-axis points
away from the center of the Earth and is perpendicular to Earth's surface. The x-axis points south and
the y-axis points west.

As mentioned in the introduction, the oscillation plane of a Foucault pendulum rotates. The oscillation
plane completes a full rotation in time Trot given by the following formula, where Tday is the
duration of one day (i.e. the time it takes the Earth to revolve around its axis once).

The sine factor requires further discussion. It is often incorrectly assumed that the oscillation plane
of the pendulum is fixed in the inertial frame relative to the center of the Earth. This is only true at
the north and south poles. To eliminate this confusion, think about the point S (see Figure 4), where
the pendulum is suspended. In the inertial frame I, point S moves on a circle. The pendulum bob is
suspended on a wire of constant length. For simplicity ignore the air friction. In the inertial frame I,
there are only two forces that act on the bob - the wire tension T and the gravitational force Fg.

The vector r gives the position of the pendulum bob, B (see Figure 4). Newton's second law states
that the sum of all forces acting on a body equals the mass times the acceleration of the body.

13 Simulink Featured Examples

13-80

Throughout this proof, the dots denote time derivatives, arrows denote vectors, caps denote unitary
vectors (i, j, and k along x, y, and z axes). A dot above the vector arrow indicated the time derivative
of the vector. An arrow above the dot indicated the vector of the time derivative. See the difference
between total acceleration and radial acceleration below.

Total Acceleration:

Radial Acceleration:

The acceleration of gravity points towards the center of the earth (negative z-direction).

Decompose the acceleration term:

The time derivatives of unit vectors appear because the non-inertial reference frame N is rotating in
space. This means that the unitary vectors i, j, and k rotate in space. Their time derivatives are given
below. Omega is Earth's angular velocity of revolution around its axis. The scalar Omega is the value
of the angular velocity. The vectorial Omega is the vector angular velocity. Its direction is determined
by the right hand rule.

Rewrite the time derivative of the vector r relative to Omega.

Similarly, express the second time derivative of the vector r.

 Modeling a Foucault Pendulum

13-81

To simplify this equation, assume that Omega for Earth is very small. This allows us to ignore the
third term in the equation above. In fact, the second term (which is already much smaller than the
first term) is four orders of magnitude greater than the third term. This reduces the equation to the
following form:

Newton's Second Law can be written and decomposed into x,y, and z components as follows:

The angular amplitude of oscillations is small. Therefore, we can ignore the vertical velocity and
vertical acceleration (z-dot and z-double-dot). The string tension components can be expressed using
small angle approximations, which also considerably simplify the problem, making it two-dimensional
(see below).

Characteristic Differential Equations

Finally the physics of the problem can be described by the system of coupled equations given below.
The x and y coordinates specify the position of the pendulum bob as seen by an observer on Earth.

Analytic Solution (Approximate)

The following is an analytic solution to the Foucault pendulum problem. Unfortunately, it is not exact.
If you try to substitute the analytic solution into the differential equations, uncanceled terms of the

13 Simulink Featured Examples

13-82

order Omega squared will remain. However, because Omega is very small, we can ignore the
uncanceled terms for practical purposes.

Actual Differential Equation System Is Asymmetric

During the derivation, terms involving Omega squared were ignored. This resulted in xy symmetry in
the differential equations. If the Omega squared terms are taken into consideration, the differential
equation system becomes asymmetric (see below).

You can easily modify the current Foucault pendulum model to account for asymmetric differential
equations. Simply edit the corresponding Gain blocks that contain g/L and add the necessary
expression. This change will introduce a very small overall correction to the numerical result.

 Modeling a Foucault Pendulum

13-83

Foucault Pendulum Model with VRML Visualization

This example shows how to solve the differential equations for the Foucault Pendulum problem and
displays the pendulum bob movement in the VRML scene. You can modify the Pendulum location by
changing the Latitude / Longitude constant values in the model and other parameters (g, Omega, L
and initial conditions) in MATLAB® workspace.

There are two VRML scenes associated with this model. The first scene shows the Foucault pendulum
itself, the second shows geographical position of the pendulum on the Earth. During the simulation,
two arrow markers indicate the current and the initial position of the pendulum in the Earth
coordinate system.

13 Simulink Featured Examples

13-84

 Foucault Pendulum Model with VRML Visualization

13-85

13 Simulink Featured Examples

13-86

Explore Variable-Step Solvers with Stiff Model

This example shows the behavior of variable-step solvers in a Foucault pendulum model. Simulink®
solvers ode45, ode15s, ode23, and ode23t are used as test cases. Stiff differential equations are
used to solve this problem. There is no exact definition of stiffness for equations. Some numerical
methods are unstable when used to solve stiff equations and very small step sizes are required to
obtain a numerically stable solution to a stiff problem. A stiff problem may have a fast changing
component and a slow changing component.

Foucault pendulum is an example of a stiff problem. The pendulum completes an oscillation in a few
seconds (fast changing component) whereas the Earth completes a rotation about its axis in a day
(slow changing component). The oscillation plane of the pendulum slowly rotates because of Earth's
axial rotation. You can read more about the physics of a Foucault pendulum in Modeling a Foucault
Pendulum.

The simulation calculates the position of the pendulum bob in the x-y plane as viewed by an observer
on the surface of Earth. The total energy of the pendulum is then calculated and used to assess the
performance of various Simulink solvers.

Foucault Pendulum Model

The Foucault pendulum is described by the system of coupled differential equations shown below.
Friction and air drag are not taken into consideration (this greatly simplifies the equations). A full
derivation of these equations is given in the Foucault Pendulum example.

The model sldemo_solvers is used to solve the differential equations that describe a Foucault
pendulum. The example simulates a Foucault pendulum for 86,400 seconds. The constants and initial
conditions are saved the model workspace.

 Explore Variable-Step Solvers with Stiff Model

13-87

Variable-Step Solvers

This example investigates the performance of the ode45, ode15s, ode23, and ode23t variable-step
solvers.

Assessing Solver Performance

There are different ways to assess the performance of a solver. If a problem has a closed form
solution, you could compare the solver results with the expected theoretical result. You could also
monitor the time it takes to simulate a model using a particular solver.

13 Simulink Featured Examples

13-88

Unfortunately there is no exact theoretical solution for the Foucault Pendulum problem. There is an
approximate closed form solution. However you cannot use the approximate closed form solution to
assess solver performance (see the Foucault pendulum example).

Total Energy Conservation

This example assesses solver performance by verifying the energy conservation law. In a frictionless
environment, the total energy of the pendulum must remain constant. The calculated energy of the
pendulum, however, does not remain constant as a result of limited numeric accuracy.

This example calculates the normalized total energy of the pendulum at every time step. The relative
error in energy equals the change in total energy over the course of the simulation. Ideally, the
relative error in energy must be zero because energy is conserved. Total energy is the sum of
potential and kinetic energy. The NormalizeEnergy block calculates the normalized pendulum
energy using these equations:

The plot shows the normalized energy versus time as calculated using ode23 and ode23t. In this
particular problem ode23t is much more accurate than ode23. In the simulation that used ode23,
the normalized pendulum energy decreased by more than 60%. A pendulum with lower energy has a
lower oscillation amplitude. You can see this effect in the next plot, where the amplitude of the
pendulum calculated by ode23 decreases as the oscillation plane rotates.

 Explore Variable-Step Solvers with Stiff Model

13-89

These plots illustrate the difference between a stiff and a non-stiff solver. Each plot shows the position
of the pendulum bob throughout a day. Every 15th data point is plotted as a blue point. The black dot
marks the initial position of the pendulum bob and the black line marks the initial pendulum
oscillation plane. The red line indicates the oscillation plane after a day. The yellow line shows the
oscillation plane at some intermediate point in time. The oscillation plane of the pendulum does not
complete a full rotation within a day. How fast the oscillation plane rotates depends on the
geographical latitude (see details in the Foucault pendulum example). The pendulum amplitude in the
left plot decreases whereas the amplitude in the right plot remains constant. For the same relative
tolerance of 1e-5, the stiff solver gives a more accurate result but requires more execution time.

The next plots show a more detailed performance study of Simulink solvers. Four solvers were chosen
to illustrate how relative error and execution time vary as a function of relative tolerance. You can
use the script sldemo_solvers_mcode.m for more extensive solver tests. This script generates C
code from the model to speed up the simulations and can take several minutes to run.

Building RSim executable for model..
Time taken: 27.585382 seconds.

Running generated RSim executable..
Time taken: 67.428929 seconds.

13 Simulink Featured Examples

13-90

In this example, the relative error does not decrease significantly for relative tolerance values smaller
than 1e-6. This is a numeric solver limitation that depends on the particular model. Reducing the
solver relative tolerance does not necessarily improve accuracy. You need to estimate the minimal
accuracy that is required for your problem and choose the solver accordingly to balance simulation
costs. For example, you might want to know the position of the Foucault pendulum bob within a few
centimeters. Calculating the position of a pendulum within a few microns is not necessary because
you cannot measure the position that accurately.

The numeric results and behavior of a simulation can differ depending on solver settings. This is
crucial in the case of stiff problems. When working with stiff models, choose a solver that will give an
accurate result with lower computational cost. The relative tolerance for a variable-step solver or the
step size for a fixed-step solver has to be small enough that the result is numerically stable. Although

 Explore Variable-Step Solvers with Stiff Model

13-91

some solvers are more efficient than others, stiff solvers are better suited for solving stiff problems.
Variable-step solvers are more robust than fixed-step solvers.

13 Simulink Featured Examples

13-92

Exploring the Solver Jacobian Structure of a Model

The example shows how to use Simulink® to explore the solver Jacobian sparsity pattern, and the
connection between the solver Jacobian sparsity pattern and the dependency between components of
a physical system. A Simulink model that models the synchronization of three metronomes placed on
a free moving base are used.

The Solver Jacobian Pattern

In general, the continuous part of a Simulink model can be written as:

where are the continuous states and are the inputs. are the outputs.

The matrix:

is called the system solver Jacobian matrix. When an implicit ODE solver is used to solve the system
equations, needs to be computed when needed. For example, the Jacobian matrix of a set of first
order ODEs

is

You can convert the solver Jacobian matrix to a Boolean sparse matrix by representing each non-zero
element as 1, and each element that is always zero (hard zero) as 0. For example, the Boolean matrix
corresponding to above Jacobian is:

where is called the solver Jacobian pattern matrix.

The solver Jacobian pattern matrix can be generated directly from the original system equations by
using the following rule:

As you can see, the solver Jacobian pattern matrix actually represents the dependency between the
state variables and their derivatives. If computing of needs the value of , then there exists a

 Exploring the Solver Jacobian Structure of a Model

13-93

dependency and . These dependencies are determined by the physical nature of
the system, and thus by studying the solver Jacobian matrix, you can explore the physical structure of
the physical system represented by the model. Simulink provides APIs for the user to get the solver
Jacobian pattern matrix. The following shows how to access the solver Jacobian pattern and to use it
to the study the model.

The Pattern and Dependency: Synchronization of Metronomes

Synchronization is defined as an adjustment of rhythms of oscillating objects due to their weak
interaction [1]. One of the first scientifically documented observations of synchronization was
reported by the Dutch scientist Christiaan Huygens, the inventor of pendulum clock [2]. Huygens
discovered that two pendulums attached to the same beam supported by chairs would swing in exact
opposite direction after some time. A similar set up used in this example is shown in Figure 1.

Figure 1: Set up used in this example: three metronomes on a moving base

Modeling the System

The model of this physical system can be divided into two parts:

• The metronomes mechanism
• The moving base

The metronomes mechanism

Referring to Figure 1, the dynamic equations of a single metronome on a moving base can be derived
as[3]:

13 Simulink Featured Examples

13-94

The first two terms describe a simple pendulum without friction. The third term is used to
approximate the escapement* and any damping of the metronome. This term increases the angular
velocity for and decreases it for [3]. The last term is the coupled effect from the moving
base, in terms of an inertial force.

The moving base

Assuming the motion of the base is frictionless, then the center of mass of the system will not change
and you can be derive the following:

where is the mass of the base and is the mass of the pendulum.

Then eq.1 can be changed to:

The following shows the above system implemented using Simulink. The model contains three
metronome subsystems and the moving base.

 Exploring the Solver Jacobian Structure of a Model

13-95

Figure 2: The Simulink model of the metronomes system

Simulation of this system shows an interesting phenomenon: Synchronization. It shows that all three
metronomes with different initial phase angle eventually become synchronized with each other.
Figure 3 shows the simulation results. The main cause for synchronization is the moving base that
links all these metronomes together. This physical connection can be observed from the dynamic
equation of each metronome.

Also, this physical connection can also be observed from the solver Jacobian pattern of this model.
The following MATLAB® code shows how to get the solver Jacobian pattern.

13 Simulink Featured Examples

13-96

 Exploring the Solver Jacobian Structure of a Model

13-97

Figure 3: The synchronized metronomes

Steps to Get the Solver Jacobian Pattern

% 1. Set the solver to be any implicit solver

 set_param(mdl, 'Solver', 'ode15s');

% 2. Set the solver Jacobian method to be Sparse perturbation *

 set_param(mdl, 'SolverJacobianMethodControl', 'SparsePerturbation');

% 3. Get the solver Jacobian object.

 J = Simulink.Solver.getSlvrJacobianPattern(mdl);
 disp('J = ');
 disp(J);

% 4. Show the pattern in a figure. use the method J.show

 J.show;

13 Simulink Featured Examples

13-98

% 5. Explore the pattern with the given state name and other information

 stateNames = J.stateNames;
 disp('stateNames = ');
 disp(stateNames);

The results you will see are:

J =
 SlvrJacobianPattern with properties:

 Jpattern: [8x8 double]
 numColGroup: 6
 colGroup: [8x1 double]
 stateNames: {8x1 cell}
 blockHandles: [8x1 double]

stateNames =
 {'sldemo_metro/Moving base/Integrator1' }
 {'(sldemo_metro/Metronome1/Integrator2).(Theta1)' }
 {'(sldemo_metro/Metronome2/Integrator2).(Theta2)' }
 {'(sldemo_metro/Metronome3/Integrator2).(Theta3)' }
 {'(sldemo_metro/Metronome3/Integrator1).(Thetadot_3)'}
 {'(sldemo_metro/Metronome2/Integrator1).(Thetadot_2)'}
 {'(sldemo_metro/Metronome1/Integrator1).(Thetadot_1)'}
 {'sldemo_metro/Moving base/Integrator' }

 Exploring the Solver Jacobian Structure of a Model

13-99

Figure 4: The solver Jacobian pattern

Properties of the Solver Jacobian Pattern Object

The solver Jacobian pattern J is a object. It contains the following properties:

 Jpattern: A sparse mxArray which is the Jacobian pattern.

 numColGroup: Number of column groups.

 colgroup: A column partition of the sparse pattern matrix.

 stateNames: A cell array containing the state name of each state.

blockHandles: Block handles of the owner of each state.

Study of the Solver Jacobian Pattern

Referring to Figure 4. First, the solver Jacobian of this model is sparse and the number of non-zero
element is 28. Secondly, the number of column groups is 6; is less than the number of states 8.

The row 1-4 indicates the following dependencies:

These relations are clear since speed is the derivative of position. Row 5-8 shows the following
relations:

These relations show that to compute the angular acceleration of the metronomes or acceleration of
the moving base, the angular position and angular speed of the metronomes are needed, but not the
position and speed of the base. These relations can be found by studying eq.(1) and eq.(2) directly.

Conclusion

The Solver Jacobian pattern is a tool to study the data dependency relations between the derivatives
of the state variables and the state variables. These relations usually reflect certain physical
couplings in the physical system. By using the tools provided, you can discover these relations
associated with a Simulink model, even without the original dynamic equations of the physical model.

References

[1] Arkady Pikosvky, Michael Rosenblum, and Jurgen Kurths. Synchronization. Cambridge University
Press, 2001.

[2] Ward T. Oud, Design and experimental results of synchronizing metronomes, inspired by
Christiaan Huygens, Master Thesis, Eindhoven University of Technology, 2006.

[3] Pantaleone, James, American Journal of Physics, Volume 70, Issue 10, pp. 992-1000, 2002.

13 Simulink Featured Examples

13-100

• Escapement is a set of mechanism that drives the metronome. See [2] for for more details.

 Exploring the Solver Jacobian Structure of a Model

13-101

Double Bouncing Ball: Use of Adaptive Zero-Crossing Location

This example shows how to choose the correct zero-crossing location algorithm, based on the system
dynamics. For Zeno dynamic systems, or systems with strong chattering, you can select the adaptive
zero-crossing detection algorithm through the Configure pane:

 --> Solver
 --> Zero-crossing options
 --> Algorithm: [Nonadaptive, Adaptive]

The Double Bouncing Ball System

The Simulink® model in this example is used to simulate two bouncing balls. They start from the
ground with different initial speeds, and their ground levels will change at different times.

Open the model

13 Simulink Featured Examples

13-102

Figure 1: The double bouncing ball model and animation

Double Bouncing Balls With Non-adaptive Zero-Crossing Location Algorithm

If the Non-adaptive zero-crossing location algorithm is used, the consecutive zero-crossing error
causes the simulation to stop. This system is actually a 'Zeno dynamic system'. When either ball is
very close to the ground, Simulink will hang because too many zero crossings are detected in a very
short period.

 Double Bouncing Ball: Use of Adaptive Zero-Crossing Location

13-103

13 Simulink Featured Examples

13-104

 Double Bouncing Ball: Use of Adaptive Zero-Crossing Location

13-105

Figure 2: Vertical displacement of both balls with Non-adaptive zero- crossing location algorithm.

The simulation does not complete and an error message is shown. The ground level changing events
cannot be observed.

Double Bouncing Balls With Adaptive Zero-Crossing Location Algorithm

If the adaptive algorithm is selected, Simulink will adaptively turn on/off the process to precisely
locate the zero-crossing time. The conditions to turn on/off the location are:

1) Zero-crossing signal value is below a threshold value. You can control the threshold value through
the Configure pane:

 --> Solver
 --> Zero-crossing options
 --> Algorithm: [Adaptive]
 --> Signal threshold

2) Consecutive zero-crossing diagnostic is hit. You can define consecutive zero crossing through the
Configure pane:

13 Simulink Featured Examples

13-106

 --> Solver
 --> Solver diagnostic controls
 --> Time tolerance and
 --> Number of consecutive zero crossings.

 Double Bouncing Ball: Use of Adaptive Zero-Crossing Location

13-107

Figure 3: Vertical displacement of both balls with adaptive zero crossing location algorithm.

The simulation has completed. The ground level changing events can be observed. A warning is
shown to inform you when searching for events is turned off.

13 Simulink Featured Examples

13-108

Four Hydraulic Cylinder Simulation

This example shows how to use Simulink® to create a model with four hydraulic cylinders. See two
related examples that use the same basic components: single cylinder model and model with two
cylinders and load constraints.

• Note: This is a basic hydraulics example. You can more easily build hydraulic and automotive
models using Simscape™ Driveline™ and Simscape Fluids™.

• Simscape Fluids provides component libraries for modeling and simulating fluid systems. It
includes models of pumps, valves, actuators, pipelines, and heat exchangers. You can use these
components to develop fluid power systems such as front-loader, power steering, and landing gear
actuation systems. Engine cooling and fuel supply systems can also be developed with Simscape
Fluids. You can integrate mechanical, electrical, thermal, and other systems using components
available within the Simscape product family.

• Simscape Driveline provides component libraries for modeling and simulating one-dimensional
mechanical systems. It includes models of rotational and translational components, such as worm
gears, planetary gears, lead screws, and clutches. You can use these components to model the
transmission of mechanical power in helicopter drivetrains, industrial machinery, vehicle
powertrains, and other applications. Automotive components, such as engines, tires,
transmissions, and torque converters, are also included.

Modeling

Figure 1 shows the top level diagram of the model. This model has a single pump and four actuators.
The same pump pressure (p1) drives each cylinder assembly and the sum of their flows loads the
pump. Although each of the four control valves could be controlled independently, as in an active
suspension system, in this case all four receive the same commands, a linear ramp in orifice area
from zero to 0.002 sq.m..

Opening the Model and Running the Simulation

To open this model, type sldemo_hydcyl4 at MATLAB® terminal (click on the hyperlink if you are
using MATLAB Help). Press the "Play" button on the model toolbar to run the simulation.

The model logs relevant data to MATLAB workspace, into the Simulink.SimulationOutput object out.
The signal logging data is stored within out, in a structure called sldemo_hydcyl4_output. Logged
signals have a blue indicator (see the model). For more information, see “View and Access Signal
Logging Data”.

 Four Hydraulic Cylinder Simulation

13-109

13 Simulink Featured Examples

13-110

Figure 1: Four cylinder model and simulation results

Model Description

The pump flow begins at 0.005 m3/sec (just like in the single cylinder model), then it drops to
0.0025 m3/sec at t=0.05 sec. The parameters C1, C2, Cd, rho, and V30 are identical to those in
the single cylinder model. However, by assuming individual values for K, A, and beta, each one of the
four cylinders exhibit distinctive transient responses. The table below gives the characteristics of the
four actuators.

 Four Hydraulic Cylinder Simulation

13-111

--
Parameter	Actuator1 Actuator2 Actuator3 Actuator4
Spring Constant | K K/4 4K K
Piston Area | Ac Ac/4 4Ac Ac
Bulk Modulus | Beta Beta Beta Beta/1000
--
Beta = 7e8 Pa [fluid bulk modulus]
K = 5e4 N/m [spring constant]
Ac = 1e-3 m^2 [cylinder cross-sectional area]

The ratio of area and spring constant is the same for all pistons, so they should have the same steady
state output. The dominant time constant for each actuator subsystem is proportional to

(result obtained from dimensional analysis), so we can expect the piston assembly 2 to be somewhat
faster than assembly 1. The piston assembly 3 is expected to be slower than 1 or 2. The piston
assembly 4 has a significantly lower bulk modulus beta (as would be the case with air), thus we
expect piston 4 to respond more sluggishly than piston 1.

Results

Figure 2: Piston positions in four cylinder example

13 Simulink Featured Examples

13-112

Figure 3: Pump Supply Pressure, p1

The initial jolt of flow at t=0 is seen by the four actuators as a pressure impulse. The pump pressure
(p1), which is initially high, drops rapidly because there is a high flow demand from the four loads.
During the initial transient (about 4 msec), distinct responses identify the individual dynamic
characteristics of each assembly unit.

As predicted by the parameter values, actuator 2 responds much faster than actuator 1. The third and
fourth pistons are much slower because they require more working fluid to move the same distance.
In case 3, the piston displaces more volume due to its larger cross-sectional area. In case 4, although
the displaced volume is the same as in case 1, the device requires more fluid because it is
subsequently compressed.

As the pump pressure falls to the level within the cylinders, the distinctions in behavior are blurred.
The individual responses blend into an overall system response which maintains the flow balance
between the components. At t=0.05 sec, the pump flow drops to a level that is close to the
equilibrium and the actuator flows are nearly zero. The individual steady state piston positions are
equal, as predicted by the design.

Closing the Model

Close the model. Clear generated data.

See Also
Circular Gauge | Linear Gauge

 Four Hydraulic Cylinder Simulation

13-113

Related Examples
• “Single Hydraulic Cylinder Simulation” on page 13-11
• “Two Cylinder Model with Load Constraints” on page 13-115

More About
• “Decide How to Visualize Simulation Data”

13 Simulink Featured Examples

13-114

Two Cylinder Model with Load Constraints

This example shows how to model a rigid rod supporting a large mass interconnecting two hydraulic
actuators. The model eliminates the springs as it applies the piston forces directly to the load. These
forces balance the gravitational force and result in both linear and rotational displacement.

See two related examples that use the same basic components: four cylinder model and single
cylinder model.

• Note: This is a basic hydraulics example. You can more easily build hydraulic and automotive
models using Simscape™ Driveline™ and Simscape Fluids™.

• Simscape Fluids provides component libraries for modeling and simulating fluid systems. It
includes models of pumps, valves, actuators, pipelines, and heat exchangers. You can use these
components to develop fluid power systems such as front-loader, power steering, and landing gear
actuation systems. Engine cooling and fuel supply systems can also be developed with Simscape
Fluids. You can integrate mechanical, electrical, thermal, and other systems using components
available within the Simscape product family.

• Simscape Driveline provides component libraries for modeling and simulating one-dimensional
mechanical systems. It includes models of rotational and translational components, such as worm
gears, planetary gears, lead screws, and clutches. You can use these components to model the
transmission of mechanical power in helicopter drivetrains, industrial machinery, vehicle
powertrains, and other applications. Automotive components, such as engines, tires,
transmissions, and torque converters, are also included.

Analysis and Physics of the Model

We assume the rotation angle of the rod is small. The equations of motion for the rod are given below
in Equation Block 1. The equations describing the cylinder and pump behavior are the same as in the
single cylinder example.

Equation Block 1:

 Two Cylinder Model with Load Constraints

13-115

The positions and velocities of the individual pistons follow directly from the geometry. See the
corresponding equations below in Equation Block 2.

Equation Block 2:

Opening the Model and Running the Simulation

To open this model, type sldemo_hydrod into the MATLAB® Command Window (click the hyperlink
if you are using MATLAB Help). To run the simulation, on the Simulation tab, press Run. The model:

• Logs signal data to the MATLAB workspace in the Simulink.SimulationOutput object out.
The signal logging data is stored in out, in a Simulink.SimulationData.Dataset object
called sldemo_hydrod_output.

• Logs continuous states data to MATLAB workspace. The states data is also contained in the out
workspace variable, as a structure called xout. Each state is assigned a name in the model to
facilitate working with logged data. The names of the states are available in the stateName field
of xout.signals. For more information, see “Data Format for Logged Simulation Data”.

• Uses the customizable Circular Gauge and Vertical Gauge blocks to visualize the fluid flow,
pressure, and linear displacement in the cylinders.

13 Simulink Featured Examples

13-116

Figure 1: Two cylinder model and simulation results

'Mechanical Load' Subsystem

This subsystem is shown in Figure 2. It solves the equations of motion, which we compute directly
using standard Simulink blocks. It is assumed that the rotation angle is small. Look under the mask of
the 'Mechanical Load' subsystem to see its structure (right-click on the subsystem and select Mask >
Look Under Mask).

Figure 2: 'Mechanical Load' subsystem

 Two Cylinder Model with Load Constraints

13-117

Simulation Parameters

The parameters used in this simulation are identical to the parameters used in the single cylinder
model, except for the following:

L = 1.5 m
M = 2500 kg
I = 100 kg/m^2
Qmax = 0.005 m^3/sec (constant)
C2 = 3e-9 m^3/sec/Pa
Fext = -9.81*M Newtons

Although the pump flow is constant, the model controls the valves independently. Initially, at t = 0,
the cross-section of valve B is zero. It grows linearly to 1.2e-5 m^2 at t = 0.01 sec, and then
linearly decreases to zero at t = 0.02 sec. The cross-section of valve A is 1.2e-5 sq.m. at t = 0
and it linearly decreases to zero at t = 0.01 sec, then it linearly increases to 1.2e-5 sq.m. at t
= 0.02 sec. Then the behavior of the valves A and B repeats periodically with the same pattern. In
other words the valves A and B are 180 degrees out of phase.

Results

Figures 3 and 4 show the linear and angular displacements of the rod. The linear displacement
response is typical of a type-one integrating system. The relative positions and the angular movement
of the rod illustrate the response of the two pistons to the out-of-phase control signals (the cross-
section of the valves A and B).

Figure 3: Linear displacement of the pistons and the load (load is in the middle of the rod)

13 Simulink Featured Examples

13-118

Figure 4: Angular displacement of the rod

Close Model

Close the model and clear all generated data.

Conclusions

Simulink provides a productive environment for simulating hydraulic systems, offering enhancements
that provide enormous productivity in modeling and flexibility in numerical methods. The use of
masked subsystems and model libraries facilitates structured modeling with automatic component
updates. As users modify library elements, the models that use the elements automatically
incorporate the new versions. Simulink can use differential-algebraic equations (DAEs) to model some
fluid elements as incompressible and others as compliant, allowing efficient solutions for complex
systems of interdependent circuits.

Models such as this one can ultimately be used as part of overall plant or vehicle systems. The
hierarchical nature of Simulink allows independently developed hydraulic actuators to be placed, as
appropriate, in larger system models (for example adding controls in the form of sensors or valves).
In cases such as these, tools from the Control System Toolbox™ can analyze and tune the overall
closed-loop system. The MATLAB/Simulink environment can thus support the entire design, analysis,
and modeling cycle.

See Also
Circular Gauge | Linear Gauge

 Two Cylinder Model with Load Constraints

13-119

Related Examples
• “Single Hydraulic Cylinder Simulation” on page 13-11
• “Four Hydraulic Cylinder Simulation” on page 13-109

More About
• “Decide How to Visualize Simulation Data”
• “Tune and Visualize Your Model with Dashboard Blocks”

13 Simulink Featured Examples

13-120

Van der Pol Oscillator

This example shows how to model the second-order Van der Pol (VDP) differential equation in
Simulink®. In dynamics, the VDP oscillator is non-conservative and has nonlinear damping. At high
amplitudes, the oscillator dissipates energy. At low amplitudes, the oscillator generates energy. The
oscillator is given by this second-order differential equation:

where:

• x is position as a function of time.
• Mu is damping.

The VDP oscillator is used in physical and biological sciences, including electric circuits.

open_system('vdp');

Simulate with Mu = 1

When Mu = 1, the VDP oscillator has nonlinear damping.

set_param('vdp/Mu','Gain','1')
sim('vdp');
open_system('vdp/Scope');

 Van der Pol Oscillator

13-121

Simulate with Mu = 0

When Mu = 0, the VDP oscillator has no damping. Energy is conserved in this simple harmonic
oscillator. The equation becomes:

set_param('vdp/Mu','Gain','0')
sim('vdp');
open_system('vdp/Scope');

13 Simulink Featured Examples

13-122

See Also
Integrator | Slider Gain

Related Examples
• “Real-Time Van der Pol Simulation” (Simulink Desktop Real-Time)

More About
• “Model Differential Algebraic Equations”

References
[1] Cartwbight, M. L. "Balthazar Van Der Pol." Journal of the London Mathematical Society. Wiley. s1

35 (July 1960): 367–376. https://doi:10.1112/jlms/s1-35.3.367.

[2] Hirsch, Morris W., Stephen Smale, Robert L. Devaney, and Morris W. Hirsch. Differential
Equations, Dynamical Systems, and an Introduction to Chaos. 2nd Ed. San Diego: Academic
Press, 2004.

 Van der Pol Oscillator

13-123

Model a Fault-Tolerant Fuel Control System

This example shows how to combine Stateflow® with Simulink® to efficiently model hybrid systems.
This type of modeling is particularly useful for systems that have numerous possible operational
modes based on discrete events. Traditional signal flow is handled in Simulink while changes in
control configuration are implemented in Stateflow. The model described below represents a fuel
control system for a gasoline engine. The system is highly robust in that individual sensor failures are
detected and the control system is dynamically reconfigured for uninterrupted operation.

Analysis and Physics

Physical and empirical relationships form the basis for the throttle and intake manifold dynamics of
this model. The air-fuel ratio is computed by dividing the air mass flow rate (pumped from the intake
manifold) by the fuel mass flow rate (injected at the valves). The ideal (i.e. stoichiometric) mixture
ratio provides a good compromise between power, fuel economy, and emissions. The target air-fuel
ratio for this system is 14.6. Typically, a sensor determines the amount of residual oxygen present in
the exhaust gas (EGO). This gives a good indication of the mixture ratio and provides a feedback
measurement for closed-loop control. If the sensor indicates a high oxygen level, the control law
increases the fuel rate. When the sensor detects a fuel-rich mixture, corresponding to a very low level
of residual oxygen, the controller decreases the fuel rate.

Modeling

Figure 1 shows the top level of the Simulink model. To open the model, click Open Model. Press the
Play button in the model window toolbar to run the simulation. The model loads necessary data into
the model workspace from sldemo_fuelsys_data.m. The model logs relevant data to MATLAB
workspace in a data structure called sldemo_fuelsys_output and streams the data to the
Simulation Data Inspector. Logged signals are marked with a blue indicator while streaming signals
are marked with the light blue badge (see Figure 1).

Note that loading initial conditions into the model workspace keeps simulation data isolated from
data in other open models that you may have open. This also helps avoid MATLAB workspace
cluttering. To view the contents of the model workspace select Modeling > Model Explorer, and click
on Model Workspace from the Model Hierarchy list.

Notice that units are visible on the model and subsystem icons and signal lines. Units are specified on
the ports and on the bus object.

13 Simulink Featured Examples

13-124

Figure 1: Top-level diagram for the fuel control system model

The Dashboard subsystem (shown in Figure 2) allows you to interact with the model during
simulation. The Fault Injection switches can be moved from the Normal to Fail position to simulate
sensor failures, while the Engine Speed selector switch can be toggled to change the engine speed.
The fuel and air/fuel ratio signals are visualized using the dashboard gauges and scopes to provide
visual feedback during a simulation run.

 Model a Fault-Tolerant Fuel Control System

13-125

Figure 2: Dashboard subsystem for the fuel control system model

The fuel_rate_control uses signals from the system's sensors to determine the fuel rate which gives a
stoichiometric mixture. The fuel rate combines with the actual air flow in the engine gas dynamics
model to determine the resulting mixture ratio as sensed at the exhaust.

You can selectively disable each of the four sensors (throttle angle, speed, EGO and manifold absolute
pressure [MAP]) by using the slider switches in the dashboard subsystem, to simulate failures.
Simulink accomplishes this by binding slider switches to the value parameter of the constant block.
Double-click on the dashboard subsystem to open the control dashboard to change the position of the
switch. Similarly, you can induce the failure condition of a high engine speed by toggling the engine
speed switch on the dashboard subsystem. A Repeating Table block provides the throttle angle input
and periodically repeats the sequence of data specified in the mask.

The fuel_rate_control block, shown in Figure 3, uses the sensor input and feedback signals to adjust
the fuel rate to give a stoichiometric ratio. The model uses three subsystems to implement this
strategy: control logic, airflow calculation, and fuel calculation. Under normal operation, the model
estimates the airflow rate and multiplies the estimate by the reciprocal of the desired ratio to give the
fuel rate. Feedback from the oxygen sensor provides a closed-loop adjustment of the rate estimation
in order to maintain the ideal mixture ratio.

13 Simulink Featured Examples

13-126

Figure 3: Fuel rate controller subsystem

Control Logic

A single Stateflow chart, consisting of a set of six parallel states, implements the control logic in its
entirety. The four parallel states shown at the top of Figure 4 correspond to the four individual
sensors. The remaining two parallel states at the bottom consider the status of the four sensors
simultaneously and determine the overall system operating mode. The model synchronously calls the
entire Stateflow diagram at a regular sample time interval of 0.01 sec. This permits the conditions for
transitions to the correct mode to be tested on a timely basis.

To open the control_logic Stateflow chart, double-click on it in the fuel_rate_control subsystem.

 Model a Fault-Tolerant Fuel Control System

13-127

Figure 4: The control logic chart

When execution begins, all of the states start in their normal mode with the exception of the oxygen
sensor (EGO). The O2_warmup state is entered initially until the warmup period is complete. The
system detects throttle and pressure sensor failures when their measured values fall outside their
nominal ranges. A manifold vacuum in the absence of a speed signal indicates a speed sensor failure.
The oxygen sensor also has a nominal range for failure conditions but, because zero is both the
minimum signal level and the bottom of the range, failure can be detected only when it exceeds the
upper limit.

Regardless of which sensor fails, the model always generates the directed event broadcast
Fail.INC. In this way the triggering of the universal sensor failure logic is independent of the
sensor. The model also uses a corresponding sensor recovery event, Fail.DEC. The Fail state keeps
track of the number of failed sensors. The counter increments on each Fail.INC event and
decrements on each Fail.DEC event. The model uses a superstate, Multi, to group all cases where
more than one sensor has failed.

The bottom parallel state represents the fueling mode of the engine. If a single sensor fails, operation
continues but the air/fuel mixture is richer to allow smoother running at the cost of higher emissions.
If more than one sensor has failed, the engine shuts down as a safety measure, since the air/fuel ratio
cannot be controlled reliably.

During the oxygen sensor warm-up, the model maintains the mixture at normal levels. If this is
unsatisfactory, you can change the design by moving the warm-up state to within the Rich_Mixture

13 Simulink Featured Examples

13-128

superstate. If a sensor failure occurs during the warm-up period, the Single_Failure state is
entered after the warm-up time elapses. Otherwise, the Normal state is activated at this time.

A protective overspeed feature has been added to the model by creating a new state in the
Fuel_Disabled superstate. Through the use of history junctions, we assured that the chart returns
to the appropriate state when the model exits the overspeed state. As the safety requirements for the
engine become better specified, we can add additional shutdown states to the Fuel_Disabled
superstate.

Sensor Correction

When a sensor fails, the model computes an estimate of the sensor. For example, open the pressure
sensor calculation. Under normal sensor operation, the model uses the value of the pressure sensor.
Otherwise, the model estimates the value.

The model computes an estimate of manifold pressure as a function of the engine speed and throttle
position. To compute the value, the model uses a Simulink function inside Stateflow.

 Model a Fault-Tolerant Fuel Control System

13-129

Airflow Calculation

The Airflow Calculation block (shown in Figure 6) is the location for the central control laws. This
block is found inside the fuel_rate_control subsystem (open this block). The block estimates the intake
air flow to determine the fuel rate which gives the appropriate air/fuel ratio. Closed-loop control
adjusts the estimation according to the residual oxygen feedback in order to maintain the mixture
ratio precisely. Even when a sensor failure mandates open-loop operation, the most recent closed-loop
adjustment is retained to best meet the control objectives.

Figure 6: Airflow estimation and correction

Equation 1

The engine's intake air flow can be formulated as the product of the engine speed, the manifold
pressure and a time-varying scale factor.

13 Simulink Featured Examples

13-130

Cpump is computed by a lookup table and multiplied by the speed and pressure to form the initial flow
estimate. During transients, the throttle rate, with the derivative approximated by a high-pass filter,
corrects the air flow for filling dynamics. The control algorithm provides additional correction
according to Equation 2.

Equation 2

Figure 7: Engine Gas Dynamics subsystem

Figure 8: Mixing & Combustion block within the Engine Gas Dynamics subsystem

The nonlinear oxygen sensor (EGO Sensor block) is found inside the Mixing & Combustion block (see
Figure 8) within the Engine Gas Dynamics subsystem (see Figure 7). EGO Sensor is modeled as a
hyperbolic tangent function, and it provides a meaningful signal when in the vicinity of 0.5 volt. The
raw error in the feedback loop is thus detected with a switching threshold, as indicated in Equation 2.
If the air-fuel ratio is low (the mixture is lean), the original air estimate is too small and needs to be
increased. Conversely, when the oxygen sensor output is high, the air estimate is too large and needs
to be decreased. Integral control is utilized so that the correction term achieves a level that brings
about zero steady-state error in the mixture ratio.

The normal closed-loop operation mode, LOW, adjusts the integrator dynamically to minimize the
error. The integration is performed in discrete time, with updates every 10 milliseconds. When

 Model a Fault-Tolerant Fuel Control System

13-131

operating open-loop however, in the RICH or O2 failure modes, the feedback error is ignored and the
integrator is held. This gives the best correction based on the most recent valid feedback.

Fuel Calculation

The fuel_calc subsystem (within the fuel_rate_control subsystem, see Figure 9) sets the injector signal
to match the given airflow calculation and fault status. The first input is the computed airflow
estimation. This is multiplied with the target fuel/air ratio to get the commanded fuel rate. Normally
the target is stoichiometric, i.e. equals the optimal air to fuel ratio of 14.6. When a sensor fault
occurs, the Stateflow control logic sets the mode input to a value of 2 or 3 (RICH or DISABLED) so
that the mixture is either slightly rich of stoichiometric or is shut down completely.

Figure 9: fuel_calc subsystem

The fuel_calc subsystem (Figure 9) employs adjustable compensation (Figure 10) in order to achieve
different purposes in different modes. In normal operation, phase lead compensation of the feedback
correction signal adds to the closed-loop stability margin. In RICH mode and during EGO sensor
failure (open loop), however, the composite fuel signal is low-pass filtered to attenuate noise
introduced in the estimation process. The end result is a signal representing the fuel flow rate which,
in an actual system, would be translated to injector pulse times.

13 Simulink Featured Examples

13-132

Figure 10: Switchable compensation subsystem

Results and Conclusions

Simulation results are shown in Figure 11 and Figure 12. The simulation is run with a throttle input
that ramps from 10 to 20 degrees over a period of two seconds, then goes back to 10 degrees over
the next two seconds. This cycle repeats continuously while the engine is held at a constant speed so

 Model a Fault-Tolerant Fuel Control System

13-133

that the user can experiment with different fault conditions and failure modes. Click on a sensor fault
switch in the dashboard subsystem to simulate the failure of the associated sensor. Repeat this
operation to slide the switch back for normal operation.

13 Simulink Featured Examples

13-134

Figure 11: Comparing the fuel flow rate for different sensor failures

Figure 11 compares the fuel flow rate under fault-free conditions (baseline) with the rate applied in
the presence of a single failure in each sensor individually. In each case note the nonlinear
relationship between fuel flow and the triangular throttle command (shown in Figure 13). In the
baseline case, the fuel rate is regulated tightly, exhibiting a small ripple due to the switching nature
of the EGO sensor's input circuitry. In the other four cases the system operates open loop. The control
strategy is proven effective in maintaining the correct fuel profile in the single-failure mode. In each
of the fault conditions, the fuel rate is essentially 125% of the baseline flow, fulfilling the design
objective of 80% rich.

 Model a Fault-Tolerant Fuel Control System

13-135

Figure 12: Comparing the air-fuel ratio for different sensor failures

Figure 12 plots the corresponding air/fuel ratio for each case. The baseline plot shows the effects of
closed-loop operation. The mixture ratio is regulated very tightly to the stoichiometric objective of

13 Simulink Featured Examples

13-136

14.6. The rich mixture ratio is shown in the bottom four plots of Figure 12. Although they are not
tightly regulated, as in the closed-loop case, they approximate the objective of air/fuel
(0.8*14.6=11.7).

Figure 13: Throttle command

The transient behavior of the system is shown in Figure 14. With a constant 12 degree throttle angle
and the system in steady-state, a throttle failure is introduced at t = 2 and corrected at t = 5. At the
onset of the failure, the fuel rate increases immediately. The effects are seen at the exhaust as the
rich ratio propagates through the system. The steady-state condition is then quickly recovered when
closed-loop operation is restored.

Figure 14: Transient response to fault detection

 Model a Fault-Tolerant Fuel Control System

13-137

Remarks

If you enable animation in the Stateflow debugger, the state transitions are highlighted in the
Stateflow diagram (see Figure 4) as the various states are activated. The sequence of activation is
indicated by changing colors. This closely coupled synergy between Stateflow and Simulink fosters
the modeling and development of complete control systems.

See Also

Related Examples
• “Air-Fuel Ratio Control System with Fixed-Point Data” (Embedded Coder)
• “Air-Fuel Ratio Control System with Stateflow Charts” (Embedded Coder)

13 Simulink Featured Examples

13-138

Using a Data Dictionary to Manage the Data for a Fuel Control
System

This example shows how to use data dictionaries to manage the data for a fuel rate control system
designed using Simulink® and Stateflow®.

Familiarize Yourself with the Model

The sldemo_fuelsys_dd model is a closed-loop system containing a "plant" and "controller". The
plant is used to validate the design of the controller. In this example, the plant and controller are
represented by separate models that are referenced from the test harness model. Let's take a look at
these models.

Open and Compile the Test Harness Model

View the Engine Gas Dynamics System (Plant)

Double-click on the Engine Gas Dynamics block to open the plant model.

 Using a Data Dictionary to Manage the Data for a Fuel Control System

13-139

View the Fuel Rate Control System (Controller)

Double-click on the Fuel Rate Controller block to open the controller model.

Investigate the Data Used by the Controller

The global design data for the controller model is defined in a data dictionary. Using data dictionaries
has many advantages over defining data in the base workspace.

The controller model is explicitly linked to a data dictionary. This link is set up on the External Data
tab of the Model Properties dialog box. To open this dialog box, click the icon in the lower-left corner
of the model window and select the gear icon on the right side.

13 Simulink Featured Examples

13-140

To open the data dictionary in the Model Explorer, in the model window, click the same icon and
select External Data. In Model Explorer, select sldemo_fuelsys_dd_controller under the
External Data node.

In the Contents pane, you can see the parameter and signal objects that are used to configure the
controller algorithm for simulation and code generation. In the Dialog pane on the right, you can see
that the dictionary also contains a reference to another data dictionary,
sldemo_fuelsys_dd_types.sldd, that defines the data type objects used by this model.

This data dictionary is configured for a float-point controller, as is seen by the data type display on the
signal lines in the controller model. The data types dictionary, sldemo_fuelsys_dd_types.sldd,
sources data type objects from the referenced dictionary
sldemo_fuelsys_dd_types_float.sldd. To configure for a fixed-point controller, you could
create a new dictionary that contains fixed-point data type objects and change the types dictionary
(sldemo_fuelsys_dd_types.sldd) to reference that dictionary instead.

Investigate the Units Used by the Components

Notice that units are visible on the model and subsystem icons and signal lines. Units are specified on
the ports and on the bus, signal and parameter objects in the data dictionary.

Simulate the Test Harness Model

The test harness model is also linked to a data dictionary (sldemo_fuelsys_dd.sldd). This data
dictionary contains references to the data dictionaries for the plant and controller models but it does
not contain any additional data.

Simulate the test harness model to validate the behavior of the controller in the floating-point
configuration.

Close the Example

Close the models and data dictionaries from this example.

See Also

Related Examples
• “Model a Fault-Tolerant Fuel Control System” on page 13-124
• “Air-Fuel Ratio Control System with Fixed-Point Data” (Embedded Coder)
• “Air-Fuel Ratio Control System with Stateflow Charts” (Embedded Coder)

More About
• “Units in Simulink”
• “What Is a Data Dictionary?”

 Using a Data Dictionary to Manage the Data for a Fuel Control System

13-141

Modeling Engine Timing Using Triggered Subsystems

This example shows how to model a four-cylinder spark ignition internal combustion engine from the
throttle to the crankshaft output. We used well-defined physical principles supplemented, where
appropriate, with empirical relationships that describe the system's dynamic behavior without
introducing unnecessary complexity.

Analysis and Physics

This example describes the concepts and details surrounding the creation of engine models with
emphasis on important Simulink® modeling techniques. The basic model uses the enhanced
capabilities of Simulink to capture time-based events with high fidelity. Within this simulation, a
triggered subsystem models the transfer of the air-fuel mixture from the intake manifold to the
cylinders via discrete valve events. This takes place concurrently with the continuous-time processes
of intake flow, torque generation and acceleration. A second model adds an additional triggered
subsystem that provides closed-loop engine speed control via a throttle actuator. These models can be
used as standalone engine simulations. Or, they can be used within a larger system model, such as an
integrated vehicle and powertrain simulation, in the development of a traction control system.

This model is based on published results by Crossley and Cook (1991). It describes the simulation of a
four-cylinder spark ignition internal combustion engine. The Crossley and Cook work also shows how
a simulation based on this model was validated against dynamometer test data. The ensuing sections
(listed below) analyze the key elements of the engine model that were identified by Crossley and
Cook:

1 Throttle
2 Intake manifold
3 Mass flow rate
4 Compression stroke
5 Torque generation and acceleration

• Note: Additional components can be added to the model to provide greater accuracy in simulation
and to more closely replicate the behavior of the system.

Throttle

The first element of the model is the throttle body. The control input is the angle of the throttle plate.
The rate at which the model introduces air into the intake manifold can be expressed as the product
of two functions:

1 an empirical function of the throttle plate angle only
2 a function of the atmospheric and manifold pressures

In cases of lower manifold pressure (greater vacuum), the flow rate through the throttle body is sonic
and is only a function of the throttle angle. This model accounts for this low pressure behavior with a
switching condition in the compressibility equations shown in Equation 1.

Equation 1

13 Simulink Featured Examples

13-142

Intake Manifold

The simulation models the intake manifold as a differential equation for the manifold pressure. The
difference in the incoming and outgoing mass flow rates represents the net rate of change of air mass
with respect to time. This quantity, according to the ideal gas law, is proportional to the time
derivative of the manifold pressure (see Equation 2). Note that, unlike the model of Crossley and
Cook (see also references 3 through 5), this model doesn't incorporate exhaust gas recirculation
(EGR), although this can easily be added.

Equation 2

Intake Mass Flow Rate

The mass flow rate of air that the model pumps into the cylinders from the manifold is described in
Equation 3 by an empirically derived equation. This mass rate is a function of the manifold pressure
and the engine speed.

Equation 3

 Modeling Engine Timing Using Triggered Subsystems

13-143

To determine the total air charge pumped into the cylinders, the simulation integrates the mass flow
rate from the intake manifold and samples it at the end of each intake stroke event. This determines
the total air mass that is present in each cylinder after the intake stroke and before compression.

Compression Stroke

In an inline four-cylinder four-stroke engine, 180 degrees of crankshaft revolution separate the
ignition of each successive cylinder. This results in each cylinder firing on every other crank
revolution. In this model, the intake, compression, combustion, and exhaust strokes occur
simultaneously (at any given time, one cylinder is in each phase). To account for compression, the
combustion of each intake charge is delayed by 180 degrees of crank rotation from the end of the
intake stroke.

Torque Generation and Acceleration

The final element of the simulation describes the torque developed by the engine. An empirical
relationship dependent upon the mass of the air charge, the air/fuel mixture ratio, the spark advance,
and the engine speed is used for the torque computation (see Equation 4).

Equation 4

Calculate the engine angular acceleration using Equation 5

Equation 5

Open-Loop Model

We incorporated the model elements described above into an engine model using Simulink. The
following sections describe the decisions we made for this implementation and the key Simulink

13 Simulink Featured Examples

13-144

elements used. This section shows how to implement a complex nonlinear engine model easily and
quickly in Simulink environment. We developed this model in conjunction with Ken Butts, Ford Motor
Company® (2).

Figure 1 shows the top level of the model. Note that, in general, the major blocks correspond to the
high-level list of functions given in the model description in the preceding summary. Taking
advantage of Simulink's hierarchical modeling capabilities, most of the blocks in Figure 1 are made
up of smaller blocks. The following paragraphs describe these smaller blocks.

Running the Simulation

Press the "Play" button on the model toolbar to run the simulation.

 Modeling Engine Timing Using Triggered Subsystems

13-145

Figure 1: The top level of the engine model and simulation results

• Note: The model logs relevant data to MATLAB workspace in a structure called
sldemo_engine_output. Logged signals have a blue indicator. Read more about Signal Logging
in Simulink documentation.

Throttle/Manifold

In the model, double click on the 'Throttle & Intake Manifold' subsystem to open it. It contains two
other subsystems - the 'Throttle' and the 'Intake Manifold' subsystems. Open the 'Throttle' and 'Intake
Manifold' to see their components.

13 Simulink Featured Examples

13-146

Figure 2: The 'Throttle' and 'Intake Manifold' subsystems

Simulink models for the throttle and intake manifold subsystems are shown in Figure 2. The throttle
valve behaves in a nonlinear manner and is modeled as a subsystem with three inputs. Simulink
implements the individual equations, given in Equation 1, as function blocks. These provide a
convenient way to describe a nonlinear equation of several variables. A 'Switch' block determines
whether the flow is sonic by comparing the pressure ratio to its switch threshold, which is set at one
half (Equation 1). In the sonic regime, the flow rate is a function of the throttle position only. The
direction of flow is from the higher to lower pressure, as determined by the Sign block. With this in
mind, the 'Min' block ensures that the pressure ratio is always unity or less.

The differential equation from Equation 2 models the intake manifold pressure. A Simulink function
block computes the mass flow rate into the cylinder, a function of manifold pressure and engine speed
(see Equation 3).

Intake and Compression

An integrator accumulates the cylinder mass air flow in the 'Intake' block (located inside the 'Throttle
& Manifold' subsystem). The 'Valve Timing' block issues pulses that correspond to specific rotational
positions in order to manage the intake and compression timing. Valve events occur each cam
rotation, or every 180 degrees of crankshaft rotation. Each event triggers a single execution of the
'Compression' subsystem. The output of the trigger block within the 'Compression' subsystem then
feeds back to reset the Intake integrator. In this way, although both triggers conceptually occur at the
same instant in time, the integrator output is processed by the 'Compression' block immediately prior
to being reset. Functionally, the 'Compression' subsystem uses a 'Unit Delay' block to insert 180
degrees (one event period) of delay between the intake and combustion of each air charge.

Consider a complete four-stroke cycle for one cylinder. During the intake stroke, the 'Intake' block
integrates the mass flow rate from the manifold. After 180 degrees of crank rotation, the intake valve
closes and the 'Unit Delay' block in the 'Compression' subsystem samples the integrator state. This
value, the accumulated mass charge, is available at the output of the 'Compression' subsystem 180
degrees later for use in combustion. During the combustion stroke, the crank accelerates due to the
generated torque. The final 180 degrees, the exhaust stroke, ends with a reset of the Intake
integrator, prepared for the next complete 720 degrees cycle of this particular cylinder.

 Modeling Engine Timing Using Triggered Subsystems

13-147

For four cylinders, we could use four 'Intake' blocks, four 'Compression' subsystems, etc., but each
would be idle 75% of the time. We've made the implementation more efficient by performing the tasks
of all four cylinders with one set of blocks. This is possible because, at the level of detail we've
modeled, each function applies to only one cylinder at a time.

Combustion

Engine torque is a function of four variables. The model uses a 'Mux' block to combine these variables
into a vector that provides input to the 'Torque Gen' block. A function block computes the engine
torque (described empirically in Equation 4). The torque which loads the engine, computed by step
functions in the Drag Torque block, is subtracted in the Engine Dynamics subsystem. The difference
divided by the inertia yields the acceleration, which is integrated to arrive at the engine crankshaft
speed.

Plotting Simulation Results

We used the following default inputs for the simulation:

Try adjusting the throttle to compensate for the load torque. Figure 3 shows the simulated engine
speed, the throttle commands which drive the simulation, and the load torque which disturbs it.

13 Simulink Featured Examples

13-148

Figure 3a: Open-loop simulation inputs

 Modeling Engine Timing Using Triggered Subsystems

13-149

Figure 3b: Open-loops simulation results

Closing Model

Close the model. Clear generated data.

Conclusions

The ability to model nonlinear, complex systems, such as the engine model described here, is one of
Simulink's key features. The power of the simulation is evident in the presentation of the models
above. Simulink retains model fidelity, including precisely timed cylinder intake events, which is
critical in creating a model of this type. The basic engine model shows the flexibility of Simulink.

References

[1] P.R. Crossley and J.A. Cook, IEEE® International Conference 'Control 91', Conference Publication
332, vol. 2, pp. 921-925, 25-28 March, 1991, Edinburgh, U.K.

[2] The Simulink Model. Developed by Ken Butts, Ford Motor Company. Modified by Paul Barnard,
Ted Liefeld and Stan Quinn, MathWorks®, 1994-7.

[3] J. J. Moskwa and J. K. Hedrick, "Automotive Engine Modeling for Real Time Control Application,"
Proc.1987 ACC, pp. 341-346.

[4] B. K. Powell and J. A. Cook, "Nonlinear Low Frequency Phenomenological Engine Modeling and
Analysis," Proc. 1987 ACC, pp. 332-340.

13 Simulink Featured Examples

13-150

[5] R. W. Weeks and J. J. Moskwa, "Automotive Engine Modeling for Real-Time Control Using Matlab/
Simulink," 1995 SAE Intl. Cong. paper 950417.

See Also

More About
• “Enable Signal Logging for Model”
• “Engine Timing Model with Closed Loop Control” on page 13-152
• “Powertrain Blockset”

 Modeling Engine Timing Using Triggered Subsystems

13-151

Engine Timing Model with Closed Loop Control

This example shows how to enhance a version of the open-loop engine model described in “Modeling
Engine Timing Using Triggered Subsystems” on page 13-142. This model, sldemo_enginewc,
contains a closed-loop and shows the flexibility and extensibility of Simulink® models. In this
enhanced model, the objective of the controller is to regulate engine speed with a fast throttle
actuator, such that changes in load torque have minimal effect. This is easily accomplished in
Simulink by adding a discrete-time PI controller to the engine model.

Closed-Loop Model

We chose a control law which uses proportional plus integral (PI) control. The integrator is needed to
adjust the steady-state throttle as the operating point changes, and the proportional term
compensates for phase lag introduced by the integrator.

Equation 1

Running the Simulation

Press the "Play" button on the model toolbar to run the simulation.

• Note: The model logs relevant data to MATLAB workspace in a structure called
sldemo_enginewc_output. Logged signals have a blue indicator. Read more about Signal
Logging in Simulink Help.

13 Simulink Featured Examples

13-152

Figure 1: Closed-loop engine model and simulation results

In this model we employ a discrete-time controller, which is suitable for microprocessor
implementation. The integral term in Equation 1 must thus be realized with a discrete-time
approximation. As is typical in the industry, the controller execution is synchronized with the engine's
crankshaft rotation. The controller is embedded in a triggered subsystem that is triggered by the
valve timing signal described above.

The detailed construction of the 'Controller' subsystem is illustrated in Figure 2. Of note is the use of
the 'PID Controller' block. This block implements a proportional-integral control system in discrete
time. Note the setting for sample time set (internally) at -1. This indicates that the block inherits its
sample time, in this case executing each time the subsystem is triggered. The key component that
makes this a triggered subsystem is the 'Trigger' block shown at the bottom of Figure 2. Any
subsystem can be converted to a triggered subsystem by dragging a copy of this block into the
subsystem diagram from the Simulink Connections library.

Figure 2: Speed controller subsystem

 Engine Timing Model with Closed Loop Control

13-153

Results

Typical simulation results are shown in Figure 3. The speed set point steps from 2000 rpm to 3000
rpm at t = 5 sec. The torque disturbances are identical to those used in sldemo_engine, the
open-loop model. Note the quick transient response, with zero steady-state error. Several alternative
controller tunings (Ki and Kp) are shown. These can be adjusted by the user at MATLAB command
line. This allows the engineer to understand the relative effects of parameter variations.

Figure 3: Typical simulation results

Closing Model

Close the model. Clear logged data.

Conclusions

The ability to model nonlinear, complex systems, such as the engine model described here, is one of
Simulink's key features. The power of the simulation is evident in the presentation of the models
above. Simulink retains model fidelity, including precisely timed cylinder intake events, which is
critical in creating a model of this type. The complete speed control system shows the flexibility of
Simulink. In particular, the Simulink modeling approaches allow rapid prototyping of an interrupt-
driven engine speed controller.

References

[1] P.R. Crossley and J.A. Cook, IEEE® International Conference 'Control 91', Conference Publication
332, vol. 2, pp. 921-925, 25-28 March, 1991, Edinburgh, U.K.

13 Simulink Featured Examples

13-154

[2] The Simulink Model. Developed by Ken Butts, Ford Motor Company®. Modified by Paul Barnard,
Ted Liefeld and Stan Quinn, MathWorks®, 1994-7.

[3] J. J. Moskwa and J. K. Hedrick, "Automotive Engine Modeling for Real Time Control Application,"
Proc.1987 ACC, pp. 341-346.

[4] B. K. Powell and J. A. Cook, "Nonlinear Low Frequency Phenomenological Engine Modeling and
Analysis," Proc. 1987 ACC, pp. 332-340.

[5] R. W. Weeks and J. J. Moskwa, "Automotive Engine Modeling for Real-Time Control Using Matlab/
Simulink," 1995 SAE Intl. Cong. paper 950417.

See Also

More About
• “Enable Signal Logging for Model”
• “Modeling Engine Timing Using Triggered Subsystems” on page 13-142
• “Powertrain Blockset”

 Engine Timing Model with Closed Loop Control

13-155

Building a Clutch Lock-Up Model

This example shows how to use Simulink® to model and simulate a rotating clutch system. Although
modeling a clutch system is difficult because of topological changes in the system dynamics during
lockup, this example shows how Simulink's enabled subsystems easily handle such problems. We
illustrate how to employ important Simulink modeling concepts in the creation of the clutch
simulation. Designers can apply these concepts to many models with strong discontinuities and
constraints that may change dynamically.

In the example, you use enabled subsystems to build the clutch model. Two enabled subsystems
model the clutch dynamics in either the locked or unlocked position. After running the simulation, a
GUI opens. Checking any of the boxes on the GUI produces a plot of any of the selected variables
(versus time).

Analysis and Physics

The clutch system in this example consists of two plates that transmit torque between the engine and
transmission (see Figure 1). There are two distinct modes of operation:

1) slipping - the two plates have differing angular velocities

2) lockup - the two plates rotate together.

Handling the transition between these two modes presents a modeling challenge. As the system loses
a degree of freedom upon lockup, the transmitted torque goes through a step discontinuity. The
magnitude of the torque drops from the maximum value supported by the friction capacity to a value
that is necessary to keep the two halves of the system spinning at the same rate. The reverse
transition, break-apart, is likewise challenging, as the torque transmitted by the clutch plates exceeds
the friction capacity.

Figure 1: The clutch system, analyzed using a lumped-parameter model

Variables Used

The following variables are used in the analysis and modeling.

13 Simulink Featured Examples

13-156

Equation 1

The state equations for the coupled system are derived as follows:

Equation 2

The torque capacity of the clutch is a function of its size, friction characteristics, and the normal force
that is applied.

Equation 3

When the clutch is slipping, the model uses the kinetic coefficient of friction and the full capacity is
available, in the direction that opposes slip.

where sgn denotes the sign function.

Equation 4

 Building a Clutch Lock-Up Model

13-157

When the clutch is locked, the angular velocities of the engine and transmission input shafts are the
same, and the system torque acts on the combined inertia as a single unit. So, we combine the
differential equations (Equation 1) into a single equation for the locked state.

Equation 5

Solving Equation 1 and Equation 4, the torque transmitted by the clutch while locked is:

Equation 6

The clutch thus remains locked unless the magnitude of Tf exceeds the static friction capacity,
Tfmaxs.

The state diagram in Figure 2 describes the overall behavior of the clutch.

Figure 2: A state diagram describing the friction mode transitions

Modeling

There are two methods for solving this type of problem:

1) Compute the clutch torque transmitted at all times, and employ this value directly in the model.

2) Use two different dynamic models and switch between them at the appropriate times.

Because of its overall capabilities, Simulink can model either method. In this example, we describe a
simulation for the second method. In the second method, switching between two dynamic models
must be performed with care to ensure that the initialized states of the new model match the state
values immediately prior to the switch. But, in either approach, Simulink facilitates accurate

13 Simulink Featured Examples

13-158

simulation due to its ability to recognize the precise moments at which transitions between lockup
and slipping occur.

The simulation model for the clutch system uses enabled subsystems, a particularly useful feature in
Simulink. The simulation can use one subsystem while the clutch is slipping and the other when it is
locked. A diagram of the Simulink model appears in Figure 3.

Opening the Model and Running the Simulation

When the model is open, to run the simulation, click Run.

• Note: If you are using MATLAB Help, you can execute code from the example page by selecting
the code and pressing F9. You can also Select Code > Right Click > Select "Evaluate Selection".

 Building a Clutch Lock-Up Model

13-159

Figure 3: Top level diagram for the clutch model

• Note: The model logs relevant data to MATLAB workspace in a structure called
sldemo_clutch_output. For information about signal logging, see “Mark Signals for Logging”.

The 'Unlocked' Subsystem

Double click on the 'Unlocked' subsystem in the model window to open it. This subsystem models
both sides of the clutch, coupled by the friction torque. It is constructed around the integrator blocks
which calculate engine and vehicle speeds (see Figure 4). The model uses gain, multiplication, and
summation blocks to compute the speed derivatives (acceleration) from the states and the subsystem
inputs of engine torque, Tin, and clutch capacity, Tfmaxk.

13 Simulink Featured Examples

13-160

Figure 4: The 'Unlocked' subsystem

Enabled subsystems, such as 'Unlocked', feature several other noteworthy characteristics. The
'Enable' block at the top of the diagram in Figure 4, defines the model as an enabled subsystem. To
create an enabled subsystem, we group the blocks together like any other subsystem. We then insert
an 'Enable' block from the Simulink Connections library. This means that:

• An enable input appears on the subsystem block, identified by the pulse-shaped symbol used on
the 'Enable' block itself.

• The subsystem executes only when the signal at the enable input is greater than zero.

In this example, the 'Unlocked' subsystem executes only when the supervising system logic
determines that it should be enabled.

There is another important consideration when using systems that can be enabled or disabled. When
the system is enabled, the simulation must reinitialize the integrators to begin simulating from the
correct point. In this case, both sides of the clutch are moving at the same velocity the moment it
unlocks. The 'Unlocked' subsystem, which had been dormant, needs to initialize both integrators at
that speed in order to keep the system speeds continuous.

The simulation uses 'From' blocks to communicate the state of the locked speed to the initial
condition inputs of the two integrators. Each 'From' block represents an invisible connection between
itself and a 'Goto' block somewhere else in the system. The 'Goto' blocks connect to the state ports of
the integrators so that the model can use these states elsewhere in the system without explicitly
drawing in the connecting lines.

 Building a Clutch Lock-Up Model

13-161

The 'Locked' Subsystem

Open the 'Locked' subsystem by double clicking on it in the model window. This is another enabled
subsystem in the clutch model (see Figure 5). It uses a single state to represent the engine and
vehicle speeds. It computes acceleration as a function of the speed and input torque. As in the
'Unlocked' case, a 'From' block provides the integrator initial conditions and a 'Goto' block broadcasts
the state for use elsewhere in the model. While simulating, either the 'Locked' or the 'Unlocked'
subsystem is active at all times. Whenever the control changes, the states are neatly handed off
between the two.

Figure 5: The 'Locked' Subsystem

- The 'Friction Mode Logic' Subsystem

The 'Friction Mode Logic' subsystem (shown in Figure 6) computes the static and kinetic friction
(with the appropriate friction coefficient) according to the following formula:

Open the 'Friction Mode Logic' subsystem by double clicking on it in the model window.

13 Simulink Featured Examples

13-162

Figure 6: The 'Friction Mode Logic' Subsystem

- Other Components

The remaining blocks calculate the torque required for lockup (Equation 5), and implement the logic
described in Figure 2. One key element is located in the 'Lockup Detection' subsystem within the
'Friction Mode Logic' subsystem. This is the 'Simulink Hit Crossing' block which precisely locates the
instant at which the clutch slip reaches zero. This places the mode transition at exactly the right
moment.

- System Inputs

The system inputs are normal force, Fn, and engine torque, Tin. Each of these is represented by a
matrix table in the model workspace. The inputs are plotted in Figure 7. You can visualize various
signals by checking the corresponding boxes on the 'Clutch Demo Signals' GUI.

 Building a Clutch Lock-Up Model

13-163

Figure 7: System inputs: normal force and engine torque

Results

The following parameter values are used to show the simulation. These are not meant to represent
the physical quantities corresponding to an actual system, but rather to facilitate a meaningful
baseline example.

For the inputs shown above, the system velocities behave as shown in Figure 8 below. The simulation
begins in the Unlocked mode, with an initial engine speed flare as the vehicle side accelerates its
larger inertia. At about t = 4 sec, the velocities come together and remain locked, indicating that

13 Simulink Featured Examples

13-164

the clutch capacity is sufficient to transmit the torque. At t = 5 sec, the engine torque begins to
decrease, as does the normal force on the friction plates. Consequently, the onset of slip occurs at
about t = 6.25 sec as indicated by the separation of the engine and vehicle speeds.

Figure 8: Angular velocities of the engine, vehicle and shaft for default inputs

Notice that the various states remain constant while they are disabled. At the time instants at which
transitions take place, the state hand-off is both continuous and smooth. This is a result of supplying
each integrator with the appropriate initial conditions to use when the state is enabled.

Closing Model

Close the model. Clear generated data.

Conclusions

This example shows how to use Simulink and its standard block library to model, simulate, and
analyze a system with topological discontinuities. This is a powerful example of the 'Hit Crossing'
block and how it can be used to capture specific events during a simulation. The Simulink model of

 Building a Clutch Lock-Up Model

13-165

this clutch system can serve as a guide when creating models with similar characteristics. You can
apply the principles used in this example to any system with topological discontinuities.

See Also

More About
• “Enable Signal Logging for Model”
• “Modeling Clutch Lock-Up Using If Blocks” on page 13-167
• “Powertrain Blockset”
• “Vehicle Dynamics Blockset”

13 Simulink Featured Examples

13-166

Modeling Clutch Lock-Up Using If Blocks

This example shows how to use If/Else subsystems to build a clutch model. An 'If' subsystem models
the clutch dynamics in the locked position while an 'Else' subsystem models the unlocked position.
One or the other is enabled using the 'If' block. The dot-dashed lines from the 'If' block denote control
signals, which are used to enable If/Else (or other conditional) subsystems. Checking any of the boxes
on the GUI produces a plot of any of the selected variables (versus time).

Analysis and Physics

The clutch system in this example consists of two plates that transmit torque between the engine and
transmission. There are two distinct modes of operation:

1) slipping - the two plates have differing angular velocities

2) lockup - the two plates rotate together.

Handling the transition between these two modes presents a modeling challenge. As the system loses
a degree of freedom upon lockup, the transmitted torque goes through a step discontinuity. The
magnitude of the torque drops from the maximum value supported by the friction capacity to a value
that is necessary to keep the two halves of the system spinning at the same rate. The reverse
transition, break-apart, is likewise challenging, as the torque transmitted by the clutch plates exceeds
the friction capacity.

• Note: You can find a detailed analysis of this system, including equations and diagrams, in the
example for the clutch model with enabled subsystems.

Modeling

You can use the following two methods for solving this problem:

1) Compute the clutch torque transmitted at all times, and employ this value directly in the model.

2) Use two different dynamic models and switch between them at the appropriate times.

Simulink® can model either method. In this example, we describe a simulation for the second
method. Switching between two dynamic models must be performed with care to ensure that the
initialized states of the new model match the state values immediately prior to the switch. In either
approach, Simulink facilitates accurate simulation due to its ability to recognize the precise moments
at which transitions between lockup and slipping occur.

Running the Simulation

When the model is open, to run the simulation, click Run.

 Modeling Clutch Lock-Up Using If Blocks

13-167

13 Simulink Featured Examples

13-168

Figure 1: Top level diagram for the clutch model

• Note: The model logs relevant data to MATLAB workspace in a structure called
sldemo_clutch_if_output. Logged signals have a blue indicator. For information about signal
logging, see “Mark Signals for Logging”.

The 'If' Block

The 'If' block uses the LockedFlag signal to switch between the 'Locked' and 'Unlocked' subsystems.
Double click on the 'If' block in the model to set its parameters (see Figure 2). LockedFlag
represents the status of the clutch. LockedFlag = 1 if the clutch is locked and LockedFlag = 0 if
the clutch is unlocked.

 Modeling Clutch Lock-Up Using If Blocks

13-169

Figure 2: Setting 'If' block parameters

Results

The inputs for this model are the same as for the model that uses enabled subsystems
(sldemo_clutch). System velocities behave as shown in Figure 3 below. As expected, the results
obtained from sldemo_clutch and sldemo_clutch_if are identical.

13 Simulink Featured Examples

13-170

Figure 3: Angular velocities of the engine, vehicle and shaft for default inputs

Closing Model

Close the model. Clear generated data.

Conclusions

This example shows how to use 'If' blocks in Simulink to model a system with topological
discontinuities. This is an alternative to using enabled subsystems.

See Also
If

More About
• “Building a Clutch Lock-Up Model” on page 13-156
• “Enable Signal Logging for Model”
• “Powertrain Blockset”
• “Vehicle Dynamics Blockset”

 Modeling Clutch Lock-Up Using If Blocks

13-171

Modeling an Anti-Lock Braking System

This example shows how to model a simple model for an Anti-Lock Braking System (ABS). It simulates
the dynamic behavior of a vehicle under hard braking conditions. The model represents a single
wheel, which may be replicated a number of times to create a model for a multi-wheel vehicle.

This model uses the signal logging feature in Simulink®. The model logs signals to the MATLAB®
workspace where you can analyze and view them. You can view the code in
ModelingAnAntiLockBrakingSystemExample.m to see how this is done.

In this model, the wheel speed is calculated in a separate model named
sldemo_wheelspeed_absbrake. This component is then referenced using a 'Model' block. Note
that both the top model and the referenced model use a variable step solver, so Simulink will track
zero-crossings in the referenced model.

Analysis and Physics

The wheel rotates with an initial angular speed that corresponds to the vehicle speed before the
brakes are applied. We used separate integrators to compute wheel angular speed and vehicle speed.
We use two speeds to calculate slip, which is determined by Equation 1. Note that we introduce
vehicle speed expressed as an angular velocity (see below).

Equation 1

From these expressions, we see that slip is zero when wheel speed and vehicle speed are equal, and
slip equals one when the wheel is locked. A desirable slip value is 0.2, which means that the number
of wheel revolutions equals 0.8 times the number of revolutions under non-braking conditions with
the same vehicle velocity. This maximizes the adhesion between the tire and road and minimizes the
stopping distance with the available friction.

Modeling

The friction coefficient between the tire and the road surface, mu, is an empirical function of slip,
known as the mu-slip curve. We created mu-slip curves by passing MATLAB variables into the block
diagram using a Simulink lookup table. The model multiplies the friction coefficient, mu, by the

13 Simulink Featured Examples

13-172

weight on the wheel, W, to yield the frictional force, Ff, acting on the circumference of the tire. Ff is
divided by the vehicle mass to produce the vehicle deceleration, which the model integrates to obtain
vehicle velocity.

In this model, we used an ideal anti-lock braking controller, that uses 'bang-bang' control based upon
the error between actual slip and desired slip. We set the desired slip to the value of slip at which the
mu-slip curve reaches a peak value, this being the optimum value for minimum braking distance (see
note below.).

• Note: In an actual vehicle, the slip cannot be measured directly, so this control algorithm is not
practical. It is used in this example to illustrate the conceptual construction of such a simulation
model. The real engineering value of a simulation like this is to show the potential of the control
concept prior to addressing the specific issues of implementation.

Opening the Model

Double click on the Wheel Speed subsystem in the model window to open it. Given the wheel slip, the
desired wheel slip, and the tire torque, this subsystem calculates the wheel angular speed.

 Modeling an Anti-Lock Braking System

13-173

To control the rate of change of brake pressure, the model subtracts actual slip from the desired slip
and feeds this signal into a bang-bang control (+1 or -1, depending on the sign of the error). This
on/off rate passes through a first-order lag that represents the delay associated with the hydraulic
lines of the brake system. The model then integrates the filtered rate to yield the actual brake
pressure. The resulting signal, multiplied by the piston area and radius with respect to the wheel
(Kf), is the brake torque applied to the wheel.

The model multiplies the frictional force on the wheel by the wheel radius (Rr) to give the
accelerating torque of the road surface on the wheel. The brake torque is subtracted to give the net
torque on the wheel. Dividing the net torque by the wheel rotational inertia, I, yields the wheel
acceleration, which is then integrated to provide wheel velocity. In order to keep the wheel speed and
vehicle speed positive, limited integrators are used in this model.

Running the Simulation in ABS Mode

On the Simulation tab, click Run to run the simulation. You can also run the simulation by executing
the sim('sldemo_absbrake') command in MATLAB. ABS is turned on during this simulation.

13 Simulink Featured Examples

13-174

• Note: The model logs relevant data to MATLAB workspace in a structure called
sldemo_absbrake_output. Logged signals have a blue indicator. In this case yout and slp are
logged. Read more about Signal Logging in Simulink Help.

The plots above show the ABS simulation results (for default parameters). The first plot shows the
wheel angular velocity and corresponding vehicle angular velocity. This plot shows that the wheel
speed stays below vehicle speed without locking up, with vehicle speed going to zero in less than 15
seconds.

Running the Simulation Without ABS

For more meaningful results, consider the vehicle behavior without ABS. At the MATLAB command
line, set the model variable ctrl = 0. This disconnects the slip feedback from the controller,
resulting in maximum braking.

ctrl = 0;

Now run the simulation again. This will model braking without ABS.

 Modeling an Anti-Lock Braking System

13-175

Braking With ABS Versus Braking Without ABS

In the plot showing vehicle speed and wheel speed, observe that the wheel locks up in about seven
seconds. The braking, from that point on, is applied in a less-than-optimal part of the slip curve. That
is, when slip = 1, as the slip plot shows, the tire is skidding so much on the pavement that the
friction force has dropped off.

This is, perhaps, more meaningful in terms of the comparison shown below. The distance traveled by
the vehicle is plotted for the two cases. Without ABS, the vehicle skids about an extra 100 feet, taking
about three seconds longer to come to a stop.

13 Simulink Featured Examples

13-176

Closing the Model

Close the model. Close the 'Wheel Speed' subsystem. Clear logged data.

Conclusions

This model shows how you can use Simulink to simulate a braking system under the action of an ABS
controller. The controller in this example is idealized, but you can use any proposed control algorithm
in its place to evaluate the system's performance. You can also use the Simulink® Coder™ with
Simulink as a valuable tool for rapid prototyping of the proposed algorithm. C code is generated and
compiled for the controller hardware to test the concept in a vehicle. This significantly reduces the
time needed to prove new ideas by enabling actual testing early in the development cycle.

For a hardware-in-the-loop braking system simulation, you can remove the 'bang-bang' controller and
run the equations of motion on real-time hardware to emulate the wheel and vehicle dynamics. You
can do this by generating real-time C code for this model using the Simulink Coder. You can then test
an actual ABS controller by interfacing it to the real-time hardware, which runs the generated code.
In this scenario, the real-time model would send the wheel speed to the controller, and the controller
would send brake action to the model.

See Also

More About
• “Enable Signal Logging for Model”
• “Powertrain Blockset”
• “Vehicle Dynamics Blockset”

 Modeling an Anti-Lock Braking System

13-177

Automotive Suspension

This example shows how to model a simplified half-car model that includes an independent front and
rear vertical suspension. The model also includes body pitch and bounce degrees of freedom. The
example provides a description of the model to show how simulation can be used to investigate ride
characteristics. You can use this model in conjunction with a powertrain simulation to investigate
longitudinal shuffle resulting from changes in throttle setting.

Analysis and Physics

Free-body diagram of the half-car model

The illustration shows the modeled characteristics of the half-car. The front and rear suspension are
modeled as spring/damper systems. A more detailed model would include a tire model, and damper
nonlinearities such as velocity-dependent damping (with greater damping during rebound than
compression). The vehicle body has pitch and bounce degrees of freedom. They are represented in
the model by four states: vertical displacement, vertical velocity, pitch angular displacement, and
pitch angular velocity. A full model with six degrees of freedom can be implemented using vector
algebra blocks to perform axis transformations and force/displacement/velocity calculations.
Equation 1 describes the influence of the front suspension on the bounce (i.e. vertical degree of
freedom):

where:

13 Simulink Featured Examples

13-178

Equations 2 describe pitch moments due to the suspension.

where:

Equations 3 resolves the forces and moments result in body motion, according to Newton's Second
Law:

where:

Model

To open the model, type sldemo_suspn in the MATLAB® command window.

 Automotive Suspension

13-179

Top-level diagram of the suspension model

The suspension model has two inputs, and both input blocks are blue on the model diagram. The first
input is the road height. A step input here corresponds to the vehicle driving over a road surface with
a step change in height. The second input is a horizontal force acting through the center of the
wheels that results from braking or acceleration maneuvers. This input appears only as a moment
about the pitch axis because the longitudinal body motion is not modeled.

13 Simulink Featured Examples

13-180

The Spring/Damper model used in FrontSuspension and RearSuspension subsystems

The spring/damper subsystem that models the front and rear suspensions is shown above. Right click
on the Front/Rear Suspension block and select Mask > Look Under Mask to see the front/rear
suspension subsystem. The suspension subsystems are used to model Equations 1-3. The equations
are implemented directly in the Simulink® diagram through the straightforward use of Gain and
Summation blocks.

The differences between front and rear are accounted for as follows. Because the subsystem is a
masked block, a different data set (L, K and C) can be entered for each instance. Furthermore, L is
thought of as the Cartesian coordinate x, being negative or positive with respect to the origin, or
center of gravity. Thus, Kf, Cf, and -Lf are used for the front suspension block whereas Kr, Cr, and
Lr are used for the rear suspension block.

Run the Simulation

To run this model, on the Simulation tab, click Run. Initial conditions are loaded into the model
workspace from the sldemo_suspdat.m file. To see the contents of the model workspace, in the
Simulink Editor, on the Modeling tab, under Design, select Model Explorer. In the Model Explorer,
look under the contents of the sldemo_suspn model and select "Model Workspace". Loading initial
conditions in the model workspace prevents any accidental modifications of parameters and keeps
MATLAB workspace clean.

Note that the model logs relevant data to MATLAB workspace in a data structure called
sldemo_suspn_output. Type the name of the structure to see what data it contains.

 Automotive Suspension

13-181

Simulation results

Simulation results are displayed above. The results are plotted by the sldemo_suspgraph.m file.
The default initial conditions are given in Table 1.

Table 1: Default initial conditions

Lf = 0.9; % front hub displacement from body gravity center (m)
Lr = 1.2; % rear hub displacement from body gravity center (m)
Mb = 1200; % body mass (kg)
Iyy = 2100; % body moment of inertia about y-axis in (kg m^2)

13 Simulink Featured Examples

13-182

kf = 28000; % front suspension stiffness in (N/m)
kr = 21000; % rear suspension stiffness in (N/m)
cf = 2500; % front suspension damping in (N sec/m)
cr = 2000; % rear suspension damping in (N sec/m)

Close the Model

Close the model and delete generated data from MATLAB workspace.

Conclusions

This model allows you to simulate the effects of changing the suspension damping and stiffness,
thereby investigating the tradeoff between comfort and performance. In general, racing cars have
very stiff springs with a high damping factor, whereas passenger vehicles have softer springs and a
more oscillatory response.

See Also

More About
• “Powertrain Blockset”
• “Vehicle Dynamics Blockset”

 Automotive Suspension

13-183

Model an Automatic Transmission Controller

This example shows how to model an automotive drivetrain with Simulink®. Stateflow® enhances
the Simulink model with its representation of the transmission control logic. Simulink provides a
powerful environment for the modeling and simulation of dynamic systems and processes. In many
systems, though, supervisory functions like changing modes or invoking new gain schedules must
respond to events that may occur and conditions that develop over time. As a result, the environment
requires a language capable of managing these multiple modes and developing conditions. In the
following example, Stateflow shows its strength in this capacity by performing the function of gear
selection in an automatic transmission. This function is combined with the drivetrain dynamics in a
natural and intuitive manner by incorporating a Stateflow block in the Simulink block diagram.

Analysis and Physics

The figure below shows the power flow in a typical automotive drivetrain. Nonlinear ordinary
differential equations model the engine, four-speed automatic transmission, and vehicle. The model
discussed in this example directly implements the blocks from this figure as modular Simulink
subsystems. On the other hand, the logic and decisions made in the Transmission Control Unit (TCU)
do not lend themselves to well-formulated equations. TCU is better suited for a Stateflow
representation. Stateflow monitors the events which correspond to important relationships within the
system and takes the appropriate action as they occur.

The throttle opening is one of the inputs to the engine. The engine is connected to the impeller of the
torque converter which couples it to the transmission (see Equation 1).

Equation 1

13 Simulink Featured Examples

13-184

The input-output characteristics of the torque converter can be expressed as functions of the engine
speed and the turbine speed. In this example, the direction of power flow is always assumed to be
from the impeller to the turbine (see Equation 2).

Equation 2

The transmission model is implemented via static gear ratios, assuming small shift times (see
Equation 3).

Equation 3

The final drive, inertia, and a dynamically varying load constitute the vehicle dynamics (see Equation
4).

Equation 4

The load torque includes both the road load and brake torque. The road load is the sum of frictional
and aerodynamic losses (see Equation 5).

Equation 5

 Model an Automatic Transmission Controller

13-185

The model programs the shift points for the transmission according to the schedule shown in the
figure below. For a given throttle in a given gear, there is a unique vehicle speed at which an upshift
takes place. The simulation operates similarly for a downshift.

Modeling

When you open the model, the Initial conditions are set in the Model Workspace.

The top-level diagram of the model is shown in the figure below. To run the simulation, on the
Simulation tab, click Run. Note that the model logs relevant data to MATLAB Workspace in a data
structure called sldemo_autotrans_output. Logged signals have a blue indicator. After you run
the simulation, you can view the components of the data structure by typing
sldemo_autotrans_output in MATLAB Command Window. Also note that the units appear on the
subsystem icons and signal lines.

13 Simulink Featured Examples

13-186

Modeling

The Simulink model shown above is composed of modules which represent the engine, transmission,
and the vehicle, with an additional shift logic block to control the transmission ratio. User inputs to
the model are in the form of throttle (given in percent) and brake torque (given in ft-lb). The user
inputs throttle and brake torques using the ManeuversGUI interface.

The Engine subsystem consists of a two-dimensional table that interpolates engine torque versus
throttle and engine speed. The figure below shows the composite Engine subsystem. Double click on
this subsystem in the model to view its structure.

The TorqueConverter and the TransmissionRatio blocks make up the Transmission subsystem, as
shown in the figure below. Double click on the Transmission subsystem in the model window to view
its components.

 Model an Automatic Transmission Controller

13-187

The TorqueConverter is a masked subsystem, which implements Equation 2. To open this subsystem,
right click on it and select Mask > Look Under Mask from the drop-down menu. The mask requires
a vector of speed ratios (Nin/Ne) and vectors of K-factor (f2) and torque ratio (f3). This figure
shows the implementation of the TorqueConverter subsystem.

The transmission ratio block determines the ratio shown in Table 1 and computes the transmission
output torque and input speed, as indicated in Equation 3. The figure that follows shows the block
diagram for the subsystem that realizes this ratio in torque and speed.

Table 1: Transmission gear ratios

gear Rtr = Nin/Ne
 1 2.393
 2 1.450
 3 1.000
 4 0.677

13 Simulink Featured Examples

13-188

The Stateflow block labeled ShiftLogic implements gear selection for the transmission. Double click
on ShiftLogic in the model window to open the Stateflow diagram. The Model Explorer is utilized to
define the inputs as throttle and vehicle speed and the output as the desired gear number. Two
dashed AND states keep track of the gear state and the state of the gear selection process. The
overall chart is executed as a discrete-time system, sampled every 40 milliseconds. The Stateflow
diagram shown below illustrates the functionality of the block.

 Model an Automatic Transmission Controller

13-189

The shift logic behavior can be observed during simulation by enabling animation in the Stateflow
debugger. The selection_state (always active) begins by performing the computations indicated
in its during function. The model computes the upshift and downshift speed thresholds as a function
of the instantaneous values of gear and throttle. While in steady_state, the model compares these
values to the present vehicle speed to determine if a shift is required. If so, it enters one of the
confirm states (upshifting or downshifting), which records the time of entry.

If the vehicle speed no longer satisfies the shift condition, while in the confirm state, the model
ignores the shift and it transitions back to steady_state. This prevents extraneous shifts due to
noise conditions. If the shift condition remains valid for a duration of TWAIT ticks, the model
transitions through the lower junction and, depending on the current gear, it broadcasts one of the
shift events. Subsequently, the model again activates steady_state after a transition through one of
the central junctions. The shift event, which is broadcast to the gear_selection state, activates a
transition to the appropriate new gear.

For example, if the vehicle is moving along in second gear with 25% throttle, the state second is
active within gear_state, and steady_state is active in the selection_state. The during
function of the latter, finds that an upshift should take place when the vehicle exceeds 30 mph. At the
moment this becomes true, the model enters the upshifting state. While in this state, if the vehicle
speed remains above 30 mph for TWAIT ticks, the model satisfies the transition condition leading
down to the lower right junction. This also satisfies the condition [|gear == 2|] on the transition
leading from here to steady_state, so the model now takes the overall transition from
upshifting to steady_state and broadcasts the event UP as a transition action. Consequently, the
transition from second to third is taken in gear_state which completes the shift logic.

The Vehicle subsystem uses the net torque to compute the acceleration and integrate it to compute
the vehicle speed, per Equation 4 and Equation 5. The Vehicle subsystem is masked. To see the
structure of the Vehicle block, right click on it and select Mask > Look Under Mask from the drop-
down menu. The parameters entered in the mask menu are the final drive ratio, the polynomial
coefficients for drag friction and aerodynamic drag, the wheel radius, vehicle inertia, and initial
transmission output speed.

Results

The engine torque map, and torque converter characteristics used in the simulations are shown
below.

13 Simulink Featured Examples

13-190

Get the FactorK (second row) and the TorqueRatio (third row) vs SpeedRatio(first row)

 Model an Automatic Transmission Controller

13-191

The first simulation (passing maneuver) uses the throttle schedule given in Table 2 (this data is
interpolated linearly).

Table 2: Throttle schedule for first simulation (passing maneuver)

Time (sec) Throttle (%)
 0 60
 14.9 40
 15 100
100 0
200 0

The first column corresponds to time; the second column corresponds to throttle opening in percent.
In this case no brake is applied (brake torque is zero). The vehicle speed starts at zero and the engine
at 1000 RPM. The following figure shows the plot for the baseline results, using the default
parameters. As the driver steps to 60% throttle at t=0, the engine immediately responds by more
than doubling its speed. This brings about a low speed ratio across the torque converter and, hence, a
large torque ratio. The vehicle accelerates quickly (no tire slip is modeled) and both the engine and
the vehicle gain speed until about t = 2 sec, at which time a 1-2 upshift occurs. The engine speed
characteristically drops abruptly, then resumes its acceleration. The 2-3 and 3-4 upshifts take place at
about four and eight seconds, respectively. Notice that the vehicle speed remains much smoother due
to its large inertia.

13 Simulink Featured Examples

13-192

At t=15sec, the driver steps the throttle to 100% as might be typical of a passing maneuver. The
transmission downshifts to third gear and the engine jumps from about 2600 RPM to about 3700
RPM. The engine torque thus increases somewhat, as well as the mechanical advantage of the
transmission. With continued heavy throttle, the vehicle accelerates to about 100 mph and then shifts
into overdrive at about t = 21 sec. The vehicle cruises along in fourth gear for the remainder of
the simulation. Double click on the ManeuversGUI block and use the graphical interface to vary the
throttle and brake history.

Running Multiple Scenarios and Collecting Coverage

You can run the model for all scenarios while collecting coverage. To see a saved design study for
running all of the scenarios of sldemo_autotrans, open
sldemo_autotrans_design_study.mldatx in the Multiple Simulations panel of
sldemo_autotrans.

After the design study has been opened, enable the model coverage and cumulative collection in the
model settings.

set_param('sldemo_autotrans', 'CovEnable', 'on');

set_param('sldemo_autotrans', 'CovEnableCumulative', 'on');

Once this is set, click the Run All (Coverage) button on the Simulation tab on the Simulink
toolstrip. Then check model coverage of the design cases.

Closing the Model

Close the model, clear generated data.

 Model an Automatic Transmission Controller

13-193

Conclusions

You can enhance this basic system in a modular manner, for example, by replacing the engine or
transmission with a more complex model. You can build large systems within this structure via step-
wise refinement. The seamless integration of Stateflow control logic with Simulink signal processing
enables the construction of a model that is efficient and visually intuitive.

See Also
Signal Editor

More About
• “Configure and Run Simulations with Multiple Simulations Panel”
• “Collect Coverage for Multiple Simulations by Using Design Studies” (Simulink Coverage)
• “Create and Edit Signal Data”
• “Unit Specification in Simulink Models”
• “Powertrain Blockset”

13 Simulink Featured Examples

13-194

Vehicle Electrical System

This example shows how to simulate the electrical system of a vehicle using Simulink® and Simscape
Electrical™.

System Components

The system simulated consists of a few components. The main power source is the internal
combustion (IC) engine that drives the shaft of the alternator. The alternator produces the AC power.
The diode trio rectifies the AC current generated from the alternator to DC current that is applied to
the alternator field. The indicator lamp lights when the system is turned on and the alternator is not
producing power. The rectifier bridge converts the AC power into DC power. The smoothing capacitor,
voltage sensor, battery, and vehicle loads are connected to the DC bus.

The alternator is a three-phase synchronous machine with its field current regulated to give control
over the DC bus voltage. This is simulated by using the Synchronous Machine Round Rotor block.

The three-phase AC output of the alternator is fed into the 6-pulse rectifier bridge to give the DC
voltage required to charge the car battery and to supply the balance of the electrical system of the
car.

Operation of the System

When the IC engine is off, the battery supplies the current to the alternator field winding. The
indicator lamp is turned on.

When the IC engine runs, the alternator will start to produce voltage and the diode trio will conduct
and let the current flow to the alternator field winding. The indicator lamp is then turned off.

 Vehicle Electrical System

13-195

When the DC bus voltage reaches the upper voltage limit (which is 14.5 V in the model), the current
flowing to the alternator field is bypassed. As a result, the DC bus voltage decreases. If it reaches the
lower voltage limit (which is 13.5 V in the model), the diode trio is reconnected to the field winding.

See Also

More About
• “Electrical Models” (Simscape)
• “Vehicle Electrical and Climate Control Systems” on page 13-202

13 Simulink Featured Examples

13-196

Simulating Automatic Climate Control Systems

This example shows how to simulate an automatic climate control system in a car using Simulink®
and Stateflow®.

• In the User Setpoint in Celsius block, enter a value for the desired air temperature in the car.
• In the External Temperature in Celsius block, enter a value for the external air temperature.
• The Thermometer Display block indicates the reading of a temperature sensor placed behind the

driver's head. This is the temperature that the driver feels.

Figure 1: The automatic climate control system

Stateflow® Controller

Stateflow implements the supervisory controller. To see the control logic, open the chart.

The Heater_AC state shows that entering a setpoint temperature that is greater than the current car
temperature by at least 0.5 deg C switches the heater system on. The heater remains active until the
current temperature in the car is within 0.5 deg of the setpoint temperature. Similarly, when you
enter a setpoint that is 0.5 deg C or less than the current car temperature, the air conditioner turns
on. It stays active until the air temperature in the car is within 0.5 deg C of the setpoint temperature.
To avoid continuously switching on and off the heater, the logic implements a dead band of 0.5 deg

In the Blower state, the greater the difference between the setpoint temperature and the current
temperature, the harder the fan blows. This ensures that the temperature reaches the required value

 Simulating Automatic Climate Control Systems

13-197

in a reasonable amount of time, despite the temperature difference. When the air temperature in the
car is within 0.5 deg C of the setpoint temperature, the system switches off.

Two switches trigger the Stateflow charts that control the Air Distribution(AirDist) and Recycling Air
(Recyc_Air) states. To facilitate effective window defrosting, the controller implements an internal
transition within these two states. When the defrost state is active, the controller turns off the
recycling air.

Figure 2: The supervisory control logic in Stateflow

Heater and Air Conditioner Models

The heater model implements this heat exchange equation:

Tout = Ts - (Ts-Tin)e^[(-pi*D*L*hc)/(m_dot*Cp)]

Where:

• Ts = constant (radiator wall temperature)
• D = 0.004m (channel diameter)
• L = 0.05m (radiator thickness)

13 Simulink Featured Examples

13-198

• N = 30000 (Number of channels)
• k = 0.026 W/mK = constant (thermal conductivity of air)
• Cp = 1007 J/kgK = constant (specific heat of air)
• Laminar flow (hc = 3.66(k/D) = 23.8 W/m2K)

The models account for the heater flap. Similar to the blower operation, the greater the temperature
difference between the required setpoint temperature and the current interior temperature, the
greater the heating effect.

The air conditioner model implements this equation:

y*(w*Tcomp) = m_dot*(h4-h1)

Where:

• y = efficiency
• m_dot = mass flow rate
• w = speed of the engine
• Tcomp = compressor torque
• h4, h1 = enthalpy

The bang-bang control of the A/C system uses the engine speed and compressor torque to determine
the temperature of the air that exits the A/C.

 Simulating Automatic Climate Control Systems

13-199

Figure 3: Heater control subsystem

Figure 4: A/C control subsystem

Cabin Heat Transfer

These factors affect the temperature of the air felt by the driver:

• Temperature of the air exiting the vents
• Temperature of the outside air
• Number of people in the car

The factors are inputs into the thermodynamic model of the cabin interior. To account for the
temperature of the air exiting the vents, the model calculates the difference between the vent air and
the current car temperature and multiplies it by the fan speed proportion (mass flow rate). The model
adds 100 W of energy is per person in the car. To account for air radiating into the car from the
outside, the model multiplies the difference between the outside and interior air temperature by a
smaller mass flow rate.

The Thermometer Display block displays the Interior Dynamics model output. It is a reading of a
temperature sensor placed behind the driver's head. If you run the simulation with the default
settings, the temperature reading starts at the external temperature of 18 °C and then cools to the
user setpoint of 9 °C.

13 Simulink Featured Examples

13-200

Figure 5: Thermometer display versus time

See Also

More About
• “Create Subsystems”
• “Powertrain Blockset”

 Simulating Automatic Climate Control Systems

13-201

Vehicle Electrical and Climate Control Systems

This example shows how to interface the vehicle climate control system with a model of the electrical
system to examine the loading effects of the climate control system on the entire electrical system of
the car.

Figure 1: Vehicle Electrical and Climate Control System

The Climate Control System

Double clicking on the ClimateControlSystem subsystem will open the model of the climate control
system. Here the user can enter the temperature value they would like the air in the car to reach by
double clicking on the USER SETPOINT IN CELSIUS Block and entering the value into the dialog
box. The EXTERNAL TEMPERATURE IN CELSIUS can also be set by the user in a similar way. The
numerical display on the right hand side of the model shows the reading of a temperature sensor
placed behind the driver's head. This is the temperature that the driver should be feeling. When the
model is run and the climate control is active, it is this display box whose value changes showing the
change of temperature in the car.

13 Simulink Featured Examples

13-202

Figure 2: The automatic climate control system.

The Stateflow® Controller

The control of the system is implemented in Stateflow®. Double clicking on the Stateflow chart will
show how this supervisory control logic has been formulated.

The Heater_AC state shows that when the user enters a setpoint temperature which greater than the
current temperature in the car by at least 0.5 deg C, the heater system will be switched on. The
heater will remain active until the current temperature in the car reaches to within 0.5 deg of the
setpoint temperature. Similarly, when the user enters a setpoint which is 0.5 deg C (or more) lower
than the current car temperature, the Air Conditioner is turned on and stays active until the
temperature of the air in the car reaches to within 0.5 deg C of the setpoint temperature. After which,
the system will switch off. The dead band of 0.5 deg has been implemented to avoid the problem of
continuous switching.

In the Blower State, the larger the difference between the setpoint temperature and the current
temperature, the harder the fan blows. This ensures that the temperature will reach the required
value in a reasonable amount of time, despite the temperature difference. Once again, when the
temperature of the air in the car reaches to within 0.5 deg C of the setpoint temperature, the system
will switch off.

The Air Distribution(AirDist) and Recycling Air States(Recyc_Air) are controlled by the two switches
that trigger the Stateflow chart. An internal transition has been implemented within these two states
to facilitate effective defrosting of the windows when required. When the defrost state is activated,
the recycling air is turned off.

 Vehicle Electrical and Climate Control Systems

13-203

Figure 3: The supervisory control logic in Stateflow.

Heater and Air Conditioner Models

The heater model was built from the equation for a heat exchanger shown below:

Tout = Ts - (Ts-Tin)e^[(-pi*D*L*hc)/(m_dot*Cp)]

Where:

• Ts = constant (radiator wall temperature)
• D = 0.004m (channel diameter)
• L = 0.05m (radiator thickness)
• N = 30000 (Number of channels)
• k = 0.026 W/mK = constant (thermal conductivity of air)
• Cp = 1007 J/kgK = constant (specific heat of air)
• Laminar flow (hc = 3.66(k/D) = 23.8 W/m2K)

In addition, the effect of the heater flap is taken into account. Similar to the operation of the blower,
the greater the temperature difference between the required setpoint temperature and the current
temperature in the car, the more the heater flap is opened and the greater the heating effect.

13 Simulink Featured Examples

13-204

The Air Conditioner system is one of the two places where the climate control model interfaces with
the car's electrical system model. The compressor loads the engine of the car when the A/C system is
active. The final temperature to exit from the A/C is calculated as follows:

y*(w*Tcomp) = m_dot*(h4-h1)

Where:

• y = efficiency
• m_dot = mass flow rate
• w = speed of the engine
• Tcomp = compressor torque
• h4, h1 = enthalpy

Here we have bang-bang control of the A/C system where the temperature of the air that exits the
A/C is determined by the engine speed and compressor torque.

Figure 4: Heater control subsystem.

 Vehicle Electrical and Climate Control Systems

13-205

Figure 5: A/C control subsystem.

Heat Transfer in the Cabin

The temperature of the air felt by the driver is affected by all of these factors:

• The temperature of the air exiting the vents
• The temperature of the outside air
• The number of people in the car

These factors are inputs into the thermodynamic model of the interior of the cabin. We take into
account the temperature of the air exiting the vents by calculating the difference between the vent
air temperature and the current temperature inside the car and multiplying it by the fan speed
proportion (mass flow rate). Then 100W of energy is added per person in the car. Lastly, the
difference between the temperature of the outside air and the interior air temperature is multiplied
by a lesser mass flow rate to account for the air radiating into the car from the outside.

The output of the interior dynamics model is fed to the display block as a measure of the temperature
read by a sensor placed behind the driver's head.

The Electrical System

This electrical system models the car at idle speed. The PID controllers ensure that the car's
alternator (modeled by a synchronous machine which has its field current regulated to control the
output voltage) is also operating at the required speed. The alternator output is then fed through a 3-
phase 6-pulse rectifier bridge to supply the voltage needed to charge the battery which supplies the
voltage for the car's DC bus.

13 Simulink Featured Examples

13-206

The fan used in the climate control system is fed off this DC bus as are the windscreen wipers, radio
etc. As the difference between the setpoint temperature and the current temperature in the car
drops, so does the fan speed and therefore so does the loading on the DC bus. The inclusion of
feedback in the electrical system regulates the DC bus voltage.

The additional model of the car's electrical system allows for the changing of the engine speed.
Changing the engine speed shows the effect on the DC bus voltage.

Figure 6: The electrical system

See Also

More About
• “Vehicle Electrical System” on page 13-195
• “Powertrain Blockset”
• “Vehicle Dynamics Blockset”

 Vehicle Electrical and Climate Control Systems

13-207

Power Window Control Project

This example shows how you can use MathWorks® software and the Model-Based Development
process to go from concept to implementation for a power window system for an automobile. This
example uses Simulink®, Simulink® Coverage™, DSP System Toolbox™, Simscape™ Multibody™,
Fixed-Point Designer™, Simscape™ Electrical™, Simscape™, and Simulink® Real-Time™.

Overview of Design Requirements

In this example, consider the passenger-side power window system of an automobile. Note a critical
aspect of this system is that it can never exert a force of more than 100 N on an object when closing
the window, for example:

When the model detects such an object, it must lower the window by about 10 centimeters.

For more information on the design requirements, see “Power Window”.

Using Model-Based Development and Large Scale Modeling

This example uses Model-Based Design and large scale modeling techniques such as,

• Model Blocks to separate the hierarchy into separate models.
• Variant Subsystems Blocks to model and switch between different design choices.
• Libraries to capture algorithms for reuse in variant subsystems.
• Projects to manage the files required for the system development.

Opening Power Window Control Project

Run the following command to create and open a working copy of the project files for this example.

slexPowerWindowStart

13 Simulink Featured Examples

13-208

matlab:slexPowerWindowStart

Exploring the Project

Upon visual inspection of the project, you can see features used to organize the example. These
features are:

• Folders
• File Classification
• Shortcuts

Folders

The project is organized into the following folders:

• configureModel - MATLAB® files controlling the main system model variant configuration
• data - Images required by the project
• hmi - Files that animate the power window response
• model - Main system model, controller model, models for testing the controller, and libraries

which support these models
• task - MATLAB files that simulate the model for the different model configurations and generate

coverage reports for the controller
• utilities - MATLAB files to initialize the model, to generate spreadsheet input, to add data to the

generated spreadsheet and to manage the project environment at startup and shutdown

 Power Window Control Project

13-209

File Classification

Files in Projects have different classifications visible in Labels pane. Each label describes the specific
role a file contributes to the body of the project. In this project, new classifications were added,
including:

• Configuration - Files that configure the project or model.
• PrjConfig - Files that configure the project by adding its files to the path at startup and removing

them at shutdown
• DesignConfig - Files that determine which model configuration is active at a given time
• Design - Main system model and its referenced control model
• DesignSupport - Files such as libraries, data, and model simulation
• Simulation - Files that simulate the model for a specific configuration
• Test - Control coverage, the control interaction, and the test harness models
• Visualization - Files that animate the motion of the power window

Shortcuts

Project shortcuts are used to obtain quick access to project files that are used most often. Some
shortcuts contain general tasks such as adding the project to the path at startup and removing it at
shutdown. In addition, project shortcut groups help organize the shortcuts. The new shortcut groups
are

• Interactive Testing - Files used for interactive testing of the controller
• Main Model - File for top level Simulink model
• Model Coverage - Files used for model coverage of the controller
• Simulation - Files used for simulation of model variant configurations

Exploring Simulink Models in Project

The Simulink models for this project are located in the model folder. The models of interest are:

• Main System Model
• Models for Testing

Main System Model

In this example under the model folder, the main system model is slexPowerWindowExample. This
model consists of the driver and passenger switch blocks, which generate the inputs to the system.
The inputs then go through the control system model, which validates the states of the passenger and
driver inputs. The control system block also determines if there is an obstacle blocking the window's
path. The referenced controller produces the window motion command signals sent to the active
variant of the window system. The window system output is the feedback to the control system block.

To visualize the results of simulation, Simulation Data Inspector (SDI) logs the output data and
Simulink 3D Animation™ animates the window's motion.

Model Variants

The main system model in this project uses the Variant Subsystem block to allow for multiple
implementations of within a subsystem. The active implementation can be programmatically changed

13 Simulink Featured Examples

13-210

prior to simulation. In the main model, there are four Variant Subsystem blocks each with variant
choices that can be programmatically modified. Those four variant subsystems are:

• slexPowerWindowExample/driver_switch
• slexPowerWindowExample/passenger_switch
• slexPowerWindowExample/window_system
• slexPowerWindowExample/power_window_control_system/detect_obstacle_endstop

Each variant choice is associated with a variant control. The variant choice is active when its variant
control evaluates to true.

Since there are four programmatically modifiable Variant Subsystem blocks in the main model, there
are MATLAB files to control the combinations of variant choices to create model variant
configurations which are found under the DesignConfig classification. Available model variant
configurations are

• Power Window Controller Hybrid System Model
• Power Window Controller and Detailed Plant Model
• Power Window Controller With Data Acquisition Effects
• Power Window Controller With Controller Area Network (CAN) Communication

Power Window Controller Hybrid System Model

This model variant uses Stateflow® and Simulink to model both discrete event reactive behavior and
continuous time behavior. It uses a low order plant model to validate the roll-up and roll-down
behavior. You can simulate this variant configuration using the SimHybridPlantLowOrder shortcut.
This shortcut activates only the variant subsystem corresponding to this model configuration. Since
this model does not take into account power effects, the only output logged is position. Simulation
Data Inspector (SDI) displays the logged position data.

Power Window Controller and Detailed Plant Model

This model variant shows a more detailed plant model that includes power effects in the electrical
and mechanical domains is used to validate that the force exerted by the window on a trapped object
never exceeds 100 N. This model variant requires Simscape™ Multibody™ and Simscape™
Electrical™ products to be installed. You can simulate this variant configuration using the
SimHybridPlantPowerEffects shortcut. Unlike the previous variant model, this variant
configuration takes into account the power effects. SDI displays the logged data from armature
current, position, and force exerted by the power window.

Power Window Controller With Data Acquisition Effects

This model variant shows additional effects due to implementation that affect the control. The
phenomena included are signal conditioning to measure the armature current and quantization of the
measurement. This model variant requires Simscape Multibody, Simscape Electrical, DSP System
Toolbox™, and Fixed-Point Designer™ products to be installed. You can simulate this variant
configuration using the SimHybridPlantPowerEffects+ControlDAQEffects shortcut. Like the
previous model, SDI displays the logged data from armature current, position, and force exerted by
the power window.

Power Window Controller With CAN Communication

 Power Window Control Project

13-211

This model variant shows the use of a CAN to communicate the commands to control window
movement. The switches that may be located in the center console of the vehicle and that produce
the commands are included in this model variant. This model variant requires Simscape Multibody,
Simscape Electrical, DSP System Toolbox, and Fixed-Point Designer products to be installed. You can
simulate this variant configuration on a machine running windows OS using the|
SimCANCommunication| shortcut.

Models for Testing

To test the state machine that controls the power window, you can run the project shortcuts for
testing. Available model shortcuts for testing the controller are

• InteractiveExample
• CoverageExample
• IncreaseCoverageExample

InteractiveExample

This model shortcut opens the model, slexPowerWindowCntlInteract. This model contains the power
window controller which is a state machine. This model also contains inputs to the controller which
are selected with manual switch blocks.

The power window controller has four external inputs:

• Passenger Input
• Driver Input
• Window Frame Endstops
• Obstacle Present

Passenger Input

This input consists of a vector with three elements:

• neutral: the passenger control switch is not depressed
• up: the passenger control switch generates the up signal
• down: the passenger control switch generates the down signal

Driver Input

This input consists of a vector with three elements:

• neutral: the driver control switch is not depressed
• up: the driver control switch generates the up signal
• down: the driver control switch generates the down signal

Window Frame Endstops

This input consists of a vector with two elements:

• 0: window moves freely between top or bottom
• 1: window is stuck at the top or bottom because of physical limitations

Obstacle Present

13 Simulink Featured Examples

13-212

This input consists of a vector with two elements:

• 0: window moves freely between top or bottom
• 1: window has obstacle within its frame

You can interactively test the controller by simulating the model and selecting the desired
combination of inputs via the manual switch blocks. After making the selection of inputs, you can
verify the internal controller state and controller output against the desired result for this specific set
of inputs.

CoverageExample

This model shortcut opens the model, slexPowerWindowCntlCoverage. This model contains the power
window controller which is a state machine. This model also contains inputs to the controller which
are repeating sequence blocks.

You can use the Simulink Coverage (TM) Model Coverage tool to validate the discrete event control of
the window. The Model Coverage tool helps determine the extent to which a model test case exercises
the conditional branches of the controller. It also helps evaluate whether all transitions in the discrete
event control are taken given the test case we run. It also evaluates whether all clauses in a condition
that enables a particular transition have become true. One transition may be enabled by multiple
clauses, e.g., the transition from emergency back to neutral occurs when either 100 ticks have
occurred or when the endstop is reached.

IncreaseCoverageExample

This model shortcut opens the model, slexPowerWindowCntlCoverageIncrease. This model contains
the power window controller that is a state machine. This model also contains a From Spreadsheet
block that provides multiple sets of inputs to the controller. These input sets combine with the one
from the CoverageExample model to exercise more of the logic in the power window controller.

These input sets are:

• Logged: Logged from the CoverageExample.
• LoggedObstacleOffEndStopOn: Logged from the CoverageExample with ability to hit endstop.
• LoggedObstacleOnEndStopOff: Logged from the CoverageExample with obstacle in window.
• LoggedObstacleOnEndStopOn: Logged from the CoverageExample with obstacle in window and

ability to hit endstop.
• DriverLoggedPassengerNeutral: Logged from the CoverageExample for only the driver.

Passenger takes no action.
• DriverDownPassengerNeutral: Driver lowering window. Passenger takes no action.
• DriverUpPassengerNeutral: Driver raising window. Passenger takes no action.
• DriverAutoDownPassengerNeutral: Driver lowering window for 1 second (auto-down).

Passenger takes no action.
• DriverAutoUpPassengerNeutral: Driver raising window for 1 second (auto-up). Passenger

takes no action.
• PassengerAutoDownDriverNeutral: Passenger lowering window for 1 second (auto-down).

Driver takes no action.
• PassengerAutoUpDriverNeutral: Passenger raising window for 1 second (auto-up). Driver

takes no action.

 Power Window Control Project

13-213

The model coverage shortcut, GenerateIncreasedCoverage, uses the multiple input sets with the
Simulink Coverage Model Coverage tool to validate the discrete event control of the window and
generate a coverage report for the multiple input sets. The Model Coverage tool helps determine the
extent to which a model test case exercises the conditional branches of the controller. It also helps
evaluate if all transitions in the discrete event control have been taken into account given the input
sets we run.

See Also

More About
• “Power Window”
• “Project Management”

13 Simulink Featured Examples

13-214

Developing the Apollo Lunar Module Digital Autopilot

"Working on the design of the Lunar Module digital autopilot was the highlight of my career as an
engineer. When Neil Armstrong stepped off the LM (Lunar Module) onto the moon's surface, every
engineer who contributed to the Apollo program felt a sense of pride and accomplishment. We had
succeeded in our goal. We had developed technology that never existed before, and through hard
work and meticulous attention to detail, we had created a system that worked flawlessly." -Richard J.
Gran, The Apollo 11 Moon Landing: Spacecraft Design Then and Now

This example shows how Richard and the other engineers who worked on the Apollo Lunar Module
digital autopilot design team could have done it using Simulink® and Aerospace Blockset™ if they
had been available in 1961.

Model Description

Developing the autopilot in Simulink takes a fraction of the time it took for the original design of the
Apollo Lunar Module autopilot.

if ~bdIsLoaded("aero_dap3dof")
 open_system("aero_dap3dof");
end

 Developing the Apollo Lunar Module Digital Autopilot

13-215

https://www.mathworks.com/company/newsletters/articles/the-apollo-11-moon-landing-spacecraft-design-then-and-now.html

13 Simulink Featured Examples

13-216

The Reaction Jet Control subsystem models the digital autopilot design proposed (and implemented)
by MIT Instrumentation Laboratories (MIT IL), now called Draper Laboratory. A Stateflow® diagram
in the model specifies the logic that implements the phase-plane control algorithm described in the
technical article The Apollo 11 Moon Landing: Spacecraft Design Then and Now. Depending on which
region of the diagram the Lunar Module is executing, the Stateflow diagram is in either a
Fire_region or a Coast_region. Note, the transitions between these different regions depend on
certain parameters. The Stateflow diagram determines whether to transition to another state and
then computes which reaction jets to fire.

Translational and rotational dynamics of the Lunar Module are approximated in the Lunar Module
Dynamics subsystem. Access various visualization methods of the Lunar Module states and autopilot
performance in the Visualization area of the model, including Simulink scopes, animation with
Simulink 3D Animation, and a phase plane plot.

 Developing the Apollo Lunar Module Digital Autopilot

13-217

https://www.mathworks.com/company/newsletters/articles/the-apollo-11-moon-landing-spacecraft-design-then-and-now.html

Interactive Controls

To interact with the Lunar Module model, vary autopilot settings and Lunar Module initial states in
the Commands area. For example, to observe how the digital autopilot design handles increased initial
body rates, use the slider components in Configure LM Attitude.

13 Simulink Featured Examples

13-218

Mission Description

The LM digital autopilot has three degrees of freedom. This means that by design, the reaction jet
thrusters are configured and commanded to rotate the vehicle without impacting the vehicle's orbital
trajectory. Therefore, the translational dynamics in his model are approximated via orbit propagation
using the Spacecraft Dynamics block from Aerospace Blockset. The block is configured to use Moon
spherical harmonic gravity model LP-100K.

 Developing the Apollo Lunar Module Digital Autopilot

13-219

To demonstrate the digital autopilot design behavior, the "Descent Orbit Insertion" mission segment,
just prior to the initiation of the powered descent, was selected from the Apollo 11 Mission Report.

13 Simulink Featured Examples

13-220

https://www.nasa.gov/specials/apollo50th/pdf/A11_MissionReport.pdf

(Image Credit: NASA)

The "Descent Orbit Insertion" burn began 101 hours, 36 minutes, and 14 seconds after lift-off and
lasted 30 seconds. The burn set the Lunar module on a trajectory to lower its orbit from
approximately 60 nautical miles to 50,000 ft over about an hour. At 50,000 ft, the Module initiated its
powered descent.

Initialize the model aero_dap3dof with the approximate trajectory of the Lunar Module immediately
after the descent orbit insertion burn.

mission.t_rangeZero = datetime(1969,7,16,13,32,0); % lift-off
mission.t_descentInsertionStart = mission.t_rangeZero + hours(101) + minutes(36) + seconds(14);
mission.t_descentInsertion = mission.t_descentInsertionStart + seconds(30);
mission.t_poweredDescentStart = mission.t_rangeZero + hours(102) + minutes(33) + seconds(5.2);

disp(timetable([mission.t_rangeZero, mission.t_descentInsertionStart, ...
 mission.t_descentInsertion, mission.t_poweredDescentStart]', ...
 {'Range Zero (lift-off)', 'Descent Orbit Insertion (Engine ignition)', ...
 'Descent Orbit Insertion (Engine cutoff)', 'Powered Descent (Engine ignition)'}', VariableNames="Mission Phase"));

 Developing the Apollo Lunar Module Digital Autopilot

13-221

 Time Mission Phase
 ____________________ ___

 16-Jul-1969 13:32:00 {'Range Zero (lift-off)' }
 20-Jul-1969 19:08:14 {'Descent Orbit Insertion (Engine ignition)'}
 20-Jul-1969 19:08:44 {'Descent Orbit Insertion (Engine cutoff)' }
 20-Jul-1969 20:05:05 {'Powered Descent (Engine ignition)' }

The trajectory of the module at "Descent Orbit Insertion (Engine cutoff)" and "Powered Descent
Initiation (Engine ignition)" is provided in the Apollo 11 Mission Report (Table 7-II.- Trajectory
Parameters).

mission.Latitude_deg = [-1.16, 1.02]'; % [deg]
mission.Longitude_deg = [-141.88, 39.39]'; % [deg]
mission.Altitude_mi = [57.8, 6.4]'; % [nautical miles]
mission.Altitude_ft = convlength(mission.Altitude_mi, 'naut mi', 'ft');
mission.Velocity_fps = [5284.9, 5564.9]'; % [ft/s] (in Inertial frame)
mission.FlightPathAngle_deg = [-0.06, 0.03]'; % [deg] (measured upward from local horizontal plane)
mission.HeadingAngle_deg = [-75.19 -101.23]'; % [deg] (measured East of North)
disp(table({'Range Zero (lift-off)'; 'Descent Orbit Insertion (Engine ignition)'}, ...
 mission.Latitude_deg, mission.Longitude_deg, mission.Altitude_mi, ...
 mission.Velocity_fps, mission.FlightPathAngle_deg, mission.HeadingAngle_deg, ...
 VariableNames=["Mission Phase", ...
 "Latitude (deg)", "Longitude (deg)", "Altitude (mi)", ...
 "Velocity (ft/s)", "Flight path angle (deg)", "Heading (deg)"]));

 Mission Phase Latitude (deg) Longitude (deg) Altitude (mi) Velocity (ft/s) Flight path angle (deg) Heading (deg)
 ___ ______________ _______________ _____________ _______________ _______________________ _____________

 {'Range Zero (lift-off)' } -1.16 -141.88 57.8 5284.9 -0.06 -75.19
 {'Descent Orbit Insertion (Engine ignition)'} 1.02 39.39 6.4 5564.9 0.03 -101.23

Model Initialization

Initialize model parameters for the mission phase "Descent Orbit Insertion (Engine cutoff)" using the
data defined above.

The intialization function aero_dap3dofdata requires information about the orientation of the
Moon, which can be calculated using the Aerospace Blockset function moonLibration. This function
requires "Ephemeris Data for Aerospace Toolbox". Use aeroDataPackage to install this data if it is
not already installed.

mission.LibrationAngles_deg = moonLibration(juliandate(mission.t_descentInsertion), "405");

This example uses saved libration angle data corresponding with t_descentInsertion. Use the
above command after installing the required ephemeris data.

mission.LibrationAngles_deg = [0.006379917345247; 0.382328074214300; 6.535718297208969];

Run the intialization function:

[moon, ic, vehicle, rcs] = aero_dap3dofdata(...
 mission.Latitude_deg(1), mission.Longitude_deg(1), mission.Altitude_ft(1), ...
 mission.Velocity_fps(1), mission.FlightPathAngle_deg(1), ...
 mission.HeadingAngle_deg(1), mission.LibrationAngles_deg)

moon = struct with fields:
 r_moon_eq: 5702428

13 Simulink Featured Examples

13-222

https://www.nasa.gov/specials/apollo50th/pdf/A11_MissionReport.pdf

 f_moon: 0.0012

ic = struct with fields:
 t_runtime: 120
 pos_inertial: [-3.6488e+06 -4.4381e+06 -1.9070e+06]
 vel_inertial: [4.0625e+03 -3.3792e+03 86.4867]
 euler_0: [-30 -10 -60]

vehicle = struct with fields:
 inertia_0: [3x3 double]
 mass_0: 33296

rcs = struct with fields:
 Force: 100
 L_arm: 5.5000
 DB: 0.0060
 tmin: 0.0140
 alph1: 0.0550
 alph2: 0.0039
 alph3: 0.0050
 alphu: 0.0063
 alphv: 7.8553e-04
 alphs1: 0.0055
 alphsu: 6.2855e-04
 alphsv: 7.8553e-05
 clockt: 0.0050
 delt: 0.1000

Closing Remarks

Building a digital autopilot was a daunting task in 1961 because there was very little industrial
infrastructure for it - everything about it was in the process of being invented. Here is an excerpt
from the technical article The Apollo 11 Moon Landing: Spacecraft Design Then and Now:

"One reason why the [autopilot's machine code] was so complex is that the number of jets that could
be used to control the rotations about the pilot axes was large. A decision was made to change the
axes that the autopilot was controlling to the "jet axes" shown in aero_dap3dof. This change
dramatically reduced the number of lines of code and made it much easier to program the autopilot in
the existing computer. Without this improvement, it would have been impossible to have the autopilot
use only 2000 words of storage. The lesson of this change is that when engineers are given the
opportunity to code the computer with the system they are designing, they can often modify the
design to greatly improve the code."

References

[1] National Aeronautics and Space Administration Manned Spacecraft Center, Mission Evaluation
Team. (November 1969). Apollo 11 Mission Report MSC-00171. Retrieved from https://www.nasa.gov/
specials/apollo50th/pdf/A11_MissionReport.pdf

 Developing the Apollo Lunar Module Digital Autopilot

13-223

https://www.mathworks.com/company/newsletters/articles/the-apollo-11-moon-landing-spacecraft-design-then-and-now.html
https://www.nasa.gov/specials/apollo50th/pdf/A11_MissionReport.pdf
https://www.nasa.gov/specials/apollo50th/pdf/A11_MissionReport.pdf

[2] Richard J. Gran, MathWorks. (2019). The Apollo 11 Moon Landing: Spacecraft Design Then and
Now. Retrieved from https://www.mathworks.com/company/newsletters/articles/the-apollo-11-moon-
landing-spacecraft-design-then-and-now.html

See Also

More About
• “Aerospace Blockset”
• “Create Aerospace Models” (Aerospace Blockset)

13 Simulink Featured Examples

13-224

https://www.mathworks.com/company/newsletters/articles/the-apollo-11-moon-landing-spacecraft-design-then-and-now.html
https://www.mathworks.com/company/newsletters/articles/the-apollo-11-moon-landing-spacecraft-design-then-and-now.html

Designing a High Angle of Attack Pitch Mode Control

Control Design Using Simulink®

This example shows how to use the Control System Toolbox™ and Simulink® Control Design™ to
interact with Simulink to design a digital pitch control for the aircraft. In this example, we will design
the controller to permit the aircraft to operate at a high angle of attack with minimal pilot workload.

Our example takes you through the first pass at designing a digital autopilot for a high angle of attack
controller. To run everything in this example you must have the Control System Toolbox, Simulink
Control Design, Simulink, and Simulink® Coder™. If you don't have all of these products, you can
still run portions of the example using cell execution mode of the MATLAB® editor.

Below is a Simulink model of the aircraft. The control systems in the Controllers block can be
switched in the model to allow you to see the analog response and then to switch to a design created
using the Control System Toolbox's Linear Time Invariant (LTI) objects. A controller is also included
that is a discrete implementation of the analog design that is similar to the algorithm that would go
into an on-board flight computer. Take a few moments to explore the model.

 Designing a High Angle of Attack Pitch Mode Control

13-225

13 Simulink Featured Examples

13-226

Figure 1: Simulink model of the aircraft flight control system.

Trimming and Linearization

You can linearize the model using Simulink Control Design software. To interactively linearize the
model, use the Model Linearizer app. To open the app, in the Simulink Editor, on the Apps tab,
under Control Systems, click Model Linearizer. You can also programmatically linearize the model
using the linearize function.

Open the slexAircraftPitchControlAutopilot model.

To view the linearized model parameters:

apmdl = 'slexAircraftPitchControlAutopilot';
open_system(apmdl)
op = operpoint(apmdl);
io = getlinio(apmdl);
contap = linearize(apmdl,op,io)

contap =

 A =
 Alpha-sensor Pitch Rate L Proportional Stick Prefil
 Alpha-sensor -2.526 0 0 0
 Pitch Rate L 0 -4.144 0 0
 Proportional -1.71 0.9567 0 10
 Stick Prefil 0 0 0 -10

 B =
 Alpha Sensed Stick q Sensed
 Alpha-sensor 1 0 0
 Pitch Rate L 0 0 1
 Proportional 0 0 -0.8156
 Stick Prefil 0 1 0

 C =
 Alpha-sensor Pitch Rate L Proportional Stick Prefil
 Sum 2.986 -1.67 -3.864 -17.46

 D =
 Alpha Sensed Stick q Sensed
 Sum 0 0 1.424

Continuous-time state-space model.

 Designing a High Angle of Attack Pitch Mode Control

13-227

Figure 2: Original analog autopilot.

Linear Time-Invariant (LTI) Systems

There are three types of LTI objects you can use to develop a linear model:

State Space (SS), Transfer Function (TF), and Zero-Pole-Gain (ZPG) objects.

The variable contap is a State Space object. You can then get one of the other types with the other
commands. When you create the object in MATLAB, you can manipulate it using operations such as *,
+, -, etc. This is called "overloading" the MATLAB operators. Try creating an object of your own and
see what happens when adding, multiplying, etc. with the contap object.

To see exactly what is stored in the LTI object, type get(contap) or contap.InputName for example.

To view Zero/Pole/Gain transfer functions:

contap = tf(contap);
contap = zpk(contap)

contap =

 From input "Alpha Sensed" to output "Sum":
 2.9857 (s+2.213)

 s (s+2.526)

13 Simulink Featured Examples

13-228

 From input "Stick" to output "Sum":
 -17.46 (s+2.213)

 s (s+10)

 From input "q Sensed" to output "Sum":
 1.424 (s+2.971) (s+2.213)

 s (s+4.144)

Continuous-time zero/pole/gain model.

Discretized Controller Using Zero-Order Hold

Now the LTI object will be used to design the digital autopilot that will replace the analog autopilot.
The analog system is coded into the LTI object called contap (CONtinuous AutoPilot).

The first attempt at creating a digital autopilot will use a zero-order hold with a sample time of 0.1
seconds. Note that the discrete object maintains the type (ss, tf, or zpk).

It is clear from Bode plot below that the systems do not match in phase from 3 rad/sec to the half
sample frequency (the vertical black line) for the pilot stick input and the angle of attack sensor. This
design has poorer response than the analog system. Go to the Simulink model and start the
simulation (make sure you can see the scope windows). While the simulation is running, double-click
the manual switch labeled Analog or Digital.

Does the simulation verify the conclusion reached by interpreting the Bode diagram?

discap = c2d(contap, 0.1, 'zoh');
get(discap)
bode(contap,discap)

 Z: {[0.8016] [0.8039] [2x1 double]}
 P: {[2x1 double] [2x1 double] [2x1 double]}
 K: [0.2943 -1.2458 1.4240]
 DisplayFormat: 'roots'
 Variable: 'z'
 IODelay: [0 0 0]
 InputDelay: [3x1 double]
 OutputDelay: 0
 InputName: {3x1 cell}
 InputUnit: {3x1 cell}
 InputGroup: [1x1 struct]
 OutputName: {'Sum'}
 OutputUnit: {''}
 OutputGroup: [1x1 struct]
 Notes: [0x1 string]
 UserData: []
 Name: ''
 Ts: 0.1000
 TimeUnit: 'seconds'
 SamplingGrid: [1x1 struct]

 Designing a High Angle of Attack Pitch Mode Control

13-229

Figure 3: Bode diagram comparing analog and ZOH controllers.

Tustin (Bilinear) Discretization

Now try different conversion techniques. You can use the Tustin transformation. In the command
window type the commands above.

It should be clear that the systems still do not match in phase from 3 rad/sec to the half sample
frequency, the Tustin transformation does better. The simulation uses the LTI object as it is designed.
To see how the object is used look in the Controllers subsystem by using the browser or by double
clicking the icon. The LTI block picks up an LTI object from the workspace. You can change the object
name used in the block to any LTI object in the workspace.

Try using "discap1", the Tustin discretization of the analog design:

discap1 = c2d(contap,0.1,'tustin');
bode(contap,discap,discap1)

13 Simulink Featured Examples

13-230

Figure 4: Bode diagram comparing analog and 0.1 sec Tustin controllers.

Selecting a Sample Time

The Tustin transform performs better than the zero-order hold from the analysis so far. The sample
time of 0.1 second appears to be too slow for the discrete system to track the performance of the
analog system at half the sample frequency.

Now transform the analog design using the Tustin transform with a 0.05 second sample period:

discap = c2d(contap,0.05,'tustin')
bode(contap,discap)

discap =

 From input "Alpha Sensed" to output "Sum":
 0.074094 (z-0.8951) (z+1)

 (z-1) (z-0.8812)

 From input "Stick" to output "Sum":
 -0.36852 (z-0.8951) (z+1)

 (z-1) (z-0.6)

 From input "q Sensed" to output "Sum":

 Designing a High Angle of Attack Pitch Mode Control

13-231

 1.4629 (z-0.8617) (z-0.8951)

 (z-1) (z-0.8123)

Sample time: 0.05 seconds
Discrete-time zero/pole/gain model.

Figure 5: Bode diagram comparing analog and 0.05 sec Tustin controllers.

Real-World Considerations

Now that we have what appears to be a workable design, we need to implement it in a form that will
include some of the necessary elements that were ignored in the linear analysis. For example, if you
look at the analog autopilot that is in the Controllers subsystem, you will see some logic that stops the
integrator from winding up when the actuator saturates:

Open the AnalogControl subsystem.

13 Simulink Featured Examples

13-232

Figure 6: AnalogControl subsystem.

Implementation of the Full Design

The integrator wind-up is only one of the practical issues that needs to be addressed. Another is the
need to eliminate aliased high frequency signals that could enter at measurement points. These
aliased signals can be prevented by specifying analog filters in front of the sample and hold (ZOH)
blocks that model the analog-to-digital converter (ADC) devices typically used for measuring signals
in an embedded application. Additionally, the filters in the digital section of the autopilot operate at a
higher sampling rate than the compensator to provide a conditioned signal to the compensator. The
analog filters are necessary because once a signal is aliased, there is no way to separate the valid in-
band frequency content from aliased content.

This new controller is called Digital Control. The filters have a sample time of deltat1 (set to be 1/10
of deltat). The zero-order hold blocks specify these sample times for various downstream blocks
through sample time inheritance.

The switches in the slexAircraftPitchControlExample model are set up so you can switch between the
analog autopilot, the digital LTI object, and the digital autopilot that could be implemented using
software.

Try simulating the system again and switch among the three autopilot designs. You should see that
the designs are not significantly affected by which autopilot is active. You can also increase the
amplitude of the wind gust and verify that the anti-aliasing filters are working satisfactorily. To
increase the gust amplitude, open the Dryden Wind Gust subsystem and change (by double clicking
the icon) the noise variance of the White Noise that drives the gust simulation.

Open the DigitalControl subsystem.

 Designing a High Angle of Attack Pitch Mode Control

13-233

Figure 7: DigitalControl subsystem.

Variant Systems for Design Variants

The actuators in the Simulink model use the Variant Subsystems block to represent multiple actuator
implementations, where only one implementation is active during simulation. You can double-click the
Variant Actuator Subsystem block to view the different actuator implementations.

To make the simulation change, use the nonlinear actuator instead of the linear one. You can do this
by using the Variant Subsystem block Variant > Override using context menu.

Note that Simulink must be stopped in order to reconfigure the actuator selection. You should also
note that the nonlinear actuator has saturations on position and rate.

Figure 8: Variant Subsystem for Actuators

Code Generation

The autopilot design can be transformed into embeddable code using Simulink Coder. A separate
model of the digital autopilot, slexAircraftPitchControlDAP, is open below; it was coded into a host-

13 Simulink Featured Examples

13-234

based standalone program using Simulink Coder and the compiler specified using the mex -setup
configuration. The simulation results can be used as a validation baseline for the functional
correctness of the generated code.

The executable file resulting from code generation and compilation is
slexAircraftPitchControlDAP.exe. If you create it, it can be run from the OS shell (DOS) command line
directly or from MATLAB by typing:

>> !slexAircraftPitchControlDAP.exe

The executable program creates a file called slexAircraftPitchControlDAP.mat that you can load by
typing load slexAircraftPitchControlDAP.

Two variables called rt_tout and rt_yout will be in the workspace and their variance against the
simulation baseline can be plotted. Note that the variance is effectively zero for this model on this
host. Some small numeric variance is to be expected in more complex calculations due to differing
compiler optimizations and use of intermediate register variables having higher precision than the
64-bit storage format of a double. Significant variances should be examined as they could indicate a
numerical stability problem in your model's algorithms, a compiler or run-time library bug, or other
problems.

Open the slexAircraftPitchControlDAP model.

 Designing a High Angle of Attack Pitch Mode Control

13-235

Figure 9: Comparison of simulation and code generation results.

Behavior of the First Pass Design

Here is the time response of the high angle of attack mode digital pitch controller design:

13 Simulink Featured Examples

13-236

Figure 10: Response of the aircraft Digital Pitch Control Design.

Summary

Further work on this design might include incorporating and analyzing more of the real-world effects
on the compensator such as the effect of the anti-aliasing filter dynamics and computational delay of
the embedded digital computer on the overall "plant" seen by the digital computations. The
combination of the real plant, the computational delay, the anti-aliasing filters, and the sample-and-
hold delay are just a few of the additional items that might affect the design of the digital
compensator parameters.

See Also
linearize | Model Linearizer

More About
• “Aerospace Blockset”
• “Create Aerospace Models” (Aerospace Blockset)

 Designing a High Angle of Attack Pitch Mode Control

13-237

Six Degrees of Freedom (6-DoF) Motion Platform

This example shows how to model six degrees of freedom motion in Simulink®. You can switch
between using Euler Angles and Quaternions to model the equations of motion, using the Variant
Subsystem block's "Variant > Override using" context menu.

13 Simulink Featured Examples

13-238

 Six Degrees of Freedom (6-DoF) Motion Platform

13-239

See Also

More About
• “Aerospace Blockset”
• “Create Aerospace Models” (Aerospace Blockset)

13 Simulink Featured Examples

13-240

Aircraft Longitudinal Flight Control

This example shows how to model flight control for the longitudinal motion of an aircraft. First order
linear approximations of the aircraft and actuator behavior are connected to an analog flight control
design that uses the pilot's stick pitch command as the set point for the aircraft's pitch attitude and
uses aircraft pitch angle and pitch rate to determine commands. A simplified Dryden wind gust model
is incorporated to perturb the system.

The Viewers and Generators Manager was used in this model to create the model scope for viewing
signals, Scope1. Found on Simulation > Prepare > Viewers Manager, the Viewers and Generators
Manager allows you to instrument your model without having to add blocks to the model. If you close
a model scope, such as for batch simulations, you can later reopen it by double-clicking the "scope"
icon on the signal of interest.

Parameters for the model are stored in a file named slexAircraftData.m. This file is loaded by the
model into the model workspace. You can view and edit data in the model workspace directly by using
the Model Explorer, which is launched using the Modeling > Design > Model Explorer menu item.

 Aircraft Longitudinal Flight Control

13-241

See Also

More About
• “Aerospace Blockset”
• “Create Aerospace Models” (Aerospace Blockset)
• “Simulink® Model Discretizer” on page 13-243

13 Simulink Featured Examples

13-242

Simulink® Model Discretizer

This interactive example shows how to discretize the Actuator Model in the slexAircraftExample
model. Click Open Model to open the model.

Open the Model Discretizer

To open the Model Discretizer, in the Simulink Editor, on the Apps tab, under Apps, under Control
Systems, click Model Discretizer. This opens the Model Discretizer.

The Simulink model window and the Model Discretizer GUI are laid out in the screen for easy
navigation.

• The model tree is shown in the left panel of the Model Discretizer GUI.
• Discretization parameters are set through the right panel of the Model Discretizer GUI.
• Discretization status is shown in the lower part of the right panel.
• By default, only continuous blocks are shown in the Model Discretizer GUI.
• In the Simulink model window, blocks in red color are continuous blocks.

You can browse through the continuous blocks one by one using the model tree view. In the Simulink
Model Discretizer, select the View > Next continuous block. This highlights the Actuator Model.

Before discretizing the Actuator Model block, set the discretization parameters: transform method,
sample time, critical frequency. Critical frequency has to be specified if the transform method 'tustin
with prewarping' is selected.

After setting the discretization parameters, select Discretize > Discretize current block in the
Model Discretizer. Or you can just click the s->z button icon in the tool bar. The discretized Actuator
Model is highlighted in blue color in the model.

By default, the Actuator Model was replaced by a discrete block beneath a continuous block dialog,
allowing you to continue entering the Actuator Model parameters in the s-domain. In the model
window, double-click the Actuator model. Two new fields 'Sample time' and 'Method' were added to
the block dialog window. These parameters are used to automatically convert the continuous
parameters to equivalent discrete parameters.

See Also

Related Examples
• “Aircraft Longitudinal Flight Control” on page 13-241

 Simulink® Model Discretizer

13-243

Radar Tracking Using MATLAB Function Block

This example shows how to use an extended Kalman filter with the MATLAB® Function block in
Simulink® to estimate an aircraft's position from radar measurements. The filter implementation is
found in the MATLAB Function block, the contents of which are stored in the Simulink model itself.

At the end of the simulation, three figures display the following information: the actual trajectory
compared to the estimated trajectory; the estimation residual for range; and the actual, measured,
and estimated positions.

13 Simulink Featured Examples

13-244

See Also

More About
• “Aerospace Blockset”
• “Create Aerospace Models” (Aerospace Blockset)

 Radar Tracking Using MATLAB Function Block

13-245

Optical Sensor Image Generation

Generating an Optical Sensor Image From Simulated Movement Data

This example shows how to generate a movie with 64 frames and a frame size of 64 by 64 pixels (at
10 frames per second). The movie contains a simulation of a moving target that is moving through a
structured background that is itself moving. A jitter motion caused by random vibration is also
generated (in a Simulink® model called "aero_vibrati") and the jitter motion is added into the overall
sensor motion. Finally, the image is blurred through a Gaussian optical point spread function.

Note: Changing delt here also requires a change in the parameters set-up dialog box in the Simulink
model "vibration".

delt = 0.1; % Sample time of the generated sequence
num_frames= 64; % Number of frames to generate
framesize = 64; % Square frame size in pixels

out = zeros(framesize,framesize,num_frames); % Initialize movie storage as a 3D Array

Generate a Target and Define Its Motion

The first stage is to define the shape and motion of the target object.The shape chosen is a large plus
sign, and the image is defined by a matrix representing the image intensity at each pixel position. The
Target is defined to be traveling from center to bottom right of the image.

target = [zeros(3,11)
 zeros(1,5) 6 zeros(1,5)
 zeros(1,5) 6 zeros(1,5)
 zeros(1,3) 6 6 6 6 6 zeros(1,3) % Target is a plus sign 5 by 5 pixels across
 zeros(1,5) 6 zeros(1,5) % with an intensity of 6 (S/N ratio is ~4).
 zeros(1,5) 6 zeros(1,5) % The total target image is made on an 11x11 grid to
 zeros(3,11)]; % allow the image to be interpolated without error.

target_velx = 1; % target velocity in x direction in pixels per second
target_vely = 1; % target velocity in y direction in pixels per second
target_x_initially = framesize/2; % the target is initially in the center of the frame in x
target_y_initially = framesize/2; % and in y

figure(1);
colormap('gray');
image(target*32);
title('Target Image')

13 Simulink Featured Examples

13-246

Build Background and Target Composite Image

Generate a sinusoidally correlated background and give it a drift motion. Then, overlay the target
onto the background image.

backsize = framesize+36; % Make the background bigger than the frame so when it
 % drifts there are new pixels available to drift into.
xygrid = (1:backsize)/backsize;
B=2*sin(2*pi*xygrid).^2'*cos(2*pi*xygrid).^2;

psd = fft2(B);
psd = real(psd.*conj(psd));

background = B + 0.5*randn(backsize); % Add a specular Gaussian white
 % sequence to the structure with
 % variance of 0.25 (sigma of 0.5).

xoff = 10;
yoff = 10; % Sensor location is offset from the 0,0 of the background
driftx = 1;
drifty = 1; % drift rate of the background in a and y directions pix/sec.

minout = min(min(min(background)));
maxout = max(max(max(background)));
colormap('gray');
image((background-minout)*64/(maxout-minout))
title('Background image with additive white specular noise')

 Optical Sensor Image Generation

13-247

Simulate the Tracker's Rotational Vibration

Rotational vibration of the tracker is simulated using model aero_vibrati. The data required to
simulate the vibration of the tracker is generated by running the Simulink model "aero_vibrati".

Run Simulink vibration model using sim command (Note -- if the delt is changed from 0.1 seconds,
the Simulink model must be changed also to ensure that the sample time for the vibration match the
sample time in this tracker image model.

The resulting random rotations are shown in Figure 1.

omega = 2*pi*5; % The structural frequencies are 5, 10 and 15 Hz in the model.
zeta = 0.01; % Damping ratio for all modes

open_system('aero_vibrati')
simout = sim('aero_vibrati','SrcWorkspace','current');

vibdat = simout.get('vibdat'); % The Simulink model "aero_vibrati"
 % generates the vibration data at
 % a sample time of 0.01 sec.
vibx = vibdat(1:10:1000); % The output of simulation is
 % returned as the variable simout
 % The variable simout contains
viby = vibdat(1001:10:2000); % the in array vibdat that contains
 % the vibration data

levarmx = 10; % Rotational lever arm for vibration noise in x

13 Simulink Featured Examples

13-248

levarmy = 10; % and in y.

subplot(211);
plot(0.01*(1:10:1000),vibx);grid;
title('Time history of the random Tracker rotations')
xlabel('Time');ylabel('x direction')

subplot(212);
plot(0.01*(1:10:1000),viby);grid;
xlabel('Time');ylabel('y direction')

 Optical Sensor Image Generation

13-249

Simulate the Motion Effects From the Background, Target, and Jitter

The frames that will make up the movie are now created and stored in a multidimensional array (out).
Each frame has the background and target at differing positions due to the target motion,
background drift, and tracker vibration. The first frame of the movie will be shown in Figure 1.

clf; drawnow;

for t = 1:num_frames

 % Drift the Background at the rate driftx and drifty
 % (in pixels/second) and add in the vibration:
 xshift = driftx*delt*t+levarmx*vibx(t,1);
 yshift = drifty*delt*t+levarmy*viby(t,1);

 % Interpolate the 2D image using the MATLAB(R) function interp2:
 [xgrid, ygrid] = meshgrid(1:backsize);
 [xindex, yindex] = meshgrid(xshift:1:xshift+backsize,yshift:1:yshift+backsize);
 outtemp = interp2(xgrid,ygrid,background,xindex,yindex);

 % Truncate the drifted image down from backsize to framesize:
 out(:,:,t) = outtemp(xoff:xoff+framesize-1,xoff:xoff+framesize-1);

 % Now let the target move also:
 tpixinx = floor(target_velx*delt*t);
 tpixiny = floor(target_vely*delt*t); % Before interpolating extract the number of pixels moved
 txi = target_velx*delt*t - tpixinx;

13 Simulink Featured Examples

13-250

 tyi = target_vely*delt*t - tpixiny; % Interpolate on sub-pixels around the origin only
 [txgrid tygrid] = meshgrid(1:11); % meshgrid here generates a matrix of grid elements
 [txi tyi] = meshgrid(txi+1:txi+11,tyi+1:tyi+11); % meshgrid generates 2 matrices with the x and y grids

 % Interpolate the intensity values first using interp2 -- a built in MATLAB command
 temp = interp2(txgrid,tygrid,target,txi,tyi);

 % Insert the target at the location determined by the initial offset, and the number of whole pixels moved
 tx = tpixinx + target_x_initially-1;
 ty = tpixiny + target_y_initially-1;
 out(tx:tx+6,ty:ty+6,t) = temp(9:-1:3,9:-1:3) + out(tx:tx+6,ty:ty+6,t);

end

minout = min(min(min(out)));
maxout = max(max(max(out)));
colormap('gray');
image((out(:,:,1)-minout) * 64/(maxout-minout));
title('First frame of combined target and background image.')

Pass the Images Through Optics -- Use a Gaussian "Aperture Function"

This code segment can use a measured aperture function just as easily - simply replace the next five
lines by "load measured_aperture" where measured_aperture is the measured function stored in
ASCII and the data stored in the file measured_aperture.mat is a MATLAB® .mat file that contains
the matrix apfunction. (in MATLAB type "help load" for how to use load and look at the c and fortran
code that shows how to read and write MATLAB .mat files).

 Optical Sensor Image Generation

13-251

(Note: When the Point Spread Function is Gaussian, then so is the Aperture function)

To simulate the effect of the tracker optics, each of the movie frames is now blurred using a 2-D FFT
(Fast Fourier Transform). The first frame of the resulting image is shown in Figure 1.

x = 1:framesize;
y = 1:framesize;
sigma = 120;
apfunction = exp(-(x-framesize/2).^2/(2*sigma))' * exp(-(y-framesize/2).^2/(2*sigma));
apfunction = fftshift(apfunction); % Rotate so it conforms with FFT convention

for j = 1:num_frames
 out(:,:,j) = real(ifft2(apfunction.*fft2(out(:,:,j))));
end

minout = min(min(min(out)));
maxout = max(max(max(out)));
colormap('gray');
image((out(:,:,1)-minout)*64/(maxout-minout));
title('First frame of blurred image.')

Generate the MATLAB® Movie and Play It Back

Scale the movie frame so that is has 64 intensity values from the min to the max and then show the
result as an image. See MATLAB help for how the moviein and getframe work.

minout = min(min(min(out)));
maxout = max(max(max(out)));

13 Simulink Featured Examples

13-252

M = moviein(num_frames);
for j = 1:num_frames
 image((out(:,:,j)-minout)*64/(maxout-minout))
 drawnow
 M(:,j) = getframe;
end

% colormap('gray')
% movie(M);

OPTIONAL: Save the Movie in a .mat File

You can optionally save the generated tracker movie in a mat file and also save the psd of the
background for later use with the movie.

save trackerimage out
save psdback psd
save moviedat M

 Optical Sensor Image Generation

13-253

bdclose('aero_vibrati');

See Also

More About
• “Aerospace Blockset”
• “Create Aerospace Models” (Aerospace Blockset)

13 Simulink Featured Examples

13-254

Air Traffic Control Radar Design

This example shows how to model a conceptual air traffic control (ATC) radar simulation based on the
radar range equation.

Model Description

To make parameters for Radar System Design easier to change and easier to determine their values,
the model has a GUI. Radar and weather parameters may be changed from this GUI. While
simulating, the effects of these parameters can be seen on the scope display which shows the actual
aircraft range in yellow and the estimated aircraft range from the radar in magenta. Another output
that can be viewed is the calculated signal to noise ratio (SNR) is compared to the ideal SNR. Ideal
SNR is also specified from the GUI. The result is shown in the display block and will be either 1 (SNR
>= ideal SNR) or 0 (SNR < ideal SNR).

Simulink® and Stateflow® are used in the model, which is divided into three main subsystems, radar,
aircraft, and weather.

Using subsystems is helpful in two ways: the model is organized and easier to understand and the
work can be split between multiple engineers by subsystems. The Stateflow machine labeled "check
SNR" performs the logic comparing calculated SNR to the ideal SNR and output data based on this
comparison.

You can run the simulation to determine if the radar can pick up the aircraft by the output on the
scope. Using the GUI, the radar and the weather parameters can be altered and will change the
range where the aircraft can be "seen".

Open and simulate the aero_atc model.

open_system('aero_atc');

 Air Traffic Control Radar Design

13-255

https://www.mathworks.com/discovery/radar-system-design.html

13 Simulink Featured Examples

13-256

sim('aero_atc');

Design Issues

Radar systems are designed for a specific purpose and can very seldom be used for other applications
effectively. Each new radar specification requires the computation of new parameter values. When
designing a radar for an application, there are a number of parameters which shape the design. Some
of these parameters are contained or derived logically from the customer specification. Others are
selected arbitrarily using the design engineer's best judgment. This is the first approximate solution
for the system design. From here, continual refinement of the design parameters takes place until an
optimum design is reached. If any changes occur in the customer specification, it could cause a need
to rework the design process over from the beginning. The parametric nature of this design strategy
lends itself to automation.

Design Specification

We're interested in performing conceptual design for a ground-based air traffic control (ATC) radar.
Let's take a look at a potential customer specification.

 Air Traffic Control Radar Design

13-257

This is an example of a customer specification upon which a design process would be based. The
customer, possibly the FAA, provides some basic requirements for the radar design leaving a number
of parameter selections up to the design engineer.

It should be noted that some of the logically derived parameters depend on assumptions made by the
engineer and would need to be recalculated each time the best-judgment parameters are optimized.
This problem lends itself well to simulation. By using Simulink and Stateflow, the design engineer has
the analysis capability to have time-varying design cases for Monte Carlo test runs, i.e.: aircraft cross-
sections and locations, weather cross-sections, and locations.

MathWorks® Products in the Design Process

Here's how MathWorks® products fit the job of conceptual radar design:

13 Simulink Featured Examples

13-258

Using the customer specification and the radar range equations along with equations describing the
physics of the system, a model is built in MATLAB®, Simulink, and Stateflow. Using the model with
the sim command for batch runs, those best-judgment parameters can be optimized for various
conditions, weather, aircraft, using a Monte Carlo simulation run to prove robustness. The result is a
set of optimized radar parameters that can be used to build a detailed block diagram model of the full
radar system for further system analysis in Simulink with the DSP System Toolbox™.

See Also

More About
• “Aerospace Blockset”
• “Create Aerospace Models” (Aerospace Blockset)

 Air Traffic Control Radar Design

13-259

Design a Guidance System in MATLAB and Simulink

This example shows how to use the model of the missile airframe presented in a number of published
papers (References [1], [2] and [3]) on the use of advanced control methods applied to missile
autopilot design. The model represents a tail controlled missile traveling between Mach 2 and Mach
4, at altitudes ranging between 10,000ft (3,050m) and 60,000ft (18,290m), and with typical angles of
attack ranging between +/-20 degrees.

Model of the Airframe Dynamics

The core element of the model is a nonlinear representation of the rigid body dynamics of the
airframe. The aerodynamic forces and moments acting on the missile body are generated from
coefficients that are non-linear functions of both incidence and Mach number. The model can be
created with Simulink® and the Aerospace Blockset™. The aim of this blockset is to provide
reference components, such as atmosphere models, which will be common to all models irrespective
of the airframe configuration. Simplified versions of the components available in the Aerospace
Blockset are included with these examples to give you a sense of the potential for reuse available
from standard block libraries.

Open the model.

13 Simulink Featured Examples

13-260

Representing the Airframe in Simulink

The airframe model consists of four principal subsystems, controlled through the acceleration-
demand autopilot. The Atmosphere model calculates the change in atmospheric conditions with
changing altitude, the Fin Actuator and Sensors models couple the autopilot to the airframe, and the
Aerodynamics and Equations of Motion model calculates the magnitude of the forces and moments
acting on the missile body, and integrates the equations of motion.

 Design a Guidance System in MATLAB and Simulink

13-261

13 Simulink Featured Examples

13-262

International Standard Atmosphere Model

The Atmosphere Subsystem that is used is an approximation to the International Standard
Atmosphere, and is split into two separate regions. The troposphere region lies between sea level and
11Km, and in this region there is assumed to be a linear temperature drop with changing altitude.
Above the troposphere lies the lower stratosphere region ranging between 11Km and 20Km. In this
region the temperature is assumed to remain constant.

Aerodynamic Coefficients for Constructing Forces and Moments

The Aerodynamics & Equations of Motion Subsystem generates the forces and moments applied to
the missile in body axes, and integrates the equations of motion which define the linear and angular
motion of the airframe.

 Design a Guidance System in MATLAB and Simulink

13-263

The aerodynamic coefficients are stored in datasets, and during the simulation the value at the
current operating condition is determined by interpolation using 2-D lookup table blocks.

Classical Three Loop Autopilot Design

The aim of the missile autopilot is to control acceleration normal to the missile body. In this example
the autopilot structure is a three loop design using measurements from an accelerometer placed

13 Simulink Featured Examples

13-264

ahead of the center of gravity, and a rate gyro to provide additional damping. The controller gains are
scheduled on incidence and Mach number, and are tuned for robust performance at an altitude of
10,000 ft.

To design the autopilot using classical design techniques requires that linear models of the airframe
pitch dynamics be derived about a number of trimmed flight conditions. MATLAB® can determine the
trim conditions, and derive linear state space models directly from the non-linear Simulink model,
saving both time, and aiding in the validation of the model that has been created. The functions
provided by the MATLAB Control System Toolbox™ and Simulink® Control Design™ allow the
designer to visualize the behavior of the airframe open loop frequency (or time) responses. To see
how to trim and linearize the airframe model you can run the companion example, "Airframe Trim
and Linearize".

Airframe Frequency Response

Autopilot designs are carried out on a number of linear airframe models derived at varying flight
conditions across the expected flight envelope. To implement the autopilot in the non-linear model
involves storing the autopilot gains in 2 dimensional lookup tables, and incorporating an anti-windup
gain to prevent integrator windup when the fin demands exceed the maximum limits. Testing the
autopilot in the nonlinear Simulink model is then the best way to show satisfactory performance in
the presence of non-linearities such as actuator fin and rate limits, and with the gains now
dynamically varying with changing flight condition.

 Design a Guidance System in MATLAB and Simulink

13-265

Figure: Simulink implementation of gain scheduled autopilot

Homing Guidance Loop

The complete Homing Guidance Loop consists of a Seeker/Tracker Subsystem which returns
measurements of the relative motion between the missile and target, and the Guidance Subsystem
which generates normal acceleration demands which are passed to the autopilot. The autopilot is now
part of an inner loop within the overall homing guidance system. Reference [4] provides information
on the differing forms of guidance that are currently in use, and provides background information on
the analysis techniques that are used to quantify guidance loop performance.

13 Simulink Featured Examples

13-266

Guidance Subsystem

The function of the Guidance subsystem is to not only generate demands during closed loop tracking,
but also perform an initial search to locate the target position. A Stateflow® model is used to control
the transfer between these differing modes of operation. Switching between modes is triggered by
events generated either in Simulink, or internal to the Stateflow model. Controlling the way the
Simulink model then behaves is achieved by changing the value of the variable Mode that is passed
out to Simulink. This variable is used to switch between the differing control demands that can be
generated. During target search the Stateflow model controls the tracker directly by sending
demands to the seeker gimbals (Sigma). Target acquisition is flagged by the tracker once the target
lies within the beamwidth of the seeker (Acquire), and after a short delay closed loop guidance
starts. Stateflow is an ideal tool for rapidly defining all the operational modes, whether they are for
normal operation, or unusual situations. For example, the actions to be taken should there be loss of
lock on the target, or should a target not be acquired during target search are catered for in this
Stateflow diagram.

 Design a Guidance System in MATLAB and Simulink

13-267

Proportional Navigation Guidance

Once the seeker has acquired the target a Proportional Navigation Guidance (PNG) law is used to
guide the missile until impact. This form of guidance law has been used in guided missiles since the
1950s, and can be applied to radar, infrared or television guided missiles. The navigation law requires
measurements of the closing velocity between the missile and target, which for a radar guided missile
could be obtained using a Doppler tracking device, and an estimate for the rate of change of the
inertial sightline angle.

13 Simulink Featured Examples

13-268

Figure: Proportional Navigation Guidance Law

Seeker/Tracker Subsystem

The aim of the Seeker/Tracker Subsystem is both to drive the seeker gimbals to keep the seeker dish
aligned with the target, and to provide the guidance law with an estimate of the sightline rate. The
tracker loop time constant tors is set to 0.05 seconds, and is chosen as a compromise between
maximizing speed of response, and keeping the noise transmission to within acceptable levels. The
stabilization loop aims to compensate for body rotation rates, and the gain Ks, which is the loop
cross-over frequency, is set as high as possible subject to the limitations of the bandwidth of the
stabilizing rate gyro. The sightline rate estimate is a filtered value of the sum of the rate of change of
the dish angle measured by the stabilizing rate gyro, and an estimated value for the rate of change of
the angular tracking error (e) measured by the receiver. In this example the bandwidth of the
estimator filter is set to half that of the bandwidth of the autopilot.

 Design a Guidance System in MATLAB and Simulink

13-269

Radome Aberration

For radar guided missiles a parasitic feedback effect that is commonly modelled is that of radome
aberration. It occurs because the shape of the protective covering over the seeker distorts the
returning signal, and then gives a false reading of the look angle to the target. Generally the amount
of distortion is a nonlinear function of the current gimbal angle, but a commonly used approximation
is to assume a linear relationship between the gimbal angle and the magnitude of the distortion. In
the above system, the radome aberration is accounted for in the gain block labeled "Radome
Aberration". Other parasitic effects, such as sensitivity in the rate gyros to normal acceleration, are
also often modelled to test the robustness of the target tracker and estimator filters.

13 Simulink Featured Examples

13-270

Figure: Radome aberration geometry

Running the Guidance Simulation

Now to show the performance of the overall system. In this case the target is defined to be traveling
at a constant speed of 328m/s, on a reciprocal course to the initial missile heading, and 500m above
the initial missile position. From the simulation results it can be determined that acquisition occurred
0.69 seconds into the engagement, with closed loop guidance starting after 0.89 seconds. Impact with
the target occurred at 3.46 seconds, and the range to go at the point of closest approach was
calculated to be 0.265m.

The aero_guid_plot.m script creates a performance analysis

 Design a Guidance System in MATLAB and Simulink

13-271

13 Simulink Featured Examples

13-272

 Design a Guidance System in MATLAB and Simulink

13-273

The animation block provides a visual reference for the simulation

13 Simulink Featured Examples

13-274

References

1. "Robust LPV control with bounded parameter rates", S.Bennani, D.M.C. Willemsen, C.W. Scherer,
AIAA-97-3641, August 1997.

2. "Full Envelope Missile Longitudinal Autopilot Design using the State-Dependent Riccati Equation
Method", C.P.Mracek and J.R. Cloutier, AIAA-97-3767, August 1997.

3. "Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations",
J.S.Shamma, J.R. Cloutier, Journal of Guidance, Control and Dynamics, Vol. 16, No. 2, March-April
1993.

4. "Modern Navigation, Guidance, and Control Processing Volume 2", Ching-Fang Lin, ISBN
0-13-596230-7, Prentice Hall, 1991.

See Also

More About
• “Aerospace Blockset”
• “Create Aerospace Models” (Aerospace Blockset)

 Design a Guidance System in MATLAB and Simulink

13-275

Airframe Trim and Linearize

This example shows how to trim and linearize an airframe using Simulink® Control Design™.

Designing an autopilot using classical design techniques requires linear models of the airframe pitch
dynamics for a number of trimmed flight conditions. MATLAB® can determine the trim conditions
and derive linear state-space models directly from the nonlinear Simulink® and Aerospace Blockset™
model. This saves time and helps to validate the model. The functions provided by Simulink Control
Design allow you to visualize the behavior of the airframe in terms of open-loop frequency (or time)
responses.

Initialize Guidance Model

The first problem is to find the elevator deflection, and the resulting trimmed body rate (q), which will
generate a given incidence value when the missile is traveling at a set speed. Once the trim condition
is found, a linear model can be derived for the dynamics of the perturbations in the states around the
trim condition.

open_system('aero_guidance_airframe');

13 Simulink Featured Examples

13-276

Define State Values
h_ini = 10000/m2ft; % Trim Height [m]
M_ini = 3; % Trim Mach Number
alpha_ini = -10*d2r; % Trim Incidence [rad]
theta_ini = 0*d2r; % Trim Flightpath Angle [rad]
v_ini = M_ini*(340+(295-340)*h_ini/11000); % Total Velocity [m/s]

q_ini = 0; % Initial pitch Body Rate [rad/sec]

Set Operating Point and State Specifications

The first state specifications are Position states, the second state specification is Theta. Both are
known, but not at steady state. The third state specifications are body axis angular rates of which the
variable w is at steady state.

opspec = operspec('aero_guidance_airframe');
opspec.States(1).Known = [1;1];
opspec.States(1).SteadyState = [0;0];
opspec.States(2).Known = 1;

 Airframe Trim and Linearize

13-277

opspec.States(2).SteadyState = 0;
opspec.States(3).Known = [1 1];
opspec.States(3).SteadyState = [0 1];

Search for Operating Point, Set I/O, then Linearize

op = findop('aero_guidance_airframe',opspec);

io(1) = linio('aero_guidance_airframe/Fin Deflection',1,'input');
io(2) = linio('aero_guidance_airframe/Selector',1,'output');
io(3) = linio(sprintf(['aero_guidance_airframe/Aerodynamics &\n', ...
 'Equations of Motion']),3,'output');

sys = linearize('aero_guidance_airframe',op,io);

 Operating point search report:

opreport =

 Operating point search report for the Model aero_guidance_airframe.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
__________ __________ __________ __________ __________ __________

(1.) aero_guidance_airframe/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/Position
 0 0 0 -Inf 967.6649 Inf
-3047.9999 -3047.9999 -3047.9999 -Inf -170.6254 Inf
(2.) aero_guidance_airframe/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/Theta
 0 0 0 -Inf -0.21604 Inf
(3.) aero_guidance_airframe/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/U,w
 967.6649 967.6649 967.6649 -Inf -14.0977 Inf
-170.6254 -170.6254 -170.6254 0 -7.439e-08 0
(4.) aero_guidance_airframe/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/q
 -Inf -0.21604 Inf 0 3.3582e-08 0

Inputs:

 Min u Max
_______ _______ _______

(1.) aero_guidance_airframe/Fin Deflection
 -Inf 0.13615 Inf

Outputs:

 Min y Max
________ ________ ________

(1.) aero_guidance_airframe/q
 -Inf -0.21604 Inf

13 Simulink Featured Examples

13-278

(2.) aero_guidance_airframe/az
 -Inf 199.2481 Inf

Select Trimmed States, Create LTI Object, and Plot Bode Response

airframe = ss(sys.A(3:4,3:4),sys.B(3:4,:),sys.C(:,3:4),sys.D);

set(airframe,'inputname',{'Elevator'}, ...
 'outputname',[{'az'} {'q'}]);

ltiview('bode',airframe);

bdclose('aero_guidance_airframe');

 Airframe Trim and Linearize

13-279

See Also

More About
• “Aerospace Blockset”
• “Create Aerospace Models” (Aerospace Blockset)

13 Simulink Featured Examples

13-280

Anti-Windup Control Using PID Controller Block

This example shows how to use anti-windup schemes to prevent integration wind-up in PID
controllers when the actuators are saturated. The PID Controller block in Simulink® features two
built-in anti-windup methods, back-calculation and clamping, as well as a tracking mode to
handle more complex industrial scenarios. The PID Controller block supports several features that
allow it to handle controller windup issues under commonly encountered industrial scenarios.

The plant to be controlled is a saturated first-order process with dead-time.

The PID Controller block has been tuned with saturation ignored using the Simulink® Control
Design™ PID tuner.

The controlled plant is a first-order process with dead-time described by

.

The plant has known input saturation limits of [-10, 10], which are accounted for in the Saturation
block labeled Plant Actuator. The PID Controller block in Simulink features two built-in anti-
windup methods that allow it to account for the available information about the plant input
saturation.

Performance Without Using Anti-Windup

First, examine the effect of saturation on the closed-loop when the saturation model is not considered
by the PID Controller block. Simulating the model generates these results. The figure shows the
setpoint versus measured output with no anti-windup.

 Anti-Windup Control Using PID Controller Block

13-281

The figure shows the controller output and saturated input with no anti-windup.

13 Simulink Featured Examples

13-282

These figures highlight two problems with controlling a system with input saturation:

1 When the setpoint value is 10, the PID control signal reaches a steady-state at about 36.29,
outside the range of the actuator. The controller is therefore operating in a nonlinear region
where increasing the control signal has no effect on the system output, a condition known as
winding up. Note that the DC-gain of the plant is unity. Therefore, the controller output does not
need to have a steady-state value outside the range of the actuator.

2 When the setpoint value becomes 5, there is a considerable delay before the PID controller
output returns to within the actuator range.

Designing the PID controller to account for the effect of saturation improves its performance by
allowing it to operate in the linear region most of the time and recover quickly from nonlinearity. You
can use anti-windup mechanism to achieve this.

Configure Block for Anti-Windup Based on Back-Calculation

The back-calculation anti-windup method uses a feedback loop to unwind the PID Controller block
internal integrator when the controller hits specified saturation limits and enters nonlinear operation.
To enable anti-windup, go to the Output Saturation tab in the block dialog. Select Limit output
and enter the saturation limits for the plant. Next, from the Anti-windup method list, select back-
calculation. Then, specify the Back-calculation coefficient (Kb). The inverse of this gain is the
time constant of the anti-windup loop. In this example, the back-calculation gain is chosen to be 1.
For more information on how to choose this value, see [1].

 Anti-Windup Control Using PID Controller Block

13-283

Once back-calculation is enabled, the block has an internal tracking loop that unwinds the Integrator
output. This figure shows the under-mask view of the PID Controller block with back-calculation.

13 Simulink Featured Examples

13-284

Note how quickly the PID control signal returns to the linear region and how fast the loop recovers
from saturation.

 Anti-Windup Control Using PID Controller Block

13-285

The controller output u(t) and the saturated input SAT(u) coincide with each other because Limit
output is enabled.

13 Simulink Featured Examples

13-286

To better visualize the effect of anti-windup, this figure illustrates the plant measured output y(t)
with and without anti-windup.

 Anti-Windup Control Using PID Controller Block

13-287

Configure Block for Anti-Windup Based on Integrator Clamping

Another common anti-windup strategy is based on conditional integration. To enable anti-windup, in
the Block Parameters dialog box, select the Saturation tab. Select Limit output and enter the
saturation limits for the plant. Then, from the Anti-windup method list, select clamping.

This figure shows setpoint versus measured output with clamping.

13 Simulink Featured Examples

13-288

This figure shows that the controller output u(t) and the saturated input SAT(u) coincide with each
other because Limit output is enabled.

 Anti-Windup Control Using PID Controller Block

13-289

For more information on when to use clamping, see [1].

Use Tracking Mode to Handle Complex Anti-Windup Scenarios

The anti-windup strategies discussed so far rely on built-in methods to process the saturation
information provided to the block via its dialog. For those built-in techniques to work as intended, two
conditions must be met:

1 The saturation limits of the plant are known and can be entered into the dialog of the block.
2 The PID Controller block output signal is the only signal feeding the actuator.

These conditions may be restrictive when handling general anti-windup scenarios. The PID Controller
block features a tracking mode that allows you to set up a back-calculation anti-windup loop
externally. The next two examples show the use of tracking mode for anti-windup purposes:

1 Anti-windup for saturated actuators with cascaded dynamics
2 Anti-windup for PID control with feedforward

Construct Anti-Windup Scheme for Saturated Actuators with Cascaded Dynamics

The actuator in sldemo_antiwindupactuator has complex dynamics. Complex dynamics are
common when an actuator has its own closed-loop dynamics. The PID controller is in an outer loop
and sees the actuator dynamics as an inner loop, which is also called cascaded saturated dynamics.

13 Simulink Featured Examples

13-290

A successful anti-windup strategy requires feeding back the actuator output to the tracking port of
the PID Controller block. To configure the tracking mode of the PID Controller block, in the block
Parameters dialog box, click the Initialization tab. Select Enable tracking mode and specify the
gain Kt. The inverse of this gain is the time constant of the tracking loop. For more information on
how to choose this gain, see [1].

The measured output of the plant y(t) and the controller output u(t) respond almost immediately
to changes in the setpoint. Without the anti-windup mechanism, these responses have long delays.

 Anti-Windup Control Using PID Controller Block

13-291

13 Simulink Featured Examples

13-292

Anti-Windup Scheme for PID Control with Feedforward

In another common control configuration, the actuator receives a control signal that is a combination
of a PID control signal and a feedforward control signal. Open the model
sldemo_antiwindupfeedforward.

To accurately build a back-calculation anti-windup loop, the tracking signal should subtract the
contribution of the feedforward signal. This action allows the PID Controller block to know its share
of the effective control signal applied to the actuator.

The feedforward gain is unity here because the plant has a DC-gain of 1.

The measured output of the plant y(t) and the controller output u(t) respond almost immediately
to changes in the setpoint. When the setpoint value is 10 , note how the controller output u(t)
reduces to be within the range of the actuator.

 Anti-Windup Control Using PID Controller Block

13-293

When the setpoint value is 10 , note how the controller output u(t) reduces to be within the range of
the actuator.

13 Simulink Featured Examples

13-294

This figure shows the PID Controller output and feed forward input with anti-windup.

 Anti-Windup Control Using PID Controller Block

13-295

References
[1] Åström, Karl J., and Tore Hägglund. Advanced PID Control. Triangle Park, NC: International

Society of Automation, 2006.

See Also
PID Controller

More About
• “Model a Continuous System”

13 Simulink Featured Examples

13-296

Bumpless Control Transfer Between Manual and PID Control

Model Description

This example shows how to achieve bumpless control transfer when switching from manual control to
PID control. We use the PID Controller block in Simulink® to control a first-order process with dead-
time.

We start by opening the model.

Figure 1: Simulink model of PID control with bumpless transfer.

To open this model, type sldemo_bumpless in a MATLAB® terminal.

The PID Controller has been tuned with saturation ignored using the PID tuner of Simulink® Control
Design™.

The controlled plant is a first-order process with dead-time described by

For several operational reasons, the engineers decided to start the control process in an open-loop
manner by feeding the plant input with a saturating ramp signal to drive the output of the plant
slowly to a desired steady-state value of 40. A control transfer is scheduled to happen a t = 150. This
transition between open-loop control and closed-loop control therefore involves two control phases of
operation:

 Bumpless Control Transfer Between Manual and PID Control

13-297

1 Manual: A saturated ramp signal feeds the plant input during start-up until t = 150.
2 Automatic: A PID controller will engage the plant at t = 150, and must take over the process

without introducing bumps at the plant input.

To support smooth control transition, the PID Controller block supports two modes of operation: a
tracking mode and a control mode. In control mode, the PID Controller block operates as an
ordinary PID controller. In tracking mode, however, the block has an extra input that allows the PID
block to adjust its internal state by changing its integrator output so that the block output tracks a
prescribed signal feeding this extra input port.

To achieve bumpless control transfer, the PID Controller block must be in tracking mode when the
plant is in the manual control phase (open-loop control), and in control mode when the plant is in the
automatic control phase (closed-loop control).

Configuring the Block for Tracking Mode

To activate signal tracking, go to the Initialization tab in the block dialog; select Enable tracking
mode, and specify the gain Kt. The inverse of this gain is the time constant of the tracking loop. For
more information on how to choose this gain, see Reference [1].

Figure 2: Enabling the tracking mode of the PID Controller block.

As shown in Figure 1, once tracking mode is enabled, the block has a second input port denoted by
TR. Internally this new port is wired as shown under mask:

13 Simulink Featured Examples

13-298

Figure 3: Under-mask view of the PID Controller block with tracking mode.

Setting Up the Switching Mechanism

In addition to enabling tracking mode for the PID Controller block, a switching mechanism is needed
to achieve the control transfer. Switch 1 determines which signal feeds the plant input and feeds the
tracking port of the PID Controller block.

At time t = 0, Switch 1 directs the manual control signal to the plant input and the tracking port of
the PID Controller block. This allows the output of the PID Controller block to track the manual
control signal during the manual phase by adjusting the PID Controller's internal integrator. When
control transfer occurs, therefore, the PID Controller output will be approximately the same as the
manual control signal.

At time t = 150, Switch 1 switches, directing the output of the PID Controller block to the plant input
and the PID Controller block's tracking input. The PID Controller block now tracks its own output,
which is equivalent to control mode.

Simulating the Bumpless Control Transfer

The setpoint signal and the closed-loop response of the model are shown in Figure 4.

 Bumpless Control Transfer Between Manual and PID Control

13-299

13 Simulink Featured Examples

13-300

Figure 4: Setpoint vs. measured output.

Figure 4 clearly shows that the measured output tracks the Setpoint profile without any output
bumps at the time of switching (t = 150). To investigate this further, the plant input, control signals
are shown in Figure 5.

Figure 5: Control signal switching.

 Bumpless Control Transfer Between Manual and PID Control

13-301

Figure 6: Plant input.

Figures 5 and 6 show that at the switching instance, the plant input has experienced no step changes
(bumps), and therefore the control transfer happens in smooth bumpless fashion as intended.

To see the significance of the bumpless transfer setup, consider the case where tracking mode is not
used. In this case, the following setup is obtained:

13 Simulink Featured Examples

13-302

Figure 7: Simulink model of PID control with no bumpless transfer.

To open this model, type sldemo_bumplessno in a MATLAB terminal.

Figures 8 and 9 show the performance in the absence of an appropriate bumpless control transfer
strategy.

 Bumpless Control Transfer Between Manual and PID Control

13-303

Figure 8: Setpoint vs. measured output.

13 Simulink Featured Examples

13-304

Figure 9: Control signal switching.

It is evident from Figures 8 and 9 that allowing the PID controller to float while the plant is under
manual control can result in undesirable large transients upon switching.

Summary

As this example shows, the PID Controller block supports bumpless control transfer through the use
of tracking mode.

References

1 K. Åström, T. Hägglund, Advanced PID Control, ISA, Research Triangle Park, NC, August 2005.

See Also
PID Controller

More About
• “Continuous”

 Bumpless Control Transfer Between Manual and PID Control

13-305

Two Degree-of-Freedom PID Control for Setpoint Tracking

Model Description

This example shows how to regulate the speed of an electric motor using two degrees-of-freedom PID
control with set-point weighting. The model uses the PID Controller (2DOF) block. The model
changes the setpoint values between 550 and 250 rpm. To convert the units to rad/s for use in the
PID controller, the model uses a Signal Conversion block.

Figure 1: Simulink model with two degree-of-freedom PID control of a DC motor.

The electric motor is an armature-controlled DC motor. Voltage input controls the shaft speed of the
motor. Figure 2 shows the block diagram of the motor. The motor experiences a load torque (0-5
Nm).

13 Simulink Featured Examples

13-306

Figure 2: Block diagram of the motor.

Two Degree-of-Freedom PID Control

In contrast to the PID Controller block, the PID Controller (2DOF) block provides an extra degree of
freedom, allowing you to weight the setpoint as it passes through the proportional action channel and
the derivative action channel. Figure 3 shows the PID Controller (2DOF) block diagram.

Figure 3: Under-mask view of the PID Controller (2DOF).

As shown in Figure 3, the proportional action error signal is given by

The signal seen by the derivative action signal is given by

and the integral action signal is given by

In general, the setpoint weight c is set to 0. This prevents undesirable transients if the setpoint
changes, an effect known as derivative kick. The setpoint b affects the overshoot performance of the
controller. Generally, a small b value reduces overshoot. However, smaller b values can also result in
slower response to setpoint changes. For more details on picking the right setpoint values, see
Reference [1].

When and , the behavior of the two degree-of-freedom PID controller is identical to a
classical PID controller.

 Two Degree-of-Freedom PID Control for Setpoint Tracking

13-307

Simulating with b = 1 and c = 1

When and , the behavior of the two degree-of-freedom PID controller is identical to a
classical PID controller. The control signal, setpoint signal, and closed-loop response of the model are
shown in Figure 4.

13 Simulink Featured Examples

13-308

Figure 4: Control signal, setpoint vs. measured output.

Figure 4 clearly shows the spikes in the control signal, caused by aggressive proportional and
derivative response to the setpoint change. Modifying the b and c weights can make this response
less aggressive, as shown next.

Simulating with the b = 0 and c = 0

In this case, the two degree-of-freedom PID controller is known as I-PD where only the I action acts
on the classical error signal, and the PD action acts only on the measured output.

 Two Degree-of-Freedom PID Control for Setpoint Tracking

13-309

Figure 5: Control signal, setpoint vs. measured output.

The simulation results show the absence of large transients in the control signal due to the sudden
changes in the setpoint.

See Reference [1] for more information on how to chose b and c.

Summary

The PID Controller (2DOF) block supports two degree-of-freedom PID control. Use this block for
tracking complex setpoint profiles and moderating the impact of sudden setpoint changes on control
signal transients. You can use the PID tuner in Simulink® Control Design™ to automatically tune all
the gains (P, I, D, N, b, c) of the PID Controller (2DOF) block.

References

1 K. Åström, T. Hägglund, Advanced PID Control, ISA, Research Triangle Park, NC, August 2005.

See Also
PID Controller

13 Simulink Featured Examples

13-310

More About
• “Model a Continuous System”
• “Unit Specification in Simulink Models”

 Two Degree-of-Freedom PID Control for Setpoint Tracking

13-311

Data Typing in Simulink

This example shows how to use data types in Simulink®. The model used in this example converts a
double-precision sine wave having an amplitude of 150 to various data types and displays the
converted signals on two scopes.

The first scope shows the original sine wave and the result of converting this signal to signed and
unsigned 8-bit integer data types with saturation enabled. The bottom axes show the boolean results
of comparing the signed and unsigned integer values.

The second scope shows the original sine wave and the result of converting this signal to two fixed-
point data types: one high-resolution, the other lower resolution. The bottom axes show the result of
mapping the sine wave to an enumerated data type that indicates whether the signal is positive,
negative, or zero.

Similar data type support exists for parameters and states. Simulink also supports other integer and
floating-point data types, such as, single, int16, and uint32, and fixed-point types with slope/bias and
wordlengths from 1 to 128 bits. You can also define types for bus signals and aliases for existing
types.

NOTE: If you do not have a license for Fixed-Point Designer™ then the fixed-point signals will be
replaced by single-precision signals.

13 Simulink Featured Examples

13-312

 Data Typing in Simulink

13-313

13 Simulink Featured Examples

13-314

 Data Typing in Simulink

13-315

Data Typing Filter

This example shows how to apply a filter to signals of different data types using standard Simulink®
blocks. In this example, a signal with some noise is produced. This signal is then fed into a filter as a
single precision data type and a standard double data type. The output from the filter for each signal
is then compared and the error is displayed on the scope.

13 Simulink Featured Examples

13-316

 Data Typing Filter

13-317

Explore Simulink Bus Capabilities

This example introduces you to Simulink® bus capabilities in three areas:

• Working with buses in components
• Using bus ports at component interfaces
• Smart editing to perform common bus workflows faster

Open the slexBusExample model.

Display Bus Line Styles

When you open a model that contains buses, the buses have the same line style as scalar signals. To
update the line styles, on the Modeling tab, select Update Model.

13 Simulink Featured Examples

13-318

After the model compiles, several lines appear with three lines. This line style indicates that the line
represents a bus.

Work with Buses in Components

The contents of the subsystem in the Working with Buses in Components area demonstrate how to:

• Create buses using Bus Creator blocks.
• Replace elements in a bus using a Bus Assignment block.
• Extract elements from a bus using a Bus Selector block.

Each Bus Creator block groups the elements connected to its input port into a bus. A bus represents a
set of elements, analogous to a bundle of wires tied together. For example, the bus created by the Bus
Creator block named Bus Creator 1 contains the signals sine and chirp, which are connected to its
input ports.

To view the hierarchy of the bus, click the bus and, on the Signal tab, select Signal Hierarchy.

You can also create nested buses. For example, sinusoidal and nonsinusoidal are nested buses
in the bus created by the Bus Creator block named Bus Creator 3.

A Bus Assignment block replaces one or more elements in the bus that connects to its Bus input port.
For example, the Bus Assignment block replaces the signals constant and nonsinusoidal in the
bus created by the Bus Creator block named Bus Creator 3 with new signals. You can use the Bus
Assignment block to replace nested buses and nonbus elements.

 Explore Simulink Bus Capabilities

13-319

A Bus Selector block extracts one or more elements from the bus connected to its input. For example,
the Bus Selector block selects the nonsinusoidal.pulse, sinusoidal.sine, and constant
signals. To display the values of nonsinusoidal.pulse and sinusoidal.sine in the Scope block
and constant in the Display block, simulate the model.

Use Bus Ports at Component Interfaces

The subsystems in the Using Bus Ports at Component Interfaces area demonstrate how to:

• Create buses at the output ports of components by using Out Bus Element blocks.
• Extract bus elements from the input ports of components by using In Bus Element blocks.

The first subsystem consists of five source blocks and five Out Bus Element blocks.

Out Bus Element blocks are similar to a Bus Creator block connected to an Outport block. Each Out
Bus Element block has a label that you can edit directly to change the names of the output port and
bus elements.

You can display the label in either expanded or compact notation.

• Expanded Notation: Label displays the corresponding port name and the element hierarchy. For
example, the Out Bus Element block with the label Out1.sinusoidal.sine creates a bus
element named sine in a nested bus named sinusoidal at the output port named Out1.

• Compact Notation: Label displays only the leaf bus element name. For example, the label
Out1.sinusoidal.sine becomes sine.

13 Simulink Featured Examples

13-320

In either mode, you can directly edit both parts of the label.

To create a new element in the bus, copy and paste an Out Bus Element block. To create a new output
port at the interface, right-click and drag an Out Bus Element block, then select Create New Port.

To see the bus created by a group of Out Bus Element blocks, double-click one of the blocks to open
the dialog box for port properties. From the dialog box, you can:

• Change the name and number of the port.
• Highlight the lines that correspond to the elements you select.
• Change the colors of the blocks individually, by bus, or by selected elements.
• Reorder the elements in the bus.
• Add or delete bus elements and their corresponding blocks.
• Specify attributes.

 Explore Simulink Bus Capabilities

13-321

The second subsystem consists of two Scope blocks, one Display block, and five In Bus Element
blocks.

In Bus Element blocks are similar to an Inport block connected to a Bus Selector block. The labels of
In Bus Element blocks work the same way as Out Bus Element block labels do. For example, the In
Bus Element block with the label In1.sinusoidal.sine selects a bus element named sine in a
nested bus named sinusoidal.

To change the element selected from the input bus, edit the label text directly. When a bus is
connected to the corresponding input port, you can select from the list of available signals.

To select a new element from the bus, copy and paste an In Bus Element block. To create a new input
port at the subsystem interface, right-click and drag an In Bus Element block, then select Create
New Port.

To see the bus accessed by a group of In Bus Element blocks, double-click the icon of one of the
blocks to open the dialog box for the port properties. From the dialog box, you can:

13 Simulink Featured Examples

13-322

• Change the name and number of the port.
• Change the colors of the blocks individually, by bus, or by selected elements.
• Observe any missing or unused elements in the incoming bus.
• Add or delete blocks that correspond to selected elements.
• Specify attributes.

For more information about using In Bus Element and Out Bus Element blocks, see “Simplify
Subsystem and Model Interfaces with Bus Element Ports”.

Perform Common Bus Workflows Faster

The subsystems in the Smart Editing to Perform Common Bus Workflows Faster area show how to
speed up common bus tasks:

• Convert Bus Selector and Bus Creator blocks to In Bus Element and Out Bus Element blocks.
• Create buses at subsystem interfaces and bundle outputs of individual blocks into a bus.
• Automatically create ports to add new elements to a Bus Creator block and select new elements

from a Bus Selector block.

The Bus Ports smart editing cue converts Bus Selector and Bus Creator blocks at subsystem
interfaces to In Bus Element and Out Bus Element blocks.

1 Click on a Bus Selector block that is connected to an Inport block or a Bus Creator block that is
connected to an Outport block.

2 Select Bus Ports from the action bar.

The Create Bus smart editing cue bundles multiple elements into a bus.

 Explore Simulink Bus Capabilities

13-323

1 Drag a selection box around elements.
2 Select Create Bus from the action bar.

When creating a bus at subsystem interfaces, this action bundles the selected elements in a bus,
replaces the Inport and Outport blocks with In Bus Element and Out Bus Element blocks in the
subsystem, and adds Bus Creator and Bus Selector blocks to maintain connectivity outside of the
subsystem.

When creating a bus at the outputs of individual blocks, this action inserts a Bus Creator block,
resizes it, and connects the elements.

To add an element to a bus, drag a line to a Bus Creator block. To select an element from a bus, drag
a line to a Bus Selector block and choose the element you want from the list of available elements.

13 Simulink Featured Examples

13-324

See Also
Bus Assignment | Bus Creator | Bus Selector | In Bus Element | Out Bus Element

Related Examples
• “Composite Interface Guidelines”
• “Group Signals or Messages into Virtual Buses”
• “Simplify Subsystem and Model Interfaces with Bus Element Ports”
• “Display Bus Information”
• “Assign Signal Values to Bus Elements”

 Explore Simulink Bus Capabilities

13-325

Model Arrays of Buses

Arrays of buses represent structured data compactly, eliminating the need to include multiple copies
of the same buses. They also support iterative processing with for-each subsystems.

The input buses for an array of buses must be nonvirtual and of the same data type (with the same
names, hierarchies, and attributes for the bus elements).

The sldemo_bus_arrays model demonstrates multiple ways to use an array of buses.

In this model, a Vector Concatenate block creates an array of buses from nonvirtual buses. Bus
Creator blocks create two of the nonvirtual buses, and a Constant block creates a nonvirtual bus from
a struct.

The model uses the array of buses with:

• Selector blocks, to extract buses from the array of buses.
• An Assignment block, to assign new values to a bus in the array.
• A For Each Subsystem block, to iteratively process each bus in the array.

13 Simulink Featured Examples

13-326

• A Memory block, to output the array of buses input from the previous time step.

See Also
Vector Concatenate

Related Examples
• “Composite Interface Guidelines”
• “Group Nonvirtual Buses in Arrays of Buses”
• “Work with Arrays of Buses”
• “Iteratively Process Nonvirtual Buses with Arrays of Buses”
• “Repeat an Algorithm Using a For-Each Subsystem”

 Model Arrays of Buses

13-327

Matrix Signals

This example shows how to use matrix and frame signals in Simulink® diagrams. Through this
example, you can access models that relate to the following practical applications.

• Feedback Systems
• Lunar Module Digital Autopilot
• Matrix Support S-Function
• Frame Signals

See Also

Related Examples
• “Signals”

13 Simulink Featured Examples

13-328

Variable-Size Signal Basic Operations

This example shows how variable-size signals can be generated. It also illustrates some of the
operations that can be applied to them. The purpose of this example is to introduce the basic
operations associated with variable-size signals.

About This Example

The model contains several blocks that support variable-size signals.

Common ways of generating variable-size signals are:

• Use a Switch block with a different size signal at each input port.
• Use a Selector block and allow the size selection index to change over time.

Eighty blocks can operate with variable-size signals including the Gain block, the Sum block, the
Math Function block, the Matrix Concatenate block, and the Bus Creator block. In addition, you can
probe variable-size signals using the Width or the Probe block, display variable-size signals on Scope
blocks, and save variable-size signals to the workspace using the To Workspace block.

For a complete list of blocks that support variable-size signals, see “Simulink Block Support for
Variable-Size Signals”.

 Variable-Size Signal Basic Operations

13-329

13 Simulink Featured Examples

13-330

Variable-Size Signal Length Adaptation

This example shows a hypothetical system where the length of a signal changes over time by
adapting to the changes of a control signal.

About This Example

Open the example model.

This model consists of two sections: the left section generates a signal and converts the signal to
variable size; the right section processes the variable-size signal and outputs it to a scope. Length
adaptation is based on the value of the control signal. When the control signal falls within one of the
three predefined ranges, the size of the data signal changes accordingly.

This variable-size signal is then fed into a processing block, where blocks supportive of variable-size
signals operate on it. Note the application of a MATLAB Function block with both the input and the
output signals of variable-size. The resulting signal and the signal width are fed to a scope for
visualization.

 Variable-Size Signal Length Adaptation

13-331

Multimode Variable-Size Signal

This model shows how to use different operation modes to correspond to different signal sizes.

About This Example

Open the example model:

The processing subsystem in this model receives a variable-size signal, where the size of the signal
depends on the operation mode of the system. For each mode change, the Mode Control Logic
Stateflow® Chart generates a function-call to reset the blocks contained in the Process subsystem.

13 Simulink Featured Examples

13-332

Parallel Channel Power Allocation

This model shows a potential use of the Find Nonzero Elements block. This block outputs a variable-
size signal containing the indices of the nonzero values of the input.

Open the example model sldemo_varsize_channel_pow_alloc. This model implements the
waterfilling algorithm for obtaining the optimal power allocation for communication channels when a
power budget exists. The communication channels involved are independent (i.e., parallel channels)
and have different noise levels.

The algorithm iteratively increases the value of the waterline, so that the channels which have a noise
level less than the waterline are broadcast. The power used by these transmitting channels is equal to
the difference between the waterline and the noise level of the channel. The sum of the power used
by all the channels transmitting should satisfy the power budget within the specified tolerance.

The Find Nonzero Elements block is used in the calculation of the total power used for a certain
waterline value. The channels which are set to transmit at that waterline level are selected using
logical indexing. The logical indices are obtained after thresholding the difference of the waterline
and the channel noise levels. As a result, the channels with noise levels larger than the waterline are
assigned a logical 0, and those with noise levels below the waterline are assigned a logical 1. The
Find Nonzero Elements block is used for converting the logical indices into linear indices. Note that
this signal is properly modeled by a variable-size signal, since the number of channels below the
threshold is unknown at compile time. The linear indices are fed into a Selector block that picks the
channel transmission powers. Subsequently, these powers are summed to get the current value of
used power. If this value is smaller than the power budget, the waterline is increased and the process
is repeated until the used power equals the power constraint.

 Parallel Channel Power Allocation

13-333

Simulate the Model and Review Results

Simulate the model. Open the Scope block that displays the waterline and SNR together with
waterline.

13 Simulink Featured Examples

13-334

Merging Signals

This example shows how to use conditionally executed subsystems and the Merge block to combine
two inputs into a single output. The Merge block output value at any time is equal to the most
recently computed output of its driving blocks.

Use Merge blocks to interleave input signals that update at different times into a combined signal in
which the interleaved values retain their separate identities and times. To combine signals that
update at the same time into an array or matrix signal, use a Vector Concatenate block.

The left side of the model contains two blocks Repeating Sequence blocks from the Simulink Sources
library. Each block generates a scalar output signal of the form displayed on the block icon.

 Merging Signals

13-335

These two signals are input into different Enabled Subsystem blocks, which are outlined with thick
lines.

13 Simulink Featured Examples

13-336

A signal generated by the Pulse Generator block controls the enabled (or conditionally executed)
subsystems.

This block output toggles between the values of zero and one every five seconds. When the output of
the Discrete Pulse Generator block is positive, the top enabled subsystem is simulating. When the
output of the Discrete Pulse Generator block is zero, the bottom enabled subsystem is simulating.

To force the bottom enabled subsystem to simulate when the Discrete Pulse Generator block output is
zero, the output is passed through a Logical Operator block set to the NOT operator. The NOT block
outputs a value of one when its input is zero.

 Merging Signals

13-337

The outputs of the two enabled subsystems are input into a Merge block.

13 Simulink Featured Examples

13-338

A Scope block displays the Merge block output.

Run the simulation to see the output of the Merge block on the Scope. Notice that the type of
waveform shown on the Scope changes every five seconds. Due to the behavior of the Merge block,
the type of waveform shown on the Scope changes every five seconds.

Conditionally Executed Subsystems

This Merge block example contains two conditionally executed subsystems.

 Merging Signals

13-339

A conditionally executed subsystem is a subsystem that is only executed at times during the
simulation when certain conditions are met. In this case, the subsystems are enabled subsystems,
distinguished by their icons and the additional input port on the top or bottom of the block.

The signal feeding into the additional port is called the control signal. The value of this signal
provides the condition that determines whether the subsystem is executed or not, at any given time
step. Enabled subsystems are executed when the control signal is strictly positive.

In this example, you want to execute one of the enabled subsystems when the control signal is
positive, and the other when the control signal is zero. You can do this by using the Logical Operator
block.

13 Simulink Featured Examples

13-340

Logical Operator Block

The Logical Operator block provides a method for incorporating logical operators and boolean signals
into your model.

Open the Logical Operator block to see the different types of operators. The current setting of NOT
returns 1 (or TRUE) when the input signal is non-zero, or 0 (FALSE) when the input signal is strictly
zero.

In this example, use this feature to generate a positive value when the control signal goes to zero by
maintaining the current operator setting of NOT and closing the dialog.

Note: In the Simulink Editor, on the Debug tab, the Information Overlays menu offers options for
displaying signal and port properties on the block diagram.

 Merging Signals

13-341

Boolean Signals

You can have Simulink use boolean or double values for the inputs and outputs of the Logical
Operator block, using the following steps.

1. To open the Configuration Parameters dialog box, in the Simulink Editor, on the Modeling tab,
select Model Settings.

2. Go to the Optimization page in the Configuration Parameters dialog.

3. Verify that the Implement logic signals as boolean data (vs. double) parameter is enabled.
This optimization tells Simulink whether or not it should allow a signal whose data type is double to
be passed into and out of blocks that support the boolean data type.

4. Click the OK button on the Configuration Parameters dialog.

Placing the Data Type Conversion block after the Discrete Pulse Generator block avoids an error
indicating that the Logical Operator block expects a boolean input signal.

13 Simulink Featured Examples

13-342

Merge Block and Alternately Enabling Subsystems

Use the Merge block to create a single signal that is equal to the output of whichever enabled
subsystem is currently executing.

 Merging Signals

13-343

1. Open the Merge block dialog box by double-clicking the block.

2. Specify the Number of inputs as the number of enabled subsystems whose outputs you want to
merge. In this case you want to set the *Number of inputs *to 2.

3. Leave the Initial output field empty to specify that the Merge block sets its initial output to the
initial value of one of its input signals. In this case, the output will be the initial value of the
subsystem that is enabled when the simulation starts.

4. Close the Merge block dialog box.

5. Connect the output of the two conditionally executed subsystems to the inputs of the Merge block.

13 Simulink Featured Examples

13-344

As before, when you run the simulation, the output of the Merge block is the value of whatever
conditionally executed subsystem is executing at any point in time.

Programmatically Change Block Background Color

When you run the simulation, the color of the currently executing conditionally executing subsystems
change. This does not happen automatically for all conditionally executing subsystems. This example
uses an S-function and MATLAB® code to change the block background color.

 Merging Signals

13-345

To see the code, double-click the one of the enabled subsystems to open it.

1. The Enable block makes this a conditionally executed subsystem and adds the input port for the
control signal.

2. The Level-2 MATLAB-file S-function block runs the MATLAB file S-function mergefcn.m.

13 Simulink Featured Examples

13-346

At each time step, the S-function mdlUpdate subfunction executes. It sets the BackgroundColor
property of the subsystems based on whether it is currently executing, or not, with the following
command.

set_param('mergedemo/Subsystem','BackgroundColor','green')

See Also
Merge | Level-2 MATLAB S-Function

Related Examples
• “Conditionally Executed Subsystems Overview”
• “Using Enabled Subsystems”

 Merging Signals

13-347

Share Data Store Between Instances of a Reusable Algorithm

To reuse an algorithm, instead of copying and pasting the blocks, you can encapsulate them in a
separate model file. Then, you can refer to the model repeatedly with Model blocks. Each Model block
is a standalone instance of the algorithm.

By default, each instance calculates and stores its own copy of the signals that the model contains.
Therefore, the instances do not interact. However, you can use a data store to share a piece of data
between the instances.

This example shows how to share a fault indication between all instances of a reusable control
algorithm. Any instance can set the fault, causing all instances to take action to clear it.

Explore Example Models

Open the example model sldemo_shared_data.

The Controller subsystem refers to the controller algorithm model, sldemo_shared_data_alg,
multiple times through three Model blocks.

Open the algorithm model.

13 Simulink Featured Examples

13-348

The Data Store Memory block fault_ind represents a fault indication. The block parameter Signal
Attributes > Share across model instances is selected, so all instances of
sldemo_shared_data_alg share the indication. Because the block exists in
sldemo_shared_data_alg, the indication is local to the model. Other models that refer to
sldemo_shared_data_alg cannot read or write to the indication.

The Algorithm subsystem uses a PID controller to generate a position command for an actuator
(represented by a block in sldemo_shared_data).

The Fault Handling subsystem sets and clears the fault indication. Each time an instance of the
algorithm experiences a fault condition (the controlled input exceeds 2.63), the subsystem increments
the value of the data store by 1. Each time an instance clears its fault condition, the subsystem
decrements the value by 1.

Simulate Example Models

Simulate the parent model, sldemo_shared_data.

Use the Simulation Data Inspector to observe the position commands and the controlled signals. In
the Simulink Editor toolbar, click the highlighted button.

Partway through the simulation, the controlled signal conc_mid experiences a disturbance.

Current plot held

 Share Data Store Between Instances of a Reusable Algorithm

13-349

The disturbance triggers a fault in the corresponding instance of the control algorithm. Due to the
fault, all three position commands (the vlv signals) lock at zero.

13 Simulink Featured Examples

13-350

Later, when the fault condition clears, all of the position commands and controlled signals return to
nominal values.

 Share Data Store Between Instances of a Reusable Algorithm

13-351

See Also
Data Store Memory

Related Examples
• “Data Store Basics”

13 Simulink Featured Examples

13-352

Attaching Input Data to External Inputs via Custom Input
Mappings

This example shows how to create a custom mapping function for the Root Inport Mapper tool. The
Root Inport Mapper tool associates MAT-file data with a specific input port, based on one of these
criteria.

• Port Order - Maps in the order it appears in the file to the corresponding port number.
• Block Name - Maps by variable name to the corresponding root inport with the matching block

name.
• Signal Name - Maps by variable name to the corresponding root inport with the matching signal

name.
• Block Path - Maps by the BlockPath parameter to the corresponding root inport with the

matching block path.
• Custom - Maps using a MATLAB® function.

Use a custom mapping criteria when the data you are trying to map does not match any of the other
mapping criteria.

Custom Mapping Scenario

If the combination of input data and the model input ports does not match Port Order, Block Name,
Signal Name, or Block Path mapping criteria, you can do one of the following:

• Rename the input data in the MAT-file
• Rename the input ports on the model
• Use the custom mapping mode

This example shows how to write a custom mapping function.

The workflow described below includes

• Create a MATLAB File to contain the custom mapping function
• Declare the custom mapping function name, inputs, and outputs
• Initialize the output for assignment of the return value
• Define and implement your mapping algorithm
• Validate your mapping algorithm

Create a New MATLAB Function File

Create a MATLAB function file. This file will contain your custom mapping function.

Declare Custom Mapping Function

Declare a custom mapping function name, and specify the inputs and outputs.
slexCustomMappingMyCustomMap is the custom mapping function in this example. It declares the
function inputs and outputs as defined below.

Inputs

 Attaching Input Data to External Inputs via Custom Input Mappings

13-353

• modelName - String that contains the model name.
• signalNames - Cell array of strings that contain variable names of signals to map
• signals - Cell array of signal data aligned with signalNames such that signalNames{1} is the

variable name of the signal stored in signals{1}.

Outputs

• inputMap - Array or scalar of objects that result from the getRootInportMap function.

Initialize the Output

Initialize the value of the output variable inputMap. To do this use the getRootInportMap command
with the empty property as shown in the example function slexCustomMappingMyCustomMap or in
the code snippet below. This initializes the output variable to empty so that a value can be assigned to
the output.

inputMap = getRootInportMap('empty');

Define Your Custom Mapping Algorithm

Things to think about when defining your custom mapping algorithm.

• What is the criteria for mapping signals to a root-level inport , for example BlockName mapping
matches the name of the input signal to the name of the root-level inport block name.

• What information is needed to create a mapping.
• What happens if the mapping criteria determines that there is no match between signal and root-

level inport.

The example addresses these items by

• Using the root-level port number and signal name for mapping criteria.

• Using a utility function slexCustomMappingGetPortNames to get root-level inport block names to
provide as input along with the variable|signalName| to the getRootInportMap function which
creates the mapping.

• Including a logical condition to handle the case where there is no match between port number and
signal name.

Implement Your Mapping Algorithm

Next, implement your mapping algorithm.

In the slexCustomMappingMyCustomMap implementation, the root-level inport port number is the
mapping criteria criteria. The algorithm gets this port number from the root-level inport block. It then
gets the numerical values appended to the names of the signals that are passed into the function, and
compares the port number with the numerical values.

NOTE: In addition to implementing your mapping algorithm, you should also include a logical
statement to handle situations where a mapping is not possible. The example function does this by
using an if statement with the isempty function to determine if a mapping can be made.

13 Simulink Featured Examples

13-354

Create the Mapping

The final step is to use the getRootInportMap function to create a custom map. The
getRootInportMap function uses Property-Value pairs to create a custom map. The properties are:

• model - String that represents the model name.
• signalName - String or cell of strings that contains the value of the variable name of the signal to

map.
• blockName - String or cell of strings that contains the value of the block name of the port to be

mapped.

The following code is an example of this function. This same code appears in the example function
slexCustomMappingMyCustomMap.

inputMap = getRootInportMap(...
 'model',modelName,...
 'signalName',signalNames,...
 'blockName',portNames);

Validate the Custom Mapping Function

To validate the custom mapping function at the command line:

1 Open the model against which you want to test your function.
2 Create some input signals to support the model.
3 Call your custom mapping function with the correct input parameters.
4 Validate the expected input string to send to the sim command, or to place in the model

configuration parameters External Input String edit box.

Execute the lines of code in the following example. This code uses the custom mapping function
provided with this example. If the custom map function succeeds, you should see a comma-separated
list of variable names displayed in the order of the port number to which they are assigned
('port1,port2').

load_system('slexAutotransRootInportsExample'); port1 =
timeseries(ones(10,1)*10); port2 =
timeseries(zeros(10,1)); inputMap =
slexCustomMappingMyCustomMap('slexAutotransRootInportsExample',{'port1'
, 'port2'},{port1 , port2}); externalInputString =
getInputString(inputMap,'base');
close_system('slexAutotransRootInportsExample',0);

If your signals are in a Simulink.SimulationData.Dataset, you can execute the lines of code in the
following example. This code uses the custom mapping function provided with this example. If the
custom mapping function succeeds, you should see a comma-separated list of variable names
displayed in the order of the port number to which they are assigned
('ds.getElement(1),port1,ds.getElement(2)').

load_system('slexAutotransRootInportsExample');
ds = Simulink.SimulationData.Dataset;
ds = ds.addElement(timeseries(ones(10,1)*10),'port1');
ds = ds.addElement(timeseries(zeros(10,1)),'port1');
inputMap = slexCustomMappingMyCustomMap('slexAutotransRootInportsExample',{'ds'},{ ds });

 Attaching Input Data to External Inputs via Custom Input Mappings

13-355

externalInputString = getInputString(inputMap,'base');
close_system('slexAutotransRootInportsExample',0);

See Also
getRootInportMap | getSlRootInportMap

Related Examples
• “Create and Use Custom Map Modes”
• “Create Harness-Free Models with MAT File Input Data” on page 13-361
• “Map Data Using Root Inport Mapper Tool”

More About
• “Map Root Inport Signal Data”
• “Create Signal Data for Root Inport Mapping”

13 Simulink Featured Examples

13-356

Using Mapping Modes with Custom-Mapped External Inputs

This example shows how to implement a custom mapping algorithm similar to a Simulink® mapping
mode. It uses the getSlRootInportMap and getRootInportMap functions to implement the
custom mapping.

Before running this example, make sure that you are familiar with the getRootInportMap command
and the Root Inport Mapper Tool. For more information, see “Map Root Inport Signal Data”.

Workflow

This example shows how you can use a built-in Simulink mapping mode to perform as many mappings
as possible. It then flags the root inports that were not able to be assigned a signal. The algorithm
then overrides the flagged mappings with custom mappings to map the remaining signals. To
implement such a solution, create a custom mapping function using the getSlRootInportMap.

This example uses a list of inputs with two kinds of signals:

• Signals that can be mapped using the Simulink block name mapping mode.
• Signals that cannot be mapped using the Simulink block name mapping mode. You must map

these signals with a custom mapping mode.

Assume the following scenario:

• You want to use a group of signals as inputs to your Simulink model.
• The signals are named such that the variable names match the block name of the root-level inport.
• Each signal that uses this naming convention is within tolerance.
• Each signal that has the 'x' character appended to its name is considered outside tolerance.

This example uses a mapping mode similar to the Simulink block name mapping method.

The root-level inport block names are:

• Throttle
• Brake

The signal variable names are:

• Throttlex
• Brake

To map inputs to root-level inport blocks in this scenario, you need a custom mapping function for the
Root Inport Mapper tool. This example uses the AlmostBlockName custom mapping function.

For this example, you will use the slexAutotransRootInportsExample model to validate your
custom mapping function.

Declare the Custom Mapping Function

Declare the function name, inputs, and outputs. To do this, copy and paste the following code snippet
into a MATLAB file and save the file as AlmostBlockName.m.

function inputMap = AlmostBlockName(modelName, signalNames, signals)

 Using Mapping Modes with Custom-Mapped External Inputs

13-357

Get the Simulink BlockName Mapping

Next, map all the signals. To do this, first map all the signals within tolerance using the Simulink
block name mapping mode, then map the signals outside tolerance.

To map signals within tolerance to a model using one of the Simulink mapping modes, use the
function getSlRootInportMap. This function returns the inputMap and a vector of logical values.
Each logical value indicates a successful or unsuccessful mapping of inputMap to a signal. To map by
block name, insert the following lines of code just after the function declaration.

inputMap = getRootInportMap('empty');
if ~bdIsLoaded(modelName)
 load_system(modelName);
end

[inputMap, hasASignal] = getSlRootInportMap('Model', modelName, ...
 'MappingMode','BlockName',...
 'signalName',signalNames, 'signalValue', signals);

Find the Missing Input Signals

In the previous step, you created a mapping using a block name mapping mode. You must now
account for an empty inputMap and for inputMap(s) that were not associated with a signal within
tolerance. The function getSlRootInportMap has flagged these signals with the output variable
hasASignal. To do this:

1 Check the inputMap variable.
2 If the inputMap variable is not empty, determine which elements of the inputMap vector were

not assigned a signal. To do this, use the logical ~ on the hasASignal vector as shown below.
The emptyIndex vector now contains a logical vector where true means the inputMap does not
have a signal mapped to it.

3 Copy and paste the following code snippet under the call to the getSlRootInportMap and
before the end to the if bdIsLoaded(modelName).

if ~isempty(inputMap)
 emptyIndex = ~hasASignal;
end

The code snippet performs steps one and two for you.

Complete the Mapping

In the previous step, you created a logical vector emptyIndex to see if any of the inputMap objects
were not associated to a signal. If all the elements of the emptyIndex vector are false, you have a
complete mapping and the code added in this section will not be executed.

If the emptyIndex vector contains at least one value that is true, you have inputMap objects that
are not associated to a signal. Manually assign the variable signal(s) to that inputMap. Then, override
the inputMap with the signal name that matches the expected signal name:

1 In the emptyIndex vector, find all the items that are true. These items point to the inputMap(s)
that still need to be associated with a signal.

2 For each inputMap, use the 'BlockName' property to get the name of the inport block that the
inputMap is assigned to.

13 Simulink Featured Examples

13-358

3 Append an 'x' to the block name to get the name of the signal to be assigned to the inputMap.
4 Compare the result to each item in the signalNames variable cell array.
5 If a match is found, override the inputMap with the signal name that matches the expected

signal name. To override the inputMap object, use the getRootInportMap function with the
'InputMap' and the 'SignalName' properties.

if isa(signals{1}, 'Simulink.SimulationData.Dataset')
 signalNames = signals{1}.getElementNames';
end

idxEmpty = find(emptyIndex==true);
for kEmpty =1:length(idxEmpty)
 idxOfEmpty = idxEmpty(kEmpty);
 destBlockName = get(inputMap(idxOfEmpty),'BlockName');
 outSideToleranceSig = [destBlockName 'x'];
 isAMatch = strcmp(signalNames, outSideToleranceSig);
 if any(isAMatch)
 inputMap(idxOfEmpty) = getRootInportMap('InputMap', ...
 inputMap(idxOfEmpty),'SignalName',outSideToleranceSig);
 end
end

The Custom Map File

When you are done, the file AlmostBlockName.m should resemble the following code.

function inputMap = AlmostBlockName(modelName, signalNames, signals)
inputMap = getRootInportMap('empty');
if bdIsLoaded(modelName)

 [inputMap, hasASignal] = getSlRootInportMap('Model', modelName, ...
 'MappingMode','BlockName',...
 'signalName',signalNames, 'signalValue', signals);

 if ~isempty(inputMap)
 emptyIndex = ~hasASignal;
 idxEmpty = find(emptyIndex==1);

 if isa(signals{1}, 'Simulink.SimulationData.Dataset')
 signalNames = signals{1}.getElementNames';
 end

 for kEmpty =1:length(idxEmpty)
 idxOfEmpty = idxEmpty(kEmpty);
 destBlockName = get(inputMap(idxOfEmpty),'BlockName');
 nonNominalSig = [destBlockName 'x'];
 isAMatch = strcmp(signalNames, nonNominalSig);
 if any(isAMatch)
 inputMap(idxOfEmpty) = getRootInportMap('InputMap', ...
 inputMap(idxOfEmpty),'SignalName',nonNominalSig);
 end
 end

 end
end

Validate the Custom Mapping

To validate your custom mapping:

 Using Mapping Modes with Custom-Mapped External Inputs

13-359

1 Save the AlmostBlockName function in a file on the MATLAB path.
2 To see the results of your mapping function, copy and paste the following code snippet to the

MATLAB Command Window.

modelName = 'slexAutotransRootInportsExample';
Throttlex = timeseries(zeros(10,1));
Brake = timeseries(ones(10,1));
signalNames= {'Throttlex' ,'Brake'};
signals = { Throttlex , Brake };
open_system(modelName);
inputMap = AlmostBlockName(modelName, signalNames, signals);
inputStr = getInputString(inputMap,'base');
close_system(modelName);

After running the code snippet, the variable inputStr contains the string 'Throttlex,Brake'.

If your signals are in a Simulink.SimulationData.Dataset, to see the results of your mapping function,
use the following code snippet at the MATLAB Command Window.

modelName = 'slexAutotransRootInportsExample';
Throttlex = timeseries(zeros(10,1));
Brake = timeseries(ones(10,1));
ds = Simulink.SimulationData.Dataset;
ds = ds.addElement(Throttlex, 'Throttlex');
ds = ds.addElement(Brake, 'Brake');
signalNames= {'ds'};
signals = { ds };
open_system(modelName);
inputMap = AlmostBlockName(modelName, signalNames, signals);
inputStr = getInputString(inputMap,'base');
close_system(modelName);

After running the code snippet for signals in a Simulink.SimulationData.Dataset, the variable
inputStr contains the string 'ds.getElement('Throttlex'),ds.getElement('Brake')'.

See Also
getRootInportMap | getSlRootInportMap

Related Examples
• “Attaching Input Data to External Inputs via Custom Input Mappings” on page 13-353
• “Create and Use Custom Map Modes”

More About
• “Map Root Inport Signal Data”
• “Alternative Workflows to Load Mapping Data”

13 Simulink Featured Examples

13-360

Create Harness-Free Models with MAT File Input Data

This example shows how to map MAT file data to the root-level input ports, which creates a harness-
free model. Using root-level input ports can speed up simulation time. In the example, you convert a
model with a Signal Editor input block to a harness-free model with root-level input ports. The
harness-free model uses the data from the Signal Editor block MAT file.

Open Example Model

Open the sldemo_autotrans model.

Remove Signal Editor Block

Replace the Signal Editor block named ManeuversGUI with two input ports.

1 Delete the Signal Editor block named ManeuversGUI .
2 From the Simulink/Commonly Used Blocks library, drag two Inport blocks into the model.
3 Connect the input ports to the lines previously connected to the Signal Editor block.
4 Rename the input ports. Name the input port connected to the Throttle signal Throttle. Name

the input port connected to the BrakeTorque signal Brake.

Save the model as slexAutotransRootInportsExample1 or
slexAutotransRootInportsExample.

The remaining steps of this example use the model slexAutotransRootInportsExample. If you
saved the model with a different name, use your model name.

 Create Harness-Free Models with MAT File Input Data

13-361

Set Up Harness-Free Inputs

Now that the model is harness-free, set up the inputs from the MAT file previously used by the Signal
Editor block.

In the Modeling tab, click Model Settings. In the Data Import/Export pane, click Connect
Inputs.

Map Signals to Root Inport

The Root Inport Mapper tool opens.

The example uses this tool to set up the model inputs from the MAT file and map those inputs to an
input port, based on a mapping algorithm. To select the MAT file that contains the input data, on the
Root Inport Mapper toolbar, click From MAT-File. When the link dialog appears, click the Browse
button. In the browser, select the MAT file from the local working example folder. For this example,
the file name is VehicleManeuvers.mat.

13 Simulink Featured Examples

13-362

Select Map Mode

When you select the MAT file VehicleManeuvers.mat, determine the root input port to which to
send input data. Simulink® matches input data with input ports based on one of five Map Mode
criteria:

• Port Order — Maps in the order it appears in the file to the corresponding port number.
• Block Name — Maps by variable name to the corresponding root input port with the matching

block name.
• Signal Name — Maps by variable name to the corresponding root input port with the matching

signal name.
• Block Path — Maps by the BlockPath parameter to the corresponding root input port with the

matching block path.
• Custom — Maps using a MATLAB® function.

The selected MAT file has input data with variables of the same name as the harness signals
Throttle and Brake , and input ports with names matching the variables. Given the set of
conditions for the input data and the model input ports, the best choice for a mapping criterion is
Block Name. Using this criterion, Simulink tries to match input data variable names to the names of
the input ports. To select this option:

1 In the Map Mode list, click Block Name.
2 Click Options and select Update Model Automatically. This option verifies the mapping.
3 Click Check Map Readiness.

When compiling the data, Simulink evaluates input ports against the following criteria to determine
compatibility issues. The status of this compatibility is reflected by the table colors green, orange, or

 Create Harness-Free Models with MAT File Input Data

13-363

red. Warnings and errors are flagged with diagnostic messages. If the Options > Update Model
Automatically option is not selected, the Root Inport Mapper tool determines the compatibility
status by evaluating these block parameters and assigned signals:

• Data Type — Double, single, enum,
• Complexity — Real or complex
• Dimensions — Signal dimensions versus port dimensions

Finalize Inputs to Model

Review the results of the mapping compatibility. In the Scenario Dataset list, select
Passing_Maneuver. To prepare for simulation, click Apply to Model. This action applies the
mapping variables to the Configuration Parameter Data Import/Export > External Input text box.
If this text box has content, the content is overwritten.

Simulate Model

With the changes applied, you can now simulate the model. To view the results of the simulation,
double-click the PlotResults scope block.

13 Simulink Featured Examples

13-364

See Also
getRootInportMap | getSlRootInportMap

Related Examples
• “Attaching Input Data to External Inputs via Custom Input Mappings” on page 13-353
• “Create and Use Custom Map Modes”
• “Map Data Using Root Inport Mapper Tool”

More About
• “Map Root Inport Signal Data”
• “Create Signal Data for Root Inport Mapping”

 Create Harness-Free Models with MAT File Input Data

13-365

Logging States in Structure Format

Logging states using the Structure format can provide advantages over the Array format. When
you log states using the Array format, the ordering of the states along the columns in the logged
array depends on the block sorted order. Various factors can affect the block sorted order, which can
alter the ordering of the states from one simulation to the next. When you use the Structure format,
the block names are stored along with the logged state data for that block, so you can process your
data without considering the block sorted order.

Logging States in Array Format

When you log states using the Array format, the logged data is stored in an array with N columns,
where N is the number of states, and M rows, one for each simulation time step. This M-by-N matrix
form is easy to manipulate in MATLAB®. However, the ordering of the state variables along the
columns of the logged matrix depends on the block sorted order. Therefore, any MATLAB code which
expects a fixed mapping between the states of blocks in the model and the columns of the states
matrix is prone to breaking when the block sorted order changes due to changes in the model.

For example, consider the models sldemo_state_logging1 and sldemo_state_logging2.

mdl1 = 'sldemo_state_logging1';
mdl2 = 'sldemo_state_logging2';
open_system(mdl1);
open_system(mdl2);

13 Simulink Featured Examples

13-366

The two models contain the same blocks, connected the same way. The only difference is the order of
the output ports. Simulate the models and log the states using the Array format.

simOut1 = sim(mdl1, 'SaveFormat','Array');
simOut2 = sim(mdl2, 'SaveFormat','Array');

Extract the states vectors from the Simulink.SimulationOutput object, which contains all data
logged in the simulation.

x1 = simOut1.get('xout');
x2 = simOut2.get('xout');

The logged states data for x1 and x2 are different because the blocks are ordered differently, so the
mapping between the columns in the logged array and the blocks in the model is different.

isequal(x1, x2)

ans =

 logical

 0

Log States Using the Structure Format

Simulate the models again, but this time log the states in structure format.

simOut1=sim(mdl1,'SaveFormat','Structure');
simOut2=sim(mdl2,'SaveFormat','Structure');

Extract the structures, which contain the logged states, from the SimulationOutput object.

x1s = simOut1.get('xout');
x2s = simOut2.get('xout');

Display these structures, which contain two fields: time and signals. The time field is empty
because the data was logged using the Structure format and not the StructureWithTime format.
You can use the StructureWithTime format when you need to save the time data along with the
states data.

disp(x1s);
disp(x2s);

 time: []
 signals: [1x2 struct]

 time: []
 signals: [1x2 struct]

The structure signals field is an array of structures, with one structure for each block in the model
that has state data. Each block data structure within the signals field contains a values field with
the states data and a blockName field with the name of the block that produced that state data. You
can extract the states data into a matrix that you can process similar to how you would had you
logged the states using the Array format.

 Logging States in Structure Format

13-367

To fix the state ordering problem, first use the block names to sort the states data into a fixed order.
For example, you could sort the states data so that the blocks are in alphabetical order, which will
stay the same from one simulation to the next, regardless of the block sorted order.

[~, idx1] = sort({x1s.signals.blockName});
x1 = [x1s.signals(idx1).values];

[~, idx2] = sort({x2s.signals.blockName});
x2 = [x2s.signals(idx2).values];

isequal(x1, x2)

ans =

 logical

 1

Once you reorder the signals fields alphabetically by block name, if you extract the values field data
in the same order, you can then process the data similar to how you would when you use the Array
format, but the order of the block states data does not change from one simulation to the next.

13 Simulink Featured Examples

13-368

Logging Intervals

This example shows how to specify logging intervals. Simulink® limits the data logging to the
specified intervals.

Open the Example Model

Open the example model, sldemo_mdlref_bus.

Set Logging Intervals

To reduce the amount of logged data, limit data logging to specific simulation time intervals. In this
example, you specify two intervals to log the data of two system events triggered by the increment
and reset signals. The first interval captures the first reset event. The second interval captures the
behavior of the system after the increment event takes place and the signals reach the lower
saturation limits. The intervals are based on the increment and reset signal values.

To set the Logging Intervals configuration parameter, in the Simulink Toolstrip, on the Modeling
tab, click Model Settings. In the Configuration Parameters dialog box, on the Data Import/Export
tab, enable the Logging Intervals parameter by selecting Single simulation output.

The Logging Intervals parameter value must be a real double matrix with two columns. The matrix
elements must not be NaN. Each row defines the start and end times for an interval. Intervals must
be disjoint and ordered.

For this example, set Logging Intervals to [9,10.5;14.5,30].

Simulate the Model and View Results

Simulate the model.

 Logging Intervals

13-369

OUTERDATA is a wide signal with two elements. The scope shows the values of the OUTERDATA
signal during simulation. The scope does not honor the Logging Intervals setting.

The Logging Intervals setting is honored when logging time, root outports, signals, data store
memory, states, and other kinds of data. To display the logged values of OUTERDATA captured as part
of signal logging, use the stem function, which ignores the interpolation settings of the data.

time = out.get('topOut').get('OUTERDATA').Values.Time;
data = out.get('topOut').get('OUTERDATA').Values.Data;
stem(time,data,':.');
xlabel('Simulation Time');
xlim([0 35]);
ylabel('OUTERDATA');
ylim([0 45]);

13 Simulink Featured Examples

13-370

See Also

Related Examples
• “Save Simulation Data”
• “Save Signal Data Using Signal Logging”
• “Specify Signal Values to Log”

 Logging Intervals

13-371

Working with Big Data

This example shows how Simulink® models handle big data as input to and output from a simulation.

Big data refers to data that is too large to load into system memory all at once. Simulink simulations
can produce big data as simulation output and consume big data as simulation input. Big data for
both input and output is stored in a MAT-file on the hard disk. Only small chunks of this data are
loaded into system memory at any time during simulation. This approach is known as streaming.
Simulink simulations can stream data to and from a MAT-file. Streaming solves memory issues
because the hard disk capacity of a system is typically much greater than the capacity of the random
access memory.

The software uses logging to file to stream big data as the output of a simulation. Streaming from file
then supplies big data as input to a simulation.

This example demonstrates strategies for big data simulations. To reduce the time required to run the
example, the example uses a shorter simulation duration and generates less data than most big data
simulations.

Open Example

Open the example, which uses the model named sldemo_mdlref_bus.

openExample('simulink_features/WorkingWithBigDataExample');

If you close the model, you can reopen it from the example folder.

open_system('sldemo_mdlref_bus');

13 Simulink Featured Examples

13-372

Set Up Logging to File

To stream output data to a MAT-file, enable logging to file by selecting the Configuration
Parameters > Data Import/Export > Log Dataset data to file option. You can also specify the
name of the file that will contain the result.

To enable logging to file programmatically, set the model configuration parameter LoggingToFile to
on.

When logging to file is enabled on a model, simulation of that model streams logged signals directly
into the MAT-file. Additionally, if the States or Output configuration parameters are enabled and the
Format configuration parameter is set to Dataset, those values are streamed into the same MAT-
file.

Simulate Model

Call the sim command to simulate the model.

To specify the name of the Dataset object to hold the result of signal logging, set the
SignalLoggingName configuration parameter to topOut.

To specify the name of the resulting MAT-file, set the LoggingFileName configuration parameter to
top.mat. Set the StopTime configuration parameter to 5000 seconds. Note that the stop time will
be a much larger value for most big data simulations, which results in many more data samples to
log.

sim('sldemo_mdlref_bus','SignalLoggingName','topOut',...
 'LoggingToFile','on','LoggingFileName','top.mat',...
 'StopTime','5000');

Create DatasetRef Object to Reference Logged Dataset Within MAT-File

Use a DatasetRef object to reference the resulting Dataset object in the logged MAT-file. By using
a DatasetRef object, the referenced MAT-file is not loaded into memory. The DatasetRef object is
a light wrapper object for referencing a Dataset object that is stored in a file. Alternatively, if you
call the load function on this file, the software loads the entire file into memory, which might not be
possible if this Dataset object contains big data.

dsr = Simulink.SimulationData.DatasetRef('top.mat','topOut');

Obtain Reference to Logged Signal

You can use { } indexing of DatasetRef objects to reference individual signals within a Dataset
object without loading the signals into memory. For example, to reference the seconds signal, enter
this command.

sig2 = dsr{2};

The Values field of sig2 is a SimulationDatastore object, which is a lightweight reference to the
data of signal 2, stored on disk.

sig2.Values

ans =

 SimulationDatastore with properties:

 Working with Big Data

13-373

 ReadSize: 100
 NumSamples: 50001
 FileName: 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex31145726\top.mat'

 Data Preview:

 Time Data
 _______ ______

 0 sec 1 5
 0.1 sec 1 5
 0.2 sec 2 6
 0.3 sec 2 6
 0.4 sec 3 7
 : :

Obtain More References to Other Logged Signals

You can use some of the logged signals as inputs to the simulation of the referenced model. Create
lightweight references for each of the logged signals that connect to the input ports of the Model
block. In this example, buses connect to the Model block input ports. The resulting Values fields are
structures of SimulationDatastore objects. Each structure reflects the hierarchy of the original
bus.

counterbus = dsr{1};
incrementbus = dsr{3};

Create Dataset Object to Use as Simulation Input

Specify the input signals to a simulation using a Dataset object. Each element in this Dataset
object provides input data to the Inport block that corresponds to the same index. Create an empty
Dataset object named ds. Then, place the references to the logged signals into the Dataset object
as elements number one and two.

Use { } indexing on the Dataset object to order elements.

ds = Simulink.SimulationData.Dataset;
ds{1} = counterbus;
ds{2} = incrementbus;

Within each element of the Dataset object, you can mix references to signal data, such as
SimulationDatastore objects, with in-memory data, such as timeseries objects. To change one
of the upper saturation limits from 30 to 37, enter this command.

ds{1}.Values(2).limits.upper_saturation_limit = timeseries(int32(37),0);

Stream Input Data into Simulation

Open the referenced model sldemo_mdlref_counter_bus as a top model, outside of the context of
the model sldemo_mdlref_bus.

open_system('sldemo_mdlref_counter_bus');

13 Simulink Featured Examples

13-374

Simulate the model sldemo_mdlref_counter_bus. Use the Dataset object named ds as input.

out = sim('sldemo_mdlref_counter_bus', ...
 'LoadExternalInput','on','ExternalInput','ds');

The data that is referenced by SimulationDatastore objects is streamed into the simulation
without overwhelming the system.

The data for the upper saturation limit is not streamed because that signal is specified as an in-
memory timeseries. The change in saturation limit is reflected at around time 6 in the scope. The
signal now saturates to a value of 37 instead of 30.

Analyze Logged Data Incrementally in MATLAB®

SimulationDatastore objects let you analyze the logged data incrementally in MATLAB. Return to
the reference to the second logged signal and assign the datastore to a new variable to simplify
access to it.

dst = sig2.Values;

SimulationDatastore objects allow incremental reading of the referenced data. The reading is
done in chunks and is controlled by the ReadSize property. The default value for ReadSize is 100
samples. Each sample for a signal is the data logged for a single time step of simulation. Change the
ReadSize value to 1000. Each read of the datastore returns a timetable representation of the data.

dst.ReadSize = 1000;
tt = dst.read;

 Working with Big Data

13-375

Each read on the datastore advances the read counter. You can reset this counter and start reading
from the beginning.

dst.reset;

Use SimulationDatastore objects for incremental access to the logged simulation data for big
data analysis. You can iterate over the entire data record and chunks.

while dst.hasdata
 next_chunk = dst.read;
end

Consider Longer Simulations

This example shows how logging to persistent storage streams data from the first simulation into a
MAT-file. A second simulation then streams the data from that file as input.

A more realistic big data example would have a larger value for the model StopTime configuration
parameter, resulting in a larger logged MAT-file. The second simulation could also be configured for a
longer stop time. However, even with the larger data files for output and input, the memory
requirements for the longer simulations remain the same.

See Also
matlab.io.datastore.SimulationDatastore | Simulink.SimulationData.DatasetRef

Related Examples
• “Load Big Data for Simulations”
• “Analyze Big Data from a Simulation”

13 Simulink Featured Examples

13-376

Simulink Subsystem Semantics

This set of examples shows different types of Simulink® Subsystems and what semantics are used
when simulating these Subsystems. Each example provides a description of the model and the
subtleties governing how it will be executed.

Examples are provided for the following Subsystem types.

• Virtual and Nonvirtual Subsystems
• Function-call Subsystems
• Triggered Subsystems
• Enabled Subsystems
• Triggered and Enabled Subsystems
• If/else Subsystems
• While Subsystems
• For Subsystems

See Also
Subsystem

More About
• “Subsystems”

 Simulink Subsystem Semantics

13-377

If-Then-Else Blocks

This example shows the effect of feeding a sine wave into If Action Subsystem blocks. It is designed
to illustrate the similarity between the If Action Subsystem block and the Enabled Subsystem block.

A pulse generator is connected to an If block, which compares the input to zero. If the input is
positive, as specified by the if condition, then the If Action Subsystem Abs is activated, which
outputs the absolute value of the sine wave input signal. If the input to the If block is not positive, as
specified by the else condition, then the If Action Subsystem Saturation between -0.75 and
0.75 is activated, which outputs a clipped version of the sine wave signal using a Saturation block.

The outputs of the two subsystems are never active at the same time and are merged into one signal
with a Merge block. The output signal is then biased by +2.

The scope shows the sine wave input, the triggering pulse input, and the merged and biased output.
When the pulse is on, the output is the absolute value of the sine wave. When the pulse is off, the
output is the clipped version of the sine wave. In each case, the output is biased by +2.

13 Simulink Featured Examples

13-378

See Also
“Select Subsystem Execution” | Large-Scale Modeling for Embedded Applications

Related Examples
• “Simulink Subsystem Semantics” on page 13-377

 If-Then-Else Blocks

13-379

https://www.mathworks.com/company/newsletters/articles/large-scale-modeling-for-embedded-applications.html

Triggered Subsystems

This model shows triggered subsystems and describes the different trigger types. A triggered
subsystem is executed for a single time step whenever the trigger port transitions in a specified
direction. The transition of the trigger port may occur when the direction of the transition is rising,
falling, or either rising or falling. A rising transition occurs when the trigger signal transitions from
zero or below to a positive value. A falling transition occurs when the trigger signal transitions from
zero or above to a negative value.

After running the simulation, look closely at the top plot in the scope. This shows a sine wave, a
waveform, and the grounded value of zero. As the waveform transitions through zero, each of the
subsystems is triggered appropriately. The output of each subsystem is equal to the current value of
the sine wave at that time.

13 Simulink Featured Examples

13-380

 Triggered Subsystems

13-381

Enabled Subsystems

This example shows what happens when a sine wave is fed into an enabled subsystem. After running
the simulation, the scope shows three plots.

The first of these plots shows the original sine wave and the absolute value of the original sine wave
offset by two. The absolute value of the sine wave is shown only when the subsystem is enabled. This
occurs between 0 and 2.5 seconds, and between 5 and 7.5 seconds. When the subsystem is not
enabled, the output of the subsystem is reset to 0. The value of 0 is determined by the initial
condition of the outport. You can see when the subsystem is enabled by looking at the second plot. A
value of 1 indicates that it is enabled.

The second plot shows the original value of the enable signal. When the signal is towards the top of
the plot, the subsystem related to the first plot is enabled. When the signal is towards the bottom of
the plot, the subsystem related to the third plot is enabled. The difference in when the subsystems
are enabled is caused by the logical NOT block.

The third plot shows the original sine wave and the saturation limited sine wave offset by two. The
saturated value of the sine wave is shown only when the subsystem is enabled. This occurs between
2.5 and 5 seconds, and between 7.5 and 10 seconds.

13 Simulink Featured Examples

13-382

 Enabled Subsystems

13-383

Advanced Enabled Subsystems

This model shows what happens when a sine wave is fed into an enabled subsystem. The four
subsystems in the model contain integrators, either discrete or continuous as described by the
subsystem name. After running the simulation, the two scopes show the results for the discrete
enabled subsystems (top scope) and continuous enabled subsystems (bottom scope).

Each scope shows the output for all combinations of the states and outputs of the enabled subsystem
being either held or reset when the subsystem is disabled. The colors on the scope correspond to the
following state and output configurations:

Yellow: Reset states; Held outputs

Blue: Reset states; Reset outputs

Red: Held states; Held outputs

Green: Held states; Reset outputs

13 Simulink Featured Examples

13-384

 Advanced Enabled Subsystems

13-385

13 Simulink Featured Examples

13-386

Resettable Subsystems

This example shows how to use two resettable subsystems to implement a ramp signal. Consider
using resettable subsystems when you want to conditionally reset the states of all blocks within a
subsystem to their initial condition. A resettable subsystem executes at every time step but
conditionally resets the states of blocks within it when a trigger signal occurs at the reset port. For
more information, see “Using Resettable Subsystems”.

After running the simulation, the scope shows three plots. The top and bottom plots show the original
ramp as a reference, along with its integration. The subsystems corresponding to the top and bottom
plots reset on every rising and falling edge of the pulse, respectively. When each subsystem resets,
the state of the Integrator block is set to its initial condition value, which is 0. Refer to the middle plot
to determine when each subsystem resets.

The reset happens for blocks within the subsystem, without the need for each block to have its own
reset port. This provides a more convenient way of handling resets at a subsystem level.

 Resettable Subsystems

13-387

See Also
Resettable Subsystem

Related Examples
• “Discrete and Continuous Resettable Subsystems” on page 13-389

More About
• “Using Resettable Subsystems”

13 Simulink Featured Examples

13-388

Discrete and Continuous Resettable Subsystems

This example compares the behavior of discrete and continuous resettable subsystems. After you run
the simulation, one scope shows the results for the discrete resettable subsystem, and the other
scope shows the results for the continuous resettable subsystem.

 Discrete and Continuous Resettable Subsystems

13-389

13 Simulink Featured Examples

13-390

See Also
Resettable Subsystem | Enabled and Triggered Subsystem

Related Examples
• “Conditionally Executed Subsystems Overview”

 Discrete and Continuous Resettable Subsystems

13-391

Block Priority

This model shows what happens when blocks are assigned different priorities. The block priority
affects the order in which the blocks are executed. You can set the block priority through the Block
Properties dialog. A smaller number indicates a higher priority.

The block sorting order is calculated only at the beginning of a simulation. For this reason, changes
to a block's Priority property are only updated when the simulation is started. Double click on the
green block to change the priority levels for the blocks and see what happens.

Inside of each triggered subsystem is an S-Function which controls the coloring of the blocks and also
slows down the simulation. The priority level of the block is displayed using the format attribute
string that can be set in the Block Properties dialog.

See Also
“Specify Block Execution Priority and Tag” | “Control and Display Execution Order”

13 Simulink Featured Examples

13-392

Monitoring Ink Status on a Shared Printer Using Simulink
Functions

This example shows how clients, in this case three computers, can send jobs to a server, a printer, and
receive status from that server. This example highlights how Simulink functions can be called from
different subsystems and interact in both Simulink® and Stateflow®. (Note that when you simulate
the example, Stateflow might generate code in the current working folder.)

The computers each generate randomly sized print jobs at regular intervals. The printer interacts
with the computers through two Simulink functions on the Simulink canvas and one exported
graphical function in Stateflow.

The clients use Function Caller blocks to invoke the addPrintJob interface of the printer. The client-
server interaction modeled by this call may have a negative return value if the printer has run out of
ink.

The example also shows how to interface Simulink and Stateflow using functions.

The implementation of addPrintJob uses a Function Caller block to invoke queuePrintJob, a
Stateflow exported graphical function. The queuePrintJob function interacts with other content in
the chart using a local chart variable work.

The implementation of the chart makes a call to printerInk, a Simulink function, which uses the
graphical input and outputs to interact with the addPrintJob function.

You can also visualize and debug Simulink functions.

To enable the visualization lines connecting functions and their respective callers, in the Simulink
Editor, on the Debug tab, under Information Overlays, click Function Connectors.

The Sequence Viewer block shows where calls to functions are generated and which functions are
called at different times. This information allows you to understand the flow of calls with respect to
time and analyze the arguments sent during these calls to functions.

 Monitoring Ink Status on a Shared Printer Using Simulink Functions

13-393

13 Simulink Featured Examples

13-394

Model Reusable Components Using Multiply Instanced
Simulink Functions

In this example, the model slexCounterFunctionMdlRef contains the Simulink® function
update, which maintains a counter. Multiple instancing provides the ability to reuse this logic as
CounterA and CounterB in this example model.

The qualified calling notation CounterA.update and CounterB.update is used to distinguish the
two different instances of the counter logic. As illustrated in this example, each instance can be called
from multiple caller blocks.

 Model Reusable Components Using Multiply Instanced Simulink Functions

13-395

13 Simulink Featured Examples

13-396

Dynamic Priority Scheduling of Functions

This example shows a common modeling pattern to dynamically schedule the execution of functions
using a Stateflow® chart.

Overview

Simulink messages provide intrinsic support for creating and managing priority queues, which may
be used to model a situation in which the execution order of the functions may change between
execution intervals.

Additionally, the Sequence Viewer allows you to visualize execution sequences. To view the
dynamically changing execution sequence: 1. Double-click on the 'Sequence Viewer' block 2. Click the
'Run' button once

 Dynamic Priority Scheduling of Functions

13-397

Component-Based Modeling with Model Reference

This example walks you through simulation and code generation of a model that references another
model multiple times. In this example, Simulink® generates code for accelerated simulation, and
Simulink® Coder™ generates code that can be deployed in standalone applications.

Model Reference Behavior

Model Reference has several advantages over subsystems:

• You can develop the referenced model independently from the models in which it is used.
• You can reference a model multiple times in another model without having to make redundant

copies.
• Multiple models can reference a single model.
• The referenced model is not loaded until it is needed. This incremental loading speeds up model

load times.
• If a model is referenced in accelerator mode, Simulink creates special binaries to be used in

simulations. If the referenced model has not changed since the binaries were created, and the
binaries are therefore up to date, no code generation occurs when models that use these binaries
are simulated or compiled. This process is called incremental code generation. The use of binaries
makes updating and simulating the model faster and increases modularity in code generation.

• Generating code for a model with Model blocks also takes advantage of incremental code
generation.

Incremental Loading

Open the example model.

open_system('sldemo_mdlref_basic')

This model contains three Model blocks: CounterA, CounterB and CounterC. These blocks reference
the same model, sldemo_mdlref_counter, which is a separate model and not a subsystem of
sldemo_mdlref_basic.

13 Simulink Featured Examples

13-398

To determine what models are loaded in memory after opening the top model in the model hierarchy,
enter this command:

get_param(Simulink.allBlockDiagrams,'Name')

ans =

 'sldemo_mdlref_basic'

The referenced model is not listed because it is not loaded.

Open the referenced model by double-clicking on any Model block or by entering this command:

open_system('sldemo_mdlref_counter')

Query the models loaded in memory again.

get_param(Simulink.allBlockDiagrams,'Name')

ans =

 2x1 cell array

 {'sldemo_mdlref_counter'}
 {'sldemo_mdlref_basic' }

 Component-Based Modeling with Model Reference

13-399

The referenced model is now listed, demonstrating that models are loaded incrementally as they are
needed.

Inherited Sample Times

Navigate back to the parent model sldemo_mdlref_basic.

sldemo_mdlref_basic is configured to display sample time colors when it is compiled. On the
Debug tab, click Update Model.

The Model blocks inherit different sample times because the referenced model
sldemo_mdlref_counter does not explicitly specify a sample time.

Simulation Through Code Generation (Does Not Require Simulink Coder)

Model blocks have a Simulation mode parameter that controls how the referenced model is
simulated. If the parameter is set to Normal, the referenced model is simulated in interpreted mode.
If the parameter is set to Accelerator, the referenced model is simulated through code generation.
This process uses a binary file called a simulation target for each unique model referenced in
accelerator mode. Generating a simulation target does not require a Simulink Coder license.

In this model, CounterA and CounterB reference sldemo_mdlref_counter in normal mode, which
is indicated by the hollow corners on the Model block icons. The other instance, CounterC, references
sldemo_mdlref_counter in accelerator mode, which is indicated by the filled corners on the Model
block icon.

You can create the simulation target for the sldemo_mdlref_counter model by performing any of
these actions:

• Updating sldemo_mdlref_basic
• Simulating sldemo_mdlref_basic

To build the simulation target programmatically, use this command:

slbuild('sldemo_mdlref_counter','ModelReferenceSimTarget')

Once the simulation target is built, subsequently simulating or updating sldemo_mdlref_basic
does not trigger a rebuild of the simulation target unless sldemo_mdlref_counter has changed.

If all three instances of the referenced model were set to simulate in normal mode, the simulation
target would not be built.

13 Simulink Featured Examples

13-400

Code Generation for Standalone Applications (Requires Simulink Coder)

When creating a standalone executable for sldemo_mdlref_basic, the build first generates the
code and binaries for the model reference coder target of sldemo_mdlref_counter. Generating a
model reference coder target requires a Simulink Coder license.

You can build the model reference coder target for sldemo_mdlref_counter and the standalone
executable for sldemo_mdlref_basic by performing any of these actions:

• Building the standalone executable for sldemo_mdlref_basic.
• Building the model reference coder target of sldemo_mdlref_counter, then building the

standalone executable for sldemo_mdlref_basic.

To build the standalone executable programmatically, use this command:

slbuild('sldemo_mdlref_basic','StandaloneCoderTarget')

Once the model reference coder target is built, subsequently building sldemo_mdlref_basic does
not trigger a rebuild of the model reference coder target unless sldemo_mdlref_counter has
changed. The code generated for the referenced model sldemo_mdlref_counter is reused.

The code generation report for sldemo_mdlref_basic links to the report for
sldemo_mdlref_counter in the Referenced Models section.

See Also
Model

Related Examples
• “Model Reference Basics”
• “Reference Existing Models”
• “Visualize Model Reference Hierarchies” on page 13-410

 Component-Based Modeling with Model Reference

13-401

Viewing Signals in Model Reference Instances

This example shows how to use the Simulation Data Inspector to view and analyze signals in
referenced models. The Simulation Data Inspector relies on signal logging so this example shows how
to configure your model to log signals in referenced models.

origdir = pwd;

Configure Signals to Log in Referenced Models

The first task in setting up a referenced model to view signals using the Simulation Data Inspector is
to configure that model for logging. To do that, edit the referenced model and mark the signals for
logging. Four signals are already marked for logging in the referenced model. To mark the
raw_output signal for logging, select the signal. Then, on the Simulation tab, select Log Signals.

13 Simulink Featured Examples

13-402

Once the signals to log have been selected in the referenced model, the next step is to select which
signals to actually log from the topmost model in the hierarchy. In the top model, on the Modeling
tab, click Model Settings.

 Viewing Signals in Model Reference Instances

13-403

On the Data Import/Export pane, click the Configure Signals to Log... button to activate the
Simulink Signal Logging Selector dialog.

13 Simulink Featured Examples

13-404

 Viewing Signals in Model Reference Instances

13-405

There are two Logging modes that can be used when logging signals in referenced models. The first
is Log all signals as specified in model, which will honor any logging settings that were made in
referenced models. If you need to override any of those settings, such as selecting only a subset of
logged signals, then you should use the Override signals mode. In this mode, you are given the
ability to select a subset of loggable signals and configure their properties, such as decimation and
name.

Viewing and Analyzing Logged Signals Using the Simulation Data Inspector

Once logging has been configured for a model hierarchy and all changes to the models have been
saved, the model can be simulated. The simulation creates a Dataset object in the base workspace.
You can analyze and view the logged data in this object using standard MATLAB® tools. In addition,
Simulink® provides the Simulation Data Inspector for viewing and analyzing data created from
simulations.

With the Simulation Data Inspector, you can:

• View signal traces for any logged signals
• Visually compare signal values for any logged signals
• Compare signal values collected over multiple simulations

13 Simulink Featured Examples

13-406

For example, you can use the Simulation Data Inspector to view the output signal of two of the
instances of the model LimitedCounter. In the Simulation Data Inspector, you can see that
CounterA increases more rapidly than CounterB. This behavior is expected because the Pulse
Generator driving this model is running at a faster rate.

You can configure what to display in the inspect table by clicking the gear icon at the right top of the
table.

 Viewing Signals in Model Reference Instances

13-407

Another useful tool that the Simulation Data Inspector provides is the ability to compare multiple
simulation runs. This functionality can help you understand how changes to your model affect results.
For example, you can change the value of the upper limit of the counter models to 8 and simulate the
model again to see how that affects output values. To change the value, double click on the block
MultiInstanceModelExample/upper and modify the Value parameter to 8.

Now if you compare the results from the first simulation for the output of the CounterA instance of
LimitedCounter, you see that the upper limit of this signal has changed from 10 to 8, as expected.
Because the tolerances are set to zero, the red octagon next to each signal indicates that the values
have changed between runs.

13 Simulink Featured Examples

13-408

See Also
Tools
Simulation Data Inspector

Related Examples
• “View Data in the Simulation Data Inspector”
• “Configure the Simulation Data Inspector”

 Viewing Signals in Model Reference Instances

13-409

Visualize Model Reference Hierarchies

This example shows how to view, explore, and analyze model dependencies using the Dependency
Analyzer. It shows how to find referenced models and interact with the dependency graph.

Open Model

Open the example model sldemo_mdlref_depgraph, which contains multiple referenced models in
a model hierarchy.

Find Referenced Models

Use the find_mdlrefs function to programmatically find referenced models and Model blocks. For
example, enter this command in the MATLAB Command Window:

[refMdls, modelBlks] = find_mdlrefs('sldemo_mdlref_depgraph')

find_mdlrefs returns two cell arrays, refMdls and modelBlks. refMdls contains the names of
all models that are directly or indirectly referenced by sldemo_mdlref_depgraph. By default, the
last element in refMdls is the name of the input model. modelBlks contains block paths for all
Model blocks in the top model and all referenced models.

View Model Reference Dependency Graph

To view the dependency graph for the sldemo_mdlref_depgraph model, perform one of these
actions to open the Dependency Analyzer for a model:

• Use the depview function.
• In the Modeling tab, in the Design section, click Dependency Analyzer.

13 Simulink Featured Examples

13-410

In the dependency graph, the boxes represent Simulink models. The arrows indicate dependencies.
For example, the link from sldemo_mdlref_depgraph to sldemo_mdlref_house indicates that
sldemo_mdlref_depgraph references sldemo_mdlref_house. If the model references libraries,
subsystems, or protected models, the dependency graph shows them in the hierarchy.

In this view, only one box exists for each model in the graph and at most one arrow exists from one
box to another box. The dependency graph does not show if multiple references exist from one model
to another model. This view does not show which models are referenced in normal mode and which
models are referenced in accelerator mode.

Interact with Dependency Graph

• To select a box, click it.
• To open the model or library associated with a box, double-click it.
• To pan the dependency graph, click and hold the mouse wheel button then drag the mouse.
• To zoom in and out, use the mouse wheel.
• To center the dependency graph and adjust the zoom so that the dependency graph fills the

available space, press the space bar.

View Model Instances Dependency Graph

To view the referenced model instances in the dependency graph, perform one of these actions:

• Use depview('sldemo_mdlref_depgraph','ModelReferenceInstance',true).
• From the Dependency Analyzer, in the Views section, select Model Instances.

 Visualize Model Reference Hierarchies

13-411

In the instance view, the boxes represent Simulink models. The arrows indicate dependencies. The
dependency graph shows when multiple references exist from one model to another model. In the
instance view, libraries are not shown.

In this view, two boxes are labeled sldemo_mdlref_F2C because this model is referenced twice,
once by sldemo_mdlref_outdoor_temp and once by sldemo_mdlref_heater. The legend
provides colors that represent the top model, models referenced in normal mode, and models
referenced in accelerator mode.

sldemo_mdlref_heater makes a normal mode reference to sldemo_mdlref_F2C and an
accelerator mode reference to sldemo_mdlref_thermostat.

Explore Model Instance Views

Currently, the reference sldemo_mdlref_outdoor_temp makes to sldemo_mdlref_F2C is an
accelerator mode reference. Suppose you want to change this reference to be a normal mode
reference.

1 Select the arrow linking sldemo_mdlref_outdoor_temp to sldemo_mdlref_F2C.
2 In the Properties pane on the right, in the dependency table, click Fahrenheit to Celsius.

Simulink opens the model sldemo_mdlref_outdoor_temp and highlights the Model block
named Fahrenheit to Celsius. This Model block references sldemo_mdlref_F2C.

3 Select the Model block named Fahrenheit to Celsius.
4 In the Model Block tab, change the Simulation Mode to Normal.
5 To see this change, go to the dependency graph and click Analyze.

13 Simulink Featured Examples

13-412

The dependency graph now shows the reference sldemo_mdlref_outdoor_temp makes to
sldemo_mdlref_F2C as a Normal Mode (Overridden) reference. Note that sldemo_mdlref_F2C is
configured to run in normal mode but its parent, sldemo_mdlref_outdoor_temp, is configured to
run in accelerator mode. Normal mode references from models running in accelerator mode are not
supported, so sldemo_mdlref_F2C will run in accelerator mode during simulation.

To make this model run in normal mode, you must configure all of its ancestors to run in normal
mode.

1 Select the arrow linking sldemo_mdlref_depgraph to sldemo_mdlref_outdoor_temp.
2 In the Properties pane on the right, in the dependency table, click outdoor temp. Simulink

opens the model sldemo_mdlref_depgraph and highlights the Model block named outdoor
temp. This Model block references sldemo_mdlref_outdoor_temp.

3 Select the Model block named outdoor temp.
4 In the Model Block tab, change the Simulation Mode to Normal. (If there were more

accelerator mode ancestors of sldemo_mdlref_F2C, these would also need to be changed to
normal mode references.)

5 To see this change, go to the dependency graph and click Analyze.

 Visualize Model Reference Hierarchies

13-413

See Also

Related Examples
• “Model Reference Basics”
• “Analyze Model Dependencies”

13 Simulink Featured Examples

13-414

Perform Block-Level Impact Analysis Using Dependency
Analyzer

This example shows how to identify the impact of changing a single block in a Simulink® model on
the other files in your design. You can analyze the impact of changes you make before you make the
change.

Open Dependency Analyzer

Open the Dependency Analyzer app on the sldemo_mdlref_depgraph model. In the Simulink®
Editor, in the Modeling tab, on the far right of the Design section, click the down arrow to expand
the gallery. Under Dependencies, click Dependency Analyzer.

Alternatively, in the MATLAB® Command Window, enter this command:

depview("sldemo_mdlref_depgraph");

For information about opening the Dependency Analyzer for a project, file, or folder, see “Open the
Dependency Analyzer App”.

For a model, the Dependency Analyzer shows the Model Hierarchy view and filters non-model files
from the view. To see all file dependencies, clear the Model Hierarchy filter.

The graph shows:

 Perform Block-Level Impact Analysis Using Dependency Analyzer

13-415

• The model hierarchy, including how files such as models, libraries, functions, data files, source
files, and derived files relate to each other. Each item in the graph represents a file and each
arrow represents a dependency.

• Relationships between source and derived files such as, M and P files, SLX and SLXC, and C and
MEX files.

The Properties pane shows:

• Model details
• Required products and add-ons for the entire hierarchy
• Any problems in the hierarchy, such as missing files and files with unsaved changes

Determine Impact of Modifying Block

For model files, you can investigate dependencies at a finer level.

1. Select a model and inspect the Blocks section in the Properties pane. The Dependency Analyzer
lists only the blocks that have dependencies in the current graph. The app lists child blocks under the
parent block in a tree.

The sldemo_mdlref_depgraph model has four blocks with file dependencies in the graph.

None of the blocks in the sldemo_mdlref_F2C model depend on nor affect any other files in the
graph.

2. To determine the impact of changing the Fahrenheit to Celsius block in the
sldemo_mdlref_heater model before you make changes, follow these steps.

a. Select the sldemo_mdlref_heater model.

b. In the Blocks pane, select the checkbox that corresponds to the Fahrenheit to Celsius block,
then click Impacted.

13 Simulink Featured Examples

13-416

The graph shows only the files and blocks that are impacted by the changes you make to the
Fahrenheit to Celsius block. Changing the Fahrenheit to Celsius block affects the
sldemo_mdlref_depgraph model. The change affects only one of the four blocks in the
sldemo_mdlref_depgraph model.

To clear the block-level impact analysis, click the Impacted: sldemo_mdlref_heater.slx,
sldemo_mdlref_heater/Fahrenheit to Celsius filter.

See Also

Related Examples
• “Open the Dependency Analyzer App”
• “Analyze Model Dependencies”
• “Create a Project from a Model”
• “Perform Impact Analysis with a Project” on page 13-484

 Perform Block-Level Impact Analysis Using Dependency Analyzer

13-417

Introduction to Managing Data with Model Reference

This example shows the basic concepts related to managing data with model reference.

Open the Example Model

Open the example model sldemo_mdlref_datamngt.

Example Content

This example uses a top model sldemo_mdlref_datamngt that contains three Model blocks:
Counter1, Counter2, and Counter3. These blocks reference the same model
sldemo_mdlref_counter_datamngt.

The referenced model implements a limited counter algorithm that:

• Resets the counter if the first trigger input changes
• Increments the counter by a specified amount if the second input changes
• Saturates the counter between the specified upper and lower limits

The referenced model outputs a bus signal that contains:

13 Simulink Featured Examples

13-418

• Count: the value of the counter as an 8-bit integer
• OverflowState: an enumerated value that indicates whether the counter is at the upper limit,

lower limit, or in range

See Also
Model | Variant Subsystem, Variant Model

Related Examples
• “Model References”

 Introduction to Managing Data with Model Reference

13-419

Interface Specification Using Bus Objects

This example shows how to propagate buses into referenced models. It also shows how you can
simulate the referenced models independently using logged signal data from the parent model.

Open the Example Model

Open and simulate the example model sldemo_mdlref_bus.

Examine the Model

The model contains a Model block named CounterA that references sldemo_mdlref_counter_bus,
which is a model of a simple counter.

An array of buses named COUNTERBUS feeds the data and the saturation limits of the counter into
the model. The buses named COUNTERBUS each contain two elements: a data signal and a nested
bus named LIMITBUS. The data is used in counting, and LIMITBUS contains the upper and lower
limit values of the counter.

The Model block has a second input port that connects to a bus named INCREMENTBUS. This bus
contains elements that change the increment and reset the counter.

The model uses a data dictionary file named sldemo_mdlref_bus.sldd that contains
Simulink.Bus objects that define the elements of COUNTERBUS, LIMITBUS, and
INCREMENTBUS.

To view the Bus objects, open the Type Editor. In the Simulink® Toolstrip, on the Modeling tab, in
the Design gallery, click Type Editor.

The model uses the Bus objects to specify the outputs of the following Bus Creator blocks:

13 Simulink Featured Examples

13-420

• COUNTERBUSCreator1
• COUNTERBUSCreator2
• LIMITBUSCreator1
• LIMITBUSCreator2
• IncrementBusCreator

The Inport block named counter_input in sldemo_mdlref_counter_bus specifies the Bus object
named COUNTERBUS. Double-click the block. In the Block Parameters dialog box, on the Signal
Attributes tab, Data type is set to Bus: COUNTERBUS.

The Inport block named increment_input is similarly configured to use the Bus object named
INCREMENTBUS.

Log Signal Data

These signals are marked for signal logging:

• COUNTERBUS
• INCREMENTBUS
• OUTERDATA
• INNERDATA

After you simulate the model, the logged signals are available in the base workspace in the topOut
variable.

topOut =

Simulink.SimulationData.Dataset 'topOut' with 4 elements

 Name BlockPath
 ____________ __
 1 [1x1 Signal] COUNTERBUS sldemo_mdlref_bus/Concatenate
 2 [1x1 Signal] OUTERDATA sldemo_mdlref_bus/CounterA
 3 [1x1 Signal] INCREMENTBUS sldemo_mdlref_bus/IncrementBusCreator
 4 [1x1 Signal] INNERDATA ...erA|sldemo_mdlref_counter_bus/COUNTER

 - Use braces { } to access, modify, or add elements using index.

The model uses Dataset format for signal logging. To access Dataset format logged data for a
given signal, use the getElement method:

topOut.getElement('COUNTERBUS')

ans =

 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'COUNTERBUS'
 PropagatedName: ''

 Interface Specification Using Bus Objects

13-421

 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'
 PortIndex: 1
 Values: [2x1 struct]

Bus data is logged as a MATLAB® structure in the Values field:

topOut.getElement('COUNTERBUS').Values

ans =

 2x1 struct array with fields:

 data
 limits

This structure contains MATLAB timeseries objects for each bus:

topOut.getElement('COUNTERBUS').Values(1).data

 timeseries

 Common Properties:
 Name: 'data'
 Time: [301x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [301x1 int32]
 DataInfo: tsdata.datametadata

topOut.getElement('COUNTERBUS').Values(2).data

 timeseries

 Common Properties:
 Name: 'data'
 Time: [301x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [301x1 int32]
 DataInfo: tsdata.datametadata

You can also plot the logged data using the plot function:

topOut.getElement('OUTERDATA').Values.plot()

13 Simulink Featured Examples

13-422

Log Referenced Model Signals

To log signals in the referenced model, select the Model block and click Log Signals on the Model
Block tab.

For this model, Logging Mode is set to Log all signals as specified in model. All the
signals that are logged when simulating sldemo_mdlref_counter_bus as a top model are also
logged when simulating it as a referenced model. To change logging for any of these signals or to log
a subset of signals:

1 Set Logging Mode to Override signals.
2 In the Model Hierarchy pane, clear the CounterA (sldemo_mdlref_counter_bus) check box

to indicate that this model should not use the Log all signals as specified in model
setting.

3 In the table, select the signals to log when simulating the top model.
4 To save the changes, save the top model.

Load Data

Open the referenced model sldemo_mdlref_counter_bus as a top model by clicking the Open As
Top Model badge at the lower left corner of the Model block.

 Interface Specification Using Bus Objects

13-423

The referenced model is configured to read the logged signal data through the root Inport blocks. To
see this configuration, open the Configuration Parameters dialog box. In the Simulink Toolstrip, on
the Modeling tab, click Model Settings. On the Data Import/Export tab, Input uses a comma-
separated list to specify logged data from topOut for the two input ports. The counter_input port
uses an array of structure of timeseries to load data for COUNTERBUS, and the increment_input
port uses a structure of timeseries to load data for INCREMENTBUS.

• topOut.getElement('COUNTERBUS')
• topOut.getElement('INCREMENTBUS')

You can configure the Input field by clicking the Connect Inputs button. The Root Inport Mapper
tool opens. In this example, the tool uses a mapping algorithm to set up the Input field from logged
data in the base workspace.

To select the data to import:

1 In the Root Inport Mapper, click From Workspace.
2 Select the logged data topOut and click OK.
3 In the dialog box that opens, specify a file name and click Save.

With the data loaded into the Root Inport Mapper tool, you can determine the root input port for
which to assign input data. Simulink matches input data with input ports based on one of these
criteria: block name, block path, signal name, port order, or a custom algorithm. Because topOut is
logged using signal names from the model, the best choice for a mapping criterion is Signal Name.
Using this criterion, Simulink tries to match input data variable names to the names of the input
signals.

13 Simulink Featured Examples

13-424

To select this option:

1 In the Root Inport Mapper hierarchy pane, select scenario dataset topOut.
2 Click the Signal Name radio button from the dropdown.
3 Click the Check Map Readiness button arrow, then click Map All.

When mapping data, Simulink evaluates input ports against the input data to determine compatibility.
The Root Inport Mapper table reflects the status of this compatibility with a green check mark,
orange warning triangle, or red error exclamation mark. In this example, the table shows a green
status indicating there is no compatibility issue. You can simulate the model with this mapping of
input data to input ports. The mapping also sets Input in the Data Import/Export tab of the
Configuration Parameters dialog to the proper comma-separated list of inputs. To apply the changes
to the model, in the Configuration Parameters dialog, click Apply.

Simulate Model with Imported Data

Simulate sldemo_mdlref_counter_bus.

After simulation, the scopes from sldemo_mdlref_bus (OUTERDATA) and
sldemo_mdlref_counter_bus (INNERDATA) show the same trace.

 Interface Specification Using Bus Objects

13-425

The signal feeding the scope in the referenced model is also logged. The logged data is available in
the MATLAB workspace under the variable subOut. You can verify that the data in
topOut.getElement('OUTERDATA') and subOut.getElement('INNERDATA') is the same.

See Also
Simulink.Bus

Related Examples
• “Component-Based Modeling with Model Reference” on page 13-398
• “Model Reference Basics”
• “Explore Simulink Bus Capabilities” on page 13-318
• “Composite Interface Guidelines”
• “Convert Subsystem to Referenced Model” on page 13-427

13 Simulink Featured Examples

13-426

Convert Subsystem to Referenced Model

This example demonstrates how to convert a subsystem to a referenced model by using the Model
Reference Conversion Advisor tool or the Simulink.SubSystem.convertToModelReference
function.

Examine Example Model

Open and simulate the example model.

The sldemo_mdlref_conversion model contains an atomic subsystem named Bus Counter that
models a counter algorithm.

 Convert Subsystem to Referenced Model

13-427

The subsystem interface uses In Bus Element and Out Bus Element blocks to pass a virtual bus into
and out of the subsystem. The virtual buses inherit their data types. To more strongly define the
interface of the new model after conversion, create Simulink.Bus objects and use them as the data
types of the buses.

Interactively Convert Subsystem to Referenced Model

Use the Model Reference Conversion Advisor to interactively convert the subsystem. Select a
Subsystem block, then on the Subsystem Block tab, select Convert > Model Block. In the Model
Reference Conversion Advisor, set New model name to sldemo_bus_counter, then click Convert.

You can also open the Model Reference Conversion Advisor by setting 'UseConversionAdvisor' to
'true' when calling the Simulink.SubSystem.convertToModelReference function.

Programmatically Convert Subsystem to Referenced Model

Use the Simulink.SubSystem.convertToModelReference function to programmatically convert
the atomic subsystem to a referenced model. To convert the subsystem named Bus Counter to a
referenced model named sldemo_bus_counter and to replace the Subsystem block with a Model
block that references the new model, enter this command in the MATLAB® Command Window:

Simulink.SubSystem.convertToModelReference(...
 'sldemo_mdlref_conversion/Bus Counter', ...
 'sldemo_bus_counter', ...
 'ReplaceSubsystem', true);

Alternatively, click the Callback Button block that converts the Bus Counter subsystem to a
referenced model by using this command.

See Also
Blocks
Subsystem | Model

Tools
Model Reference Conversion Advisor

Functions
Simulink.SubSystem.convertToModelReference | Simulink.Bus.createObject

More About
• “Model Reference Basics”
• “Component-Based Modeling Guidelines”
• “Convert Subsystems to Referenced Models”
• “Model Reference Requirements and Limitations”

13 Simulink Featured Examples

13-428

Use Data Stores Across Multiple Models

This example shows how to use and log local data stores. It also shows how to define, use, and log
global data stores to share global data among referenced models.

Inspect Example Models

Open the example models. The top model sldemo_mdlref_dsm references models
sldemo_mdlref_dsm_bot and sldemo_mdlref_dsm_bot2. Logging of data stores is turned on for
sldemo_mdlref_dsm on the Data Import/Export pane of the Configuration Parameters dialog box.

Referenced model sldemo_mdlref_dsm_bot amplifies the incoming signal by 5 if the signal is
positive or by 2 if the signal is negative and writes the value of this signal to local data store
RefSignalVal. This local data store is configured to log all written values to the workspace after
simulation. The logging parameters for this local data store are controlled by the Logging tab of the
Block Parameters dialog box.

 Use Data Stores Across Multiple Models

13-429

The PositiveSS subsystem contains the blocks that amplify the incoming signal by 5 if the signal is
positive and write the value of this signal to local data store RefSignalVal.

The NegativeSS subsystem contains the blocks that amplify the incoming signal by 2 if the signal is
negative and write the value of this signal to local data store RefSignalVal.

13 Simulink Featured Examples

13-430

Referenced model sldemo_mdlref_dsm_bot2 sets the value of a global boolean data store named
ErrorCond to true if the value of its incoming signal is outside of the range (-0.8, 0.8). The top model
also monitors the data store ErrorCond and switches between the outputs of the two referenced
models, depending on the value of that data store.

Define Global Data Store Using Simulink® Signal Object

To specify to Simulink that the top model and both of the referenced models use the same memory for
the data store named ErrorCond in each model, create an instance of a Simulink.Signal object
named ErrorCond in a workspace or data dictionary that is visible to each model. Since this object is
visible to each model, its scope encompasses the individual models and implies that there is one
global data store of that name that is shared among the models. Note that none of the three models
contains a Data Store Memory block with a data store name of ErrorCond. If any model contained
such a block, that block would define a data store local to the model, which would shadow the global
data store.

Since the object ErrorCond defines a global data store, it must explicitly define the DataType,
Complexity, and Dimensions properties to non-inherited settings. SampleTime and
StorageClass may be left as their inherited values, or explicitly set.

The example includes a MAT file named sldemo_mdlref_dsm_data.mat that contains the
Simulink.Signal object ErrorCond. The preload function of the model sldemo_mdlref_dsm
loads this MAT file, causing the object to be loaded in the base workspace. You can view this object by
selecting the base workspace in the Model Explorer. You can also create this object in the MATLAB®
Command Window. The following commands define the object used in this example.

 ErrorCond = Simulink.Signal;
 ErrorCond.Description = 'Use to signal that subsystem output is invalid';
 ErrorCond.DataType = 'boolean';
 ErrorCond.Complexity = 'real';
 ErrorCond.Dimensions = 1;
 ErrorCond.SampleTime = 0.1;
 ErrorCond.LoggingInfo.DataLogging = true;

Log Global Data Store

To log all the values written to the global data store, set the DataLogging property of the
LoggingInfo property of the Simulink.Signal object. The LoggingInfo property also allows
specification of other logging parameters such as decimation and maximum points.

 Use Data Stores Across Multiple Models

13-431

 Simulink.LoggingInfo (handle)
 DataLogging: 1
 NameMode: 0
 LoggingName: ''
 DecimateData: 0
 Decimation: 2
 LimitDataPoints: 0
 MaxPoints: 5000

Simulate Model Hierarchy

Simulate sldemo_mdlref_dsm to see the output. The referenced model sldemo_mdlref_dsm_bot
writes to the data store ErrorCond while the top model sldemo_mdlref_dsm reads from the data
store. The blue line represents the input to Model block A, which references the model
sldemo_mdlref_dsm_bot. The orange line represents the output of the Switch block. The output
switches when the magnitude of the input signal falls outside of the range.

View Logged Results

Both the global data store ErrorCond and the local data store RefSignalVal are configured to log
all written values after simulation. These logged results are stored in the base workspace in the
dsmout variable.

dsmout =

Simulink.SimulationData.Dataset 'dsmout' with 2 elements

13 Simulink Featured Examples

13-432

 Name BlockPath
 ____________ __
 1 [1x1 DataStoreMemory] ErrorCond ''
 2 [1x1 DataStoreMemory] RefSignalVal ...dlref_dsm/A|sldemo_mdlref_dsm_bot/DSM

 - Use braces { } to access, modify, or add elements using index.

To access the data stored for the local data store, use the getElement function to get the correct
data store element based on the name RefSignalVal.

 >> dsmout.getElement('RefSignalVal')

 Simulink.SimulationData.DataStoreMemory
 Package: Simulink.SimulationData

 Properties:
 Name: 'RefSignalVal'
 BlockPath: [1x1 Simulink.SimulationData.BlockPath]
 Scope: 'local'
 DSMWriterBlockPaths: [1x2 Simulink.SimulationData.BlockPath]
 DSMWriters: [101x1 uint32]
 Values: [1x1 timeseries]

Data is stored in a timeseries within the Values field.

 >> plot(dsmout.getElement('RefSignalVal').Values);

 Use Data Stores Across Multiple Models

13-433

To determine which block wrote to the data store at a given time, use the DSMWriters property. This
array contains a list of indices into the DSMWriterBlockPaths array. For example, the block path of
the Data Store Write block that wrote the 5th value to the data store can be obtained as follows.

 >> dsm = dsmout.getElement('RefSignalVal');
 >> dsm.DSMWriterBlockPaths(dsm.DSMWriters(5))

 Simulink.SimulationData.BlockPath
 Package: Simulink.SimulationData

 Block Path:
 'sldemo_mdlref_dsm/A'
 'sldemo_mdlref_dsm_bot/PositiveSS/DSW'

 Use the getBlock method to access block path character vectors from this object.

See Also
Data Store Memory | Data Store Read | Data Store Write

Related Examples
• “Data Store Basics”
• “Model Global Data by Creating Data Stores”

13 Simulink Featured Examples

13-434

Model Reference Function-Call

This example shows how to use a Model block that is explicitly triggered by means of its function-call
trigger port.

Examine Example Model

Open the example model.

This model contains three Model blocks: 500ms Counter, 1 sec Counter and Asynchronous Counter.
These blocks reference the same model (sldemo_mdlref_fcncall_cntr). The Model blocks
represent saturating counters that increment their output values by one each time they are explicitly
triggered through their function-call trigger ports. The Stateflow® chart calls each Model block at its
specified rate.

Simulate Model and Examine Results

Simulate the model, and verify the behavior of the counters by examining the results displayed by the
scope.

 Model Reference Function-Call

13-435

See Also
Model | Function-Call Generator | Function-Call Feedback Latch | Function-Call Split | Function-Call
Subsystem

More About
• “Conditionally Execute Referenced Models”
• “Using Function-Call Subsystems”

13 Simulink Featured Examples

13-436

Explore Protected Model Capabilities

This example shows how to create a protected model and use it in normal mode simulation,
accelerator mode simulation, and code generation.

To create protected models, you must have Simulink® Coder™ installed. To generate the read-only
view of protected models, you must have Simulink® Report Generator™ installed.

Open the Example Model

Open and simulate the example model sldemo_mdlref_bus.

Protect the Referenced Model

The example model contains one Model block named CounterA. To protect the model referenced by
this block, select the Model block and click Protect on the Model Block tab in the toolstrip. A dialog
box opens where you can select options for creating a protected model.

 Explore Protected Model Capabilities

13-437

Under Allow user of protected model to, select Open read-only view of model, Simulate, and
Use generated code. To password-protect these actions, you can enter a unique password for each
action. Then, click Create.

A project archive for the protected model, sldemo_mdlref_counter_bus_protected.mlproj, is
generated in the specified destination folder.

Double-click the project archive in the Current Folder browser to open the corresponding project
that contains the protected model (sldemo_mdlref_counter_bux.slxp). The project also contains
a harness model that provides an isolated environment for the protected model and a data dictionary
that defines the variables used by the protected model.

You can use the protected model in normal mode simulation, accelerator mode simulation, and code
generation. You can also open a read-only view of the model. The original model file is not required.

The protected model is already compiled, which can accelerate simulation and code generation.

Use the Protected Model

When a Model block references a protected model, the block displays a shield badge.

13 Simulink Featured Examples

13-438

To enable password-protected functionality, right-click the shield badge and select Authorize. Enter
the passwords you set while creating the protected model.

After entering the passwords, you can simulate the model in either normal or accelerator mode. You
can also generate code for the top model.

To open a read-only view of the protected model, double-click the Model block or right-click the shield
badge and select Show Webview.

 Explore Protected Model Capabilities

13-439

To open the protected model report, right-click the shield badge and select Display Report.

13 Simulink Featured Examples

13-440

See Also
Simulink.ModelReference.protect

Related Examples
• “Protect Models to Conceal Contents” (Simulink Coder)
• “Package and Share Protected Models” (Simulink Coder)
• “Reference Protected Models from Third Parties”

 Explore Protected Model Capabilities

13-441

Model Reference Variants

This example shows how to use model reference variants. A Model block is used to reference one
Simulink® model from another Simulink model. A Variant Subsystem block can contain Model blocks
as variants. A variant describes one of N possible modes in which a Variant Subsystem block can
operate. Each variant references a specific model with its associated model-specific arguments. For a
given Variant Subsystem block, only one variant is active during simulation. You can switch the active
variant by changing the values of variables in the base workspace or by manually overriding variant
selection using the Variant Subsystem block dialog box.

Switching Active Variants

The sldemo_mdlref_variants model contains a Variant Subsystem block named Controller that
references two models.

open_system('sldemo_mdlref_variants')

To see the variant choices, right-click the Variant Subsystem block named Controller and select
Block Parameters (Subsystem). The active variant is determined by the value of the CTRL variable
in the MATLAB® base workspace. Defining CTRL=1 activates the Model block named Linear, and
defining CTRL=2 activates the Model block named Nonlinear.

Opening the sldemo_mdlref_variants model runs the PreLoadFcn model callback, which sets
CTRL to 2.

13 Simulink Featured Examples

13-442

To simulate using the linear controller, define CTRL=1 in the base workspace, then simulate the
model.

CTRL=1;
sim('sldemo_mdlref_variants');

To simulate using the nonlinear controller, define CTRL=2 in the base workspace, then simulate the
model.

 Model Reference Variants

13-443

CTRL=2;
sim('sldemo_mdlref_variants');

Enumerations and Reuse

The sldemo_mdlref_variants_enum model demonstrates Simulink.Variant object capabilities:

• Enumerations: MATLAB enumeration classes can be used to improve the readability of the
conditions of the Variant object.

• Reuse: Variant objects can be reused in different Variant Subsystem blocks.

The Variant Subsystem blocks in this model require the following variables be defined in the MATLAB
base workspace:

• VE_LINEAR_CONTROLLER =
Simulink.Variant('E_CTRL==sldemo_mrv_CONTROLLER_TYPE.LINEAR')

• VE_NONLINEAR_CONTROLLER =
Simulink.Variant('E_CTRL==sldemo_mrv_CONTROLLER_TYPE.NONLINEAR')

• E_CTRL = sldemo_mrv_CONTROLLER_TYPE.LINEAR
• VE_PROTOTYPE =

Simulink.Variant('E_CURRENT_BUILD==sldemo_mrv_BUILD_TYPE.PROTOTYPE')
• VE_PRODUCTION =

Simulink.Variant('E_CURRENT_BUILD==sldemo_mrv_BUILD_TYPE.PRODUCTION')
• E_CURRENT_BUILD = sldemo_mrv_BUILD_TYPE.PRODUCTION

Each variant is associated with a Simulink.Variant object that uses either the
sldemo_mrv_BUILD_TYPE.m or sldemo_mrv_CONTROLLER_TYPE.m enumeration class.

The Variant objects have a Condition property that is an expression. The expression evaluates to
a Boolean and determines which variant is active. The expression can consist of scalar variables,

13 Simulink Featured Examples

13-444

enumerations, equality, inequality, &&, ||, and ~. Parenthesis () can be used for precedence grouping.
Variables may be standard MATLAB variables or Simulink.Parameter objects.

Opening the model sldemo_mdlref_variants_enum runs the PreLoadFcn model callback. This
callback is set up to populate the base workspace with the variables required by the Variant
Subsystem blocks.

open_system('sldemo_mdlref_variants_enum')

The VE_PROTOTYPE and VE_PRODUCTION Variant objects are reused across the Variant Subsystem
blocks named Filter1, Filter2, and Filter3.

The Block Parameters dialog box of the Variant Subsystem blocks show the Condition property of the
related Variant objects.

See Also
Subsystem | Model | Variant Subsystem, Variant Model

More About
• “What Are Variants and When to Use Them”
• “Component-Based Modeling Guidelines”

 Model Reference Variants

13-445

Assign Tasks to Cores for Multicore Programming

This example shows how to take advantage of executing code on a multicore processor by graphical
partitioning. This example requires Simulink® Coder™ software to generate multithreaded code.

Introduction

Multicore programming allows you to use the processing power of modern multicore processors to
create high-performance applications. Simulink® software allows you to take advantage of multicore
programming by allowing you to graphically partition your algorithms and to assign the code
generated from those partitions to parallel threads on your multicore processor.

The parallel threads are typically scheduled by an operating system that assigns threads to cores
dynamically. This allows the scheduler to make good use of the cores while providing a notion of
fairness. However, in many applications, you may need additional control on how the cores are used
or you may want to dedicate a set of cores to specific logic, for example to improve determinism.
Graphical partitioning provides this level of control, as illustrated in this example.

Open the Project

A typical multicore scenario involves a multi-rate model for which you want to assign code for the fast
rates to one core and the code for the slower rates to other cores. This may allow you to add more
logic to these faster rates or to achieve more determinism. More generally, you may want to dedicate
cores to application logic with the greatest demand on resources. To begin, open the multicore
project:

slexMulticoreExample

13 Simulink Featured Examples

13-446

matlab:slexMulticoreExample

Generate Multithreaded Code

This application model is already partitioned into four concurrent tasks through the Concurrent
Execution dialog box you can access from the Solvers pane of the Configuration Parameters dialog
box. Use this dialog box to specify logic, task, and core assignments. In this example, the application
logic is partitioned as:

Double-click the Generate Code and Profile Report button to generate multi-threaded code and
profile its execution. This action runs and instruments the generated executable and produces both
profiling results and a core occupancy map. The core occupancy map shows how the cores were used
at each time step of execution. In this example, the first core was used for the fast rates (Task1 and
Task2) and the second core was used for the slower rates (Task3 and Task4).

You can return to the Concurrent Execution dialog box to try different core assignments. In particular,
you can try to specify no core affinity by leaving the Affinity property as []. This is the default
setting which allows Simulink to generate multi-threaded code suitable for dynamic scheduling on
your multicore processor.

 Assign Tasks to Cores for Multicore Programming

13-447

See Also

Related Examples
• “Concepts in Multicore Programming”

13 Simulink Featured Examples

13-448

Implement an FFT on a Multicore Processor and an FPGA

This example shows you how to take advantage of a multicore processor target with FPGA
acceleration by graphically partitioning a model. This example requires Simulink Coder™ to generate
multi-threaded code and HDL Coder™ to generate HDL code. You cannot generate HDL code on
Macintosh systems.

Introduction

Several modern processors include multicore processors integrated with FPGA components to create
high-performance applications. These require multicore and FPGA programming, including
programming of parallel threads, HDL, and communication interfaces between the cores of the
system. Simulink™ allows you to take advantage of these approaches by graphically partitioning your
algorithms and by assigning the software generated from those partitions to threads on your
processor and to modules on your FPGA. The example uses one application level model to generate
one executable, consisting of multiple threads and HDL code, to take advantage of the hardware
parallelism of the FPGA. This is illustrated in the figure below.

Example Model

Load the example model:

slexMulticoreFPGAExample

 Implement an FFT on a Multicore Processor and an FPGA

13-449

Architecture Definition

All concurrent execution settings for this model can be accessed in the Concurrent Execution dialog
box (Configuration Parameters>Solvers>Configure Tasks).

The first step to implement our algorithm is to define structural elements of our target architecture.
This includes structural elements of the hardware, such as the number and type of processing nodes
(CPU, FPGA) and the communication channels (AXI, PCI).

This also includes software settings in the model's Configuration Parameters (e.g. System Target File,
hardware Implementation, data transfer settings). In this example we have selected the pre-
configured target architecture 'Sample architecture'. This architecture uses your desktop as a stand-
in for the deployment process.

13 Simulink Featured Examples

13-450

Partitioning and Mapping the Model

Partition the model to decide which functions run sequentially and which run concurrently.

The example model is partitioned explicitly, consisting of MATLAB System blocks, a Model block, an
Atomic Subsystem and an Outport block. Explicit partitioning creates partitions based on these
blocks at the root-level of the model. Implicit partitioning, on the other hand, creates partitions based
on the block sample times and other scheduling constraints.

After partitioning the model, you can map partitions to CPU tasks and FPGA nodes. You can change
the mapping for design space exploration, through the GUI or the API. During mapping, signals will
be auto-mapped to channels.

You can change how the blocks are mapped to the threads and to the FPGA in the Concurrent
Execution dialog box. For more information, see “Optimize and Deploy on a Multicore Target”.

Generate Multithreaded and HDL Code

Double-click on the 'Generate Code and Profile Report' button to generate multithreaded code. In this
example, the host computer replaces the target environment. C code is generated for blocks mapped
to processor tasks. This code is organized using threads native to the desktop machine. The code
snippet shows how threads are created. In addition, HDL code is generated for blocks mapped to
hardware nodes. The code snippet below illustrates how the module/entity is created in VHDL.

 Implement an FFT on a Multicore Processor and an FPGA

13-451

close_system('slexMulticoreFPGAExample',0);

13 Simulink Featured Examples

13-452

Multicore Programming of a Field-Oriented Control on Zynq

This example demonstrates how to implement a control algorithm containing multiple rates on Zynq.
To take advantage of both the cores and the FPGA hardware, the example uses graphical partitioning
approach such that code from different partitions are distributed across the cores and the hardware.

Introduction

In this example, we show a workflow for generating code for a motor control algorithm, and testing
the generated code on a Xilinx® Zynq™-7000 SoC ZC702 evaluation board. The motor control
algorithm in the example is a Field-Oriented Control algorithm composed of a speed controller (fast
component) and a torque controller (slow component). One typical workflow is to generate code for
these two components of the controller, upload the generated code to an evaluation board, and then
connect the evaluation board to a real-world motor. This workflow is illustrated in the block diagram
below.

In order for this example to be self-contained, and since there is redundant computer power on the
target processor, we model the motor using one of the tasks of the CPU of the evaluation board.

 Multicore Programming of a Field-Oriented Control on Zynq

13-453

The example assumes that a Xilinx® Zynq™-7000 SoC ZC702 evaluation board is connected to your
computer. You can find the connection and installation steps in the “Install Support for Xilinx Zynq
Platform” (Embedded Coder Support Package for Xilinx Zynq Platform) documentation.

This example requires Embedded Coder™ to generate multi-threaded code, HDL Coder™ to generate
HDL code, and Simscape Power Systems™ to model the permanent magnet synchronous machine in
the example. You cannot generate HDL code on Macintosh systems.

Example Model

The example model consists of two Simulink areas. In the Permanent Magnet Synchronous Machine
area, there are two blocks: "Speed and Torque Inputs" block which provides the reference inputs to
the feedback system, and "Invertor and Motor" block which is the plant we aim to control in this
example. The "Invertor and Motor" block also contains peripherals: a scope that can be used for
investigating the simulation results and a UDP sender. The generated code for the UDP sender is
responsible for sending the simulation data from the Zynq ZC702 evaluation board to the host
machine. The Field-Oriented Control contains the controller blocks "Speed controller" and "Torque
controller". To load the model, enter

slexFocZynqExample

13 Simulink Featured Examples

13-454

Architecture Definition

The target architecture in the example is Xilinx Zynq ZC702 evaluation kit. This can be verified by
accessing the Concurrent Execution dialog box.

In the Modeling tab, select Model Settings. In the Model Configuration Parameters dialog box,
on the Solver tab, select Allow tasks to execute concurrently on target, then click Configure
Tasks.

 Multicore Programming of a Field-Oriented Control on Zynq

13-455

The evaluation board has an ARM Cortex-A9 CPU and a field-programmable gate array (FPGA). There
are two tasks running on the ARM CPU. The "Torque controller" is mapped to the first task and the
blocks that constitute the plant ("Speed and Torque Inputs" block and "Invertor and Motor") are
mapped to the second task. The "Speed controller", which operates at high frequency in the control
loop, is mapped to the FPGA. These settings can be changed in the "Tasks and Mapping" section of
the "Concurrent Execution" dialog box.

Generate Multi-threaded and HDL Code

Enter Ctrl-B or select Deploy to Hardware to generate the multi-threaded and HDL code. The
generated executable and the FPGA bitstream will be uploaded to Zynq board automatically. This step
requires that the Zynq board is connected to the computer and that the environment is set up

13 Simulink Featured Examples

13-456

properly. For more information, see “Install Support for Xilinx Zynq Platform” (Embedded Coder
Support Package for Xilinx Zynq Platform).

Receive Data from the Zynq

Open the scope by selecting View Simulation Results, and run the simulation to obtain the
following output:

Compare this simulation output with the output of the executable that runs on the Zynq ZC702 board.
In order to make this comparison, access the UDP receiver model by selecting View Deployment
Results. When the UDP receiver model is selected, run the simulation. The run command will send a
signal to the Zynq ZC702 board to start running the executable on the board. The simulation data will
be sent via UDP from the Zynq ZC702 board to the host machine. The captured UDP signal is
displayed on the scope of the UDP Receiver model.

 Multicore Programming of a Field-Oriented Control on Zynq

13-457

Close the Model

close_system('slexFocZynqExample', 0);

13 Simulink Featured Examples

13-458

Multicore Deployment of a Plant Model

This example illustrates how to take advantage of executing multithreaded code on a multicore
processor using graphical partitioning. This example requires Simulink® Coder™ to generate
multithreaded code.

Overview

One objective of model-based design is to create realistic models of physical systems and to simulate
these models in real-time, for example, to verify controllers using hardware-in-the-loop (HIL).
However, as more features are added to the plant model, the computational requirements may exceed
the resources available by single-core processing systems.

Partitioning the plant and controller into separate pieces is one way to address the computational
needs of complex models. With Simulink® you can partition a plant using Model blocks and then
assign the code generated by each sub-model to threads for real-time execution on an HIL system
such as Simulink Real-Time™. To see how this works, let us use our host computer as a stand-in for
the real-time execution environment and generate real-time multi-threaded code for the following
model.

slexMulticoreSolverExample

Symmetric Multicore Processing

The illustration above shows that the code generated for the model is separated into two threads. In
this example, the target is assumed to be a Symmetric Multicore Processor, so that the threads are

 Multicore Deployment of a Plant Model

13-459

not associated with any particular core. The operating system is responsible for making the best use
of the cores when scheduling thread execution. Ideally, to provide maximum flexibility, the number of
threads (Nt) should be greater than the number of cores (Nc). Double-click on the 'Generate Code
and Profile Report' button to generate multi-threaded code, profile its execution and visualize the
results. The visualization shows a core occupancy map of how the cores were utilized at each time
step of execution. It can be seen that the threads float across cores as deemed best by the operating
system scheduler. This kind of scheduling is good when the operating system also needs to run other
processes.

Thread Synchronization

Simulink® Coder™ generates code such that the two threads may execute simultaneously and
possibly on two different cores. This means that the signal values for and must be synchronized
between the two threads. Simulink® provides several options to handle this requirement as
illustrated here:

13 Simulink Featured Examples

13-460

Using the script below, we will simulate and demonstrate the effect of the deterministic modes to
understand how Simulink® handles synchronization.

• Reference solution (ode3) - Simulink® is configured to provide the reference solution by
synchronizing data at each major and minor time step.

• Zero Order Hold - Each thread is solving a sub-system of equations using its own solver, while
synchronizing data only on major time steps.

• Linear extrapolation - In addition to the Zero Order Hold mode, each solver extrapolates data
using linear predictions to compensate for data latency errors.

For most systems where the synchronization points are smooth, the linear extrapolation mode
provides a good tradeoff between communication bottlenecks and numerical accuracy.

h = figure;
hVal = ishold;
hold on;
mdl = 'slexMulticoreSolverExample';
dt = get_param(mdl, 'DataTransfer');

modes = { ...
 'Ensure deterministic transfer (minimum delay)', ...
 'None', 'k:', ...
 'Ensure deterministic transfer (maximum delay)', ...
 'Zero Order Hold', 'm', ...
 'Ensure deterministic transfer (maximum delay)', ...
 'Linear', 'b' ...
};

for i=1:3:length(modes)
dt.DefaultTransitionBetweenContTasks = modes{i};
dt.DefaultExtrapolationMethodBetweenContTasks = modes{i+1};
out = sim(mdl);
plot(out.logsout.get('x1').Values.Time, ...
 out.logsout.get('x1').Values.Data, ...
 modes{i+2});
end

 Multicore Deployment of a Plant Model

13-461

legend('Reference solution (ode3)', ...
 'Zero Order Hold Extrapolation', ...
 'Linear Extrapolation');

Closing the Models

close_system('slexMulticoreSolverExample',0);
close_system('slexMulticoreSolverMdlref',0);
if ~hVal, hold off; end
delete(h);

13 Simulink Featured Examples

13-462

Modeling Objects with Identical Dynamics Using For Each
Subsystem

This example shows how to model multiple objects with identical dynamics using the For Each
subsystem. The number of objects is parameterized by the length of the input signal.

This example illustrates how you can implement the model sldemo_metro_basic, using one For
Each subsystem to model three identical metronomes and another to model the identical effect that
the motion of each metronome has on the moving base.

The continuous dynamics of the three identical metronomes in sldemo_metro_basic are modeled in
identical subsystems: sldemo_metro_basic/Metronome1, sldemo_metro_basic/Metronome2,
and sldemo_metro_basic/Metronome3. You can represent these three subsystems as one For
Each subsystem. The initial position of the metronomes is passed in as a mask parameter to the For
Each subsystem, and is used as an initial condition for one of the integrators. The For Each
subsystem is configured to partition this parameter along the first dimension. As a result, an input
vector with three elements defines the initial positions for the three metronomes.

 Modeling Objects with Identical Dynamics Using For Each Subsystem

13-463

Figure 1: Metronomes modeled using three subsystems with identical dynamics

13 Simulink Featured Examples

13-464

Figure 2: Metronomes modeled using one For Each subsystem

On examining the dynamics of the moving base, note that it involves three identical second-order
differential terms corresponding to each metronome. You can replace the three copies with one For
Each Subsystem. Instead of nine input signals, the For Each subsystem requires only three input
signals: the angular displacements, the angular velocities, and the angular accelerations for all
metronomes. The For Each subsystem is configured to partition the input signal along the first
dimension and operates on one element from each signal for one iteration (i.e. one metronome).

 Modeling Objects with Identical Dynamics Using For Each Subsystem

13-465

Figure 3: Second-order differential terms modeled using copies of the same subsystem

Figure 4: Second-order differential terms modeled using one For Each subsystem

After implementing the original model with two For Each subsystems, the model is now
parameterized for the number of metronomes. To increase the number of metronomes, introduce a
new value to the mask parameter.

For example:

Theta4 = 0.7568;

Double-click on the Metronome_i block to open the mask dialog and change Input Positions
(Partitioned) to: [Theta1 Theta2 Theta3 Theta4]

Execute the model to see the displacement angles of the four metronomes and the position of the
moving base.

sim('sldemo_metro_foreach');

Figure 5: Simulation animation with For Each subsystem parameterized for four metronomes

13 Simulink Featured Examples

13-466

Figure 6: Simulation result with For Each subsystem parameterized for four metronomes

 Modeling Objects with Identical Dynamics Using For Each Subsystem

13-467

Vectorizing a Scalar Algorithm with a For Each Subsystem

This example shows how to use the For Each subsystem. In this example the operations are
performed on a vector for simplicity.

Use the Open Model button to open the example model sldemo_foreach_vectorized. This model
contains a For Each subsystem that processes the input signals one by one.

The inputs to the For Each subsystem are the signals to process, the coefficients of the FIR filter to
use with each of these signals, and the common gain.

Each signal is scalar and needs to be processed individually. Consequently, the For Each block that
controls the partition dimension is set to partition the input signal along dimension 1, by slicing
through a partition width of 1. For each input signal, a corresponding set of coefficients must also be
partitioned using the same criteria. The gain is common to all the signals, so this input is not
partitioned.

Since the output signal dimension is expected to match the input signal dimension, the concatenation
dimension is set equal to the partition dimension. If you prefer to change the signal dimension (a
transpose in this case), you can choose 2 as the concatenation dimension.

For the For Each subsystem, you must set the partition dimension and width, but not the input signal
size. A check then ensures that this size is a multiple of the partition width. If no error is detected,
the subsystem then calculates the number of independent executions that the enclosed subsystem
will perform. These executions are independent, in that the state associated with a given block
contained in the subsystem has a unique value in each of the respective executions.

To see a non-vectorized implementation for this model, double-click on the block in the lower-right
corner of the model. This implementation does not use the For Each subsystem, but mimics its
functionality by replicating the subsystem as many times as necessary and also by selecting and
concatenating the signals appropriately. This replication process is prone to error and is not scalable
-- changing the input signal size would require changing the model accordingly.

13 Simulink Featured Examples

13-468

 Vectorizing a Scalar Algorithm with a For Each Subsystem

13-469

Tiled Processing of 2D Signals with For Each Subsystem

This example shows how to use the For Each Subsystem. In this example the operations are
performed on matrices.

Open the example model sldemo_foreach_tiled. This model contains a For Each subsystem that
processes submatrices of a matrix input signal.

To process submatrices of a matrix signal, you will need to use nested For Each subsystems. The
outer subsystem can be used to partition the signal along the first dimension, while the inner one can
be used to partition along the second dimension. This order is arbitrary, and can be changed without
affecting the result.

In this example a 4-by-4 matrix is to be partitioned into 2-by-2 submatrices. The outer subsystem
partitions the signal along the first dimension. The resulting subarrays are then partitioned by the
inner subsystem along the second dimension. Concatenation of the outputs respects the partitioning
order to preserve the shape of the input signal. Note, however, that the output dimensions change
since the processing of the submatrices results in scalar outputs.

To see a tile repetition implementation for this model, double-click on the subsystem in the lower-
right corner of the model window. This implementation does not use the For Each Subsystem.
Instead, it mimics the functionality of the For Each Subsystem by replicating the subsystem as many
times as necessary and by selecting and concatenating the signals appropriately. This replication
process is prone to error and is not scalable -- changing the input signal size would require changing
the model accordingly.

13 Simulink Featured Examples

13-470

Using a Project with SVN

This example shows how to use a project to manage the files within your design. Starting with an
existing project that is already checked into source control, this example shows how to view modified
files, compare file revisions, and analyze project dependencies.

Set Up the Example Files and Open the Project

Create and open a working copy of the project example files. MATLAB® copies the files to an
example folder so that you can edit them. The example project is under Subversion (SVN) version
control.

sldemo_slproject_airframe_svn

Building with 'MinGW64 Compiler (C)'.
MEX completed successfully.

ans =
 Project with properties:

 Name: "Airframe Example"
 SourceControlIntegration: "SVN (1.9)"
 RepositoryLocation: "file:///C:/workSpace/examples/repositories/airframe2/trunk"
 SourceControlMessages: [1×0 string]
 ReadOnly: 0
 TopLevel: 1
 Dependencies: [1×1 digraph]
 Categories: [1×1 matlab.project.Category]
 Files: [1×30 matlab.project.ProjectFile]
 Shortcuts: [1×7 matlab.project.Shortcut]
 ProjectPath: [1×7 matlab.project.PathFolder]
 ProjectReferences: [1×0 matlab.project.ProjectReference]
 StartupFiles: [1×0 string]
 ShutdownFiles: [1×0 string]
 DefinitionFilesType: FixedPathMultiFile
 Description: "This is an example project.↵↵Use the "Project Shortcuts" toolstrip tab to find ways of getting started with this project."
 RootFolder: "C:\workSpace\examples\airframe2"
 SimulinkCodeGenFolder: "C:\workSpace\examples\airframe2\work\codegen"
 SimulinkCacheFolder: "C:\workSpace\examples\airframe2\work\cache"
 ProjectStartupFolder: "C:\workSpace\examples\airframe2"

 Using a Project with SVN

13-471

Manage the Project Path

When you open your project, MATLAB adds the project path to the MATLAB search path before
applying startup shortcuts.

When you close your project, MATLAB removes the project path from the MATLAB search path after
applying shutdown shortcuts.

1. To add or remove folders to the project path, on the Project tab, in the Environment section, click
Project Path:

• To add a folder (without subfolders) to the project path, click Add Folder. If you want to add a
folder and its subfolders, click Add with Subfolders instead. Then use the Open dialog box to
add the new folder.

• To remove a folder from the project path, from the display list, select the folder. Then click
Remove.

It is important to add project files to the project path to ensure the Dependency Analyzer detects all
project files.

Specify Project Details, Startup Folder, and Derived Files Folders

2. On the Project tab, in the Environment section, click Details. Use the Project Details dialog box
to:

• Edit the project name or add a description.
• View the Project root folder. You can change your project root by moving your entire project on

your file system, and reopening your project in its new location. All project file paths are stored as
relative paths.

13 Simulink Featured Examples

13-472

• View or edit the Start Up folder. By default, this is set to the project root. When you open the
project, the current working folder changes to the project root folder. You can specify a different
startup folder or click Clear.

• View or edit the Simulation cache folder and Code generation folder.

To change the default project root for new projects, on the MATLAB Home tab, in the Environment
section, click Preferences. Select MATLAB > Project and specify the Default folder.

Automate Startup and Shutdown Tasks

You can set project files, such as MATLAB scripts and Simulink® models, to run, open, or close when
the project opens or closes.

3. To configure an existing file to run on project startup and shutdown, or to specify environment
options, click the Startup Shutdown button in the Project tab. In the Manage Project Startup and
Shutdown dialog box

• Add or remove startup and shutdown files. If execution order is important, change the order using
the arrow buttons.

• Use the check boxes to specify environment options. Select Start Simulink before this project
starts to start Simulink when you open the project. Select Refresh Simulink customizations to
run sl_customization files on project startup and shutdown.

Project Shortcuts for Common Tasks

Create project shortcuts for common tasks to make it easy to find and access important files and
operations. For example, find and open top models, run code, and simulate models.

4. On the Project Shortcuts tab, this example project has shortcuts for the top-level model, a utility
function to rebuild s-functions, and a design description document.

• Click the shortcut F14 Model to open the root model for this project.
• Click the shortcut Rebuild Project's S-functions to generate the S-Function.
• Click the New Shortcut button to create new shortcuts for a project file.
• Right-click a shortcut and select Edit Shortcut to edit a shortcut.

View Source Control Information

On the Project tab, in the Source Control section, click SVN Details.

5. Use the Source Control Information dialog box to:

• View the Repository location folder. You can change your project root by moving your entire
project on your file system, and reopening your project in its new location. All project file paths
are stored as relative paths.

• View or change the used source control integration.

Explore Files Views

6. In the Files view, select the Project (number of files) view to manage the files within your
project. This view only shows files that are part of your project.

 Using a Project with SVN

13-473

7. Use the All view to see all the files in your working copy. This shows all the files that are under the
project root, not just the files that are in the project. This view is useful for adding files to your
project from your working copy.

8. Use the Modified (number of files) view to review the modified files before committing your
changes to source control. The modified files view is visible only if you are using source control with
your project.

9. In any Files view, at the top right, change the layout from Tree to List to view the files as a list.
Click the Organize View button to customize the views and to sort files.

The SVN column provides source control information on individual files such as Unmodified, Added,
Modified, or Deleted.

View Modified Files and Compare Revisions

10. Open and make a change to one of the models in the models folder or to one of the MATLAB files
in the utility folder. For example, add a comment in find_top_models.m in the utility folder.

11. To review, analyze, and commit modified or added project files, use the Modified (number of
files) view. You see:

• The file you made changes to, for example, find_top_models.m.
• The files stored in the resources/project folder. These are internal project definition files

generated by your changes. The project definition files allow you to add metadata to files, for
example, by creating shortcuts, adding labels, and adding a project description. Project definition
files also define the files that are added to your project. You can review changes in revisions of
project definition files like any other project files.

12. To review changes in a modified file, right-click selected file, for example, find_top_models.m

• Select Compare > Compare to Ancestor to run a comparison against the local Git repository.
• Select Compare > Compare to Revision to compare the file to other revisions.

13. The Comparison Tool summarizes results in a report. Purple indicates modified items, blue
indicates inserted items, and yellow indicates deleted items. To save a printable version of the report,
select Publish > HTML, Word, or PDF.

14. If you are happy with your changes, on the Project tab, click the Commit button to commit your
changes to source control.

Analyze Project Dependencies

15. Use the Dependency Analyzer to investigate dependencies visually and explore the structure of
your project. On the Project tab, click the down arrow to expand the Tools gallery. Under Apps, click
Dependency Analyzer.

The Dependency Analyzer summarizes the results in the pane on the right. It lists the names of the
used Products and Add-Ons. It detects problems, such as missing files, files not in the project,
unsaved changes, and out-of-date derived files. In this example, the analyzer identifies a "File not in
project" and tags it with a warning sign .

16. To highlight problem files, in the Problems section, point to the problem message and click the
magnifying glass. In this example, the timesthree.mexw64 file is required by the project but is

13 Simulink Featured Examples

13-474

not currently part of it. Right-click timesthree.mexw64 and select Add to Project or Hide
Warnings. The next time you run the dependency analysis, the analyzer will not mark this file as a
problem.

17. Perform an impact analysis on a selected file.

An impact analysis shows you how a change affects other files before you make the change. For
example, to find required files for timesthree.mexw64 to run properly, right-click
timesthree.mexw64 and select Find Required. To find how changes to timesthree.mexw64
impact files, right-click timesthree.mexw64 and select Find Impacted.

See Also

“Resolve Conflicts with Simulink Three-Way Merge” on page 13-521

“Perform Impact Analysis with a Project” on page 13-484

“Run Custom Tasks with a Project” on page 13-497

Further Information

“Project Management”

 Using a Project with SVN

13-475

Using a Project with Git

This example shows how to use a project to manage the files within your design. Starting with an
existing project that is already checked into source control, this example shows how to view modified
files, compare file revisions, and analyze project dependencies.

Set up the Example Files and Open the Project

Create and open a working copy of the project example files. MATLAB® copies the files to an
example folder so that you can edit them. The example project is under Git™ source control.

sldemo_slproject_airframe;

Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.

Manage the Project Path

When you open your project, MATLAB adds the project path to the MATLAB search path before
applying startup shortcuts.

When you close your project, MATLAB removes the project path from the MATLAB search path after
applying shutdown shortcuts.

1. To add or remove folders to the project path, on the Project tab, in the Environment section, click
Project Path:

13 Simulink Featured Examples

13-476

• To add a folder (without subfolders) to the project path, click Add Folder. If you want to add a
folder and its subfolders, click Add with Subfolders instead. Then use the Open dialog box to
add the new folder.

• To remove a folder from the project path, from the display list, select the folder. Then click
Remove.

It is important to add project files to the project path to ensure the Dependency Analyzer detects all
project files.

Specify Project Details, Startup Folder, and Derived Files Folders

2. On the Project tab, in the Environment section, click Details. Use the Project Details dialog box
to:

• Edit the project name or add a description.
• View the Project root folder. You can change your project root by moving your entire project on

your file system, and reopening your project in its new location. All project file paths are stored as
relative paths.

• View or edit the Start Up folder. By default, this is set to the project root. When you open the
project, the current working folder changes to the project root folder. You can specify a different
startup folder or click Clear.

• View or edit the Simulation cache folder and Code generation folder.

To change the default project root for new projects, on the MATLAB Home tab, in the Environment
section, click Preferences. Select MATLAB > Project and specify the Default folder.

Automate Startup and Shutdown Tasks

You can set project files, such as MATLAB scripts and Simulink® models, to run, open, or close when
the project opens or closes.

3. To configure an existing file to run on project startup and shutdown, or to specify environment
options, click the Startup Shutdown button in the Project tab. In the Manage Project Startup and
Shutdown dialog box

• Add or remove startup and shutdown files. If execution order is important, change the order using
the arrow buttons.

• Use the check boxes to specify environment options. Select Start Simulink before this project
starts to start Simulink when you open the project. Select Refresh Simulink customizations to
run sl_customization files on project startup and shutdown.

Project Shortcuts for Common Tasks

Create project shortcuts for common tasks to make it easy to find and access important files and
operations. For example, find and open top models, run code, and simulate models.

4. On the Project Shortcuts tab, this example project has shortcuts for the top-level model, a utility
function to rebuild s-functions, and a design description document.

• Click the shortcut F14 Model to open the root model for this project.
• Click the shortcut Rebuild Project's S-functions to generate the S-Function.
• Click the New Shortcut button to create new shortcuts for a project file.

 Using a Project with Git

13-477

• Right-click a shortcut and select Edit Shortcut to edit a shortcut.

View Source Control Information

On the Project tab, in the Source Control section, click Git Details.

5. Use the Source Control Information dialog box to:

• View the Repository location folder. You can change your project root by moving your entire
project on your file system, and reopening your project in its new location. All project file paths
are stored as relative paths.

• View or change the used source control integration.

Explore Files Views

6. In the Files view, select the Project (number of files) view to manage the files within your
project. This view only shows files that are part of your project.

7. Use the All view to see all the files in your working copy. This shows all the files that are under the
project root, not just the files that are in the project. This view is useful for adding files to your
project from your working copy.

8. Use the Modified (number of files) view to review the modified files before committing your
changes to source control. The modified files view is visible only if you are using source control with
your project.

9. In any Files view, at the top right, change the layout from Tree to List to view the files as a list.
Click the Organize View button to customize the views and to sort files.

The Git column provides source control information on individual files such as Unmodified, Added,
Modified, or Deleted.

View Modified Files and Compare Revisions

10. Open and make a change to one of the models in the models folder or to one of the MATLAB files
in the utility folder. For example, add a comment in find_top_models.m in the utility folder.

11. To review, analyze, and commit modified or added project files, use the Modified (number of
files) view. You see:

• The file you made changes to, for example, find_top_models.m.
• The files stored in the resources/project folder. These are internal project definition files

generated by your changes. The project definition files allow you to add metadata to files, for
example, by creating shortcuts, adding labels, and adding a project description. Project definition
files also define the files that are added to your project. You can review changes in revisions of
project definition files like any other project files.

12. To review changes in a modified file, right-click selected file, for example, find_top_models.m

• Select Compare > Compare to Ancestor to run a comparison against the local Git repository.
• Select Compare > Compare to Revision to compare the file to other revisions.

13. The Comparison Tool summarizes results in a report. Purple indicates modified items, blue
indicates inserted items, and yellow indicates deleted items. To save a printable version of the report,
select Publish > HTML, Word, or PDF.

13 Simulink Featured Examples

13-478

14. If you are happy with your changes, on the Project tab, click the Commit button to commit your
changes to source control.

Analyze Project Dependencies

15. Use the Dependency Analyzer to investigate dependencies visually and explore the structure of
your project. On the Project tab, click the down arrow to expand the Tools gallery. Under Apps, click
Dependency Analyzer.

The Dependency Analyzer summarizes the results in the pane on the right. It lists the names of the
used Products and Add-Ons. It detects problems, such as missing files, files not in the project,
unsaved changes, and out-of-date derived files. In this example, the analyzer identifies a "File not in
project" and tags it with a warning sign .

16. To highlight problem files, in the Problems section, point to the problem message and click the
magnifying glass. In this example, the timesthree.mexw64 file is required by the project but is
not currently part of it. Right-click timesthree.mexw64 and select Add to Project or Hide
Warnings. The next time you run the dependency analysis, the analyzer will not mark this file as a
problem.

17. Perform an impact analysis on a selected file.

An impact analysis shows you how a change affects other files before you make the change. For
example, to find required files for timesthree.mexw64 to run properly, right-click
timesthree.mexw64 and select Find Required. To find how changes to timesthree.mexw64
impact files, right-click timesthree.mexw64 and select Find Impacted.

See Also

“Resolve Conflicts with Simulink Three-Way Merge” on page 13-521

“Perform Impact Analysis with a Project” on page 13-484

“Run Custom Tasks with a Project” on page 13-497

Further Information

“Project Management”

 Using a Project with Git

13-479

Get Started with MATLAB Projects

This example shows how to use an existing project to manage the files within your design. You can
automate startup and shutdown tasks, add shortcuts for common tasks, run checks, upgrade project
files, analyze project dependencies, and share your project.

As a design grows, managing referenced files and dependencies becomes more complicated. Projects
help you organize large hierarchies by finding required files, managing and sharing files and settings,
and interacting with source control.

This project example is not under source control. As a result, essential tools needed in a collaborative
environment are not available for use, for example, comparing files to their ancestors, comparing
revisions, and resolving conflicts.

• To use available source control integration in MATLAB® such as Git™ and SVN, see “Using a
Project with Git” on page 13-476 or “Using a Project with SVN” on page 13-471.

• To use an external source control with project, put the project folder under the source control of
choice and customize it to use the MATLAB® Comparison Tool for diff and merge. For more
information, see “Customize External Source Control to Use MATLAB for Diff and Merge”.

Set Up Example Files and Open Project

Create and open a working copy of the project example files. MATLAB® copies the files to an
example folder so that you can edit them.

sldemo_slproject_airframe_setup;

Building with 'MinGW64 Compiler (C)'.
MEX completed successfully.

13 Simulink Featured Examples

13-480

Manage Project Path

When you open your project, MATLAB adds the project path to the MATLAB search path before
applying startup shortcuts.

When you close your project, MATLAB removes the project path from the MATLAB search path after
applying shutdown shortcuts.

To add or remove folders to the project path, on the Project tab, in the Environment section, click
Project Path.

• To add a folder to the project path, click Add Folder. If you want to add a folder and its
subfolders, click Add with Subfolders instead. Then, use the Open dialog box to add the new
folder.

• To remove a folder from the project path, from the display list, select the folder. Then, click
Remove.

You must add project files to the project path to ensure that the Dependency Analyzer detects all
project files.

Specify Project Details, Startup Folder, and Derived Files Folders

On the Project tab, in the Environment section, click Details. Use the Project Details dialog box to:

• Edit the project name or add a description.
• View the Project root folder. You can change your project root by moving your entire project on

your file system, and reopening your project in its new location. All project file paths are stored as
relative paths.

• View or edit the Start Up folder. By default, this folder is set to the project root. When you open
the project, the current working folder changes to the project root folder. You can specify a
different startup folder or click Clear.

• View or edit the Simulation cache folder and Code generation folder.

To change the default project root for new projects, on the MATLAB Home tab, in the Environment
section, click Preferences. Select MATLAB > Project and specify the Default folder.

Automate Startup and Shutdown Tasks

You can set project files, such as MATLAB scripts and Simulink® models, to run, open, or close when
the project opens or closes.

To configure an existing file to run on project startup and shutdown, or to specify environment
options, click the Startup Shutdown button in the Project tab. In the Manage Project Startup and
Shutdown dialog box:

• Add or remove startup and shutdown files. You can change the execution order using the arrow
buttons.

• Use the check boxes to specify environment options. Select Start Simulink before this project
starts to start Simulink when you open the project. Select Refresh Simulink customizations to
run sl_customization files on project startup and shutdown.

 Get Started with MATLAB Projects

13-481

Project Shortcuts for Common Tasks

Create project shortcuts for common tasks to make it easy to find and access important files and
operations. For example, find and open top models, run code, and simulate models.

On the Project Shortcuts tab, this example project has shortcuts for the top-level model, a utility
function to rebuild S-functions, and a design description document.

• Click the shortcut F14 Model to open the root model for this project.
• Click the shortcut Rebuild Project's S-functions to generate the S-function.
• Click the New Shortcut button to create new shortcuts for a project file.
• Right-click a shortcut and select Edit Shortcut to edit a shortcut.

Explore Files Views

In the Files view, select the Project (number of files) view to manage the files within your project.
This view only shows files that are part of your project.

Use the All view to see all the files in your working copy. This view shows all the files that are under
the project root, not just the files that are in the project. This view is useful for adding files to your
project from your working copy.

In any Files view, at the top right, change the layout from Tree to List to view the files as a list. Click
Organize View to customize the views and to sort files.

Analyze Project Dependencies

Use the Dependency Analyzer to investigate dependencies visually and explore the structure of your
project. On the Project tab, click the down arrow to expand the Tools gallery. Under Apps, click
Dependency Analyzer.

The Dependency Analyzer summarizes the results in the pane on the right. It lists the names of the
used Products and Add-Ons. It detects problems, such as missing files, files not in the project,
unsaved changes, and out-of-date derived files. In this example, the analyzer identifies a File not
in project and tags it with a warning sign .

To highlight problem files, in the Problems section, point to the problem message and click the
magnifying glass. In this example, the timesthree.mexw64 file is required by the project but is
not part of it. Right-click timesthree.mexw64 and select Add to Project or Hide Warnings. Next
time you run the dependency analysis, the analyzer will not mark this file as a problem.

Perform an impact analysis on a selected file.

An impact analysis shows you how a change affects other files before you make the change. For
example, to find required files for timesthree.mexw64 to run properly, right-click
timesthree.mexw64 and select Find Required. To find how changes to timesthree.mexw64
impact files, right-click timesthree.mexw64 and select Find Impacted.

Run Checks and Upgrade Project Files

You can easily upgrade all models, libraries, and MATLAB code files in your project to the latest
release. On the Project tab, click the down arrow to expand the Tools gallery. Under Project
Checks, click Upgrade Project.

13 Simulink Featured Examples

13-482

To upgrade all files, run all checks, and apply fixes automatically where possible, click Upgrade. If
you want to change the settings, use these options before clicking Upgrade:

• If you want to run upgrade checks but not apply fixes automatically where possible, clear the
check box Apply upgrades automatically.

• If you want to change which files to upgrade and which checks to run, click Change Options. In
the Upgrade Options dialog box, clear check boxes for models and checks you want to exclude
from the upgrade.

The Upgrade Project tool apply all fixes automatically when possible, upgrade all model hierarchies in
the project at once, and produce a report.

Share Project

Before sharing projects with other users, use the Dependency Analyzer to find required files and
products.

On the Project tab, select Share and explore the different sharing options.

• Share your project as an archive and send it by email. On the Project tab, select Share >
Archive.

• Export the whole project or just a part of it using Export profile. If you decide to exclude files
from your project, use the Dependency Analyzer to examine the impact of excluding a file on the
project.

• If you have referenced projects and want to export the referenced project files, then select the
Include referenced projects check box.

You can also share your project and make it publicly available on GitHub® which adds Git source
control to the open project.

See Also

“Perform Impact Analysis with a Project” on page 13-484

“Run Custom Tasks with a Project” on page 13-497

 Get Started with MATLAB Projects

13-483

Perform Impact Analysis with a Project

This example shows how to perform file-level impact analysis using the Dependency Analyzer. It
shows how to visualize project structure, analyze project dependencies, find required add-ons and
products, identify and fix problems, and assess how a change will affect other project files.

For a visual walkthrough of the example, watch the video.

You can run a dependency analysis at any point in your workflow. In a collaborative environment, you
typically check dependencies:

• When you first set up or explore a project
• When you run tests to validate changes to your design
• Before you submit a version of your project to source control
• Before you share or package your project

Set Up the Example Files and Open the Project

Create and open a working copy of the project example files. MATLAB® copies the files to an
example folder so that you can edit them. The example project is under Git™ source control.

sldemo_slproject_airframe;

Building with 'MinGW64 Compiler (C)'.
MEX completed successfully.

13 Simulink Featured Examples

13-484

Visualize Project Structure and Dependencies

Run a dependency analysis on all the files in your project. On the Project tab, click the down arrow
to expand the Tools section. Under Apps, click Dependency Analyzer.

The dependency graph shows:

• Your project structure and its file dependencies, including how files such as models, libraries,
functions, data files, source files, and derived files relate to each other. Each item in the graph
represents a file and each arrow represents a dependency.

• Relationships between source and derived files (such as .m and .p files, .slx and .slxp, and .c
and .mex files), and between C/C++ source and header files.

If you do not select a file, the Properties pane shows:

• Project details
• Required products and add-ons for the entire project
• List of problems for the entire project, such as missing files, files not in the project, files with

unsaved changes, and out-of-date derived files

Investigate and Resolve Problems

The Dependency Analyzer identifies problems such as missing files, files not in the project, unsaved
changes, and out-of-date derived files. You can examine problem files using the dependency graph or
the file list.

 Perform Impact Analysis with a Project

13-485

1. Use the graph to investigate problem files. In the Properties pane, in the Problems section, point

to File not in project and click the magnifying glass icon . The graph highlights the files with
the selected problem. In this example, the timesthree.mexw64 file is not in the project.

2. Fix the problem. Right-click timesthree.mexw64 and select Add to Project. To remove
timesthree.mexw64 from the problem list without adding it to the project, right-click the file and
select Hide Warnings.

View Modified Files

1. Open and make a change to the vertical_channel.slx model.

a. In the Project tab, in the Files view, double-click vertical_channel.slx to open it.

b. Move a block in vertical_channel.slx and save the model.

In the Dependency Analyzer, use the Views gallery to display the source control status of each file in
the dependency graph.

2. In the Dependency Analyzer toolstrip, expand the Views gallery and click Source Control.

The color of each item in the graph now represents its source control status. Because of the change
to

vertical_channel.slx, its source control status is now Modified.

13 Simulink Featured Examples

13-486

Determine Impact of Change

You can use the Impact Analysis tools to find:

• Files impacted by a change to a file
• Files required by a file to run successfully

1. Use the Impact Analysis tools to assess the impact of your change on other files.

a. In the dependency graph, select the modified file, vertical_channel.slx.

b. In the Impact Analysis section, click Impacted.

The dependency graph filters files and shows only those impacted by the changes you made to
vertical_channel.slx.

 Perform Impact Analysis with a Project

13-487

2. Find where the dependency to vertical_channel.slx is introduced in f14_airframe.slx.

a. Select the dependency arrow linking f14_airframe.slx to vertical_channel.slx.

b. In the Properties pane, click the link under Impacted. Simulink® opens the model
f14_airframe.slx and highlights the model block vertical_channel.

13 Simulink Featured Examples

13-488

Identify Tests to Run

A project automatically associates Classification labels with each project files. Classification labels
include Design, Artifact, Convenience, Derived, and Test labels. The Test label identifies which
files are tests. If you need to run multiple tests, see “Add Labels to Files”.

Determine which tests you need to run to validate the changes to vertical_channel.slx.

1. To display the Classification labels associated to each file in the dependency graph, expand the
Views gallery and click Classification.

The dependency graph that shows only files impacted by the changes to vertical_channel.slx is
now colored by label Classifications.

2. Identify the tests affected by your change.

The graph shows two Design files and one Test file impacted by the changes you made to
vertical_channel.slx. f14_airframe_test.m is the test you need to run to validate the design
changes.

Tip: To clear all filters and restore the graph to show all analyzed dependencies in the project, click
Restore to Default. Alternatively, manually remove all filters that appear at the top of the graph.

Run Impacted Tests

Run the impacted tests to validate your design changes.

 Perform Impact Analysis with a Project

13-489

1. Select the f14_airframe_test.m test. If you need to run multiple tests, click the Add to
selection button in the Legend instead.

2. Save the impacted tests paths to a variable. In the Dependency Analyzer toolstrip, in the Export
section, select Export > Save to Workspace. Choose a Variable name, for example impactedtests,
and click OK.

3. Run tests using the runtests function. In the Command Window, type:

results = runtests(impactedtests);

See Also

“Run a Dependency Analysis”

“Perform an Impact Analysis”

“Check Dependency Results and Resolve Problems”

13 Simulink Featured Examples

13-490

Work with Referenced Projects

This example shows how to use referenced projects as independent components within your project.

Set up the Example Files

Create a working copy of the Airframe Example project and open the project. MATLAB® copies the
files to an examples folder so that you can edit them.

sldemo_slproject_airframe_references;

The top-level Airframe Example project provides an airframe simulation. To use additional
functionalities available in Signal Multiplier and Wind Gust library, the top-level project
adds them as referenced projects.

• The Signal Multiplier referenced project shows how to develop an S-function in a component
independent from the top-level project. The referenced project provides source code, build
support and path management. The build folder is on the project path. This ensures it is also on
the top-level project path. The project has a Rebuild S-function shortcut.

 Work with Referenced Projects

13-491

• The Wind Gust Library referenced project provides a library and a data dictionary that
contains the required bus objects for the library. This project path ensures that the library is set
up for use in the top-level project.

How Referenced Projects Work

When you open the top-level project, referenced projects load first. This adds the referenced project
paths to the MATLAB search path and runs any startup actions that you specified in the referenced
projects.

To access content and run shortcuts in referenced projects from the top-level project, in the
References view, select the reference project, for example, Signal Multiplier. In the
References tab, in the Shortcut section, click on a shortcut, for example Rebuild S-function.

.

To examine files, labels, and source control status in the referenced projects, in the References view,
select the referenced project, and click Show Files. For advanced manoeuvres, you can open the
referenced project as a top-level project. In the References tab, click Open Project.

13 Simulink Featured Examples

13-492

To learn how to create and reference projects programmatically, see “Create and Reference a Project
Programmatically” on page 13-505. To learn how to use Git™ submodules to populate referenced
projects, see “Organize Projects into Components Using References and Git Submodules” on page 13-
509. For more information, watch How to Organize Large Projects into Components (3 min, 32 sec).

See Also

More About
• “Componentization of Large Projects”
• “Create and Reference a Project Programmatically” on page 13-505
• “Organize Projects into Components Using References and Git Submodules” on page 13-509
• How to Organize Large Projects into Components (3 min, 32 sec)

 Work with Referenced Projects

13-493

https://www.youtube.com/watch?v=nUnRC2uwpHo
https://www.youtube.com/watch?v=nUnRC2uwpHo

Automate Label Management in a Project

This example shows how to use the project functions to manage labels.

Open the Airframe Example Project

Create and open a working copy of the project example files. MATLAB® copies the files to an
example folder so that you can edit them.

sldemo_slproject_airframe;

Building with 'MinGW64 Compiler (C)'.
MEX completed successfully.

Get a Project Object

Create a project object to manipulate the currently open project at the command line.

project = currentProject;

View the Labels of a File

Examine the files in the project.

files = project.Files;
disp(files);

 1×32 ProjectFile array with properties:

 Path
 Revision
 SourceControlStatus
 Labels

Use indexing to access files in this list. For example, get file number 10. Each file has two properties
describing its path and attached labels.

aFile = files(10);
disp(aFile);

 ProjectFile with properties:

 Path: "C:\myWorkSpace\examples\airframe23\data\controller.sldd"
 Revision: "92d050b69d2fbfd4a32aa12da99f94472222e587"
 SourceControlStatus: Unmodified
 Labels: [1×1 matlab.project.Label]

Find information about a file attached labels by indexing into the file object Labels property. The
following command gets the first label attached to this particular file.

label = aFile.Labels(1);
disp(label);

 Label with properties:

 File: "C:\myWorkSpace\examples\airframe23\data\controller.sldd"
 DataType: "none"

13 Simulink Featured Examples

13-494

 Data: []
 Name: "Design"
 CategoryName: "Classification"

Attach a Label to a Subset of Files

The following code attaches the label Design in the Classification category to all files in the project
with the .m file extension.

First get the list of files:

files = project.Files;

Then loop through each file and attach the label Design from the Classification category if the file
has the extension .m.

for fileIdx = 1:numel(files)
 file = files(fileIdx);
 [~, ~, fileExtension] = fileparts(file.Path);
 if strcmp(fileExtension,'.m')
 addLabel(file, 'Classification', 'Design');
 end
end

Find a Named Label

You can set and query data on a label that is attached to a file. To do this, you first need to find the file
object. You can do this by looping through all files in the project, as shown in the previous step.
Alternatively, you can use the findFile function on the project.

The following code finds the file object for the file 'utilities/rebuild_s_functions.m'.

pathToLocate = fullfile('utilities','rebuild_s_functions.m');
file = findFile(project, pathToLocate);

Examine the Labels property to get an array of Label objects, one for each label attached to the file.

labels = file.Labels;
disp(labels);

 Label with properties:

 File: "C:\myWorkSpace\examples\airframe23\utilities\rebuild_s_functions.m"
 DataType: "none"
 Data: []
 Name: "Design"
 CategoryName: "Classification"

To find a label by name, use findLabel on the file object.

label = findLabel(file, 'Classification','Design');
disp(label);

 Label with properties:

 File: "C:\myWorkSpace\examples\airframe23\utilities\rebuild_s_functions.m"
 DataType: "none"
 Data: []

 Automate Label Management in a Project

13-495

 Name: "Design"
 CategoryName: "Classification"

Create a New Category

You must create new labels before you can attach them to a file. You define labels in categories,
giving each category a name and supported data type.

The following code creates a category of labels called Engineers which can be used to denote file
ownership in a project. These labels have the char datatype for attaching String data.

createCategory(project,'Engineers','char');
engineersCategory = findCategory(project, 'Engineers');
createLabel(engineersCategory,'Sam');
createLabel(engineersCategory,'Pat');
createLabel(engineersCategory,'Alex');

You can now attach an Sam label from the 'Engineers' category to a file in the project.

addLabel(file, 'Engineers', 'Sam');
label = findLabel(file, 'Engineers', 'Sam');

Set Label Data

The following command sets the data for the attached label.

label.Data = 'Maintenance responsibility';
disp(label)

 Label with properties:

 File: "C:\myWorkSpace\examples\airframe23\utilities\rebuild_s_functions.m"
 DataType: "char"
 Data: 'Maintenance responsibility'
 Name: "Sam"
 CategoryName: "Engineers"

Further Information

“Project Management”

13 Simulink Featured Examples

13-496

Run Custom Tasks with a Project

This example shows how to apply a custom task to a set of files managed by project. The custom task
in this example analyzes the Simulink® models in the project and reports the number of blocks in
each model.

Set Up the Example Files and Open the Project

1. Create and open a working copy of the project example files. MATLAB® copies the files to an
example folder so that you can edit them.

sldemo_slproject_airframe;

Building with 'MinGW64 Compiler (C)'.
MEX completed successfully.

Select a Custom Task

2. On the Project tab, click the down arrow to expand the Tools gallery. Under Project Checks, click
Custom Tasks.

You define a custom task with a MATLAB® function. The example Airframe project contains example
custom tasks in the custom_tasks folder.

3. The Custom task menu lists available custom tasks.

To view, edit, and create custom tasks, on the Project tab, click the down arrow to expand the Tools
gallery. Under Project Checks, click Custom Tasks. In the Custom Task dialog box, click Manage.

4. Select the Analyze Model Files custom task.

The function name of your selected custom task appears in the Custom task field. The example
analyzeModelFiles adds a label from the category Metrics to each model file in the project. Labels in
this category have numerical data. The custom task counts the number of blocks in each model and
attaches this number to the label.

Select Files to Include in the Custom Task

5. In the Custom Task dialog box, in the Include column, verify that all the model files check boxes
are selected.

Run a Custom Task

6. To run the custom task, click Run Task.

The results for a selected file are shown in the Results pane at the bottom of the dialog box. This can
be useful when the returned results are long, or contain HTML markup.

The following example shows the dialog box after running the custom task on some models. You can
customize the columns to show with the cog icon button .

 Run Custom Tasks with a Project

13-497

Edit an Existing Custom Task

Custom Tasks are MATLAB functions. Edit your custom task with the MATLAB Editor. For example,
modify the custom task to programmatically add a label with data, as well as saving any dirty model
files.

7. Run the following MATLAB code to create a Metrics category and a Block Count label in the
project.

project = currentProject;
category = createCategory(project,'Metrics','double');

8. Double-click analyzeModelFiles.m to edit it in the MATLAB Editor.

9. Add the following lines just after the sprintf command:

[~, compileStats] = sldiagnostics(name,'CompileStats');
addLabel(projectFile, 'Metrics','CPU Compile Time',sum([compileStats.Statistics.CPUTime]));

You can use the MATLAB Editor to set breakpoints and debug a custom task function, just as with any
other MATLAB function.

13 Simulink Featured Examples

13-498

If you rerun the custom task, it adds the CPU Compile Time label to each model file that can be
compiled, and attaches data to the label showing the total time for all compilation phases for the
model. Models that cannot be compiled show Failed to analyze file in the Custom Task Report, and
details display as a warning in the Command Window. Examine the custom task analyzeModelFiles.m
to see how to handle errors.

To view the new metrics data, either show the Metrics column in the Custom Task Report, or look in
the project Files view.

Create a New Custom Task

Create a new custom task by creating a new MATLAB function. Your custom tasks must:

• Be saved on the MATLAB path.
• Accept a single input argument: a full path to a file.
• Return a single output argument.

To create custom tasks, on the Project tab, click the down arrow to expand the Tools gallery. Under
Project Checks, click Custom Tasks. In the Custom Task dialog box, click Manage. In the Manage
Custom Tasks dialog box, click Add to open a new file with instructions that guide you to create a
custom task with the correct function signature.

10. Select Add>Add Using New Function.

A file dialog opens asking you to choose where to create the new custom task. The custom task must
be saved on the MATLAB path to run.

11. Provide a file name and save the file in the custom_tasks folder within the project.

The MATLAB editor opens the file pre-populated with a simple example custom task.

12. To create your new custom task, edit the contents of the example custom task function and save.

Further Information

“Project Management”

 Run Custom Tasks with a Project

13-499

Upgrade Simulink Models Using a Project

Easily upgrade all the models in your project using the Upgrade Project tool in a project.

Setting Up the Example Files and Opening the Project

Run the following commands to create and open a working copy of the project files.

sldemo_slproject_airframe;

Building with 'MinGW64 Compiler (C)'.
MEX completed successfully.

The project example copies files to a new folder so that you can edit them and use them under Git
version control. Placing your files under version control lets you compare the upgraded model files
with the original versions.

Automatically Upgrade All Project Models and MATLAB Code at Once

Upgrade all models and MATLAB code in your project to the latest release using a simple workflow.
The Upgrade Project tool can apply fixes automatically when possible, upgrade all model hierarchies
in the project at once, and produce a report.

On the Project tab, click the down arrow to expand the Tools gallery. Under Project Checks, click
Upgrade Project.

This loads the upgrade advisor checks and runs a dependency analysis on your project to ensure the
project hierarchy is handled correctly.

Click Upgrade to run all upgrade checks on all models, libraries and MATLAB code in your project. If
any check fails and there is a fix available, the project automatically applies the fix and runs the
relevant checks again to ensure they now pass.

Inspect the results of the upgrade in the report.

13 Simulink Featured Examples

13-500

Further Information

“Project Management”

“Model Upgrades”

“Upgrade All Project Models, Libraries, and MATLAB Code Files”

 Upgrade Simulink Models Using a Project

13-501

Share Subset of Project Files Using Labels

This example shows how to export a release version of your project using an export profile. Export
profiles use labels to remove files from the project when you create an archive. Use export profile to
exclude files that are only useful for project development.

Set Up Example Files and Open Project

Create and open a working copy of the project example files. MATLAB® copies the files to an
example folder so you can edit them.

proj = sldemo_slproject_airframe;

Building with 'MinGW64 Compiler (C)'.
MEX completed successfully.

Explore Project Labels

To explore the set of labels in a project, use the Labels pane.

• Every project has a default set of classification labels that you can identify by the lock icon .
• This example project adds four user-defined labels in the Classification label category: Analysis,

Upgrade, Utility, and Test Utility. To create new labels, see “Create Labels”.

You can use labels to perform these tasks:

13 Simulink Featured Examples

13-502

• Define the purpose of each file in the project. For example, this project uses the user-defined
labels to identify which files are used for custom analysis tasks, upgrading to the latest version,
and general-purpose utility functions.

• Exclude files from a project archive before you share it with other users.

Explore and Create Export Profiles

Some project files are useful only in the development phase of the project. To share a release version
of your project, you can use labels to exclude files from the project archive. For this example, you do
not want to share project files labeled Analysis, Test, Test Utility, and Upgrade.

Use the Export Profile tool to manage which files to include in or exclude from the archived project.

To view the available export profiles for a project, on the Project tab, select Share > Manage
Export Profiles.... The pane on the left lists the existing export profiles. This example project has
one export profile called Release. This export profile excludes the project files with the labels listed
in the Files pane. The Release profile also removes the labels listed in the Labels pane from the
exported project.

To create a new export profile, click + and specify a name for the export profile.

1. In the Files pane, choose to exclude files from the final project archive based on their labels. If the
files you need to share are only a small subset of a large project, choose the include option instead.

2. In the Files pane, click + and select the labels for the files you want to exclude or include, and
then click OK.

3. You can also exclude user-defined labels from the exported project. In the Labels pane, click +,
select the custom labels you do not want to export, and then click OK.

4. Click Apply to save your changes.

Export Project Using Export Profile

To share a release version of your project that does not contain the project files labeled Analysis,
Test, Test Utility, and Upgrade, use the Release export profile.

 Share Subset of Project Files Using Labels

13-503

1. On the Project tab, select Share > Archive.

2. Select the Release export profile.

3. Click Save As.

4. Specify the archive file name and type, then click Save.

Alternatively, use the export function to export the project programmatically.

export(proj,"myProjectArchive.mlproj",ExportProfile="Release")

Related Examples

“Create a New Project from an Archived Project”

13 Simulink Featured Examples

13-504

Create and Reference a Project Programmatically

This example shows how to programmatically create a new project and add it as a reference project
in your main project. It covers how to create a project from the command line, add files and folders,
set up the project path, define project shortcuts and create a reference to the new project in another
project.

Set up the Example Files

1. Create a working copy of the Airframe Example project and open the project. MATLAB® copies
the files to an examples folder so that you can edit them. Use currentProject to create a project
object from the currently loaded project.

sldemo_slproject_airframe_api;
mainProject = currentProject

mainProject =
 Project with properties:

 Name: "Airframe Example"
 SourceControlIntegration: "Git"
 RepositoryLocation: "C:\workSpace\examples\repositories\airRef14"
 SourceControlMessages: ["Current branch: main" "Branch status: Normal" "No remote tracking branch"]
 ReadOnly: 0
 TopLevel: 1
 Dependencies: [1×1 digraph]
 Categories: [1×1 matlab.project.Category]
 Files: [1×22 matlab.project.ProjectFile]
 Shortcuts: [1×5 matlab.project.Shortcut]
 ProjectPath: [1×4 matlab.project.PathFolder]
 ProjectReferences: [1×1 matlab.project.ProjectReference]
 StartupFiles: [1×0 string]
 ShutdownFiles: [1×0 string]
 DefinitionFilesType: FixedPathMultiFile
 Description: "This example project demonstrates the Project referencing feature."
 RootFolder: "C:\workSpace\examples\airRef14\airRef"
 SimulinkCodeGenFolder: "C:\workSpace\examples\airRef14\airRef\work\codegen"
 DependencyCacheFile: ""
 SimulinkCacheFolder: "C:\workSpace\examples\airRef14\airRef\work\cache"
 ProjectStartupFolder: "C:\workSpace\examples\airRef14\airRef"

The Airframe Example project is a top level project (TopLevel: 1) with one referenced project
(ProjectReferences: [1x1]).

 Create and Reference a Project Programmatically

13-505

Create New Project

2. Create a new project called Wind Gust Library. Airframe project will use Wind Gust
Library through a project reference.

a. Create a blank project and set the project name.

windGustFolder = fullfile(mainProject.RootFolder,"..","WindGustLibrary");
windGust = matlab.project.createProject(windGustFolder);
windGust.Name = "Wind Gust Library";

b. Add the data folder and the wind_gust_lib.slx file to the Wind Gust Library project.

addFolderIncludingChildFiles(windGust,"data");
addFile(windGust,"wind_gust_lib.slx");

c. Add the data folder and the Wind Gust Library project root folder to the Wind Gust Library
project path. This makes the files available when the Airframe Example project or any project that
references the Wind Gust Library project is loaded.

addPath(windGust,"data");
addPath(windGust,windGust.RootFolder);

d. Create a Wind Gust Library project shortcut.

shortcut = addShortcut(windGust,"wind_gust_lib.slx");
shortcut.Group = "Top Level Model";

13 Simulink Featured Examples

13-506

Add a Project Reference

3. Add the new Wind Gust Library project to the Airframe Example project as a project
reference. This allows the Airframe Example project to view, edit, and run files in the Wind Gust
Library project.

reload(mainProject);
addReference(mainProject,windGust)

ans =
 ProjectReference with properties:

 Project: [1×1 matlab.project.Project]
 File: "C:\workSpace\examples\airRef14\WindGustLibrary"
 StoredLocation: "../WindGustLibrary"
 Type: "Relative"

The main project Airframe Example references the Wind Gust Library stored in "../refs/
Wind Gust Library".

4. Use ProjectReferences method to query the Wind Gust Library project.

mainProject.ProjectReferences(2).Project

ans =
 Project with properties:

 Create and Reference a Project Programmatically

13-507

 Name: "Wind Gust Library"
 SourceControlIntegration: ""
 RepositoryLocation: ""
 SourceControlMessages: [1×0 string]
 ReadOnly: 1
 TopLevel: 0
 Dependencies: [1×1 digraph]
 Categories: [1×1 matlab.project.Category]
 Files: [1×3 matlab.project.ProjectFile]
 Shortcuts: [1×1 matlab.project.Shortcut]
 ProjectPath: [1×2 matlab.project.PathFolder]
 ProjectReferences: [1×0 matlab.project.ProjectReference]
 StartupFiles: [1×0 string]
 ShutdownFiles: [1×0 string]
 DefinitionFilesType: FixedPathMultiFile
 Description: ""
 RootFolder: "C:\workSpace\examples\airRef14\WindGustLibrary"

The Wind Gust Library project is not a top-level project (TopLevel: 0). It is referenced by the
top level project Airframe Example (TopLevel: 1).

Close Project

5. Close the project to run shutdown scripts and check for unsaved files.

close(mainProject)

See Also

“Componentization of Large Projects”

13 Simulink Featured Examples

13-508

Organize Projects into Components Using References and Git
Submodules

This example shows how to organize large projects into components using references and Git™
submodules.

By organizing your project into components, you can facilitate component reuse, team development,
unit testing, and independent release of components.

In this example, you create a new component from an existing project folder. You also reuse other
projects as referenced projects. For a project under Git source control, this example shows how to
populate a reference project by using Git submodules. For more information, watch How to Organize
Large Projects into Components (3 min, 32 sec).

Create Referenced Project

Open the project you want to organize into components.

In a large project, you can create a new component from an existing folder in your project.

1 Right-click the folder you want to use to create a new project and select Extract to Referenced
Project.

2 In the Extract to Referenced Project dialog box, specify the New Project Name and New
Project Location fields, and then click Extract.

 Organize Projects into Components Using References and Git Submodules

13-509

https://www.youtube.com/watch?v=nUnRC2uwpHo
https://www.youtube.com/watch?v=nUnRC2uwpHo

MATLAB® removes the folder from the parent project, creates a new component project, and adds it
as a referenced project.

Add Referenced Project

To reuse other components in the top-level project, you can add them as referenced projects.

1 On the Project tab, in the Environment section, click References.
2 Navigate to the Referenced Project Location and select the PRJ file.
3 Click Add.

MATLAB adds a new component project to the top-level project.

Creating or adding a referenced project modifies the parent project metadata. To make changes
available to other project users, commit and push to the remote.

1 On the Project tab, in the Source Control section, click Commit.
2 Enter a comment and click Submit.
3 Click Pull and Push.

13 Simulink Featured Examples

13-510

Use Git Submodules with Referenced Projects

For a project under Git source control, a Git submodule helps you keep commits and changes in a
repository separate from the parent repository. Use Git submodules when you want your parent
repository to point to a specific commit in another external repository. Submodules are static and are
typically used for utilities and shared libraries. When you update the parent repository, submodules
do not update automatically.

To populate a new referenced project using Git submodule, clone an external repository.

1 On the Project tab, in the Source Control section, click Submodules.
2 To clone an external Git repository as a submodule, click Add.
3 Specify the Remote URL and Path. Click OK.

The top-level project now points to the commit of the submodule specified by Index.

 Organize Projects into Components Using References and Git Submodules

13-511

Add the submodule that you cloned as a referenced project using the steps described in Add
Referenced Project on page 13-510.

.

If you cloned several submodules, use project integrity checks to ensure all submodules are
referenced projects.

On the Project tab, expand the Tools gallery and click Check Project.

13 Simulink Featured Examples

13-512

Make Changes to Submodules

To make changes in a submodule:

1 Open the corresponding referenced project as a top-level project.
2 In the References view, select the referenced project. On the References tab, click Open

Project.
3 Make changes.
4 On the Project tab, in the Source Control section, click Commit. Enter a comment and then

click Submit.
5 To make changes available to other users, push to the submodule remote repository. In the

Source Control section, click Pull and then Push.

Update Submodule Index

The top-level project can now see all of the recent changes, but still points to the head commit from
when you first cloned the submodule. The commit stored in Index remains the same.

 Organize Projects into Components Using References and Git Submodules

13-513

To update the index to point to the latest commit:

1 On the Project tab, in the Source Control section, click Submodules.
2 In the Submodules dialog box, click Branches.
3 In the Branches dialog box, select the branch and the commit to which you want your top-level

project to point. Click Switch. The submodule definition in the top-level repository changes.
4 Save the submodule definition and update the Index to the newly selected commit. On the

Project tab, in the Source Control section, click Commit.
5 To send the new submodule definition to the top-level remote repository, click Pull and then

Push.

The Index now matches the Head.

13 Simulink Featured Examples

13-514

After you clone or update a Git submodule, it is in detached head state. Before committing any
changes to a submodule, switch to the appropriate branch.

1 On the Project tab, in the Source Control section, click Submodules.
2 In the Submodules dialog box, click Branches.
3 In the Branches dialog box, select the branch and then click Switch.

For more information about branch merges and updating submodules, see “Add Git Submodules”.

See Also

More About
• “Componentization of Large Projects”
• “Add Git Submodules”
• How to Organize Large Projects into Components (3 min, 32 sec)

 Organize Projects into Components Using References and Git Submodules

13-515

https://www.youtube.com/watch?v=nUnRC2uwpHo

Compare and Merge Simulink Models

This example shows how to use the comparison report in MATLAB® to understand what has changed
between two different designs. It shows how to view and merge the changes between two Simulink®
models from the comparison report.

Compare Models

A user made some changes to the model sl_aircraft1 and saved the resulting model as
sl_aircraft2.

Use visdiff to compare the sl_aircraft1 and sl_aircraft2 models.

visdiff('sl_aircraft1.slx','sl_aircraft2.slx');

Understand Results

The Comparison Tool shows a report that only includes the differences between the two models, not
the complete model hierarchies.

Colors indicate if items have been modified (purple), inserted (blue), or deleted (yellow).

Step Through Differences

Use the Next and Previous navigation buttons on the Comparison tab to step through groups of
changes in the report:

• The report goes through the changes one by one. If the selected item in the Left tree has a match,
it will also be selected in the Right tree.

• MATLAB displays both models next to the report. The report highlights the selected items in both
Simulink models if it is possible.

13 Simulink Featured Examples

13-516

To control highlighting in models, on the Comparison tab, in the Highlight section, select or clear
the check box Always Highlight. You can click the Highlight Now button to highlight the currently
selected report node at any time.

Filter Results

You can control the type of changes displayed in the comparison report by applying filters. To see the
available filters and whether or not they are applied to the current report, on the Comparison tab, in
the Filter section, click the down arrow to expand the filter gallery. Click filter names to toggle
whether they are applied. In the Filter section, click Show or Hide to control how the filters are
applied.

For example, some information in the Simulink model file is defined as being nonfunctional. These are
changes that are unlikely to change the behavior of the design. Nonfunctional items are hidden by
default. You can show them by deselecting the Nonfunctional Changes button when the Hide filter
button is selected.

Publish Results

To save a printable version of a model comparison report, select Publish > HTML, Word, or PDF.

Merge Changes in Simulink Models

You can merge the changes between the two Simulink models by clicking the Merge Mode button in
the toolstrip. This creates a third file, targetFile, which can contain the changes from either the
left model (sl_aircraft1) or right model (sl_aircraft2). Use the buttons in the Target tree to
select the differences to keep in the targetFile.

Click the Save File button to save the changes you selected over the right model (sl_aircraft2).

Tip: Merge blocks before lines, and merge states and junctions before merging transitions. See
“Merging Tips”.

See Also

visdiff

Further Information

“Compare Simulink Models”

“Comparing Models with Identical Names”

Related Examples

“Compare and Merge Simulink Models Containing Stateflow” on page 13-518

“Resolve Conflicts with Simulink Three-Way Merge” on page 13-521

 Compare and Merge Simulink Models

13-517

Compare and Merge Simulink Models Containing Stateflow

This example shows how to use the comparison report in MATLAB® to understand what has changed
between two different designs. It shows how to view and merge the changes between two Simulink®
models containing Stateflow® using the comparison report. A Stateflow license is required to run this
example.

Compare Models

A user added a new kickdown mode to the shift_logic. You can use the Simulink® Model
Comparison to compare the two models and produce a report to explore and merge the differences.

Use visdiff to compare the sl_sfcar_1 and sl_sfcar_2 models.

visdiff('sl_sfcar_1','sl_sfcar_2');

Understand Results

The Comparison Tool shows a report that only includes the differences between the two models, not
the complete model hierarchies.

Colors indicate if items have been modified (purple), inserted (blue), or deleted (yellow).

Step Through Differences

Use the Next and Previous navigation buttons on the Comparison tab to step through groups of
changes in the report:

• The report goes through the changes one by one. If the selected item in the Left tree has a match,
it will also be selected in the Right tree.

• MATLAB displays both models next to the report. The report highlights the selected items in both
Simulink models if it is possible.

13 Simulink Featured Examples

13-518

Highlight Differences in the Simulink Models

Select the tree node Out1 in the Right tree. Observe the report highlights Out1 in the report, and
the corresponding block in the model sl_sfcar_2.

To control highlighting in models, on the Comparison tab, in the Highlight section, select or clear
the check box Always Highlight. You can click the Highlight Now button to highlight the currently
selected report node at any time.

Highlight Differences in a Stateflow Chart

Browse down the tree to locate the Stateflow charts in the report. Observe the Stateflow chart icon
next to the shift_logic node. Click kickdown in the Right tree. The report displays both
shift_logic Stateflow charts. Observe where the new kickdown functionality has been added to
one of the charts.

Filter Results

You can control the type of changes displayed in the comparison report by applying filters. To see the
available filters and whether or not they are applied to the current report, on the Comparison tab, in
the Filter section, click the down arrow to expand the filter gallery. Click filter names to toggle
whether they are applied. In the Filter section, click Show or Hide to control how the filters are
applied.

For example, some information in the Simulink model file is defined as being nonfunctional. These are
changes that are unlikely to change the behavior of the design. Nonfunctional items are hidden by
default. You can show them by deselecting the Nonfunctional Changes button when the Hide filter
button is selected.

Merge Changes in Models Containing Stateflow

You can merge the changes between the two Simulink and Stateflow models by clicking the Merge
Mode button in the toolstrip. This creates a third file, targetFile, which can contain the changes
from either the left model or right model. Use the buttons in the Target tree to select the differences
to keep in the targetFile.

Click the Save File button to save the changes you selected over the right model (sl_sfcar_2).

Tip: Merge blocks before lines, and merge states and junctions before merging transitions. See
“Merging Tips”.

See Also

visdiff

Further Information

“Compare Simulink Models”

“Comparing Models with Identical Names”

Related Examples

“Compare and Merge Simulink Models” on page 13-516

 Compare and Merge Simulink Models Containing Stateflow

13-519

“Resolve Conflicts with Simulink Three-Way Merge” on page 13-521

13 Simulink Featured Examples

13-520

Resolve Conflicts with Simulink Three-Way Merge

This example shows you how to use Simulink® Three-Way Merge to resolve conflicts in Simulink
models. You can view and merge the Simulink model differences in the resulting report.

Set Up the Example Project

Create and open a working copy of the example project. MATLAB® copies the files to an example
folder so that you can edit them.

setupResolveConflictsExample;

Building with 'MinGW64 Compiler (C)'.
MEX completed successfully.

Simulink Model Changes and Conflicts

The example project is under Git™ source control. When you attempt to merge the changes of
another user on the main Git branch into your TaskBranch, the operation results in conflicts.

To resolve the conflicts using the Three-Way Merge tool, this example shows how to examine your
local file (Mine), the conflicting revision (Theirs), and the common ancestor of these two files
(Base).

• Theirs: Another user updated the pilot model subsystem to use an explicit Gain block for the
amplitude of the input commands of the pilot. He also updated the Simulation stop time
parameter.

• Mine: You changed some configuration settings for the pilot model subsystem.

The Merge tool automatically merges nonconflicted differences. Follow these steps to review the
automerge choices, edit if desired, and decide how to resolve any remaining differences. After
resolving the conflicts, commit the resolved model to source control.

 Resolve Conflicts with Simulink Three-Way Merge

13-521

Open Simulink Three-Way Merge

Look for conflicted files in the project files view. The slproject_f14 file shows a red warning
symbol in the Git column, which indicates a conflict.

To see a detailed report of the conflicts, right-click the slproject_f14 file and select View
Conflicts.

View Changes

The Three-Way Merge tool shows the changes to the two Simulink designs that have caused this file
conflict.

13 Simulink Featured Examples

13-522

• The Theirs, Base and Mine trees show the differences between the conflicting revision, your
revision, and the base ancestor of these files.

• The Target tree shows the file that you will merge changes into. This file is temporary and will be
copied into the project when you choose to accept the merge result.

1. Examine a difference by clicking a row in one of the trees. The Merge tool displays the change for
each model in an editor, for example, the Simulink Editor or Configuration Parameters dialog box, to
the right of the Three-Way Merge window.

2. On the Merge tab, in the Highlight section, choose the models to display by clicking Top Model
or Bottom Model.

 Resolve Conflicts with Simulink Three-Way Merge

13-523

Review Automatic Merges

The merge tool automatically merges most nonconflicted differences.

Examine the first change at the top of the Theirs tree by clicking the row called PilotGain. The
Merge tool automatically merged this node. You can adjust the automatic choices using the buttons in
the Target tree. You can review and adjust all automatic merge choices.

Resolve Conflicts

Two types of differences require you to take action.

• Conflict: The merge tool cannot automatically resolve these differences. You need to choose

which design you want in the target file. In the Target pane, look for warnings in the conflict

column .
• Manual merge: Some differences must be merged manually in Simulink or ignored. In the

Target pane, these items are indicated by a pencil icon in the conflict column .

1. Select the StickCommand_rad row. This difference requires a manual merge, indicated by a

pencil icon in the conflict column .

2. To resolve the line change difference in the targetFile, in the Simulink Editor, change the name
of the line connected to the output of the block named Pilot from StickCommand_rad to Pilot
Output.

After resolving the difference, save the changes in the Simulink Editor and mark the change resolved

using the manual merge icon in the conflict column .

The merge report does not update to show any changes you make in the Simulink Editor.

13 Simulink Featured Examples

13-524

3. On the toolstrip, click Next to review and resolve the changes until you reach a conflict. This
StopTime parameter has been changed by both users and is conflicted. Resolve the conflict using the

Mine change. In the Target pane, in the Mine column , select the button next to Stop time.

Change Filters

By default, the report hides all nonfunctional changes, such as the repositioning of items.

On the Merge tab, in the Filter section, turn filters on and off to explore the different changes
between these designs.

Accept Changes

After you resolve all filtered and unfiltered changes, click Accept & Close. The merge tool closes the
report and the models, accepts the merge result in the targetFile, and marks the conflict as
resolved in the source control tool. You can now commit changes to source control.

See Also

“Compare Simulink Models”

“Source Control in Projects”

“Resolve Conflicts”

“Compare Revisions”

“Customize External Source Control to Use MATLAB for Diff and Merge”

Related Examples

“Compare and Merge Simulink Models” on page 13-516

 Resolve Conflicts with Simulink Three-Way Merge

13-525

“Compare and Merge Simulink Models Containing Stateflow” on page 13-518

13 Simulink Featured Examples

13-526

Call C Functions Using C Caller Block

This example shows how to use the C Caller block to call your handwritten C functions.

In this example, five custom C functions are defined in my_func.h and implemented in my_func.c.

The header file and the source file are specified in the Simulation Target pane of the Model
Configuration Parameters. Then C functions can be called via C Caller blocks. For example, the block
add adds a signal and a constant together and the block timesK multiplies the signal by a parameter
K. The C Caller block supports C structure and enumeration types. Use command
Simulink.importExternalCTypes to import these types into Simulink as matching
Simulink.Bus objects or Simulink.IntEnumType classes.

 Call C Functions Using C Caller Block

13-527

13 Simulink Featured Examples

13-528

Set up custom C code in model configuration

Add '#include "my_func.h"' to ''Configuration Parameters > Simulation Target > Include
headers'' field.

Add 'include' to ''Configuration Parameters > Simulation Target > Include directories'' field.

 Call C Functions Using C Caller Block

13-529

Add 'src/my_func.c' to ''Configuration Parameters > Simulation Target > Source files'' field.

See Also
C Caller

Related Examples
• “Integrate C Code Using C Caller Blocks”

13 Simulink Featured Examples

13-530

Use Custom Image Filter Algorithms as Reusable Blocks in
Simulink

This example shows how to incorporate image filter algorithms written in C code into a model using C
Caller blocks in a reusable Simulink® library.

In this example, three image filter blocks are C Caller blocks in a library model. Their dependent C
code is specified in the library model custom code settings.

The image filter C functions are implemented using row-major array layout. The library custom code
settings specify the default function array layout as row-major.

These library image filter blocks can be reused by adding them to models.

mdl = 'slexCCallerExampleImageFilter';
open_system(mdl);

As the simulation runs, the MATLAB Function block displays the filtered images.

evalc('sim(mdl)');

 Use Custom Image Filter Algorithms as Reusable Blocks in Simulink

13-531

slcc('clearCustomCodeModules');

See Also
C Caller

Related Examples
• “Integrate C Code Using C Caller Blocks”

13 Simulink Featured Examples

13-532

Custom Code and Hand Coded Blocks Using the S-function API

This library launches examples of different types of Simulink® S-functions. Simulink S-functions
allow you to extend Simulink with new hand coded blocks, interface to custom external code, and
create live interfaces to other programs. Use this example to access models containing S-functions in
the C, C++, M, and Fortran.

Each example contains a model that exercises an S-function block and a link for editing the S-
function code. You can also access the main S-function file by using the Edit button on the S-function
block dialog. In some of the models, use Look Under Mask to access the S-function. Additionally, the
S-function Builder block is a masked version of the S-function block. The block includes an editor that
builds an S-function out of a core algorirthm.

By default, the S-function Builder also creates a TLC file for use with Simulink® Coder™ and
Embedded Coder™.

See Also
S-Function | S-Function Builder

Related Examples
• “S-Function Examples”

 Custom Code and Hand Coded Blocks Using the S-function API

13-533

Inputs Passed by Value or Address to Legacy Functions

This example shows you how to use the Legacy Code Tool to integrate legacy C functions that pass
their input arguments by value versus address.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using 'initialize'
as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototypes of the legacy functions being
called in this example are:

• FLT filterV1(const FLT signal, const FLT prevSignal, const FLT gain)
• FLT filterV2(const FLT* signal, const FLT prevSignal, const FLT gain)

where FLT is a typedef to float. The legacy source code is found in the files your_types.h,
myfilter.h, filterV1.c, and filterV2.c.

Note the difference in the OutputFcnSpec defined in the two structures; the first case specifies that
the first input argument is passed by value, while the second case specifies pass by pointer.

defs = [];

% sldemo_sfun_filterV1
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_filterV1';
def.OutputFcnSpec = 'single y1 = filterV1(single u1, single u2, single p1)';
def.HeaderFiles = {'myfilter.h'};
def.SourceFiles = {'filterV1.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
defs = [defs; def];

% sldemo_sfun_filterV2
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_filterV2';
def.OutputFcnSpec = 'single y1 = filterV2(single u1[1], single u2, single p1)';
def.HeaderFiles = {'myfilter.h'};
def.SourceFiles = {'filterV2.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
defs = [defs; def];

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by

13 Simulink Featured Examples

13-534

the input argument 'defs'. This S-function is used to call the legacy functions in simulation. The
source code for the S-function is found in the files sldemo_sfun_filterV1.c and
sldemo_sfun_filterV2.c.

legacy_code('generate_for_sim', defs);

Start Compiling sldemo_sfun_filterV1
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp5a18a0c4_5935_489c_bbb0_545b8391115f', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368\sldemo_lct_src\filterV1.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_filterV1.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp5a18a0c4_5935_489c_bbb0_545b8391115f\filterV1.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_filterV1
Exit

Start Compiling sldemo_sfun_filterV2
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpf288f272_ac94_4343_983b_3792c4df7915', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368\sldemo_lct_src\filterV2.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_filterV2.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex08075368', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpf288f272_ac94_4343_983b_3792c4df7915\filterV2.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_filterV2
Exit

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating Masked S-Function Blocks for Calling the Generated S-Functions

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate masked S-function blocks which are
configured to call those S-functions. The blocks are placed in a new model and can be copied to an
existing model.

% legacy_code('slblock_generate', defs);

Integrate the Legacy Code

The model sldemo_lct_filter shows integration with the legacy code. The subsystem TestFilter
serves as a harness for the calls to the legacy C functions via the generate S-functions, with unit
delays serving to store the previous output values.

open_system('sldemo_lct_filter')
open_system('sldemo_lct_filter/TestFilter')
sim('sldemo_lct_filter');

 Inputs Passed by Value or Address to Legacy Functions

13-535

See Also
“Implement Algorithms Using Legacy Code Tool”

13 Simulink Featured Examples

13-536

Output Passed by Return Argument from Legacy Functions

This example shows you how to use the Legacy Code Tool to integrate legacy C functions that pass
their output as a return argument.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using
'initialize' as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototype of the legacy functions being called
in this example is:

FLT gainScalar(const FLT in, const FLT gain)

where FLT is a typedef to float. The legacy source code is found in the files your_types.h, gain.h,
and gainScalar.c.

% sldemo_sfun_gain_scalar
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_gain_scalar';
def.OutputFcnSpec = 'single y1 = gainScalar(single u1, single p1)';
def.HeaderFiles = {'gain.h'};
def.SourceFiles = {'gainScalar.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by
the input argument 'def'. This S-function is used to call the legacy functions in simulation. The source
code for the S-function is found in the file sldemo_sfun_gain_scalar.c.

legacy_code('generate_for_sim', def);

Start Compiling sldemo_sfun_gain_scalar
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex60439838\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex60439838', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp5b689fdf_6225_47dd_aaef_dc8c0334d0a5', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex60439838\sldemo_lct_src\gainScalar.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_gain_scalar.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex60439838\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex60439838', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp5b689fdf_6225_47dd_aaef_dc8c0334d0a5\gainScalar.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_gain_scalar
Exit

 Output Passed by Return Argument from Legacy Functions

13-537

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first
input set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code
generation through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and
header files for the S-functions are not in the same directory as the S-functions, and you want to add
these dependencies in the makefile produced during code generation.

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating a Masked S-Function Block for Calling the Generated S-Function

After the C-MEX S-function source is compiled, the function legacy_code() can be called again
with the first input set to '|slblock_generate|' in order to generate a masked S-function block that is
configured to call that S-function. The block is placed in a new model and can be copied to an existing
model.

% legacy_code('slblock_generate', def);

Integrate the Legacy Code

The model sldemo_lct_gain shows integration with the legacy code. The subsystem TestGain
serves as a harness for the call to the legacy C function via the generate S-function.

if isempty(find_system('SearchDepth',0,'Name','sldemo_lct_gain'))
 open_system('sldemo_lct_gain')
 open_system('sldemo_lct_gain/TestGain')
 sim('sldemo_lct_gain');
end

See Also
“Implement Algorithms Using Legacy Code Tool”

13 Simulink Featured Examples

13-538

Fixed Point Signals in Legacy Functions

This example shows you how to use the Legacy Code Tool to integrate legacy C functions that pass
their inputs and outputs using signals of fixed point data type.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using 'initialize'
as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototype of the legacy functions being called
in this example is:

myFixpt timesS16(const myFixpt in1, const myFixpt in2, const uint8_T fracLength)

where myFixpt is logically a fixed point data type which is physically a typedef to a 16-bit integer:

myFixpt = Simulink.NumericType;
myFixpt.DataTypeMode = 'Fixed-point: binary point scaling';
myFixpt.Signed = true;
myFixpt.WordLength = 16;
myFixpt.FractionLength = 10;
myFixpt.IsAlias = true;
myFixpt.HeaderFile = 'timesFixpt.h';

The legacy source code is found in the files timesFixpt.h and timesS16.c.

% sldemo_sfun_times_s16
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_times_s16';
def.OutputFcnSpec = 'myFixpt y1 = timesS16(myFixpt u1, myFixpt u2, uint8 p1)';
def.HeaderFiles = {'timesFixpt.h'};
def.SourceFiles = {'timesS16.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by
the input argument 'def'. This S-function is used to call the legacy functions in simulation. The source
code for the S-function is found in the file sldemo_sfun_times_s16.c.

legacy_code('generate_for_sim', def);

Start Compiling sldemo_sfun_times_s16
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex15473442\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex15473442', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp47edc825_74bc_4266_96b4_6b6cf4ad9753', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex15473442\sldemo_lct_src\timesS16.c')
Building with 'Microsoft Visual C++ 2019 (C)'.

 Fixed Point Signals in Legacy Functions

13-539

MEX completed successfully.
 mex('sldemo_sfun_times_s16.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex15473442\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex15473442', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp47edc825_74bc_4266_96b4_6b6cf4ad9753\timesS16.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_times_s16
Exit

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating a Masked S-Function Block for Calling the Generated S-Function

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate a masked S-function block that is
configured to call that S-function. The block is placed in a new model and can be copied to an existing
model.

% legacy_code('slblock_generate', def);

Integration with Legacy Code

The model sldemo_lct_fixpt_signals shows integration with the legacy code. The subsystem
TestFixpt serves as a harness for the call to the legacy C function via the generated S-function, and
the scope compares the output of the function with the output of the built-in Simulink® product
block; the results are identical.

open_system('sldemo_lct_fixpt_signals')
open_system('sldemo_lct_fixpt_signals/TestFixpt')
sim('sldemo_lct_fixpt_signals')

ans =

 Simulink.SimulationOutput:
 yout: [101x2 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

13 Simulink Featured Examples

13-540

See Also
“Implement Algorithms Using Legacy Code Tool”

 Fixed Point Signals in Legacy Functions

13-541

Fixed Point Parameters in Legacy Functions

This example shows you how to use the Legacy Code Tool to integrate legacy C functions that pass
their inputs and outputs using parameters of fixed point data type.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using 'initialize'
as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototype of the legacy functions being called
in this example is:

myFixpt timesS16(const myFixpt in1, const myFixpt in2, const uint8_T fracLength)

where myFixpt is logically a fixed point data type which is physically a typedef to a 16-bit integer:

myFixpt = Simulink.NumericType;
myFixpt.DataTypeMode = 'Fixed-point: binary point scaling';
myFixpt.Signed = true;
myFixpt.WordLength = 16;
myFixpt.FractionLength = 10;
myFixpt.IsAlias = true;
myFixpt.HeaderFile = 'timesFixpt.h';

The legacy source code is found in the files timesFixpt.h, and timesS16.c.

% sldemo_sfun_gain_fixpt
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_gain_fixpt';
def.OutputFcnSpec = 'myFixpt y1 = timesS16(myFixpt u1, myFixpt p1, uint8 p2)';
def.HeaderFiles = {'timesFixpt.h'};
def.SourceFiles = {'timesS16.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by
the input argument 'def'. This S-function is used to call the legacy functions in simulation. The source
code for the S-function is found in the file sldemo_sfun_gain_fixpt.c.

legacy_code('generate_for_sim', def);

Start Compiling sldemo_sfun_gain_fixpt
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex52665162\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex52665162', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp299bb525_282d_44d4_8063_af219053b433', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex52665162\sldemo_lct_src\timesS16.c')
Building with 'Microsoft Visual C++ 2019 (C)'.

13 Simulink Featured Examples

13-542

MEX completed successfully.
 mex('sldemo_sfun_gain_fixpt.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex52665162\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex52665162', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp299bb525_282d_44d4_8063_af219053b433\timesS16.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_gain_fixpt
Exit

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating a Masked S-Function Block for Calling the Generated S-Function

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate a masked S-function block that is
configured to call that S-function. The block is placed in a new model and can be copied to an existing
model.

% legacy_code('slblock_generate', def);

Integration with Legacy Code

The model sldemo_lct_fixpt_params shows integration with the legacy code. The subsystem
TestFixpt serves as a harness for the call to the legacy C function via the generated S-function.

open_system('sldemo_lct_fixpt_params')
open_system('sldemo_lct_fixpt_params/TestFixpt')
sim('sldemo_lct_fixpt_params')

ans =

 Simulink.SimulationOutput:
 yout: [101x4 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

 Fixed Point Parameters in Legacy Functions

13-543

See Also
“Implement Algorithms Using Legacy Code Tool”

13 Simulink Featured Examples

13-544

Lookup Tables Implemented in Legacy Functions

This example shows you how to use the Legacy Code Tool to integrate legacy C functions that
implement N-dimensional table lookups.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using 'initialize'
as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototype of the legacy function being called
in this example is:

FLT directLookupTableND(const FLT *tableND, const UINT32 nbDims, const UINT32 *tableDims,
const UINT32 *tableIdx)

where FLT is a typedef to float, and UINT32 is a typedef to unsigned int32. The legacy source code is
found in the files your_types.h, lookupTable.h, and directLookupTableND.c.

defs = [];
evalin('base','load sldemo_lct_data.mat')

% sldemo_sfun_dlut3D
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_dlut3D';
def.OutputFcnSpec = 'single y1 = DirectLookupTable3D(single p1[][][], uint32 p2[3], uint32 u1[3])';
def.HeaderFiles = {'lookupTable.h'};
def.SourceFiles = {'directLookupTableND.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
defs = [defs; def];

% sldemo_sfun_dlut4D
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_dlut4D';
def.OutputFcnSpec = 'single y1 = DirectLookupTable4D(single p1[][][][], uint32 p2[4], uint32 u1[4])';
def.HeaderFiles = {'lookupTable.h'};
def.SourceFiles = {'directLookupTableND.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
defs = [defs; def];

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by
the input argument 'defs'. This S-function is used to call the legacy functions in simulation. The
source code for the S-function is found in the files sldemo_sfun_dlut3D.c and
sldemo_sfun_dlut4D.c.

 Lookup Tables Implemented in Legacy Functions

13-545

legacy_code('generate_for_sim', defs);

Start Compiling sldemo_sfun_dlut3D
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex11439596\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex11439596', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpa2132a61_0c88_4541_9d77_5f816ceca8ff', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex11439596\sldemo_lct_src\directLookupTableND.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_dlut3D.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex11439596\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex11439596', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpa2132a61_0c88_4541_9d77_5f816ceca8ff\directLookupTableND.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_dlut3D
Exit

Start Compiling sldemo_sfun_dlut4D
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex11439596\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex11439596', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp4536e6f2_de62_4ae8_9094_84cd2c7576a8', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex11439596\sldemo_lct_src\directLookupTableND.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_dlut4D.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex11439596\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex11439596', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp4536e6f2_de62_4ae8_9094_84cd2c7576a8\directLookupTableND.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_dlut4D
Exit

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating a Masked S-Function Block for Calling the Generated S-Function

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate a masked S-function block that is
configured to call that S-function. The block is placed in a new model and can be copied to an existing
model.

% legacy_code('slblock_generate', defs);

Integrate the Legacy Code

The model sldemo_lct_lut shows integration with the legacy code. The subsystem TestFixpt serves
as a harness for the call to the legacy C function, and the Display blocks compare the output of the
function with the output of the built-in Simulink® lookup blocks; the results are identical.

open_system('sldemo_lct_lut')
open_system('sldemo_lct_lut/TestLut1')
sim('sldemo_lct_lut');

13 Simulink Featured Examples

13-546

See Also
“Implement Algorithms Using Legacy Code Tool”

 Lookup Tables Implemented in Legacy Functions

13-547

Start and Terminate Actions Within Legacy Functions

This example shows you how to use the Legacy Code Tool to integrate legacy C functions that have
start and terminate actions.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using the
'initialize' first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototypes of the legacy functions being
called in this example are:

• void initFaultCounter(unsigned int *counter)
• void openLogFile(void **fid)
• void incAndLogFaultCounter(void *fid, unsigned int *counter, double time)
• void closeLogFile(void **fid)

To open the model and files, click Open Model. The legacy source code is found in the files
your_types.h, fault.h, and fault.c.

% sldemo_sfun_fault
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_fault';
def.InitializeConditionsFcnSpec = 'initFaultCounter(uint32 work2[1])';
def.StartFcnSpec = 'openLogFile(void **work1)';
def.OutputFcnSpec = 'incAndLogFaultCounter(void *work1, uint32 work2[1], double u1)';
def.TerminateFcnSpec = 'closeLogFile(void **work1)';
def.HeaderFiles = {'fault.h'};
def.SourceFiles = {'fault.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
def.Options.useTlcWithAccel = false;

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by
the input argument 'def'. This S-function is used to call the legacy functions in simulation. The source
code for the S-function is found in the file sldemo_sfun_fault.c.

legacy_code('generate_for_sim', def);

Start Compiling sldemo_sfun_fault
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex33158503\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex33158503', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp6fc18da1_272e_4073_933d_21ca8ba5c907', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex33158503\sldemo_lct_src\fault.c')
Building with 'Microsoft Visual C++ 2019 (C)'.

13 Simulink Featured Examples

13-548

MEX completed successfully.
 mex('sldemo_sfun_fault.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex33158503\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex33158503', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp6fc18da1_272e_4073_933d_21ca8ba5c907\fault.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_fault
Exit

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating a Masked S-Function Block for Calling the Generated S-Function

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate a masked S-function block that is
configured to call that S-function. The block is placed in a new model and can be copied to an existing
model.

% legacy_code('slblock_generate', def);

Integrate the Legacy Code

The model sldemo_lct_start_term shows integration with the legacy code. The subsystem TestFixpt
serves as a harness for the call to the legacy C function, and the scope compares the output of the
function with the output of the built-in Simulink® product block; the results should be identical.

open_system('sldemo_lct_start_term')
open_system('sldemo_lct_start_term/TestFault')
sim('sldemo_lct_start_term');

 Start and Terminate Actions Within Legacy Functions

13-549

13 Simulink Featured Examples

13-550

See Also
“Implement Algorithms Using Legacy Code Tool”

 Start and Terminate Actions Within Legacy Functions

13-551

Using Buses with Legacy Functions Having Structure
Arguments

This example shows you how to use the Legacy Code Tool to integrate legacy C functions with
structure arguments using Simulink® buses.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using 'initialize'
as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototype of the legacy functions being called
in this example is:

counterbusFcn(COUNTERBUS *u1, int32_T u2, COUNTERBUS *y1, int32_T *y2)

where COUNTERBUS is a struct typedef defined in counterbus.h and implemented with a
Simulink.Bus object in the base workspace. The legacy source code is found in the files
counterbus.h and counterbus.c. To open the model and files, click Open Model.

evalin('base','load sldemo_lct_data.mat')

% sldemo_sfun_counterbus
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_counterbus';
def.OutputFcnSpec = 'void counterbusFcn(COUNTERBUS u1[1], int32 u2, COUNTERBUS y1[1], int32 y2[1])';
def.HeaderFiles = {'counterbus.h'};
def.SourceFiles = {'counterbus.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by
the input argument 'def'. This S-function is used to call the legacy functions in simulation. The source
code for the S-function is found in the file sldemo_sfun_counterbus.c.

legacy_code('generate_for_sim', def);

Start Compiling sldemo_sfun_counterbus
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex39753963\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex39753963', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpcb97c2ed_3d9f_44f9_8aea_dc9fa0a91440', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex39753963\sldemo_lct_src\counterbus.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_counterbus.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex39753963\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex39753963', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpcb97c2ed_3d9f_44f9_8aea_dc9fa0a91440\counterbus.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.

13 Simulink Featured Examples

13-552

Finish Compiling sldemo_sfun_counterbus
Exit

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating a Masked S-Function Block for Calling the Generated S-Function

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate a masked S-function block that is
configured to call that S-function. The block is placed in a new model and can be copied to an existing
model.

% legacy_code('slblock_generate', def);

Integrate the Legacy Code

The model sldemo_lct_bus shows integration with the legacy code. The subsystem TestCounter
serves as a harness for the call to the legacy C function.

open_system('sldemo_lct_bus')
open_system('sldemo_lct_bus/TestCounter')
open_system('sldemo_lct_bus/ScopeA')
open_system('sldemo_lct_bus/ScopeA1')
sim('sldemo_lct_bus')

ans =

 Simulink.SimulationOutput:
 ScopeDataA: [301x4 double]
 ScopeDataA1: [301x4 double]
 tout: [301x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

 Using Buses with Legacy Functions Having Structure Arguments

13-553

See Also
“Implement Algorithms Using Legacy Code Tool”

13 Simulink Featured Examples

13-554

Inherited Signal Dimensions for Legacy Function Arguments

This example shows you how to use the Legacy Code Tool to integrate legacy C functions whose
arguments have inherited dimensions.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using 'initialize'
as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototypes of the legacy functions being
called in this example are:

• void mat_add(real_T *u1, real_T *u2, int32_T nbRows, int32_T nbCols, real_T *y1)
• void mat_mult(real_T *u1, real_T *u2, int32_T nbRows1, int32_T nbCols1, int32_T nbCols2, real_T

*y1)

where real_T is a typedef to double, and int32_T is a typedef to a 32-bit integer. The legacy source
code is found in the files mat_ops.h and mat_ops.c.

defs = [];

% sldemo_sfun_mat_add
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_mat_add';
def.OutputFcnSpec = ['void mat_add(double u1[][], double u2[][], ' ...
 'int32 u3, int32 u4, double y1[size(u1,1)][size(u1,2)])'];
def.HeaderFiles = {'mat_ops.h'};
def.SourceFiles = {'mat_ops.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
defs = [defs; def];

% sldemo_sfun_mat_mult
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_mat_mult';
def.OutputFcnSpec = ['void mat_mult(double u1[p1][p2], double u2[p2][p3], '...
 'int32 p1, int32 p2, int32 p3, double y1[p1][p3])'];
def.HeaderFiles = {'mat_ops.h'};
def.SourceFiles = {'mat_ops.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
defs = [defs; def];

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by

 Inherited Signal Dimensions for Legacy Function Arguments

13-555

the input argument 'defs'. This S-function is used to call the legacy functions in simulation. The
source code for the S-function is found in the files sldemo_sfun_mat_add.c and
sldemo_sfun_mat_mult.c.

legacy_code('generate_for_sim', defs);

Start Compiling sldemo_sfun_mat_add
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex63241227\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex63241227', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpdafa52fb_aa53_47d2_abbc_f8e696c553be', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex63241227\sldemo_lct_src\mat_ops.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_mat_add.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex63241227\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex63241227', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpdafa52fb_aa53_47d2_abbc_f8e696c553be\mat_ops.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_mat_add
Exit

Start Compiling sldemo_sfun_mat_mult
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex63241227\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex63241227', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpa748ef3a_bde7_4e52_a662_274b8cbd0450', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex63241227\sldemo_lct_src\mat_ops.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_mat_mult.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex63241227\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex63241227', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpa748ef3a_bde7_4e52_a662_274b8cbd0450\mat_ops.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_mat_mult
Exit

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

Note: Complete this step only if you need to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating Masked S-Function Blocks for Calling the Generated S-Functions

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate masked S-function blocks which are
configured to call those S-functions. The blocks are placed in a new model and can be copied to an
existing model.

% legacy_code('slblock_generate', defs);

Integrate the Legacy Code

The model sldemo_lct_inherit_dims shows integration with the legacy code. The subsystem
TestMatOps serves as a harness for the calls to the legacy C functions, with unit delays serving to
store the previous output values.

open_system('sldemo_lct_inherit_dims')
open_system('sldemo_lct_inherit_dims/TestMatOps')
sim('sldemo_lct_inherit_dims');

13 Simulink Featured Examples

13-556

See Also
“Implement Algorithms Using Legacy Code Tool”

 Inherited Signal Dimensions for Legacy Function Arguments

13-557

C++ Object Methods as Legacy Functions

This example shows you how to use the Legacy Code Tool to integrate legacy C++ object methods.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• generate a C++ MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using 'initialize'
as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The definition of the legacy C++ class being used
in this example is:

class adder {
 private:
 int int_state;
 public:
 adder();
 int add_one(int increment);
 int get_val();
};

The legacy source code is found in the files adder_cpp.h and adder_cpp.cpp.

% sldemo_sfun_adder_cpp
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_adder_cpp';
def.StartFcnSpec = 'createAdder()';
def.OutputFcnSpec = 'int32 y1 = adderOutput(int32 u1)';
def.TerminateFcnSpec = 'deleteAdder()';
def.HeaderFiles = {'adder_cpp.h'};
def.SourceFiles = {'adder_cpp.cpp'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
def.Options.language = 'C++';
def.Options.useTlcWithAccel = false;

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by
the input argument 'def'. This S-function is used to call the legacy functions in simulation. The source
code for the S-function is found in the file sldemo_sfun_adder_cpp.cpp.

legacy_code('generate_for_sim', def);

Start Compiling sldemo_sfun_adder_cpp
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex93865240\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex93865240', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp12ddbcb2_89f8_462c_b08f_84b036b867ca', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex93865240\sldemo_lct_src\adder_cpp.cpp')
Building with 'Microsoft Visual C++ 2019'.

13 Simulink Featured Examples

13-558

MEX completed successfully.
 mex('sldemo_sfun_adder_cpp.cpp', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex93865240\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex93865240', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp12ddbcb2_89f8_462c_b08f_84b036b867ca\adder_cpp.obj')
Building with 'Microsoft Visual C++ 2019'.
MEX completed successfully.
Finish Compiling sldemo_sfun_adder_cpp
Exit

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating a Masked S-Function Block for Calling the Generated S-Function

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate a masked S-function block that is
configured to call that S-function. The block is placed in a new model and can be copied to an existing
model.

% legacy_code('slblock_generate', def);

Integration with Legacy Code

The model sldemo_lct_cpp sldemo_lct_cpp shows integration with the legacy code.

open_system('sldemo_lct_cpp')
sim('sldemo_lct_cpp');

 C++ Object Methods as Legacy Functions

13-559

See Also
“Implement Algorithms Using Legacy Code Tool”

13 Simulink Featured Examples

13-560

Persistent Memory Within Legacy Functions

This example shows you how to use the Legacy Code Tool to integrate legacy C functions with
instance-specific persistent memory.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using
'initialize' as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototype of the legacy functions being called
in this example are:

void memory_bus_init(COUNTERBUS *mem, int32_T upper_sat, int32_T lower_sat);

void memory_bus_step(COUNTERBUS *input, COUNTERBUS *mem, COUNTERBUS *output);

where mem is an instance-specific persistent memory for applying a one integration step delay.
COUNTERBUS is a struct typedef defined in counterbus.h and implemented with a Simulink.Bus
object in the base workspace. The legacy source code is found in the files memory_bus.h and
memory_bus.c.

evalin('base','load sldemo_lct_data.mat')

% sldemo_sfun_work
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_work';
def.InitializeConditionsFcnSpec = 'void memory_bus_init(COUNTERBUS work1[1], int32 p1, int32 p2)';
def.OutputFcnSpec = 'void memory_bus_step(COUNTERBUS u1[1], COUNTERBUS work1[1], COUNTERBUS y1[1])';
def.HeaderFiles = {'memory_bus.h'};
def.SourceFiles = {'memory_bus.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by
the input argument 'def'. This S-function is used to call the legacy functions in simulation. The source
code for the S-function is found in the file sldemo_sfun_work.c.

legacy_code('generate_for_sim', def);

Start Compiling sldemo_sfun_work
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex40483229\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex40483229', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpb62d9547_45a0_4462_a838_842cba58c46b', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex40483229\sldemo_lct_src\memory_bus.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.

 Persistent Memory Within Legacy Functions

13-561

 mex('sldemo_sfun_work.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex40483229\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex40483229', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpb62d9547_45a0_4462_a838_842cba58c46b\memory_bus.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_work
Exit

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating a Masked S-Function Block for Calling the Generated S-Function

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate a masked S-function block that is
configured to call that S-function. The block is placed in a new model and can be copied to an existing
model.

% legacy_code('slblock_generate', def);

Integrate the Legacy Code

The model sldemo_lct_work shows integration with the legacy code. The subsystem memory_bus
serves as a harness for the call to the legacy C function.

open_system('sldemo_lct_work')
open_system('sldemo_lct_work/memory_bus')
sim('sldemo_lct_work')

ans =

 Simulink.SimulationOutput:
 ScopeDataA: [11x3 double]
 tout: [11x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

13 Simulink Featured Examples

13-562

See Also
“Integrate C Functions Using Legacy Code Tool”

 Persistent Memory Within Legacy Functions

13-563

Multi-Dimensional Signals in Legacy Functions

This example shows you how to use the Legacy Code Tool to integrate legacy C functions with Multi-
Dimensional Signals.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using 'initialize'
as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototype of the legacy functions being called
in this example are:

void array3d_add(real_T *y1, real_T *u1, real_T *u2, int32_T nbRows, int32_T nbCols, int32_T
nbPages);

where real_T is a typedef to double, and int32_T is a typedef to a 32-bit integer. The legacy source
code is found in the files ndarray_ops.h and ndarray_ops.c.

% sldemo_sfun_ndarray_add
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_ndarray_add';
def.OutputFcnSpec = ['void array3d_add(double y1[size(u1,1)][size(u1,2)][size(u1,3)], ',...
 'double u1[][][], double u2[][][], ' ...
 'int32 size(u1,1), int32 size(u1,2), int32 size(u1,3))'];
def.HeaderFiles = {'ndarray_ops.h'};
def.SourceFiles = {'ndarray_ops.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};

where y1 is a 3-D output signal of same dimensions as the 3-D input signal u1. Note that the last 3
arguments passed to the legacy function correspond to the number of element in each dimension of
the 3-D input signal u1.

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by
the input argument 'def'. This S-function is used to call the legacy functions in simulation. The source
code for the S-function is found in the file sldemo_sfun_ndarray_add.c.

legacy_code('generate_for_sim', def);

Start Compiling sldemo_sfun_ndarray_add
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex68315702\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex68315702', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp30be9fb7_08a2_44e5_a5b4_ea621c6afe7e', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex68315702\sldemo_lct_src\ndarray_ops.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.

13 Simulink Featured Examples

13-564

 mex('sldemo_sfun_ndarray_add.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex68315702\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex68315702', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp30be9fb7_08a2_44e5_a5b4_ea621c6afe7e\ndarray_ops.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_ndarray_add
Exit

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating a Masked S-Function Block for Calling the Generated S-Function

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate a masked S-function block that is
configured to call that S-function. The block is placed in a new model and can be copied to an existing
model.

% legacy_code('slblock_generate', def);

Integrate the Legacy Code

The model sldemo_lct_ndarray shows integration with the legacy code. The subsystem
ndarray_add serves as a harness for the call to the legacy C function.

open_system('sldemo_lct_ndarray')
open_system('sldemo_lct_ndarray/ndarray_add')
sim('sldemo_lct_ndarray');

See Also
“Implement Algorithms Using Legacy Code Tool”

 Multi-Dimensional Signals in Legacy Functions

13-565

Complex Signals in Legacy Function

This example shows you how to use the Legacy Code Tool to integrate legacy C functions using
complex signals.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using 'initialize'
as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototype of the legacy functions being called
in this example is:

void cplx_gain(creal_T *input, creal_T *gain, creal_T *output);

where creal_T is the complex representation of a double. The legacy source code is found in the files
cplxgain.h and cplxgain.c.

% sldemo_sfun_gain_scalar
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_cplx_gain';
def.OutputFcnSpec = 'void cplx_gain(complex<double> u1[1], complex<double> p1[1], complex<double> y1[1])';
def.HeaderFiles = {'cplxgain.h'};
def.SourceFiles = {'cplxgain.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by
the input argument 'def'. This S-function is used to call the legacy functions in simulation. The source
code for the S-function is found in the file sldemo_sfun_cplx_gain.c.

legacy_code('generate_for_sim', def);

Start Compiling sldemo_sfun_cplx_gain
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex34942047\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex34942047', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp732814b5_d3c4_4672_b905_22f0da490557', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex34942047\sldemo_lct_src\cplxgain.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_cplx_gain.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex34942047\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex34942047', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp732814b5_d3c4_4672_b905_22f0da490557\cplxgain.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_cplx_gain
Exit

13 Simulink Featured Examples

13-566

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

Generating a Masked S-Function Block for Calling the Generated S-Function

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate a masked S-function block that is
configured to call that S-function. The block is placed in a new model and can be copied to an existing
model.

% legacy_code('slblock_generate', def);

Integration with Legacy Code

The model sldemo_lct_cplxgain shows integration with the legacy code. The subsystem
complex_gain serves as a harness for the call to the legacy C function via the generate S-function.

if isempty(find_system('SearchDepth',0,'Name','sldemo_lct_cplxgain'))
 open_system('sldemo_lct_cplxgain')
 open_system('sldemo_lct_cplxgain/complex_gain')
 sim('sldemo_lct_cplxgain');
end

See Also
“Implement Algorithms Using Legacy Code Tool”

 Complex Signals in Legacy Function

13-567

Specified or Inherited Sample Time with Legacy Functions

This example shows you how to use the Legacy Code Tool to integrate legacy C functions with the
sample time specified, inherited and parameterized.

The Legacy Code Tool allows you to:

• Provide the legacy function specification,
• Generate a C-MEX S-function that is used during simulation to call the legacy code, and
• Compile and build the generated S-function for simulation.

Providing the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array of structures as
the argument. The data structure is initialized by calling the function legacy_code() using 'initialize'
as the first input. After initializing the structure, you have to assign its properties to values
corresponding to the legacy code being integrated. The prototypes of the legacy functions being
called in this example are:

FLT gainScalar(const FLT in, const FLT gain)

where FLT is a typedef to float. The legacy source code is found in the files your_types.h, gain.h,
and gainScalar.c.

defs = [];

% sldemo_sfun_st_inherited
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_st_inherited';
def.OutputFcnSpec = 'single y1 = gainScalar(single u1, single p1)';
def.HeaderFiles = {'gain.h'};
def.SourceFiles = {'gainScalar.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
defs = [defs; def];

% sldemo_sfun_st_fixed
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_st_fixed';
def.OutputFcnSpec = 'single y1 = gainScalar(single u1, single p1)';
def.HeaderFiles = {'gain.h'};
def.SourceFiles = {'gainScalar.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
def.SampleTime = [2 1];
defs = [defs; def];

% sldemo_sfun_st_parameterized
def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_st_parameterized';
def.OutputFcnSpec = 'single y1 = gainScalar(single u1, single p1)';
def.HeaderFiles = {'gain.h'};
def.SourceFiles = {'gainScalar.c'};
def.IncPaths = {'sldemo_lct_src'};

13 Simulink Featured Examples

13-568

def.SrcPaths = {'sldemo_lct_src'};
def.SampleTime = 'parameterized';
defs = [defs; def];

Generating and Compiling an S-Function for Use During Simulation

The function legacy_code() is called again with the first input set to 'generate_for_sim' in order to
automatically generate and compile the C-MEX S-function according to the description provided by
the input argument 'defs'. This S-function is used to call the legacy functions in simulation. The
source code for the S-function is found in the files sldemo_sfun_st_inherited.c,
sldemo_sfun_st_fixed.c, and sldemo_sfun_st_parameterized.c.

legacy_code('generate_for_sim', defs);

Start Compiling sldemo_sfun_st_inherited
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpd81f7ab9_f684_49ac_9bb3_64d4bb11c4ad', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275\sldemo_lct_src\gainScalar.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_st_inherited.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpd81f7ab9_f684_49ac_9bb3_64d4bb11c4ad\gainScalar.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_st_inherited
Exit

Start Compiling sldemo_sfun_st_fixed
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpfdb14be1_753b_45f2_9838_c9ecf114a494', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275\sldemo_lct_src\gainScalar.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_st_fixed.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpfdb14be1_753b_45f2_9838_c9ecf114a494\gainScalar.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_st_fixed
Exit

Start Compiling sldemo_sfun_st_parameterized
 mex('-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275', '-c', '-outdir', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp3a793727_3a46_4c9f_9bf9_ac46c1db8895', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275\sldemo_lct_src\gainScalar.c')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
 mex('sldemo_sfun_st_parameterized.c', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275\sldemo_lct_src', '-IC:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tpc5797ca3\simulink_features-ex32622275', 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\30\tp3a793727_3a46_4c9f_9bf9_ac46c1db8895\gainScalar.obj')
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_st_parameterized
Exit

Generating an rtwmakecfg.m File for Code Generation

After the TLC block file is created, the function legacy_code() can be called again with the first input
set to 'rtwmakecfg_generate' in order to generate an rtwmakecfg.m file to support code generation
through Simulink® Coder™. Generate the rtwmakecfg.m file if the required source and header files
for the S-functions are not in the same directory as the S-functions, and you want to add these
dependencies in the makefile produced during code generation.

Note: Complete this step only if you are going to simulate the model in accelerated mode.

legacy_code('rtwmakecfg_generate', def);

 Specified or Inherited Sample Time with Legacy Functions

13-569

Generating Masked S-Function Blocks for Calling the Generated S-Functions

After the C-MEX S-function source is compiled, the function legacy_code() can be called again with
the first input set to 'slblock_generate' in order to generate masked S-function blocks which are
configured to call those S-functions. The blocks are placed in a new model and can be copied to an
existing model.

% legacy_code('slblock_generate', defs);

Integration the Legacy Code

The model sldemo_lct_sampletime shows integration with the legacy code. The subsystem
sample_time serves as a harness for the calls to the legacy C functions, with unit delays serving to
store the previous output values.

open_system('sldemo_lct_sampletime')
open_system('sldemo_lct_sampletime/sample_time')
sim('sldemo_lct_sampletime');

See Also
“Implement Algorithms Using Legacy Code Tool”

13 Simulink Featured Examples

13-570

Illustration of Law of Large Numbers

This example shows how to use MATLAB System blocks to illustrate the law of large numbers.

The law of large numbers states that the cumulative average probability of an event approaches the
expected value as the number of trials approaches infinity. You can see this in the generated plot.

A Uniform Random Number block connected to Compare To Constant block acts as a Bernoulli trial.
The example uses the high value as successful outcome of the experiment.

This example highlights the use of MATLAB System block as follows:

• The Success Counter counts the number of successful trials. The Total Trials Counter counts the
total number of trials. Both blocks use the same System object™. This System object is a source
block that uses the "resetImpl" method to count the number of times the block has run at
consecutive time steps.

• The Analysis and Plot block calculates the average probability and plots it. It uses a System object
that inherits from the interface classes matlab.System. The interface class matlab.System is
required for all System objects. To use features not supported for code generation, such as
unsupported functions, define propagator methods for the System object. As a result, this block
cannot simulate in "Code generation" mode. It must simulate in "Interpreted execution" mode.

• The two MATLAB System blocks use custom icons. The Analysis and Plot block uses an image file
icon. The Total Trials Counter block uses a multiline text icon. The "getIconImpl" methods of the
corresponding System objects define these custom icons.

 Illustration of Law of Large Numbers

13-571

13 Simulink Featured Examples

13-572

Using Buses with MATLAB System Blocks

This example shows how to use buses as inputs and outputs to the MATLAB System block.

The Gain block uses a System object™ that applies the gain specified in the block to the bus elements
'a' and 'b' of the incoming bus. The output of the block is the same bus type as the input.

The Math Operations block uses a System object that computes the sum, product, and difference
between the two bus elements 'a' and 'b' of the input bus. The output of the block is a bus with three
elements: 'sum', 'prod', and 'diff'.

If a MATLAB System block output bus is the same type as the input bus, you must still specify the
output bus name in the 'getOutputDataTypeImpl' method. This is because the
'propagatedInputDataType' method does not return the input bus object during bus propagation.

Before model initialization, all bus types used as either inputs or outputs to the MATLAB System
block must be available in the MATLAB base workspace.

See Also
MATLAB System

More About
• “Nonvirtual Buses and MATLAB System Block”

 Using Buses with MATLAB System Blocks

13-573

• “Define System Object for Use in Simulink”
• “System Design in Simulink Using System Objects”

13 Simulink Featured Examples

13-574

Run Quality Checks on S-Functions

This example shows how to use S-Function analyzer programmatic interfaces to check S-functions for
potential problems and improvements.

The S-Function analyzer programmatic interface consists of:

• Simulink.sfunction.Analyzer - Object used to launch S-function analyzer and get analysis
results.

• Simulink.sfunction.analyzer.BuildInfo - Object used to create an object to specify the build
information for an S-function.

• Simulink.sfunction.analyzer.Options - Object used to specify the running options for S-function
analyzer.

• Simulink.sfunction.analyzer.findSfunctions - Function to return all feasible S-functions in a
model or library for S-function analyzer.

Specify Input Model or Library

The S-Function analyzer requires a model or a library on the MATLAB® path that contains the S-
Function blocks to be analyzed.

model = 'slexSfunctionCheckExample';

Specify Build Information for S-functions

S-function analyzer checks the source code of S-functions when they are available. Heuristics are
applied to automatically locate the source code based on S-function names. For example, if S-function
source code and the input model are in the same folder, the source code is included in the analysis
automatically. Otherwise, the build information has to be specified using a
Simulink.sfunction.analyzer.BuildInfo object. If no source code is available, you do not
need to complete this step.

To specify the build information, first determine the eligible S-functions in the input model. Then,
create a Simulink.sfunction.analyzer.BuildInfo object for each S-function. For the S-
function slexBadSFcn, there are two associated source files: slexBadSFcn.c and
slexBadSFcn_wrapper.c

sfunctions= Simulink.sfunction.analyzer.findSfunctions(model);
bdInfo= Simulink.sfunction.analyzer.BuildInfo('slexBadSFcn.c',...
 'ExtraSrcFileList',{'slexBadSFcn_wrapper.c'});

Specify Running Options for S-Function Analyzer

You can configure the execution options for S-function analyzer, such as whether to enable Polyspace
checks and parameter robustness checks, the simulation timeout, and the output path for the result
report, using a Simulink.sfunction.analyzer.Options object. If you do not need to modify
options from their default values, you can skip this step.

opts = Simulink.sfunction.analyzer.Options;
opts.EnableRobustness = 1;

 Run Quality Checks on S-Functions

13-575

Run S-Function Analyzer and View Results

Create a Simulink.sfunction.Analyzer object that captures the specified build information and
options. Then, run the S-function analyzer with that configuration using the run function and
generate a report of the analysis results using the generateReport function.

sfunAnalyzer = Simulink.sfunction.Analyzer(model,'BuildInfo',{bdInfo},'Options',opts);
analysisResult=run(sfunAnalyzer);
generateReport(sfunAnalyzer);

13 Simulink Featured Examples

13-576

Using the Prelookup and Interpolation Blocks

This example shows how to use the Prelookup and Interpolation Using Prelookup blocks.

Introduction

This model uses Prelookup and Interpolation Using Prelookup blocks. The Prelookup block minimizes
the number of index searches performed across a set of lookup tables. It also mixes clipping,
extrapolation, and index search algorithms within one table calculation. Note how the Prelookup
blocks perform the index search portion of the computation and the Interpolation Using Prelookup
blocks perform the rest:

These blocks are in the Simulink® block library in the Lookup Tables sublibrary:

 Using the Prelookup and Interpolation Blocks

13-577

Optimization: PreLookup and Interpolation Using Prelookup Blocks

Consider using PreLookup block for tables with intensive index searches in breakpoint sets. The
Prelookup blocks allow you to perform an index search once and reuse the result in many table
lookups. In this model, three index search results are used in five blocks in a total of ten uses.
Equivalent regular lookup tables such as the example to the right would have required ten index
searches instead of three.

13 Simulink Featured Examples

13-578

Optimization: Subtable Selection Option in the Interpolation Using Prelookup Blocks

One of the interpolation blocks in this model is configured using a capability: trailing dimensions of
an n-D table can be marked as "selection dimensions", meaning that the input for that dimension is an
integer used only to make a subtable selection, such as picking a 2-D plane from a 3-D table. The
subtable is then interpolated normally.

Interpolation of subtables can save tremendous amounts of computation. For every dimension
eliminated from interpolation, the computation almost halves. Since an N-dimensional interpolation
takes (2^N)-1 individual interpolation operations (y = ylow + f*(yhigh-ylow)), just one dimension of
selection can almost double the speed of the interpolation. Extreme example: a 5-D table with three
dimensions of subtable selection and 2-D interpolation: 5-D interpolation would take 2^5-1 = 31
interpolations, but a 2-D interpolation takes only 2^2 - 1 = 3.

The selection ports support vectorization to allow multiple subtable selection/interpolations in a
single block.

 Using the Prelookup and Interpolation Blocks

13-579

The subtable or multitable mode of operation is activated by setting a positive integer for the
'Number of sub-table selections dimensions' parameter in the block parameter dialog. The number
you set is interpreted as the number of dimensions to select from the highest dimensions. For
example, if you have a 3-D table and choose 2, that means the first dimension will be interpolated and
dimensions 2 and 3 will be selected:

NOTE: You can remove highlighting from a model using the View/Remove highlighting menu item or
this command:

set_param(mdl,'HiliteAncestors','none')

Breakpoint and Table Data Consistency Checking

Using Prelookup and Interpolation Using Prelookup blocks introduces a need to ensure that the
length of the 'Breakpoint data' parameter in the Prelookup blocks matches the corresponding
dimension of the 'Table data' parameter in the connected Interpolation Using Prelookup blocks.

13 Simulink Featured Examples

13-580

Simulink® always checks the consistency between the two blocks when updating the block diagram.
Simulink reports errors if it encounters inconsistent breakpoint and table data. For example:

try
 evalc(['sim(', mdl, ')']);
catch E
 disp(['Error:', E.message]);
end

Error:The range of values for input port k2 of block 'sldemo_bpcheck/Interpolation on an 11x11 table ERROR IN DIM 2 ' does not match the size of the corresponding table dimension of 11. Specify a different table dimension or modify the range of values for input port k2.

 Using the Prelookup and Interpolation Blocks

13-581

Saving Memory in Prelookup and Interpolation Blocks by Using
Smaller Data

This example shows how to save memory in Prelookup and Interpolation blocks. The Prelookup and
Interpolation Using Prelookup blocks allow you to explicitly set data type storing breakpoints and
table data. Note that the Prelookup block allows the breakpoint data to differ from the input data
type, and the Interpolation Using Prelookup block allows the table data to differ from the output data
type.

In this model, the breakpoints and table are stored using single precision floating-point data type, and
the calculations are performed using double precision floating-point data type. This reduces the
amount of breakpoint and table data memory by half.

To see this in the generated code, open the model and build it.

13 Simulink Featured Examples

13-582

Model Advisor

This example shows the capabilities of the Model Advisor to check a model or subsystem for
conditions and configuration settings that can result in inaccurate or inefficient simulation of the
system represented by the model or generation of inefficient code from the model. The Model Advisor
produces a report that lists all the suboptimal conditions or settings that it finds, suggesting better
model configuration settings where appropriate.

The Model Advisor can be started through menus or the command line and can also be configured
and used through a comprehensive API.

open_system('sldemo_mdladv')
evalc('sim(''sldemo_mdladv'')');

See Also
modeladvisor | Simulink.ModelAdvisor

Related Examples
• “Check Your Model Using the Model Advisor”

More About
• “Analyze and Remodel Design”
• “Modeling Guidelines”

 Model Advisor

13-583

Introduction to Profiling Models

This example shows how to use the Simulink Profiler to examine the slAccelDemoF14 model and
identify issues that can contribute to poor simulation performance. Consider using the Simulink
Profiler to manually optimize model settings, identify simulation slowdowns, and resolve
performance bottlenecks.

To automatically optimize your model and achieve faster simulation, see “Improve Simulation
Performance Using Performance Advisor”.

To learn more about accelerator modes for faster simulation, see “What Is Acceleration?”.

Activate the Profiler

To activate the Simulink® Profiler, in the Simulink Editor, on the Debug tab, under Performance
Advisor, click Simulink Profiler. You can also issue a set_param command at the command
prompt.

modelName = 'slAccelDemoF14';
load_system(modelName)
set_param(modelName,'Profile','on');

Run Simulation

While the simulation runs, the profiler is collecting data for the report. Once the simulation is
complete it creates an HTML report.

open_system(modelName)
sim(modelName);

13 Simulink Featured Examples

13-584

View Report

A detailed profiling report is shown in a docked panel on the Simulink Editor. Select a row to see the
breakdown of the self-time of the specific model element in the Property Inspector.

 Introduction to Profiling Models

13-585

Share Report

You can share the profiling report with others as an HTML report or as a MAT file. To share your
profiling run, select the desired run from the Run menu of the Profiling Report. Then select your
desired export format from the Share menu on the Toolstrip.

See Also
Simulink Profiler

Related Examples
• “Introduction to Accelerating Models” on page 13-587

More About
• “How Profiler Captures Performance Data”
• “Use Performance Advisor to Improve Simulation Efficiency”

13 Simulink Featured Examples

13-586

Introduction to Accelerating Models

Simulink® Accelerator™ speeds up the execution of your model, by creating and compiling C code.
This C code takes the place of the interpretive code that Simulink uses when in Normal mode (that is,
when Simulink® is not in Accelerator mode). Simulink Accelerator generates the C code from the
Simulink model and invokes the MATLAB® mex function to compile and dynamically link the
generated code to Simulink. This code generation and compilation process happens the first time you
accelerate the model and any time the model changes are significant enough to require re-generation
(for example, the addition of a block).

This example uses the slAccelDemoF14 model to illustrate the use of Simulink Accelerator.

Measure Non-accelerated Time

Open the slAccelDemoF14 model and set the stop time to 3000 seconds. Simulate the model and time
how long it takes using TIC/TOC.

modelName = 'slAccelDemoF14';
open_system(modelName)
set_param(modelName,'stoptime','3000')
tic
sim(modelName);
toc

Elapsed time is 13.955547 seconds.

 Introduction to Accelerating Models

13-587

Turn on the Accelerator

To activate the Simulink® Accelerator, in the Simulink Editor, on the Simulation tab, under
Simulate, select Accelerator. You can also issue a set_param command at the MATLAB®
command prompt.

set_param(modelName,'SimulationMode','Accelerator')

Build Accelerated Model

Build the accelerated model and simulate it. When running in Accelerator mode, you can start the
model by selecting Run on the Simulation tab or by running the command:

 sim(modelName)

at the MATLAB prompt. In either case, the progress of the code generation process will be displayed
in the MATLAB command window. To suppress this display wrap the sim command inside an evalc.

evalc('sim(modelName);');

Simulate the Accelerated Model

Simulate the model again. Notice the model simulation runs much faster on subsequent runs.

tic
sim(modelName);
toc

Elapsed time is 4.111953 seconds.

Change Tunable Parameter and Simulate Accelerated Model

Change the value of one of the tunable parameters in the model and simulate the model again. Notice
the accelerated version of the model does not have to be re-generated and so the simulation still runs
more quickly in Accelerated mode than in Normal mode.

modelWorkspace = get_param(modelName,'ModelWorkspace');
evalin(modelWorkspace,'Mw=Mw*2;')
tic
sim(modelName);
toc

Elapsed time is 4.413135 seconds.

See Also

Related Examples
• “Introduction to Profiling Models” on page 13-584

13 Simulink Featured Examples

13-588

Determine Why Simulink Accelerator Is Regenerating Code

Sometimes Simulink® regenerates the simulation target for a model at the beginning of a simulation
in Accelerator Mode but it is not always clear why regeneration happens. This example shows how to
use Simulink MATLAB® commands to determine why Simulink regenerates code for Accelerator
Mode simulations.

Simulink's Accelerator Mode speeds up simulation of your model by creating an executable version of
the model, called a simulation target, and running this target instead of interpreting the model, as is
done during Normal Mode simulation.

The process of code generation happens during the first time that you simulate your model in
Accelerator Mode. Additionally, code generation may happen on subsequent simulations, especially if
the model changes between simulations (for example, after addition of a block). Code generation
takes times and it is often desirable to avoid it, in order to maximize the number of simulations within
a given time span.

Simulink uses the model's checksum to determine if the code needs to be regenerated. This
checksum is an array of four integers computed by using an md5 checksum algorithm based on
attributes of the model and the blocks that it contains. Any change in the model that changes the
checksum causes Simulink to regenerate the simulation target for Accelerator Mode.

Sometimes, it is not clear which model change triggered a checksum change and hence code
regeneration. This example shows how to investigate why Simulink needs to regenerate code for
Accelerator Mode simulation for a given model and its configuration.

Open an Example Model

We will use a simple model, slAccelDemoWhyRebuild, throughout this example.

model = 'slAccelDemoWhyRebuild';
open_system(model)

set_param(model,'AccelVerboseBuild','on');

The first time the model runs in Accelerator mode, it generates and compiles code as expected.

simOutput = evalc(['sim(''',model,''')']);
if ~isempty(strfind(simOutput,'Building the Accelerator target for model'))
 disp('Built Simulink Accelerator mex file')
else

 Determine Why Simulink Accelerator Is Regenerating Code

13-589

 disp('Did not build Simulink Accelerator mex file')
end

Built Simulink Accelerator mex file

If the simulation is run again, without any changes to the model, we expect that Simulink can reuse
the existing code and does not need to regenerate the code. Execute the same commands to verify.

simOutput = evalc(['sim(''',model,''')']);
if ~isempty(strfind(simOutput,'Building the Accelerator target for model'))
 disp('Built Simulink Accelerator mex file')
else
 disp('Did not build Simulink Accelerator mex file')
end

Did not build Simulink Accelerator mex file

Now we change some parameters in the model. We will set the following settings for the block
'Integrator':

• Set 'Ignore limit and reset when linearizing' to 'on'
• Set 'Initial Condition' to '5'

set_param([model,'/Integrator'],'IgnoreLimit','on');
set_param([model,'/Integrator'],'InitialCondition','5');

When we run the simulation again, we see that Simulink regenerates the code.

simOutput = evalc(['sim(''',model,''')']);
if ~isempty(strfind(simOutput,'Building the Accelerator target for model'))
 disp('Built Simulink Accelerator mex file')
else
 disp('Did not build Simulink Accelerator mex file')
end

Built Simulink Accelerator mex file

We would like to know why.

To determine if the previously generated code is still valid for the current model configuration,
Simulink compares the checksum of the model as used to generate the code to the current checksum.
If they are equal, the previously generated code is still valid and Simulink Accelerator Mode reuses it
for the current simulation. If the values differ, Simulink Accelerator Mode regenerates and rebuilds
the code. Thus, examining the details of the checksum computation can reveal why Simulink
regenerated the code.

Get Checksum Details

The following command gets the model checksum computation details:

[cs1,csdet1]=Simulink.BlockDiagram.getChecksum(model);

The first output is the model checksum value itself. The second output gives details of what went into
the checksum computation.

Let us set the modified block parameters to their original values and get the checksum and details for
that configuration.

13 Simulink Featured Examples

13-590

set_param([model,'/Integrator'],'IgnoreLimit','off');
set_param([model,'/Integrator'],'InitialCondition','0');
[cs2,csdet2]=Simulink.BlockDiagram.getChecksum(model);

Comparing these two checksum values is equivalent to determining if the Simulink Accelerator will
regenerate code. Note that the checksum values are different, as we expect based on the fact that
Simulink Accelerator regenerates code every time it runs.

if (cs1 ~= cs2)
 disp('Checksums are different')
else
 disp('Checksums are the same')
end

Checksums are different

Now that we know that the checksums differ, the next question is why. Many things go into the
checksum computation, including signal data types, some block parameter values, and block
connectivity information. To understand why the checksums differ, we need to see what has changed
about the items used in computing the checksum. The checksum details returned as the second
argument give that information.

csdet1

csdet1 = struct with fields:
 ContentsChecksum: [1x1 struct]
 InterfaceChecksum: [1x1 struct]
 ContentsChecksumItems: [188x1 struct]
 InterfaceChecksumItems: [49x1 struct]

The checksum details is a structure array with four fields. Two of the fields are the component
checksums of the model checksum (these are called ContentsChecksum and InterfaceChecksum) and
the other two are the corresponding checksum details. These details correspond to various
information which went into to the computation of the two component checksums. The model
[structural] checksum is a function of ContentsChecksum and InterfaceChecksum.

First, let's determine if the difference lies in the model's contents or the model's interface.

if (csdet1.ContentsChecksum.Value ~= csdet2.ContentsChecksum.Value)
 disp('Contents checksums are different')
else
 disp('Contents checksums are the same')
end

Contents checksums are different

if (csdet1.InterfaceChecksum.Value ~= csdet2.InterfaceChecksum.Value)
 disp('Interface checksums are different')
else
 disp('Interface checksums are the same')
end

Interface checksums are the same

Use Details to Determine Why Checksum Changed

Now that we know the change is in the ContentsChecksum, we can look at the
ContentsChecksumItems to see what has changed.

 Determine Why Simulink Accelerator Is Regenerating Code

13-591

idxForDifferences=[];
for idx = 1:length(csdet1.ContentsChecksumItems)
 if (~strcmp(csdet1.ContentsChecksumItems(idx).Handle, ...
 csdet2.ContentsChecksumItems(idx).Handle))
 idxForDifferences=[idxForDifferences,idx];
 disp(['Handles different for item ',num2str(idx)]);
 end
 if (~strcmp(csdet1.ContentsChecksumItems(idx).Identifier, ...
 csdet2.ContentsChecksumItems(idx).Identifier))
 disp(['Identifiers different for item ',num2str(idx)]);
 idxForDifferences=[idxForDifferences,idx];
 end
 if(ischar(csdet1.ContentsChecksumItems(idx).Value))
 if (~strcmp(csdet1.ContentsChecksumItems(idx).Value, ...
 csdet2.ContentsChecksumItems(idx).Value))
 disp(['String Values different for item ',num2str(idx)]);
 idxForDifferences=[idxForDifferences,idx];
 end
 end
 if(isnumeric(csdet1.ContentsChecksumItems(idx).Value))
 if (csdet1.ContentsChecksumItems(idx).Value ~= ...
 csdet2.ContentsChecksumItems(idx).Value)
 disp(['Numeric values are different for item ',num2str(idx)]);
 idxForDifferences=[idxForDifferences,idx];
 end
 end
end

String Values different for item 40

Now that we know the differences are in the items at the indices listed in idxForDifferences, we can
look at those items in the two ContentsChecksumItems arrays.

blk1 = csdet1.ContentsChecksumItems(idxForDifferences(1)).Handle

blk1 =
'slAccelDemoWhyRebuild/Integrator'

blk2 = csdet2.ContentsChecksumItems(idxForDifferences(1)).Handle

blk2 =
'slAccelDemoWhyRebuild/Integrator'

id1 = csdet1.ContentsChecksumItems(idxForDifferences(1)).Identifier

id1 =
'IgnoreLimit'

id2 = csdet2.ContentsChecksumItems(idxForDifferences(1)).Identifier

id2 =
'IgnoreLimit'

The Handle for both items is 'slAccelDemoWhyRebuild/Integrator', which indicates the block with the
changing data. The identifier for both is 'IgnoreLimit' which tells us that this was the block setting
which changed, resulting in a different checksum for the model. The setting for the Initial Condition
of the block does not appear in the checksum detail. Therefore, we expect that if only the setting for
the Initial Condition is modified, that no rebuild will occur.

13 Simulink Featured Examples

13-592

Avoid Rebuild on Successive Simulations

Now that we found the parameter which causes the checksums to differ for this workflow, we can
validate the findings by keeping that parameter constant and seeing whether rebuild occurs on
successive simulations.

Let's simulate the model in Accelerator mode again. We expect it to rebuild for this simulation
because we changed the parameter ('IgnoreLimit') for the checksum computation above.

simOutput = evalc(['sim(''',model,''')']);
if ~isempty(strfind(simOutput,'Building the Accelerator target for model'))
 disp('Built Simulink Accelerator mex file')
else
 disp('Did not build Simulink Accelerator mex file')
end

Built Simulink Accelerator mex file

Now let's only change the Initial Condition setting and simulate again. We expect that no rebuild
should happen this time.

set_param([model,'/Integrator'],'InitialCondition','-3');
simOutput = evalc(['sim(''',model,''')']);
if ~isempty(strfind(simOutput,'Building the Accelerator target for model'))
 disp('Built Simulink Accelerator mex file')
else
 disp('Did not build Simulink Accelerator mex file')
end

Did not build Simulink Accelerator mex file

As expected from the checksum analysis, changing the parameter for 'Initial Condition' does not
cause a regeneration of code for simulation in Accelerator mode.

See Also
Simulink.BlockDiagram.buildRapidAcceleratorTarget |
Simulink.BlockDiagram.getChecksum | Simulink.SubSystem.getChecksum

Related Examples
• “Acceleration”

 Determine Why Simulink Accelerator Is Regenerating Code

13-593

Parallel Simulations Using Parsim: Test-Case Sweep

This example shows how you can run multiple Simulink® simulations corresponding to different test
cases in the Signal Editor block using SimulationInput objects and the parsim command. The parsim
command uses Parallel Computing Toolbox™, if it is available, to run simulations in parallel,
otherwise the simulations are run in serial.

Model Overview

The model sldemo_suspn_3dof shown below simulates the vehicle dynamics based on the road -
suspension interaction for different road profiles. The vehicle dynamics are captured in three degrees
of freedom: vertical displacement, roll, and pitch. The road profile data for the left and right tires is
imported into the Signal Editor block as different test cases. The Road-Suspension Interaction
subsystem calculates the suspension forces on the vehicle at the four tire locations based on the road
data and the current vehicle state. In the Body Dynamics subsystem these forces and the resulting
pitch and roll moments are used to determine the vehicle motion in three degrees of freedom: vertical
displacement, roll, and pitch.

The suspension model is simulated using different road profiles to determine if the design meets
desired performance goals. Parallel Computing Toolbox is used to speed up these multiple
simulations, as illustrated below.

mdl = 'sldemo_suspn_3dof';
isModelOpen = bdIsLoaded(mdl);
open_system(mdl);

Set up Data Required for Multiple Simulations

Determine the number of cases in the Signal Editor block using the NumberOfScenarios parameter of
the Signal Editor block. The number of cases is used to determine the number of iterations to run in
step 3.

sigEditBlk = [mdl '/Road Profiles'];
numCases = str2double(get_param(sigEditBlk,'NumberOfScenarios'));

13 Simulink Featured Examples

13-594

Create an array of Simulink.SimulationInput objects to define the set of simulations to run.
Each SimulationInput object corresponds to one simulation and will be stored as an array in a
variable, in. The mask parameter, ActiveScenario, specifies the sweep value for the Signal Editor
block scenario. The active scenario is set for each simulation.

for idx = numCases:-1:1
 in(idx) = Simulink.SimulationInput(mdl);
 in(idx) = setBlockParameter(in(idx), sigEditBlk, 'ActiveScenario', idx);
end

Note that specifying the model parameter on the SimulationInput object does not apply it to the
model immediately. The specified value will be applied during the simulation and reverted back to its
original value, if possible, after the simulation finishes.

Run Simulations in Parallel Using Parsim

Use the parsim function to execute the simulations in parallel. The array of SimulationInput objects,
in, created in the last step is passed into the parsim function as the first argument. The output from
the parsim command is an array of Simulink.SimulationOutput objects which is stored in the
variable out. Set the 'ShowProgress' option to 'on' to print a progress of the simulations on the
MATLAB command window.

out = parsim(in, 'ShowProgress', 'on');

[21-Feb-2021 01:43:41] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
[21-Feb-2021 01:44:30] Starting Simulink on parallel workers...
[21-Feb-2021 01:45:05] Configuring simulation cache folder on parallel workers...
[21-Feb-2021 01:45:07] Loading model on parallel workers...
[21-Feb-2021 01:45:13] Running simulations...
[21-Feb-2021 01:45:26] Completed 1 of 20 simulation runs
[21-Feb-2021 01:45:26] Completed 2 of 20 simulation runs
[21-Feb-2021 01:45:26] Completed 3 of 20 simulation runs
[21-Feb-2021 01:45:26] Completed 4 of 20 simulation runs
[21-Feb-2021 01:45:26] Completed 5 of 20 simulation runs
[21-Feb-2021 01:45:26] Completed 6 of 20 simulation runs
[21-Feb-2021 01:45:28] Completed 7 of 20 simulation runs
[21-Feb-2021 01:45:29] Completed 8 of 20 simulation runs
[21-Feb-2021 01:45:29] Completed 9 of 20 simulation runs
[21-Feb-2021 01:45:29] Completed 10 of 20 simulation runs
[21-Feb-2021 01:45:29] Completed 11 of 20 simulation runs
[21-Feb-2021 01:45:29] Completed 12 of 20 simulation runs
[21-Feb-2021 01:45:31] Completed 13 of 20 simulation runs
[21-Feb-2021 01:45:31] Completed 14 of 20 simulation runs
[21-Feb-2021 01:45:31] Completed 15 of 20 simulation runs
[21-Feb-2021 01:45:31] Completed 16 of 20 simulation runs
[21-Feb-2021 01:45:31] Completed 17 of 20 simulation runs
[21-Feb-2021 01:45:31] Completed 18 of 20 simulation runs
[21-Feb-2021 01:45:34] Completed 19 of 20 simulation runs
[21-Feb-2021 01:45:34] Completed 20 of 20 simulation runs
[21-Feb-2021 01:45:34] Cleaning up parallel workers...

Each SimulationOutput object contains the logged signal along with the SimulationMetadata.
When running multiple simulations using parsim, errors are captured so that subsequent simulations
can continue to run. Any errors would show up in the ErrorMessage property of the
SimulationOutput object.

 Parallel Simulations Using Parsim: Test-Case Sweep

13-595

Plot Results

Plot the vertical vehicle displacement from the different simulations to see how the vehicle performed
to the different road profiles. The signal is logged in the SimulationOutput object in the Dataset
format. Use the get method to obtain the timeseries object containing the time and signal data from
each element of out.

legend_labels = cell(1,numCases);
for i = 1:numCases
 simOut = out(i);
 ts = simOut.logsout.get('vertical_disp').Values;
 ts.plot;
 legend_labels{i} = ['Run ' num2str(i)];
 hold all
end
title('Response of a 3-DoF Suspension Model')
xlabel('Time (s)');
ylabel('Vehicle vertical displacement (m)');
legend(legend_labels,'Location','NorthEastOutside');

Close MATLAB Workers

Last, close the parallel pool and the model if they were not previously opened.

if(~isModelOpen)
 close_system(mdl, 0);

13 Simulink Featured Examples

13-596

end
delete(gcp('nocreate'));

See Also
parsim | Simulink.SimulationInput | Simulink.Simulation.Variable

Related Examples
• “Running Multiple Simulations”
• “Run Parallel Simulations for a Thermal Model of a House Using parsim”
• “Run Parallel Simulations”
• “Comparison Between Multiple Simulation Workflows”

 Parallel Simulations Using Parsim: Test-Case Sweep

13-597

Parallel Simulations Using Parsim: Parameter Sweep in Normal
Mode

This example shows how to run multiple simulations of a Monte Carlo study in parallel by using
Parallel Computing Toolbox™. Parallel execution leverages the multiple cores of your host machine to
run many simulations more quickly. These simulations could also be run in parallel on computer
clusters using the MATLAB Parallel Server™. This example will work even if the Parallel Computing
Toolbox™ or the MATLAB Parallel Server™ is not available, but the simulations will run in serial.

Explore Example Model

The model sldemo_suspn_3dof simulates vehicle dynamics based on the interaction between road
and suspension for different road profiles. The model captures vehicle dynamics in three degrees of
freedom: vertical displacement, roll, and pitch. The Signal Editor block stores measured road profile
data for the left and right tires as different test groups. The Road-Suspension Interaction subsystem
calculates the suspension forces on the vehicle at the four tire locations based on the road data and
the current vehicle state. The Body Dynamics subsystem uses these forces and the resulting pitch and
roll moments to calculate the vehicle motion in each of the three degrees of freedom.

In this Monte Carlo study, you inspect the impact of the front suspension coefficients on the vehicle
dynamics. You run multiple simulations, each with a different coefficient value.

mdl = 'sldemo_suspn_3dof';
isModelOpen = bdIsLoaded(mdl);
open_system(mdl);

In the model, double-click the Road-Suspension Interaction block. The mask dialog box opens. The
mask parameter Front susp. damping sets the value of the damping coefficient, 150.

For the Body Dynamics block, find the signal that exits the Vertical disp outport port. This signal
represents the vertical vehicle displacement over time, which the suspension damping coefficient
influences.

13 Simulink Featured Examples

13-598

Right-click the signal and select Properties.

In the Signal Properties dialog box, the Logging and accessibility tab has Log signal data checked
on, indicating that the signal is configured for logging. After the simulation finishes, you can use the
specified logging name, vertical_disp, to identify the signal and acquire the simulation output
data from the SimulationOutput object.

Prepare Parameter Inputs

Calculate the sweep values for the coefficient as percentages of the design value ranging from 5% to
95% in increments of 10%. Store the values in a variable, Cf_sweep, in the base workspace.

Cf_sweep = Cf*(0.05:0.1:0.95);

Determine the number of simulations to run, which is equal to the number of sweep values. Store the
number in a variable, numSims.

numSims = length(Cf_sweep);

Use a for loop to:

1 Create Simulink.SimulationInput objects for the model. Create one object per simulation.
Store the objects as an array in a variable, in.

2 Specify the sweep value for each simulation. Identify the target mask parameter by its underlying
name, Cf.

for i = numSims:-1:1
 in(i) = Simulink.SimulationInput(mdl);
 in(i) = setBlockParameter(in(i), [mdl '/Road-Suspension Interaction'], 'Cf', num2str(Cf_sweep(i)));
end

Note that specifying the block parameter on the SimulationInput object does not apply it to the model
immediately. The specified value will be applied during the simulation and reverted back to its
original value, if possible, after the simulation finishes.

Run Simulations in Parallel Using Parsim

Use the parsim function to execute the simulations in parallel. The array of SimulationInput objects,
in, created in the last step is passed into the parsim function as the first argument. The output from
the parsim command is an array of Simulink.SimulationOutput objects which is stored in the
variable out. Set the 'ShowProgress' option to 'on' to print a progress of the simulations on the
MATLAB command window.

out = parsim(in, 'ShowProgress', 'on');

[20-Feb-2021 23:49:38] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
[20-Feb-2021 23:50:23] Starting Simulink on parallel workers...
[20-Feb-2021 23:51:11] Configuring simulation cache folder on parallel workers...
[20-Feb-2021 23:51:13] Loading model on parallel workers...
[20-Feb-2021 23:51:18] Running simulations...
[20-Feb-2021 23:51:31] Completed 1 of 10 simulation runs
[20-Feb-2021 23:51:31] Completed 2 of 10 simulation runs
[20-Feb-2021 23:51:31] Completed 3 of 10 simulation runs
[20-Feb-2021 23:51:31] Completed 4 of 10 simulation runs
[20-Feb-2021 23:51:31] Completed 5 of 10 simulation runs

 Parallel Simulations Using Parsim: Parameter Sweep in Normal Mode

13-599

[20-Feb-2021 23:51:31] Completed 6 of 10 simulation runs
[20-Feb-2021 23:51:33] Completed 7 of 10 simulation runs
[20-Feb-2021 23:51:33] Completed 8 of 10 simulation runs
[20-Feb-2021 23:51:33] Completed 9 of 10 simulation runs
[20-Feb-2021 23:51:34] Completed 10 of 10 simulation runs
[20-Feb-2021 23:51:34] Cleaning up parallel workers...

Each SimulationOutput object contains the logged signal along with the SimulationMetadata. When
running multiple simulations using parsim, errors are captured so that subsequent simulations can
continue to run. Any errors would show up in the ErrorMessage property of the SimulationOutput
object.

Plot Results

Plot the vertical vehicle displacement from the different simulations to see how varying the damping
coefficient affects the vehicle dynamics. The signal is logged in the SimulationOutput object in the
Dataset format. Use the get method to obtain the timeseries object containing the time and signal
data from each element of out.

legend_labels = cell(1,numSims);

for i = numSims:-1:1
 simOut = out(i);
 ts = simOut.logsout.get('vertical_disp').Values;
 % 'ts' is a MATLAB 'timeseries' object that stores the time and
 % data values for the logged 'vertical_disp' signal.
 % Use the 'plot' method of the object to plot the data against the
 % time.
 plot(ts);
 legend_labels{i} = ['Run ' num2str(i)];
 hold all
end

title('Response of a 3-DoF Suspension Model')
xlabel('Time (s)');
ylabel('Vehicle vertical displacement (m)');
legend(legend_labels,'Location','NorthEastOutside');

13 Simulink Featured Examples

13-600

Close MATLAB Workers

Last, close the parallel pool and the model if they were not previously opened.

if(~isModelOpen)
 close_system(mdl, 0);
end
delete(gcp('nocreate'));

Parallel pool using the 'local' profile is shutting down.

See Also
parsim | Simulink.SimulationInput | Simulink.Simulation.Variable

Related Examples
• “Running Multiple Simulations”
• “Run Parallel Simulations for a Thermal Model of a House Using parsim”
• “Run Parallel Simulations”
• “Comparison Between Multiple Simulation Workflows”

 Parallel Simulations Using Parsim: Parameter Sweep in Normal Mode

13-601

Parallel Simulations Using Parsim: Parameter Sweep in Rapid
Accelerator Mode

This example shows how to run multiple simulations of a Monte Carlo study in parallel by using
Parallel Computing Toolbox™. Parallel execution leverages the multiple cores of your host machine to
run many simulations more quickly. These simulations could also be run in parallel on computer
clusters using the MATLAB Parallel Server™. This example will work even if the Parallel Computing
Toolbox™ or the MATLAB Parallel Server™ is not available, but the simulations will run in serial.

Explore Example Model

The model sldemo_suspn_3dof simulates vehicle dynamics based on the interaction between road
and suspension for different road profiles. The model captures vehicle dynamics in three degrees of
freedom: vertical displacement, roll, and pitch. The Signal Editor block stores measured road profile
data for the left and right tires as different test groups. The Road-Suspension Interaction subsystem
calculates the suspension forces on the vehicle at the four tire locations based on the road data and
the current vehicle state. The Body Dynamics subsystem uses these forces and the resulting pitch and
roll moments to calculate the vehicle motion in each of the three degrees of freedom.

In this Monte Carlo study, the vehicle mass is varied to study its effect on the vehicle dynamics.
Parallel Computing Toolbox is used to speed up these multiple simulations, as illustrated below.

mdl = 'sldemo_suspn_3dof';
isModelOpen = bdIsLoaded(mdl);
open_system(mdl);

Setup to Build the Rapid Accelerator Target

The Rapid Accelerator executable for the model is build in the SetupFcn call using the
Simulink.BlockDiagram.buildRapidAcceleratorTarget function. The
buildRapidAcceleratorTarget function returns the default run-time parameter set which is
assigned to a global variable, RTP, in the SetupFcn and is used in the next step to modify the
parameter values. Open sldemo_parsim_paramsweep_suspn_raccel_setup in the editor to inspect the

13 Simulink Featured Examples

13-602

code. Note that the build process is optimized so that if the build files are already present and
compatible with the model and machine architecture then it returns early.

Set up Multiple Simulations Using SimulationInput Objects

Store the sweep values in a variable, Mb_sweep, in the base workspace.

Mb_sweep = Mb*(0.5:5:45.5);

Determine the number of simulations to run, which is equal to the number of sweep values. Store the
number in a variable, numSims.

numSims = length(Mb_sweep);

Use a for loop to:

1 Create Simulink.SimulationInput objects for the model. Create one object per simulation.
Store the objects as an array in a variable, in.

2 Specify the model parameters on the SimulationInput object.

for i = numSims:-1:1
 in(i) = Simulink.SimulationInput(mdl);
 in(i) = in(i).setModelParameter('SimulationMode', 'rapid', ...
 'RapidAcceleratorUpToDateCheck', 'off');
 in(i).PreSimFcn = @(x) sldemo_parsim_paramsweep_suspn_raccel_presim(x, Mb_sweep(i));
end

The SimulationInput object is used to modify the model parameters. 'SimulationMode' is set to use
rapid accelerator and 'RapidAcceleratorUpToDateCheck' model parameter is set to 'off' to skip up-to-
date checks since there are no structural changes made to the model between simulations and the
same build files can be used. Note that specifying the model parameter on the SimulationInput object
does not apply it to the model immediately. The specified value will be applied during the simulation
and reverted back to its original value, if possible, after the simulation finishes. Inspect the code in
the PreSimFcn, sldemo_parsim_paramsweep_suspn_raccel_presim. It uses
modifyTunableParameters from the Simulink.BlockDiagram package to change the parameter
corresponding to vehicle mass. The first argument to the PreSimFcn is always the SimulationInput
object, and is passed into the function by Simulink®. The PreSimFunction adds another model
parameter to the SimulationInput object and returns it to be used for simulation.

Run Simulations in Parallel Using Parsim

Use the parsim function to execute the simulations in parallel. The array of SimulationInput objects,
in, created in the last step is passed into the parsim function as the first argument. The output from
the parsim command is an array of Simulink.SimulationOutput objects which is stored in the
variable out. Set the 'ShowProgress' option to 'on' to print a progress of the simulations on the
MATLAB command window. As mentioned earlier, the SetupFcn is passed as a parameter to the
parsim command to build the rapid accelerator target on the workers if required.

out = parsim(in, 'ShowProgress', 'on', ...
 'SetupFcn', @() sldemo_parsim_paramsweep_suspn_raccel_setup(mdl));

[29-Jun-2021 11:44:35] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
[29-Jun-2021 11:45:42] Starting Simulink on parallel workers...
Analyzing and transferring files to the workers ...done.

 Parallel Simulations Using Parsim: Parameter Sweep in Rapid Accelerator Mode

13-603

[29-Jun-2021 11:46:45] Configuring simulation cache folder on parallel workers...
[29-Jun-2021 11:46:47] Running SetupFcn on parallel workers...
[29-Jun-2021 11:48:04] Loading model on parallel workers...
[29-Jun-2021 11:48:12] Running simulations...
[29-Jun-2021 11:48:26] Completed 1 of 10 simulation runs
[29-Jun-2021 11:48:26] Completed 2 of 10 simulation runs
[29-Jun-2021 11:48:26] Completed 3 of 10 simulation runs
[29-Jun-2021 11:48:26] Completed 4 of 10 simulation runs
[29-Jun-2021 11:48:26] Completed 5 of 10 simulation runs
[29-Jun-2021 11:48:26] Completed 6 of 10 simulation runs
[29-Jun-2021 11:48:32] Completed 7 of 10 simulation runs
[29-Jun-2021 11:48:32] Completed 8 of 10 simulation runs
[29-Jun-2021 11:48:32] Completed 9 of 10 simulation runs
[29-Jun-2021 11:48:32] Completed 10 of 10 simulation runs
[29-Jun-2021 11:48:32] Cleaning up parallel workers...

Each SimulationOutput object contains the logged signal along with the SimulationMetadata. When
running multiple simulations using parsim, errors are captured so that subsequent simulations can
continue to run. Any errors would show up in the ErrorMessage property of the SimulationOutput
object.

Plot Results

Plot the vertical vehicle displacement from the different simulations to see how varying the vehicle
mass affected the vehicle dynamics. Use the get method of the SimulationOutput object to obtain the
time and signal data contained in each element of simout.

legend_labels = cell(1,numSims);
for i = 1:numSims
 simOut = out(i);
 ts = simOut.logsout.get('vertical_disp').Values;
 ts.plot;
 legend_labels{i} = ['Run ' num2str(i)];
 hold all
end
title('Response of a 3-DoF Suspension Model')
xlabel('Time (s)');
ylabel('Vehicle vertical displacement (m)');
legend(legend_labels,'Location','NorthEastOutside');

13 Simulink Featured Examples

13-604

Close MATLAB Workers

Last, close the parallel pool and the model if they were not previously opened.

if(~isModelOpen)
 close_system(mdl, 0);
end
delete(gcp('nocreate'));

Parallel pool using the 'local' profile is shutting down.

See Also
parsim | Simulink.SimulationInput | Simulink.Simulation.Variable

Related Examples
• “Running Multiple Simulations”
• “Run Parallel Simulations for a Thermal Model of a House Using parsim”
• “Run Parallel Simulations”
• “Comparison Between Multiple Simulation Workflows”

 Parallel Simulations Using Parsim: Parameter Sweep in Rapid Accelerator Mode

13-605

Rapid Accelerator Simulations Using Parsim

This example shows the use of Rapid Accelerator in applications that require running parallel
simulations for a range of input and parameter values.

The example uses a model that simulates the idle speed of an engine. The model input is the voltage
of the bypass air valve. The output is the idle speed.

Use parsim to run parallel simulations with two sets of valve voltages. Independently vary two of the
three transfer function gain parameters over a range of two values. The following table lists the eight
simulations, along with the parameter values. In Step 2, create the external inputs, inpSets. The
variables gain2 and gain3 correspond to the two gain parameters.

 Run 1 inpSets(1) gain2 = 25 gain3 = 20

 Run 2 inpSets(1) gain2 = 25 gain3 = 30

 Run 3 inpSets(1) gain2 = 35 gain3 = 20

 Run 4 inpSets(1) gain2 = 35 gain3 = 30

 Run 5 inpSets(2) gain2 = 25 gain3 = 20

 Run 6 inpSets(2) gain2 = 25 gain3 = 30

 Run 7 inpSets(2) gain2 = 35 gain3 = 20

 Run 8 inpSets(2) gain2 = 35 gain3 = 30

Step 1: Preparation

First, open the model. The simulation mode is set to Rapid Accelerator. The default input data, and
the required parameters are preloaded in the base workspace.

Open model:

mdl = 'sldemo_raccel_engine_idle_speed';
open_system(mdl);

13 Simulink Featured Examples

13-606

Step 2: Create Input Sets

Perturb the default input values vector to obtain a new input values vector.

inpSets(1) = timeseries(inpData, time);
rndPertb = 0.5 + rand(length(time), 1);
inpSets(2) = timeseries(inpData.*rndPertb, time);
numInpSets = length(inpSets);

Step 3: Create Parameter Sets

Next, examine how the idle speed changes for different values of parameters gain2 and gain3.
Create an array of Simulink.SimulationInput objects to specify the different parameter values
and external input for each simulation. The array of SimulationInput objects is preallocated for better
performance. Note that you can directly specify the external input on the SimulationInput object
instead of using a model parameter.

gain2_vals = 25:10:35;
gain3_vals = 20:10:30;

num_gain2_vals = length(gain2_vals);
num_gain3_vals = length(gain3_vals);

numSims = num_gain2_vals*num_gain3_vals*numInpSets;
in(1:numSims) = Simulink.SimulationInput(mdl);

idx = 1;
for iG2 = 1:num_gain2_vals
 for iG3 = 1:num_gain3_vals
 for inpSetsIdx = 1:numInpSets
 in(idx) = in(idx).setModelParameter('SimulationMode', 'rapid', ...
 'RapidAcceleratorUpToDateCheck', 'off', ...
 'SaveTime', 'on', ...
 'SaveOutput', 'on');
 % Use setVariable to specify a new value for a variable during
 % simulations
 in(idx) = in(idx).setVariable('gain2', gain2_vals(iG2));
 in(idx) = in(idx).setVariable('gain3', gain3_vals(iG3));
 in(idx).ExternalInput = inpSets(inpSetsIdx);
 idx = idx + 1;
 end
 end
end

Note: This example uses the setModelParameter method of the SimulationInput object to set
model parameters to run the simulations in Rapid Accelerator mode and enable logging. The Rapid
Accelerator target is built using the SetupFcn. The Rapid Accelerator target is built once and used
by all subsequent simulations, saving the time required for model compilation. Here is the code for
the SetupFcn

function sldemo_parallel_rapid_accel_sims_script_setup(mdl)
 % Temporarily change the current folder on the workers to an empty
 % folder so that any existing slprj folder on the client does not
 % interfere in the build process.
 currentFolder = pwd;
 tempDir = tempname;
 mkdir(tempDir);

 Rapid Accelerator Simulations Using Parsim

13-607

 cd (tempDir);
 oc = onCleanup(@() cd (currentFolder));
 Simulink.BlockDiagram.buildRapidAcceleratorTarget(mdl);
end

Step 4: Execute Simulations

Use the parsim function to execute the simulations in parallel. The array of SimulationInput
objects, in, created in the last step is passed into the parsim function as the first argument. Store
the simulation output data in a variable, out, whose value is an array of
Simulink.SimulationOutput objects. Each SimulationOutput object contains the logged signal
along with the SimulationMetadata. When running multiple simulations using parsim, errors are
captured so that subsequent simulations can continue to run. Any errors would show up in the
ErrorMessage property of the SimulationOutput object.

out = parsim(in, 'ShowProgress', 'on', ...
 'SetupFcn', @() sldemo_parallel_rapid_accel_sims_script_setup(mdl));

[21-May-2021 17:46:47] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
[21-May-2021 17:47:51] Starting Simulink on parallel workers...
Analyzing and transferring files to the workers ...done.
[21-May-2021 17:48:54] Configuring simulation cache folder on parallel workers...
[21-May-2021 17:48:55] Running SetupFcn on parallel workers...
[21-May-2021 17:50:14] Loading model on parallel workers...
[21-May-2021 17:50:22] Running simulations...
[21-May-2021 17:50:29] Completed 1 of 8 simulation runs
[21-May-2021 17:50:29] Completed 2 of 8 simulation runs
[21-May-2021 17:50:29] Completed 3 of 8 simulation runs
[21-May-2021 17:50:29] Completed 4 of 8 simulation runs
[21-May-2021 17:50:29] Completed 5 of 8 simulation runs
[21-May-2021 17:50:29] Completed 6 of 8 simulation runs
[21-May-2021 17:50:36] Completed 7 of 8 simulation runs
[21-May-2021 17:50:36] Completed 8 of 8 simulation runs
[21-May-2021 17:50:36] Cleaning up parallel workers...

Step 5: Plot Results

Plot the engine idle speed with respect to time for different parameter values and inputs. The output
is logged in the array format and can be accessed from the SimulationOutput object.

for i = 1:numSims
 simOut = out(i);
 t = simOut.tout;
 y = simOut.yout;
 plot(t, y)
 hold all
end

13 Simulink Featured Examples

13-608

Step 6: Close MATLAB Workers

delete(gcp('nocreate'))

See Also
parsim

Related Examples
• “Acceleration”
• “Running Multiple Simulations”

 Rapid Accelerator Simulations Using Parsim

13-609

Multiple Simulations Workflow Tips

The goal of this example is to provide helpful tips for running multiple simulations using parallel
simulation tools. This example will work even if the Parallel Computing Toolbox™ is not available, but
the simulations will run in serial. We will be using the model sldemo_suspn_3dof.

mdl = 'sldemo_suspn_3dof';
isModelOpen = bdIsLoaded(mdl);
open_system(mdl);

Initializing an Array of Simulink.SimulationInput Objects

Typically you will construct an array of Simulink.SimulationInput objects in order to run multiple
simulations. There are several ways to initialize the array before populating it with data.

numSims = 5;
Cf_sweep = Cf*linspace(.05,.95, numSims);

Method 1: Initialize the array before the loop

in(numSims) = Simulink.SimulationInput;
for idx = 1:numSims
 % Need to populate the model name since we get any empty array by default
 in(idx).ModelName = 'sldemo_suspn_3dof';
 in(idx) = in(idx).setVariable('Cf', Cf_sweep(idx));
end

Method 2: Initialize the array in the loop

Note that the loop variable idx starts from the largest value so that the entire array is pre-allocated.

for idx = numSims:-1:1
 % Since we are indexing from 5 to 1, the first iteration will
 % initialize the array.
 in(idx) = Simulink.SimulationInput('sldemo_suspn_3dof');

13 Simulink Featured Examples

13-610

 in(idx) = in(idx).setVariable('Cf', Cf_sweep(idx));
end

Setting Model and Block Parameters

The setModelParameter and setBlockParameter methods use the same parameter-value pair
syntax that the set_param API uses. This means that most values you pass in to these methods
should be character arrays, not their literal value.

for idx = numSims:-1:1
 in(idx) = Simulink.SimulationInput('sldemo_suspn_3dof');

 % Incorrect
 in(idx) = in(idx).setModelParameter('StartTime', 5);

 % Correct
 in(idx) = in(idx).setModelParameter('StartTime', '3');
end

Setting Variables

The setVariable method expects that you will pass the literal value you want to assign to a
variable. The idea is that this closely reflects the assignin syntax.

for idx = numSims:-1:1
 in(idx) = Simulink.SimulationInput('sldemo_suspn_3dof');

 % Incorrect, Cf is expected to be a double, not a character array
 in(idx) = in(idx).setVariable('Cf', '2500');

 % Correct, Cf is a scalar double
 in(idx) = in(idx).setVariable('Cf', 2500);
end

Diagnosing Runtime Errors

Assume that you've accidentally set up an array of Simulink.SimulationInput objects with an incorrect
value.

Mb_sweep = linspace(0, 1500, numSims);
for idx = numSims:-1:1
 in(idx) = Simulink.SimulationInput('sldemo_suspn_3dof');

 % Accidentally set the Mass to 0 on the first iteration
 in(idx) = in(idx).setVariable('Mb', Mb_sweep(idx));

 % Shorten the stop time
 in(idx) = in(idx).setModelParameter('StopTime','1');
end

Simulating these will cause a runtime error

out = sim(in);

[09-Dec-2021 11:45:05] Running simulations...
[09-Dec-2021 11:45:26] Completed 1 of 5 simulation runs. Run 1 has errors.
[09-Dec-2021 11:45:36] Completed 2 of 5 simulation runs
[09-Dec-2021 11:45:36] Completed 3 of 5 simulation runs

 Multiple Simulations Workflow Tips

13-611

[09-Dec-2021 11:45:37] Completed 4 of 5 simulation runs
[09-Dec-2021 11:45:46] Completed 5 of 5 simulation runs
Warning: Simulation(s) with indices listed below completed with errors. Please
inspect the corresponding SimulationOutput to get more details about the error:
[1]

Fortunately, you can inspect the Simulink.SimulationOutput object to see any error messages that
come from a simulation.

out(1).ErrorMessage

ans =

 'Derivative of state '1' in block 'sldemo_suspn_3dof/Body Dynamics/Vertical (Z) dynamics/Zdot' at time 0.0 is not finite. The simulation will be stopped. There may be a singularity in the solution. If not, try reducing the step size (either by reducing the fixed step size or by tightening the error tolerances)'

This works to debug issues on parallel workers too.

for idx = numSims:-1:1
 in(idx) = Simulink.SimulationInput('sldemo_suspn_3dof');

 % Accidentally set the Mass to 0 on the first iteration
 in(idx) = in(idx).setVariable('Mb', Mb_sweep(idx));

 % Shorten the stop time
 in(idx) = in(idx).setModelParameter('StopTime','1');
end

out = parsim(in);

[09-Dec-2021 11:45:47] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
[09-Dec-2021 11:47:08] Starting Simulink on parallel workers...
[09-Dec-2021 11:47:45] Configuring simulation cache folder on parallel workers...
[09-Dec-2021 11:47:45] Loading model on parallel workers...
[09-Dec-2021 11:48:06] Running simulations...
[09-Dec-2021 11:48:18] Completed 1 of 5 simulation runs. Run 1 has errors.
[09-Dec-2021 11:48:18] Completed 2 of 5 simulation runs
[09-Dec-2021 11:48:18] Completed 3 of 5 simulation runs
[09-Dec-2021 11:48:18] Completed 4 of 5 simulation runs
[09-Dec-2021 11:48:18] Completed 5 of 5 simulation runs
Warning: Simulation(s) with indices listed below completed with errors. Please
inspect the corresponding SimulationOutput to get more details about the error:
[1]
[09-Dec-2021 11:48:18] Cleaning up parallel workers...

Inspecting the Simulink.SimulationOutput reveals a non-finite derivative error.

out(1).ErrorMessage

ans =

 'Derivative of state '1' in block 'sldemo_suspn_3dof/Body Dynamics/Vertical (Z) dynamics/Zdot' at time 0.0 is not finite. The simulation will be stopped. There may be a singularity in the solution. If not, try reducing the step size (either by reducing the fixed step size or by tightening the error tolerances)'

13 Simulink Featured Examples

13-612

The applyToModel method will configure your model with the settings on the SimulationInput so
you can debug the problem locally.

in(1).applyToModel;

Notice that the value of the variable Mb in the base workspace changes to 0 to reflect the value that
was used in the simulation corresponding to the first SimulationInput object in in.

Close MATLAB Workers

Last, close the parallel pool and the model if they were not previously opened.

if(~isModelOpen)
 close_system(mdl, 0);
end
delete(gcp('nocreate'));

Parallel pool using the 'local' profile is shutting down.

See Also
parsim | Simulink.SimulationInput

Related Examples
• “Parallel Simulations Using Parsim: Parameter Sweep in Normal Mode” on page 13-598
• “Parallel Simulations Using Parsim: Parameter Sweep in Rapid Accelerator Mode” on page 13-

602
• “Parallel Simulations Using Parsim: Test-Case Sweep” on page 13-594

 Multiple Simulations Workflow Tips

13-613

Streamline Simulink Blockset Authoring Process with Blockset
Designer

This example shows how to manage artifacts associated with a Simulink® blockset using a single
Blockset Designer Project.

Simulink Blockset Designer is a Project™ based environment to author a Simulink blockset. Simulink
Blockset Designer allows you to develop and maintain Simulink blockset artifacts, such as source
code, TLC-files, build scripts, test suites, libraries, models, and documentation, using a single tool.
This example demonstrates how using Simulink Blockset Designer can streamline such a Simulink
blockset project.

Open the Example

Run slexBlocksetDesignerExample to open the Simulink Blockset Designer project. Then click the
Run All button.

See Also
S-Function Builder

13 Simulink Featured Examples

13-614

matlab:slexBlocksetDesignerExample

Import Co-Simulation FMU into Simulink

This example shows how to use the FMU Import block to load an FMU file. The FMU file supports
execution in co-simulation mode. Simulink® software supports stepping back and forth, tuning
parameters in between, and saving states for the FMU Import block as long as the FMU itself
supports these features.

This FMU file models the Van der Pol equation, which is a nonlinear second order system. The FMU
file supports FMI 2.0 Co-Simulation mode. You can change the communication step size in the FMU
Import Block Parameters dialog box.

See Also
FMU

Related Examples
• “Import FMUs”
• “Implement an FMU Block”

 Import Co-Simulation FMU into Simulink

13-615

Importing a Model Exchange FMU into Simulink

This model shows how to use the FMU Import block to load an FMU file. The FMU file supports
execution in Model Exchange mode.

Bouncing Ball System

This FMU file models a bouncing ball system, which is an example of a hybrid dynamic system. The
FMU file supports FMI 2.0 Model Exchange mode. You can change acceleration due to gravity and
coefficient of restitution in the FMU block dialog. You can also tune parameters during simulation.

See Also
FMU

Related Examples
• “Import FMUs”
• “Implement an FMU Block”

13 Simulink Featured Examples

13-616

Simplify Interface for Structured Data with FMU Import Block

This examples shows how to use the FMU block to simplify the Simulink interface for structured data.
The FMU block imports existing functional mockup units (FMUs) into Simulink®.

This FMU file models a simple system that computes the weighted average of two input bus signals,
vehicle, packed into an array of buses. Each of the input bus signals contains four bus elements,
wheel. Each bus element contains two scalar signals, position and speed. The FMU accepts two
structure parameters, Weight and Bias, and uses them to compute the weighted average ev of input
signals:

ev.wheel(i).position = vehicle(1).wheel(i).position * Weight.v1 + Bias.v1 +
vehicle(2).wheel(i).position * Weight.v2 + Bias.v2

ev.wheel(i).speed = vehicle(1).wheel(i).speed * Weight.v1 + Bias.v1 +
vehicle(2).wheel(i).speed * Weight.v2 + Bias.v2

where

i = 1...4.

The FMU file supports FMI 1.0 Model Exchange mode.

The FMU Import block supports non-virtual bus types. You must create a bus object whose structure
matches the associated structure in the FMU file. When naming the bus object structures, use the
variable names defined in the modelDescription.xml of the FMU file.

See Also
fmudialog.createBusType | FMU

 Simplify Interface for Structured Data with FMU Import Block

13-617

Related Examples
• “Import FMUs”
• “Implement an FMU Block”

13 Simulink Featured Examples

13-618

Co-Simulation Signal Compensation

This example shows how to use co-simulation and signal compensation for interfacing signals.

In co-simulation application, components simulate with local solvers. Local solvers maintain separate
timelines and integrate from a previous time point to the current time using I/O data exchanged
between components and integration model. Co-simulation components do not expose internal states
to global solver.

When co-simulation components are integrated in Simulink, you can use periodic discrete rate to
exchange I/O data between components. However, communication between co-simulation
components may introduce error caused by one-step delay during data exchange. This may cause
simulation to be less accurate or unstable.

To mitigate this issue, Simulink automatically identifies interfacing signals between these
components that are eligible for numerical compensation. These signals are ideally continuous
quantities that have to be discretized due to co-simulation. Simulink automatically compensate for
these signals to reduce co-simulation error. A 'gear' icon is displayed on input port if a signal is
compensated.

Two co-simulation components with PI Controller

This example model contains two co-simulation components and a discrete PI controller. A monolithic
system with two continuous rate systems and same PI controller is used as the baseline for result
comparison.

 Co-Simulation Signal Compensation

13-619

Plant #1, realized by an S-Function cosim_plant1_sfcn.c, is equivalent to a state-space model
cosim_plant1.slx:

Plant #2, realized by a Co-Simulation FMU v2.0 cosim_plant2_fmu.fmu, is equivalent to a transfer
function cosim_plant2.slx:

13 Simulink Featured Examples

13-620

Both are causal systems where output signal does not directly depend on inputs. Local solver step
size is 0.01. Communication step size is 0.3.

After updating integration model, a gear icon appears at the input ports of the two co-simulation
components, indicating Simulink has identified a signal eligible for numerical compensation.
Alternatively, you can right click on the icon (or block) and open 'Co-simulation Numerical
Compensation' dialog:

 Co-Simulation Signal Compensation

13-621

• Continuous Quantity column shows whether the co-simulation component itself has declared its
I/O as continuous quantity. If both source and destination of this signal meet certain requirements,
Simulink will mark it for auto-compensation. For example, input port 1 of Plant #1 is declared as
continuous quantity, but its source, output port 1 of PI controller is a discrete rate control signal.
As a result, input pot1 of Plant #1 will not be auto-compensated.

• Request Compensation column allows you to override this behavior by always allowing or
disallowing numerical compensation. When a signal is marked as 'Always' or is already eligible,
you can use Advanced compensation settings... button to configure more numerical
compensation settings.

The following plots show the difference between enabling and disabling numerical compensation for
this model. With numerical compensation turned on:

13 Simulink Featured Examples

13-622

Accumulated error due to co-simulation is 0.4342.

Without numerical compensation:

 Co-Simulation Signal Compensation

13-623

Accumulated error due to co-simulation is 6.8520.

13 Simulink Featured Examples

13-624

Using Numerical Compensation for Co-Simulation Integration

This example shows how to reduce potential simulation errors introduced by co-simulation using
numerical compensation.

An Example Co-Simulation Component

A typical co-simulation component can be represented by a dynamic system with continuous states
and a local solver that performs integration between communication time points. These functions
export the standalone Co-Simulation FMU cosim_component.fmu from this model:

componentMdl = 'cosim_component';
open_system(componentMdl);

This model contains a transfer function and has a local fixed-step solver with step size ts=0.02s. You
can use the generated FMU as a co-simulation component in an integration model.

Note that co-simulation components can only use input values given at communication time points.
This requirement introduces a co-simulation error when the communication step is relatively large
compared to the dynamic behavior of the component. Reducing the communication step size
improves the simulation result but increases data transfer overhead. Changing local solver types or
reducing local solver step size can give better integration results within a communication step, but
cannot compensate for co-simulation error due to undersampling.

Using Numerical Compensation in Integration Model

The co-simulation component is used in the following model for integration:

integrationMdl = 'cosim_integration';
open_system(integrationMdl);
set_param(integrationMdl, 'SimulationCommand', 'Update');

This model contains two connected FMU co-simulation components in the top branch. Both co-
simulation components, FMU Cosim Component 1 and FMU Cosim Component 2, have their own
local solver. They only exchange data at a discretized communication rate D2, where ts=0.2s. Two
continuous-time Transfer Function blocks in the bottom branch are the monolithic, non-co-simulation
approach of the same system, which uses the global solver and serves as the baseline for the
simulation result. The two non-co-simulation components exchange data at a continuous rate, and the
global solver step size is set to ts=0.02s. In this example, we focus on the numerical behavior of
FMU Cosim Component 2 and assume that co-simulation discretization of its input signal is
inevitable.

 Using Numerical Compensation for Co-Simulation Integration

13-625

After updating block diagram, a gear icon appears at the input port for the second co-sim component,
FMU Cosim Component 2. This indicates that Simulink has automatically determined that this input
port needs numerical compensation because:

• Source (and destination) blocks declare their output (and non-directfeedthrough input) ports as
continuous quantities.

• Source and destination blocks are co-simulation components (e.g. S-Function or Co-Simulation
FMU)

• The signal has a double data type and periodic discrete sample rate

To turn off auto-compensation,left-click on the icon. Alternatively, to programmatically turn it off:

blk = 'cosim_integration/FMU Cosim Component 2';
p = get_param(blk, 'PortHandles')

p = struct with fields:
 Inport: 43.0005
 Outport: 69.0004
 Enable: []
 Trigger: []
 State: []
 LConn: []
 RConn: []
 Ifaction: []
 Reset: []
 Event: []

set_param(p.Inport,'CoSimSignalCompensationMode','Auto_Off')
out_off = sim(integrationMdl);

Simulink does not compensate for co-simulation error on this input port when the gear icon appears
as disabled. The following functions plot the result without numerical compensation:

figure(1); hold on;
plot(out_off.yout{1}.Values,'r');
plot(out_off.yout{2}.Values,'black');
plot(out_off.yout{3}.Values,'g');
plot(out_off.yout{4}.Values,'b');
legend({'cosim response(no compensation)', 'ideal response', 'cosim input', 'ideal input'}, 'Location', 'northwest')

13 Simulink Featured Examples

13-626

The co-simulation input signal (a double-typed periodic discrete signal that represents a continuous
quantity) jumps from 0 to a positive value at t=0.4s. The co-simulation response shows a delay to its
input when compared to the ideal (non-co-simulation) response. The co-simulation scheme causes this
delay, where the input signal cannot vary between two communication time points. For example,
when co-simulation component FMU Cosim Component 2 pauses at communication time point
t=0.4s, the local solver takes a positive input for integration; then the local solver integrates over
communication step [0.4,0.6], and returns a positive output value at the next communication time
point t=0.6s.

When numerical compensation is enabled, Simulink attempts to compute a better input value for co-
simulation component FMU Cosim Component 2 so that the co-simulation input value is closer to
the average non-co-simulation input between two communication time points. For example, instead of
using the co-simulation input value y=0.165 at t=0.4s, a better averaged input over communication
step [0.4,0.6] is somewhere around y=0.241, which is the midpoint of y=0.165(t=0.4s) and
y=0.316(t=0.6s). This is like using the midpoint Riemann sum instead of the left sum to estimate
the area under the curve of an ideal input signal.

However, at communication time point t=0.4s, the value of y=0.316(t=0.6s) is still not available.
To get an estimate of y value at t=0.6s, Simulink extrapolates the signal data as a polynomial based
on earlier time points (e.g. t=0.2s, t=0.4s). You can select a different extrapolation method in
Co-simulation Numerical Compensation dialog when right-clicking the icon. Alternatively, use the
functions:

set_param(p.Inport,'CoSimSignalCompensationConfig','{"ExtrapolationMethod":"LinearExtrapolation"}')

The following plot compares the result of enabling or disabling the compensation:

 Using Numerical Compensation for Co-Simulation Integration

13-627

set_param(p.Inport,'CoSimSignalCompensationMode','Auto')
out_linear = sim(integrationMdl);
figure(2); hold on;
plot(out_off.yout{1}.Values,'r')
plot(out_linear.yout{1}.Values, 'm')
plot(out_off.yout{2}.Values,'black')
legend({'cosim response(no compensation)', 'cosim response(linear extrapolation)', 'ideal response'}, 'Location', 'northwest')

With numerical compensation, the co-simulation response at communication timepoints are much
closer to the ideal non-co-simulation output. The numerical error (delay) introduced by co-simulation
is reduced.

The following plot shows the impact of the different extrapolation methods:

set_param(p.Inport,'CoSimSignalCompensationConfig','{"ExtrapolationMethod":"QuadraticExtrapolation"}')
out_quadratic = sim(integrationMdl);
set_param(p.Inport,'CoSimSignalCompensationConfig','{"ExtrapolationMethod":"CubicExtrapolation"}')
out_cubic = sim(integrationMdl);
figure(3); hold on;
plot(out_linear.yout{1}.Values,'r')
plot(out_quadratic.yout{1}.Values, 'g')
plot(out_cubic.yout{1}.Values, 'b')
plot(out_off.yout{2}.Values,'black')
legend({'cosim response(linear extrapolation)','cosim response(quadratic extrapolation)','cosim response(cubic extrapolation)','ideal response'},'Location','northwest')

13 Simulink Featured Examples

13-628

The extrapolated output value introduces an estimation error, for example, when comparing
extrapolated y value at t=0.6s (estimated at t=0.4s) to the real y value at t=0.6s (recorded at
t=0.6s). Simulink can optionally compensate for this error in the following communication steps
when you specify a non-zero signal correction coefficient in Co-simulation Numerical
Compensation dialog. Alternatively, use these functions:

set_param(p.Inport,'CoSimSignalCompensationConfig','{"ExtrapolationMethod":"LinearExtrapolation", "CompensationCoefficient":"1"}')

This coefficient is valid within [0,1], where 0 means the estimation error will be ignored, and 1
means estimation error is fully compensated in the following communication steps. Setting this value
to 1 might be useful when the co-simulation signal represents, or is proportional to, a flux of some
conserved quantity (e.g. current, mass or volumetric flow rate).

The following plot shows the impact of different values of the signal correction coefficient:

set_param(p.Inport,'CoSimSignalCompensationConfig', '{"ExtrapolationMethod":"LinearExtrapolation", "CompensationCoefficient":"0"}')
out_linear_0 = sim(integrationMdl);
set_param(p.Inport,'CoSimSignalCompensationConfig', '{"ExtrapolationMethod":"LinearExtrapolation", "CompensationCoefficient":"0.5"}')
out_linear_0_5 = sim(integrationMdl);
set_param(p.Inport,'CoSimSignalCompensationConfig', '{"ExtrapolationMethod":"LinearExtrapolation", "CompensationCoefficient":"1"}')
out_linear_1 = sim(integrationMdl);
figure(4); hold on;
plot(out_linear_0.yout{1}.Values,'r')
plot(out_linear_0_5.yout{1}.Values, 'g')
plot(out_linear_1.yout{1}.Values, 'b')
plot(out_off.yout{2}.Values,'black')
legend({'cosim response(coefficient: 0)','cosim response(coefficient: 0.5)','cosim response(coefficient: 1)','ideal response'},'Location','northwest')

 Using Numerical Compensation for Co-Simulation Integration

13-629

close_system(componentMdl, 0);
close_system(integrationMdl, 0);

13 Simulink Featured Examples

13-630

Multithread Co-Simulation

This example shows how to run co-simulation on multiple threads.

Simulink is an integration platform that supports co-simulation between components with local
solvers or that involves simulation tools. For example, co-simulation can involve an S-function as a co-
simulation gateway between Simulink and third-party tools or custom code. It can also involve an
FMU in co-simulation mode imported to Simulink.

By default, Simulink configures all models to run on multiple threads with the MultiThreadCoSim
parameter.

This example shows how to run multithreaded co-simulation of three components (two implemented
in C-MEX S-Function, one implemented using FMU Co-Simulation v2.0). These components compute
prime numbers to find the maximum prime number that is smaller than or equal to the given input.

Multithreaded co-simulation best suits models with computationally intensive and loosely coupled
components. In this example, each component computes prime numbers using a brute-force search.
The intensity of the computation is directly proportional to the given range, which is a block input
that you can experiment with. Also, components exchange a scalar signal, which is the maximum
prime number within the given range, at communication times.

Experiment toggling the MultithreadedSim parameter and measuring the wall clock time.

open_system('slexCoSimPrimeExample')
sim('slexCoSimPrimeExample');

See Also
FMU

 Multithread Co-Simulation

13-631

Related Examples
• “Co-Simulation Execution”
• “Run Co-Simulation Components on Multiple Cores”

13 Simulink Featured Examples

13-632

Pulse Width Modulation Using MATLAB System Block

This example shows how to use MATLAB System block to generate Pulse Width Modulation (PWM)
signals based on the input period and duty cycle signals by using controllable sample time and
setNumTicksUntilNextHit.

In this example, MATLAB System block registers a controllable sample time so that it can schedule
the next hit while changing the output value. In this example, the MATLAB System block has two
input ports and one output port. The first input port is the duty cycle signal and the second input port
is the period signal. The MATLAB System block has two block parameters: the amplitude of the
generated PWM signal and the resolution of the controllable sample time.

In this example, the MATLAB System block demonstrates the use of the function: *
createSampleTime(obj, 'Type', 'Controllable', 'TickTime', obj.Resolution) to \register a controllable
sample time in getSampleTimeImpl method. The resolution must be a positive finite integer that
defines the fundamental step size that the MATLAB System block can schedule the next hit for this
sample time.

MATLAB System Block demonstrates the use of the method: * setNumTicksUntilNextHit(obj,
numTicks) to schedule the next hit of the controllable sample time. The next hit happens after t =
t_current + numTicks * resolution. numTicks must be a positive integer. The MATLAB System block
can use this method to schedule the execution of the controllable sample time in setupImpl and
stepImpl.

 Pulse Width Modulation Using MATLAB System Block

13-633

Modeling Cyber-Physical Systems

Cyber-physical systems combine computer and physical systems to achieve design goals. Simulation
of cyber-physical systems requires a combination of modeling techniques such as continuous-time,
discrete-time, discrete-event, and finite state modeling. Simulink® and its companion products
provide functionality to apply a wide range of modeling techniques and seamlessly integrate them in
one simulation environment, which is ideal for modeling cyber-physical systems.

This example shows how continuous-time, discrete-event, and finite-state modeling techniques
combine to simulate the behavior of a variable speed conveyor belt system. In SimEvents®, entities
are discrete items of interest in a discrete-event simulation. Because passengers are discrete
individuals, they are modeled by SimEvents® entities, created by the Entity Generator block. A
Stateflow® chart models the operational modes and motor dynamics of the variable speed conveyor
belt. Finally, the Entity Transport Delay block models passenger throughput as a function of conveyor
belt dynamics, providing a bridge between the discrete-event and continuous-time domains.

Note: The example uses blocks from SimEvents® and Stateflow®. If you do not have a SimEvents or
Stateflow license, you can open and simulate the model but only make basic changes such as
modifying block parameters.

Model Structure

The model includes these key components:

13 Simulink Featured Examples

13-634

• Passengers — Models the arrival of passengers as a Poisson process. The output is a sequence of
SimEvents® entities corresponding to the passengers who step on the conveyor belt. The
distribution of inter-arrival time () of a Poisson process is , where is the
arrival rate. is modeled by a MATLAB action in the Entity Generator block for rush hour, normal
hour, and free hour. The passenger arrival rate changes with time as:

• Entity Transport Delay — Holds the passengers on the conveyor belt until they arrive at the
other terminal, based on the time delay calculated by the Stateflow chart.

• Dynamics of conveyor belt — Models the operation of a variable speed conveyor belt. See the
Conveyor Belt Dynamics section for more details.

• Dashboard — Shows the runtime status of the conveyor belt. The color of the Mode Lamp
indicates the mode of the conveyor belt.

 Modeling Cyber-Physical Systems

13-635

Conveyor Belt Dynamics

A Stateflow® chart models the dynamics of the variable speed conveyor belt. Note in the chart that
the velocity and power of the belt are plotted against a logarithmic scale of the load weight. The
conveyor belt has these modes:

• Idle — The weight of the load is small. The belt maintains a low velocity to save energy. The Mode
Lamp is gray in this mode.

13 Simulink Featured Examples

13-636

• OnDemand — This is the normal operating mode, which maintains the optimal velocity for
passenger comfort and throughput. The power will proportionally increase with the weight of the
load. The Mode Lamp is green in this mode.

• Max — Maximum power mode. The weight of the load is too large for the conveyor belt to
maintain the optimal velocity. The conveyor belt operates at the maximum possible velocity that
does not exceed the maximum power. The Mode Lamp is red in this mode.

Results

The Scope and blocks in the DashBoard show the simulation results.

Simulation results: 1. Number of passengers versus simulation time. 2. Velocity (blue) and power
(red) versus simulation time.

Three operation cycles are observed within a time span of 900. Each cycle has a period of 300, which
aligns with the period of the arrival rate. The top plot shows the number of passengers on the
conveyor belt over time, and the bottom plot shows the velocity and power of the conveyor belt. The
velocity and power are normalized for better visualization.

The first two thirds of each period correspond to rush hour, and the number of passengers on the
conveyor belt increases dramatically. Consequently, the conveyor belt enters into the Max mode
quickly, which is characterized by the maximum output power with a velocity that is inversely
proportional to the number of passengers. In the last third of each period, the airport is in the normal
hour followed by the free hour. Therefore, the number of passengers on the conveyor belt drops and
even becomes zero for some time.

 Modeling Cyber-Physical Systems

13-637

The conveyor belt then operates in OnDemand and Idle modes accordingly. In OnDemand mode,
the velocity is locked to a default value, and the power is proportional to the number of passengers.
In Idle mode, both the velocity and power are maintained at low values to reduce energy
consumption. Overall, the conveyor belt operates according to the load of the airport.

13 Simulink Featured Examples

13-638

Power Analysis of Spring Mass Damper System

This example shows how to analyze the mechanical power and energy of a spring mass damper
system using functionality available with the Powertrain Blockset™. The model subsystems contain
Power Accounting Bus Creator blocks that report system power and energy consumption across the
spring mass damper system.

Run Simulation

Click Run to create an autoblks.pwr.PlantInfo object that analyzes the model energy
consumption. Use the PwrUnits and EnrgyUnits properties to set the units.

SysName = 'powerAnalysis';
open(SysName);
SysPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
SysPwrAnalysis.PwrUnits = 'kW';
SysPwrAnalysis.EnrgyUnits = 'MJ';

Use run method to turn on logging, run simulation, and add logged data to the object.

SysPwrAnalysis.run;

Overall Summary

Display the final energy values for each subsystem.

SysPwrAnalysis.dispSysSummary

 System Name Efficiency Energy Loss (MJ) Energy Input (MJ) Energy Output (MJ) Energy Stored (MJ)
--
powerAnalysis 0.513 -0.00162 0.00193 0 0.000304
 Mass1Spring1Damper1 0.773 -0.000479 0.000984 -0.000385 0.00012
 Mass2Spring3Damper3 0.55 -0.00114 0.00175 -0.000477 0.00014
 Spring2Damper2 0.994 -5.7e-06 0.000862 -0.000812 4.43e-05

Write summary to spreadsheet.

SysPwrAnalysis.xlsSysSummary(fullfile(fileparts(which('GenerateEnergyReport')), 'EnergySummary.xlsx'))

 Power Analysis of Spring Mass Damper System

13-639

Subsystem1 Summary

SubSys1Name = 'powerAnalysis/Mass1Spring1Damper1';
SubSys1PwrAnalysis = SysPwrAnalysis.findChildSys(SubSys1Name);
SubSys1PwrAnalysis.dispSignalSummary;

powerAnalysis/Mass1Spring1Damper1
Average Efficiency = 0.77

 Signal Energy (MJ)

Inputs 0.000984
 Transferred 0.000417
 0.000413
 3.88e-06
 Not transferred 0.000567
 0.000567
 0
Outputs -0.000385
 -0.000381
 -3.46e-06
Losses -0.000479
 -0.000434
 -4.46e-05
Stored 0.00012
 0.000117
 3.47e-06

Subsystem2 Summary

SubSys2Name = 'powerAnalysis/Spring2Damper2';
SubSys2PwrAnalysis = SysPwrAnalysis.findChildSys(SubSys2Name);
SubSys2PwrAnalysis.dispSignalSummary;

powerAnalysis/Spring2Damper2
Average Efficiency = 0.99

 Signal Energy (MJ)

Inputs 0.000862
 Transferred 0.000862
 0.000469
 7.97e-06
 0.000381
 3.46e-06
 Not transferred 0
 0
Outputs -0.000812
 -0.000393
 -1.86e-06
 -0.000413
 -3.88e-06
Losses -5.7e-06
 -5.7e-06
Stored 4.43e-05
 4.43e-05

13 Simulink Featured Examples

13-640

Subsystem3 Summary

SubSys3Name = 'powerAnalysis/Mass2Spring3Damper3';
SubSys3PwrAnalysis = SysPwrAnalysis.findChildSys(SubSys3Name);
SubSys3PwrAnalysis.dispSignalSummary;

powerAnalysis/Mass2Spring3Damper3
Average Efficiency = 0.55

 Signal Energy (MJ)

Inputs 0.00175
 Transferred 0.000395
 0.000393
 1.86e-06
 Not transferred 0.00136
 0.00136
 0
Outputs -0.000477
 -0.000469
 -7.97e-06
Losses -0.00114
 -0.000894
 -0.000244
Stored 0.00014
 0.000147
 -7.46e-06

SDI Plots

SysPwrAnalysis.sdiSummary({SubSys1Name, SubSys2Name, SubSys3Name})

See Also
autoblks.pwr.PlantInfo | Power Accounting Bus Creator

Related Examples
• “Analyze Power and Energy” (Powertrain Blockset)

 Power Analysis of Spring Mass Damper System

13-641

Schedule an Export-Function Model Using the Schedule Editor

This example shows how to view and edit the order of function-calls in an export-function model using
the Schedule Editor. As in all export-function models, the desired functionality is modeled as function-
call subsystems. These function-call subsystems define the partitions that are scheduled by the
Schedule Editor.

With the Schedule Editor, you can easily view and edit the schedule of the function-calls. The
behavior of the system depends on the order of these partitions. In this example, we change the order
and observe its effects on the behavior of the system by simulating the model. To see the impact of
editing the schedule on the simulation, we compare the model simulations before and after
scheduling.

Create Partitions from Referenced Export-Function Model

To view and edit the schedule of the export-function model, reference the model.

open_system('ThrottlePositionControlTop.slx');

ThrottlePositionControl is the referenced export-function model. By default, each function has
an input port that can be used to trigger these functions. The Schedule Editor automatically handles
these ports. To use the Schedule Editor, set the Schedule Rates With parameter to Schedule Editor.

set_param('ThrottlePositionControlTop/ThrottleControl','ScheduleRatesWith','Schedule Editor');

13 Simulink Featured Examples

13-642

Establish a Simulation Baseline

To observe the impact of scheduling on the model behavior, establish a baseline by simulating the
model before editing the schedule. Simulate the model.

sim('ThrottlePositionControlTop');

Open the Schedule Editor

To open the Schedule Editor, click Schedule Editor in the Design section of the Modeling tab. In
the Schedule Editor, different components of the model are represented as partitions. Update the
diagram to see the partitions. Partitions are the entry-points in the model. The Schedule Editor shows
the order and data communications of these partitions. The arrows are data connections between the
partitions that show the data flow. The dashed lines indicate that there is a delay because the source
runs after the destination. The solid lines indicate that there is no delay as the source runs before the
destination.

Edit Partition Schedule

The Order pane shows the order the partitions run in at a given time step. Assume that the order of
the partitions is in an imperfect state. In this case, to remove the delay, you want to run the
ThrottleControl.ActuatorRun5ms partition after the ThrottleControl.ControllerRun5ms
partition.

Drag ThrottleControl.ActuatorRun5ms after the ThrottleControl.ControllerRun5ms in
the Order pane. Observe that the delay between the ThrottleControl.ControllerRun5ms and
the ThrottleControl.ActuatorRun5ms partitions changes to a dependency. Observe that now
there is no delay between the executions of ThrottleControl.ControllerRun5ms and
ThrottleControl.ActuatorRun5ms.

 Schedule an Export-Function Model Using the Schedule Editor

13-643

Schedule the Execution of Aperiodic Partitions

The export-function model contains an unconstrained partition,
AccelerationPedalPositionSensor. Suppose you want to schedule an unconstrained partition to
simulate as if it were discrete. Schedule ThrottleControl.AppSnsrRun partition to run at
[0:0.02:100] to observe its behavior at different instances of time. Click the unconstrained partition
and enter [(1:5000)*.02] for Trigger in the Property Inspector.

Compare the Runs in Simulation Data Inspector

Now, simulate the model with the changed schedule.

Open the Simulation Data Inspector. Select the two runs and compare. You can see how changing the
schedule impacts the model behavior.

13 Simulink Featured Examples

13-644

Copyright 2018-2022 The MathWorks, Inc.

 Schedule an Export-Function Model Using the Schedule Editor

13-645

Graph-Based Multithread Simulation

This example shows how graph-based algorithms optimize simulation on multiple threads.

Graph-based algorithm

This example contains four nondirect feedthrough blocks followed by four direct feedthrough blocks.
Direct feedthrough means that the output port signal of a block is computed from the values of its
input port signals in the same time step. The graph-based algorithm runs the four nondirect
feedthrough blocks in parallel and groups the following direct feedthrough blocks into the same
branch. Then, the model uses multithreading to run those four branches. Thus, the algorithm speeds
up the simulation almost four times on a four or more core machine compared to a single-threaded
simulation on the same machine.

Open model and simulate

open_system('slexGraphBasedMultiThreadSimExample');

% Press "Toggle MultithreadedSim Parameter" block to turn off / on
% multithreaded simulation and compare the elapsed time.

13 Simulink Featured Examples

13-646

Exit

close_system('slexGraphBasedMultiThreadSimExample');

 Graph-Based Multithread Simulation

13-647

Find Shortest Control Path in Simulink Model

Model Description

This example shows how to find the shortest control path for a hybrid electrical vehicle using Signal
Tracing Command-line API.

To open the model, enter this command in the example folder.

open_system('sldemo_hevc')

In this model, a hybrid electrical vehicle drives on a slope and the initial speed is 0 m/s. Set the target
speed to 30 m/s. In Driver, a PID control compares the actual speed with the target speed and sends
a command to increase or decrease speed to the power demand estimation module. Power demand
estimation converts to the desired power, and the power is primarily provided by the electrical
motor. If electrical motor is unable to provide enough torque, then the engine and provides additional
torque. In Vehicle Dynamic, road resistence including rolling resistance and gravity resistance as
well as the aero drag are calculated. The actual speed of the vehicle is contantly returned to Driver
through the feedback loop until the vehicle reaches the target speed.

13 Simulink Featured Examples

13-648

Trace All Sources that Control the Actual Speed

Use the signal tracing API to find the shortest control path to the actual speed. Since the actual speed
signal goes into the second inport of Scope, use Scope as the tracing origin.

g = sltrace('sldemo_hevc/Scope', 'source', 'port', '2', 'traceall', 'on');
highlight(g);

Obtain the Trace Graph

The tracing results can be expressed as a MATLAB digraph. The trace graph includes edges and
nodes.

A node in trace graph corresponds to a block port in a Simulink® model. The second port of Scope is
a node. You can find the node information nodes table.

nodes = g.TraceGraph.Nodes;

The edges are shown as pair of node indexes in trace graph. You can access the node information
from the nodes table with the corresponding node index. The Simulink® line between nodes is shown
as segment handle(s).

edges = g.TraceGraph.Edges;

Compute the edges of the trace graph of the sltrace.Graph object and use built-in MATLAB®
digraph features to plot the trace graph, as shown in the figure.

fig = g.TraceGraph.plot('Layout', 'force');

 Find Shortest Control Path in Simulink Model

13-649

Find the Shortest Path from trace graph

The start node is the outport of target speed [m/s], and the end node is the second inport of
Scope. Use the nodes table to obtain the node indexes of the start node and end node and compute
the shortest path between them, as shown in the figure.

startNode = 7;
endNode = 2;
shortestPath = g.TraceGraph.shortestpath(startNode, endNode);
highlight(fig, shortestPath, 'EdgeColor','r','NodeColor','r','MarkerSize',6,'LineWidth',1);

13 Simulink Featured Examples

13-650

Find the Shortest Control Path from the Simulink Model

The edges table contains two types of edges: real edges and virtual edges, including internal edges
and hidden edges. First, filter out the virtual edges using the MATLAB find function.

realEdgeIdx = find(cellfun(@(x) ~ischar(x), edges.Segments) == 1);
realEdges = edges(realEdgeIdx, :);

Process each node in the shortest path to obtain the corresponding blocks and segments. Since one
source node may be connected to multiple destination nodes, iterate over all the edges from the same
source node and find the target destination node on the shortest path.

elements = [];
for i = 1:length(shortestPath) - 1
 srcNodeIdx = shortestPath(i);
 dstNodeIdx = shortestPath(i+1);
 srcBlockHandle = nodes.Block(srcNodeIdx);
 srcNodeEdgeIdx = find(realEdges.EndNodes(:,2) == dstNodeIdx);
 if length(srcNodeEdgeIdx) > 1
 dstNodeEdgeIdx = find(realEdges.EndNodes(srcNodeEdgeIdx, 2) == dstNodeIdx) ;
 edgeIdx = srcNodeEdgeIdx(dstNodeEdgeIdx);
 elseif length(srcNodeEdgeIdx) == 1
 edgeIdx = srcNodeEdgeIdx;
 else
 continue;
 end
 elements = [elements srcBlockHandle flip(realEdges.Segments{edgeIdx})];
end

 Find Shortest Control Path in Simulink Model

13-651

Process the last node in the shortest path and highlight the shortest path in the Simulink model, as
shown in the figure.

lastNodeIdx = shortestPath(end);
lastBlockHandle = nodes.Block(lastNodeIdx);
elements = [elements lastBlockHandle];
highlight(g, elements)

13 Simulink Featured Examples

13-652

Use Fixed-Step Zero-Crossing Detection for Faster Simulations

This example shows how fixed-step zero-crossing detection can be used to speed up simulation by
increasing the fixed-step size without sacrificing simulation accuracy. Zero-crossing detection is
essential if a system contains events that will change the equations in the system. The location and
reaction to these events is important for accurate simulation.

Load Model

This example uses a model of a buck converter, a DC-DC power converter. The converter is controlled
via pulse width modulation (PWM), where a switch, represented by the Relay block in the PWM
subsystem, is controlled by comparing the control voltage to a triangular voltage.

This model implements an open-loop version of the buck converter.

model = 'buck_ol';
open_system(model);

Examine PWM Generation System

The buck converter in this model uses PWM to control the power transmitted to the load. The Relay
block in the PWM subsystem represents a switch and is controlled by comparing the control voltage
to a triangular voltage. The frequency of the triangle wave is 100 kHz. To accurately detect PWM
switching, check that the solver takes steps smaller than 1.0e-5. The relay block in a PWM system
detects zero crossings when the triangle wave intersects with the duty cycle.

pwmGenSubsys = [model '/PWM'];
open_system(pwmGenSubsys);

 Use Fixed-Step Zero-Crossing Detection for Faster Simulations

13-653

Simulate with a Variable-Step Solver

To achieve accurate simulation results, you must accurately locate the switching times that occur in
the PWM subsystem. To see what the results should look like, you can first simulate the model using a
variable-step solver with zero-crossing detection. Limit the max-step size of the solver to 1e-6 to
ensure that you do not miss PWM switching events.

set_param(model, 'Solver', 'ode45', 'MaxStep', '1e-6',...
 'ReturnWorkspaceOutputs', 'on')
simout = sim(model);
plot(simout.tout, simout.xout(:,1));
title('Output Voltage');
legend('Variable-step (expected)');
xlim([0 1e-3]);

13 Simulink Featured Examples

13-654

Use Fixed-Step Simulation

Now that you know what the expected simulation results should look like, you can simulate the model
using a fixed-step solver. You should select the largest possible fixed-step size where the solver is still
able to step near the PWM switching times. Using a large fixed-step size will result in the fastest
possible simulation while still obtaining accurate results.

Use the simulation results generated by the variable-step solver to inform your choice for a fixed-step
size. Start by using a fixed-step size of 1.0e-6, similar to the maximum step size used for the variable-
step simulation.

set_param(model, 'Solver', 'ode3', 'FixedStep', '1.0e-6');
set_param(model, 'EnableFixedStepZeroCrossing', 'off')

simout_FS_1ms = sim(model);

plot(simout.tout, simout.xout(:,1), ...
 simout_FS_1ms.tout, simout_FS_1ms.xout(:,1), '-s');
title('Output Voltage');
legend('Variable-step (expected)', 'Fixed-step: 1ms',...
 'Location', 'southeast');
xlim([0 1e-3]);

 Use Fixed-Step Zero-Crossing Detection for Faster Simulations

13-655

Reduce Fixed-Step Size

This plot shows that the results obtained with a fixed-step size of 1.0e-6 are not very accurate when
compared to the variable-step baseline. Reducing the step size to 5.0e-8 produces more accurate
results. Without zero-crossing detection, 5.0e-8 is the largest fixed-step size you can use for this
model while still obtaining accurate simulation results.

set_param(model,'FixedStep', '5.0e-8');
simout_FS_50ns = sim(model);

plot(simout.tout, simout.xout(:,1), ...
 simout_FS_50ns.tout, simout_FS_50ns.xout(:,1), '-s');
title('Output Voltage')
legend('Variable-step (expected)', 'Fixed-step: 50ns',...
 'Location', 'southeast')
xlim([0 1e-3]);

13 Simulink Featured Examples

13-656

Enable Zero-Crossing Detection for fixed-step simulation

Open up the solver pane of the configuration parameters and select Enable zero-crossing
detection for fixed-step simulation. Enabling this parameter allows Simulink to detect
zero crossings between major time steps and apply corrections to continuous states in the model. Use
the default value for Maximum number of zero-crossings per step.

 Use Fixed-Step Zero-Crossing Detection for Faster Simulations

13-657

set_param(model, 'EnableFixedStepZeroCrossing', 'on')
set_param(model, 'FixedStep', '1.0e-6', 'MaxZcPerStep', '2');
simout_FSZC_1ms = sim(model);

Compare Results

With zero-crossing detection enabled for fixed-step simulation, you can use a step size that is twenty
times larger than the fixed step size used without zero-crossing detection and still obtain accurate
results. This larger step size leads to faster simulation times.

figure()
state = 1;
plot(simout.tout, simout.xout(:,state), ...
 simout_FS_50ns.tout, simout_FS_50ns.xout(:,state),'-s' , ...
 simout_FSZC_1ms.tout, simout_FSZC_1ms.xout(:,state), '-x');
title('Output Voltage')
legend('Variable-step (expected)', 'Fixed-step: 50ns','Fixed-step ZC: 1ms',...
 'Location', 'southeast')
xlim([0 1e-3]);

Zoom in to see that the results are accurate with zero crossing detection enabled, even with this
larger step size.

xlim([2.5e-4 3e-4])
ylim([7.4 7.56])

13 Simulink Featured Examples

13-658

Finally, note that the simulation time is faster at this larger step size with zero-crossing detection
enabled.

bar([simout_FS_50ns.SimulationMetadata.TimingInfo.ExecutionElapsedWallTime,...
 simout_FSZC_1ms.SimulationMetadata.TimingInfo.ExecutionElapsedWallTime])
xticklabels(gca, {'Zc Disabled @ 5.0e-8', 'ZC Enabled @ 1.0e-6'});
xtickangle(45);
ylabel("Wallclock Time (seconds)")

 Use Fixed-Step Zero-Crossing Detection for Faster Simulations

13-659

See Also
Enable zero-crossing detection for fixed-step solver | Maximum number of zero-crossings per step |
Number of consecutive zero crossings

Related Examples
• “Zero-Crossing Detection”
• “Zero-Crossing Algorithms”
• “Zero-Crossing Detection with Fixed-Step Simulation”

13 Simulink Featured Examples

13-660

	Blocks
	Abs
	Action Port
	Add
	Algebraic Constraint
	Argument Inport
	Argument Outport
	ASCII to String
	Assertion
	Assignment
	Backlash
	Band-Limited White Noise
	Bias
	Bit Clear
	Bit Set
	Bit to Integer Converter
	Bitwise Operator
	Block Support Table
	Bus Assignment
	Bus Creator
	Bus Selector
	Bus to Vector
	C Caller
	C Function
	Callback Button
	Callback Button
	Check Box
	Check Discrete Gradient
	Check Dynamic Gap
	Check Dynamic Lower Bound
	Check Dynamic Range
	Check Dynamic Upper Bound
	Check Input Resolution
	Check Static Gap
	Check Static Lower Bound
	Check Static Range
	Check Static Upper Bound
	Chirp Signal
	Circular Gauge
	Clock
	Combinatorial Logic
	Combo Box
	Compare To Constant
	Compare To Zero
	Complex to Magnitude-Angle
	Complex to Real-Imag
	Compose String
	Configurable Subsystem
	Constant
	Coulomb and Viscous Friction
	Counter Free-Running
	Counter Limited
	Create Diagonal Matrix
	Cross Product
	Dashboard Scope
	Data Store Memory
	Data Store Read
	Data Store Write
	Data Type Conversion
	Data Type Conversion Inherited
	Data Type Duplicate
	Data Type Propagation
	Data Type Scaling Strip
	Dead Zone
	Dead Zone Dynamic
	Decrement Real World
	Decrement Stored Integer
	Decrement Time To Zero
	Decrement To Zero
	Delay
	Demux
	Derivative
	Descriptor State-Space
	Detect Change
	Detect Decrease
	Detect Fall Negative
	Detect Fall Nonpositive
	Detect Increase
	Detect Rise Nonnegative
	Detect Rise Positive
	Difference
	Digital Clock
	Direct Lookup Table (n-D)
	Discrete Derivative
	Discrete Filter
	Discrete FIR Filter
	Discrete PID Controller
	Discrete PID Controller (2DOF)
	Discrete State-Space
	Discrete-Time Integrator
	Discrete Transfer Fcn
	Discrete Zero-Pole
	Display
	Display
	Divide
	DocBlock
	Dot Product
	Edit
	Enable
	Enabled and Triggered Subsystem
	Enabled Subsystem
	Enumerated Constant
	Environment Controller
	Event Listener
	Extract Bits
	Extract Diagonal
	Fcn
	Find Nonzero Elements
	First Order Hold
	Fixed-Point State-Space
	Float Extract Bits
	Floating Scope and Scope Viewer
	For Each
	For Each Subsystem
	For Iterator
	For Iterator Subsystem
	From
	From File
	From Spreadsheet
	From Workspace
	Function-Call Feedback Latch
	Function-Call Generator
	Function-Call Split
	Function-Call Subsystem
	Function Caller
	Function Element
	Function Element Call
	Gain
	Gauge
	Goto
	Goto Tag Visibility
	Ground
	Half Gauge
	Hermitian Transpose
	Hit Crossing
	Hit Scheduler
	Horizontal Gauge
	Horizontal Slider
	IC
	Identity Matrix
	If
	If Action Subsystem
	In Bus Element
	Increment Real World
	Increment Stored Integer
	Index Vector
	Initialize Function
	Inport
	Integer to Bit Converter
	Integrator
	Integrator Limited
	Interpolation Using Prelookup
	Interpreted MATLAB Function
	Interval Test
	Interval Test Dynamic
	IsHermitian
	IsSymmetric
	IsTriangular
	Knob
	Knob
	Lamp
	Lamp
	Level-2 MATLAB S-Function
	Linear Gauge
	Logical Operator
	1-D Lookup Table
	2-D Lookup Table
	n-D Lookup Table
	Lookup Table Dynamic
	Magnitude-Angle to Complex
	Manual Switch
	Manual Variant Sink
	Manual Variant Source
	Math Function
	MATLAB Function
	MATLAB System
	Matrix Concatenate
	Matrix Square
	Memory
	Merge
	Entity Transport Delay
	Message Merge
	Receive
	Send
	Message Triggered Subsystem
	MinMax
	MinMax Running Resettable
	Model
	Model Info
	Multiport Switch
	MultiStateImage
	Mux
	Neighborhood
	Neighborhood Processing Subsystem
	Out Bus Element
	Outport
	Parameter Writer
	Permute Dimensions
	Permute Matrix
	PID Controller
	PID Controller (2DOF)
	Playback
	Polynomial
	Prelookup
	Probe
	Product, Matrix Multiply
	Product of Elements
	Propagation Delay
	Pulse Generator
	Push Button
	Push Button
	PWM
	Quantizer
	Quarter Gauge
	Queue
	Radio Button
	Ramp
	Random Number
	Rate Limiter
	Rate Limiter Dynamic
	Rate Transition
	Real-Imag to Complex
	Record, XY Graph
	Reinitialize Function
	Relational Operator
	Relay
	Repeating Sequence
	Repeating Sequence Interpolated
	Repeating Sequence Stair
	Reset
	Reset Function
	Resettable Delay
	Resettable Subsystem
	Reshape
	Rocker Switch
	Rocker Switch
	Rotary Switch
	Rotary Switch
	Rounding Function
	Saturation
	Saturation Dynamic
	Scan String
	Scope
	Second-Order Integrator
	Second-Order Integrator Limited
	Selector
	Sequence Viewer
	S-Function
	S-Function Builder
	Shift Arithmetic
	Sign
	Signal Conversion
	Signal Editor
	Signal Generator
	Signal Specification
	Simulink Function
	Sine, Cosine
	Sine Wave
	Sine Wave Function
	Slider
	Slider Gain
	Spectrum Analyzer
	Slider Switch
	Slider Switch
	Sqrt
	Squeeze
	State Reader
	State Writer
	State-Space
	Step
	Stop Simulation
	String Compare
	String Concatenate
	String Constant
	String Contains
	String Count
	String Find
	String Length
	String to ASCII
	String to Double
	String to Enum
	String to Single
	Submatrix
	Substring
	Subsystem
	Switch
	Switch Case
	Switch Case Action Subsystem
	Tapped Delay
	Terminate Function
	Terminator
	Timed-Based Linearization
	To File
	To Workspace
	Toggle Switch
	Toggle Switch
	To String
	Transfer Fcn
	Transfer Fcn Direct Form II
	Transfer Fcn Direct Form II Time Varying
	Transfer Fcn First Order
	Transfer Fcn Lead or Lag
	Transfer Fcn Real Zero
	Transport Delay
	Transpose
	Trigger
	Trigger-Based Linearization
	Triggered Subsystem
	Trigonometric Function
	Unary Minus
	Uniform Random Number
	Unit System Configuration
	Unit Conversion
	Unit Delay
	Variable Integer Delay
	Variable Pulse Generator
	Variable Time Delay
	Variable Transport Delay
	Variant Sink
	Variant Source
	Variant Subsystem, Variant Model, Variant Assembly Subsystem
	Vector Concatenate
	Vertical Gauge
	Vertical Slider
	Waveform Generator
	Weighted Sample Time
	Weighted Sample Time Math
	While Iterator
	While Iterator Subsystem
	Width
	Wrap To Zero
	Zero-Order Hold
	Zero-Pole

	Functions
	add_block
	add_exec_event_listener
	add_line
	add_param
	addterms
	attachConfigSet
	attachConfigSetCopy
	sltrace
	batchsim
	bdclose
	bdIsDirty
	bdIsLibrary
	bdIsLoaded
	bdroot
	dlinmod
	close_system
	closeDialog
	coder.allowpcode
	coder.ceval
	coder.cinclude
	coder.columnMajor
	coder.const
	coder.cstructname
	coder.extrinsic
	coder.ignoreConst
	coder.ignoreSize
	coder.inline
	coder.isColumnMajor
	coder.isRowMajor
	coder.load
	coder.nullcopy
	coder.opaque
	coder.ref
	coder.rowMajor
	coder.rref
	coder.screener
	coder.target
	coder.unroll
	coder.updateBuildInfo
	coder.varsize
	coder.wref
	configset.reference.getOverriddenParameters
	configset.reference.hasOverriddenParameters
	configset.reference.isParameterOverridden
	configset.reference.overrideParameter
	configset.reference.restoreAllOverriddenParameters
	configset.reference.restoreOverriddenParameter
	createCustomDBFromExcel
	createInputDataset
	coder.BuildConfig.getHardwareImplementation
	coder.BuildConfig.getStdLibInfo
	coder.BuildConfig.getTargetLang
	coder.BuildConfig.getToolchainInfo
	coder.BuildConfig.isCodeGenTarget
	coder.BuildConfig.isMatlabHostTarget
	coder.ExternalDependency.getDescriptiveName
	coder.ExternalDependency.isSupportedContext
	coder.ExternalDependency.updateBuildInfo
	coder.read
	coder.write
	convertToSLDataset
	delete_block
	delete_line
	delete_param
	dependencies.fileDependencyAnalysis
	dependencies.toolboxDependencyAnalysis
	depview
	detachConfigSet
	disableimplicitsignalresolution
	docblock
	edittime.getDisplayIssues
	edittime.setDisplayIssues
	find_mdlrefs
	find_system
	fixdt
	fixpt_evenspace_cleanup
	fixpt_look1_func_approx
	fixpt_look1_func_plot
	fixpt_set_all
	fixptbestexp
	fixptbestprec
	fmudialog.createBusType
	frameedit
	gcb
	gcbh
	gcbp
	gcs
	get_param
	getActiveConfigSet
	getCallbackAnnotation
	getConfigSet
	getConfigSets
	getCurrentAnnotation
	getfullname
	getInputString
	getRootInportMap
	getSimulinkBlockHandle
	getSlRootInportMap
	hdllib
	hilite_system
	isSimulinkStarted
	learning.simulink.launchOnramp
	legacy_code
	libinfo
	LibraryBrowser.LibraryBrowser2
	linmod
	linmod2
	linmodv5
	load_system
	loadIntoMemory
	lookupTableEditor
	modeladvisor
	modelfinder
	modelfinder.registerFolder
	modelfinder.unregisterFolder
	new_system
	open_system
	openDialog
	parsim
	polyspacePackNGo
	pslinkoptions
	rehashUnitDBs
	replace_block
	save_system
	set_param
	setActiveConfigSet
	shareMATLABForFMUCoSim
	showblockdatatypetable
	showunitslist
	signalbuilder
	signalEditor
	sim
	simplot
	simulink
	simulinkproject
	Simulink.allBlockDiagrams
	Simulink.architecture.add
	Simulink.architecture.config
	signalBuilderToSignalEditor
	Simulink.architecture.delete
	Simulink.architecture.find_system
	Simulink.architecture.get_param
	Simulink.architecture.importAndSelect
	Simulink.architecture.profile
	Simulink.architecture.register
	Simulink.Block.getInternalDataType
	Simulink.architecture.set_param
	Simulink.Block.getSampleTimes
	Simulink.BlockDiagram.addBusToVector
	Simulink.BlockDiagram.arrangeSystem
	Simulink.BlockDiagram.buildRapidAcceleratorTarget
	Simulink.BlockDiagram.copyContentsToSubsystem
	Simulink.BlockDiagram.createSubsystem
	Simulink.BlockDiagram.deleteContents
	Simulink.BlockDiagram.getAlgebraicLoops
	Simulink.BlockDiagram.expandSubsystem
	Simulink.BlockDiagram.getChecksum
	Simulink.BlockDiagram.getExecutionOrder
	Simulink.BlockDiagram.getInitialState
	Simulink.BlockDiagram.getSampleTimes
	Simulink.BlockDiagram.propagateConfigSet
	Simulink.BlockDiagram.refreshBlocks
	Simulink.BlockDiagram.restoreConfigSet
	Simulink.BlockDiagram.loadActiveConfigSet
	Simulink.BlockDiagram.saveActiveConfigSet
	Simulink.BlockDiagram.routeLine
	Simulink.Bus.addElementToPort
	Simulink.Bus.cellToObject
	Simulink.Bus.createMATLABStruct
	Simulink.Bus.createObject
	Simulink.Bus.objectToCell
	Simulink.Bus.save
	Simulink.clearIntEnumType
	Simulink.createFromTemplate
	Simulink.data.adapters.catalog
	Simulink.data.adapters.registerAdapter
	Simulink.data.adapters.unregisterAdapter
	Simulink.data.assigninGlobal
	Simulink.data.dictionary.cleanupWorkerCache
	Simulink.data.dictionary.closeAll
	Simulink.data.dictionary.create
	Simulink.data.dictionary.getOpenDictionaryPaths
	Simulink.data.dictionary.open
	Simulink.data.dictionary.setupWorkerCache
	Simulink.data.evalinGlobal
	Simulink.data.existsInGlobal
	Simulink.data.getEnumTypeInfo
	Simulink.data.isSupportedEnumClass
	Simulink.data.isSupportedEnumObject
	Simulink.defineIntEnumType
	Simulink.defaultModelTemplate
	Simulink.exportToTemplate
	Simulink.exportToVersion
	Simulink.history.clear
	Simulink.fileGenControl
	Simulink.findBlocks
	Simulink.findBlocksOfType
	Simulink.findIntEnumType
	Simulink.findTemplates
	Simulink.findVars
	Simulink.fmuexport.ExportSimulinkProjectToFMU
	Simulink.getFileChecksum
	Simulink.getOutportInheritsInitialValue
	Simulink.getSuppressedDiagnostics
	Simulink.ID.getHandle
	Simulink.ID.getSID
	Simulink.ID.hilite
	Simulink.importExternalCTypes
	Simulink.io.getFileTypeDiagnostics
	Simulink.LibraryDictionary.clear
	Simulink.LibraryDictionary.refresh
	Simulink.LibraryDictionary.resetLibraryLinks
	Simulink.Mask.ParameterCondition.addParameterCondition
	Simulink.Mask.ParameterCondition.getParameterCondition
	Simulink.Mask.ParameterCondition.removeAllParameterConditions
	Simulink.Mask.ParameterCondition.removeParameterCondition
	Simulink.Mask.PortConstraint.addPortConstraint
	addPortConstraintAssociation
	Simulink.Mask.PortConstraint.getPortConstraint
	getPortConstraintAssociation
	Simulink.Mask.PortConstraint.removeAllPortConstraints
	Simulink.Mask.PortConstraint.removePortConstraint
	Simulink.Mask.PortConstraintRule.removeRule
	Simulink.Mask.PortConstraintRule.setRule
	Simulink.Mask.PortIdentifier.addPortIdentifier
	Simulink.Mask.PortIdentifier.getPortIdentifier
	Simulink.Mask.PortIdentifier.removeAllPortIdentifiers
	Simulink.Mask.PortIdentifier.removePortIdentifier
	Simulink.MDLInfo.getDescription
	Simulink.MDLInfo.getMetadata
	Simulink.ModelAdvisor.getModelAdvisor
	Simulink.ModelAdvisor.openConfigUI
	Simulink.ModelAdvisor.reportExists
	Simulink.ModelReference.refresh
	removeAllPortConstraintAssociation
	removePortConstraintAssociation
	Simulink.ProtectedModel.createHarness
	Simulink.ProtectedModel.getPublisher
	Simulink.ProtectedModel.suppressSignatureVerification
	Simulink.ProtectedModel.verifySignature
	Simulink.restoreDiagnostic
	Simulink.saveVars
	simulink.schedule.createSchedule
	Simulink.sdi.addToRun
	Simulink.sdi.addTrigger
	Simulink.sdi.cleanupWorkerResources
	Simulink.sdi.clear
	Simulink.sdi.clearAllSubPlots
	Simulink.sdi.clearPreferences
	Simulink.sdi.close
	Simulink.sdi.compareRuns
	Simulink.sdi.compareSignals
	Simulink.sdi.copyRun
	Simulink.sdi.copyRunViewSettings
	Simulink.sdi.createRun
	Simulink.sdi.createRunOrAddToStreamedRun
	Simulink.sdi.deleteRun
	Simulink.sdi.deleteSignal
	Simulink.sdi.DiffRunResult.getLatest
	Simulink.sdi.enablePCTSupport
	Simulink.sdi.exportRun
	Simulink.sdi.getAllRunIDs
	Simulink.sdi.getAppendRunToTop
	Simulink.sdi.getArchiveRunLimit
	Simulink.sdi.getAutoArchiveMode
	Simulink.sdi.getBorderOn
	Simulink.sdi.getCurrentComparison
	Simulink.sdi.getCurrentSimulationRun
	Simulink.sdi.getCursorPositions
	Simulink.sdi.getDeleteRunsOnLowSpace
	Simulink.sdi.getGridOn
	Simulink.sdi.getMarkersOn
	Simulink.sdi.getMaxDiskUsage
	Simulink.sdi.getNumCursors
	Simulink.sdi.getPosition
	Simulink.sdi.getRecordData
	Simulink.sdi.getRequiredFreeSpace
	Simulink.sdi.getRun
	Simulink.sdi.getRunCount
	Simulink.sdi.getRunIDByIndex
	Simulink.sdi.getRunNamingRule
	Simulink.sdi.getSignal
	Simulink.sdi.getSignalInputProcessingMode
	Simulink.sdi.getStorageLocation
	Simulink.sdi.getStorageMode
	Simulink.sdi.getSubplotLimits
	Simulink.sdi.getTickLabelsDisplay
	Simulink.sdi.getTicksPosition
	Simulink.sdi.getTrigger
	Simulink.sdi.getUnitSystem
	Simulink.sdi.isPCTSupportEnabled
	Simulink.sdi.isValidRunID
	Simulink.sdi.load
	Simulink.sdi.loadView
	Simulink.sdi.markSignalForStreaming
	Simulink.sdi.registerCursorCallback
	Simulink.sdi.removeTrigger
	Simulink.sdi.report
	Simulink.sdi.resetRunNamingRule
	Simulink.sdi.Run.create
	Simulink.sdi.Run.getLatest
	Simulink.sdi.save
	Simulink.sdi.saveView
	Simulink.sdi.sendWorkerRunToClient
	Simulink.sdi.setAppendRunToTop
	Simulink.sdi.setArchiveRunLimit
	Simulink.sdi.setAutoArchiveMode
	Simulink.sdi.setBorderOn
	Simulink.sdi.setCursorOptions
	Simulink.sdi.setCursorPositions
	Simulink.sdi.setDeleteRunsOnLowSpace
	Simulink.sdi.setGridOn
	Simulink.sdi.setMarkersOn
	Simulink.sdi.setMaxDiskUsage
	Simulink.sdi.setNumCursors
	Simulink.sdi.setPosition
	Simulink.sdi.setRecordData
	Simulink.sdi.setRequiredFreeSpace
	Simulink.sdi.setRunNamingRule
	Simulink.sdi.setSignalInputProcessingMode
	Simulink.sdi.setStorageLocation
	Simulink.sdi.setStorageMode
	Simulink.sdi.setSubPlotLayout
	Simulink.sdi.setSubplotLimits
	Simulink.sdi.setTableGrouping
	Simulink.sdi.setTickLabelsDisplay
	Simulink.sdi.setTicksPosition
	Simulink.sdi.setUnitSystem
	Simulink.sdi.snapshot
	Simulink.sdi.unregisterCursorCallback
	Simulink.sdi.view
	Simulink.SFunctionBuilder.add
	Simulink.SFunctionBuilder.build
	Simulink.SFunctionBuilder.delete
	Simulink.SFunctionBuilder.generateCodeOnly
	Simulink.SFunctionBuilder.getBuildOptions
	Simulink.SFunctionBuilder.getSettings
	Simulink.SFunctionBuilder.getSFunctionName
	Simulink.SFunctionBuilder.getTargetLanguage
	Simulink.SFunctionBuilder.getUserCode
	Simulink.SFunctionBuilder.list
	Simulink.SFunctionBuilder.setBuildOptions
	Simulink.SFunctionBuilder.setSettings
	Simulink.SFunctionBuilder.setSFunctionName
	Simulink.SFunctionBuilder.setTargetLanguage
	Simulink.SFunctionBuilder.setUserCode
	Simulink.SFunctionBuilder.update
	Simulink.SimulationData.createStructOfTimeseries
	Simulink.SimulationData.DatasetRef.getDatasetVariableNames
	Simulink.SimulationData.forEachTimeseries
	Simulink.SimulationData.ModelLoggingInfo.createFromModel
	Simulink.SubSystem.convertToModelReference
	Simulink.SubSystem.copyContentsToBlockDiagram
	Simulink.SubSystem.deleteContents
	Simulink.SubSystem.getChecksum
	Simulink.SubsystemReference.convertAllSubsystemReferenceBlocksToSubsystem
	Simulink.SubsystemReference.convertSubsystemReferenceBlockToSubsystem
	Simulink.SubsystemReference.convertSubsystemToSubsystemReference
	Simulink.SubsystemReference.generateSignatures
	Simulink.SubsystemReference.getActiveInstances
	Simulink.SubsystemReference.getAllDirtyInstances
	Simulink.SubsystemReference.getAllInstances
	Simulink.SubsystemReference.getAllReferencedSubsystemBlockDiagrams
	Simulink.SubsystemReference.getNearestParentSubsystemReferenceBlock
	Simulink.SubsystemReference.getSystemOwningTheLock
	Simulink.SubsystemReference.getUnitTestNames
	Simulink.SubsystemReference.isSystemLocked
	Simulink.SubsystemReference.removeSignatures
	Simulink.SubsystemReference.showSignatureDiffDialogForSS
	Simulink.SubsystemReference.showSignatureDiffDialogForUnitTests
	Simulink.suppressDiagnostic
	addChoice
	getChoice
	removeChoice
	setChoice
	slblocksearchdb.trainfrommodel
	slblocksearchdb.trainfrommodelsindir
	slblocksearchdb.untrainall
	slblocksearchdb.untrainmodel
	slblocksearchdb.untrainmodelsindir
	slbuild
	slCharacterEncoding
	slConvertCustomMenus
	slCreateToolstripComponent
	slCreateToolstripTab
	sldebug
	slDestroyToolstripComponent
	sldiagnostics
	sldiagviewer.createStage
	sldiagviewer.diary
	sldiagviewer.reportError
	sldiagviewer.reportInfo
	sldiagviewer.reportWarning
	sldiagviewer.reportSimulationMetadataDiagnostics
	sldiscmdl
	slEditToolstripAction
	slEditToolstripCommand
	slEditToolstripIcon
	slEditToolstripWidget
	slExportFavoriteCommands
	slexpr
	slImportFavoriteCommands
	slIsFileChangedOnDisk
	slLibraryBrowser
	slLoadedToolstripComponents
	slmdldiscui
	slPersistToolstripComponent
	slprofreport
	slproject.create
	slproject.getCurrentProject
	slproject.getCurrentProjects
	slproject.loadProject
	sl_refresh_customizations
	slReloadToolstripConfig
	slResetFavoriteCommands
	slsim.allowedModelChanges
	slToolstripDeveloperMode
	slxcinfo
	slxcunpack
	solverprofiler.profileModel
	start_simulink
	stringtype
	trim
	tunablevars2parameterobjects
	Upgrade Advisor
	view_mdlrefs
	Simulink.Mask.CrossPortConstraints.addCrossPortConstraint
	Simulink.Mask.CrossPortConstraint.getCrossPortConstraint
	Simulink.Mask.CrossPortConstraint.removeCrossPortConstraint
	Simulink.Mask.CrossPortConstraint.removeAllCrossPortConstraints
	Simulink.Mask.Constraints.convertMatToXML
	addConstraint
	saveConstraints
	removeConstraint

	Mask Icon Drawing Commands
	color
	disp
	dpoly
	droots
	fprintf
	image
	patch
	plot
	port_label
	text
	block_icon

	Simulink Debugger Commands
	ashow
	atrace
	bafter
	break
	bshow
	clear
	continue
	disp
	ebreak
	elist
	emode
	etrace
	help
	nanbreak
	next
	probe
	quit
	rbreak
	run
	slist
	states
	status
	step
	stimes
	stop
	strace
	systems
	tbreak
	trace
	undisp
	untrace
	where
	xbreak
	zcbreak
	zclist

	Classes
	coder.BuildConfig
	coder.ExternalDependency
	eventData
	io.reader
	io.reader.getChildren
	io.reader.getDataValues
	io.reader.getName
	io.reader.getRegisteredFileReaders
	io.reader.getRegisteredWorkspaceReaders
	io.reader.getSupportedReadersForFile
	io.reader.getTimeValues
	io.reader.registerFileReader
	io.reader.registerWorkspaceReader
	io.reader.supportsFile
	io.reader.supportsVariable
	io.reader.unregisterFileReader
	io.reader.unregisterWorkspaceReader
	matlab.io.datastore.sdidatastore
	matlab.io.datastore.sdidatastore.hasdata
	matlab.io.datastore.sdidatastore.preview
	matlab.io.datastore.sdidatastore.read
	matlab.io.datastore.sdidatastore.readall
	matlab.io.datastore.sdidatastore.reset
	matlab.io.datastore.SimulationDatastore
	matlab.io.datastore.SimulationDatastore.hasdata
	matlab.io.datastore.SimulationDatastore.isPartitionable
	matlab.io.datastore.SimulationDatastore.isShuffleable
	matlab.io.datastore.SimulationDatastore.preview
	matlab.io.datastore.SimulationDatastore.progress
	matlab.io.datastore.SimulationDatastore.read
	matlab.io.datastore.SimulationDatastore.readall
	matlab.io.datastore.SimulationDatastore.reset
	matlab.System.allowModelReferenceDiscreteSampleTimeInheritanceImpl
	matlab.System.getInputNamesImpl
	matlab.System.getOutputNamesImpl
	matlab.System.getPropertyGroupsImpl
	matlab.System.getSimulateUsingImpl
	matlab.System.getSimulinkFunctionNamesImpl
	matlab.system.getInterfaceImpl
	matlab.System.showFiSettingsImpl
	matlab.System.showSimulateUsingImpl
	matlab.System.getGlobalNamesImpl
	matlab.System.getHeaderImpl
	matlab.System.getDiscreteStateImpl
	matlab.System.supportsMultipleInstanceImpl
	matlab.System.processTunedPropertiesImpl
	matlab.system.mixin.CustomIcon
	matlab.system.getIconImpl
	matlab.system.display.Header
	matlab.system.display.Section
	matlab.system.display.Action
	matlab.system.display.SectionGroup
	matlab.system.display.Icon
	matlab.system.mixin.Propagates
	matlab.system.getDiscreteStateSpecificationImpl
	matlab.system.getOutputDataTypeImpl
	matlab.System.getOutputSizeImpl
	matlab.system.isOutputComplexImpl
	matlab.system.isOutputFixedSizeImpl
	matlab.system.propagatedInputComplexity
	matlab.system.propagatedInputDataType
	matlab.system.propagatedInputFixedSize
	matlab.system.propagatedInputSize
	matlab.system.mixin.Nondirect
	matlab.System.isInputDirectFeedthroughImpl
	matlab.system.outputImpl
	matlab.system.updateImpl
	matlab.system.mixin.SampleTime
	matlab.system.getSampleTimeImpl
	matlab.system.getSampleTime
	matlab.system.getCurrentTime
	matlab.system.createSampleTime
	matlab.system.setNumTicksUntilNextHit
	ModelAdvisor.Preferences
	Simulink.BlockCompDworkData
	Simulink.BlockCompInputPortData
	Simulink.BlockCompOutputPortData
	Simulink.BlockData
	Simulink.BlockPortData
	Simulink.BlockPreCompInputPortData
	Simulink.BlockPreCompOutputPortData
	Simulink.Breakpoint
	Simulink.CodeImporter
	addToProject
	Simulink.CodeImporter.computeInterfaceHeaders
	import
	Simulink.CodeImporter.load
	parse
	Simulink.CodeImporter.save
	view
	Simulink.CodeImporter.CustomCode
	Simulink.CodeImporter.Function
	Simulink.CodeImporter.Options
	Simulink.CodeImporter.ParseInfo
	Simulink.CodeImporter.ParseInfo.getFunctions
	SimulinkPortSpecification
	Simulink.CodeImporter.SimulinkPortSpecification.getGlobalArg
	Simulink.data.adapters.BaseMatlabFileAdapter
	Simulink.data.adapters.BaseMatlabFileAdapter.close
	Simulink.data.adapters.BaseMatlabFileAdapter.getAdapterName
	Simulink.data.adapters.BaseMatlabFileAdapter.getCurrentChecksum
	Simulink.data.adapters.BaseMatlabFileAdapter.getData
	Simulink.data.adapters.BaseMatlabFileAdapter.getSectionNames
	Simulink.data.adapters.BaseMatlabFileAdapter.getSupportedExtensions
	Simulink.data.adapters.BaseMatlabFileAdapter.isSourceValid
	Simulink.data.adapters.BaseMatlabFileAdapter.open
	Simulink.data.adapters.BaseMatlabFileAdapter.supportsReading
	Simulink.dialog.Button
	Simulink.dialog.Container
	Simulink.dialog.Container.addDialogControl
	Simulink.dialog.Container.getDialogControl
	Simulink.dialog.Container.removeDialogControl
	Simulink.dialog.Control
	Simulink.dialog.Group
	Simulink.dialog.Hyperlink
	Simulink.dialog.Image
	Simulink.dialog.ListboxControl
	getSelectedItems
	setSelectedItems
	Simulink.dialog.LookupTableControl
	Simulink.dialog.LookupTableControl.Breakpoints
	
	Simulink.dialog.Panel
	Simulink.dialog.parameter.Control
	Simulink.dialog.parameter.CustomTable
	addColumn
	addRow
	getChangedCells
	getColumn
	getNumberOfColumns
	getNumberOfRows
	getSelectedRows
	getTableCell
	getValue
	insertColumn
	insertRow
	removeColumn
	removeRow
	setTableCell
	swapRows
	Simulink.dialog.Tab
	Simulink.dialog.TabContainer
	Simulink.dialog.Text
	Simulink.dialog.TreeControl
	setSelectedItems (Tree Control)
	getSelectedItems (Tree Control)
	Simulink.GlobalDataTransfer
	Simulink.io.BaseWorkspace
	Simulink.io.FileType
	Simulink.io.FileType.exportImpl
	Simulink.io.FileType.getFileTypeDescription
	Simulink.io.FileType.isFileSupported
	Simulink.io.FileType.isInput
	Simulink.io.FileType.isSimulinkParameter
	Simulink.io.FileType.loadAVariableImpl
	Simulink.io.FileType.loadImpl
	Simulink.io.FileType.validateFileNameImpl
	Simulink.io.FileType.whosImpl
	Simulink.io.MatFile
	Simulink.io.ModelWorkspace
	Simulink.io.PluggableNamespace
	Simulink.io.SignalBuilderSpreadsheet
	Simulink.io.SLDVMatFile
	Simulink.LookupTable
	Simulink.lookuptable.Breakpoint
	Simulink.lookuptable.Evenspacing
	Simulink.lookuptable.StructTypeInfo
	Simulink.lookuptable.Table
	Simulink.Mask
	Simulink.Mask.addCrossParameterConstraint
	Simulink.Mask.addDialogControl
	Simulink.Mask.addParameter
	Simulink.Mask.addParameterConstraint
	Simulink.Mask.copy
	Simulink.Mask.create
	Simulink.Mask.delete
	Simulink.Mask.get
	Simulink.Mask.getAssociatedParametersOfConstraint
	Simulink.Mask.getCrossParameterConstraint
	Simulink.Mask.getDialogControl
	Simulink.Mask.getOwner
	Simulink.Mask.getParameter
	Simulink.Mask.getParameterConstraint
	Simulink.Mask.getWorkspaceVariables
	Simulink.Mask.numParameters
	Simulink.Mask.ParameterCondition
	Simulink.Mask.PortConstraintRule
	Simulink.Mask.PortConstraint
	Simulink.Mask.PortIdentifier
	Simulink.Mask.removeAllCrossParameterConstraints
	Simulink.Mask.removeAllParameterConstraints
	Simulink.Mask.removeAllParameters
	Simulink.Mask.removeCrossParameterConstraint
	Simulink.Mask.removeDialogControl
	Simulink.Mask.removeParameter
	Simulink.Mask.removeParameterConstraint
	Simulink.Mask.set
	Simulink.Mask.Constraints
	Simulink.Mask.Constraints.addParameterConstraintRule
	Simulink.Mask.Constraints.removeParameterConstraintRule
	Simulink.Mask.EnumerationBase
	Simulink.Mask.EnumerationTypeOptions
	Simulink.MaskParameter
	Simulink.MaskParameter.set
	Simulink.MSFcnRunTimeBlock
	Simulink.RunTimeBlock
	Simulink.SampleTime
	simulink.schedule.OrderedSchedule
	Simulink.sdi.constraints.MatchesSignal
	Simulink.sdi.constraints.MatchesSignalOptions
	Simulink.sdi.DatasetRef
	Simulink.sdi.DatasetRef.compare
	Simulink.sdi.DatasetRef.getAsDatastore
	Simulink.sdi.DatasetRef.getElement
	Simulink.sdi.DatasetRef.getElementNames
	Simulink.sdi.DatasetRef.getSignal
	Simulink.sdi.DatasetRef.plot
	Simulink.sdi.WorkerRun
	Simulink.sdi.WorkerRun.getDataset
	Simulink.sdi.WorkerRun.getDatasetRef
	Simulink.sdi.WorkerRun.getLatest
	Simulink.sdi.WorkerRun.getLocalRun
	Simulink.sfunction.Analyzer
	Simulink.sfunction.analyzer.findSfunctions
	Simulink.sfunction.Analyzer.generateReport
	Simulink.sfunction.Analyzer.run
	Simulink.sfunction.analyzer.BuildInfo
	Simulink.sfunction.analyzer.Options
	Simulink.Simulation.BlockParameter
	Simulink.Simulation.Future
	cancel
	fetchNext
	fetchOutputs
	wait
	Simulink.Simulation.Job
	cancel
	diary
	fetchOutputs
	getSimulationJobs
	listAutoAttachedFiles
	wait
	Simulink.Simulation.Variable
	Simulink.SimulationData.BlockPath
	Simulink.SimulationData.DataStoreMemory
	plot
	Simulink.SimulationData.State
	Simulink.SimulationData.Unit
	Simulink.SimulationData.Unit.setName
	Simulink.SimulationMetadata
	sldiagviewer
	Simulink.SuppressedDiagnostic
	Simulink.SuppressedDiagnostic.Restore
	Simulink.SuppressedDiagnostic.suppress
	Simulink.Variant
	Simulink.VariantBank
	Simulink.VariantBankCoderInfo
	Simulink.VariantConfigurationAnalysis
	Simulink.VariantConfigurationAnalysis.getActiveBlocks
	Simulink.VariantConfigurationAnalysis.getAlwaysActiveBlocks
	Simulink.VariantConfigurationAnalysis.getBlockDifferences
	Simulink.VariantConfigurationAnalysis.getDependentLibraries
	Simulink.VariantConfigurationAnalysis.getDependentModels
	Simulink.VariantConfigurationAnalysis.getNeverActiveBlocks
	Simulink.VariantConfigurationAnalysis.getVariantCondition
	Simulink.VariantConfigurationAnalysis.hideUI
	Simulink.VariantConfigurationAnalysis.showUI
	Simulink.VariantConfigurationData
	addComponentConfiguration
	addConfiguration
	addConstraint
	addControlVariables
	addCopyOfConfiguration
	Simulink.VariantConfigurationData.addSubModelConfigurations
	convertDefaultToPreferred
	getConfiguration
	Simulink.VariantConfigurationData.getDefaultConfiguration
	getFor
	getPreferredConfiguration
	removeComponentConfiguration
	removeConfiguration
	removeConstraint
	removeControlVariable
	Simulink.VariantConfigurationData.removeSubModelConfiguration
	Simulink.VariantConfigurationData.setDefaultConfigurationName
	setPreferredConfiguration
	validateModel
	Simulink.VariantControl
	Simulink.VariantManager
	Simulink.VariantManager.activateModel
	Simulink.VariantManager.applyConfiguration
	Simulink.VariantManager.convertToVariantAssemblySubsystem
	Simulink.VariantManager.convertToVariant
	Simulink.VariantManager.findVariantControlVars
	Simulink.VariantManager.generateConfigurations
	Simulink.VariantManager.getConfigurationData
	Simulink.VariantManager.getPreferredConfigurationName
	Simulink.VariantManager.reduceModel
	Simulink.VariantManager.variantLegend
	Simulink.VariantVariable
	Simulink.SubsystemReference
	Simulink.Mask.CrossPortConstraint
	Simulink.Mask.SharedConstraintFile

	Model and Block Parameters
	Programmatic Model Editor Appearance Parameters
	Internal Programmatic Model Settings
	Common Block Properties
	Examples of Setting Block Properties

	Block-Specific Parameters
	Programmatic Parameters of Blocks and Models
	Block-Specific Parameters and Programmatic Equivalents

	Mask Parameters
	About Mask Parameters

	Tools and Apps
	Breakpoints List
	Create Signal
	MATLAB Function Block Editor
	Finder
	Instrumentation Properties
	Library Browser
	Library Browser in Standalone Mode
	Model Data Editor
	Model Explorer
	Model Reference Conversion Advisor
	Multiple Simulations
	Performance Advisor
	Property Inspector
	Referenced Files Pane
	Root Inport Mapper
	Schedule Editor
	Sequence Viewer
	Signal Editor
	Signal Logging Selector
	Signal Properties
	Simulation Data Inspector
	Simulation Manager
	Simulation Stepping Options
	Simulink Editor
	Simulink Fundamentals
	Simulink Onramp
	Simulink Preferences
	Simulink Profiler
	Solver Profiler
	State Explorer
	Type Editor
	Zero Crossing Explorer

	Objects
	LibraryBrowser.LBStandalone
	getPosition
	hide
	refresh
	setPosition
	show
	Stateflow.EMChart
	Simulink.AliasType
	Simulink.Annotation
	delete
	setImage
	view
	Simulink.BlockPath
	convertToCell
	getBlock
	getLength
	open
	validate
	Simulink.Bus
	getLeafBusElements
	getNumLeafBusElements
	Simulink.BusElement
	Simulink.CoderInfo
	Simulink.ConfigSet
	Simulink.ConfigSetRef
	copy
	Symbol
	SymbolSpec
	addSymbol
	getSymbol
	deleteSymbol
	Simulink.ConnectionBus
	Simulink.ConnectionElement
	FunctionPortSpecification
	getGlobalArg
	Simulink.data.adapters.AdapterDataTester
	clear
	readFromSource
	Simulink.data.DataSourceWorkspace
	clearAllVariables
	clearVariables
	getVariable
	getVariables
	hasVariables
	listVariables
	run
	setVariable
	setVariables
	Simulink.data.Dictionary
	addDataSource
	close
	discardChanges
	exportToVersion
	filepath
	getSection
	hide
	importEnumTypes
	importFromBaseWorkspace
	listEntry
	removeDataSource
	saveChanges
	show
	Simulink.data.dictionary.Entry
	deleteEntry
	discardChanges
	find
	getValue
	setValue
	showChanges
	Simulink.data.dictionary.EnumTypeDefinition
	appendEnumeral
	removeEnumeral
	Simulink.data.dictionary.Section
	addEntry
	assignin
	deleteEntry
	evalin
	exist
	exportToFile
	find
	getEntry
	importFromFile
	Simulink.DualScaledParameter
	simulink.event.InputWrite
	simulink.event.InputWriteLost
	simulink.event.InputWriteTimeout
	Simulink.FindOptions
	Simulink.HMI.InstrumentedSignals
	Simulink.HMI.ParamSourceInfo
	Simulink.HMI.SignalSpecification
	MATLABFunctionConfiguration
	closeReport
	getReport
	openReport
	MATLABFunctionReport
	Simulink.MDLInfo
	Simulink.ModelAdvisor
	closeReport
	deselectCheck
	deselectCheckAll
	deselectCheckForGroup
	deselectCheckForTask
	deselectTask
	deselectTaskAll
	displayReport
	exportReport
	filterResultWithExclusion
	getBaselineMode
	getCheckAll
	getCheckForGroup
	getCheckForTask
	getCheckResult
	getCheckResultData
	getCheckResultStatus
	getGroupAll
	getInputParameters
	getListViewParameters
	getSelectedCheck
	getSelectedSystem
	getSelectedTask
	getTaskAll
	runCheck
	runTask
	selectCheck
	selectCheckAll
	selectCheckForGroup
	selectCheckForTask
	selectTask
	selectTaskAll
	setActionEnable
	setBaselineMode
	setCheckErrorSeverity
	setCheckResult
	setCheckResultData
	setCheckResultStatus
	setInputParameters
	setListViewParameters
	verifyCheckRan
	verifyCheckResult
	verifyCheckResultStatus
	verifyHTML
	Simulink.ModelDataLogs
	convertToDataset
	unpack
	who
	whos
	Simulink.ModelWorkspace
	assignin
	clear
	evalin
	getVariable
	getVariablePart
	hasVariable
	reload
	save
	saveToSource
	setVariablePart
	whos
	Simulink.NumericType
	isboolean
	isdouble
	isfixed
	isfloat
	ishalf
	isscalingbinarypoint
	isscalingslopebias
	isscalingunspecified
	issingle
	Simulink.op.ModelOperatingPoint
	get
	set
	Simulink.Parameter
	Simulink.profiler.Data
	Simulink.sdi.CustomSnapshot
	clearSignals
	plotComparison
	plotOnSubPlot
	snapshot
	Simulink.sdi.DiffRunResult
	getResultByIndex
	getResultsByName
	saveResult
	Simulink.sdi.DiffSignalResult
	Simulink.sdi.Run
	add
	export
	getAllSignalIDs
	getAllSignals
	getDatasetRef
	getSignalByIndex
	getSignalIDByIndex
	getSignalIDsByName
	getSignalsByName
	isValidSignalID
	Simulink.sdi.Signal
	collapse
	convertDataType
	convertToFrames
	convertUnits
	expand
	export
	getAsTall
	plotOnSubPlot
	Simulink.Signal
	Simulink.SimulationData.Dataset
	addElement
	concat
	exportToPreviousRelease
	extractTimetable
	find
	get
	getElementNames
	numElements
	plot
	setElement
	removeElement
	Simulink.SimulationData.DatasetRef
	getAsDatastore
	Simulink.SimulationData.LoggingInfo
	Simulink.SimulationData.ModelLoggingInfo
	findSignal
	getLogAsSpecifiedInModel
	setLogAsSpecifiedInModel
	verifySignalAndModelPaths
	Simulink.SimulationData.Parameter
	Simulink.SimulationData.Signal
	Simulink.SimulationData.SignalLoggingInfo
	Simulink.SimulationInput
	applyToModel
	loadVariablesFromMATFile
	loadVariablesFromExternalSource
	removeVariable
	setBlockParameter
	setExternalInput
	setInitialState
	setModelParameter
	setPostSimFcn
	setPreSimFcn
	setVariable
	showContents
	validate
	Simulink.SimulationOutput
	find
	get
	getSimulationMetadata
	removeProperty
	setUserData
	setUserString
	who
	sltrace.Graph
	highlight
	removeHighlight
	Simulink.SubsysDataLogs
	Simulink.TimeInfo
	Simulink.Timeseries
	Simulink.TSArray
	Simulink.ValueType
	Simulink.VariableUsage
	intersect
	setdiff
	union
	Simulink.WorkspaceVar
	TimeScopeConfiguration

	Model Advisor Checks
	Simulink Checks
	Simulink Check Overview
	Migrating to Simplified Initialization Mode Overview
	Identify unconnected lines, input ports, and output ports
	Check root model Inport block specifications
	Check optimization settings
	Check diagnostic settings ignored during accelerated model reference simulation
	Check for parameter tunability information ignored for referenced models
	Check for implicit signal resolution
	Check for optimal bus virtuality
	Check for Discrete-Time Integrator blocks with initial condition uncertainty
	Identify disabled library links
	Check for large number of function arguments from virtual bus across model reference boundary
	Identify parameterized library links
	Identify unresolved library links
	Identify configurable subsystem blocks for converting to variant subsystem blocks
	Identify Variant Model blocks and convert those to Variant Subsystem containing Model block choices
	Identify Variant blocks using Variant objects with empty conditions
	Check usage of function-call connections
	Check Data Store Memory blocks for multitasking, strong typing, and shadowing issues
	Check if read/write diagnostics are enabled for data store blocks
	Check data store block sample times for modeling errors
	Check for potential ordering issues involving data store access
	Check structure parameter usage with bus signals
	Check Delay, Unit Delay and Zero-Order Hold blocks for rate transition
	Check for calls to slDataTypeAndScale
	Check bus signals treated as vectors
	Check for potentially delayed function-call subsystem return values
	Identify block output signals with continuous sample time and non-floating point data type
	Check usage of Merge blocks
	Check usage of Outport blocks
	Check usage of Discrete-Time Integrator blocks
	Check model settings for migration to simplified initialization mode
	Check S-functions in the model
	Check for non-continuous signals driving derivative ports
	Runtime diagnostics for S-functions
	Identify unit mismatches in the model
	Identify automatic unit conversions in the model
	Identify disallowed unit systems in the model
	Identify undefined units in the model
	Identify ambiguous units in the model
	Check model for block upgrade issues
	Check model for block upgrade issues requiring compile time information
	Check if SLX file compression is off
	Check that the model or library is saved in current version
	Check model for SB2SL blocks
	Check Model History properties
	Identify Model Info blocks that can interact with external source control tools
	Check model for upgradable SerDes Toolbox blocks
	Check model for legacy 3DoF or 6DoF blocks
	Check model for Aerospace Blockset navigation blocks
	Check and update masked blocks in library to use promoted parameters
	Check and update mask image display commands with unnecessary imread() function calls
	Check and update mask to affirm icon drawing commands dependency on mask workspace
	Identify masked blocks that specify tabs in mask dialog using MaskTabNames parameter
	Identify questionable operations for strict single-precision design
	Check get_param calls for block CompiledSampleTime
	Check if all simulation outputs are returned as a single Simulink.SimulationOutput object
	Check model for parameter initialization and tuning issues
	Check for virtual bus across model reference boundaries
	Check model for custom library blocks that rely on frame status of the signal
	Check model for S-function upgrade issues
	Update System object syntax
	Check Rapid accelerator signal logging
	Check virtual bus inputs to blocks
	Check for root outports with constant sample time
	Analyze model hierarchy and continue upgrade sequence
	Check Access to Data Stores
	Check relative execution orders for Data Store Read and Data Store Write blocks
	Check for case mismatches in references to models and libraries
	Check model for Signal Builder blocks
	Check output dimensions of MATLAB Function blocks
	Check model for RF Blockset Divider blocks using Wilkinson power divider component with broken connections
	Identify Environment Controller Blocks and Replace Them with Variant Source Blocks
	Identify variant blocks with VariantActivation set to "Inherit From Simulink.VariantControl" but does not use Simulink.VariantControl
	Check for machine-parented data
	Identify clones from the linked library
	Refactor Bus Selector and Bus Creator blocks to In Bus Element and Out Bus Element blocks

	Performance Advisor Checks
	Simulink Performance Advisor Checks
	Simulink Performance Advisor Check Overview
	Baseline
	Checks that Require Update Diagram
	Checks that Require Simulation to Run
	Check Simulation Modes Settings
	Check Compiler Optimization Settings
	Check Hardware Acceleration Settings
	Create baseline
	Identify resource-intensive diagnostic settings
	Check optimization settings
	Identify inefficient lookup table blocks
	Check MATLAB System block simulation mode
	Identify Interpreted MATLAB Function blocks
	Identify simulation target settings
	Check model reference rebuild setting
	Identify Scope blocks
	Identify active instrumentation settings on the model
	Check model reference parallel build
	Check Delay block circular buffer setting
	Check continuous and discrete rate coupling
	Check zero-crossing impact on continuous integration
	Check discrete signals driving derivative port
	Check solver type selection
	Select multi-thread co-simulation setting on or off
	Identify co-simulation signals for numerical compensation
	Check Dataflow Domain Settings
	Select simulation mode
	Select compiler optimizations on or off
	Select hardware acceleration setting
	Final Validation

	Simulink Limits
	Maximum Size Limits of Simulink Models
	Systems and Models
	System
	System Component
	Model
	Model Component
	Differential Algebraic Equations

	Simulink Models
	Block Diagram
	Blocks
	Lines
	Data
	Parameters
	Properties
	State variables
	Sample Time
	Units
	Direct Feedthrough
	Algebraic Loop
	Artificial Algebraic Loops
	Zero-Crossing Detection

	Simulink Simulation
	Compilation
	Callback
	Execution Order
	Simulation
	Solver

	Simulink Tools
	Programming Constructs in Simulink
	Model Development Processes
	Test Harness

	What is Simulink Online?

	Block Reference Page Examples
	Function-Call Subsystems with Multiple Initiators
	Extract Output Elements of Feedback System
	Programmatically Create Bus Element Ports
	Manage Bus-to-Vector Conversions
	Initialize Your Model Using the Callback Button Block
	Control a Parameter Value with Callback Button Blocks
	Control the Duty Cycle of a PWM Signal Using Dashboard Blocks
	Control Merging Signals with the Push Button Block
	Tune the Relative Slip for an Anti-Lock Braking System
	Interactively Simulate a Vehicle Climate Control System
	Interactively Simulate a Thermal Model of a House
	Create a Realistic Dashboard Using the Circular Gauge Block
	Solve a Linear System of Algebraic Equations
	Model a Planar Pendulum
	Improved Linearization with Transfer Fcn Blocks
	View Dead Zone Output on Sine Wave
	View Backlash Output on Sine Wave
	Prelookup With External Breakpoint Specification
	Prelookup with Evenly Spaced Breakpoints
	Configure the Prelookup Block to Output Index and Fraction as a Bus
	Approximating the sinh Function Using the Lookup Table Dynamic Block
	Create a Logarithm Lookup Table
	Providing Table Data as an Input to the Direct Lookup Table Block
	Specifying Table Data in the Direct Lookup Table Block Dialog Box
	Using the Quantizer and Saturation blocks in sldemo_boiler
	Scalar Expansion with the Coulomb and Viscous Friction Block
	Sum Block Reorders Inputs
	Iterated Assignment with the Assignment Block
	View Sample Time Using the Digital Clock Block
	Bit Specification Using a Positive Integer
	Bit Specification Using an Unsigned Integer Expression
	Track Running Minimum Value of Chirp Signal
	Unary Minus of Matrix Input
	Sample Time Math Operations Using the Weighted Sample Time Math Block
	Construct Complex Signal from Real and Imaginary Parts
	Construct Complex Signal from Magnitude and Phase Angle
	Find Nonzero Elements in an Array
	Calculate the Running Minimum Value with the MinMax Running Resettable Block
	Find Maximum Value of Input
	Permute Array Dimensions
	Multiply Inputs of Different Dimensions with the Product Block
	Multiply and Divide Inputs Using the Product Block
	Divide Inputs of Different Dimensions Using the Divide Block
	Complex Division Using the Product of Elements Block
	Element-Wise Multiplication and Division Using the Product of Elements Block
	sin Function with Floating-Point Input
	sincos Function with Fixed-Point Input
	Trigonometric Function Block Behavior for Complex Exponential Output
	Control Algorithm Execution Using Enumerated Signal
	Integer and Enumerated Data Type Support in the Ground Block
	Fixed-Point Data Type Support in the Ground Block
	Read 2-D Signals in Structure Format From Workspace
	Eliminate Singleton Dimension with the Squeeze Block
	Difference Between Time- and Sample-Based Pulse Generation
	Specify a Waveform with the Repeating Sequence Block
	Tune Phase Delay on Pulse Generator During Simulation
	Difference Sine Wave Signal
	Discrete-Time Derivative of Floating-Point Input
	First-Order Sample-and-Hold of a Sine Wave
	Calculate and Display Simulation Step Size using Memory and Clock Blocks
	Capture the Velocity of a Bouncing Ball with the Memory Block
	Implement a Finite-State Machine with the Combinatorial Logic and Memory Blocks
	Discrete-Time Integration Using the Forward Euler Integration Method
	Signal Routing with the From, Goto, and Goto Tag Visibility Blocks
	Zero-Based and One-Based Indexing with the Index Vector Block
	Noncontiguous Values for Data Port Indices of Multiport Switch Block
	Using Variable-Size Signals on the Delay Block
	Buses with the Delay Block for Frame-Based Processing
	Control Execution of Delay Block with Enable Port
	Zero-Based Indexing for Multiport Switch Data Ports
	One-Based Indexing for Multiport Switch Data Ports
	Enumerated Names for Data Port Indices of the Multiport Switch Block
	Prevent Block Windup in Multiloop Control
	Bumpless Control Transfer
	Bumpless Control Transfer with a Two-Degree-of-Freedom PID Controller
	Using a Bit Set block
	Using a Bit Clear block
	Two-Input AND Logic
	Circuit Logic
	Unsigned Inputs for the Bitwise Operator Block
	Signed Inputs for the Bitwise Operator Block
	Merge Block with Input from Atomic Subsystems
	Index Options with the Selector Block
	Switch Block with a Boolean Control Port Example
	Merge Block with Unequal Input Widths Example
	Detect Rising Edge of Signals
	Detect Falling Edge Using the Detect Fall Nonpositive Block
	Detect Increasing Signal Values with the Detect Increase Block
	Extract Bits from Stored Integer Value
	Detect Signal Values Within a Dynamically Specified Interval
	Model a Digital Thermometer Using the Polynomial Block
	Convert Data Types in Simulink Models
	Control Data Types with the Data Type Duplicate Block
	Probe Sample Time of a Signal
	Convert Signals Between Continuous Time and Discrete Time
	Remove Scaling from a Fixed-Point Signal
	Stop Simulation Block with Relational Operator Block
	Output Simulation Data with Blocks
	Increment and Decrement Real-World Values
	Increment and Decrement Stored Integer Values
	Specify a Vector of Initial Conditions for a Discrete Filter Block
	Generate Linear Models for a Rising Edge Trigger Signal
	Generate Linear Models at Predetermined Times
	Capture Measurement Descriptions in a DocBlock
	Square Root of Negative Values
	Signed Square Root of Negative Values
	rSqrt of Floating-Point Inputs
	rSqrt of Fixed-Point Inputs
	Model a Series RLC Circuit
	Detect Change in Signal Values
	Detect Fall to Negative Signal Values
	Detect Decreasing Signal Values
	Function-Call Blocks Connected to Branches of the Same Function-Call Signal
	Function-Call Feedback Latch on Feedback Signal Between Child and Parent
	Single Function-Call Subsystem
	Function-Call Subsystem with Merged Signal As Input
	Partitioning an Input Signal with the For Each Block
	Specifying the Concatenation Dimension in the For Each Block
	Working with the Initialize Function, Reset Function, and Terminate Function Blocks
	Reading and Writing States with the Initialize Function and Terminate Function Blocks
	Use Parameter Writer Block to Change Parameter of Block Inside Referenced Model
	Use Parameter Writer Block to Change Block Parameters
	PWM Control of a Boost Converter
	Voltage Controlled Oscillator
	Check Signal Lower Bound with Check Dynamic Lower Bound Block
	Check Signal Upper Bound with Check Dynamic Upper Bound Block
	Check Signal Lower Bound with Check Static Lower Bound Block
	Check Signal Range with Check Static Range Block
	Check Signal Upper Bound with Check Static Upper Bound Block
	Check Signal Slope with Check Discrete Gradient Block
	Check Signal Value with Check Dynamic Gap Block
	Check Signal Value with Check Static Gap Block
	Check Signal Range with Check Dynamic Range Block
	Check Signal Resolution with Check Input Resolution Block
	Generate Unit-Diagonal and Identity Matrices
	Extract 3-by-2 Submatrix from Input Signal
	Generate Diagonal Matrix from Vector Input
	Permute Matrix by Row or Column
	Extract Diagonal of Matrix
	Calculate Optical Flow by Using Neighborhood Processing Subsystem Blocks
	Perform Fog Rectification by Using Neighborhood Processing Subsystem Blocks
	Perform Corner Detection by Using Neighborhood Processing Subsystem Blocks
	Convert RGB Image to Grayscale by Using a Neighborhood Processing Subsystem Block
	Perform Edge Detection by Using a Neighborhood Processing Subsystem Block
	Model Constant Propagation Delay
	Model Variable Propagation Delay
	Schedule When Traffic Camera Takes Snapshot
	Model Effect of Temperature and Jitter on Crystal Oscillation Frequency
	Behavior of Right Bit Shifts
	Effect of Binary Point Shifts
	Sign Block Behavior for Real Inputs
	Sign Block Behavior for Complex Issues
	Working with the Reinitialize Function Block

	Simulink Featured Examples
	Simulation of Bouncing Ball
	Single Hydraulic Cylinder Simulation
	Thermal Model of a House
	Approximating Nonlinear Relationships: Type S Thermocouple
	Digital Waveform Generation: Approximating a Sine Wave
	Simulate DC Motor Step Response Using Local Solver
	Accurate Zero-Crossing Detection
	Spiral Galaxy Formation Simulation Using MATLAB Function Blocks
	Counters Using Conditionally Executed Subsystems
	Friction Model with Hard Stops
	State Events
	Bang-Bang Control Using Temporal Logic
	Inverted Pendulum with Animation
	Double Spring Mass System
	Tank Fill and Empty with Animation
	Simulating Systems with Variable Transport Delay Phenomena
	Modeling a Foucault Pendulum
	Foucault Pendulum Model with VRML Visualization
	Explore Variable-Step Solvers with Stiff Model
	Exploring the Solver Jacobian Structure of a Model
	Double Bouncing Ball: Use of Adaptive Zero-Crossing Location
	Four Hydraulic Cylinder Simulation
	Two Cylinder Model with Load Constraints
	Van der Pol Oscillator
	Model a Fault-Tolerant Fuel Control System
	Using a Data Dictionary to Manage the Data for a Fuel Control System
	Modeling Engine Timing Using Triggered Subsystems
	Engine Timing Model with Closed Loop Control
	Building a Clutch Lock-Up Model
	Modeling Clutch Lock-Up Using If Blocks
	Modeling an Anti-Lock Braking System
	Automotive Suspension
	Model an Automatic Transmission Controller
	Vehicle Electrical System
	Simulating Automatic Climate Control Systems
	Vehicle Electrical and Climate Control Systems
	Power Window Control Project
	Developing the Apollo Lunar Module Digital Autopilot
	Designing a High Angle of Attack Pitch Mode Control
	Six Degrees of Freedom (6-DoF) Motion Platform
	Aircraft Longitudinal Flight Control
	Simulink® Model Discretizer
	Radar Tracking Using MATLAB Function Block
	Optical Sensor Image Generation
	Air Traffic Control Radar Design
	Design a Guidance System in MATLAB and Simulink
	Airframe Trim and Linearize
	Anti-Windup Control Using PID Controller Block
	Bumpless Control Transfer Between Manual and PID Control
	Two Degree-of-Freedom PID Control for Setpoint Tracking
	Data Typing in Simulink
	Data Typing Filter
	Explore Simulink Bus Capabilities
	Model Arrays of Buses
	Matrix Signals
	Variable-Size Signal Basic Operations
	Variable-Size Signal Length Adaptation
	Multimode Variable-Size Signal
	Parallel Channel Power Allocation
	Merging Signals
	Share Data Store Between Instances of a Reusable Algorithm
	Attaching Input Data to External Inputs via Custom Input Mappings
	Using Mapping Modes with Custom-Mapped External Inputs
	Create Harness-Free Models with MAT File Input Data
	Logging States in Structure Format
	Logging Intervals
	Working with Big Data
	Simulink Subsystem Semantics
	If-Then-Else Blocks
	Triggered Subsystems
	Enabled Subsystems
	Advanced Enabled Subsystems
	Resettable Subsystems
	Discrete and Continuous Resettable Subsystems
	Block Priority
	Monitoring Ink Status on a Shared Printer Using Simulink Functions
	Model Reusable Components Using Multiply Instanced Simulink Functions
	Dynamic Priority Scheduling of Functions
	Component-Based Modeling with Model Reference
	Viewing Signals in Model Reference Instances
	Visualize Model Reference Hierarchies
	Perform Block-Level Impact Analysis Using Dependency Analyzer
	Introduction to Managing Data with Model Reference
	Interface Specification Using Bus Objects
	Convert Subsystem to Referenced Model
	Use Data Stores Across Multiple Models
	Model Reference Function-Call
	Explore Protected Model Capabilities
	Model Reference Variants
	Assign Tasks to Cores for Multicore Programming
	Implement an FFT on a Multicore Processor and an FPGA
	Multicore Programming of a Field-Oriented Control on Zynq
	Multicore Deployment of a Plant Model
	Modeling Objects with Identical Dynamics Using For Each Subsystem
	Vectorizing a Scalar Algorithm with a For Each Subsystem
	Tiled Processing of 2D Signals with For Each Subsystem
	Using a Project with SVN
	Using a Project with Git
	Get Started with MATLAB Projects
	Perform Impact Analysis with a Project
	Work with Referenced Projects
	Automate Label Management in a Project
	Run Custom Tasks with a Project
	Upgrade Simulink Models Using a Project
	Share Subset of Project Files Using Labels
	Create and Reference a Project Programmatically
	Organize Projects into Components Using References and Git Submodules
	Compare and Merge Simulink Models
	Compare and Merge Simulink Models Containing Stateflow
	Resolve Conflicts with Simulink Three-Way Merge
	Call C Functions Using C Caller Block
	Use Custom Image Filter Algorithms as Reusable Blocks in Simulink
	Custom Code and Hand Coded Blocks Using the S-function API
	Inputs Passed by Value or Address to Legacy Functions
	Output Passed by Return Argument from Legacy Functions
	Fixed Point Signals in Legacy Functions
	Fixed Point Parameters in Legacy Functions
	Lookup Tables Implemented in Legacy Functions
	Start and Terminate Actions Within Legacy Functions
	Using Buses with Legacy Functions Having Structure Arguments
	Inherited Signal Dimensions for Legacy Function Arguments
	C++ Object Methods as Legacy Functions
	Persistent Memory Within Legacy Functions
	Multi-Dimensional Signals in Legacy Functions
	Complex Signals in Legacy Function
	Specified or Inherited Sample Time with Legacy Functions
	Illustration of Law of Large Numbers
	Using Buses with MATLAB System Blocks
	Run Quality Checks on S-Functions
	Using the Prelookup and Interpolation Blocks
	Saving Memory in Prelookup and Interpolation Blocks by Using Smaller Data
	Model Advisor
	Introduction to Profiling Models
	Introduction to Accelerating Models
	Determine Why Simulink Accelerator Is Regenerating Code
	Parallel Simulations Using Parsim: Test-Case Sweep
	Parallel Simulations Using Parsim: Parameter Sweep in Normal Mode
	Parallel Simulations Using Parsim: Parameter Sweep in Rapid Accelerator Mode
	Rapid Accelerator Simulations Using Parsim
	Multiple Simulations Workflow Tips
	Streamline Simulink Blockset Authoring Process with Blockset Designer
	Import Co-Simulation FMU into Simulink
	Importing a Model Exchange FMU into Simulink
	Simplify Interface for Structured Data with FMU Import Block
	Co-Simulation Signal Compensation
	Using Numerical Compensation for Co-Simulation Integration
	Multithread Co-Simulation
	Pulse Width Modulation Using MATLAB System Block
	Modeling Cyber-Physical Systems
	Power Analysis of Spring Mass Damper System
	Schedule an Export-Function Model Using the Schedule Editor
	Graph-Based Multithread Simulation
	Find Shortest Control Path in Simulink Model
	Use Fixed-Step Zero-Crossing Detection for Faster Simulations

