Simulink®
Reference

<

MATLAB&SIMULINK

zzzzzz ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Reference
© COPYRIGHT 2002-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

July 2002

April 2003

April 2004

June 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022
March 2023

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Simulink 5 (Release 13)
Revised for Simulink 5.1 (Release 13SP1)

Revised for Simulink 5.1.1 (Release 13SP1+)

Revised for Simulink 6 (Release 14)

Revised for Simulink 6.1 (Release 14SP1)
Revised for Simulink 6.2 (Release 14SP2)
Revised for Simulink 6.3 (Release 14SP3)
Revised for Simulink 6.4 (Release 2006a)
Revised for Simulink 6.5 (Release 2006b)
Revised for Simulink 6.6 (Release 2007a)
Revised for Simulink 7.0 (Release 2007b)
Revised for Simulink 7.1 (Release 2008a)
Revised for Simulink 7.2 (Release 2008b)
Revised for Simulink 7.3 (Release 2009a)
Revised for Simulink 7.4 (Release 2009b)
Revised for Simulink 7.5 (Release 2010a)
Revised for Simulink 7.6 (Release 2010b)
Revised for Simulink 7.7 (Release 2011a)
Revised for Simulink 7.8 (Release 2011b)
Revised for Simulink 7.9 (Release 2012a)
Revised for Simulink 8.0 (Release 2012b)
Revised for Simulink 8.1 (Release 2013a)
Revised for Simulink 8.2 (Release 2013b)
Revised for Simulink 8.3 (Release 2014a)
Revised for Simulink 8.4 (Release 2014b)
Revised for Simulink 8.5 (Release 2015a)
Revised for Simulink 8.6 (Release 2015b)

Rereleased for Simulink 8.5.1 (Release 2015aSP1)

Revised for Simulink 8.7 (Release 2016a)
Revised for Simulink 8.8 (Release 2016b)
Revised for Simulink 8.9 (Release 2017a)
Revised for Simulink 9.0 (Release 2017b)
Revised for Simulink 9.1 (Release 2018a)
Revised for Simulink 9.2 (Release 2018b)
Revised for Simulink 9.3 (Release 2019a)
Revised for Simulink 10.0 (Release 2019b)
Revised for Simulink 10.1 (Release 2020a)
Revised for Simulink 10.2 (Release 2020b)
Revised for Simulink 10.3 (Release 2021a)
Revised for Simulink 10.4 (Release 2021b)
Revised for Simulink 10.5 (Release 2022a)
Revised for Simulink 10.6 (Release 2022b)
Revised for Simulink 10.7 (Release 2023a)

Contents

Blocks

1]

Functions

2|

Mask Icon Drawing Commands

3|

Simulink Debugger Commands

4

Classes

S|

Model and Block Parameters

6/

Programmatic Model Editor Appearance Parameters 6-2
Internal Programmatic Model Settings 6-9
Common Block Properties 6-12
Examples of Setting Block Properties 6-23
Block-Specific Parameters 6-24
Programmatic Parameters of Blocks and Models 6-24
Block-Specific Parameters and Programmatic Equivalents 6-24
Mask Parameters it 6-128
About Mask Parameters 6-128

Tools and Apps

7

Objects

Model Advisor Checks

Simulink Checks e 9-2
Simulink Check Overview it 9-4
Migrating to Simplified Initialization Mode Overview 9-4
Identify unconnected lines, input ports, and output ports 9-5
Check root model Inport block specifications 9-5
Check optimization settings 9-6

Check diagnostic settings ignored during accelerated model reference
simulation 9-8
Check for parameter tunability information ignored for referenced models

.. 9-9
Check for implicit signal resolution 9-9
Check for optimal bus virtuality 9-10
Check for Discrete-Time Integrator blocks with initial condition uncertainty

... 9-10
Identify disabled library links 9-11
Check for large number of function arguments from virtual bus across

model reference boundary o, 9-12
Identify parameterized library links 9-12
Identify unresolved library links 9-13
Identify configurable subsystem blocks for converting to variant subsystem

blocks . .. 9-14

Identify Variant Model blocks and convert those to Variant Subsystem
containing Model block choices 9
Identify Variant blocks using Variant objects with empty conditions 9-15
Check usage of function-call connections 9

Check Data Store Memory blocks for multitasking, strong typing, and

Shadowing iSSues it e 9-15
Check if read/write diagnostics are enabled for data store blocks 9-16
Check data store block sample times for modeling errors 9-17
Check for potential ordering issues involving data store access 9-18
Check structure parameter usage with bus signals 9-19
Check Delay, Unit Delay and Zero-Order Hold blocks for rate transition . 9-20
Check for calls to slDataTypeAndScale 9-22
Check bus signals treated as vectors 9-23
Check for potentially delayed function-call subsystem return values 9-23
Identify block output signals with continuous sample time and non-floating

pointdatatype 9-24
Check usage of Merge blocks i 9-25
Check usage of Outport blocks 9-27
Check usage of Discrete-Time Integrator blocks 9-34

vi Contents

Check model settings for migration to simplified initialization mode
Check S-functionsinthemodel
Check for non-continuous signals driving derivative ports
Runtime diagnostics for S-functions
Identify unit mismatchesinthemodel
Identify automatic unit conversions in the model
Identify disallowed unit systems inthemodel
Identify undefined unitsinthemodel
Identify ambiguous unitsinthemodel
Check model for block upgrade issuescovuvvn..
Check model for block upgrade issues requiring compile time information
Check if SIX file compressionisoff
Check that the model or library is saved in current version
Check model for SB2SL blocksoo ...
Check Model History properties,
Identify Model Info blocks that can interact with external source control
B00lS .« o
Check model for upgradable SerDes Toolbox blocks
Check model for legacy 3DoF or 6DoF blocks
Check model for Aerospace Blockset navigation blocks
Check and update masked blocks in library to use promoted parameters
Check and update mask image display commands with unnecessary
imread() functioncalls
Check and update mask to affirm icon drawing commands dependency on
mask WOrKSPacet
Identify masked blocks that specify tabs in mask dialog using
MaskTabNames parameter i ernnnn...
Identify questionable operations for strict single-precision design
Check get param calls for block CompiledSampleTime
Check if all simulation outputs are returned as a single
Simulink.SimulationOutput object
Check model for parameter initialization and tuning issues
Check for virtual bus across model reference boundaries
Check model for custom library blocks that rely on frame status of the
Signal
Check model for S-function upgrade issues
Update System object syntax
Check Rapid accelerator signal logging
Check virtual bus inputstoblocks
Check for root outports with constant sample time
Analyze model hierarchy and continue upgrade sequence
Check AccesstoDataStores
Check relative execution orders for Data Store Read and Data Store Write
BlOCKS . .
Check for case mismatches in references to models and libraries
Check model for Signal Builderblocks
Check output dimensions of MATLAB Function blocks
Check model for RF Blockset Divider blocks using Wilkinson power divider
component with broken connections
Identify Environment Controller Blocks and Replace Them with Variant
Source Blocks o
Identify variant blocks with VariantActivation set to "Inherit From
Simulink.VariantControl" but does not use Simulink.VariantControl . .
Check for machine-parenteddata

9-35
9-36
9-37
9-38
9-39
9-39
9-39
9-40
9-40
9-41

9-41
9-42
9-43
9-43
9-44

9-45
9-45
9-46
9-46

9-47

9-48

9-48

9-49
9-50
9-51

9-52
9-53
9-54

9-55
9-55
9-56
9-57
9-58
9-61
9-61
9-62

9-63
9-64
9-64
9-64

9-65

Identify clones from the linked library 9-69
Refactor Bus Selector and Bus Creator blocks to In Bus Element and Out
Bus Element blocks 9-70

Performance Advisor Checks

10

Simulink Performance Advisor Checks 10-2
Simulink Performance Advisor Check Overview 10-2
Baseline 10-3
Checks that Require Update Diagram 10-3
Checks that Require SimulationtoRun 10-3
Check Simulation Modes Settings 10-3
Check Compiler Optimization Settings 10-3
Check Hardware Acceleration Settings 10-3
Create baselinec..uui i 10-4
Identify resource-intensive diagnostic settings 10-4
Check optimization settings 10-4
Identify inefficient lookup table blocks 10-4
Check MATLAB System block simulationmode 10-5
Identify Interpreted MATLAB Function blocks 10-5
Identify simulation target settings 10-6
Check model reference rebuild setting 10-6
Identify Scope blocks 10-6
Identify active instrumentation settings on the model 10-6
Check model reference parallel build 10-7
Check Delay block circular buffer setting 10-8
Check continuous and discrete rate coupling 10-8
Check zero-crossing impact on continuous integration 10-9
Check discrete signals driving derivative port 10-9
Check solvertype selection i iininn... 10-9
Select multi-thread co-simulation settingonoroff 10-10
Identify co-simulation signals for numerical compensation 10-11
Check Dataflow Domain Settings 10-11
Select simulationmode 10-11
Select compiler optimizationsonoroff 10-12
Select hardware acceleration setting 10-12
Final Validation 10-13

Simulink Limits

11|

Maximum Size Limits of Simulink Models 11-2
Systemsand Models 11-3
SyS eI . .. e 11-3
System Component e 11-3
Model ... 11-3
Model Component e 11-4

viii Contents

Differential Algebraic Equations 11-5

Simulink Models 11-6
Block Diagram i e 11-6
Blocks 11-7
LinesS .o 11-10
Data .. e 11-11
Parameters 11-15
Properties e 11-17
State variables 11-21
Sample Time 11-24
Units oo 11-25
Direct Feedthrough 11-25
AlgebraiCc Loop oo e 11-26
Artificial Algebraic Loops 11-26
Zero-Crossing Detection i, 11-27

Simulink Simulation 11-28
Compilation 11-28
CallbacK . . e 11-29
Execution Order e 11-29
Simulation 11-30
SOIVET . . 11-30

Simulink Tools 11-33

Programming Constructs in Simulink 11-44

Model Development Processesccuuiiunn.. 11-46
Test HArness . .. oot e e 11-48

What is Simulink Online? 11-49

Block Reference Page Examples

12

Function-Call Subsystems with Multiple Initiators 12-6
Extract Output Elements of Feedback System 12-8
Programmatically Create Bus Element Ports 12-10
Manage Bus-to-Vector Conversions 12-16
Initialize Your Model Using the Callback Button Block 12-18
Control a Parameter Value with Callback Button Blocks 12-19

Control the Duty Cycle of a PWM Signal Using Dashboard Blocks 12-21

Control Merging Signals with the Push Button Block 12-23

ix

Tune the Relative Slip for an Anti-Lock Braking System 12-25

Interactively Simulate a Vehicle Climate Control System 12-27
Interactively Simulate a Thermal Model of a House 12-30
Create a Realistic Dashboard Using the Circular Gauge Block 12-32
Solve a Linear System of Algebraic Equations 12-35
Model a Planar Pendulum 12-36
Improved Linearization with Transfer Fcn Blocks 12-39
View Dead Zone Outputon SineWave 12-40
View Backlash OQutputon SineWave 12-41
Prelookup With External Breakpoint Specification 12-42
Prelookup with Evenly Spaced Breakpoints 12-43
Configure the Prelookup Block to Output Index and Fraction as a Bus
.. 12-44
Approximating the sinh Function Using the Lookup Table Dynamic Block
.. 12-45
Create a Logarithm Lookup Table 12-46
Providing Table Data as an Input to the Direct Lookup Table Block . . 12-47
Specifying Table Data in the Direct Lookup Table Block Dialog Box . . 12-48
Using the Quantizer and Saturation blocks in sldemo_boiler 12-49
Scalar Expansion with the Coulomb and Viscous Friction Block 12-50
Sum Block Reorders Inputs 12-51
Iterated Assignment with the Assignment Block 12-52
View Sample Time Using the Digital Clock Block 12-53
Bit Specification Using a Positive Integer 12-54
Bit Specification Using an Unsigned Integer Expression 12-55
Track Running Minimum Value of Chirp Signal 12-56
Unary Minus of MatrixInput 12-57
Sample Time Math Operations Using the Weighted Sample Time Math
Block 12-58

X Contents

Construct Complex Signal from Real and Imaginary Parts 12-59
Construct Complex Signal from Magnitude and Phase Angle 12-60
Find Nonzero Elementsinan Array 12-61

Calculate the Running Minimum Value with the MinMax Running

Resettable Block 12-62
Find Maximum Value of Input 12-64
Permute Array Dimensions 12-66
Multiply Inputs of Different Dimensions with the Product Block 12-67
Multiply and Divide Inputs Using the Product Block 12-68
Divide Inputs of Different Dimensions Using the Divide Block 12-69
Complex Division Using the Product of Elements Block 12-70
Element-Wise Multiplication and Division Using the Product of Elements

Block 12-71
sin Function with Floating-Point Input 12-72
sincos Function with Fixed-PointInput 12-73

Trigonometric Function Block Behavior for Complex Exponential Output

.. 12-74
Control Algorithm Execution Using Enumerated Signal 12-75
Integer and Enumerated Data Type Support in the Ground Block 12-77
Fixed-Point Data Type Support in the Ground Block 12-78
Read 2-D Signals in Structure Format From Workspace 12-79
Eliminate Singleton Dimension with the Squeeze Block 12-80
Difference Between Time- and Sample-Based Pulse Generation 12-81
Specify a Waveform with the Repeating Sequence Block 12-83
Tune Phase Delay on Pulse Generator During Simulation 12-84
Difference Sine Wave Signal 12-85
Discrete-Time Derivative of Floating-Point Input 12-86
First-Order Sample-and-Hold of a SineWave 12-87

xi

xii

Contents

Calculate and Display Simulation Step Size using Memory and Clock

Blocks 12-88
Capture the Velocity of a Bouncing Ball with the Memory Block 12-89
Implement a Finite-State Machine with the Combinatorial Logic and

Memory Blocks e 12-91
Discrete-Time Integration Using the Forward Euler Integration Method

.. 12-92
Signal Routing with the From, Goto, and Goto Tag Visibility Blocks . . 12-93
Zero-Based and One-Based Indexing with the Index Vector Block 12-95
Noncontiguous Values for Data Port Indices of Multiport Switch Block

.. 12-96
Using Variable-Size Signals on the DelayBlock 12-97
Buses with the Delay Block for Frame-Based Processing 12-98
Control Execution of Delay Block with Enable Port 12-99
Zero-Based Indexing for Multiport Switch Data Ports 12-100
One-Based Indexing for Multiport Switch Data Ports 12-101
Enumerated Names for Data Port Indices of the Multiport Switch Block

... 12-102
Prevent Block Windup in Multiloop Control 12-103
Bumpless Control Transfer 12-104
Bumpless Control Transfer with a Two-Degree-of-Freedom PID Controller

... 12-105
UsingaBitSetblock 12-106
UsingaBitClearblock 12-107
Two-Input AND Logic 12-108
Circuit Logic e 12-109
Unsigned Inputs for the Bitwise Operator Block 12-110
Signed Inputs for the Bitwise Operator Block 12-111
Merge Block with Input from Atomic Subsystems 12-112
Index Options with the SelectorBlock 12-113

Switch Block with a Boolean Control Port Example 12-114

Merge Block with Unequal Input Widths Example 12-115
Detect Rising Edge of Signals 12-117
Detect Falling Edge Using the Detect Fall Nonpositive Block 12-119
Detect Increasing Signal Values with the Detect Increase Block 12-120
Extract Bits from Stored Integer Value 12-121
Detect Signal Values Within a Dynamically Specified Interval 12-122
Model a Digital Thermometer Using the Polynomial Block 12-124
Convert Data Types in Simulink Models 12-125
Control Data Types with the Data Type Duplicate Block 12-127
Probe Sample Time ofaSignal 12-128
Convert Signals Between Continuous Time and Discrete Time 12-129
Remove Scaling from a Fixed-Point Signal 12-131
Stop Simulation Block with Relational Operator Block 12-132
Output Simulation DatawithBlocks 12-133
Increment and Decrement Real-World Values 12-137
Increment and Decrement Stored Integer Values 12-139
Specify a Vector of Initial Conditions for a Discrete Filter Block 12-140
Generate Linear Models for a Rising Edge Trigger Signal 12-142
Generate Linear Models at Predetermined Times 12-144
Capture Measurement Descriptions ina DocBlock 12-146
Square Root of Negative Values 12-147
Signed Square Root of Negative Values 12-148
rSqrt of Floating-Point Inputs 12-149
rSqrt of Fixed-Point Inputs 12-150
Model a Series RLC Circuit 12-151
Detect Change in Signal Values 12-154

xiii

xiv

Contents

Detect Fall to Negative Signal Values 12-155

Detect Decreasing Signal Values 12-156
Function-Call Blocks Connected to Branches of the Same Function-Call

Signal 12-157
Function-Call Feedback Latch on Feedback Signal Between Child and

Parent 12-158
Single Function-Call Subsystem 12-159
Function-Call Subsystem with Merged Signal AsInput 12-160
Partitioning an Input Signal with the For EachBlock 12-161
Specifying the Concatenation Dimension in the For Each Block 12-162

Working with the Initialize Function, Reset Function, and Terminate
Function Blocks 12-163

Reading and Writing States with the Initialize Function and Terminate

Function Blocks 12-164
Use Parameter Writer Block to Change Parameter of Block Inside
Referenced Model 12-165
Use Parameter Writer Block to Change Block Parameters 12-166
PWM Control of a Boost Converter 12-167
Voltage Controlled Oscillator 12-170
Check Signal Lower Bound with Check Dynamic Lower Bound Block
... 12-172
Check Signal Upper Bound with Check Dynamic Upper Bound Block
... 12-174
Check Signal Lower Bound with Check Static Lower Bound Block . . 12-176
Check Signal Range with Check Static Range Block 12-178
Check Signal Upper Bound with Check Static Upper Bound Block . . 12-180
Check Signal Slope with Check Discrete Gradient Block 12-182
Check Signal Value with Check Dynamic Gap Block 12-184
Check Signal Value with Check StaticGapBlock 12-186
Check Signal Range with Check Dynamic Range Block 12-188
Check Signal Resolution with Check Input Resolution Block 12-190

Generate Unit-Diagonal and Identity Matrices 12-193

Extract 3-by-2 Submatrix from Input Signal 12-194
Generate Diagonal Matrix from VectorInput 12-196
Permute Matrix by Rowor Column 12-197
Extract Diagonalof Matrix 12-198
Calculate Optical Flow by Using Neighborhood Processing Subsystem
BloCKS 12-199
Perform Fog Rectification by Using Neighborhood Processing Subsystem
Blocks 12-205
Perform Corner Detection by Using Neighborhood Processing Subsystem
Blocks 12-214
Convert RGB Image to Grayscale by Using a Neighborhood Processing
Subsystem Block 12-222
Perform Edge Detection by Using a Neighborhood Processing Subsystem
Block 12-227
Model Constant PropagationDelay 12-231
Model Variable PropagationDelay 12-235
Schedule When Traffic Camera Takes Snapshot 12-237
Model Effect of Temperature and Jitter on Crystal Oscillation Frequency
... 12-240
Behavior of Right Bit Shifts 12-243
Effect of Binary Point Shifts 12-244
Sign Block Behavior for RealInputs 12-245
Sign Block Behavior for Complex Issues 12-246
Working with the Reinitialize Function Block 12-247

Simulink Featured Examples

13

Simulation of Bouncing Ball 13-6

Single Hydraulic Cylinder Simulation 13-11

xvi

Contents

Thermal Model ofaHouse

Approximating Nonlinear Relationships: Type S Thermocouple

Digital Waveform Generation: Approximating a Sine Wave

Simulate DC Motor Step Response Using Local Solver

Accurate Zero-Crossing Detection

Spiral Galaxy Formation Simulation Using MATLAB Function Blocks

Counters Using Conditionally Executed Subsystems

Friction Model with Hard Stops

StateEvents

Bang-Bang Control Using Temporal Logic

Inverted Pendulum with Animation

Double Spring Mass System

Tank Fill and Empty with Animation

Simulating Systems with Variable Transport Delay Phenomena

Modeling a Foucault Pendulum

Foucault Pendulum Model with VRML Visualization

Explore Variable-Step Solvers with Stiff Model .

Exploring the Solver Jacobian Structure of a Model

Double Bouncing Ball: Use of Adaptive Zero-Crossing Location

Four Hydraulic Cylinder Simulation

Two Cylinder Model with Load Constraints

Van der Pol Oscillator

Model a Fault-Tolerant Fuel Control System . . .

Using a Data Dictionary to Manage the Data for a Fuel Control System

Modeling Engine Timing Using Triggered Subsystems

Engine Timing Model with Closed Loop Control

13-21

13-26

13-35

13-45

13-54

13-55

13-59

13-61

13-63

13-64

13-65

13-67

13-69

13-72

13-76

13-84

13-87

13-93

13-102

13-109

13-115

13-121

13-124

13-139

13-142

13-152

Building a Clutch Lock-UpMeodel

Modeling Clutch Lock-Up Using If Blocks

Modeling an Anti-Lock Braking System

Automotive Suspension

Model an Automatic Transmission Controller

Vehicle Electrical System

Simulating Automatic Climate Control Systems

Vehicle Electrical and Climate Control Systems

Power Window Control Project

Developing the Apollo Lunar Module Digital Autopilot

Designing a High Angle of Attack Pitch Mode Control

Six Degrees of Freedom (6-DoF) Motion Platform

Aircraft Longitudinal Flight Control

Simulink® Model Discretizer

Radar Tracking Using MATLAB Function Block

Optical Sensor Image Generation

Air Traffic Control RadarDesign

Design a Guidance System in MATLAB and Simulink

Airframe Trim and Linearize

Anti-Windup Control Using PID Controller Block

Bumpless Control Transfer Between Manual and PID Control

Two Degree-of-Freedom PID Control for Setpoint Tracking

Data Typing in Simulink

Data Typing Filter

Explore Simulink Bus Capabilities

Model Arraysof Buses

Matrix Signals

13-156

13-167

13-172

13-178

13-184

13-195

13-197

13-202

13-208

13-215

13-225

13-238

13-241

13-243

13-244

13-246

13-255

13-260

13-276

13-281

13-297

13-306

13-312

13-316

13-318

13-326

13-328

xvii

Variable-Size Signal Basic Operations 13-329

Variable-Size Signal Length Adaptation 13-331
Multimode Variable-Size Signal 13-332
Parallel Channel Power Allocation 13-333
Merging Signals 13-335
Share Data Store Between Instances of a Reusable Algorithm 13-348
Attaching Input Data to External Inputs via Custom Input Mappings

... 13-353
Using Mapping Modes with Custom-Mapped External Inputs 13-357
Create Harness-Free Models with MAT File Input Data 13-361
Logging States in Structure Format 13-366
Logging Intervals 13-369
Working withBigData 13-372
Simulink Subsystem Semantics 13-377
IfThen-Else Blocks 13-378
Triggered Subsystems 13-380
Enabled Subsystems 13-382
Advanced Enabled Subsystems 13-384
Resettable Subsystems 13-387
Discrete and Continuous Resettable Subsystems 13-389
Block Priority e 13-392
Monitoring Ink Status on a Shared Printer Using Simulink Functions

... 13-393
Model Reusable Components Using Multiply Instanced Simulink

Functions 13-395

Dynamic Priority Scheduling of Functions 13-397
Component-Based Modeling with Model Reference 13-398
Viewing Signals in Model Reference Instances 13-402
Visualize Model Reference Hierarchies 13-410

xviii Contents

Perform Block-Level Impact Analysis Using Dependency Analyzer . .

Introduction to Managing Data with Model Reference

Interface Specification Using Bus Objects

Convert Subsystem to Referenced Model

Use Data Stores Across Multiple Models

Model Reference Function-Call

Explore Protected Model Capabilities

Model Reference Variants

Assign Tasks to Cores for Multicore Programming

Implement an FFT on a Multicore Processor and an FPGA

Multicore Programming of a Field-Oriented Control on Zynq

Multicore Deployment of a Plant Model

Modeling Objects with Identical Dynamics Using For Each Subsystem

Vectorizing a Scalar Algorithm with a For Each Subsystem

Tiled Processing of 2D Signals with For Each Subsystem

Using a Project with SVN

Using a Projectwith Git

Get Started with MATLAB Projects

Perform Impact Analysis with a Project

Work with Referenced Projects

Automate Label Management in a Project

Run Custom Tasks with a Project

Upgrade Simulink Models Using a Project

Share Subset of Project Files Using Labels

Create and Reference a Project Programmatically

Organize Projects into Components Using References and Git

Submodules

13-415

13-418

13-420

13-427

13-429

13-435

13-437

13-442

13-446

13-449

13-453

13-459

13-463

13-468

13-470

13-471

13-476

13-480

13-484

13-491

13-494

13-497

13-500

13-502

13-505

13-509

xix

XX

Contents

Compare and Merge Simulink Models 13-516

Compare and Merge Simulink Models Containing Stateflow 13-518
Resolve Conflicts with Simulink Three-Way Merge 13-521
Call C Functions Using C CallerBlock 13-527
Use Custom Image Filter Algorithms as Reusable Blocks in Simulink
... 13-531
Custom Code and Hand Coded Blocks Using the S-function API 13-533
Inputs Passed by Value or Address to Legacy Functions 13-534
Output Passed by Return Argument from Legacy Functions 13-537
Fixed Point Signals in Legacy Functions 13-539
Fixed Point Parameters in Legacy Functions 13-542
Lookup Tables Implemented in Legacy Functions 13-545
Start and Terminate Actions Within Legacy Functions 13-548
Using Buses with Legacy Functions Having Structure Arguments ... 13-552
Inherited Signal Dimensions for Legacy Function Arguments 13-555
C++ Object Methods as Legacy Functions 13-558
Persistent Memory Within Legacy Functions 13-561
Multi-Dimensional Signals in Legacy Functions 13-564
Complex Signals in Legacy Function 13-566
Specified or Inherited Sample Time with Legacy Functions 13-568
Illustration of Law of Large Numbers 13-571
Using Buses with MATLAB System Blocks 13-573
Run Quality Checks on S-Functions 13-575
Using the Prelookup and Interpolation Blocks 13-577
Saving Memory in Prelookup and Interpolation Blocks by Using Smaller
Data 13-582
Model AdVisor e 13-583
Introduction to Profiling Models 13-584

Introduction to Accelerating Models 13-587
Determine Why Simulink Accelerator Is Regenerating Code 13-589
Parallel Simulations Using Parsim: Test-Case Sweep 13-594

Parallel Simulations Using Parsim: Parameter Sweep in Normal Mode

... 13-598
Parallel Simulations Using Parsim: Parameter Sweep in Rapid Accelerator
Mode 13-602
Rapid Accelerator Simulations Using Parsim 13-606
Multiple Simulations Workflow Tips 13-610
Streamline Simulink Blockset Authoring Process with Blockset Designer
... 13-614
Import Co-Simulation FMU into Simulink 13-615
Importing a Model Exchange FMU into Simulink 13-616
Simplify Interface for Structured Data with FMU Import Block 13-617
Co-Simulation Signal Compensation 13-619
Using Numerical Compensation for Co-Simulation Integration 13-625
Multithread Co-Simulation 13-631
Pulse Width Modulation Using MATLAB System Block 13-633
Modeling Cyber-Physical Systems 13-634
Power Analysis of Spring Mass Damper System 13-639
Schedule an Export-Function Model Using the Schedule Editor 13-642
Graph-Based Multithread Simulation 13-646
Find Shortest Control Path in Simulink Model 13-648
Use Fixed-Step Zero-Crossing Detection for Faster Simulations 13-653

xxi

Blocks

1 Blocks

1-2

Abs

Output absolute value of input

Libraries:

X [ul b Simulink / Math Operations

HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description
The Abs block outputs the absolute value of the input.

For signed-integer data types, the absolute value of the most negative value is not representable by
the data type. In this case, the Saturate on integer overflow check box controls the behavior of the
block.

If you... The block... And...
Select this check box |Saturates to the most * For 8-bit signed integers, -128 maps to 127.
positive value of the integer

* For 16-bit signed integers, -32768 maps to
data type 32767.

* For 32-bit signed integers, -2147483648
maps to 2147483647.

Do not select this Wraps to the most negative |* For 8-bit signed integers, -128 remains -128.

check box value of the integer data + For 16-bit signed integers, -32768 remains
Hpe -32768.

» For 32-bit signed integers, -2147483648
remains -2147483648.

The Abs block supports zero-crossing detection. However, when you select Enable zero-crossing
detection on the dialog box, the block does not report the simulation minimum or maximum in the
Fixed-Point Tool. If you want to use the Fixed-Point Tool to analyze a model, disable zero-crossing
detection for all Abs blocks in the model first.

Ports
Input

Port_1 — Input signal
scalar | vector
Input signal to the absolute value block.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | fixed point

Abs

Output

Port_1 — Absolute value output signal
scalar | vector

Absolute value of the input signal.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |

uint64 | fixed point

Parameters

Main

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | of f

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

Programmatic Use

Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'

Default: 'on'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than - 1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than - 1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Signal Attributes
The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “ |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Output minimum — Minimum output value for range checking
[1 (default) | scalar
Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

1-3

1 Blocks

1-4

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

« Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMin
Type: character vector
Values: '[]'|scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[1 (default) | scalar
Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

* Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMax
Type: character vector
Values: '[]'|scalar
Default: '[]

Output data type — Specify the output data type

Abs

Inherit: Same as input (default) | Inherit: Inherit via internal ruleInherit:
Inherit via back propagation || double|single|half|int8|int32 |uint32 | int64 |
uint64 | fixdt(1,16,270,0) | <data type expression>|...

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

Dependencies

When input is a floating-point data type smaller than single precision, the Inherit: Inherit via
internal rule output data type depends on the setting of the “Inherit floating-point output type
smaller than single precision” configuration parameter. Data types are smaller than single precision
when the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.

Programmatic Use

Block Parameter: QutDataTypeStr

Type: character vector

Values: 'Inherit: Same as input' | 'Inherit: Inherit via internal rule'|
"Inherit: Inherit via back propagation' | 'single' | 'half' | 'int8"' | 'uint8"' |
intl6 | 'uintl6' | 'int32' | 'uint32' | 'int64"' | 'uint64' | fixdt(1,16,0) |
fixdt(1,16,270,0) | fixdt(1,16,270,0) | '<data type expression>'

Default: 'Inherit: Same as input'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the QOutput data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector

Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB® rounding function into the mask field.

Programmatic Use

Block Parameter: RndMeth

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
‘Zero'

Default: 'Floor'

1-5

1 Blocks

Saturate on integer overflow — Choose the behavior when integer overflow occurs

off (default) | on

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Action

Reason for Taking This
Action

What Happens

Example

Select this check
box.

Your model has possible
overflow and you want explicit
saturation protection in the
generated code.

Overflows saturate to the
maximum value that the data
type can represent.

The number 130 does not fit
in a signed 8-bit integer and
saturates to 127.

Do not select this
check box.

You want to optimize
efficiency of your generated
code.

Overflows wrap to the
appropriate value that is
representable by the data

type.

The number 130 does not fit
in a signed 8-bit integer and
wraps to -126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector

Value: 'off' |

Ionl

Default: 'off"'

Block Characteristics

Data Types double | fixed point | half | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |yes

Zero-Crossing yes

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

1-6

Abs

HDL Coder™ provides additional configuration options that affect HDL implementation and

synthesized logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays

peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Native Floating Point

LatencyStrategy

Specify whether to map the blocks in your design to inherit, Max, Min, or
Zero for the floating-point operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

Complex Data Support

This block supports code generation for complex signals with floating-point types in Native

Floating Point mode.

Code generation for the block with complex signals that use fixed-point types is not supported. To
calculate the magnitude of a complex number, use the Complex to Magnitude-Angle block instead.

PLC Code Generation

Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Sign | Sum

1-7

1 Blocks

1-8

Action Port

Control port for action signal to If Action Subsystem or Switch Case Action Subsystem block

Description

The Action Port block controls the execution of these subsystem blocks:

* If Action Subsystem blocks connected to If blocks.
* Switch Case Action Subsystem blocks connected to Switch Case blocks.

« Simulink based states in Stateflow® charts. See “Create and Edit Simulink Based States”
(Stateflow).

Parameters
States when execution is resumed — Select handling of internal states
held (default) | reset

Select how to handle internal states when a subsystem with an Action Port block reenables.

held

When the subsystem reenables, retain the previous state values of the subsystem. Previous state
values between calls are retained even if you call other subsystem blocks connected to the If or
Switch Case block.

reset
When the subsystem reenables, reinitialize the state values.
A subsystem reenables when the logical expression for its action port evaluates to true after

having been previously false. In the following example, the Action Port blocks for both subsystems
A and B have the States when execution is resumed parameter set to reset.

case [1]
—p ui i
default: case: { }
Switch Case
A
default: { }
B

When case[1] is true, subsystem A is executed. Repeated calls to subsystem A while case [1]
continues to be true, does not reset its state values. The same behavior applies to subsystem B.

Action Port

Programmatic Use

Block Parameter: InitializeStates
Type: character vector

Value: 'held' | 'reset!’

Default: 'held’

Propagate sizes of variable-size signals — Select when to propagate a variable-size signal

Only when execution is resumed (default) | During execution
Select when to propagate a variable-size signal.

Only when execution is resumed

Propagate variable-size signals only when reenabling the subsystem containing the Action Port
block.

During execution
Propagate variable-size signals at each time step.

Programmatic Use

Block Parameter: PropagateVarSize

Type: character vector

Values: 'Only when execution is resumed' | 'During execution'
Default: 'Only when execution is resumed'

Version History
Introduced before R2006a
Extended Capabilities

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

See Also
If | If Action Subsystem | Switch Case | Switch Case Action Subsystem

Topics
Select Subsystem Execution

1-9

1 Blocks

Add, Subtract, Sum of Elements, Sum

Add or subtract inputs

6

Description

Libraries:

Simulink / Math Operations

HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

The Sum block performs addition or subtraction on its inputs. The Add, Subtract, Sum of Elements,
and Sum blocks are identical blocks. This block can add or subtract scalar, vector, or matrix inputs. It
can also collapse the elements of a signal and perform a summation.

You specify the operations of the block with the List of signs parameter with plus (+), minus (-), and

spacer (|).

* The number of + and - characters equals the number of inputs. For example, +-+ requires three
inputs. The block subtracts the second (middle) input from the first (top) input, and then adds the
third (bottom) input.

* A spacer character creates extra space between ports on the block icon.

+ If performing only addition, you can use a numerical value equal to the number of inputs.

» If only there is only one input port, a single + or - adds or subtracts the elements over all

dimensions or in the specified dimension.

The Sum block first converts the input data type to its accumulator data type, then performs the
specified operations. The block converts the result to its output data type using the specified
rounding and overflow modes.

Calculation of Block Output

Output calculation for the Sum block depends on the number of block inputs and the sign of input

ports:

If the Sum block has...

And...

The formula for output
calculation is...

Where...

One input port

The input port sign is +

y = e[0] + e[1] + e[2] ... +
e[m]

The input port sign is -

y = 0.0 - e[0] - e[l] -
e[2] ... - e[m]

e[1i] is the it" element of
input u

Two or more input ports

1-10

All input port signs are -

y = 0.0 - u[0] - u[1] -
u[2] ... - u[n]

u[i] is the input to the it
input port

Add, Subtract, Sum of Elements, Sum

If the Sum block has... |And... The formula for output |[Where...

calculation is...

The k' input port is the y = u[k] - u[0] - u[1] - u[2]
first port where the signis |- u[k-1] (+/-) ulk+1] ...
+ (+/-) u[n]

Ports
Inputs

The inputs can be of different data types, unless you select the Require all inputs to have the
same data type parameter.

Port_1 — First input operand signal
scalar | vector | matrix

Input signal to the addition or subtraction operation. If there is only one input signal, then addition or
subtraction is performed on the elements over all dimensions or the specified dimension.

Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

Port_n — nth input operand signal
scalar | vector | matrix

nth input signal to the operations. The number of inputs matches the number of signs in the List of
signs parameter. The block applies the operations to the inputs in the order listed. You can also use a
numerical value equal to the number of input ports as the List of signs parameter. The block creates
the input ports and applies addition to all inputs. For example, if you assign 5 for the List of signs
parameter, the block creates 5 input ports and adds them together to produce the output.

All nonscalar inputs must have the same dimensions. Scalar inputs are expanded to have the same
dimensions as other inputs.

Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal resulting from addition and/or subtraction operations. The output signal has the same
dimension as the input signals.

Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

1-11

1 Blocks

1-12

Parameters

Main

Icon shape — Block icon shape

rectangular (default) | round

Designate the icon shape of the block as rectangular or round.

For a rectangular block, the first input port is the top port. For a round Sum block, the first input port
is the port closest to the 12 o'clock position going in a counterclockwise direction around the block.
Similarly, other input ports appear in counterclockwise order around the block.

Programmatic Use

Block Parameter: IconShape
Type: character vector

Values: 'rectangular' | 'round’
Default: 'round'

List of signs — Operations performed on inputs

++ (default) | +| - | | | integer

Enter addition and subtraction operations performed on the inputs. An input port is created for each
operation. A spacer (|) creates extra space between the input ports on the block icon. Addition is the
default operation. If you only want to add the inputs, enter the number of input ports. The operations
are performed in the order listed.

When you enter only one element, the block enables the Sum over parameter. For a single vector
input, + or - adds or subtracts the elements over all dimensions or in the specified dimension.

Tips

You can manipulate the positions of the input ports on the block by inserting spacers (|) between the
signs in the List of signs parameter. For example, “++| - -” creates an extra space between the
second and third input ports.

Programmatic Use

Block Parameter: Inputs
Type: character vector
Values: '+' | '-"'| | | integer
Default: '++'

Sum over — Dimensions for operations on a single vector input

All dimensions (default) | Specified dimension
Select the dimension over which the block performs the sum-over operation.

For All dimensions, all input elements are summed. When you select configuration parameter Use
algorithms optimized for row-major array layout, Simulink enables row-major algorithms for
simulation. To generate row-major code, set configuration parameter Array layout (Simulink Coder)
to Row-major in addition to selecting Use algorithms optimized for row-major array layout. The
column-major and row-major algorithms differ only in the summation order. In some cases, due to

Add, Subtract, Sum of Elements, Sum

different operation order on the same data set, you might experience minor numeric differences in
the outputs of column-major and row-major algorithms.

When you select Specified dimensions, another parameter Dimension appears. Choose the specific
dimension for summing the vector input.

Dependency

Enabled when you list only one sign in the List of signs parameter.

Programmatic Use

Block Parameter: CollapseMode

Type: character vector

Values: 'All dimensions' | 'Specified dimension'
Default: 'Al1l dimensions'

Dimension — Dimension for summation on vector input

1 (default) | integer

When you choose Specified dimension for the Sum over parameter, specify the dimension over
which to perform the operation.

The block follows the same summation rules as the MATLAB sum function.
Suppose that you have a 2-by-3 matrix U.
* Setting Dimension to 1 results in the output Y being computed as:
2 ..
Y=>/_,UG.))
* Setting Dimension to 2 results in the output Y being computed as:
3 .
Y= Ej=1U(1,J)
If the specified dimension is greater than the dimension of the input, an error message appears.
Dependency

Enabled when you choose Specified dimension for the Sum over parameter.

Programmatic Use

Block Parameter: CollapseDim
Type: character vector

Value: integer

Default: '1'

Sample time — Sample time value other than -1
-1 (default) | scalar | vector

Specify the sample time as a value other than - 1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than - 1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

1-13

1 Blocks

1-14

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Signal Attributes
The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “ |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Require all inputs to have the same data type — Require that all inputs have the same data type

off (default) | on

Specify if input signals must all have the same data type. If you enable this parameter, then an error
occurs during simulation if the input signal types are different.

Programmatic Use

Block Parameter: InputSameDT
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Accumulator data type — Data type of the accumulator

Inherit: Inherit via internal rule (default) | Inherit: Same as first input |
double | single | half | int8 | uint8 | int1l6 | uintl6 | int32 |uint32 | int64 | uint64 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,270,0) | <data type expression>

Choose the data type of the accumulator. The type can be inherited, specified directly, or expressed as
a data type object such as Simulink.NumericType. When you choose Inherit: Inherit via
internal rule, Simulink chooses a data type to balance numerical accuracy, performance, and
generated code size, while taking into account the properties of the embedded target hardware.

Programmatic Use

Block Parameter: AccumDataTypeStr

Type: character vector

Values: 'Inherit: Inherit via internal rule| 'Inherit: Same as first input' |
'double''single' | "half' | 'int8' | 'uint8' | 'intl6"' | 'uintl6"', 'int32"' | 'uint32"' |
'int64' | 'uint64' | 'fixdt(1,16)"' | 'fixdt(1,16,0)"' | 'fixdt(1,16,270,0)"' | '<data
type expression>'

Default: 'Inherit: Inherit via internal rule'

Output minimum — Minimum output value for range checking

[1 (default) | scalar
Lower value of the output range that Simulink checks.
Simulink uses the minimum to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

Add, Subtract, Sum of Elements, Sum

+ Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.

For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMin
Type: character vector
Values: '[]'|scalar
Default: '[]'

Output maximum — Maximum output value for range checking

[1 (default) | scalar

Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)

for some blocks.

* Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.

For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMax
Type: character vector
Values: '[]'|scalar
Default: '[]'

Output data type — Specify the output data type
Inherit: Inherit via internal rule (default) | Inherit: Keep MSB | Inherit: Keep

LSB | Inherit: Inherit via back propagation|Inherit: Same as first input |
Inherit: Same as accumulator |double|single|half|int8 |uint8 | int16|uintl6 |

1-15

1 Blocks

1-16

int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,270,0) |
<data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

When you select an inherited option, the block behaves as follows:

Inherit: Inherit via internal rule—Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware.

Note The accumulator internal rule favors greater numerical accuracy, possibly at the cost of less
efficient generated code. To get the same accuracy for the output, set the output data type to
Inherit: Inherit same as accumulator.

Note When input is a floating-point data type smaller than single precision, the Inherit:
Inherit via internal rule output data type depends on the setting of the “Inherit floating-
point output type smaller than single precision” configuration parameter. Data types are smaller
than single precision when the number of bits needed to encode the data type is less than the 32
bits needed to encode the single-precision data type. For example, half and int16 are smaller
than single precision.

Inherit: Keep MSB- Simulink chooses a data type that maintains the full range of the
operation, then reduces the precision of the output to a size appropriate for the embedded target
hardware.

Tip For more efficient generated code, set the Accumulator data type to Inherit: Inherit
via internal rule, and deselect the Saturate on integer overflow parameter.

This rule never produces overflows.

Inherit: Keep LSB- Simulink chooses a data type that maintains the precision of the
operation, but reduces the range if the full type does not fit on the embedded target hardware.

Tip For more efficient generated code, set the Accumulator data type to Inherit: Inherit
via internal rule, and deselect the Saturate on integer overflow parameter.

This rule can produce overflows.

If you change the embedded target settings, the data type selected by these internal rules might
change. It is not always possible for the software to optimize code efficiency and numerical
accuracy at the same time. If the rules do not meet your specific needs for numerical accuracy or
performance, use one of the following options:

* Specify the output data type explicitly.

* Use the simple choice of Inherit: Same as first input.

» Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point
Tool to propose data types for your model. For more information, see fxptdlg.

Add, Subtract, Sum of Elements, Sum

* To specify your own inheritance rule, use Inherit: Inherit via back propagation and
then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

* Inherit: Inherit via back propagation — Use data type of the driving block.
* Inherit: Same as first input — Use data type of the first input signal.
* Inherit: Inherit same as accumulator— Use data type of the accumulator.

Programmatic Use

Block Parameter: OutDataTypeStr

Type: character vector

Values: 'Inherit: Inherit via internal rule|'Inherit: Keep MSB'|'Inherit: Keep
LSB' | 'Inherit: Inherit via back propagation''Inherit: Same as first input'|
'"Inherit: Same as accumulator' | 'double' | 'single' | 'half' | 'int8' | 'uint8' |
'intl6' | 'uintl6’, 'int32' | 'uint32' | 'int64"'| 'uint64'|' fixdt(1,16) " |
'fixdt(1,16,0)"' | 'fixdt(1,16,270,0)"' | '<data type expression>'

Default: 'Inherit: Inherit via internal rule'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select to lock data type settings of this block against changes by the Fixed-Point Tool and the Fixed-
Point Advisor. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use

Block Parameter: LockScale
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use

Block Parameter: RndMeth

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
‘Zero'

Default: 'Floor'

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

1-17

1 Blocks

Action

Rationale

Impact on Overflows

Example

Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data

type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector

Values:

'off!

lonl

Default: 'off"'

Block Characteristics

Data Types Boolean | double | fixed point | half | integer|single
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |yes

Zero-Crossing no

Detection

1-18

Add, Subtract, Sum of Elements, Sum

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture of Sum, Add, and Subtract Blocks

The default Linear architecture generates a chain of N operations (adders) for N inputs.

HDL Architecture of Sum of Elements Block

For the Sum of Elements block, HDL Coder supports Tree architectures for Sum of Elements blocks
that have a single vector input with multiple elements.

This block has multi-cycle implementations that introduce additional latency in the generated code.
To see the added latency, view the generated model or validation model. See “Generated Model and
Validation Model” (HDL Coder).

Architecture Additional cycles of latency |Description

0 Generates a linear chain of adders to
compute the sum of products.

For multiple inputs that have different bit
widths, the Linear architecture optimizes
the resource utilization by implementing
adders in multiple stages with pipelines in
between the stages. The output of each
stage is calculated based on the width of
the inputs to that stage.

0 Generates a tree structure of adders to
compute the sum of products.

HDL Block Properties

Note To use the LatencyStrategy setting in the Native Floating Point tab of the HDL Block
Properties dialog box, specify Linear or Tree as the HDL Architecture.

1-19

1 Blocks

1-20

General

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Note The Sum of Elements block does not support HDL code generation with double data types in
the Native Floating Point mode.

Native Floating Point

LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min,
Zero, or Custom for the floating-point operator. The default is inherit.
See also “LatencyStrategy” (HDL Coder).

NFPCustomLatency |To specify a value, set LatencyStrategy to Custom. HDL Coder adds
latency equal to the value that you specify for the NFPCustomLatency
setting. See also “NFPCustomLatency” (HDL Coder).

Complex Data Support
The default Linear implementation supports complex data.

The Tree implementation supports complex data with + for the List of signs block parameter. With
native floating point support, the Tree implementation supports complex data with both + and - for
List of signs.

Limitations and Considerations

To generate HDL code for multi-input Sum block that has mixed scalar and vector inputs, you must
specify vector input at one of the first two inputs of the Sum block.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Gain | Divide | Bias

Topics
“Control Data Types of Signals”

Algebraic Constraint

Algebraic Constraint

Constrain input signal

Libraries:
> I rfs_xgh_uu b Simulink / Math Operations

Description

The Algebraic Constraint block constrains the input signal f(z) to z or 0 and outputs an algebraic state
z. The block outputs a value that produces 0 or z at the input. The output must affect the input
through a direct feedback path. In other words, the feedback path only contains blocks with direct
feedthrough. For example, you can specify algebraic equations for index 1 differential-algebraic
systems (DAESs).

Ports
Input

f(z) — Input signal
real scalar or vector

Signal is subjected to the constraint f{(z) = 0 or f(z) = z to solve the algebraic loop.

Data Types: double
Output

z — Output state
real scalar or vector

Solution to the algebraic loop when the input signal f(z) is subjected to the constraint f(z) = 0 or f{(z)
=2z

Data Types: double

Parameters
Constraint — Constraint on input signal
f(z) = 0 (default) | f(z) = z

Type of constraint for which to solve. You can solve for f(z) = Qor f(z) = z

Programmatic Use

Block Parameter: Constraint
Type: character vector

Values: 'f(z) = 0' | 'f(z) = z'
Default: 'f(z) = 0

1-21

1 Blocks

1-22

Solver — Algebraic Loop Solver
auto (default) | Trust region|Line search

Choose between the Trust region [1], [2] or Line search [3] algorithms to solve the algebraic loop. By
default this value is set to auto, which selects the algebraic loop solver based on the model
configuration and switches the solver between the Trust region and Line search algorithm during
simulation

Programmatic Use

Block Parameter: Solver

Type: character vector

Values: 'auto' | 'Trust region' | 'Line search'
Default: 'auto’

Tolerance — Solver Tolerance
auto (default) | positive scalar

This option is visible when you explicitly specify a solver to be used (Trust region or Line Search) in
the Solver drop-down menu. Specify a smaller value for higher accuracy or a larger value for faster
execution. By default it is set to auto.

Programmatic Use

Block Parameter: Tolerance
Type: character vector

Values: 'auto' | positive scalar
Default: 'auto’

Initial Guess — Initial guess of solution value
0 (default) | scalar

Initial guess for the algebraic state z that is close to the expected solution value to improve the
efficiency of the algebraic loop solver. By default, this value is set to 0

Programmatic Use

Block Parameter: InitialGuess
Type: character vector

Values: scalar

Default: '0'

Block Characteristics

Data Types double
Direct Feedthrough |no
Multidimensional no
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Algebraic Constraint

Version History
Introduced before R2006a

References

[1] Garbow, B. S,, K. E. Hillstrom, and J. J. Moré. User Guide for MINPACK-1. Argonne, IL: Argonne
National Laboratory, 1980.

[2] Rabinowitz, P. H. Numerical Methods for Nonlinear Algebraic Equations. New York: Gordon and
Breach, 1970.

[3] Kelley, C. T. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and
Applied Mathematics, Philadelphia, PA: 1995.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

See Also
“Algebraic Loop Concepts”

1-23

1 Blocks

1-24

Argument Inport

Argument input port for Simulink Function block

Description

This block is an argument input port for a function that you define in the Simulink Function block.

Ports
Input

u — Argument input
scalar | vector | matrix

The Argument Inport block accepts complex or real signals of any data type that Simulink supports,
including fixed-point and enumerated data types. The Argument Inport block also accepts a bus
object as a data type.

The complexity and data type of the block output are the same as the argument input. You can specify
the signal type and data type of an input argument to an Argument Inport block using the Signal
type and Data type parameters.

Data Types: single | double | int8 | int16 | int32 | uint8 | uintl1l6 | uint32 | Boolean | fixed
point | enumerated | bus

Output

out — Block output
scalar | vector | matrix
Block output signal from this block.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Parameters

Port number — Specify port number of block
1 (default) | integer

Specify the order in which the port that corresponds to the block appears in the parent subsystem or
model block.
1
Specify the first port location for this block.
integer

Specify location of port.

Argument Inport

Programmatic Use

Block parameter: Port
Type: character vector
Value: '1' | '<integer>'
Default: '1'

Argument name — Specify input argument name
u (default) | character vector

Specify input argument name for the function prototype displayed on the face of the Simulink
Function block.
u
Default name for the input argument.
character vector
Name of the input argument.
Programmatic Use
Block parameter: ArgumentName
Type: character vector

Value: 'u’' | '<character vector>'
Default: 'u'

Minimum — Specify minimum value for block output
[1 (default) | number

Specify the minimum value for the block output signal.

Note If you specify a bus object as the data type for this block, do not set the minimum value for bus
data on the block. Simulink ignores this setting. Instead, set the minimum values for bus elements of
the bus object specified as the data type. For information on the Minimum property of a bus element,
see Simulink.BusElement.

Simulink uses this value to perform Simulation range checking and automatic scaling of fixed-point
data types.

[]

Minimum value not specified.
number

Finite real double scalar value.
Programmatic Use
Block parameter: OutMin
Type: character vector

Value: '[]' | '<number>"
Default: '[]"'

Maximum — Specify maximum value for block output
[1 (default) | number

1-25

1 Blocks

1-26

Specify the maximum value for the block output signal.

Note If you specify a bus object as the data type for this block, do not set the maximum value for bus
data on the block. Simulink ignores this setting. Instead, set the maximum values for bus elements of
the bus object specified as the data type. For information on the Maximum property of a bus element,
see Simulink.BusElement.

Simulink uses this value to perform Simulation range checking and automatic scaling of fixed-point
data types.

[]

Maximum value not specified.
number

Finite real double scalar value.
Programmatic Use
Block parameter: OutMax
Type: character vector

Value: '[]' | '<number>'
Default: '[]"'

Data type — Specify block output data type

double (default) | single | int8 | uint8 | int16 | uint1l6 | int32 | uint32 | int64 | uint64 |
boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2~,0) | Enum: <class name> | Bus:
<object name> | <data type expression>

Specify the block output data type.

double

Data type is double.
single

Data type is single.
int8

Data type is int8.
uint8

Data type is uints8.
intl6

Data type is int16.
uintleé

Data type is uint16.
int32

Data type is int32.
uint32

Data type is uint32.

Argument Inport

int64
Data type is int64.
uint64
Data type is uint64.
boolean
Data type is boolean.
fixdt(1,16,0)
Data type is fixed point fixdt(1,16,0).
fixdt(1,16,270,0)
Data type is fixed point fixdt(1,16,270,0).
Enum: <class name>
Data type is enumerated, for example, Enum: Basic Colors.
Bus: <object name>
Data type is a Simulink.Bus object.
<data type expression>
The name of a data type object, for example Simulink.NumericType

Tips

You cannot enter the name of a Simulink.Bus object as a data type expression. To specify the Data
type for the block using a Bus object, select the Bus: <object name> option and replace <object
name> with the name of the Bus object.

Programmatic Use

Block parameter: OutDataTypeStr

Type: character vector

Value: 'double’ | 'single' | 'int8' | 'uint8' | 'intl6' | 'uintl6' | 'int32' | 'uint32' |
'boolean' | 'fixdt(1,16)"' | 'fixdt(1,16,0)"'| 'fixdt(1,16,270,0)"' | '<data type
expression>'

Default: 'double’

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data type
off (default) | on

Control changes to data type settings from the Fixed-Point Tool and the Fixed-Point Advisor. For more
information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).
Yl On

Locks all data type settings for this block.

Off

Allows the Fixed-Point Tool and the Fixed-Point Advisor to change data type settings for this
block.

Programmatic Use
Block parameter: LockScale

1-27

1 Blocks

Type: character vector
Value: 'off' | 'on'
Default: 'off'

Port dimensions — Specify port dimensions
1 (default) [n| [m n]

Specify the dimensions of the argument input signal to the block. For more information, see Outport.

1

Inherit port dimensions.
n

Vector signal of width n.
[m n]

Matrix signal having m rows and n columns.

Programmatic Use

Block parameter: PortDimensions
Type: character vector

Value: '1' | 'n' | "[m n]"'

Default: '1'

Signal type — Select real or complex signal
real (default) | complex

Select real or complex signal.

real

Specify the signal type as a real number.
complex

Specify the signal type as a complex number.
Programmatic Use
Block parameter: SignalType
Type: character vector

Value: 'real’' | 'complex'’
Default: 'real'’

Version History
Introduced in R2014b

See Also
Argument Outport | Simulink Function | Function Caller
Topics

“Simulink Functions Overview”
“Argument Specification for Simulink Function Blocks”

1-28

Argument Outport

Argument Outport

Argument output port for Simulink Function block

Description

This block is an output argument port for a function that you define in the Simulink Function block.

Ports
Input

in — Block input

scalar | vector | matrix

Block input signal to this block.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Output

y — Argument output
scalar | vector | matrix

The Argument Outport block accepts real or complex signals of any data type that Simulink supports.
An Argument Outport block can also accept fixed-point and enumerated data types when the block is
not a root-level output port. The Argument Outport block also accepts a bus object as a data type.

The complexity and data type of the block input are the same as the argument output. You can specify
the signal type and data type of an output argument from an Argument Outport block using the
Signal type and Data type parameters. For more information, see “Data Types Supported by
Simulink”.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Parameters

Port number — Specify port number of block
1 (default) | integer

Specify the order in which the port that corresponds to the block appears in the parent subsystem or
model block.

1

Specify the first port location for this block.
integer

Specify location of port.

1-29

1 Blocks

Programmatic Use

Block parameter: Port
Type: character vector
Value: '1' | '<integer>'
Default: '1'

Argument name — Specify output argument name
u (default) | character vector

Specify output argument name for the function prototype displayed on the face of the Simulink
Function block.
u
Default name of the output argument.
character vector
Name of the output argument.
Programmatic Use
Block parameter: ArgumentName
Type: character vector

Value: 'u’' | '<character vector>'
Default: 'u'

Minimum — Specify minimum value for block input
[1 (default) | number

Specify the minimum value for the block input signal.

Note If you specify a bus object as the data type for this block, do not set the minimum value for bus
data on the block. Simulink ignores this setting. Instead, set the minimum values for bus elements of
the bus object specified as the data type. For information on the Minimum property of a bus element,
see Simulink.BusElement.

Simulink uses this value to perform Simulation range checking (see “Specify Signal Ranges”) and
automatic scaling of fixed-point data types.

[]

Minimum value not specified.
number

Finite real double scalar value.
Programmatic Use
Block parameter: OutMin
Type: character vector

Value: '[]' | '<number>"
Default: '[]"'

Maximum — Specify maximum value for block input
[1 (default) | number

1-30

Argument Outport

Specify the maximum value for the block input signal.

Note If you specify a bus object as the data type for this block, do not set the maximum value for bus
data on the block. Simulink ignores this setting. Instead, set the maximum values for bus elements of
the bus object specified as the data type. For information on the Maximum property of a bus element,
see Simulink.BusElement.

Simulink uses this value to perform Simulation range checking (see “Specify Signal Ranges”) and
automatic scaling of fixed-point data types.
[]
Maximum value not specified.
number
Finite real double scalar value.
Programmatic Use
Block parameter: OutMax
Type: character vector

Value: '[]' | '<number>'
Default: '[]"'

Data type — Specify block input data type

double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2"~,0) | Enum: <class name> | Bus:
<object name> | <data type expression>

Specify block input data type. For more information, see

e Outport
» “Specify Data Types Using Data Type Assistant”

double

Data type is double.
single

Data type is single.
int8

Data type is int8.
uint8

Data type is uint8.
intl6

Data type is int16.
uintleé

Data type is uint16.

1-31

1 Blocks

1-32

int32
Data type is int32.
uint32
Data type is uint32.
int6a4
Data type is int64.
uint64
Data type is uint64.
boolean
Data type is boolean.
fixdt(1,16,0)
Data type is fixed point fixdt(1,16,0).
fixdt(1,16,270,0)
Data type is fixed point fixdt(1,16,270,0).
Enum: <class name>
Data type is enumerated, for example, Enum: Basic Colors.
Bus: <object name>
Data type is a Simulink.Bus object.
<data type expression>
The name of a data type object, for example Simulink.NumericType

Tips

You cannot enter the name of a Simulink.Bus object as a data type expression. To specify the Data
type for the block using a Bus object, select the Bus: <object name> option and replace <object
name> with the name of the Bus object.

Programmatic Use

Block parameter: OutDataTypeStr

Type: character vector

Value: 'double’ | 'single' | "int8"' | 'uint8' | 'intl6' | 'uintl6' | 'int32"' | 'uint32' |
'int64' | 'uint64'| 'boolean’' | '<fixdt(1,16)"' | 'fixdt(1,16,0)" |
'fixdt(1,16,270,0)"' | '<data type expression>'

Default: 'double’

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data type
off (default) | on

Control changes to data type settings from the Fixed-Point Tool and the Fixed-Point Advisor. For more
information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Yl On
Locks all data type settings for this block.

Argument Outport

Off
Allows the Fixed-Point Tool and the Fixed-Point Advisor to change data type settings for this
block.

Programmatic Use

Block parameter: LockScale
Type: character vector

Value: 'off' | 'on'

Default: 'off'

Port dimensions — Specify port dimensions
1 (default) [n| [m n]

Specify the dimensions of the output argument signal from the block. For more information, see
Outport.
1

Inherit port dimensions.

Vector signal of width n.
(m n]
Matrix signal having m rows and n columns.
Programmatic Use
Block parameter: PortDimensions
Type: character vector
Value: '1' | 'n' | '[m n]'
Default: '1'

Signal type — Select real or complex signal
real (default) | complex

Select real or complex signal. For more information, see Outport.

real

Specify the signal type as a real number.
complex

Specify the signal type as a complex number.
Programmatic Use
Block parameter: SignalType
Type: character vector

Value: 'real’ | 'complex’
Default: 'real’

Version History
Introduced in R2014b

1-33

1 Blocks

See Also
Argument Inport | Simulink Function | Function Caller

Topics

“Simulink Functions Overview”
“Argument Specification for Simulink Function Blocks”

1-34

ASCII to String

ASCII to String

Uint8 vector signal to string signal

Libraries:
N Ascl—stng [Simulink / String

Description

The ASCII to String block converts uint8 vector signals to string signals. The block treats each
element in the input vector as an ASCII value during the conversion. For example, the block converts
an input vector of [72 101 108 108 111] to the string "Hello".

Ports
Input

Port_1 — ASCII signal
vector

ASCII signal, specified as a vector.

While using dynamic strings, if the length of the input vector exceeds the number of characters
specified in the configuration parameter Buffer size of dynamically-sized string (bytes) (256 by
default), the ASCII to String block truncates the string output to the buffer size-1 (for example, 255),
for generated code. To avoid truncation, increase the value of the Buffer size of dynamically-sized
string (bytes) configuration parameter.

Example: [088 099]
Data Types: uint8

Output

Port_1 — Converted string signal
scalar

Converted string signal from input ASCII signal, specified as a scalar. The block converts each ASCII
element in the vector into its alphanumeric equivalent and outputs all elements concatenated into
one string.

Data Types: string

Block Characteristics

Data Types integer | string

Direct Feedthrough |yes

1-35

1 Blocks

Multidimensional no
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced in R2018a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Compose String | Scan String | String Compare | String Concatenate | String Constant | String Find |
String Length | String to Double | String to Single | String To Enum | String To ASCII | Substring | To
String

Topics

“String Data Type Conversions”
“Simulink Strings”

1-36

Assertion

Assertion
Check whether signal is zero
Libraries:
Simulink / Model Verification
A () HDL Coder / Model Verification

Description

The Assertion block checks whether any of the elements of the input signal are 0. If all of the
elements are nonzero, the assertion is true (1) and the block does nothing. If not, the block halts
the simulation and returns an error message by default.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix
Input signal to the assertion check.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

Parameters
Enable assertion — Enable or disable check
on (default) | of f

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all orDisable all.

Programmatic Use

Parameter: enabled

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

1-37

1 Blocks

1-38

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use

Parameter: callback

Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | of f
Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use

Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than - 1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than - 1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics

Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

Assertion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder™ generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used for checking whether the input signal is zero during simulation, but is not
included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Dynamic Lower Bound | Check Dynamic Upper Bound | Check Static Lower Bound | Check
Static Upper Bound

1-39

1 Blocks

1-40

Assignment

Assign values to specified elements of signal

Libraries:
Simulink / Math Operations
A vp HDL Coder / Math Operations

-

Description

The Assignment block assigns values to specified elements of the signal. You specify the indices of the
elements to be assigned values either by entering the indices in the block dialog box or by connecting
an external indices source or sources to the block. The signal at the block data port, U, specifies
values to be assigned to Y. The block replaces the specified elements of Y with elements from the
data signal.

Based on the value you enter for the Number of output dimensions parameter, a table of index
options is displayed. Each row of the table corresponds to one of the output dimensions in Number
of output dimensions. For each dimension, you can define the elements of the signal to work with.
Specify a vector signal as a 1-D signal and a matrix signal as a 2-D signal. To enable an external index
port, in the corresponding row of the table, set Index Option to Index vector (port) or
Starting index (port).

For example, assume a 5-D signal with a one-based index mode. The table in the Assignment block
dialog changes to include one row for each dimension. If you define each dimension with the
following entries:

Row Index Option Index

1 Assign all

2 Index vector (dialog) [1 3 5]
3 Starting index (dialog) 4

4 Starting index (port)

5 Index vector (port)

The assigned values are Y(1:end, [1 3
5],4:3+size(U,3),Idx4:Idx4+size(U,4)-1,Idx5)=U, where Idx4 and Idx5 are the input
ports for dimensions 4 and 5.

When using the Assignment block in normal mode, Simulink initializes block outputs to zero even if
the model does not explicitly initialize them. In accelerator mode, Simulink converts the model into
an S-Function. This involves code generation. The code generated may not do implicit initialization of
block outputs. In such cases, you must explicitly initialize the model outputs.

You can use the block to assign values to vector, matrix, or multidimensional signals.

You can use an array of buses as an input signal to an Assignment block.

Assignment

Assignment Block in Conditional Subsystem

If you place an Assignment block in a conditional subsystem block, a hidden signal buffer (which is
equivalent to a Signal Copy block) is inserted in many cases, and merging of signals from Assignment
blocks with partial writes can cause an error.

However, if you select the Ensure outport is virtual parameter for the conditional subsystem
Outport block, such cases are supported and partial writes to arrays using Assignment blocks are
possible. See “Ensure Output Port Is Virtual”.

|"@| untitled1 b |Pa|Function-Call Subsystem hd

[«0]

function

Y0 Signal Buffer

Input Signal
GO— & (D

Assignment Signal Ot

signal index

=

Assignment

Limitations

* The Index parameter is not tunable during simulation. If the Index Option for a dimension is set
to Index vector (dialog) or Starting index (dialog) and you specify a symbolic value,
including a Simulink.Parameter object, for the corresponding Index in the block dialog, then
the instantaneous value at the start of simulation will be used throughout the simulation, and the
parameter will appear as an inlined value in the generated code. See “Tune and Experiment with
Block Parameter Values”. You can adjust the assignment index dynamically by using index ports.

Ports
Input

YO0 — Input initialization signal
scalar | vector

The initialization signal for the output signal. If an element is not assigned another value, then the
value of the output element matches this input signal value.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point | Boolean | enumerated | bus

U — Input data port
scalar | vector

Value assigned to the output element when specified.

1-41

1 Blocks

1-42

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point | Boolean | enumerated | bus

IndxN — Nth index signal
scalar | vector

External port specifying an index for the assignment of the corresponding output element.

You can specify integer of custom width (for example, a 15-bit integer or 23-bit integer) as an index
signal value. When you configure the width of the integer, you must specify the Mode as Fixed
point, with Word length less than or equal to 128, Slope equal to 1, and Bias equal to 0. For more
information on specifying a fixed-point data type, see “Specify Data Types Using Data Type
Assistant”.

Dependencies

To enable an external index port, in the corresponding row of the Index Option table, set Index
Option to Index vector (port) orStarting index (port).

Data Types: single | double | int8 | int16 | int32 | uint8 | uintl1l6 | uint32
Output

Y — Output signal with assigned values
scalar | vector

The output signal with assigned values for the specified elements.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
fixed point | enumerated | bus

Parameters
Number of output dimensions — Number of dimensions of the output signal
1 (default) | integer

Enter the number of dimensions of the output signal.

Programmatic Use

Parameter: Number0OfDimensions
Type: character vector

Values: integer

Default: '1'

Index mode — Index mode

One-based (default) | Zero-based

Select the indexing mode. If One-based is selected, an index of 1 specifies the first element of the
input vector. If Zero-based is selected, an index of 0 specifies the first element of the input vector.

Programmatic Use
Parameter: IndexMode
Type: character vector

Assignment

Values: 'Zero-based' | 'One-based'
Default: 'One-based"’

Index Option — Index method for elements

Index vector (dialog) (default) | Assign all | Index vector (port) |Starting index
(dialog) | Starting index (port)

Define, by dimension, how the elements of the signal are to be indexed. From the list, select:

Menu Item Action

Assign all All elements are assigned.

Index vector (dialog) Enables the Index column. Enter the indices of
elements.

Index vector (port) The index port defines the indices of elements.

Starting index (dialog) Enables the Index column. Enter the starting
index of the range of elements to be assigned
values.

Starting index (port) The index port defines the starting index of the
range of elements to be assigned values.

If you choose Index vector (port) orStarting index (port) for any dimension in the table,
you can specify one of these values for the Initialize output (Y) parameter:

* Initialize using input port <YO0>

* Specify size for each dimension in table

Otherwise, YO always initializes output port Y.

The Index and Output Size columns are displayed as relevant.

Programmatic Use

Parameter: IndexOptionArray

Type: character vector

Values: 'Assign all' | 'Index vector (dialog)' | 'Index option (port)'| 'Starting
index (dialog)' | 'Starting index (port)'

Default: 'Index vector (dialog)'

Index — Index of elements
1 (default) | integer

If the Index Option is Index vector (dialog), enter the index of each element you are
interested in.

If the Index Option is Starting index (dialog), enter the starting index of the range of
elements to be selected. The number of elements from the starting point is determined by the size of
this dimension at U.

Programmatic Use
Parameter: IndexParamArray
Type: character vector

1-43

1 Blocks

1-44

Values: cell array
Default: '{ }'

Output Size — Width of block output signal
1 (default) | integer

Enter the width of the block output signal.

Dependencies

To enable this column, select Specify size for each dimension in table for the Initialize
output (Y) parameter.

Programmatic Use

Parameter: OutputSizeArray
Type: character vector

Values: cell array

Default: '{ }'

Initialize output (Y) — How to initialize output signal

Initialize using input port <YO0> (default) | Specify size for each dimension in
the table

Specify how to initialize the output signal.

* Initialize using input port <YO> - Signal at the input port YO initializes the output.

* Specify size for each dimension in table - Requires you to specify the width of the
block output signal in the Qutput Size parameter. If the output has unassigned elements, the
value of those elements is undefined.

Dependencies

Enabled when you set Index Option to Index vector (port) orStarting index (port) for
one or more dimensions.

Programmatic Use

Parameter: QutputInitialize

Type: character vector

Values: 'Initialize using input port <Y0>'| 'Specify size for each dimension in
table'

Default: 'Initialize using input port <Y0>'

Action if any output element is not assigned — Option to produce warning or error
Warning (default) | Error | None

Specify whether to produce a warning or error if you have not assigned all output elements. Options
include:

* Warning — Simulink displays a warning and continues the simulation.

* Error — Simulink terminates the simulation and displays an error.

* None — Simulink takes no action.

Assignment

Dependencies

To enable this parameter, set Index Option to Index vector (port) or Starting index
(port) for one or more dimensions, then set Initialize output (Y) to Specify size for each
dimension in table.

Programmatic Use

Parameter: DiagnosticForDimensions
Type: character vector

Values: 'Error' | 'Warning' | 'None'
Default: 'Warning'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than - 1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than - 1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Check for out-of-range index in accelerated simulation — Option to check for out-of-range index
values in accelerator and rapid accelerator simulation modes

off (default) | on

Select this check box to have Simulink check during simulation in accelerator or rapid accelerator
mode whether any index values are outside the range of valid indices for the relevant dimension of
the input signal. If an index is out of range, Simulink stops the simulation and displays an error
message.

Note If you do not select this check box, out-of-range index values could lead to undefined behavior
during accelerator or rapid accelerator mode simulation.

Simulink performs this check during normal mode simulation regardless of whether you select this
check box.

Programmatic Use

Parameter: RuntimeRangeChecks
Type: character vector

Values: '0ff' | 'On'

Default: 'Off"'

Block Characteristics

|Data Types |Boolean | double | enumerated | fixed point | integer|single

1-45

1 Blocks

Direct Feedthrough |yes

Multidimensional yes
Signals

Variable-Size Signals |yes
Zero-Crossing no
Detection

Version History
Introduced before R2006a

R2023a: Index signal supports integer of custom width

Starting in R2023a, you can customize the width of the integer that you use to specify the index
signal value for the Assignment block.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi | Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

1-46

Assignment

Restrictions

* 3-dimensional matrix inputs are not supported. You can use 1-D vectors and 2-D matrices with the
block.

» Variable-size signals are not supported for code generation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Bus Assignment | Selector

Topics
“Group Nonvirtual Buses in Arrays of Buses”

1-47

1 Blocks

1-48

Backlash

Model behavior of system with play

Libraries:
Simulink / Discontinuities
b, b HDL Coder / Discontinuities

Description

The Backlash block implements a system in which a change in input causes an equal change in
output, except when the input changes direction. When the input changes direction, the initial
change in input has no effect on the output. The amount of side-to-side play in the system is referred
to as the deadband. The deadband is centered about the output. This figure shows an initial state,
with the default deadband width of 1 and initial output of 0.

-10 03 0 0.3 1.0

‘¢ deadband -»

Cutput

A system with play can be in one of three modes.

Mode Input Output

Disengaged Inside deadband zone. Remains constant.

Engaged-positive direction Outside deadband zone and Equals input minus half of
increasing. deadband width.

Engaged-negative direction Outside deadband zone and Equals input plus half of
decreasing. deadband width.

The Initial output parameter value defines the initial center of the deadband zone.

This table shows output values when initial conditions are: Deadband width = 2 and Initial output
= 5.

Output Value Condition

5 4 <= input <=6
input + 1 input < 4

input -1 input > 6

For example, you can use the Backlash block to model the meshing of two gears. The input and
output are both shafts with a gear on one end, and the input shaft drives the output shaft. Extra
space between the gear teeth introduces play. The width of this spacing is the Deadband width
parameter. If the system is disengaged initially, the Initial output parameter defines the output.

Backlash

These figures illustrate operation when the initial input is within the deadband and the system begins
in disengaged mode.

10 03 0 0.3 1.0

i Input within deadband

When the input increases and reaches the end of the deadband, it engages the output. The output
remains at its previous value.

-10 03 0 0.3 1.0

i Input reaches end of deadband (engaged|

After the input engages the output, the output changes by the same amount as the input.

-10 035 0 0.3 1.0

i Input moves in positive direction.

Output = Input - [deadband width/2)

If the input reverses direction, it disengages from the output. The output remains constant until the
input reaches the end of the deadband and engages again.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal to the backlash algorithm. The value of this signal is either in the deadband or engaging
the output in a positive or negative direction.

Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32
Output

Port_1 — Output signal
scalar | vector

Output signal after the backlash algorithm is applied to the input signal. When the input is in the
deadband, then the output remains unchanged. If the input is engaged with the output, then the
output changes an equal amount as the input.

Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32

Parameters
Deadband width — Specify the width of the deadband

1-49

1 Blocks

1 (default) | scalar | vector

Specify the size of the deadband zone centered on the output value. When the input signal is inside
the deadband, then a change in input does not cause a change in output. When the input signal is
outside of the deadband, then the output changes an equal amount as the input.

Programmatic Use

Block Parameter: BacklashWidth
Type: character vector

Values: real scalar or vector
Default: '1'

Initial output — Specify the initial output value
0 (default) | scalar | vector

Specify the initial center of the deadband zone. If the initial input value is in the deadband zone, then
the output value is equal to Initial output. If the initial input value is outside of the deadband zone,
then the output value is Initial output plus or minus half of the deadzone width.

Programmatic Use

Block Parameter: InitialOutput
Type: character vector

Values: real scalar or vector
Default: '0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

* Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox™ license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

* Elements as channels (sample based) — Treat each element of the input as a separate
channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use

Block Parameter: InputProcessing

Type: character vector

Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based) '

Default: 'Elements as channels (sample based)'

Enable zero-crossing detection — Enable zero-crossing detection

Backlash

on (default) | of f

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

This block supports zero-crossing detection only in simulations that use a variable-step solver. When
you use a fixed-step solver for simulation, the software does not detect or locate zero crossings for

this block.

Programmatic Use

Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'

Default: 'on'

Block Characteristics

Data Types double | integer | single
Direct Feedthrough |yes

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing yes

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset function (string.h) in certain conditions.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized

logic.

HDL Architecture

This block has one default HDL architecture.

1-51

1 Blocks

1-52

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline

Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

The Deadband width and Initial output parameters support only scalar values.

See Also
Dead Zone

Band-Limited White Noise

Band-Limited White Noise

Introduce white noise into continuous system

i

Libraries:
Simulink / Sources

Description

The Band-Limited White Noise block generates normally distributed random numbers that are
suitable for use in continuous or hybrid systems.

Simulation of White Noise

Theoretically, continuous white noise has a correlation time of 0, a flat power spectral density (PSD),
and a total energy of infinity. In practice, physical systems are never disturbed by white noise,
although white noise is a useful theoretical approximation when the noise disturbance has a
correlation time that is very small relative to the natural bandwidth of the system.

In Simulink software, you can simulate the effect of white noise by using a random sequence with a
correlation time much smaller than the shortest time constant of the system. The Band-Limited White
Noise block produces such a sequence. The correlation time of the noise is the sample rate of the
block. For accurate simulations, use a correlation time much smaller than the fastest dynamics of the
system. You can get good results by specifying

oo 1 2m
100 frmax’

t

where f,,., is the bandwidth of the system in rad/sec.
Comparison with the Random Number Block

The primary difference between this block and the Random Number block is that the Band-Limited
White Noise block produces output at a specific sample rate. This rate is related to the correlation
time of the noise.

Usage with the Averaging Power Spectral Density Block

The Band-Limited White Noise block specifies a two-sided spectrum, where the units are Hz. The
Averaging Power Spectral Density block specifies a one-sided spectrum, where the units are the
square of the magnitude per unit radial frequency: mag”2/(rad/sec). When you feed the output of a
Band-Limited White Noise block into an Averaging Power Spectral Density block, the average PSD
value is i1 times smaller than the Noise power of the Band-Limited White Noise block. This difference
is the result of converting the units of one block to the units of the other, 1/(1/2)(2m) = 1/m, where:

* 1/2 is the factor for converting from a two-sided to one-sided spectrum.
» 2mis the factor for converting from Hz to rad/sec.

1-53

1 Blocks

Ports
Output

Port_1 — Normally distributed random numbers
scalar | vector | matrix | N-D array

Normally distributed random numbers specified as a scalar, vector, matrix, or N-D array.

Data Types: double

Parameters
Noise power — Height of PSD of white noise
[0.1] (default) | scalar | vector | matrix | N-D array

Specify the height of the PSD of the white noise as a scalar, vector, matrix, or N-D array of positive
values.

Programmatic Use

Block Parameter: Cov

Type: character vector

Values: scalar | vector | matrix | N-D array
Default: '[0.1]"

Sample time — Correlation time of noise
0.1 (default) | scalar | vector

Correlation time of the noise. For more information, see “Specify Sample Time”.

Programmatic Use

Block Parameter: Ts
Type: character vector
Values: scalar | vector
Default: '0.1"'

Seed — Starting seed

[23341] (default) | scalar | vector

matrix | N-D array

Specify the starting seed for the random number generator as a scalar, vector, matrix, or N-D array.
Values must be positive, real-valued, and finite.

Programmatic Use

Block Parameter: seed

Type: character vector

Values: scalar | vector | matrix | N-D array
Default: ' [23341]"

Interpret vector parameters as 1-D — Treat vector parameters as 1-D

on (default) | off

Band-Limited White Noise

Select to output a 1-D array when the block parameters are vectors. Otherwise, output a 2-D array
one of whose dimensions is 1. For more information, see “Determine the Output Dimensions of
Source Blocks”.

Programmatic Use

Block Parameter: VectorParams1D
Type: character vector

Values: 'on' | 'off'

Default: 'on'

Block Characteristics

Data Types double
Direct Feedthrough |no
Multidimensional no
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Algorithms

To produce the correct intensity of this noise, the covariance of the noise is scaled to reflect the
implicit conversion from a continuous PSD to a discrete noise covariance. The appropriate scale
factor is 1/tc, where tc is the correlation time of the noise. This scaling ensures that the response of a
continuous system to the approximate white noise has the same covariance as the system would have
to true white noise. Because of this scaling, the covariance of the signal from the Band-Limited White
Noise block is not the same as the Noise power (intensity) parameter. This parameter is actually the
height of the PSD of the white noise. This block approximates the covariance of white noise as the
Noise power divided by tc.

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Cannot use inside a triggered subsystem hierarchy.

See Also
Random Number

Topics
“Sample Time”

1-55

1 Blocks

1-56

Bias
Add bias to input
Libraries:
Simulink / Math Operations
w00 P HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description
The Bias block adds a bias, or offset, to the input signal according to
Y = U + bias

where U is the block input and Y is the output.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal to which the bias is added to create the output signal.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | fixed point

Output

Port_1 — Output signal
scalar | vector

Output signal resulting from adding the bias to the input signal.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |

uint64 | fixed point
Parameters

Bias — Offset to add to the input signal

0.0 (default) | scalar | vector

Specify the value of the offset to add to the input signal.

Programmatic Use
Block Parameter: Bias
Type: character vector

Bias

Values: real, finite
Default: '0.0'

Saturate on integer overflow — Choose the behavior when integer overflow occurs

off (default) | on

Action

Action

Reasons for Taking This

What Happens for
Overflows

Example

Select this check

box.

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this |You want to optimize

check box.

code.

You want to avoid

Errors”.

efficiency of your generated

overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range

Overflows wrap to the
appropriate value that is
representable by the data

type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. Usually, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Programmatic Use

Block Parameter: DoSatur
Type: character vector
Value: 'off' | 'on'
Default: 'off"

Block Characteristics

|Data Types

|double | fixed point | half | integer|single

1-57

1 Blocks

Direct Feedthrough |yes

Multidimensional no
Signals

Variable-Size Signals |yes
Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Add | Gain | Divide

1-58

Bit Clear

Bit Clear

Set specified bit of stored integer to zero

Libraries:
Simulink / Logic and Bit Operations
Clear |, HDL Coder / Logic and Bit Operations
bit O
Description

The Bit Clear block sets the specified bit, given by its index, of the stored integer to zero. Scaling is
ignored.

You can specify the bit to be set to zero with the Index of bit parameter, where bit zero is the least
significant bit.

Ports

The Bit Clear block supports Simulink integer, fixed-point, and Boolean data types. The block does not
support true floating-point data types or enumerated data types.

Input

Port_1 — Input signal
scalar or vector

The input signal is the specified bit of the stored integer.
Data Types: single | double | Boolean | fixed point

Output

Port_1 — Output signal
scalar or vector

The output consists of the specified bit set to zero.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
Index of bit — Index of bit
0 (default) | scalar or vector

Index of bit where bit 0 is the least significant bit.

1-59

1 Blocks

1-60

Programmatic Use
Block Parameter: iBit
Type: scalar or vector
Values: {'0'}

Default: '0'

Block Characteristics

Data Types Boolean? | fixed point | integer
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection
a Bit operations are not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL

Coder).

Bit Clear

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL

Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Bit Set | Bitwise Operator | Bit Rotate | Bit Shift

1-61

1 Blocks

Bit Set

Set specified bit of stored integer to one

Libraries:
Simulink / Logic and Bit Operations
Set | HDL Coder / Logic and Bit Operations
bit O
Description

The Bit Set block sets the specified bit of the stored integer to one. Scaling is ignored.

You can specify the bit to be set to one with the Index of bit parameter, where bit zero is the least
significant bit.

Ports
Input

Port_1 — Input signal
scalar or vector

Input signal with the specified bit of the stored integer.
Data Types: single | double | Boolean | fixed point

Output

Port_1 — Output signal
scalar or vector

Output signal with the specified bit set to 1.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |

Boolean | fixed point | enumerated | bus
Parameters

Index of bit — Index of bit

0 (default) | scalar or vector

Index of bit where bit 0 is the least significant bit.

Programmatic Use
Block Parameter: iBit
Type: character vector
Values: positive integer

1-62

Bit Set

Default:'0'

Block Characteristics

Data Types Boolean? | fixed point | integer
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

a Bit operations are not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1-63

1 Blocks

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Bit Clear | Bitwise Operator | Bit Rotate | Bit Shift

1-64

Bit to Integer Converter

Bit to Integer Converter

Map vector of bits to corresponding vector of integers

Libraries:
Bitto Integer | Simulink / Logic and Bit Operations
Comverter Communications Toolbox / Utility Blocks
Description

The Bit to Integer Converter block maps groups of bits in the input vector to integers in the output
vector.

If M is specified by the Number of bits per integer(M) parameter:

+ For unsigned integers, the block maps each group of M bits to an integer in the range [0, (2M - 1)].
As a result, the output vector length is 1/M times the input vector length.

 For signed integers, the block maps each group of M bits to an integer in the range [(-2M1), (2M-1

-1
Ports

Input

In — Input signal
bit scalar | column vector of bits

Input signal, specified as a scalar or column vector of bits with a length that is a multiple of the value
specified in the Number of bits per integer(M) parameter. The input must be bits with values of 0
or 1.

Data Types: double
Output

Out — Output signal
integer | column vector of integers

Output signal, returned as an integer or column vector of integers. The After bit packing, treat
resulting integer values as parameter specifies whether input bits are treated as unsigned or
signed.

* When the input bits are treated as unsigned, each integer output is in the range [0, (2M - 1)].
« When the input bits are treated as signed, each integer output is in the range [(-2M1), 2M-1 - 1)].

Parameters

Number of bits per integer(M) — Number of bits per integer

1-65

1 Blocks

1-66

3 (default) | integer in the range [1, 32]

Number of input bits mapped to each integer in the output, specified as an integer in the range [1,
32].

Programmatic Use

Block Parameter: nbits

Type: character vector

Values: integer in the range [1, 32]
Default: '3’

Input bit order — Input bit order
MSB first (default) | LSB first

Input bit order, specified as '"MSB first' or 'LSB first'.

» 'MSB first' -- First bit of the input signal is the most significant bit (MSB).
* 'LSB first' -- First bit of the input signal is the least significant bit (LSB).

Programmatic Use

Block Parameter: bitOrder

Type: character vector

Values: 'MSB first' | 'LSB first'
Default: 'MSB first'

After bit packing, treat resulting integer values as — Flag for signed integer values after bit
packing

Unsigned (default) | Signed

Specify whether the resulting integer values are treated as signed or unsigned after bit packing. This
parameter setting determines which Output data type selections are available.

Tip When this parameter is set to Unsigned and the block has an overflow, the block behaves as
though After bit packing, treat resulting integer values as is set to Signed.

Programmatic Use

Block Parameter: signedOutputValues
Type: character vector

Values: 'Unsigned' | 'Signed’
Default: 'Unsigned'’

Output data type — Output data type

Inherit via internal rule (default) | Smallest integer | Same as input | double |
single | int8 | uint8 | int16 | uintl6 | int32 | uint32

The Output data type options change depending on the desired signedness of the output.
If the output integers are Signed, you can choose from the following Output data type options:

e Inherit via internal rule

Bit to Integer Converter

* Smallest integer

* double
* single
* int8

*+ intl6
* int32

If the output integers are Unsigned, you can choose from the following options in addition to the
Signed options:

* Same as input

e uint8
 uintl6
e uint32

When you set the parameter to Inherit via internal rule, the block determines the output
data type based on the input data type.

» If the input signal is floating-point (either double or single), the output data type is the same as
the input data type.

» If the input data type is not floating-point, the output data type is determined as if the parameter
is set to Smallest integer.

When you set the parameter to Smallest integer, the block selects the output data type based on
the settings used in the “Hardware Implementation Pane” of the Configuration Parameters dialog
box.

» Ifyou select ASIC/FPGA for the device vendor, the output data type is the smallest ideal integer or
fixed-point data type, based on the setting for the Number of bits per integer(M) parameter.

» For all other device vendor selections, the output data type is the smallest available (signed or
unsigned) integer word length that is large enough to fit the ideal minimum bit size.

Programmatic Use

Block Parameter: outDtype

Type: character vector

Values: 'Inherit via internal rule'| 'Smallest integer' | 'Same as input' |
‘double'’ | 'single’ | 'int8' | 'uint8' | 'intl6"' | 'uintl6' | 'int32"' | 'uint32"’
Default: 'Inherit via internal rule'

Block Characteristics

Data Types Boolean | double | fixed point?: ®|integer | single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |yes

1-67

1 Blocks

Zero-Crossing no
Detection
a Fixed-point inputs must be ufix(1).

b ufix(N) or sfix(N) when ASIC/FPGA is selected in the Hardware Implementation Pane and output data-type is set to
either (a) Smallest integer or, (b) Inherit via internal rule and at the same time input is non floating-point.

Version History
Introduced before R2006a

R2022a: Bit to Integer Converter Block Added to Simulink Logic and Bit Operations Library
Behavior changed in R2022a

The Bit to Integer Converter block has been added from the Communications Toolbox > Utility

Blocks library to the Simulink > Logic and Bit Operations library. All existing models continue to
work.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Blocks
Integer to Bit Converter

Functions
bit2int | int2bit

1-68

Bitwise Operator

Bitwise Operator

Specified bitwise operation on inputs

Libraries:
— Simulink / Logic and Bit Operations
E'E;:';E , HDL Coder / Logic and Bit Operations
0D
Description

The Bitwise Operator block performs the bitwise operation that you specify on one or more operands.
Unlike logic operations of the Logical Operator block, bitwise operations treat the operands as a
vector of bits rather than a single value.

Restrictions on Block Operations

The Bitwise Operator block does not support shift operations. For shift operations, use the Shift
Arithmetic block.

When configured as a multi-input XOR gate, this block performs modulo-2 addition according to the
IEEE® Standard for Logic Elements.

Ports
Input

Port_1 — Input signal
scalar | vector

Input signal, specified as a scalar or vector.

* The NOT operator accepts only one input, which can be a scalar or a vector. If the input is a
vector, the output is a vector of the same size containing the bitwise logical complements of the
input vector elements.

» For a single vector input, the block applies the operation (except the NOT operator) to all
elements of the vector.

* For two or more inputs, the block performs the operation between all of the inputs. If the inputs
are vectors, the block performs the operation between corresponding elements of the vectors to
produce a vector output.

Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed
point

Output

Port_1 — Output signal
scalar | vector

1-69

1 Blocks

The output signal specified as the output data type, which the block inherits from the driving block,
must represent zero exactly. Data types that satisfy this condition include signed and unsigned
integer data types.

The size of the block output depends on the number of inputs, the vector size, and the operator you
select. If you do not specify a bit mask, the output is a scalar. If you do specify a bit mask, the output
is a vector.

Data Types: int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 | Boolean | fixed
point

Parameters

Operator — Bitwise logical operator

AND (default) | OR | NOR | NAND | XOR | NOT

Specify the bitwise logical operator for the block operands.

You can select one of these bitwise operations:

Bitwise Operation Description

AND TRUE if the corresponding bits are all TRUE

OR TRUE if at least one of the corresponding bits is TRUE
NAND TRUE if at least one of the corresponding bits is FALSE
NOR TRUE if no corresponding bits are TRUE

XOR TRUE if an odd number of corresponding bits are TRUE
NOT TRUE if the input is FALSE (available only for single input)

Programmatic Use

Block Parameter: logicop

Type: character vector

Values: 'AND'|'OR' |'NAND'['NOR"' |'XOR"' | 'NOT'
Default: 'AND'

Use bit mask — Select to use bit mask
checked (default) | unchecked

Select to use the bit mask. Clearing this check box enables Number of input ports and disables Bit
Mask and Treat mask as.

Programmatic Use

Block Parameter: UseBitMask
Type: character vector

Values: 'off'|'on'

Default: 'on'

Number of input ports — Number of input signals

1 (default) | integer

Bitwise Operator

Specify the number of inputs. You can have more than one input ports.

Dependency

Clearing the Use bit mask check box enables Number of input ports and disables Bit Mask and
Treat mask as.

Programmatic Use

Block Parameter: NumInputPorts
Type: character vector

Values: positive integer

Default: '1'

Bit Mask — Bit mask to associate with a single input
bin2dec (default)

Specify the bit mask to associate with a single input. This parameter reads values as hexadecimal
values.

You can use the bit mask to set, get, or clear a bit on the input.

To perform a... Set the Operator parameter |And create a bit mask with...
to...

Bit set OR A 1 for each corresponding
input bit that you want to set to
1

Bit clear AND A 0 for each corresponding
input bit that you want to set to
0

Bit get AND A 1 for each corresponding
input bit that you want to get

Suppose you want to set the fourth bit of an 8-bit input vector. The bit mask would be 00010000,
which you can specify as 24 for the Bit Mask parameter. To clear the bit, the bit mask would be
11101111, which you can specify as 2°7+27°6+2"5+2"3+2"2+2"1+2"0 for the Bit Mask parameter.

Tip Do not use a mask greater than 53 bits. Otherwise, an error message appears during simulation.

Dependency

This parameter is available only when you select Use bit mask.

Programmatic Use

Block Parameter: BitMask

Type: character vector

Values: positive integer

Default: 'bin2dec('11011001"')"

Treat mask as — Treat the mask as a real-world value or a stored integer

Stored Integer (default) | Real World Value

1-71

1 Blocks

1-72

Specify whether to treat the mask as a real-world value or a stored integer.

The encoding scheme is V = SQ + B, as described in “Scaling” (Fixed-Point Designer) in the Fixed-
Point Designer™ documentation. Real World Value treats the mask as V. Stored Integer treats
the mask as Q.

Dependency

This parameter is available only when you select Use bit mask.

Programmatic Use

Block Parameter: BitMaskRealWorld

Type: character vector

Values: 'Real World Value' | 'Stored Integer'
Default: 'Stored Integer'

Block Characteristics

Data Types Boolean? | fixed point | integer
Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

a Bit operations are not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

Bitwise Operator

HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Logical Operator | Compare To Constant | Compare To Zero | Shift Arithmetic

1-73

1 Blocks

Block Support Table

View data type support for Simulink blocks

Libraries:
Simulink / Model-Wide Utilities

Blodk Support
Table

Description

The Block Support Table block helps you access a table that lists the data types that Simulink blocks
support. To view the table, double-click the block.

Block Characteristics

Data Types

Direct Feedthrough |no
Multidimensional no
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection
Tips

To open the Block Support Table from the command line, enter showblockdatatypetable at the
MATLAB command prompt.

Version History
Introduced in R2007b

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Block Support Table block is ignored during code generation.

See Also
showblockdatatypetable

Block Support Table

Topics
“Data Types Supported by Simulink”

1-75

1 Blocks

1-76

Bus Assignment

Assign new values to specified bus elements

Libraries:
Simulink / Signal Routing
Bus Bush HDL Coder / Signal Routing
= =ignal
Description

The Bus Assignment block assigns the values of input signals to selected bus elements. Use a Bus
Assignment block to change bus element values without adding Bus Selector and Bus Creator blocks
that select bus elements and reassemble the elements into a bus. A Bus Assignment block simplifies
updating a bus to reflect the processing that occurs in a separate component, such as a subsystem or
referenced model.

The Bus Assignment block assigns elements connected to its assignment input ports to specified
elements of the bus connected to its bus input port. The block replaces the elements previously
assigned to those elements. The change does not affect the composition of the bus; it affects only the
values of the elements themselves. Signals not replaced are unaffected by the replacement of other
elements.

The elements to which you assign values can be nonbus signals or buses, including arrays of buses.
The new values must match the attributes of the elements in the original bus.

By default, Simulink repairs broken selections for a Bus Assignment block that are due to upstream
bus hierarchy changes. Simulink generates a warning to highlight that it modified the model. To
prevent Simulink from making these repairs automatically:

1 On the Modeling tab of the Simulink Toolstrip, click Model Settings.

2 Navigate to the Diagnostics > Connectivity pane.

3 Set the Repair bus selections configuration parameter to Error without repair.

Limitations

* The Bus Assignment block does not support messages.

* A Bus Assignment block cannot replace a bus in an array of buses. Use an Assignment block
instead. For more information, see “Assign Values into Arrays of Buses”.

* A Bus Assignment block cannot replace an element of a bus in an array of buses. To select the
index of the bus that you want to modify with the Bus Assignment block, use a Selector block.
Then, use that selected bus with the Bus Assignment block.

Bus Assignment

Ports
Input

Bus — Input bus with elements to reassign
bus

The input virtual or nonvirtual bus can have elements with real or complex values of any data type
supported by Simulink, including bus objects, fixed-point data types, and enumerated data types. The
bus can also contain arrays of buses.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | string

:= — New value to assign to bus element
scalar | vector | matrix | array | bus

Each element in the Elements that are being assigned list receives an assignment port. The port
label indicates the bus element that corresponds to the port. For an element named signall, the
port label is := signall.

Connect the signal that you want to assign to the bus element to its corresponding assignment port.
The signal connected to the assignment port must have the same structure, data type, and sample
time as the corresponding bus element. To change the sample time of one or more elements, use a
Rate Transition block. For more information, see “Modify Sample Times for Nonvirtual Buses”.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | string

Output

Bus — Output bus
bus

The output virtual or nonvirtual bus includes the assigned bus element values for the selected
elements and the unmodified bus element values for the other elements.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | string
Parameters

Elements in the bus — Elements of input bus
list of element names

This parameter is read-only.
Select elements in the input bus to operate on them.

An arrow next to an element name indicates that an element is a nested bus. To display the elements
in a nested bus, click the arrow.

With one or more elements selected, click:

* Find — Find the source of the selected elements. Simulink opens and highlights the system
containing the element source.

1-77

1 Blocks

1-78

* Select — Add the selected elements to the list of elements to be assigned values. For more
information, see Elements that are being assigned.

To refresh the list to reflect modifications to the input bus, click Refresh.

Programmatic Use

Block Parameter: InputSignals
Type: cell array | cell array of cell arrays
Values: names of input bus elements
Default: none

Filter by name — Filter for input elements
text

Specify a search term to use for filtering a long list of input elements. Do not enclose the search term
in quotation marks. The filter does a partial string search.

To access filtering options, such as using a regular expression for specifying the search term, click

the Show filtering options button @ to the right of the Filter by name box.

Enable regular expression — Option to filter input elements with regular expressions
off (default) | on

Enable the use of MATLAB regular expressions for filtering element names. For example, enter t$ in
the Filter by name bhox to display all elements whose names end with a lowercase t and their
immediate parents. For more information, see “Regular Expressions”.

Dependencies

To access this parameter, click the Show filtering options button & to the right of the Filter by
name box.

Show filtered results as a flat list — Option to display filtered input elements in a flat list
off (default) | on

By default, the list of input elements displays elements in a hierarchical tree. To display filtered
elements in a flat list that uses dot notation to reflect the bus hierarchy, select this parameter.

Dependencies

To access this parameter, click the Show filtering options button @ on the right of the Filter by
name box.

Elements that are being assigned — Bus elements to be assigned new values
list of element names

For each element in this list, the block has an assignment port. The port label contains the name of
the corresponding element.

To add assignment ports for elements:

1 Select one or more elements from the Elements in the bus list.

Bus Assignment

If you select multiple elements from the Elements in the bus list, the order in which you select
them sets their order in the Elements that are being assigned list.

2 Optionally, specify where you want the elements to appear in the Elements that are being
assigned list. Select the element below which you want the added elements to appear. If you do
not select an element, added elements appear at the end of the list.

3 Click Select.

To change the order of the assignment ports, select an element or multiple contiguous elements in
the list, then click Up or Down. Port connectivity is maintained when you change the element order.

To remove assignment ports, select the corresponding elements in the list, then click Remove.

If an element in the list is not in the input bus, the element name starts with three question marks
(?77). Modify the input bus to include an element of the specified name or remove the element from
the list.

Programmatic Use

Block Parameter: AssignedSignals

Type: character vector | string scalar

Values: comma-separated list of element names
Default: none

Block Characteristics

Data Types Boolean | bus | double | enumerated | fixed point | half | integer
| single | string

Direct Feedthrough |yes

Multidimensional yes
Signals

Variable-Size Signals |yes
Zero-Crossing no
Detection

Version History
Introduced before R2006a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

1-79

1 Blocks

1-80

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline

Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation

Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also

Bus Creator | Bus Selector

Topics

“Composite Interface Guidelines”

“Group Signals or Messages into Virtual Buses”
“Create Nonvirtual Buses”

“Group Nonvirtual Buses in Arrays of Buses”
“Share and Reuse Bus-Routing Blocks”

Bus Creator

Bus Creator

Create bus from input elements

Libraries:

Simulink / Commonly Used Blocks
Simulink / Signal Routing

HDL Coder / Signal Routing

Description

The Bus Creator block combines a set of input elements into a bus. You can connect any element
types to the input ports, including other buses. You can access elements in a bus by using a Bus
Selector block.

Elements of a bus must have unique names. By default, each element of the bus inherits the name of
the element connected to the Bus Creator block. If duplicate names are present, the Bus Creator
block appends the port number to all input element names. For elements that do not have names, the
Bus Creator block generates names in the form signaln, where n is the port number connected to
the element. You can refer to elements by name when you search for their sources or select elements
for connection to other blocks. For element naming guidelines, see “Signal Names and Labels”.

The Bus Creator block does not support mixing message and signal elements as inputs.

Ports
Input

Port_1 — Input element to include in bus
scalar | vector | matrix | array | bus

The input ports accept the elements to include in the bus. The number of input ports is driven by the
Number of inputs parameter.

You can specify variable-size input signals with upper bounds smaller than the upper bounds of the
variable-size signals that the corresponding Bus Creator block input ports can accept. To configure
the upper bounds of variable-size signals that Bus Creator block input ports accept, use a
Simulink.BusElement object. For more information, see Simulink.BusElement. Variable-size
input signals and variable-size signals that the corresponding Bus Creator block input ports accept
must have the same dimensionality.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Output
Port_1 — Output virtual or nonvirtual bus

bus

1-81

1 Blocks

1-82

The output bus is composed of the input elements. The QOutput as nonvirtual bus parameter
specifies whether the output bus is a virtual or nonvirtual bus. For information about the types of
buses, see “Composite Interface Guidelines”.

Data Types: single | double | half | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus
Parameters

Number of inputs — Number of input elements

2 (default) | integer

The number of input elements must be an integer greater than or equal to 2. Increasing the number
of inputs adds empty input ports to the block. Before you simulate the model, make sure that an input
element is connected to each input port.

When you modify the Number of inputs parameter, click Refresh to update the list of elements.

If all input ports are already connected, you can add an input port to the Bus Creator block by
connecting another line to it.

Interactively adding a port updates the Number of inputs parameter and adds the new element to
the list of elements in the bus.

Programmatic Use

Block Parameter: Inputs

Type: character vector

Values: integer greater than or equal to 2, comma-separated list of element names
Default: '2'

By default, the Inputs parameter specifies the number of inputs. When you use it to specify the
names of elements in the bus, the number of inputs matches the number of element names you

specify.
Elements in the bus — List of input elements
list of element names

The list of input elements includes all elements that enter the block, including the elements of nested
buses. An arrow next to an element indicates that an input element is a bus. To display the contents
of that bus, click the arrow.

To highlight the source of an element that enters the block, select the element in the list and click
Find.

If you change an element name while the dialog box is open, click Refresh to update the name in the
list.

Bus Creator

To rearrange the elements in the output bus, use the Up and Down buttons. You can select multiple
top-level adjacent elements in the Elements in the bus list to reorder or remove.

To add or remove input elements, click Add or Remove, respectively. Then, update the block icon by
clicking Apply or OK. Before you simulate the model, make sure that an input element is connected
to each input port.

Programmatic Use

Block Parameter: Inputs

Type: character vector

Values: integer greater than or equal to 2, comma-separated list of element names
Default: '2'

By default, the Inputs parameter specifies the number of inputs. When you use it to specify the
names of elements in the bus, the number of inputs matches the number of element names you

specify.
Filter by name — Search term for filtering displayed input elements
text

To filter the displayed input elements, enter a search term. The filter does a partial-string search. Do
not enclose the search term in quotation marks.

To access the filtering options, click the Show filtering options @ button to the right of the Filter
by name box.

Enable regular expression — Option to filter displayed input elements by regular expression
off (default) | on

Select this parameter to filter the displayed input elements with either regular expressions or partial
search strings. By default, you can filter the displayed input elements with only partial search strings.

Regular expressions let you filter based on whether the input elements match a pattern. For example,

enter t$ in the Filter by name box to display all elements whose names end with a lowercase t (and
their immediate parents). For more informations, see “Regular Expressions”.

Dependencies

To access this parameter, click the Show filtering options @ button to the right of the Filter by
name box.

Show filtered results as a flat list — Option to display filtered results as a flat list
off (default) | on

Select this parameter to display filtered results as a flat list that uses dot notation to reflect the bus
hierarchy. By default, the filtered results appear in a hierarchical tree.

Dependencies

To access this parameter, click the Show filtering options @ button to the right of the Filter by
name box.

1-83

1 Blocks

Output data type — Data type of output bus

"Inherit: auto' (default) | 'Bus: <object name>' |<data type expression>
Specify the data type of the output bus.

If you select Bus: <object name>, replace <object name> with the name of a Simulink.Bus
object. The Bus object must be accessible when you edit the model.

To define a Bus object using the Type Editor, click the Show data type assistant button - , set
Mode to Bus object, and then click the Edit button.

If you select <data type expression>, specify an expression that evaluates to a Bus object.

Programmatic Use

Block Parameter: OutDataTypeStr

Type: character vector

Values: 'Inherit: auto' | 'Bus: <object name>'
Default: 'Inherit: auto'

Require names of inputs to match names above — Option to check that input element names
match names listed in dialog box

off (default) | on

This parameter might be removed in a future release. To enforce strong data typing, use the Use
names from inputs instead of from bus object parameter.

When selected, this parameter checks that the input element names match the names listed in the
Block Parameters dialog box. If the element names do not match, Simulink returns an error.

Dependencies

* This parameter is ignored if you select Use names from inputs instead of from bus object.
* This parameter reverts to of f if you programmatically change Number of inputs.

Rename selected signal — New name for selected input element

"' (default) | character vector

Specify a new name for the selected input element. See “Signal Names and Labels” for name
guidelines.

Dependencies
To enable this parameter, select Require names of inputs to match names above.

Use names from inputs instead of from bus object — Option to use names from input elements
instead of from bus object

on (default) | of f

By default, the Bus Creator block uses the input element names as the output bus element names,
even when you specify a Simulink.Bus object as the data type.

1-84

Bus Creator

To inherit bus element names from the Bus object, clear this parameter. Clearing the parameter:

* Enforces strong data typing.

* Avoids having to enter an element name multiple times: in the Bus object and in the model.
Entering the name multiple times can accidentally create element name mismatches.

* Supports the array of buses requirement to have consistent element names across array elements.

Alternatively, you can enforce strong data typing by checking that input element names match the
Bus object element names. Keep this parameter selected and set the Element name mismatch
configuration parameter to error.

Dependencies

To enable this parameter, set Output data type to a Bus object.

Programmatic Use

Block Parameter: InheritFromInputs
Type: character vector

Values: 'on' | 'off'

Default: 'on’

Output as nonvirtual bus — Option to output nonvirtual bus
off (default) | on
Select this parameter to output a nonvirtual bus instead of a virtual bus.

All elements in a nonvirtual bus must have the same sample time, even if the elements of the
associated Bus object specify inherited sample times for some elements. Any operation resulting in a
nonvirtual bus containing elements with different sample rates generates an error. To change the
sample time of an element or bus that has a different sample time than the other nonvirtual bus input
elements, use a Rate Transition block. For details, see “Modify Sample Times for Nonvirtual Buses”.

To generate code that uses a C structure to define the structure of the bus that this block creates,
enable this parameter.

Dependencies

To enable this parameter, set Output data type to a Bus object.

Programmatic Use

Block Parameter: NonVirtualBus
Type: character vector

Values: 'on' | 'off'

Default: 'off'

Block Characteristics

Data Types Boolean | bus | double | enumerated | fixed point | half | integer
| single | string

Direct Feedthrough |no

Multidimensional yes
Signals

1-85

1 Blocks

1-86

Variable-Size Signals |yes

Zero-Crossing no
Detection

Tips

For buses at subsystem and model interfaces, you can use Out Bus Element blocks instead of a Bus
Creator block with an Outport block. Out Bus Element blocks:

* Reduce line complexity and clutter in a block diagram.

* Make it easier to change the interface incrementally.

Version History
Introduced before R2006a

R2023a: Variable-size input signal upper bound can be smaller than upper bound of
variable-size signal that the corresponding Bus Creator block input port can accept

Starting in R2023a, the Bus Creator block supports variable-size input signals with upper bounds
smaller than upper bounds of variable-size signals that the corresponding Bus Creator block input
ports can accept.

This enhancement allows you to use variable-size input signals when the upper bounds of input
signals are not equal to the upper bounds of variable-size signals that the corresponding Bus Creator
block input ports can accept.

R2014b: Require names of inputs to match names above parameter is not recommended
Not recommended starting in R2014b

The Require names of inputs to match names above parameter might be removed in a future
release. To enforce strong data typing, use the Use names from inputs instead of from bus
object parameter instead.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

Bus Creator

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Bus Assignment | Bus Selector | Bus to Vector | Out Bus Element

Topics

“Group Signals or Messages into Virtual Buses”

“Simplify Subsystem and Model Interfaces with Bus Element Ports”
“Bus-Capable Blocks”

“Assign Signal Values to Bus Elements”

“Modify Sample Times for Nonvirtual Buses”

“Specify Bus Properties with Simulink.Bus Object Data Types”

1-87

1 Blocks

1-88

Bus Selector

Select elements from incoming bus

Libraries:

Simulink / Commonly Used Blocks
Simulink / Signal Routing

HDL Coder / Signal Routing

Description

The Bus Selector block outputs the elements you select from the input bus. The block can output the
selected elements separately or in a new virtual bus.

The Bus Selector block does not support mixing message and signal elements as outputs.

Ports
Input

Port_1 — Input virtual or nonvirtual bus
bus

The input virtual or nonvirtual bus contains the elements to be selected.

For arrays of buses, use a Selector block to select the bus that you want to use with the Bus Selector
block.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Output

Port_1 — Selected elements of input bus
scalar | vector | matrix | array | bus

By default, the block outputs each of the selected elements from a separate output port that is
labeled with the corresponding bus element name. When the Output as virtual bus parameter is
enabled, the block outputs the selected elements from one port, grouped in a virtual bus.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Parameters
To interactively edit the block parameters, double-click the block.

Elements in the bus — List of elements in input bus

Bus Selector

list of element names

This parameter is read-only.

The list of input elements includes all elements that enter the block, including the elements of nested
buses. An arrow next to an element indicates that an input element is a bus. To display the contents

of that bus, click the arrow.

To highlight the source of an element that enters the block, select the element in the list and click
Find.

If you change an element name while the dialog box is open, click Refresh to update the name in the
list.

Programmatic Use

Block Parameter: InputSignals

Type: cell array

Values: element names

Filter by name — Search term for filtering displayed input elements

text

To filter the displayed input elements, enter a search term. The filter does a partial-string search. Do
not enclose the search term in quotation marks.

To access the filtering options, click the Show filtering options @ button to the right of the Filter
by name box.

Enable regular expression — Option to filter displayed input elements by regular expression
off (default) | on

Select this parameter to filter the displayed input elements with either regular expressions or partial
search strings. By default, you can filter the displayed input elements with only partial search strings.

Regular expressions let you filter based on whether the input elements match a pattern. For example,

enter t$ in the Filter by name box to display all elements whose names end with a lowercase t (and
their immediate parents). For more informations, see “Regular Expressions”.

Dependencies

To access this parameter, click the Show filtering options @ button on the right side of the Filter
by name box.

Show filtered results as a flat list — Option to display filtered results as a flat list

off (default) | on

Select this parameter to display filtered results as a flat list that uses dot notation to reflect the bus
hierarchy. By default, the filtered results appear in a hierarchical tree.

1-89

1 Blocks

1-90

Dependencies

To access this parameter, click the Show filtering options @ button on the right side of the Filter
by name box.

Selected elements — Selected elements of input bus
list of elements names
Each element in this list is included in the block output.

To add elements to the block output:

1 Select one or more elements from the Elements in the bus list.

If you select multiple elements from the Elements in the bus list, the order in which you select
them sets their order in the Selected elements list.

2 Optionally, specify where you want the elements to appear in the Selected elements list. Select
the element below which you want the added elements to appear. If you do not select an element,
added elements appear at the end of the list.

3 Click Select.

Alternatively, in the Simulink Editor, draw a new line close to the output side of the Bus Selector
block when the input port receives a bus and all output ports connect to other ports. Simulink
prompts you to specify an element to select and adds a port for the element you specify. You cannot
create ports in this way when Output as virtual bus is selected.

To change the order of the output elements, select an element or multiple contiguous elements in the
list, then click Up or Down. Port connectivity is maintained when you change the element order.

To remove elements from the block output, select the elements in the list, then click Remove.

If an element in the list is not in the input bus, the element name starts with three question marks
(?77). Modify the input bus to include an element of the specified name or remove the element from
the list.

Limitations

To avoid a recursion limit, select fewer than 500 elements per Bus Selector block.

Programmatic Use

Block Parameter: QutputSignals

Type: character vector

Values: character vector in the form of 'signall,signal2’
Default: none

Output as virtual bus — Option to output selected elements as virtual bus
off (default) | on
By default, the block outputs each of the selected elements from a separate output port that is

labeled with the corresponding bus element name. Select this parameter to output the selected
elements from one port, grouped in a virtual bus.

Bus Selector

To convert the output to a nonvirtual bus, insert a Signal Conversion block after the Bus Selector
block. Set the Signal Conversion block Output parameter to Nonvirtual bus and set the Data
type to a Simulink.Bus object.

When the Selected elements list includes only one element and you enable Output as virtual bus,
then that element is not wrapped in a bus. For example, if the element is a bus, the output element is
that bus. If the element is not a bus, the output element is not a bus.

Programmatic Use

Block Parameter: OutputAsBus
Type: character vector

Values: 'on' | 'off'

Default: 'off'

Block Characteristics

Data Types Boolean | bus | double | enumerated | fixed point | half | integer
| single | string

Direct Feedthrough |yes

Multidimensional yes
Signals

Variable-Size Signals |yes
Zero-Crossing no
Detection

Tips

For buses at subsystem and model interfaces, you can use In Bus Element blocks instead of an Inport
block with a Bus Selector block. In Bus Element blocks:

* Reduce line complexity and clutter in a block diagram.
* Make it easier to change the interface incrementally.

» Allow access to a bus element closer to the point of usage, avoiding the use of a Bus Selector and
Goto block configuration.

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

1-91

1 Blocks

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Bus Creator | Bus Assignment | Bus to Vector | Out Bus Element

Topics

“Group Signals or Messages into Virtual Buses”

“Simplify Subsystem and Model Interfaces with Bus Element Ports”
“Bus-Capable Blocks”

“Assign Signal Values to Bus Elements”

1-92

Bus to Vector

Bus to Vector

Convert virtual bus to vector

Libraries:

3 + h Simulink / Signal Attributes
HDL Coder / Signal Attributes

Description

The Bus to Vector block converts a virtual bus to a vector signal. The input bus must consist of scalars
or 1-D, row, or column vectors that have the same data type, signal type, and sampling mode. If the
input bus contains row or column vectors, the output is a row or column vector, respectively.
Otherwise, the output is a 1-D array.

Use the Bus to Vector block only to replace an implicit bus-to-vector conversion with an explicit
conversion. To identify and correct buses used as vectors without manually inserting Bus to Vector
blocks, you can use Model Advisor check Check bus signals treated as vectors. Alternatively, you can
use the Simulink.BlockDiagram.addBusToVector function, which automatically inserts Bus to
Vector blocks wherever needed.

Note If you use Save As to save a model in a version of the Simulink product before R20074a, a null
subsystem that outputs nothing replaces each Bus to Vector block. Before you can use the model,
reconnect or otherwise correct each path that used to contain a Bus to Vector block but now is
interrupted by a null subsystem.

Ports
Input

Port_1 — Bus to convert to vector
scalar | vector | bus

An input bus must consist of scalars or 1-D, row, or column vectors that have the same data type,
signal type, and sampling mode. If the input is a nonbus signal, the block does no conversion.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Output vector
vector

The dimensions of the output vector depend on the dimensions of the input bus elements. If the input
bus contains row or column vectors, the block output is a row or column vector, respectively.
Otherwise, the output is a 1-D vector.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

1-93

1 Blocks

1-94

Block Characteristics

Detection

Data Types Boolean | bus | double | enumerated | fixed point | half | integer
| single

Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Version History

Introduced in R2007a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized

logic.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Bus to Vector

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also

Blocks
Bus Creator | Bus Selector | Mux | Data Type Conversion

Functions
Simulink.BlockDiagram.addBusToVector

Topics
“Identify Automatic Bus Conversions”
“Composite Interface Guidelines”

1-95

1 Blocks

C Caller

Integrate C code in Simulink

Libraries:
Simulink / User-Defined Functions

=FunctiocnName:=

C Caller

Description

The C Caller block integrates your external C code into Simulink. This block imports and lists the
functions in your external C code, and allows you to select your resolved C functions to integrate in
your Simulink models. The C Caller block standalone supports code generation. For more complex
models, code generation depends on the capabilities of your Simulink model.

To use the C Caller block, define your source code and any supporting files using Simulation Target
under Configuration Parameters. Then, bring a C Caller block to the Simulink canvas, using
Library Browser > Simulink > User Defined Functions. To change the defined source code file
and its dependencies, go to Simulation Target tab in Configuration Parameters by clicking the

@

from the block dialog. After changing your source code or any of its dependencies, refresh the

S

list of functions by clicking the on the block dialog. To browse the function definitions in your

» .
source code, use the icon to access your source files.

Ports
Input

Port_1 — Input port
scalar | vector | matrix

The number of input ports and their names are inferred through the selected function in your
external C code. To provide data to a C Caller block, connect an input signal to the input ports.

The input label has the same name as your input port unless changed by editing the Label column
under Port Specification from the Block Dialog. If you rename the label to an input port, the C
Caller block changes the name of the port.

For input variables, you can change the input scope to parameters or constants using the Scope
column.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Output

Port_1 — Output port
scalar | vector | matrix

1-96

C Caller

The number of output ports and their names are inferred through the selected function in your
external C code. To send data from your C Caller block, connect a block to the output port of your C
Caller block.

The output port label has the same name as your output port unless you change it by editing the
Label column under Port Specification from the Block Dialog. If you rename the label to an input
port, the C Caller block changes the name of the port.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
Boolean | enumerated | bus

Parameters
Function name — Name of function

character vector | string scalar

Name of the function parsed for the C Caller block, specified as a character vector or string scalar.
For a list of available functions, see “Available Functions” on page 1-0

Tunable: Yes

Programmatic Use
Block Parameter: FunctionName
Type: character vector or string scalar

myFunctionName = get param(gcb,"FunctionName")

myFunctionName =
'mean filter!'

Port specification — Port properties
table

Port properties, specified as a table. The table indicates the attributes of each input and output
element of the block. If the scope is an input, you can modify this variable to a parameter or a
constant. These properties include

Name — Demonstrates the variable name inferred from your source code.
A bold argument name indicates that the port or parameter is a global argument.

Scope — Indicates the role of the variables from your source code. If the variable is an input
argument in the C Caller block source code, you can change the scope type to a constant or a
parameter. If the variable is an output argument in the source code, you cannot change the scope

type.

Label — Labels the input or output variable for the Simulink model. You can change the labels using
this table. If the scope is a parameter, enter the parameter name in this field. If the scope is a
constant, enter the constant value.

Type — Indicates the data type coming from the ports.

Size — Indicates the size of the input and output data.

1-97

1 Blocks

Name, scope, type, and size are inferred from your source code.

Programmatic Use
Block Parameter: FunctionPortSpecification
Type: FunctionPortSpecification object

Available Functions — List of available functions
cell array

List of all available functions that can be mapped to a C Caller block, specified as a cell array.

The C Caller block in your model imports all functions in your external source code, and shows the
function names next to the “Function name” on page 1-0 on the block dialog. To select and use a
function in your block, confirm that the function name appears in the Available Functions table.

If you are missing one of the functions, reload the source code by clicking S on the block dialog.
To change the names of functions, modify your source code and click the Refresh button to reload.

Programmatic Use
Block Parameter: AvailableFunctions
Type: cell array

allAvailableFunctions get param(gcb, "AvailableFunctions")

allAvailableFunctions

1x1 cell array
{'add'}

Sample time — Sample period
-1 (default) | scalar | vector

Sample period, specified in seconds. See “Types of Sample Time” and “Specify Sample Time”.

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics

Data Types Boolean? | bus? | double? | enumerated® | fixed point®| integer?|
single?
Direct Feedthrough |no
Multidimensional yes?
Signals
Variable-Size Signals |no
Zero-Crossing no
Detection
a Actual data type or capability support depends on block implementation.

1-98

C Caller

Version History
Introduced in R2018b
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
C Function | MATLAB Function | MATLAB System | S-Function | S-Function Builder

Topics
“Integrate C Code Using C Caller Blocks”

1-99

1 Blocks

1-100

C Function

Integrate and call external C/C++ code from a Simulink model

Libraries:
C Simulink / User-Defined Functions
C Functicn
Description

The C Function block integrates and calls external C/C++ code from a Simulink model. Use this block
to define external code and customize the integration of your code by preprocessing or
postprocessing the data. In addition, you can specify customized code for simulation and C code
generation. You can conditionally call functions defined in your code, and you can also call multiple
functions in one block. Using this block, you can initialize persistent data and pass it to an external
function.

The C Function block supports initializing persistent data and calling external functions from the
block dialog box. Persistent data can include an object of a C++ class defined in your custom code.
See “Interface with C++ Classes Using C Function Block”. The block supports only initializing and
terminating persistent data. The block does not support updating the data during simulation. To
model a dynamic system with continuous states, use an S-Function block. To learn more about S-
functions, see “What Is an S-Function?”

Define the source code and supporting files to be called by the C Function block in the Simulation
Target pane of the Model Configuration Parameters dialog box. See “Model Configuration
Parameters: Simulation Target”.

Note C99 is the standard version of C language supported for custom C code integration into
Simulink.

Call C Library Functions

You can call these C Math Library functions directly from the C Function block.

abs acos asin atan atan2 ceil
cos cosh exp fabs floor fmod
labs ldexp log logl0o pow sin
sinh sqrt tan tanh

When you call these functions, double precision applies unless all the input arguments are explicitly
single precision. When a type mismatch occurs, a cast of the input arguments to the expected type
replaces the original arguments. For example, if you call the sin function with an integer argument,
a cast of the input argument to a floating-point number of type double replaces the original

argument.

C Function

To call other C library functions, create and call an external wrapper function that calls the C library
function.

Call the abs, fabs, and labs Functions

Interpretation of the abs, fabs, and labs functions in C Function block goes beyond the standard C
version to include integer and floating-point arguments:

« If x is an integer, the standard C function abs applies to X, or abs (x).

» If x is a double, the standard C function labs applies to x, or labs (x).

+ If x is a single, the standard C function fabs applies to x, or fabs (x).

Code Replacement Library (CRL) Based on Type

The call to the function should call the correct CRL based on the type of data passed into the
function. If no CRL is specified, the call to the function should call to type-specific library. The CRL for
C99 generates a type-specific function. For example:

Type passed in Code generation call
sin(doubleln) sin(doublelIn)
sin(floatIn) sinf(floatIn)
Limitations

These features of Simulink are not compatible with the C Function block.
* Simulink Coverage™

Only execution coverage is measured.
* Simulink Code Inspector™
* Simulink Design Verifier™

These limitations apply to the C code that you specify in a C Function block.
* Local static variables using the static keyword are not supported. To cache values across time

steps, define a symbol as Persistent in the Symbols table of the block dialog box.

* You cannot #include files in the code. Files containing external functions must be specified in the
Simulation Target pane of the Configuration Parameters window.

» Taking the address of a Constant symbol is not supported.

* Directly calling C library functions other than the C Math Library functions listed above under Call
C Library Functions is not supported. To call other C library functions, create and call a wrapper
function that calls the C library function.

Ports
Input

Port_1 — Input port
scalar | vector | matrix

The number of input ports is determined by the number of symbols with Input or InputQutput
scope defined in the Symbols table in the block parameters dialog box. Each input port label is the

1-101

1 Blocks

1-102

same as the name of the Input or InputOutput symbol unless you change it by editing the Label
field in the Symbols table of the block dialog box.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
Boolean | enumerated | bus | fixedpoint

Output

Port_1 — Output port
scalar | vector | matrix

The number of output ports is determined by the number of symbols with Output or InputOutput
scope defined in the Symbols table in the block parameters dialog box. Each output port label is the
same as the name of the Output or InputOutput symbol unless you change it by editing the Label
field in the Symbols table of the block dialog box.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
Boolean | enumerated | bus | fixedpoint

Parameters
Output Code — Output code

character vector | string scalar

Output code that the block executes at each time step during simulation, specified as a character
vector or string scalar. For example, you can call a function from external C code, make modifications
to the results, and perform operations to pass the results to other blocks.

Programmatic Use

Block Parameter: OutputCode
Type: character vector or string scalar
Value: "" | C code

Default: ""

Start Code — Initialization code

character vector | string scalar

Initialization code that the block executes one time at the start of simulation, specified as a character
vector or string scalar. For example, you can initialize persistent symbols.

Programmatic Use

Block Parameter: StartCode

Type: character vector or string scalar
Value: "" | C code

Default: ""

Initialize Conditions Code — Reinitialization code
character vector | string scalar

Reinitialization code for the block to execute when enabling a subsystem or model in which the block
is placed, specified as a character vector or string scalar. The code executes one time at the start of
simulation, and if the block is inside a subsystem or model containing an Enable block with the

C Function

States when enabling parameter set to reset, the code also executes each time the subsystem or
model switches from disabled to enabled. See “Using Enabled Subsystems”. You can use this code, for
example, to set an initial output value or reset the value of a persistent variable.

Programmatic Use

Block Parameter: InitializeConditionsCode
Type: character vector or string scalar

Value: "" | C code

Default: ""

Terminate Code — Termination code
character vector | string scalar

Termination code that the block executes one time at the end of simulation, specified as a character
vector or string scalar. For example, use this code to free the memory cached on persistent symbols
specified as void pointers.

Programmatic Use

Block Parameter: TerminateCode
Type: character vector or string scalar
Value: "" | C code

Default: ""

Symbols — Symbols and symbol properties
table

Symbols and symbol properties used in the C code, specified as a table. You must enter the following
attributes of each symbol in the table:

* Name — Symbol name in the code.

If the symbol represents a C++ class object, the Name field serves as a call to the class
constructor:
ObjectName (Argumentl,Argument2,...)

* Scope — Scope of the symbol. These scopes are available:

e Input — Input to the block.
* Qutput — Output to the block.
* InputOutput — Both input and output to the block.

Use the InputOutput scope to map an input passed by a pointer in your C code. Ports created
using an InputOutput scope have the same name for input and output ports. InputOutput
scope enables buffer reuse for input and output ports. Buffer reuse may optimize memory use
and improve code simulation and code generation efficiency, depending on the signal size and
the block layout. Limitations include:

* An InputOutput symbol cannot be used in Start Code, Initialize Conditions Code, or
Terminate Code.
* InputOutput symbols do not support the void* data type.

* InputOutput symbols do not support size() expressions.

1-103

1 Blocks

* Parameter — Block parameter that appears on the block parameter mask. The parameter
name is defined by the Label of the symbol.

* Persistent — Persistent block data, which retains its value from one time step to the next
during simulation.

You can define a void pointer using the Persistent scope. A void pointer is a pointer that can
store any type of data that you create or allocate.

You can instantiate an object of a C++ class defined in your custom code by defining a symbol
with Persistent scope and using Class: ClassName as the Type for the symbol. See
“Interface with C++ Classes Using C Function Block”.

* Constant — Constant value, defined using value-size or numeric expressions.

Label — Label of the symbol. For a symbol with Input, InputOutput, or Output scope, the
label appears as the port name on the block. For a symbol with Parameter scope, the label
appears on the block parameter mask. If the scope is Constant, the label is the constant
expression. You cannot define a label for Persistent scope symbols.

Type — Data type of the symbol. Select a data type from the drop-down list or specify a custom
data type.

C++ class types defined in your custom code are supported, as are Simulink.Bus, Simulink
Enum, and Simulink.AliasType types. Enter the Type as shown in this table.

Custom type Specification in Type field
C++ class Class: C++ClassName
Simulink.Bus Bus: BusTypeName
Simulink.Enum Enum: EnumTypeName
Simulink.AliasType AliasTypeName

Size — Size of the symbol data. You can use a size expression to define the size of an output or use
-1 to inherit size.

Port — Port index of the symbol. For an Input, InputOutput, or Output symbol, Port specifies
the port index on the block of the port or ports corresponding to the symbol. For a Parameter
symbol, Port specifies the order that the symbol appears in the block parameter mask.

Programmatic Use

Block Parameter: SymbolSpec

Type: SymbolSpec object

Value: SymbolSpec object

Default: Empty array of Symbol objects

Sample time — Sample period

-1

(default) | scalar | vector

Sample period, specified in seconds. See “Types of Sample Time” and “Specify Sample Time”. If the
block defines persistent symbols, you cannot specify a continuous sample time.

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

1-104

C Function

Block Characteristics

Data Types Boolean? | bus? | double? | enumerated® | fixed point®| integer?|
single?

Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

a Actual data type or capability support depends on block implementation.

Version History
Introduced in R2020a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

See Also

Blocks
C Caller

Objects
SymbolSpec | Symbol

Functions
addSymbol | deleteSymbol | getSymbol

Topics
“Integrate External C/C++ Code into Simulink Using C Function Blocks”
“Interface with C++ Classes Using C Function Block”

1-105

1 Blocks

1-106

Callback Button

Execute MATLAB code using button with customizable appearance

{ Simulink / Dashboard / Customizable Blocks

Description

The Callback Button block executes MATLAB code in response to a click or a press of the button.
When you press the button, the code executes after a time span that you specify has elapsed or at
time intervals that you specify. You can configure the block to execute different code for a click versus
for a press. When you use the Callback Button block from the Customizable Blocks library, you can
also customize the appearance of the block to look like a button in your real system.

To push the virtual button, click the Callback Button block. While you press your pointer, the button is
pushed. When you release your pointer, you release the button.

You can use callback functions to specify what you want the button to do:

* PressFcns functions run while the button is pushed. You can configure the button to run the
PressFcn function only once while the button is pushed, or you can specify a repeat interval.

* ClickFcns functions run when you release the button.

You can configure the button to stay pushed when you release your pointer by setting the Button
Type to Latched. When you choose the latched button type:

» To latch the button, click the button.
* To unlatch the button, click the button again.

The PressFcn function runs while the button is latched. The ClickFcn function runs once when you
latch the button, and once when you unlatch the button.

You can use states to specify how the appearance of the Callback Button block changes when you
interact with the button:

* While you push the button, the block is in the Pressed state.

* When the button is latched and you are not pushing it, the block is in the Latched state.

* When the button is latched and you are pushing it, the block is in the Latched and Pressed
state.

* When the block is not in any of these three states, it is in the Default state.

A state pairs pointer actions with:

* A State Label
* A stateicon
* A state image

Callback Button

Note Double-clicking the Callback Button block does not open its dialog box during simulation or
when the block is selected. To edit the block parameters, you can use the Property Inspector or
open the block dialog box by:

* Double-clicking the block when the block is not selected and the model is not simulating

* Right-clicking the block and selecting Block Parameters from the context menu

Customize Callback Button Blocks

When you add a Callback Button block to your model, the block is preconfigured with a default
design. You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

* On the Gauge tab, under Design, click Edit.
* In the Property Inspector, on the Design tab, click Edit.
* Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

a ~ Parameters Properties Design Info

Select Select SetLabel =
Select State State State Colorand Components:
to Edit Image Icon Opacity

b
e B lOI=

Background Image

CHECHECH -

Callback Button Foreground Image

Button Settings:
State - Aspect Ratio

Image
Lock Aspect Ratio D

When you design a Callback Button block, you configure the block appearance for each possible
state. When you configure the Block Type as Momentary, the block has two states. When you
configure the Block Type as Latch, the block has four.

You can use the toolbar above the block to switch states. For each state, you can:

* Upload a state image.
* Upload a state icon and specify the position of the icon relative to the state label.

* Specify the State Label text, color, opacity, and position.

1-107

1 Blocks

1-108

You can also upload a foreground or a background image, or set a solid background color. The
foreground and background apply to all states.

Use the toolbar above the block to configure the image, the icon, and the State Label color and
opacity.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

Use the Design tab to:

* Specify the State Label text and position.
» Specify the icon position.

* Upload a foreground image.

* Upload a background image.

* Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Parameters

Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Main

Button Type — Button response to click
Momentary (default) | Latch

Specify how the block responds to a click.

* Momentary — The button changes state only while pressed. When you release the click, the
button returns to its default state.

* Latch — The button latches the state change when clicked. The button remains in the pressed
state until you click it again.

When you configure Button Type as Momentary, the block has these states:

* Default — Default state for the block when it is not pressed
* Pressed — Block state when the block is pressed

When you configure Button Type as Latch, the block has these states:

Callback Button

* Default — Default state for the block when it is not pressed.

* Pressed — Transitional state when you press the button while it is in the Default state. The
block transitions to the Latched state when you release the click.

* Latched — Latched state for the block when it is not pressed.

* Latched and Pressed — Transitional state when you press the button while it is in the
Latched state. The block transitions to the Default state when you release the click.

Programmatic Use

Block Parameter: ButtonType
Type: string or character array
Value: 'Momentary' | 'Latch’

Button Text — Button label text
"Callback Button' (default) | string | character array

Specify the text for the button label. The label is applied to the button for the state that is selected in
the Select State section of the States component on the Design tab.

Programmatic Use

Specify the ButtonText parameter for the block as a string or a character vector.
Block Parameter: ButtonText
Type: character vector | string

Lock Aspect Ratio — Option to maintain block aspect ratio
on (default) | of f

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip
* When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

* When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Callbacks

ClickFcn — MATLAB code that executes in response to click
MATLAB code

MATLAB code that executes in response to a click of the button.

Every time you click the button, the ClickFcn code executes once, at the point in time when you
release the click.

To specify code for the ClickFcn, select ClickFcn from the drop-down menu. Enter the code in the
text box below the menu.

1-109

1 Blocks

1-110

Programmatic Use

Specify the ClickFcn parameter for the block as MATLAB code that is formatted as a string or a
character vector.

Block Parameter: ClickFcn

Type: character vector | string

Values: MATLAB code

PressFcn — MATLAB code that executes in response to press
MATLAB code

MATLAB code that executes in response to a press of the button.

While the button is in the pressed state, the PressFcn code executes once when the Press Delay
time has elapsed and periodically at every Repeat Interval.

To specify code for the PressFcn, select PressFcn from the drop-down menu. Enter the code in the
text box below the menu.

How you press the button to execute the PressFcn code depends on the Button Type.

+ If the Button Type is Momentary, hold down your click for the duration that you want to press
the button.

+ If the Button Type is Latch, click to press the button, but do not hold down your click. The
button remains pressed until you click it again.

Note Every time that you click on the button, even when you do so as part of the process for
pressing the button, the ClickFcn code executes once, at the point in time when you release the
click.

Programmatic Use

Specify the PressFcn parameter for the block as MATLAB code that is formatted as a string or a
character vector.

Block Parameter: PressFcn

Type: character vector | string

Values: MATLAB code

Press Delay (ms) — Time to hold button for press
500 (default) | scalar

Amount of time required to cause the PressFcn code to execute.

Dependencies
Press Delay (ms) is visible only when PressFcn is selected as the callback.

Programmatic Use

Specify the PressDelay parameter for the block as a positive scalar value.
Block Parameter: PressDelay
Type: scalar

Callback Button

Repeat Interval (ms) — Time interval to repeat PressFcn code
0 (default) | scalar

Time interval after which the PressFcn code executes again if the Callback Button block is still
pressed.

Dependencies

Repeat Interval (ms) is visible only when PressFcn is selected as the callback.

Programmatic Use

Specify the RepeatInterval parameter for the block as a positive scalar value.
Block Parameter: RepeatInterval
Type: scalar

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.

Button
Lock Aspect Ratio — Option to maintain block aspect ratio
on (default) | of f

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip
* When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

* When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States

Select State — Selection of state to configure
Default (default) | Pressed | Latched | Latched and Pressed

Select a state that you want to configure from the drop-down menu in the Select State section of the
States component. When the Button Type is Momentary, you can select these states:

* Default — Default state for the block when it is not pressed
* Pressed — Block state when the block is pressed

When the Button Type is Latch, you can select these states:

* Default — Default state for the block when it is not pressed.

* Pressed — Transitional state when you press the button while it is in the Default state. The
block transitions to the Latched state when you release the click.

1-111

1 Blocks

1-112

* Latched — Latched state for the block when it is not pressed.

* Latched and Pressed — Transitional state when you press the button while it is in the
Latched state. The block transitions to the Default state when you release the click.

Note You can configure all of the parameters in the States component of the Design tab for a state.
For example, you can select an icon that will appear on the button when it is in the state. When you
configure any of the parameters in the States component, the changes are applied to the state that is
selected in the Select State section of the States component.

Example: Pressed

Button Text — Button label text

'Callback Button' (default) | string | character array

Specify the text for the button label. The label is applied to the button for the state that is selected in
the Select State section of the States component on the Design tab.

Programmatic Use

Specify the ButtonText parameter for the block as a string or a character vector.
Block Parameter: ButtonText
Type: character vector | string

Label Color — Button label font color
[r g b] vector

Choose a font color for the button label from the palette of standard colors, or specify a custom color.
The color is applied to the button label for the state that is selected in the Select State section of the
States component on the Design tab.

Horizontal Alignment — Horizontal button text alignment
Center (default) | Left | Right

Set the alignment of the button text.

* Center: Midway between left and right edges of block
* Left: Left edge of block
* Right: Right edge of block

Vertical Alignment — Vertical button text alignment
Center (default) | Bottom | Top

Set the alignment of the button text.

* Center: Midway between top and bottom edges of block

* Bottom: Bottom edge of block

* Top: Top edge of block

Label X Offset — Horizontal offset of button text center from default position for selected horizontal

alignment setting
0 (default) | scalar

Callback Button

Specify the horizontal offset of the center of the Button Text from the default position for the
selected Horizontal Alignment setting as a ratio of the block width. Relative to the position of the
text when the offset is 0, an offset with a negative value moves the text left, and an offset with a
positive value moves the text right.

Label Y Offset — Vertical offset of button text center from default position for selected horizontal
alignment setting
0 (default) | scalar

Specify the vertical offset of the center of the Button Text from the default position for the selected
Vertical Alignment setting as a ratio of the block height. Relative to the position of the text when
the offset is 0, an offset with a negative value moves the text up, and an offset with a positive value
moves the text down.

Icon Placement — Placement of icon relative to button text
Left (default) | Top | Right | Bottom

Specify the placement of the icon relative to the button text.

Note Changing the placement of the icon also moves the button text, but does not change the
specified X Offset, Y Offset, Horizontal Alignment, or Vertical Alignment of the text.

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | of f

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.

Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

1-113

1 Blocks

1-114

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.

Example: 1

Background Image

Use Background Color — Option to specify solid background color for button
off (default) | on

You can provide a background image for the block or select a solid background color for the button.
To select a solid background color for the button, select this parameter. To provide a background
image for the block, clear this parameter.

Note
* The state images are not visible when you set a solid background color for the button. To make the
state images visible, turn off Use Background Color.

* Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and turns on the Use Background Color parameter.

Example: on

Color — Button background color
[r g b] vector

To select a solid background color for the button, enable the Use Background Color parameter.
Then, choose a background color from the palette of standard colors, or specify a custom color.

Note The state images are not visible when you set a solid background color. To make the state
images visible, in the Property Inspector, on the Design tab, in the Background Image component,
turn off Use Background Color.

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.

Block Parameter: BackgroundColor

Type: character vector | string

Values: [r g b] vector

Opacity — Block background opacity
1 (default) | scalar

Specify the opacity of the solid background color as a scalar value from 0 to 1.

Callback Button

Example: 0.5

Corner Radius — Corner radius of area with block background color
scalar

Specify the corner radius of the area covered by the solid background color.
Example: 0.25

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.

Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.

Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | of f

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics

Data Types

Direct Feedthrough |no
Multidimensional no
Signals

Variable-Size Signals |no

1-115

1 Blocks

1-116

Zero-Crossing no
Detection

Tips

To design a button that changes the value of a variable or parameter in your model, use the Push
Button block.

Version History
Introduced in R2021b

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

* You can add an empty panel.
* You can rename the selected panel.
* You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel

Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows®. On a Mac, press command () instead of
Ctrl.

R2022bh: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

Callback Button

* Manage the visibility of panels in the model.

* Fit all unhidden panels within the current view.

* Collapse the selected panel.

* Customize the size and the contents of the panel.

* Set a custom background image for the selected panel.
* Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2022a: Resize and reposition foreground image

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R20224a, you can rotate, resize, and reposition the foreground image

within the block design.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Customizable Push Button | Callback Button | Push Button

Topics

“Tune and Visualize Your Model with Dashboard Blocks”
“Simulation Pacing”

“Getting Started with Panels”

1-117

1 Blocks

1-118

Callback Button

Execute MATLAB code using button

Libraries:
Simulink / Dashboard

[fx}::r}

Description

The Callback Button block executes MATLAB code in response to a click or a press of the button.
When you press the button, the code executes after a time span that you specify has elapsed or at
time intervals that you specify. You can configure the block to execute different code for a click versus
for a press. When you use the Callback Button block from the Customizable Blocks library, you can
also customize the appearance of the block to look like a button in your real system.

To push the virtual button, click the Callback Button block. While you press your pointer, the button is
pushed. When you release your pointer, you release the button.

You can use callback functions to specify what you want the button to do:

* PressFcns functions run while the button is pushed. You can configure the button to run the
PressFcn function only once while the button is pushed, or you can specify a repeat interval.

* (ClickFcns functions run when you release the button.

You can configure the button to stay pushed when you release your pointer by setting the Button
Type to Latched. When you choose the latched button type:

* To latch the button, click the button.

* To unlatch the button, click the button again.

The PressFcn function runs while the button is latched. The ClickFcn function runs once when you
latch the button, and once when you unlatch the button.

You can use states to specify how the appearance of the Callback Button block changes when you
interact with the button:

* While you push the button, the block is in the Pressed state.

* When the button is latched and you are not pushing it, the block is in the Latched state.

* When the button is latched and you are pushing it, the block is in the Latched and Pressed
state.

* When the block is not in any of these three states, it is in the Default state.

A state pairs pointer actions with:

* A State Label

Callback Button

* A state icon
* A state image

Note Double-clicking the Callback Button block does not open its dialog box during simulation or
when the block is selected. To edit the block parameters, you can use the Property Inspector or
open the block dialog box by:

* Double-clicking the block when the block is not selected and the model is not simulating

* Right-clicking the block and selecting Block Parameters from the context menu

Customize Callback Button Blocks

When you add a Callback Button block to your model, the block is preconfigured with a default
design. You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

* On the Gauge tab, under Design, click Edit.
* In the Property Inspector, on the Design tab, click Edit.
» Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

EB Parameters Properties Design Info

Select Select SetLabel | Edit]
Select State State State Color and
to Edit Image Icon Opacity

| -
Default - [N Cal S I. = States

Background Image

Components:

OMECNEON -

Callback Button Foreground Image

Button Settings:
= Aspect Ratio

Lock Aspect Ratio

When you design a Callback Button block, you configure the block appearance for each possible
state. When you configure the Block Type as Momentary, the block has two states. When you
configure the Block Type as Latch, the block has four.

You can use the toolbar above the block to switch states. For each state, you can:

1-119

1 Blocks

* Upload a state image.
* Upload a state icon and specify the position of the icon relative to the state label.
» Specify the State Label text, color, opacity, and position.

You can also upload a foreground or a background image, or set a solid background color. The
foreground and background apply to all states.

Use the toolbar above the block to configure the image, the icon, and the State Label color and
opacity.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

Use the Design tab to:

* Specify the State Label text and position.
* Specify the icon position.

* Upload a foreground image.

* Upload a background image.

* Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.

Parameters

Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Main
Button Type — Button response to click
Momentary (default) | Latch

Specify how the block responds to a click.

* Momentary — The button changes state only while pressed. When you release the click, the
button returns to its default state.

* Latch — The button latches the state change when clicked. The button remains in the pressed
state until you click it again.

When you configure Button Type as Momentary, the block has these states:

* Default — Default state for the block when it is not pressed

1-120

Callback Button

* Pressed — Block state when the block is pressed
When you configure Button Type as Latch, the block has these states:

* Default — Default state for the block when it is not pressed.

* Pressed — Transitional state when you press the button while it is in the Default state. The
block transitions to the Latched state when you release the click.

* Latched — Latched state for the block when it is not pressed.

* Latched and Pressed — Transitional state when you press the button while it is in the
Latched state. The block transitions to the Default state when you release the click.

Programmatic Use

Block Parameter: ButtonType
Type: string or character array
Value: 'Momentary' | 'Latch’

Button Text — Button label text

"Callback Button' (default) | string | character array

Specify the text for the button label. The label is applied to the button for the state that is selected in
the Select State section of the States component on the Design tab.

Programmatic Use

Specify the ButtonText parameter for the block as a string or a character vector.
Block Parameter: ButtonText
Type: character vector | string

Lock Aspect Ratio — Option to maintain block aspect ratio
on (default) | of f

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip
* When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

* When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Callbacks

ClickFcn — MATLAB code that executes in response to click
MATLAB code

MATLAB code that executes in response to a click of the button.

Every time you click the button, the ClickFcn code executes once, at the point in time when you
release the click.

1-121

1 Blocks

To specify code for the ClickFcn, select ClickFcn from the drop-down menu. Enter the code in the
text box below the menu.

Programmatic Use

Specify the ClickFcn parameter for the block as MATLAB code that is formatted as a string or a
character vector.

Block Parameter: ClickFcn

Type: character vector | string

Values: MATLAB code

PressFcn — MATLAB code that executes in response to press
MATLAB code

MATLAB code that executes in response to a press of the button.

While the button is in the pressed state, the PressFcn code executes once when the Press Delay
time has elapsed and periodically at every Repeat Interval.

To specify code for the PressFcn, select PressFcn from the drop-down menu. Enter the code in the
text box below the menu.

How you press the button to execute the PressFcn code depends on the Button Type.
+ If the Button Type is Momentary, hold down your click for the duration that you want to press
the button.

+ If the Button Type is Latch, click to press the button, but do not hold down your click. The
button remains pressed until you click it again.

Note Every time that you click on the button, even when you do so as part of the process for
pressing the button, the ClickFcn code executes once, at the point in time when you release the
click.

Programmatic Use

Specify the PressFcn parameter for the block as MATLAB code that is formatted as a string or a
character vector.

Block Parameter: PressFcn

Type: character vector | string

Values: MATLAB code

Press Delay (ms) — Time to hold button for press
500 (default) | scalar

Amount of time required to cause the PressFcn code to execute.

Dependencies

Press Delay (ms) is visible only when PressFcn is selected as the callback.

Programmatic Use

Specify the PressDelay parameter for the block as a positive scalar value.

1-122

Callback Button

Block Parameter: PressDelay
Type: scalar

Repeat Interval (ms) — Time interval to repeat PressFcn code
0 (default) | scalar

Time interval after which the PressFcn code executes again if the Callback Button block is still
pressed.

Dependencies

Repeat Interval (ms) is visible only when PressFcn is selected as the callback.

Programmatic Use

Specify the RepeatInterval parameter for the block as a positive scalar value.

Block Parameter: RepeatInterval

Type: scalar

Design

To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.
Button

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | of f

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip
* When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

* When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

States

Select State — Selection of state to configure
Default (default) | Pressed | Latched | Latched and Pressed

Select a state that you want to configure from the drop-down menu in the Select State section of the
States component. When the Button Type is Momentary, you can select these states:

* Default — Default state for the block when it is not pressed
* Pressed — Block state when the block is pressed

When the Button Type is Latch, you can select these states:

1-123

1 Blocks

1-124

* Default — Default state for the block when it is not pressed.

* Pressed — Transitional state when you press the button while it is in the Default state. The
block transitions to the Latched state when you release the click.

* Latched — Latched state for the block when it is not pressed.

* Latched and Pressed — Transitional state when you press the button while it is in the
Latched state. The block transitions to the Default state when you release the click.

Note You can configure all of the parameters in the States component of the Design tab for a state.
For example, you can select an icon that will appear on the button when it is in the state. When you
configure any of the parameters in the States component, the changes are applied to the state that is
selected in the Select State section of the States component.

Example: Pressed
Button Text — Button label text
‘Callback Button' (default) | string | character array

Specify the text for the button label. The label is applied to the button for the state that is selected in
the Select State section of the States component on the Design tab.

Programmatic Use

Specify the ButtonText parameter for the block as a string or a character vector.
Block Parameter: ButtonText
Type: character vector | string

Label Color — Button label font color
[r g b] vector

Choose a font color for the button label from the palette of standard colors, or specify a custom color.
The color is applied to the button label for the state that is selected in the Select State section of the
States component on the Design tab.

Horizontal Alignment — Horizontal button text alignment
Center (default) | Left | Right

Set the alignment of the button text.

* Center: Midway between left and right edges of block
* Left: Left edge of block
* Right: Right edge of block

Vertical Alignment — Vertical button text alignment
Center (default) | Bottom | Top

Set the alignment of the button text.

* Center: Midway between top and bottom edges of block
* Bottom: Bottom edge of block

Callback Button

* Top: Top edge of block

Label X Offset — Horizontal offset of button text center from default position for selected horizontal
alignment setting
0 (default) | scalar

Specify the horizontal offset of the center of the Button Text from the default position for the
selected Horizontal Alignment setting as a ratio of the block width. Relative to the position of the
text when the offset is 0, an offset with a negative value moves the text left, and an offset with a
positive value moves the text right.

Label Y Offset — Vertical offset of button text center from default position for selected horizontal
alignment setting
0 (default) | scalar

Specify the vertical offset of the center of the Button Text from the default position for the selected
Vertical Alignment setting as a ratio of the block height. Relative to the position of the text when
the offset is 0, an offset with a negative value moves the text up, and an offset with a positive value
moves the text down.

Icon Placement — Placement of icon relative to button text
Left (default) | Top | Right | Bottom

Specify the placement of the icon relative to the button text.

Note Changing the placement of the icon also moves the button text, but does not change the
specified X Offset, Y Offset, Horizontal Alignment, or Vertical Alignment of the text.

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | of f

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.

Example: 1

1-125

1 Blocks

1-126

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.

Example: 1

Background Image

Use Background Color — Option to specify solid background color for button
on (default) | of f

You can provide a background image for the block or select a solid background color for the button.
To select a solid background color for the button, select this parameter. To provide a background
image for the block, clear this parameter.

Note
* The state images are not visible when you set a solid background color for the button. To make the
state images visible, turn off Use Background Color.

* Changing the background color using the Format tab of the Simulink Toolstrip removes the
background image and turns on the Use Background Color parameter.

Example: on

Color — Button background color
[r g b] vector

To select a solid background color for the button, enable the Use Background Color parameter.
Then, choose a background color from the palette of standard colors, or specify a custom color.

Note The state images are not visible when you set a solid background color. To make the state
images visible, in the Property Inspector, on the Design tab, in the Background Image component,
turn off Use Background Color.

Tip You can also specify the Background Color in the Format tab of the Simulink Toolstrip.

To specify the color of the block text, use the Font Color parameter.

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.

Block Parameter: BackgroundColor

Type: character vector | string

Values: [r g b] vector

Opacity — Button background opacity
1 (default) | scalar

Callback Button

Specify the opacity of the solid background color as a scalar value from 0 to 1.

Example: 0.5

Corner Radius — Corner radius of area with button background color
scalar

Specify the corner radius of the area covered by the solid background color.

Example: 0.25

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.

Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.

Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | of f

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics

Data Types

Direct Feedthrough |no
Multidimensional no
Signals

1-127

1 Blocks

1-128

Variable-Size Signals |no

Zero-Crossing no
Detection

Tips

To design a button that changes the value of a variable or parameter in your model, use the Push
Button block.

Version History
Introduced in R2017b

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

* You can add an empty panel.
* You can rename the selected panel.
* You can hide the selected panel.

R2023a: Callback Button blocks in Dashboard Library and Customizable Blocks Library have
same customization
Behavior change in future release

Starting in R2023a, the Callback Button block from the Dashboard library has the same
customization options as the Callback Button block from the Customizable Blocks library.

R2022b: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

* Manage the visibility of panels in the model.

* Fit all unhidden panels within the current view.

* Collapse the selected panel.

* Customize the size and the contents of the panel.

Callback Button

* Set a custom background image for the selected panel.
* Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset™ Flight Control Analysis library. From the

toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add _block and set param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Push Button | Callback Button

1-129

1 Blocks

1-130

Check Box

Select parameter or variable value

Libraries:
Simulink / Dashboard

&

Description

The Check Box block allows you to set the value of a parameter or variable during simulation by
checking or clearing the box. Use the Check Box block with other Dashboard blocks to create an
interactive dashboard for your model.

Double-clicking the Check Box block does not open its dialog box during simulation and when the
block is selected. To edit the block's parameters, you can use the Property Inspector, or you can
right-click the block and select Block Parameters from the context menu.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top

Check Box

level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

Connect
() [#] Gain:Gain
DUU:IJ:Jllidn-'.:eI!::tk 5 (\/ Signal 2 Amplified Signal & O [Sine Wave:Amplitude
Jine Wave Gain O [#] Sine Wave:Bias
O [#] Sine Wave:Frequency
O [#] Sine Wave:Phase
O [4] Sine Wave:Samples

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the Ul or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations

* Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect
to real scalar signals.

* The toolstrip does not support blocks that are inside a panel.

* You cannot use the Connection table in the block dialog to connect a dashboard block to a block
that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

* Dashboard blocks cannot connect to model elements inside referenced models.
* When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
* Dashboard blocks do not support rapid accelerator simulation.

1-131

1 Blocks

1-132

* When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

* When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection

Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.

Block Parameter: Binding

Type: Simulink.HMI.ParamSourceInfo

Default: []

Check Box

Main
Check Box Label — Description of check box action
Label (default) | character vector

Label that appears next to the check box. You can use the Check Box Label to describe what
happens in your model when you check the check box.

Example: Enable sound

Programmatic Use

Block Parameter: Label
Type: character vector
Default: 'Label’

Checked/Unchecked Values — Values to assign for checked and unchecked states
Unchecked: 0 Checked: 1 (default) | scalar

Value to assign to the connected variable or parameter for the checked and unchecked block states.

* Unchecked — Value assigned to the connected parameter when the Check Box block is not
checked.

* Checked — Value assigned to the connected parameter when the Check Box block is checked.

Programmatic Use

You set the Unchecked and Checked values programmatically using a 2-by-1 vector that contains
the Unchecked and Checked values, in that order.

Block Parameter: Values

Type: 2x1 vector

Default: [0 1]

Label — Block label position
Hide (default) | Bottom | Top

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use

Block Parameter: LabelPosition
Type: character vector

Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Format

Opacity — Block background opacity
1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.

Example: 0.5

1-133

1 Blocks

1-134

Programmatic Use

Block Parameter: Opacity
Type: scalar

Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, including the text. You can select a color from a palette of standard colors or
specify a custom color.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.

Block Parameter: ForegroundColor

Type: character vector | string

Values: [r g b] vector

Background Color — Block background color
[r g b] vector

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.

Block Parameter: BackgroundColor

Type: character vector | string

Values: [r g b] vector

Block Characteristics

Data Types double | half | integer | single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced in R2017b

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a

Check Box

dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Background Color, Foreground Color, and Opacity properties added for several
dashboard blocks

Starting in R2020b, you can specify a background color, a foreground color, and opacity for these
blocks from the Dashboard library:

Check Box
Combo Box
Edit

Push Button
Radio Button

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add _block and set param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also
Rocker Switch | Slider Switch | Toggle Switch | Rotary Switch

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1-135

1 Blocks

1-136

Check Discrete Gradient

Check that absolute value of difference between successive samples of discrete signal is less than
specified value

Libraries:

3 Simulink / Model Verification
HDL Coder / Model Verification

Description

The Check Discrete Gradient block checks each signal element and determines whether the absolute
value of the difference between successive values of the element is less than an specified value. The
block then executes an assertion after comparison. You can specify the value of gradient (1 by
default) by adjusting the Maximum gradient parameter. If the input signal difference is less than
the absolute value of the Maximum gradient, the assertion is true (1) and the block does
nothing. If not, the block halts the simulation and returns an error message by default.

Note To run simulations, the Check Discrete Gradient block requires a fixed-step discrete solver. If
another solver is selected, an error prompts.

Ports
Input

Port_1 — Input signal checked against gradient
scalar | vector | matrix

Input signal the block checks to determine if the difference of each element between successive
samples is less than the absolute value of the Maximum gradient parameter.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixed point

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds, and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this output port, select the Output assertion signal parameter check box.

Data Types: double | Boolean

Check Discrete Gradient

Parameters
Maximum gradient — Maximum value of allowed differences
1 (default) | scalar

Specify the value on the allowed gradient of the input signal.

Programmatic Use

Parameter: gradient

Type: string scalar or character vector
Values: real scalar

Default: "1"

Enable assertion — Enable or disable check
on (default) | of f

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use

Parameter: enabled

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails
""" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use

Parameter: callback

Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails
on (default) | of f

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: string scalar or character vector

1-137

1 Blocks

Values: "on" | "off"
Default: "on"

Output assertion signal — Create output signal

off (default) | on

Select this parameter to enable the output port.

Programmatic Use

Parameter: export

Type: string scalar or character vector
Values: "on" | "off"

Default: "off"

Select icon type — Select icon type
graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use

Parameter: icon

Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics

Data Types double | fixed point | integer | single
Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

1-138

Check Discrete Gradient

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to check whether the difference between successive samples is less than the
specified gradient during simulation, but is not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Dynamic Range | Check Dynamic Gap

1-139

1 Blocks

1-140

Check Dynamic Gap

Check that gap of possibly varying width occurs in range of signal's amplitudes

Libraries:
Jmaxy s Simulink / Model Verification
; :"” o HDL Coder / Model Verification
Description

The Check Dynamic Gap block checks that a signal falls outside a range of values at each time step
and executes an assertion after comparison. The width of the gap can vary from time step to time
step. The u port is the tested input signal. The inputs min and max specify the lower and upper
bounds of the gap, respectively. If u falls outside of the gap defined by min and max, the assertion is
true (1) and the block does nothing. If not, the block halts the simulation and returns an error
message by default.

The input signals can be scalars, vectors, or matrices. All three input signals must be the same data
type. The block compares the value of u to the bounds differently depending on the signal.

* When comparing scalars to vectors or matrices, the block compares the scalar signal to each
element of the non-scalar signal.

* When comparing vectors or matrix signals to other vectors or matrices, the block compares the
input to the bounds element-by-element.

* For models with more than one vector or matrix input signal, the vectors or matrices must have
the same dimensions.

Ports
Input

max — Upper bound of dynamic gap

scalar | vector | matrix

Signal specifying the upper bound of the gap.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

min — Lower bound of dynamic gap

scalar | vector | matrix

Signal specifying the lower bound of the gap.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

u — Input signal checked against gap
scalar | vector | matrix

Check Dynamic Gap

Input signal checked for a gap of width specified by max and min.

Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds, and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this output port, select the Output assertion signal parameter check box.

Data Types: double | Boolean

Parameters
Enable assertion — Enable or disable check

on (default) | of f

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use

Parameter: enabled

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use

Parameter: callback

Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

1-141

1 Blocks

on (default) | of f

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use

Parameter: stopwWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Output assertion signal — Create output signal
off (default) | on

Select this parameter to enable the output port.

Programmatic Use

Parameter: export

Type: string scalar or character vector
Values: "on" | "off"

Default: "off"

Select icon type — Select icon type
graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use

Parameter: icon

Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | half | integer |
single

Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

1-142

Check Dynamic Gap

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to check the gap in the varying signal amplitudes, but it is not included in the
generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Dynamic Lower Bound | Check Dynamic Upper Bound | Check Dynamic Range

1-143

1 Blocks

1-144

Check Dynamic Lower Bound

Check that one signal is always less than another signal

_ Libraries:
2 min &ﬁi Simulink / Model Verification
Yu HDL Coder / Model Verification
Description

The Check Dynamic Lower Bound block checks if a reference signal, min, is less than the amplitude
of an input signal, u at each time step and executes an assertion after comparison. If min is less than
u, the assertion is true (1) and the block does nothing. If not, the block halts the simulation and
returns an error message by default.

The input signals can be scalars, vectors, or matrices. Both input signals must be the same data type.
The block compares the value of u to the bound differently depending on the signal.

* When comparing scalars to vectors or matrices, the block compares the scalar signal to each
element of the non-scalar signal.

* When comparing a vector or matrix signal to another vector or matrix signal, the block checks the
signals element-by-element.

» For models with an input and bound that are both vectors or matrices, the input and bound must
have the same dimensions.

Ports
Input

min — Lower bound of dynamic range check
scalar | vector | matrix

Signal specifying the lower bound of the check against the input signal u amplitude. Signal data type
and dimension must be the same as u.

Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

u — Input signal checked against bound
scalar | vector | matrix

Input signal checked against the lower bound specified by min. Both input signals must be the same
data type and dimension.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

Check Dynamic Lower Bound

Output signal that is true (1) if the assertion succeeds and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this output port, select the Output assertion signal parameter check box.

Data Types: double | Boolean

Parameters
Enable assertion — Enable or disable check
on (default) | of f

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all orDisable all.

Programmatic Use

Parameter: enabled

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails
"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use

Parameter: callback

Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails
on (default) | of f

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use

Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"

1-145

1 Blocks

Default: "on"
Output assertion signal — Create output signal
off (default) | on

Select this parameter to enable the output port.

Programmatic Use

Parameter: export

Type: string scalar or character vector
Values: "on" | "off"

Default: "off"

Select icon type — Select icon type
graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use

Parameter: icon

Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | half | integer |
single

Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

1-146

Check Dynamic Lower Bound

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to check the lower bound of a test signal as compared to the input, but it is
not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Dynamic Upper Bound | Check Dynamic Range

1-147

1 Blocks

1-148

Check Dynamic Range

Check that signal falls inside range of amplitudes that varies from time step to time step

3 Libraries:
Y min =27 Simulink / Model Verification
3 HDL Coder / Model Verification

Description

The Check Dynamic Range block checks that a signal falls inside a range of values at each time step
and executes an assertion after comparison. The width of the range can vary from time step to time
step. The u port is the tested input signal. The min and max ports are the lower and upper bounds of
the range, respectively. If u is between max and min, the assertion is true (1) and the block does
nothing. If not, the block halts the simulation and returns an error message by default.

The input signals can be scalars, vectors, or matrices. All three input signals must be the same data
type. The block compares the value of u to the bounds differently depending on the signal.

* When comparing scalars to vectors or matrices, the block compares the scalar signal to each
element of the non-scalar signal.

* When comparing vectors or matrix signals to other vectors or matrices, the block checks the
inputs element-by-element.

* For models with more than one vector or matrix input signal, the vectors or matrices must have
the same dimensions.

Ports
Input

max — Upper bound of dynamic range check
scalar | vector | matrix

Signal specifying the upper bound of the range.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

min — Lower bound of dynamic range check
scalar | vector | matrix

Signal specifying the lower bound of the range.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

u — Input signal checked against range
scalar | vector | matrix

Signal checked against the range specified by the max and min ports.

Check Dynamic Range

Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this port, select the Output assertion signal parameter.

Data Types: double | Boolean

Parameters
Enable assertion — Enable or disable check
on (default) | of f

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use

Parameter: enabled

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails
"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use

Parameter: callback

Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | of f

1-149

1 Blocks

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use

Parameter: stopwWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Output assertion signal — Create output signal
off (default) | on

Select this parameter to enable the output port.

Programmatic Use

Parameter: export

Type: string scalar or character vector
Values: "on" | "off"

Default: "off"

Select icon type — Select icon type
graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use

Parameter: icon

Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | half | integer |
single

Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

1-150

Check Dynamic Range

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to check whether a test signal falls within a range of amplitudes, but it is not
included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Relational Operator

1-151

1 Blocks

1-152

Check Dynamic Upper Bound

Check that one signal is always greater than another signal

Libraries:
2 max rb" Simulink / Model Verification
Yo HDL Coder / Model Verification
Description

The Check Dynamic Upper Bound block checks if the a reference signal, max, is greater than the
amplitude of an input signal, u, at each time step and executes an assertion after comparison. If max
is greater than u, the assertion is true (1) and the block does nothing. If not, the block halts the
simulation and returns an error message by default.

The input signals can be scalars, vectors, or matrices. Both input signals must be the same data type.
The block compares the value of u to max differently depending on the signal.

* When comparing scalars to vectors or matrices, the block compares the scalar signal to each
element of the non-scalar signal.

* When comparing a vector or matrix signal to another vector or matrix signal, the block checks the
signals element-by-element.

* For models with an input signal and bound that are both vectors or matrices, the input signal and
bound must have the same dimensions.

Ports
Input

max — Upper bound of range check
scalar | vector | matrix

Signal specifying the lower bound of the range that the block checks the input signal u amplitude.
Signal data type and dimension must be the same as u.

Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

u — Input signal checked against bound
scalar | vector | matrix

Input signal checked against the lower bound specified by min.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

Check Dynamic Upper Bound

Output signal that is true (1) if the assertion succeeds and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this output port, select the Output assertion signal parameter check box.

Data Types: double | Boolean

Parameters
Enable assertion — Enable or disable check
on (default) | of f

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all orDisable all.

Programmatic Use

Parameter: enabled

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails
"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use

Parameter: callback

Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails
on (default) | of f

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use

Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"

1-153

1 Blocks

Default: "on"
Output assertion signal — Create output signal
off (default) | on

Select this parameter to enable the output port.

Programmatic Use

Parameter: export

Type: string scalar or character vector
Values: "on" | "off"

Default: "off"

Select icon type — Select icon type
graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use

Parameter: icon

Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | half | integer |
single

Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

1-154

Check Dynamic Upper Bound

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to check the upper bound of a test signal as compared to the input, but it is
not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Dynamic Lower Bound | Check Dynamic Range

1-155

1 Blocks

1-156

Check Input Resolution

Check that input signal has specified resolution

Libraries:
Simulink / Model Verification
) Pl HDL Coder / Model Verification

Description

The Check Input Resolution block checks whether the input signal has a specified resolution. The
block input and resolution can be either a scalar or vector. The input and resolution must be the same
data type.

If the Resolution parameter is a scalar, the block calculates the modulus of the input signal over the
provided scalar resolution. The calculated modulus is then compared to a tolerance of 10e-3, and
executes an assertion after comparison. If the modulus is less than the tolerance, the assertion is
true (1) and the block does nothing. If not, the block halts the simulation and returns an error
message by default. If the Resolution parameter is a vector, it asserts true (1) if the value of the
input signal is equal to any of the resolution vector elements.

The block compares the input to the resolution in several additional ways depending on the
dimensions of the signal and resolution.

* When comparing a scalar input signal or resolution to a vector input signal or resolution, the block
compares the scalar to each element of the vector.

* When comparing a vector input signal to a vector resolution, the block compares the input signal
to the resolution element-by-element.

* For models with an input signal and resolution that are both vectors, the input signal and
resolution must have the same dimensions.

Ports
Input

Port_1 — Input signal checked against resolution
scalar | vector

Input signal that the block checks against the resolution specified by the Resolution parameter.

Data Types: double
Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced

Check Input Resolution

parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this port, select Output assertion signal.

Data Types: double | Boolean

Parameters
Resolution — Resolution value to compare to input signal

scalar | vector

Specify the resolution requirement for the input signal.

Programmatic Use

Parameter: resolution

Type: string scalar or character vector
Default: "1"

Enable assertion — Enable or disable check

on (default) | of f

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use

Parameter: enabled

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails
"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use

Parameter: callback

Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | of f

1-157

1 Blocks

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use

Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Output assertion signal — Create output signal
off (default) | on

Select this parameter to enable the output port.

Programmatic Use

Parameter: export

Type: string scalar or character vector
Values: "on" | "off"

Default: "off"

Block Characteristics

Data Types double
Direct Feedthrough |no
Multidimensional yes
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced before R2006a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

1-158

Check Input Resolution

HDL Architecture

This block can be used to check whether the input signal has a specified resolution during simulation,
but it is not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Math Function | Repeating Sequence Stair

1-159

1 Blocks

1-160

Check Static Gap

Check that gap exists in signal's range of amplitudes

Libraries:
Y N Simulink / Model Verification
N HDL Coder / Model Verification

Description

The Check Static Gap block checks that an input signal is less than (or optionally equal to) a static
lower bound or greater than (or optionally equal to) a static upper bound at the current time step.
The Upper bound and Lower bound parameters define the upper and lower bounds of the gap. The
block then executes an assertion after comparison. If the signal falls outside of the gap, the assertion
is true (1) and the block does nothing. If not, the block halts the simulation and returns an error
message by default.

The input signal and bounds can be scalars, vectors, or matrices. The input and the bounds must be
the same data type. The block compares the value of the input to the bounds differently depending on
the signal.

* When comparing scalars to vectors or matrices, the block compares the scalar to each element of
the non-scalar input signal or bound.

* When comparing vectors or matrix signals to other vectors or matrices, the block compares the
input signal and the bounds element-by-element.

» For models with more than one vector or matrix as the input signal or bounds, the vectors or
matrices must have the same dimensions.

Ports
Input

Port_1 — Input signal checked against gap
scalar | vector | matrix

Input signal the block checks if the signal value is less than a static lower bound or greater than a
static upper bound.

Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds, and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Check Static Gap

Dependencies

To enable this output port, set the Output assertion signal parameter check box.

Data Types: double | Boolean

Parameters
Upper bound — Upper boundary value

scalar | vector | matrix

Specify the upper bound on the range of amplitudes that the input signal can have.

Programmatic Use

Parameter: max

Type: string scalar or character vector
Default: "0"

Inclusive upper bound — Include the upper bound in range

on (default) | of f

Select this check box to make the range of valid input amplitudes include the upper bound.

Programmatic Use

Parameter: max_included

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Lower bound — Lower boundary value

scalar | vector | matrix

Specify the lower bound on the range of amplitudes that the input signal can have.

Programmatic Use

Parameter: min

Type: string scalar or character vector
Default: "0"

Inclusive lower bound — Include the lower bound in range

on (default) | of f

Select this check box to make the range of valid input amplitudes include the lower bound.

Programmatic Use

Parameter: min_included

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Enable assertion — Enable or disable check

1-161

1 Blocks

on (default) | of f

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use

Parameter: enabled

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use

Parameter: callback

Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | of f

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use

Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Output assertion signal — Create output signal
off (default) | on

Select this parameter to enable the output port.

Programmatic Use

Parameter: export

Type: string scalar or character vector
Values: "on" | "off"

Default: "off"

Select icon type — Select icon type

1-162

Check Static Gap

graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use

Parameter: icon

Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic”

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | half | integer |
single

Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block checks whether each element is less than a static lower bound or greater than a static
upper bound during simulation, but it is not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1-163

1 Blocks

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Check Dynamic Range | Check Static Upper Bound | Check Static Lower Bound

1-164

Check Static Lower Bound

Check Static Lower Bound

Check that signal is greater than (or optionally equal to) static lower bound

Libraries:
y BAVAVA Simulink / Model Verification
HDL Coder / Model Verification

Description

The Check Static Lower Bound block checks if an input signal is greater than (or optionally equal to)
a specified lower bound at each time step and executes an assertion after comparison. The Lower
bound parameter defines the lower bound. If the input signal is greater than the lower bound, the
assertion is true (1) and the block does nothing. If not, the block halts the simulation and returns
an error message by default.

The input signal and bound can be scalars, vectors, or matrices. The input and the bound must be the
same data type. The block compares the value of the input to the bound differently depending on the
signal.

* When comparing scalars to vectors or matrices, the block compares the scalar to each element of
the non-scalar input signal or bound.

* When comparing a vector or matrix input signal to a vector or matrix bound, the block compares
the input signal to the bound element-by-element.

* For models with an input signal and bound that are both vectors or matrices, the input signal and
bound must have the same dimensions.

Ports
Input

Port_1 — Input signal checked against bound

scalar | vector | matrix

Input signal checked against the lower bound specified by the Lower bound parameter.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

1-165

1 Blocks

1-166

Dependencies

To enable this output port, select the Output assertion signal parameter check box.

Data Types: double | Boolean

Parameters
Lower bound — Lower boundary value

scalar | vector | matrix

Specify the lower bound on the range of amplitudes that the input signal can have.

Programmatic Use

Parameter: min

Type: string scalar or character vector
Default: "0"

Inclusive boundary — Include the lower bound in range

on (default) | of f

Select this check box to make the range of valid input amplitudes include the lower bound.

Programmatic Use

Parameter: min_included

Type: string scalar character vector
Values: "on" | "off"

Default: "on"

Enable assertion — Enable or disable check

on (default) | of f

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use

Parameter: enabled

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

""" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Check Static Lower Bound

Programmatic Use

Parameter: callback

Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails
on (default) | of f

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use

Parameter: stopwWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Output assertion signal — Create output signal
off (default) | on

Select this parameter to enable the output port.

Programmatic Use

Parameter: export

Type: string scalar or character vector
Values: "on" | "off"

Default: "off"

Select icon type — Select icon type
graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use

Parameter: icon

Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic”

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | half | integer |
single

Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

1-167

1 Blocks

1-168

Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block checks whether each input signal element is greater than a static lower bound during
simulation, but it is not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Check Static Upper Bound | Check Dynamic Lower Bound | Check Dynamic Upper Bound | Check
Dynamic Range

Check Static Range

Check Static Range

Check that signal falls inside fixed range of amplitudes

Libraries:
) IAVAVAY Simulink / Model Verification
HDL Coder / Model Verification

Description

The Check Static Range block checks that each element of the input signal falls inside the same
range of amplitudes at each time step. The Upper bound and Lower bound parameters define the
upper and lower bounds of the range. The block then executes an assertion after comparison. If the
signal falls inside the bounds, the assertion is true (1) and the block does nothing. If not, the block
halts the simulation and returns an error message by default.

The input signal and bounds can be scalars, vectors, or matrices. All three must be the same data
type. The block compares the value of the input to the bounds differently depending on the signal.

* When comparing scalars to vectors or matrices, the block compares the scalar to each element of
the non-scalar input signal or bounds.

* When comparing vectors or matrix signals to other vectors or matrices, the block compares the
input signal to the bounds element-by-element.

» For models with more than one vector or matrix input signal or bounds, the vectors or matrices
must have the same dimensions.

Ports
Input

Port_1 — Input signal checked against range
scalar | vector | matrix

Input signal checked against the range specified by the Upper bound and Lower bound parameters.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds, and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Dependencies

To enable this output port, set the Qutput assertion signal parameter check box.

1-169

1 Blocks

1-170

Data Types: double | Boolean

Parameters
Upper bound — Upper bound compared to input signal

scalar | vector | matrix

Specify the upper bound on the range of amplitudes that the input signal can have.

Programmatic Use

Parameter: max

Type: string scalar or character vector
Default: "0"

Inclusive upper boundary — Include the upper bound in range

on (default) | of f

Select this check box to make the range of valid input amplitudes include the lower bound.

Programmatic Use

Parameter: min_included

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Lower bound — Lower bound compared to input signal

scalar | vector | matrix

Specify the lower bound on the range of amplitudes that the input signal can have.

Programmatic Use

Parameter: min

Type: string scalar or character vector
Default: "0"

Inclusive lower bound — Include the lower bound in range

on (default) | of f

Select this check box to make the range of valid input amplitudes include the lower bound.

Programmatic Use

Parameter: min included

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Enable assertion — Enable or disable check
on (default) | of f

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the

Check Static Range

Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all orDisable all.

Programmatic Use

Parameter: enabled

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

""" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use

Parameter: callback

Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails

on (default) | of f

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use

Parameter: stopWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Output assertion signal — Create output signal

off (default) | on

Select this parameter to enable the output port.

Programmatic Use

Parameter: export

Type: string scalar or character vector
Values: "on" | "off"

Default: "off"

Select icon type — Select icon type

graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

1-171

1 Blocks

1-172

Programmatic Use

Parameter: icon

Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic"

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | half | integer |
single

Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block checks whether each input signal element falls within the same amplitude range at each
time step during simulation, but it is not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Check Static Range

See Also
Check Dynamic Range | Check Static Lower Bound | Check Static Upper Bound

1-173

1 Blocks

1-174

Check Static Upper Bound

Check that signal is less than (or optionally equal to) static upper bound

Libraries:
y Simulink / Model Verification
VAN HDL Coder / Model Verification

Description

The Check Static Upper Bound block checks if an input signal is less than (or optionally equal to) a
specified lower bound at each time step and executes an assertion after comparison. The Upper
bound parameter defines the upper bound. If the input signal is less than the upper bound, the
assertion is true (1) and the block does nothing. If not, the block halts the simulation and returns
an error message by default.

The input signal and bound can be scalars, vectors, or matrices. The input and the bound must be the
same data type. The block compares the value of the input to the bound differently depending on the
signal.

* When comparing scalars to vectors or matrices, the block compares the scalar to each element of
the non-scalar input signal or bound.

* When comparing a vector or matrix signal to a vector or matrix upper bound, the block compares
the input signal to the bound element-by-element.

* For models with an input signal and bound that are both vectors or matrices, the input signal and
bound must have the same dimensions.

Ports
Input

Port_1 — Input signal checked against bound
scalar | vector | matrix

Input signal checked against the upper bound specified by the Upper bound parameter.
Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Assertion output signal
scalar

Output signal that is true (1) if the assertion succeeds and false (0) if the assertion fails. If, in
the Configuration Parameters window, in the Math and Data Types section, under Advanced
parameters, you select Implement logic signals as Boolean data, then the output data type is
Boolean. Otherwise, the data type of the signal is double.

Check Static Upper Bound

Dependencies

To enable this output port, select the Output assertion signal parameter check box.

Data Types: double | Boolean

Parameters
Upper bound — Upper boundary value

scalar | vector | matrix

Specify the upper bound on the range of amplitudes that the input signal can have.

Programmatic Use

Parameter: max

Type: string scalar or character vector
Default: "0"

Inclusive boundary — Include the upper bound in range

on (default) | of f

Select this check box to make the range of valid input amplitudes include the upper bound.

Programmatic Use

Parameter: max_included

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Enable assertion — Enable or disable check

on (default) | of f

Clearing this parameter disables the block and causes the model to behave as if the block does not
exist. To enable or disable all verification blocks, regardless of the setting of this option, go to the
Configuration Parameters window, click Diagnostics > Data Validity, expand the Advanced
parameters section, and set Model Verification block enabling to Enable all or Disable all.

Programmatic Use

Parameter: enabled

Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Simulation callback when assertion fails (optional) — Expression to evaluate when assertion fails

"" (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the assertion fails. Because the expression is
evaluated in the MATLAB workspace, define all variables used in the expression in that workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

1-175

1 Blocks

Programmatic Use

Parameter: callback

Type: string scalar or character vector
Default: ""

Stop simulation when assertion fails — Whether to stop simulation when check fails
on (default) | of f

Select this parameter to stop the simulation when the check fails. Clear this parameter to display a
warning and continue the simulation.

Programmatic Use

Parameter: stopwWhenAssertionFail
Type: string scalar or character vector
Values: "on" | "off"

Default: "on"

Output assertion signal — Create output signal
off (default) | on

Select this parameter to enable the output port.

Programmatic Use

Parameter: export

Type: string scalar or character vector
Values: "on" | "off"

Default: "off"

Select icon type — Select icon type
graphic (default) | text

Specify the style of the block icon. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical expression that represents
the assertion condition.

Programmatic Use

Parameter: icon

Type: string scalar or character vector
Values: "graphic" | "text"
Default: "graphic”

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | half | integer |
single

Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

1-176

Check Static Upper Bound

Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For information about how Simulink Coder generated code handles Model Verification blocks, see
“Configure Model for Debugging” (Simulink Coder).

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block checks whether each input signal element is lower than a static upper bound during
simulation, but it is not included in the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Check Static Lower Bound | Check Dynamic Lower Bound | Check Dynamic Upper Bound | Check
Dynamic Range

1-177

1 Blocks

Chirp Signal

Generate sine wave with increasing frequency

"W

Libraries:
Simulink / Sources

Description

The Chirp Signal block generates a sine wave whose frequency increases at a linear rate with time.
You can use this block for spectral analysis of nonlinear systems. The block generates a scalar or
vector output.

The parameters, Initial frequency, Target time, and Frequency at target time, determine the
block's output. You can specify any or all of these variables as scalars or arrays. All the parameters
specified as arrays must have the same dimensions. The block expands scalar parameters to have the
same dimensions as the array parameters. The block output has the same dimensions as the
parameters unless you select the Interpret vector parameters as 1-D check box. If you select this
check box and the parameters are row or column vectors, the block outputs a vector (1-D array)
signal.

Limitations

* The start time of the simulation must be 0. To confirm this value, go to the Solver pane in the
Configuration Parameters dialog box and view the Start time field.

* Suppose that you use a Chirp Signal block in an enabled subsystem. Whenever the subsystem is
enabled, the block output matches what would appear if the subsystem were enabled throughout
the simulation.

Ports
Output

Port_1 — Chirp signal
scalar | vector | matrix | N-D array

Sine wave whose frequency increases at a linear rate with time. The chirp signal can be a scalar,
vector, matrix, or N-D array.

Data Types: double

Parameters
Initial frequency — Initial frequency (Hz)

0.1 (default) | scalar | vector | matrix | N-D array

1-178

Chirp Signal

The initial frequency of the signal, specified as a scalar, vector, matrix, or N-D array.

Programmatic Use

Block Parameter: f1

Type: character vector

Values: scalar | vector | matrix | N-D array
Default: '0.1"'

Target time — Target time (seconds)
100 (default) | scalar | vector | matrix | N-D array

Time, in seconds, at which the frequency reaches the Frequency at target time parameter value.
You specify the Target time as a scalar, vector, matrix, or N-D array. After the target time is reached,
the frequency continues to change at the same rate.

Programmatic Use

Block Parameter: T

Type: character vector

Values: scalar | vector | matrix | N-D array
Default: '100'

Frequency at target time — Frequency (Hz)
1 (default) | scalar | vector | matrix | N-D array

Frequency, in Hz, of the signal at the target time, specified as a scalar, vector, matrix, or N-D array.

Programmatic Use

Block Parameter: f2

Type: character vector

Values: scalar | vector | matrix | N-D array
Default: '1'

Interpret vector parameters as 1-D — Treat vector parameters as 1-D
on (default) | of f

When you select this check box, any column or row matrix values you specify for the Initial
frequency, Target time, and Frequency at target time parameters result in a vector output whose
elements are the elements of the row or column. For more information, see “Determine the Output
Dimensions of Source Blocks”.

Programmatic Use

Block Parameter: VectorParams1D
Type: character vector

Values: 'on' | 'off'

Default: 'on’

Block Characteristics

Data Types double

Direct Feedthrough |no

1-179

1 Blocks

1-180

Multidimensional no
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times. While
the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code. Usually, blocks evolve toward being suitable for
production code. Thus, blocks suitable for production code remain suitable.

See Also
Sine Wave

Topics
“Creating Signals”

Circular Gauge

Circular Gauge

Display signal value during simulation on circular gauge with customizable appearance

Libraries:
Simulink / Dashboard / Customizable Blocks

Description

The Circular Gauge block displays the value of the connected signal on a circular gauge that you can
design to look like a gauge in a real system.

The Circular Gauge block displays the instantaneous value of the connected signal throughout
simulation. You can modify the range and tick values on the Circular Gauge block to fit your data. Use
the Circular Gauge block with other dashboard blocks to build an interactive dashboard of controls
and indicators for your model.

Customize Circular Gauge Blocks

When you add a Circular Gauge block to your model, the block is preconfigured with a default design.
You can use the block with the default design or customize the appearance of the block.

To customize the appearance of the block, use design mode. After selecting the block, you can enter
design mode in one of three ways:

* On the Gauge tab, under Design, click Edit.
* In the Property Inspector, on the Design tab, click Edit.
* Pause on the ellipsis that appears over the block and click the Edit Custom Block button.

1-181

1 Blocks

EB Parameters Properties Design Info

(Edit

\ L4l I. = Components:
Origin

Span Line Value Bar Scale

MNeedle

Value Bar

Background Image

CNNCNECHECRNCN -

Foreground Image

Circular Gauge Settings:

- Aspect Ratio

Lock Aspect Ratio D

In design mode, you can:

* Upload a needle image.

* Upload a background image or set a solid background color.

* Change the color and opacity of the scale, tick labels, and value bar.

* Change the size of the scale and needle.

* Change the arc length of the scale.

* Reposition the scale and needle.

* Specify the scale direction as clockwise or counterclockwise.

* Specify the location of the origin from which the value bar grows.

* Upload a foreground image.

You can use the toolbar above the block to upload a needle or a background image and to change the
color and opacity of the scale, tick labels, and value bar. To change the color and opacity, in the

second section of the toolbar from the left, select a component. Then, click the color wheel in the
toolbar to change the color of the component. Move the slider to change the opacity.

To resize the scale or needle or to change the arc length of the scale, select the component in the
canvas. Then, click and drag the grab points that define its dimensions.

To reposition the scale or needle, click and drag it in the canvas. The movement of the needle is
limited to the radial line that goes from the center of the block to the minimum value on the scale.

You can use the Design tab in the Property Inspector for fine control over the block design and to
enter exact values for design settings.

1-182

Circular Gauge

Use the Design tab to:

* Specify the scale direction.

» Specify the origin.

* Upload a foreground image.
* Set a solid background color.

When you finish editing the design, to exit design mode, click the X in the upper right of the canvas.
Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting

dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

+ Connect
Double-click to (\/ 5 p (O = Amplified Signal
connect Signal Amplifiad Signal - - :
Chut1 f [
Sine Wave Gain C T Signal

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations

* Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect
to real scalar signals.

» The toolstrip does not support blocks that are inside a panel.

1-183

1 Blocks

1-184

* You cannot use the Connection table in the block dialog to connect a dashboard block to a block
that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

* Dashboard blocks cannot connect to model elements inside referenced models.
* When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
* Dashboard blocks do not support rapid accelerator simulation.

* You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

* You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

* Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters

Use the Property Inspector and the Block Parameters dialog box to specify the values of the block
parameters. To set the core parameters of the dashboard block, use the Block Parameters dialog box
or the Parameters tab in the Property Inspector. To customize the block, use the Design tab in the
Property Inspector. To display the Block Parameters dialog box for a block, double-click the block. To
display the Property Inspector, on the Modeling tab, under Design, select Property Inspector.

Parameters

To set the core parameters of the dashboard block, open the Property Inspector and click the
Parameters tab.

Connection — Signal to connect and display
signal connection options

Use the Connection table in the Block Parameters dialog box to select or change the signal that the
block connects to. To connect the block to a signal:

1 [f the block is not connected, in the Property Inspector, on the Parameters tab, click Connect to
open the Block Parameters dialog box. If the block is already connected and you want to change
the signal to which it connects, click Change.

Select a signal in the model.
In the table, select the signal you want to connect.
Click Apply.

To help understand and debug your model, you can connect dashboard blocks to signals in the model
during simulation.

Tip You can also use bind mode select or change the signal that the block connects to. To enter bind
mode:

* Ifyou are in design mode, exit by clicking the Edit button on the Design tab of the Property
Inspector.

Circular Gauge

* Click the dashboard block in the canvas. If the dashboard block is not connected, the Connect

button & and an ellipsis appear over the dashboard block. If the dashboard block is already
connected, only the ellipsis appears.

» If the dashboard block is not connected, click Connect. If the dashboard block is connected,
pause on the ellipsis. In the action menu that expands, click Connect. In either case, a list of
signals that are available for connection appears.

coec I
LY I}T oL

[T
Double-click to connect — Double-click to connect I

iL

Dashboard Block

To connect the dashboard block in bind mode:

* From the list, select the signal you want to connect.

To exit bind mode, click Done Connecting & over the dashboard block.

Programmatic Use

Block Parameter: Binding

Type: Simulink.HMI.SignalSpecification
Default: []

Minimum — Minimum tick mark value
0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify - 1.

Block Parameter: Limits

Type: 1x3 vector

Default: [0 -1 100]

Maximum — Maximum tick mark value
100 (default) | scalar
Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The

parameter value must be greater than the value of the Minimum parameter.

1-185

1 Blocks

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.

Block Parameter: Limits

Type: 1x3 vector

Default: [0 -1 100]

Tick Interval — Interval between major tick marks
auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify - 1.
Block Parameter: Limits

Type: 1x3 vector

Default: [0 -1 100]

Scale Direction — Direction of increasing scale values
Clockwise (default) | Counterclockwise

Set the direction of increasing scale values.

Programmatic Use

Block Parameter: ScaleDirection

Type: character vector

Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Label — Position of label displaying name of connected element
Top (default) | Bottom | Hide
You can display the name of the element to which the dashboard block connects in a label positioned

at the top or at the bottom of the block, or you can hide the label. If you want the label to be visible,
specify the position of the block. If you do not want the label to be visible, specify Hide.

Note When the dashboard block is not connected to an element, the label is blank.

Programmatic Use

Block Parameter: LabelPosition
Type: character vector

Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

1-186

Circular Gauge

Lock Aspect Ratio — Option to maintain block aspect ratio

on (default) | of f

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip
* When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

* When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Scale Colors — Color indications on gauge scale
colors for scale ranges

Color specifications for value ranges on the scale. Click the + button to add a scale color. For each
color added, specify the minimum and maximum values of the range in which you want to display that
color.

Programmatic Use

To programmatically specify the Scale Colors parameter, use an array of structures with these
fields:

* Min — Minimum value for the color range on the scale
* Max — Maximum value for the color range on the scale

* Color — 1-by-3 vector of double values between 0 and 1 that specify the color for the range in
the form [r g b]

Include a structure in the array for each scale range for which you want to specify a color.

rangel.Min 0;

rangel.Max 10;

rangel.Color = [0 0 1];
range2.Min = 10;

range2.Max = 15;

range2.Color = [0 1 0];
scaleRanges = [rangel range2];

Block Parameter: ScaleColors
Type: structure array
Default: 0x1 struct array

Design
To customize the dashboard block, open the Property Inspector, click the Design tab, and click Edit.
Circular Gauge

Lock Aspect Ratio — Option to maintain block aspect ratio

1-187

1 Blocks

1-188

on (default) | of f

Enable this option to maintain the aspect ratio when resizing the block in the Simulink canvas.

Tip
* When the aspect ratio is locked, adding a new background image changes the aspect ratio of the
block to match that of the background image.

* When the aspect ratio is not locked, adding a new background image does not change the
proportions of the block but instead stretches or scales the background image to fit the size of the
block.

Scale

Minimum — Minimum tick mark value

0 (default) | scalar

Finite, real, double, scalar value specifying the minimum tick mark value for the scale. The parameter
value must be less than the value of the Maximum parameter.

Programmatic Use

To programmatically set the Minimum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify - 1.

Block Parameter: Limits

Type: 1x3 vector

Default: [0 -1 100]

Maximum — Maximum tick mark value

100 (default) | scalar

Finite, real, double, scalar value specifying the maximum tick mark value for the scale. The
parameter value must be greater than the value of the Minimum parameter.

Programmatic Use

To programmatically set the Maximum parameter, use a 1-by-3 vector containing values for the
Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for the
Tick Interval, leave the Tick Interval position in the vector empty, or specify -1.

Block Parameter: Limits

Type: 1x3 vector

Default: [0 -1 100]

Tick Interval — Interval between major tick marks

auto (default) | scalar

Finite, real, positive, whole, scalar value specifying the interval of major tick marks on the scale.
When set to auto, the block automatically adjusts the tick interval based on the values of the
Maximum and Minimum parameters.

Circular Gauge

Programmatic Use

To programmatically set the Tick Interval parameter, use a 1-by-3 vector containing values for
the Minimum, Tick Interval, and Maximum parameters, in that order. To use the auto value for
the Tick Interval, leave the Tick Interval position in the vector empty, or specify - 1.
Block Parameter: Limits

Type: 1x3 vector

Default: [0 -1 100]

Origin — Value on scale from which needle moves and value bar grows
auto (default) | scalar

Specify the value on the scale from which the needle moves and the value bar grows. When set to
auto, the Origin is the minimum of the scale.

Example: 0

Scale Direction — Direction of increasing scale values
Clockwise (default) | Counterclockwise

Set the direction of increasing scale values.

Programmatic Use

Block Parameter: ScaleDirection

Type: character vector

Values: 'Clockwise' | 'Counterclockwise'
Default: 'Clockwise'

Arc — Arc length of scale
270 (default) | scalar

Specify the arc length of the scale as a scalar value, measured in degrees.

Example: 90

Start Angle — Angular location of scale minimum
135 (default) | scalar

Specify the angular location of the minimum scale value, measured in degrees clockwise from the
horizontal axis pointing right.

Example: 0

Inner Radius — Radius of free end of scale tick marks
scalar

Specify the radius of the free end of the scale tick marks as a ratio of the smaller of the two
dimensions of the bounding box of the scale, width or height. The Inner Radius can be larger than
the Quter Radius.

Example: 0.5

Outer Radius — Span line radius
scalar

Specify the span line radius as a ratio of the smaller of the two dimensions of the bounding box of the
scale, width or height. The Quter Radius can be smaller than the Inner Radius.

1-189

1 Blocks

1-190

Example: 0.5

X Offset — Horizontal offset of left edge of scale bounding box from left edge of block
scalar

Specify the horizontal offset of the left edge of the bounding box of the scale from the left edge of the
block as a ratio of the block width. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale left, and an offset with a positive value moves the scale right.

Example: 1

Y Offset — Vertical offset of top edge of scale bounding box from top edge of block
scalar

Specify the vertical offset of the top edge of the bounding box of the scale from the top edge of the
block as a ratio of the block height. Relative to the position of the scale when the offset is 0, an offset
with a negative value moves the scale up, and an offset with a positive value moves the scale down.

Example: 1

Width — Scale width
scalar

Specify the width of the bounding box of the scale as a ratio of the block width.
Example: 2

Height — Scale height
scalar

Specify the height of the bounding box of the scale as a ratio of the block height.
Example: 2

Lock Aspect Ratio — Option to maintain scale aspect ratio
on (default) | of f

Enable on this option to maintain the aspect ratio when resizing the scale using the Property
Inspector.

Tick Color — Color of scale tick marks, span line, and block name
[r g b] vector

Set the color of the scale tick marks, the span line, and the block name. Choose a color from the
palette of standard colors, or specify a custom color.

Tip You can also set the Tick Color by choosing a Foreground Color on the Format tab of the
Simulink Toolstrip.

To specify the color of the block text, use the Label Color parameter.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.

Circular Gauge

Block Parameter: ForegroundColor
Type: character vector | string
Values: [r g b] vector

Label Color — Scale label font color
[r g b] vector

Choose a font color for the scale label from the palette of standard colors, or specify a custom color.

Tip To specify the color of the scale, use the Tick Color parameter.

Label Radius — Distance of scale labels from scale center
scalar

Specify the distance of the scale labels from the center of the scale as a ratio of the radius of the
scale.

Example: 0.5
Needle

Width — Needle image width
scalar

Specify the width of the needle image as a ratio of the smaller of the two dimensions of the bounding
box of the scale, width or length.

Example: 1

Height — Needle image height
scalar

Specify the height of the needle image as a ratio of the smaller of the two dimensions of the bounding
box of the scale, width or length.

Example: 1

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | of f

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Rotate Image — Rotation of needle image
180 (default) | scalar

Rotate the needle image about its center in 90 degree increments.

Example: 90

Offset from Center — Offset of needle image center from scale center
0 (default) | scalar

Specify the distance from the center of the needle image to the center of the scale as a ratio of the
diameter of the scale.

Example: 1

1-191

1 Blocks

1-192

Background Image

Use Background Color — Option to specify solid block background color
off (default) | on

For the block background, you can choose to provide a background image, or to select a solid color.
To select a solid background color, turn Use Background Color on. To provide a background image,
turn Use Background Color off.

Note Changing the background color using the toolstrip removes the background image and enables
the Use Background Color option.

When you use a solid background with the Circular Gauge block, you can design noncircular gauges.
When the scale arc angle is 180° or smaller, the background shape conforms to the scale.

50

Example: on

Color — Block background color
[r g b] vector

To select a solid background color, enable the Use Background Color parameter. Then, choose a
background color from the palette of standard colors, or specify a custom color.

Note When you use a solid background with the Circular Gauge block, you can design noncircular
gauges. When the scale arc angle is 180° or smaller, the background shape conforms to the scale.

50

Circular Gauge

Programmatic Use

Specify the BackgroundColor parameter for the block as a 1-by-3 [r g b] vector with values
between 0 and 1 that is formatted as a string or a character vector.

Block Parameter: BackgroundColor

Type: character vector | string

Values: [r g b] vector

Opacity — Block background opacity

1 (default) | scalar

Specify the block background opacity as a scalar value from 0 to 1.
Example: 0.5

Offset from Scale — Offset of outer edge of area with block background color from scale
scalar

Set the offset of the outer edge of the area covered by the block background color from the scale
span line, specified as a scalar value from 0 to 1.

Example: 0.1

Foreground Image

Image X Offset — Horizontal offset of left edge of image from left edge of block
scalar

Specify the horizontal offset of the left edge of the image from the left edge of the block as a ratio of
the block width. Relative to the position of the image when the offset is 0, an offset with a negative
value moves the image left, and an offset with a positive value moves the image right.

Example: 1

Image Y Offset — Vertical offset of top edge of image from top edge of block
scalar

Specify the vertical offset of the top edge of the image from the top edge of the block as a ratio of the
block height. Relative to the position of the image when the offset is 0, an offset with a negative value
moves the image up, and a positive value moves the image down.

Example: 1

Width — Image width
scalar

Specify the image width as a ratio of the block width.
Example: 0.5

Height — Image height
scalar

Specify the image height as a ratio of the block height.
Example: 0.5

1-193

1 Blocks

1-194

Lock Aspect Ratio — Option to maintain image aspect ratio
on (default) | of f

Enable this option to maintain the aspect ratio when resizing the image using the Property Inspector.

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | half | integer |
single

Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced in R2020b

R2023a: Persistent Panels tab in Simulink Toolstrip

When you add a dashboard panel to a model, the Panels tab appears in the Simulink Toolstrip and
shows options for managing and editing panels.

Previously, the Panels tab was only visible when a panel was selected. Starting in R2023a, the
Panels tab stays visible when no panel is selected.

The Panels tab also contains these new options:

* You can add an empty panel.
* You can rename the selected panel.
* You can hide the selected panel.

R2022b: Undo and redo support for customizable dashboard blocks in panel
Starting in R2022b, you can undo and redo the changes you make to customizable dashboard blocks
that are in a panel.

To undo or redo a change:

1 Click the panel or a block in the panel.
2 Press Ctrl+Z to undo the change, or press Ctrl+Y to redo the change.

Note The keyboard shortcuts are based on Windows. On a Mac, press command (38) instead of Ctrl.

Circular Gauge

R2022bh: Toolstrip support for panels

Starting in R2022b, you can use the Simulink Toolstrip to manage and edit panels and the dashboard
blocks that they contain.

When you click a dashboard block in a panel, the toolstrip tab for the block appears. For example,
when you click a Circular Gauge block, the Gauge tab appears in the toolstrip.

When you click a panel, the Panel tab appears in the toolstrip. The tab provides these options:

* Manage the visibility of panels in the model.

» Fit all unhidden panels within the current view.

* Collapse the selected panel.

* Customize the size and the contents of the panel.

* Set a custom background image for the selected panel.
* Add a new tab to the selected panel.

For more information, see “Toolstrip support for panels”.

R2022a: Change scale direction

Starting in R2022a, you can change the direction of the scale of these blocks from the Customizable
Blocks library:

* Circular Gauge

* Horizontal Gauge

* Horizontal Slider

* Knob

* Vertical Gauge

* Vertical Slider

R2022a: Specify origin for value bar and needle

The origin of a scale is the value on the scale from which the needle moves and the value bar grows.
Starting in R2022a, you can specify an origin for the scales of these blocks from the Customizable
Blocks library:

* Circular Gauge

* Horizontal Gauge

* Horizontal Slider

* Knob

* Vertical Gauge

* Vertical Slider

R2022a: Resize and reposition foreground image

1-195

1 Blocks

1-196

The blocks in the Customizable Blocks library have an option to add a foreground image as part of the
design for a block. Starting in R2022a, you can rotate, resize, and reposition the foreground image
within the block design.

R2021b: Deploy customizable Gauge and Knob Dashboard blocks on Raspberry Pi boards
Behavior changed in R2021b

Starting in 2021b, the Simulink Support Package for Raspberry Pi® Hardware supports deploying the
Circular Gauge block and the Knob block on your Raspberry Pi hardware boards.

You can customize the visual aspects of the blocks in the Simulink model and obtain the what you see
is what you get (WYSIWYG) visualization on a web browser you launch from the Raspberry Pi
terminal.

R2021b: Deploy customizable Gauge and Knob Dashboard blocks on Android device
Behavior changed in R2021b

Starting in 2021b, the Simulink Support Package for Android® Devices supports deploying the
Circular Gauge block and the Knob block on your Android device.

You can customize the visual aspects of the blocks in the Simulink model and obtain the what you see
is what you get (WYSIWYG) visualization on your Android device as well as on your web browser.

R2021a: Customizable dashboard block gauges move to Customizable Blocks library
Behavior changed in R2021a

In prior releases, the Dashboard library contained the Circular Gauge, Horizontal Gauge, and Vertical
Gauge blocks. Starting in R2021a, these blocks are in the Customizable Blocks sublibrary within the
Dashboard library.

R2021a: Dashboard gauge blocks support foreground, background, and font color

Starting in R2021a, you can change the foreground, background, and font color of these blocks:

* Gauge

+ Half Gauge

* Linear Gauge

* Quarter Gauge

* Circular Gauge

* Horizontal Gauge
* Vertical Gauge

R2020b: Simulink toolstrip support for dashboard blocks

Starting in R2020b, the Simulink Toolstrip opens a block-specific tab when you select a block in your
model from the Simulink Dashboard library or from the Flight Instruments library in the Aerospace
Blockset Flight Control Analysis Library. From the toolstrip, you can connect, disconnect, and modify
connections for the selected block. You also can jump to the model element connected to the selected
block and add the selected block to a panel.

Circular Gauge

R2020b: Add a foreground image to the Horizontal Gauge, Vertical Gauge, and Circular
Gauge blocks

Starting in R2020b, you can add a foreground image to a Horizontal Gauge, Vertical Gauge, or
Circular Gauge block in your model.

R2020b: Circular Gauge block replaces the Custom Gauge block
Behavior changed in R2020b

Starting in R2020b, the Circular Gauge block replaces the Custom Gauge block. When you open a
model from a previous release that contains the Custom Gauge block, the Custom Gauge block is
automatically replaced with a Circular Gauge block with the same configuration.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also

Horizontal Gauge | Vertical Gauge | Gauge | Half Gauge | Linear Gauge | Quarter Gauge
Topics

“Tune and Visualize Your Model with Dashboard Blocks”

“Simulation Pacing”
“Getting Started with Panels”

1-197

1 Blocks

1-198

Clock

Display and provide simulation time

Libraries:
Simulink / Sources

C;

Description

The Clock block outputs the current simulation time at each simulation step. This block is useful for
other blocks that need the simulation time.

When you need the current time within a discrete system, use the Digital Clock block.

Ports
Output

Port_1 — Sample time
scalar

Sample time, specified as the current simulation time at each simulation time step.

Data Types: double

Parameters
Display time — Display simulation time on block icon

off (default) | on

Select this check box to display the simulation time as part of the Clock block icon. When you clear
this check box, the simulation time does not appear on the block icon.

Programmatic Use

Block Parameter: DisplayTime
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Decimation — Interval at which to update block icon
10 (default) | positive integer
Specify the interval at which Simulink updates the Clock icon as a positive integer.

Suppose that the decimation is 1000. For a fixed integration step of 1 millisecond, the Clock icon
updates at 1 second, 2 seconds, and so on.

Clock

Dependencies

To display the simulation time on the block icon, you must select the Display time check box.

Programmatic Use

Block Parameter: Decimation
Type: character vector

Value: scalar

Default: '10'

Block Characteristics

Data Types double
Direct Feedthrough |no
Multidimensional no
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times. While
the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code. Usually, blocks evolve toward being suitable for
production code. Thus, blocks suitable for production code remain suitable.

See Also
Digital Clock

Topics
“Sample Time”

1-199

1 Blocks

1-200

Combinatorial Logic

Implement truth table

Libraries:
Simulink / Logic and Bit Operations

w

[i41]

Description

The Combinatorial Logic block implements a standard truth table for modeling programmable logic
arrays (PLAs), logic circuits, decision tables, and other Boolean expressions. You can use this block in
conjunction with Memory blocks to implement finite-state machines or flip-flops.

Ports
Input

Port_1 — Input signal
vector

Input signal, specified as a vector. The type of signals accepted by a Combinatorial Logic block
depends on whether you selected the Boolean logic signals option (see “Implement logic signals as
Boolean data (vs. double)”). If this option is enabled, the block accepts real signals of type Boolean
or double.

Data Types: double | Boolean
Output

Port_2 — Output signal
scalar | vector

Output signal, double if the truth table contains non-Boolean values of type double; Boolean
otherwise. The type of the output is the same as that of the input except that the block outputs
double if the input is Boolean and the truth table contains non-Boolean values.

Data Types: double | Boolean
Parameters
Truth table — Matrix of outputs

matrix

You specify a matrix that defines all possible block outputs as the Truth table parameter. Each row of
the matrix contains the output for a different combination of input elements. You must specify outputs
for every combination of inputs. The number of columns is the number of block outputs.

Combinatorial Logic

The Truth table parameter can have Boolean values (0 or 1) of any data type, including fixed-point
data types. If the table contains non-Boolean values, the data type of the table must be double.

The relationship between the number of inputs and the number of rows is:

number of rows = 2(number of inputs)

Simulink returns a row of the matrix by computing the row's index from the input vector elements.
Simulink computes the index by building a binary number where input vector elements having zero
values are 0 and elements having nonzero values are 1, then adding 1 to the result. For an input
vector, u, of m elements:

row index = 1 + u(m)*2% + u(m-1)*2! + ... + u(1l)*2m!

Programmatic Use

Block Parameter: TruthTable

Type: character vector

Values: matrix

Default: '[0 0;0 1;0 1;1 0;0 1;1 0;1 0;1 1]

Block Characteristics

Data Types Boolean | double
Direct Feedthrough |yes
Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Compare To Constant | Compare To Zero | Bit Clear | Bit Set

1-201

1 Blocks

1-202

Combo Box

Select parameter value from drop-down menu

Libraries:
Simulink / Dashboard

[v)

Description

The Combo Box block lets you set the value of a parameter to one of several values. You can define
each selectable value and its label through the Combo Box block parameters. Use the Combo Box
block with other Dashboard blocks to build an interactive dashboard of controls and indicators for
your model.

Double-clicking the Combo Box block does not open its dialog box during simulation and when the
block is selected. To edit the block's parameters, you can use the Property Inspector, or you can
right-click the block and select Block Parameters from the context menu.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus

Combo Box

or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top
level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

Connect
O [#] Gain:Gain
Y
DJU;L3||-U,|-|;!|;Utk o (\/ Signal 2 Amplified Signal :-,1._1 O [4] Sine Wave:Amplitude
Sine Wave Gain () [#] Sine Wave:Bias

() [#] Sine Wave:Frequency
O [Sine WavePhase
O [#] Sine Wave:Samples

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the UI or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector Ul, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations

* Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect
to real scalar signals.

* The toolstrip does not support blocks that are inside a panel.

* You cannot use the Connection table in the block dialog to connect a dashboard block to a block
that is commented out. When you connect a dashboard block to a commented block using connect

mode, the dashboard block does not display the connected value until the you uncomment the
block.

* Dashboard blocks cannot connect to model elements inside referenced models.
* When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
* Dashboard blocks do not support rapid accelerator simulation.

1-203

1 Blocks

1-204

* When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

* When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection

Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.

Block Parameter: Binding

Type: Simulink.HMI.ParamSourceInfo

Default: []

Combo Box

Main
Enumerated Data Type — Specify state values and labels using an enumerated data type

off (default) | on

You can use an enumerated data type that pairs a numeric value with each enumeration to configure
the state values and labels for the block. To specify the states for the block using an enumerated data
type, first select the Enumerated Data Type option. Then, specify the name of the enumerated data
type in the text box. The definition for the specified enumerated data type must be saved on the
MATLAB path or in the base workspace.

Example: myEnumType

Programmatic Use

To programmatically specify the state labels and values for the block using an enumerated data type,
specify 'on' for the UseEnumeratedDataType parameter and the name of the enumerated data
type for the EnumeratedDataType parameter.

Block Parameter: UseEnumeratedDataType

Type: string or character array

Values: 'on' | 'off"'

Default: 'off'

Block Parameter: EnumeratedDataType

Type: string or character array

Default: '’

Label — Block label position

Hide (default) | Bottom | Top

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use

Block Parameter: LabelPosition
Type: character vector

Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

States — Set of states to select for connected parameter
scalar and character vector

Set of states from which to select a value for the connected parameter. Each State consists of a State
Value and a State Label.

* State Value — Value assigned to the connected variable or parameter when you select the state
with the corresponding Label.

* State Label — Label for each state. You can use the Label to display the value the connected
parameter takes when the switch is positioned at the bottom, or you can enter a descriptive text
label.

Click the + button to add additional States.

The default configuration for the block includes these States.

1-205

1 Blocks

1-206

States

State Value State Label
0 Labell

1 Label?2

2 Label3

Programmatic Use

To programmatically configure the States for a block, use an array of structures containing the
fields Value and Label. Include a structure in the array for each state you want to configure on the
block.

statel.Value = 1;
statel.Label = 'State 1';
state2.Value = 2;
state2.Label = 'State 2';

radioStates = [statel state2];

Block Parameter: States
Type: structure
Default: 3x1 structure array

Format
Opacity — Block background opacity
1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.

Example: 0.5

Programmatic Use

Block Parameter: Opacity
Type: scalar

Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, including the text. You can select a color from a palette of standard colors or
specify a custom color.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.

Block Parameter: ForegroundColor

Type: character vector | string

Values: [r g b] vector

Background Color — Block background color
[r g b] vector

Combo Box

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.

Block Parameter: BackgroundColor

Type: character vector | string

Values: [r g b] vector

Block Characteristics

Data Types double | half | integer | single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced in R2017b

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a
dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Background Color, Foreground Color, and Opacity properties added for several
dashboard blocks

Starting in R2020b, you can specify a background color, a foreground color, and opacity for these
blocks from the Dashboard library:

* Check Box

* Combo Box

+ Edit

* Push Button
* Radio Button

R2020b: Simulink Toolstrip support for dashboard blocks

1-207

1 Blocks

1-208

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019b: Enhanced enumerated data type support for the Rotary Switch block and Combo
Box block

Starting in R2019b, you can use an enumeration class to configure the values and labels for the states
of a Rotary Switch block and a Combo Box block.

To configure the States for a Rotary Switch or Combo Box block with an enumerated data type,
select Enumerated Data Type. In the text box, enter the name of the enumeration class you want to
use.

When you use an enumeration class to configure the states of the block, you cannot manually edit,
add, or remove states from the States table.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add _block and set param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.
See Also

Rotary Switch | Radio Button

Topics

“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Compare To Constant

Compare To Constant

Determine how signal compares to specified constant

Libraries:
Simulink / Logic and Bit Operations
a=ap HDL Coder / Logic and Bit Operations

Description
The Compare To Constant block compares an input signal to a constant. Specify the constant in the

Constant value parameter. Specify how the input is compared to the constant value with the
Operator parameter.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix, is compared with constant. The block first

converts its Constant value parameter to the input data type, and then performs the specified
operation.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — Output signal
0] 1 | vector | matrix

The output is 0 if the comparison is false, and 1 if it is true.

Data Types: uint8 | Boolean
Parameters

Operator — Logical operator

<= (default) | == | ~=|<|>=|>

This parameter can have these values:

+ == — Determine whether the input is equal to the specified constant.
+ ~=— Determine whether the input is not equal to the specified constant.

1-209

1 Blocks

* < — Determine whether the input is less than the specified constant.

* <= — Determine whether the input is less than or equal to the specified constant.

* > — Determine whether the input is greater than the specified constant.

* >=— Determine whether the input is greater than or equal to the specified constant.
Programmatic Use

Block Parameter: relop

Type: character vector

Values:l==l|I~=I|I<I|I<=I|I>=I|I>I

Default: '<='

Constant value — Constant to compare with
constant

Specify the constant value to which the input is compared.

Programmatic Use

Block Parameter: const

Type: character vector

Value: scalar | vector | matrix | N-D array
Default: '3.0'

Output data type — Data type of the output
boolean (default) | uint8

Specify the data type of the output, boolean or uints8.

Programmatic Use

Block Parameter: OutDataTypeStr
Type: character vector
Values:'boolean' | 'uint8'
Default: 'boolean’

Enable zero-crossing detection — Select to enable zero-crossing detection
‘on' (default) | 'off'

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection” in the
Simulink documentation.

Programmatic Use

Block Parameter: ZeroCross
Type: character vector

Values: 'off' | 'on'

Default: 'on'

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | half | integer |
single

1-210

Compare To Constant

Direct Feedthrough |yes

Multidimensional yes
Signals

Variable-Size Signals |yes
Zero-Crossing yes
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support
This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1-211

1 Blocks

See Also
Compare To Zero | Logical Operator | Combinatorial Logic

1-212

Compare To Zero

Compare To Zero

Determine how signal compares to zero

Libraries:
Simulink / Logic and Bit Operations
a=0p HDL Coder / Logic and Bit Operations

Description

The Compare To Zero block compares an input signal to zero. Specify how the input is compared to
zero with the Operator parameter.

The output is 0 if the comparison is false, and 1 if it is true.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as scalar, vector, or matrix, is compared with zero. If the input data type cannot
represent zero, parameter overflow occurs. To detect this overflow, go to the Diagnostics > Data
Validity pane of the Configuration Parameters dialog box and set Parameters > Detect overflow to
warningorerror.

In this case, the block compares the input signal to the ground value of the input data type. For
example, if you have an input signal of type fixdt(0,8,270,10), the input data type can represent
unsigned 8-bit integers from 10 to 265 due to a bias of 10. The ground value is 10, instead of 0.

Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Output signal
0|1 | scalar | vector | matrix

The output is 0 if the comparison is false, and 1 if it is true.

The block output is uint8 or boolean, depending on your selection for the Output data type
parameter.

Data Types: uint8 | Boolean

1-213

1 Blocks

Parameters

Operator — Logical operator

This parameter can have the following values:

* == — Determine whether the input is equal to zero.

¢ ~= — Determine whether the input is not equal to zero.

* < — Determine whether the input is less than zero.

* <= — Determine whether the input is less than or equal to zero.

* > — Determine whether the input is greater than zero.

* >= — Determine whether the input is greater than or equal to zero.
Programmatic Use

Block Parameter: relop

Type: character vector

Values:l==l|I~=I|I<I|I<=I|I>=I|I>I
Default: '<='

Output data type — Data type of the output
boolean (default) | uint8

Specify the data type of the output, boolean or uints8.

Programmatic Use

Block Parameter: OutDataTypeStr
Type: character vector
Values:'boolean' | 'uint8'
Default: 'boolean’

Enable zero-crossing detection — Select to enable zero-crossing detection
on (default) | off

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection” in the
Simulink documentation.

Programmatic Use

Block Parameter: ZeroCross
Type: character vector

Values: 'off' | 'on'

Default: 'on'

Block Characteristics

Data Types Boolean | double | fixed point | half | integer | single

Direct Feedthrough |yes

1-214

Compare To Zero

Multidimensional yes
Signals

Variable-Size Signals |yes
Zero-Crossing yes
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support
This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1-215

1 Blocks

See Also
Compare To Constant | Logical Operator | Bitwise Operator | String Compare

1-216

Complex to Magnitude-Angle

Complex to Magnitude-Angle

Compute magnitude and/or phase angle of complex signal

Libraries:
Simulink / Math Operations

=

Ju
fup

Description

The Complex to Magnitude-Angle block outputs the magnitude and/or phase angle of the input signal,
depending on the setting of the Output parameter. The outputs are real values of the same data type
as the block input. The input can be an array of complex signals, in which case the output signals are
also arrays. The magnitude signal array contains the magnitudes of the corresponding complex input
elements. The angle output similarly contains the angles of the input elements.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Complex input signal that the block computes and outputs the magnitude and/or the phase angle.

Data Types: single | double
Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that is the magnitude and/or phase angle of the input signal. To choose the output, set
the Qutput parameter.

Data Types: single | double
Parameters
Output — Magnitude and/or phase angle output specification

Magnitude and angle (default) | Magnitude | Angle

Specify if the output is the magnitude and/or the phase angle in radians of the input signal.

Command-Line Information
Parameter: Output
Type: character vector

1-217

1 Blocks

Values: 'Magnitude and angle' | 'Magnitude' | 'Angle’
Default: 'Magnitude and angle'

Sample time — Sample time value other than -1
-1 (default) | scalar | vector

Specify the sample time as a value other than - 1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than - 1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics

Data Types double | single
Direct Feedthrough |yes
Multidimensional yes

Signals

Variable-Size Signals |yes
Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Complex to Real-Imag | Real-Imag to Complex

1-218

Complex to Real-Imag

Complex to Real-Imag

Output real and imaginary parts of complex input signal

Libraries:

Simulink / Math Operations

{TE : HDL Coder / Math Operations
m

Description

The Complex to Real-Imag block outputs the real and/or imaginary part of the input signal, depending
on the setting of the Output parameter. The real outputs are of the same data type as the complex
input. The input can be an array (vector or matrix) of complex signals, in which case the output
signals are arrays of the same dimensions. The real array contains the real parts of the corresponding

complex input elements. The imaginary output similarly contains the imaginary parts of the input
elements.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Complex input signal that the block computes and outputs the real and/or imaginary part.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that is the real and/or imaginary part of the input signal. To choose which part is
output, set the Qutput parameter.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point

Parameters
Output — Real and/or imaginary output specification
Real and imag (default) | Real | Imag

Specify if the output is the real and/or imaginary part of the input signal.

1-219

1 Blocks

Command-Line Information

Parameter: Output

Type: character vector

Values: 'Real and imag' | 'Real' | 'Imag'’
Default: 'Real and imag'

Sample time — Sample time value other than -1
-1 (default) | scalar | vector

Specify the sample time as a value other than - 1. For more information, see “Specify Sample Time”.
Dependencies

This parameter is not visible unless it is explicitly set to a value other than - 1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics

Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |yes

Zero-Crossing no

Detection

Version History
Introduced before R2006a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

1-220

Complex to Real-Imag

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline

Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Complex to Magnitude-Angle | Real-Imag to Complex

1-221

1 Blocks

1-222

Compose String

Compose output string signal based on specified format and input signals

Libraries:
COMposs Simulink / String
> [sir
Description

The Compose String block composes output string signal based on the format specifier listed in the
Format parameter. The Format parameter determines the number of input signals. If there are
multiple inputs, the block constructs the string by combining these multiple inputs in order, and
applying the associated format specifier, one format specifier for each input. Each format specifier
starts with a percent sign, %, followed by the conversion character. For example, %f formats the input
as a floating point output. To supplement the string output, you can also add a character to the format
specification. Use this block to compose and format an output string signal from a multiple inputs.

For example, if the Format parameter contains "%s is %f", the block expects two inputs, a string
signal and a single or double signal. If the first input is the string "Pi" and the second input is a
double value 3. 14, the outputis "Pi is 3.14".

When a MinGW® compiler compiles code generated from the block, running the compiled code may
produce nonstandard results for floating-point inputs. For example, a numeric input of 501.987
returns the string "5.019870e+002" instead of the expected string "5.019870e+02".

Ports
Input

d — Data for first part of string
scalar

Data for the first part of string, specified as a scalar. The Format parameter determines the port label
and the format of the input data. For example, if the first item in the Format parameter is %d, the
port label is d.

The data type of the input signal must be compatible with the format specifier in the Format
parameter. For more information, see the Format parameter.

Data Types: single | double | int8 | intl6 | int32 | uint8 | uint1l6 | uint32 | Boolean

f — Data for second part of string
scalar

Data for the second part of string, specified as a scalar. The Format parameter determines the port
label and the format of the input data. For example, if the first item in the Format parameter is %f,
the port label is f.

The data type of the input signal must be compatible with the format specifier specified in the
Format parameter. For more information, see the Format parameter.

Compose String

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Port_N — Data for N parts of string
scalar (default)

Data for N parts of string, specified as a scalar. The Format parameter determines the port label and
the format of the input data. For example, if the corresponding item in the Format parameter is %T,
the port label is f.

The data type of the input signal must be compatible with the format specifier in the Format
parameter. For more information, see the Format parameter.

Data Types: single | double | int8 | int1l6 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Output

str — Output string
scalar

Output string composed of inputs, specified as a scalar.

Data Types: string

Parameters

Format — Format input data
"%d %f" (default) | format string | character vector

Format of input data, specified as a format string.

For more information about acceptable format specifiers, see “Algorithms” on page 1-224.

Programmatic Use

Block Parameter: Format
Type: character vector
Values: '<filename>'
Default: ' "%d Sf"'

Output data type — Output data type

string (default) | <data type expression>

Output data type, specified using the string data type to specify a string with no maximum length.
To specify a string data type with a maximum length, specify stringtype (N). For example,

stringtype(31) creates a string data type with a maximum length of 31 characters.

Click the Show data type assistant button 7 o display the Data Type Assistant, which helps
you set the data type attributes. See “Specify Data Types Using Data Type Assistant” in the Simulink
User's Guide for more information.

1-223

1 Blocks

1-224

Programmatic Use

Block Parameter: OutDataTypeStr

Type: character vector

Values: 'string' | <data type expression>
Default: 'string'

Mode — Category of data

string (default) | scalar

Use the stringtype function, for example, stringtype(255).

Dependency

Clicking the Show data type assistant button enables this parameter.

Block Characteristics

Data Types double | integer | single | string
Direct Feedthrough |yes

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Algorithms

A formatting specifier starts with a percent sign, %, and ends with a conversion character. The
conversion character is required. Optionally, you can specify identifier, flags, field width, precision,
and subtype specifiers between % and the conversion character. (Spaces are invalid between
specifiers and are shown here only for readability).

The Compose String block uses this format specifier prototype:
%[flags][width][.precision][length]specifier

Conversion Character

This table shows conversion characters to format numeric and character data as text.

Value Type Conversion Details

Integer, signed %d or %1 Base 10

o°
(=

Integer, unsigned Base 10

o°
(@]

Base 8 (octal)

o°
X

Base 16 (hexadecimal), lowercase letters a-f

o°
X

Same as %X, uppercase letters A-F

Compose String

Value Type

Conversion Details

Floating-point number

%f Floating-point notation (Use a precision
operator to specify the number of digits after
the decimal point.)

o°
(0]

Exponential notation, such as 3.141593e+00
(Use a precision operator to specify the
number of digits after the decimal point.)

o°
m

Same as %€, but uppercase, such as
3.141593E+00 (Use a precision operator to
specify the number of digits after the decimal

point.)

%Q The more compact of %e or %f, with no trailing
zeros (Use a precision operator to specify the
number of significant digits.)

%G The more compact of %E or %f, with no trailing

zeros (Use a precision operator to specify the
number of significant digits.)

String

o°
(V]

The type of the output text is the same as the
type of Format.

Optional Operators

The optional identifier, flags, field width, precision, and operators further define the format of the

output text.

+ Flags

Left-justify. Works with all specifiers.
Example: %-5.2f
Example: %-10s

Always print a sign character (+ or -) for any numeric value. Works with all
specifiers except u, 0, X, X, and s.

Example: %+5.2f

Right-justify text.

Example: %+10s

Insert a space before the value. Works with all specifiers except u, o, x, X,
and s.

Example: % 5.2f

IQI

Pad to field width with zeros before the value. Works with all specifiers
except s.
Example: %05.2f

1-225

1 Blocks

Modify selected numeric conversions:

» For %0, %X, or %X, print 0, 0%, or 0X prefix.
* For %, %e, or %E, print decimal point even when precision is 0.
* For %g or %G, do not remove trailing zeros or decimal point.

Works with all specifiers except d, i, u, and s.

Example: %#5.0f

* Field Width
Minimum number of

The function pads to
* Precision

characters to print.

field width with spaces before the value unless otherwise specified by flags.

For %f, %e, or %E

Number of digits to the right of the decimal point
Example: '%.4f' prints pias '3.1416'

d,iouxX

Example: "%.4d" prints 5 as '0005"'

For %g or %G

Number of significant digits
Example: '%.4q9"' prints pias '3.142'

Example: "%.2s" prints "Hello!" as "He"

Note If you specify a precision operator for floating-point values that exceeds the precision of the
input numeric data type, the results might not match the input values to the precision you

specified. The result

depends on your computer hardware and operating system.

Text Before or After Formatting Operators

Special Character Representation
Single quotation mark '
Percent character %%
Backslash \\
Alarm \a
Backspace \b
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t
Vertical tab \v

1-226

Minimum number of digits to be written. Outputs shorter than
the specified precision are padded with leading zeros.

Maximum number of characters to be written to the output.

Compose String

Special Character Representation

Character whose Unicode® numeric value can be represented [\xN
by the hexadecimal number, N

Example: sprintf('\x5A")
returns 'Z'

Character whose Unicode numeric value can be represented by |\N

the octal number, N
Example: sprintf('\132"')

returns 'Z'

Format can also include additional text before a percent sign, %, or after a conversion character. The
text can be:
* Ordinary text to print.

» Special characters that you cannot enter as ordinary text. This table shows how to represent
special characters in formatSpec.

Length Specifiers

The Format String block supports the h and 1 length subspecifiers. These specifiers can change
according to the Configuration Parameters > Hardware Implementation > Number of bits
settings

Length di uoxX feEgG s
No length specifier [int unsigned int double (default), [string
single
short unsigned short |— —
long unsigned long |[— —

Note for Specifiers that Specify Integer Data Types (d, i, u, o, x, X)

Target int, long, and short type sizes are controlled by settings in the Configuration Parameters
> Hardware Implementation pane. For example, if the target int is 32 bits and the specifier is %u,
then the expected input type will be uint32. However, the input port accepts any built-in integer
type of that size or smaller with the %u specifier

Notes for Specifiers that Specify Floating Point Data Types (f, e, E, g, F)

* Do not use 1 and h with these specifiers. Do not use the length subspecifier (for example, %f is
allowed, but %hf and %1f are not allowed) .

» Ports that correspond with these specifiers accept both single and double data types.

Note for Specifiers that Specify the String Data Type (s)

* The s specifier does not work with the 1 or h subspecifiers, and only accepts a string input data
type.

Version History
Introduced in R2018a

1-227

1 Blocks

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

sprintf | ASCII to String | Scan String | String Compare | String Concatenate | String Constant |
String Find | String Length | String to Double | String to Single | String to ASCII | String to Enum |
Substring | To String

Topics

“Display and Extract Coordinate Data”
“Simulink Strings”

1-228

Configurable Subsystem

Configurable Subsystem

Represent any block selected from user-specified library of blocks

Libraries:
Template Simulink / Ports & Subsystems

Description

Note Configurable Subsystem block will be removed in a future release. It is recommended to use
Variant Subsystem instead of Configurable Subsystem. Variant Subsystems offer more capabilities
than Configurable Subsystems with these advantages:

* You can mix Model blocks and Subsystem blocks as variant choices.
* You can specify variants that have different numbers of input and output ports.

For more information on converting Configurable Subsystem block to a Variant Subsystem block, see
“Convert Configurable Subsystem to Variant Subsystem”.

For more information on Variant Subsystem, see Variant Subsystem, Variant Model, Variant Assembly
Subsystem.

If your model contains a Configurable Subsystem block, you will see a warning message. To change
the warning message to an error message set the string command line parameter
ConfigurableSubsystemUsage to error.

set param(bdroot, 'ConfigurableSubsystemUsage', 'error');

To revert it to a warning, set the ConfigurableSubsystemUsage to warning.

The Configurable Subsystem block represents one of a set of blocks contained in a specified library of
blocks. The context menu of the Configurable Subsystem block lets you choose which block the
configurable subsystem represents.

Configurable Subsystem blocks simplify creation of models that represent families of designs. For
example, suppose that you want to model an automobile that offers a choice of engines. To model
such a design, you would first create a library of models of the engine types available with the car.
You would then use a Configurable Subsystem block in your car model to represent the choice of
engines. To model a particular variant of the basic car design, a user need only choose the engine
type, using the configurable engine block's dialog box.

To create a configurable subsystem in a model, you must first create a library containing a master
configurable subsystem and the blocks that it represents. You can then create configurable instances
of the master subsystem by dragging copies of the master subsystem from the library and dropping
them into models.

1-229

1 Blocks

1-230

You can add any type of block to a master configurable subsystem library. Simulink derives the port
names for the configurable subsystem by making a unique list from the port names of all the choices.
However, Simulink uses default port names for non-subsystem block choices.

You cannot break library links in a configurable subsystem because Simulink uses those links to
reconfigure the subsystem when you choose a new configuration. Breaking links would be useful only
if you do not intend to reconfigure the subsystem. In this case, you can replace the configurable
subsystem with a nonconfigurable subsystem that implements the permanent configuration.

Creating a Master Configurable Subsystem

To create a master configurable subsystem:

1 Create a library of blocks representing the various configurations of the configurable subsystem.
Save the library.
3 Create an instance of the Configurable Subsystem block in the library.

To do so, drag a copy of the Configurable Subsystem block from the Simulink Ports & Subsystems
library into the library you created in the previous step.

4 Display the Configurable Subsystem block dialog box by double-clicking it. The dialog box
displays a list of the other blocks in the library.

5 Under List of block choices in the dialog box, select the blocks that represent the various
configurations of the configurable subsystems you are creating.

To apply the changes and close the dialog box, click the OK button.
Select Block Choice from the context menu of the Configurable Subsystem block.

The context menu displays a submenu listing the blocks that the subsystem can represent.
Select the block that you want the subsystem to represent by default.
Save the library.

Note If you add or remove blocks from a library, you must recreate any Configurable Subsystem
blocks that use the library.

If you modify a library block that is the default block choice for a configurable subsystem, the change
does not immediately propagate to the configurable subsystem. To propagate this change, do one of
the following:

* Change the default block choice to another block in the subsystem, then change the default block
choice back to the original block.

* Recreate the configurable subsystem block, including the selection of the updated block as the
default block choice.

If a configurable subsystem in your model contains a broken link to a library block, editing the link
and saving the model does not fix the broken link the next time you open the model. To fix a broken
library link in your configurable subsystem, use one of the following approaches.

» Convert the configurable subsystem to a variant subsystem. Right-click the configurable
subsystem, and select Subsystem and Model Reference > Convert Subsystem to > Variant
Subsystem.

Configurable Subsystem

* Remove the library block from the master configurable subsystem library, add the library block
back to the master configurable subsystem library, and then resave the master configurable
subsystem library.

Creating an Instance of a Configurable Subsystem
To create an instance of a configurable subsystem in a model:

Open the library containing the master configurable subsystem.
Drag a copy of the master into the model.
Select Block Choice from the context menu of that Configurable Subsystem instance.

A W N R

Select the block that you want the configurable subsystem to represent.

The instance of the configurable system displays the icon and parameter dialog box of the block that
it represents.

Setting Instance Block Parameters

As with other blocks, you can use the parameter dialog box of a configurable subsystem instance to
set its parameters interactively and the set param command to set the parameters from the
MATLAB command line or in a MATLARB file. If you use set param, you must specify the full path
name of the configurable subsystem's current block choice as the first argument of set param, for
example:

curr_choice = get _param('mymod/myconfigsys', 'BlockChoice');

curr_choice = ['mymod/myconfigsys/' curr_choice];
set param(curr_choice, 'MaskValues', ...);

Mapping 1/O Ports

A configurable subsystem displays a set of input and output ports corresponding to input and output
ports in the selected library. Simulink uses the following rules to map library ports to Configurable
Subsystem block ports:

* Map each uniquely named input/output port in the library to a separate input/output port of the
same name on the Configurable Subsystem block.

* Map all identically named input/output ports in the library to the same input/output ports on the
Configurable Subsystem block.

+ Terminate any input/output port not used by the currently selected library block with a
Terminator/Ground block.

This mapping allows a user to change the library block represented by a Configurable Subsystem
block without having to rewire connections to the Configurable Subsystem block.

For example, suppose that a library contains two blocks A and B and that block A has input ports
labeled a, b, and ¢ and an output port labeled d and that block B has input ports labeled a and b and
an output port labeled e.

1-231

1 Blocks

[*a| newlibrary » -

A Configurable Subsystem block based on this library would have three input ports labeled a, b, and
¢, respectively, and two output ports labeled d and e.

In this example, port a on the Configurable Subsystem block connects to port a of the selected library
block no matter which block is selected. Port ¢ on the Configurable Subsystem block functions only if
library block A is selected. Otherwise, it simply terminates.

(P& newmodel - P& newmodel -
b B A=
ap p
Ao e
]
e {) {
Configurabla Configurabla
Subsystem Subsystermn
A B

Note A Configurable Subsystem block does not provide ports that correspond to non-I/O ports, such
as the trigger and enable ports on triggered and enabled subsystems. Thus, you cannot use a
Configurable Subsystem block directly to represent blocks that have such ports. You can do so
indirectly, however, by wrapping such blocks in subsystem blocks that have input or output ports
connected to the non-I/O ports.

Convert to Variant Subsystem

Right-click a configurable subsystem and select Subsystems and Model Reference > Convert
Subsystem To > Variant Subsystem.

During conversion, Simulink performs the following operations:

* Replaces the Subsystem block with a Variant Subsystem block, preserving ports and connections.

1-232

Configurable Subsystem

* Adds the original subsystem as a variant choice in the Variant Subsystem block.
* Overrides the Variant Subsystem block to use the subsystem that was originally the active choice.

* Preserves links to libraries. For linked subsystems, Simulink adds the linked subsystem as a
variant choice.

Simulink also preserves the subsystem block masks, and it copies the masks to the variant choice.

See Variant Subsystem for more information on variant choices.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array | bus

Input signal to the Configurable Subsystem. The block that the Configurable Subsystem represents
determines the supported data types and dimensions of the input signal.

Dependencies

The number of input ports depends on the blocks in the library that the Configurable Subsystem
represents. For more information, see “Mapping 1/O Ports” on page 1-231.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — Output signal
scalar | vector | matrix | N-D array | bus

Output signal from the Configurable Subsystem. The block that the Configurable Subsystem
represents determines the output data types and dimensions.

Dependencies
The number of output ports depends on the blocks in the library that the Configurable Subsystem
represents. For more information, see “Mapping I/O Ports” on page 1-231.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters

List of block choices — Block members of the configurable subsystem
no default

Select the blocks you want to include as members of the configurable subsystem. You can include
user-defined subsystems as blocks.

Programmatic Use
Block Parameter: MemberBlocks
Type: cell array of character vectors

1-233

1 Blocks

Values: cell array of block names as character vectors
Default: {''}

Port names — Port names
no default

Lists of input and output ports of member blocks. In the case of multiports, you can rearrange
selected port positions by clicking the Up and Down buttons.

Block Characteristics

Data Types Boolean? | bus? | double? | enumerated® | fixed point@|half?|
integer?|single? | string®

Direct Feedthrough |no

Multidimensional yes?

Signals

Variable-Size Signals |yes?

Zero-Crossing no

Detection
a Actual data type or capability support depends on block implementation.

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Actual code generation support depends on block implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also
Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem | Variant Subsystem

Topics
“Model Discretizer”

1-234

Constant

Constant

Generate constant value

Libraries:

Simulink / Commonly Used Blocks

1 b Simulink / Sources

DSP System Toolbox / Sources

HDL Coder / Commonly Used Blocks
HDL Coder / Sources

Description

The Constant block generates a real or complex constant value signal. Use this block to provide a
constant signal input. The block generates scalar, vector, or matrix output, depending on:

* The dimensionality of the Constant value parameter
* The setting of the Interpret vector parameters as 1-D parameter

The output of the block has the same dimensions and elements as the Constant value parameter. If
you specify for this parameter a vector that you want the block to interpret as a vector, select the
Interpret vector parameters as 1-D check box. Otherwise, if you specify a vector for the Constant
value parameter, the block treats that vector as a matrix.

Tip To output a constant enumerated value, consider using the Enumerated Constant block instead.
The Constant block provides block parameters that do not apply to enumerated types, such as
Output minimum and Output maximum.

Using Bus Objects as the Output Data Type

The Constant block supports nonvirtual buses as the output data type. Using a bus object as the
output data type can help simplify your model. If you use a bus object as the output data type, set the
Constant value to 0 or to a MATLAB structure that matches the bus object.

Using Structures for the Constant Value of a Bus

The structure you specify must contain a value for every element of the bus represented by the bus
object. The block output is a nonvirtual bus signal.

You can use the Simulink.Bus.createMATLABStruct to create a full structure that corresponds
to a bus.

You can use Simulink.Bus.createObject to create a bus object from a MATLAB structure.

If the signal elements in the output bus use numeric data types other than doub'le, you can specify
the structure fields by using typed expressions such as uint16(37) or untyped expressions such as
37. To control the field data types, you can use the bus object as the data type of a
Simulink.Parameter object. To decide whether to use typed or untyped expressions, see “Control
Data Types of Initial Condition Structure Fields”.

1-235

1 Blocks

1-236

Setting Configuration Parameters to Support Using a Bus Object Data Type

To enable the use of a bus object as an output data type, before you start a simulation, set
Configuration Parameters > Diagnostics > Data Validity > Advanced parameters >
Underspecified initialization detection to Simplified. For more information, see
“Underspecified initialization detection”.

Ports
Output

Port_1 — Constant value
scalar | vector | matrix | N-D array

Constant value, specified as a real or complex valued scalar, vector, matrix, or N-D array. By default,
the Constant block outputs a signal whose dimensions, data type, and complexity are the same as
those of the Constant value parameter. However, you can specify the output to be any data type that
Simulink supports, including fixed-point and enumerated data types.

Note If you specify a bus object as the data type for this block, do not set the maximum value for
bus data on the block. Simulink ignores this setting. Instead, set the maximum values for bus
elements of the bus object specified as the data type. For more information, see
Simulink.BusElement.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters

Main

Constant value — Constant output value

1 (default) | scalar | vector | matrix | N-D array

Specify the constant value output of the block.

* You can enter any expression that MATLAB evaluates as a matrix, including the Boolean keywords
true and false.

» Ifyou set the Output data type to be a bus object, you can specify one of these options:

* A full MATLAB structure corresponding to the bus object
* 0 to indicate a structure corresponding to the ground value of the bus object

For details, see “Using Bus Objects as the Output Data Type” on page 1-235.
» For nonbus data types, Simulink converts this parameter from its value data type to the specified
output data type offline, using a rounding method of nearest and overflow action of saturate.

Programmatic Use
Block Parameter: Value

Constant

Type: character vector
Value: scalar | vector | matrix | N-D array
Default: '1'

Interpret vector parameters as 1-D — Treat vectors as 1-D

on (default) | of f

Select this check box to output a vector of length N if the Constant value parameter evaluates to an
N-element row or column vector.

* When you select this check box, the block outputs a vector of length N, provided the Constant
value parameter evaluates to an N-element row or column vector.

* When you clear this check box, the block outputs a matrix of dimension 1-by-N or N-by-1, provided
the Constant value parameter evaluates to an N-element row or column vector. For example, the
block outputs a matrix of dimension 1-by-N or N-by-1.

Programmatic Use

Block Parameter: VectorParams1D
Type: character vector

Values: 'on' | 'off'

Default: 'on'

Sample time — Sampling interval

inf (default) | scalar | vector

Specify the interval between times that the Constant block output can change during simulation (for
example, due to tuning the Constant value parameter).

The default value of inf indicates that the block output can never change. This setting speeds
simulation and generated code by avoiding the need to recompute the block output.

See “Specify Sample Time” for more information.

Programmatic Use

Block Parameter: SampleTime
Type: character vector

Values: scalar | vector

Default: 'inf"'

Signal Attributes
Output minimum — Minimum output value for range checking
[1 (default) | scalar

Specify the lower value of the output range that Simulink checks as a finite, real, double, scalar
value.

Note If you specify a bus object as the data type for this block, do not set the minimum value for bus
data on the block. Simulink ignores this setting. Instead, set the minimum values for bus elements of
the bus object specified as the data type. For information on the Minimum parameter for a bus
element, see Simulink.BusElement.

1-237

1 Blocks

1-238

Simulink uses the minimum to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

* Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMin
Type: character vector
Values: scalar

Default: '[]'

Output maximum — Maximum output value for range checking
[1 (default) | scalar

Specify the upper value of the output range that Simulink checks as a finite, real, double, scalar
value.

Note If you specify a bus object as the data type for this block, do not set the maximum value for
bus data on the block. Simulink ignores this setting. Instead, set the maximum values for bus
elements of the bus object specified as the data type. For information on the Maximum parameter for
a bus element, see Simulink.BusElement.

Simulink uses the maximum value to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

* Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Constant

Programmatic Use

Block Parameter: OutMax
Type: character vector
Values: scalar

Default: '[]'

Output data type — Output data type

Inherit: Inherit from 'Constant value' (default) | Inherit: Inherit via back
propagation |double|single | half |int8 | intl6 |int32 | int64 | uint8 |uintl1l6 | uint32
| uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,270,0) | Enum: <class
name> | Bus: <object name>|<data type expression>

Specify the output data type. The type can be inherited, specified directly, or expressed as a data type
object such as Simulink.NumericType.

Click the Show data type assistant button 7 o display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: QOutDataTypeStr
Type: character vector

Values: 'Inherit: Inherit from 'Constant value'' | 'Inherit: Inherit via back
propagation' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'intl6' |
'uintle' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean’' |
"fixdt(1,16)"' | 'fixdt(1,16,0)' | 'fixdt(1,16,270,0)' | 'Enum: <class name>'

| 'Bus: <object name>'
Default: 'Inherit: Inherit from 'Constant value''

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the QOutput data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector

Values: 'off' | 'on'
Default: 'off'

Mode — Category of data to specify

Inherit (default) | Built in | Fixed point | Enumerated | Bus object | Expression
Select the category of data to specify.

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right.
Select one of the following choices:

1-239

1 Blocks

1-240

* Inherit from 'Constant value' (default)
* Inherit via back propagation
Built in
Built-in data types. Selecting Built in enables a second menu/text box to the right. Select one
of the following choices:
* double (default)
* single
* int8
* uint8
* 1intl6
* uintle
* 1int32
e uint32
* boolean

Fixed point
Fixed-point data types.
Enumerated

Enumerated data types. Selecting Enumerated enables a second menu/text box to the right,
where you can enter the class name.

Bus object

Bus object. Selecting Bus enables a Bus object parameter to the right, where you enter the
name of a bus object that you want to use to define the structure of the bus. If you need to create
or change a bus object, click Edit to the right of the Bus object field to open the Simulink Type
Editor. For details, see “Create and Specify Simulink.Bus Objects”.

Expression
Expressions that evaluate to data types. Selecting Expression enables a second menu/text box
to the right, where you can enter the expression.
Do not specify a bus object as the expression.

Data type override — Specify data type override mode for this signal

Inherit | Off

Select the data type override mode for this signal.

* When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

* When you select 0ff, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Constant

Dependencies

To enable this parameter, click the Show data type assistant button, and set the Mode to Built
inor Fixed point.

Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Specify signed or unsigned

Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

* Signed, specifies the fixed-point data as signed.
* Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies
To enable this parameter, set the Mode to Fixed point.

Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.

Dependencies
To enable this parameter, set Mode to Fixed point.
Setting Scaling to Binary point enables:

* Fraction length
* Calculate Best-Precision Scaling

Setting Scaling to Slope and bias enables:

* Slope
* Bias
* Calculate Best-Precision Scaling

Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

1-241

1 Blocks

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type
0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Binary point.
Slope — Specify slope for the fixed-point data type

270 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.
Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Block Characteristics

Data Types Boolean | bus | double | enumerated | fixed point | half | integer
| single

Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

1-242

Constant

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized

logic.

Tunable Parameters

You can use a tunable parameter in a Constant block intended for HDL code generation. For details,
see “Generate DUT Ports for Tunable Parameters” (HDL Coder).

HDL Architecture

Architecture Parameters Description
default None This implementation emits the value of the Constant
Constant block.

Logic Value

None

By default, this implementation emits the character
'Z' for each bit in the signal. For example, for a 4-
bit signal, the implementation would emit 'ZZzZZ".

{'Value

Y, 'Z2'} If the signal is in a high-impedance state, use this

parameter value. This implementation emits the
character 'Z"' for each bit in the signal. For
example, for a 4-bit signal, the implementation
would emit 'Zz777"'.

{'Value

Y, X'} If the signal is in an unknown state, use this

parameter value. This implementation emits the
character 'X' for each bit in the signal. For
example, for a 4-bit signal, the implementation
would emit 'XXXX'.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

1-243

1 Blocks

1-244

Complex Data Support

This block supports code generation for complex signals.

Restrictions

* The Logic Value implementation does not support the double data type. If you specify this
implementation for a constant value of type doub'le, a code generation error occurs.

* Delay balancing does not support a Constant block that has Sample time set to inf when the
infinite sample time propagates to the device under test (DUT) output. If there is an infinite
sample rate error during HDL code generation, set Sample time to - 1.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Enumerated Constant | Simulink.Parameter | Simulink.BusElement

Topics

“Set Block Parameter Values”

“Specify Bus Properties with Simulink.Bus Object Data Types”
“Specify Initial Conditions for Bus Elements”

“Create Array of Buses from MATLAB Structures”

Coulomb and Viscous Friction

Coulomb and Viscous Friction

Model discontinuity at zero, with linear gain elsewhere

Libraries:
Simulink / Discontinuities
;F 3 HDL Coder / Discontinuities

Description

The Coulomb and Viscous Friction block models Coulomb (static) and viscous (dynamic) friction. The
block models a discontinuity at zero and a linear gain otherwise.

The block output matches the MATLAB result for:
y = sign(x) .* (Gain .* abs(x) + Offset)

where y is the output, x is the input, Gain is the signal gain for nonzero input values, and Offset is
the Coulomb friction.

The block accepts one input and generates one output. The input can be a scalar, vector, or matrix
with real and complex elements.

* For a scalar input, Gain and Offset can have dimensions that differ from the input. The output is
a scalar, vector, or matrix depending on the dimensions of Gain and Offset.

» For a vector or matrix input, Gain and Offset must be scalar or have the same dimensions as the
input. The output is a vector or matrix of the same dimensions as the input.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

The input signal to the model of Coulomb and viscous friction.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

The output signal calculated by applying the friction models to the input.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

1-245

1 Blocks

1-246

Parameters

To edit the parameters for the Coulomb and Viscous Friction block, double-click the block icon.
Coulomb friction value — Static friction offset

[1320] (default) | real values

Specify the offset that applies to all input values.

Programmatic Use

Block Parameter: offset
Type: character vector
Value: real values
Default: '[1 3 2 0]'

Coefficient of viscous friction — Dynamic friction coefficient
1 (default) | real values

Specify the signal gain for nonzero input values.

Programmatic Use
Block Parameter: gain
Type: character vector
Value: real values
Default: '1'

Block Characteristics

Data Types double | fixed point | integer|single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Coulomb and Viscous Friction

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions
HDL code generation does not support complex input.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Dead Zone | Backlash

1-247

1 Blocks

Counter Free-Running

Count up and overflow back to zero after reaching maximum value for specified number of bits

Libraries:
Simulink / Sources
Ak HDL Coder / Sources

Description

The Counter Free-Running block counts up until reaching the maximum value, 2N - 1, where Nbits
is the number of bits. Then the counter overflows to zero and begins counting up again.

After overflow, the counter always initializes to zero. However, if you select the global doubles
override, the Counter Free-Running block does not wrap back to zero.

Note This block does not report wrap on overflow warnings during simulation. To report these
warnings, see the Simulink.restoreDiagnostic reference page. The block does report errors
due to wrap on overflow.

Ports
Output

Port_1 — Count value
scalar

Count value, specified as an unsigned integer of 8 bits, 16 bits, or 32 bits.
Data Types: uint8 | uintl16 | uint32

Parameters
Number of Bits — Number of bits
16 (default) | scalar

Specify the number of bits as a finite, real-valued. When you specify:

+ A positive integer, for example 8, the block counts up to 28 — 1, which is 255.
* An unsigned integer expression, for example uint8(8), the block counts up to uint8(2uint8(®) —
1), which is 254,

Programmatic Use
Block Parameter: NumBits
Type: character vector

1-248

Counter Free-Running

Values: scalar
Default: '16'

Sample time — Interval between samples
-1 (default) | scalar | vector

Specify the time interval between samples as a scalar (sampling period), or a two-element vector
([sampling period, initial offset]). To inherit the sample time, set this parameter to - 1.
For more information, see “Specify Sample Time”.

Programmatic Use

Block Parameter: tsamp
Type: character vector
Values: scalar | vector
Default: '-1'

Block Characteristics

Data Types fixed point | integer
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times. While
the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code. Usually, blocks evolve toward being suitable for
production code. Thus, blocks suitable for production code remain suitable.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

1-249

1 Blocks

1-250

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation

Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Counter Limited | MATLAB Function

Counter Limited

Counter Limited

Count up and wrap back to zero after outputting specified upper limit

Tim Libraries:
4 Simulink / Sources
HDL Coder / Sources

Description

The Counter Limited block counts up until the specified upper limit is reached. Then the counter
wraps back to zero, and restarts counting up. The counter always initializes to zero.

Note This block does not report wrap on overflow warnings during simulation. To report these
warnings, see the Simulink.restoreDiagnostic reference page. The block does report errors
due to wrap on overflow.

Ports
Output

Port_1 — Count value
scalar

Count value, specified as an unsigned integer of 8 bits, 16 bits, or 32 bits. The block uses the smallest
number of bits required to represent the upper limit.

Data Types: uint8 | uintl6 | uint32

Parameters
Upper limit — Upper limit
7 (default) | scalar

Specify the upper limit for the block to count to as a finite, real-valued scalar.

Programmatic Use

Block Parameter: uplimit
Type: character vector
Values: scalar

Default: '7'

Sample time — Interval between samples
-1 (default) | scalar | vector

Specify the time interval between samples as a scalar (sampling period), or a two-element vector
(sampling period, initial offset). To inherit the sample time, set this parameter to - 1. For
more information, see “Specify Sample Time”.

1-251

1 Blocks

Programmatic Use

Block Parameter: tsamp
Type: character vector
Values: scalar | vector
Default: '-1'

Block Characteristics

Data Types Boolean | fixed point | integer
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

* The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation.
In certain cases, you can achieve grouping by configuring the masked subsystem block to execute
as an atomic unit by selecting the Treat as atomic unit option.

* Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times.
While the code is functionally valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production code remain suitable.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

1-252

Counter Limited

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline

Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text

Fixed-Point Conversion

code using Simulink® PLC Coder™.

Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Counter Free-Running

1-253

1 Blocks

Create Diagonal Matrix

Create square diagonal matrix from diagonal elements

Libraries:
D \¢ ak Simulink / Matrix Operations

Description

The Create Diagonal Matrix block populates the diagonal of the M-by-M matrix output with the
elements contained in the length-M vector input D. The elements off the diagonal are zero.

A = diag(D) % Equivalent MATLAB code

Ports
Input

Port_1 — Input signal
vector

Input to convert into a diagonal matrix, specified as an M-element vector.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
Boolean | fixed point

Complex Number Support: Yes

Output

Port_1 — Output signal
matrix

Output specified as an M-by-M matrix, where M is the length of the input vector.

The output is equivalent to:

A = diag(D) % Equivalent MATLAB code

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |

Boolean | fixed point
Complex Number Support: Yes

Block Characteristics

Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough |no

Multidimensional no

Signals

1-254

Create Diagonal Matrix

Variable-Size Signals |no

Zero-Crossing no
Detection

Version History
Introduced before R2006a

R2021b: Create Diagonal Matrix Block Moved to Simulink Matrix Operations Library
Behavior changed in R2021b

The Create Diagonal Matrix block has been moved from the DSP System Toolbox > Math
Functions > Matrices and Linear Algebra > Matrix Operations library to the Simulink >
Matrix Operationslibrary. All existing models continue to work.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on the memcpy or memset function (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Blocks
Extract Diagonal

Functions
diag

1-255

1 Blocks

Cross Product

Cross product of two vectors

Libraries:
cross Simulink / Matrix Operations

Description

The Cross Product block returns the cross product, or vector product, of two 3-by-1 vectors.

Ports
Input

Port_1 — First input vector
3-element vector

First input vector, specified as a 3-element vector.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | fixed point | enumerated | bus

Port_2 — Second input vector
3-element vector

Second input vector, specified as a 3-element vector.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Port_1 — Cross product of input vectors
3-element vector

Cross product of input vectors, returned as a 3-element vector.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Block Characteristics

Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough |yes

Multidimensional no

Signals

Variable-Size Signals |no

1-256

Cross Product

Zero-Crossing
Detection

no

Version History

Introduced in R2021b

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Hermitian Transpose | Identity Matrix | IsSymmetric | IsTriangular | Matrix Square | Transpose

Topics

“Compatible Array Sizes for Basic Operations”

MATLAB Matrix Operations

1-257

1 Blocks

1-258

Dashboard Scope

Trace signals on scope display during simulation

EE Libraries:
Simulink / Dashboard

Description

The Dashboard Scope block plots connected signals during simulation on a scope display. You can use
the Dashboard Scope block with other dashboard blocks to build an interactive dashboard of controls
and indicators for your model. Signals connected to the Dashboard Scope block log to the Simulation
Data Inspector for analysis during or after simulation. The Dashboard Scope block can display signals
of any data type that Simulink supports, including enumerated data types, and up to eight signals
from an array or bus.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting
dashboard blocks in your model, especially when you want to connect multiple blocks at once. If you
only want to connect a single dashboard block, you can also use the Connection table in the block
dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, select a dashboard block to connect and then, on the block tab, click
Connect. In connect mode, when you select one or more signals, a list of signals that are available
for connection appears. Select a signal from the list to connect the signal to the selected dashboard
block. To connect another dashboard block, pause on the block you want to connect and click the
Connect button above it. Then, select one or more signals in the model and choose a signal to
connect.

Dashboard Scope

—4.
Connect

Constant:1
Mu:1
Muac: 1
Product:1

| Double-click to connect
Square:1
Sum1:1
Sum:1

B T s O B

uooooogn

x1 -

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Analyze Signal Data

You can use the subplot menu or the context menu for the Dashboard Scope block to:

* Show or hide data cursors.

* Zoom out by a fixed amount.

* Configure the mouse interaction to pan and select or to zoom in time, in y, or in both time and y.
* Perform a fit-to-view in time, in y, or in both time and y.

To access the subplot menu, select the Dashboard Scope block then click the three dots that appear
when you pause on the plot area.

1-259

1 Blocks

1-260

M Sine Wave:1
1.0 1 ‘ /-‘-\\ */.\.
. -
\ N~ .3
054/ i‘x J7 "*.,
,-“'f \ / \
oq! \ ,r'alf Et.

/ \

lf L1

! 5
0.5 l\

Configure Signal Line Style and Color

You can modify the color and line style for signals connected to a Dashboard Scope block using the
Connection table in the Block Parameters dialog box or the Property Inspector. To modify the

appearance of a connected signal:

1

3
4

Set

Fcn: x
+'| Override style and color
STAMNDARD CUSTOM STYLE

Click the preview of the signal appearance in the Style column of the Connection table.

%

Choose a color from the palette of standard colors or select the Custom tab to specify a custom

color using RGB values between 0 and 255.

Select the line style from the solid, dotted, dashed, and dot-dashed options in the Style column.

Click Set.

When you mark a signal connected to the Dashboard Scope block for signal logging, you can also
configure the signal color and line style using the Instrumentation Properties dialog box. In the

signal color and line style menu for the Dashboard Scope block, the Override style and color option

is selected by default and specifies whether signal appearance options you choose using the
Connection table for the Dashboard Scope block override signal appearance options configured in
the instrumentation properties for the connected signals.

Dashboard Scope

When you connect signals to the Dashboard Scope block using the Block Parameters dialog box, the
connection table shows the default signal color and line style for each signal you connect. As you
select signals to connect, the Connection table updates the style and color for signals that are not
selected to indicate the style and color for the next signal you connect.

et
3

Configure Complex Signal Format

When you connect a complex signal to the Dashboard Scope block, you can configure how the signal
is displayed by specifying the Complex Format property for the signal:

Mark the complex signal for signal logging.

Right-click the logging badge for the complex signal and select Properties.

Specify the Complex Format.

Click OK.

A W N R

When you specify the Complex Format for a signal as Real-Imaginary or Magnitude-Phase, the
Dashboard Scope block displays both components of the signal. The real or magnitude component is
displayed using the color indicated in the Connection table. The imaginary or phase component is
displayed using a different shade of the color indicated in the Connection table.

Limitations

* You cannot use the Connection table to connect a dashboard block to a block that is commented
out. When you connect a dashboard block to a commented block using connect mode, the
dashboard block does not display the connected value until the you uncomment the block.

» The toolstrip does not support dashboard blocks that are in a panel.

» Dashboard blocks cannot connect to signals inside referenced models.

* When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.

* Dashboard blocks do not support rapid accelerator simulation.

* You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

* You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

1-261

1 Blocks

1-262

* Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters
Connection Table

Use the Connection table to select one or more signals to display and to configure the line style and
color.

Connection — Signals to connect and display
signal connection options

Populate the Connection table by selecting signals in the model. To connect a signal, select the
check box next to the signal you want to connect, then click Apply.

Tips
You can connect signals to a Dashboard Scope block during simulation.

Programmatic Use

To programmatically specify one or more signals to connect to the Dashboard Scope block, use a cell
array of Simulink.HMI.SignalSpecification objects.

Block Parameter: Binding

Type: cell array of Simulink.HMI.SignalSpecification objects

Default: []

Line Style — Line style and color for connected signals
line style and color options

You can configure the line style and color for signals connected to a Dashboard Scope block using the
Connection table. To change the line style or color for a signal, in the Style column that corresponds
to the signal row, click the preview of the signal appearance. When Override style and color is
cleared, the Style column displays the word auto instead of a preview of the line style. For more
information, see “Configure Signal Line Style and Color” on page 1-260.

Programmatic Use

To programmatically configure the line style and color for connected signals, use the Colors
parameter. Specify the value for the Colors parameter as an array of structures where each
structure specifies the style override setting, line style, and line color for one signal. Settings
specified using the Colors parameter apply to the signal at the same index in the value for the
Binding parameter.

Specify the line style and color for each signal as a structure with these fields:
* Auto — Style override setting specified by:

* "on" — Line style and color automatically set by the software
+ "off" — Line style and color specified by Color and LineStyle
* Color —1-by-3 [r g b] vector with values between 0 and 1.
* LineStyle — Character vector that specifies one of these line style options:

Dashboard Scope

e Solid: '-"

* Dashed: '—'

* Dotted: ':'

* Dash-dotted: '-."

sigColorsl.Color = ;

sigColorsl.LineStyle = ;
sigColorsl.Auto = "on";
sigColors2.Color = [0 0 1];

sigColors2.LineStyle = '--"';
sigColors2.Auto = "off";
sigColors = [sigColorsl sigColors2];

set param(blockPath, 'Colors',sigColors);

Block Parameter: Colors
Type: array of structures

Main

Time Span — Time axis span

auto (default) | scalar

A finite, real, double, scalar value that sets the time span of the plot.

When Time Span is set to auto, the block sets its time span to the simulation stop time.
Tips

When you set the Time Span to a value that is less than the duration of the simulation, use the
Update Mode parameter to control whether the display wraps or scrolls when the simulation time
exceeds the specified time span.

Programmatic Use

Block Parameter: TimeSpan
Type: string | character array
Values: 'auto' or numeric value
Default: 'auto’

Update Mode — Display update behavior
Wrap (default) | Scroll
How the display updates during simulation, specified as Wrap or Scroll.

* Wrap — Display wraps to show incoming data after simulation time reaches end of time span.
* Scroll — Display scrolls to show incoming data after simulation time reaches end of time span.

Programmatic Use

Block Parameter: UpdateMode
Type: string | character array
Values: 'Wrap' | 'Scroll’
Default: 'Wrap'

1-263

1 Blocks

1-264

Min — Vertical axis minimum
-3 (default) | scalar

A finite, real, double, scalar value that sets the minimum of the vertical axis.

Tips

To maintain the minimum and maximum vertical axis limits set by Min and Max after the simulation
stops, clear Scale axes limits at stop.

Programmatic Use

To specify the Min parameter for the Dashboard Scope block programmatically, create a 1-by-2 vector
that contains the minimum y-axis value and maximum y-axis value, in that order.

Block Parameter: YLimits

Type: 1x2 vector

Default: [-3 3]

Max — Vertical axis maximum
3 (default) | scalar

A finite, real, double, scalar value that sets the maximum of the vertical axis.

Tips

To maintain the minimum and maximum vertical axis limits set by Min and Max after the simulation
stops, clear Scale axes limits at stop.

Programmatic Use

To specify the Max parameter for the Dashboard Scope block programmatically, create a 1-by-2 vector
that contains the minimum y-axis value and maximum y-axis value, in that order.

Block Parameter: YLimits

Type: 1x2 vector

Default: [-3 3]

Normalize y-axis limits — Option to normalize y-axis
off (default) | on

When enabled, the connected signal data is normalized to display on a y-axis range of [0, 1].

Programmatic Use

Block Parameter: NormalizeYAxis
Type: string | character vector
Values: 'on' | 'off'

Default: 'off'

Scale axes limits at stop — Option to perform fit-to-view upon simulation stop
on (default) | of f

When enabled, performs a fit-to-view operation on the data displayed in the plot when the simulation
stops.

Dashboard Scope

Programmatic Use

Block Parameter: ScaleAtStop
Type: string | character vector
Values: 'on' | 'off'

Default: 'on’

Show "Double-click to connect" message — Connection instructions visibility
on (default) | of f

When enabled, shows instructional text if the block is not connected. When the block is not
connected, you can specify this parameter as of f to hide the text.

Programmatic Use

Block Parameter: ShowInitialText
Type: string | character vector

Values: 'on' | 'off'

Default: 'on'

Display

Ticks — Axes tick positions

Outside (default) | Inside | None

Axes tick positions, specified as Qutside, Inside, or None.

* Qutside — Ticks are drawn on the outside of the x- and y-axes.
* Inside — Ticks are drawn on the inside of the x- and y-axes.

* None — No ticks are shown on the x- or y-axes.

Programmatic Use

Block Parameter: TicksPosition

Type: string | character vector

Values: 'Outside’' | 'Inside’' | 'None'
Default: 'Outside’

Tick Labels — Tick label visibility
A1l (default) | T-Axis | Y-Axis | None
Visibility of tick labels on the x- and y-axes.

* ALl — Ticks labels are shown on the x- and y-axes.
* T-Axis — Tick labels are shown on the x-axis only.
* Y-Axis — Tick labels are shown on the y-axis only.
* None — No tick labels are shown on the x- or y-axis.
Programmatic Use

Block Parameter: TickLabels

Type: string | character vector

Values: 'Al1l"' | 'T-Axis' | 'Y-Axis' | 'None'
Default: 'All'

1-265

1 Blocks

1-266

Legend — Legend position
Top (default) | Right | Inside top | Inside right | Hide

You can position the legend at the top of the plot inside or outside the plot area or on the right of the
plot inside or outside the plot area. You can also hide the legend. The legend shows the color chosen
for each connected signal next to the signal name.

Programmatic Use

Block Parameter: LegendPosition

Type: string | character vector

Values: 'Top' | 'Right' | 'InsideTop' | 'InsideRight | 'Hide'
Default: 'Top'

Horizontal — Horizontal grid line visibility
on (default) | of f

Visibility of horizontal grid lines.

* on — Horizontal grid lines are visible on Dashboard Scope.
+ off — Horizontal grid lines are not shown on Dashboard Scope.

Programmatic Use

Block Parameter: Grid

Type: string | character vector

Values: 'All' | 'Horizontal' | 'Vertical' | 'None'
Default: 'All’

Vertical — Vertical grid line visibility
on (default) | of f
Visibility of vertical grid lines.

* on — Vertical grid lines are visible on Dashboard Scope.
» off — Vertical grid lines are not shown on Dashboard Scope.

Programmatic Use

Block Parameter: Grid

Type: string | character vector

Values: 'All' | 'Horizontal' | 'Vertical' | 'None'
Default: 'All’

Border — Plot border visibility
on (default) | of f

Plot border visibility.

* on — Plot border is shown on Dashboard Scope.
* off — Plot border is not shown on Dashboard Scope.

Dashboard Scope

Programmatic Use

Block Parameter: Border
Type: string | character vector
Values: 'on' | 'off'
Default: 'on’

Markers — Option to show signal data markers
off (default) | on

When enabled, data markers are shown for signals plotted on the Dashboard Scope block.

Programmatic Use

Block Parameter: Markers
Type: string | character vector
Values: 'on' | 'off'
Default: 'off'

Style

Foreground Color — Grid lines color
[r g b] vector

Select the color for the grid lines from a palette of standard colors or specify a custom color using
RGB values between 0 and 255.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.

Block Parameter: ForegroundColor

Type: string | character vector

Values: [r g b] vector

Background Color — Plot area color
[r g b] vector

Select the color for the plot area from a palette of standard colors or specify a custom color using RGB
values between 0 and 255.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.

Block Parameter: BackgroundColor

Type: string | character vector

Values: [r g b] vector

Font Color — Ticks and tick labels color
[r g b] vector

Select the color for the ticks and tick labels from a palette of standard colors or specify a custom
color using RGB values between 0 and 255.

1-267

1 Blocks

1-268

Programmatic Use

Specify the FontColor parameter for the block as a 1-by-3 [r g b] vector with values between 0
and 1.

Block Parameter: FontColor
Type: [r g b] vector

Block Characteristics

Data Types Boolean | bus | double | enumerated | fixed point | half | integer
| single | string

Direct Feedthrough |no

Multidimensional yes
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced in R2015a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also

Topics
“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

Data Store Memory

Data Store Memory

Define data store

Libraries:
Simulink / Signal Routing

Description

The Data Store Memory block defines and initializes a named shared data store, which is a memory
region usable by Data Store Read and Data Store Write blocks that specify the same data store name.

The location of the Data Store Memory block that defines a data store determines which Data Store
Read and Data Store Write blocks can access the data store:

» Ifthe Data Store Memory block is in the top-level system, Data Store Read and Data Store Write
blocks anywhere in the model can access the data store.

+ Ifthe Data Store Memory block is in a subsystem, Data Store Read and Data Store Write blocks in
the same subsystem or in any subsystem below it in the model hierarchy can access the data
store.

Data Store Read or Data Store Write blocks cannot access a Data Store Memory block that is either
in a model that contains a Model block or in a referenced model.

Do not include a Data Store Memory block in a For Each subsystem.

Obtaining correct results from data stores requires ensuring that data store reads and writes occur in
the expected order. For details, see:

* “Order Data Store Access”

* “Data Store Diagnostics”
* “Log Data Stores”

You can use Simulink.Signal objects in addition to, or instead of, Data Store Memory blocks to
define data stores. A data store defined in the base workspace with a signal object is a global data
store. Global data stores are accessible to every model, including all referenced models. See “Data
Stores” for more information.

You can select a Data Store Read, Data Store Write, or Data Store Memory block to highlight blocks
related to it. To show a related block in an open diagram or new tab, pause on the ellipsis that

appears after selection. Then, select Related Blocks i from the action bar. When multiple blocks
correspond to the selected block, a list of related blocks opens. You can filter the list of related blocks
by entering a search term in the text box. After you select a related block from the list, window focus
goes to the open diagram or new tab that shows the related block.

1-269

1 Blocks

Parameters

Main

Data store name — Name for the data store
A (default) | character vector | string

Specify a name for the data store you are defining with this block. Data Store Read and Data Store
Write blocks with the same name can read from, and write to, the data store initialized by this block.
The name can represent a Data Store Memory block or a signal object defined to be a data store.

Programmatic Use

Block Parameter: DataStoreName
Type: character vector

Values: 'A' |

Default: 'A’

Rename All — Rename this data store throughout the model
button

Rename this data store everywhere the Data Store Read and Data Store Write blocks use it in a
model.

Limitations
You cannot use Rename All to rename a data store if you:

* UseaSimulink.Signal object in a workspace to control the code generated for the data store
* UseaSimulink.Signal object instead of a Data Store Memory block to define the data store

You must instead rename the corresponding Simulink.Signal object from Model Explorer. For an
example, see “Rename Data Store Defined by Signal Object”.

Corresponding Data Store Read/Write blocks — Path to connected Data Store Read/Write blocks
block path

List all the Data Store Read and Data Store Write blocks that have the same data store name as the
current block, and that are in the current system or in any subsystem below it in the model hierarchy.
Clicking a block path displays and highlights that block in your model.

Signal Attributes

Initial value — Initial value of data store

0 (default) | scalar | vector | matrix | N-D array

Specify the initial value or values of the data store. The Minimum parameter specifies the minimum
value for this parameter, and the Maximum parameter specifies the maximum value.

If you specify a nonscalar value and set Dimensions to -1 (the default), the data store has the same

dimensions as the array. Data that you write to the data store (by using Data Store Write blocks) must
have these dimensions.

1-270

Data Store Memory

If you set the Dimensions parameter to a value other than -1, the initial value dimensions must
match the dimensions that you specify, unless the initial value is a scalar or a MATLAB structure. If
you specify a scalar, each element of the data store uses the scalar as the initial value. Use this
technique to apply the same initial value (the scalar that you specify) to each element without
manually matching the dimensions of the initial value with the dimensions of the data store.

To use this block to initialize a nonvirtual bus signal, specify the initial value as a MATLAB structure
and set the model configuration parameter “Underspecified initialization detection” to Simplified.
For more information about initializing nonvirtual bus signals using structures, see “Specify Initial
Conditions for Bus Elements”.

Programmatic Use

Block Parameter: InitialValue

Type: character vector

Values: scalar | vector | matrix | N-D array
Default: '0'

Minimum — Minimum output value for range checking
[1 (default) | scalar

Specify the minimum value that the block should output. The default value is [] (unspecified). This
number must be a finite real double scalar value.

Note If you specify a bus object as the data type for this block, do not set the minimum value for bus
data on the block. Simulink ignores this setting. Instead, set the minimum values for bus elements of

the bus object specified as the data type. For information on the Minimum property of a bus element,

see Simulink.BusElement.

Simulink uses the minimum value to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”).
* Simulation range checking (see “Specify Signal Ranges”).
* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Programmatic Use

Block Parameter: OutMin
Type: character vector
Values: scalar

Default: '[]'

Maximum — Maximum output value for range checking
[] (default) | scalar
Specify the maximum value that the block should output. The default value is [] (unspecified). This

number must be a finite real double scalar value.

1-271

1 Blocks

1-272

Note If you specify a bus object as the data type for this block, do not set the maximum value for
bus data on the block. Simulink ignores this setting. Instead, set the maximum values for bus
elements of the bus object specified as the data type. For information on the Maximum property of a
bus element, see Simulink.BusElement.

Simulink uses the maximum value to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”).

* Simulation range checking (see “Specify Signal Ranges”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.

For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Programmatic Use

Block Parameter: OutMax
Type: character vector
Values: scalar

Default: '[]

Data type — Output data type

Inherit: auto (default) | double | single | half |int8 | uint8 | int16 | uintl6 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16,0) | fixdt(1,16,270,0) | string | Enum:
<class name> | Simulink.ImageType(480,640,3)

Specify the output data type. You can set it to:

* Arule that inherits a data type (for example, Inherit: auto).
* The name of a built-in data type (for example, single).
* The name of a data type object (for example, a Simulink.NumericType object).

* An expression that evaluates to a data type (for example, fixdt(1,16,0)). Do not specify a bus
object as the data type in an expression; use Bus: <object name> to specify a bus data type.

* Ifyou have Computer Vision Toolbox™, use the constructor for the Simulink.ImageType object
and specify the properties to describe the image. By default, the data type uses the
Simulink.ImageType (480,640, 3) expression that represents the rows, columns, and channels
of the image respectively.

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “% |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector

Values: 'Inherit: auto' | 'double' | ‘'single' | ‘'half' | 'int8' | 'uint8’
‘intl6' | ‘'uintl6' | 'int32' | 'uint32' | 'int64' | ‘'uint64' | 'boolean’' |
'fixdt(1,16,0)"' | 'fixdt(1,16,270,0)' | 'string' | 'Enum: <class name>' |

'Simulink.ImageType(480,640,3)"'

Data Store Memory

Default: 'Inherit: auto'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the QOutput data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector

Values: 'off' | 'on'
Default: 'off'

Dimensions (-1 to infer from Initial value) — Dimensions of data store
-1 (default) | scalar | vector | matrix

Dimensions of the data store. The default value, -1, enables you to set the dimensions of the data
store by using the Initial value parameter. However, in this case, you cannot use scalar expansion
with the initial value. You must specify the initial value by using an array that has the dimensions that
you want.

If you use a value other than -1, specify the same dimensions as the dimensions of the Initial value
parameter, unless you specify the initial value as a scalar (for scalar expansion) or a MATLAB
structure. If the data store represents an array of buses, and if you use a MATLAB structure for the
initial value, you can specify dimensions to initialize the array of buses with this structure.

Programmatic Use

Block Parameter: Dimensions
Type: character vector

Values: scalar | vector | matrix
Default: '-1'

Interpret vector parameters as 1-D — Interpret vectors as 1-D

on (default) | of f
Specify that the data store interpret vector initial values as one-dimensional.

By default, MATLAB represents vector data as matrices, which have two dimensions. For example,
MATLAB represents the vector [1 2 3] as a 1-by-3 matrix.

When you select this parameter, the data store represents vector data by using only one dimension
instead of two. For example, if you specify an initial value of [1 2 3], the data store stores a one-
dimensional vector with three elements.

For more information, see “Determine the Output Dimensions of Source Blocks”.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector

1-273

1 Blocks

Values: 'off' | 'on'
Default: 'on'

Signal type — Complexity of data store values
auto (default) | real | complex

Specify the numeric type, real or complex, of the values in the data store.

Programmatic Use

Block Parameter: SignalType

Type: character vector

Values: 'auto' | 'real' | 'complex'
Default: 'auto’

Share across model instances — Allow Model blocks to read from the same data store

off (default) | on

In a single model reference hierarchy, when you use multiple Model blocks to refer to a model that
contains a Data Store Memory block, by default, each instance of the referenced model (each Model
block) reads from and writes to a separate copy of the data store. When you select Share across
model instances, instead of interacting with a separate copy, all of the instances read from and
write to the same data store.

When you set the model configuration parameter Code interface packaging to Reusable
function to generate reentrant code from a model (Simulink Coder), a data store with Share
across model instances selected appears in the code as a global symbol that the generated entry-
point functions access directly. For example, a global symbol is a global variable or a field of a global
structure variable. Therefore, each call that your code makes to the entry-point functions (each
instance of the model) shares the data.

For an example, see “Share Data Store Between Instances of a Reusable Algorithm” on page 13-348.
For more information, see “Share Data Among Referenced Model Instances”.

Programmatic Use

Block Parameter: ShareAcrossModelInstances
Type: character vector

Values: 'off' | 'on'

Default: 'of '

Data store name must resolve to Simulink signal object — Require data store name resolve to
Simulink signal object

off (default) | on

Specify that Simulink software, when compiling the model, searches the model and base workspace
for a Simulink.Signal object having the same name, as described in “Symbol Resolution”. If
Simulink does not find such an object, the compilation stops with an error. Otherwise, Simulink
compares the attributes of the signal object to the corresponding attributes of the Data Store Memory
block. If the block and the object attributes are inconsistent, Simulink halts model compilation and
displays an error.

Programmatic Use
Block Parameter: StateMustResolveToSignalObject

1-274

Data Store Memory

Type: character vector
Values: 'off' | 'on'
Default: 'off'

Diagnostics

Detect Read Before Write — Action when model attempts to read data before writing in current time
step

warning (default) | none | error

Select the diagnostic action to take if the model attempts to read data from a data store to which it
has not written data in this time step. See also the “Detect read before write” diagnostic in the Data
Store Memory block section of the Model Configuration Parameters > Diagnostics > Data
Validity pane.

* None — Produce no response.

* Warning — Display a warning and continue the simulation.
* Error — Terminate the simulation and display an error.
Programmatic Use

Block Parameter: ReadBeforeWriteMsg

Type: character vector

Values: 'none' | 'warning' | ‘'error’
Default: 'warning'

Detect Write After Read — Action when block attempts to write after reading in same time step
warning (default) | none | error

Select the diagnostic action to take if the model attempts to write data to the data store after
previously reading data from it in the current time step. See also the “Detect write after read”
diagnostic in the Data Store Memory block section of the Model Configuration Parameters >
Diagnostics > Data Validity pane.

* None — Produce no response.

* Warning — Display a warning and continue the simulation.
* Error — Terminate the simulation and display an error.
Programmatic Use

Block Parameter: WriteAfterReadMsg

Type: character vector

Values: 'none' | 'warning' | 'error'
Default: 'warning'

Detect Write After Write — Action when model writes twice in same time step
warning (default) | none | error

Select the diagnostic action to take if the model attempts to write data to the data store twice in
succession in the current time step. See also the “Detect write after write” diagnostic in the Data
Store Memory block section of the Model Configuration Parameters > Diagnostics > Data
Validity pane.

1-275

1 Blocks

* None — Produce no response.
* Warning — Display a warning and continue the simulation.
* Error — Terminate the simulation and display an error.

Programmatic Use

Block Parameter: WriteAfterWriteMsg
Type: character vector

Values: 'none' | 'warning' | ‘'error'
Default: 'warning'

Logging
Log data store data — Log data store data
off (default) | on

Select this option to save the values of this signal to the MATLAB workspace during simulation.

Programmatic Use

Block Parameter: Datalogging
Type: character vector

Values: 'off' | 'on'

Default: 'off"'

Logging name — Name associated with logged signal data
Use data store name (default) | Custom

Use this pair of controls, consisting of a list box and an edit field, to specify the name associated with
logged signal data.

Simulink uses the signal name as its logging name by default. To specify a custom logging name,
select Custom from the list box and enter the custom name in the adjacent edit field.

Programmatic Use

Block Parameter: DatalLoggingNameMode
Type: character vector

Values: 'SignalName' | 'Custom’
Default: '

Note If you set DataLoggingNameMode to Custom, you must specify the name associated with
logged signal data using the DataLoggingName parameter.

Block Parameter: DatalLoggingName

Type: character vector

Values: character vector

Default: '

Limit data points to last — Discard all but the last N data points

5000 | non-zero integer

1-276

Data Store Memory

Discard all but the last N data points, where N is the number that you enter in the adjacent edit field.
For more information, see “Log Data Stores”.

Programmatic Use

Block Parameter: DatalLoggingMaxPoints
Type: character vector

Values: nonzero integer

Default: '5000'

Decimation — Log every Nth data point
2 (default) | integer

Log every Nth data point, where N is the number that you enter in the adjacent edit field. For
example, suppose that your model uses a fixed-step solver with a step size of 0. 1 s. If you select this
option and accept the default decimation value (2), Simulink records data points for this signal at
times 0.0, 0.2, 0.4, and so on. For more information, see “Log Data Stores”.

Programmatic Use

Block Parameter: DatalLoggingLimitDataPoints
Type: character vector

Values: non-zero integer

Default: '2'

Block Characteristics

Data Types Boolean | bus | double | enumerated | fixed point | half | integer
| single | string

Direct Feedthrough |yes

Multidimensional yes
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced before R2006a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

To generate PLC code for a model that uses a Data Store Memory block, first define a

Simulink.Signal in the base workspace. Then in the Signal Attributes tab of the block
parameters, set the data store name to resolve to that of the Simulink.Signal object.

1-277

1 Blocks

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Store Read | Data Store Write

Topics

“Retrieve Data From Data Store Memory Blocks”

“Data Stores”

“Choose How to Store Global Data”

“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)

“Organize Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder)
“Access Data Stores with Simulink Blocks”

“Log Data Stores”

1-278

Data Store Read

Data Store Read

Read data from data store

l

Libraries:
Simulink / Signal Routing

Description

The Data Store Read block copies data from the named data store or a selected portion thereof to its
output. More than one Data Store Read block can read from the same data store.

The data store from which the data is read is determined by the location of the Data Store Memory
block or signal object that defines the data store. For more information, see “Data Stores” and Data
Store Memory.

Obtaining correct results from data stores requires ensuring that data store reads and writes occur in
the expected order. See “Order Data Store Access” and “Data Store Diagnostics” for details.

You can select a Data Store Read, Data Store Write, or Data Store Memory block to highlight blocks
related to it. To show a related block in an open diagram or new tab, pause on the ellipsis that

appears after selection. Then, select Related Blocks i from the action bar. When multiple blocks
correspond to the selected block, a list of related blocks opens. You can filter the list of related blocks
by entering a search term in the text box. After you select a related block from the list, window focus
goes to the open diagram or new tab that shows the related block.

Ports
Input

IdxN — Nth index signal
scalar | vector

External port specifying an index for the selection of the corresponding data store subelements.

Dependencies

To enable an external index port, on the Element Selection tab, select Enable indexing. Then, in
the Nth row of the Index Option table, set Index Option to Index vector (port) or Starting
index (port).

Data Types: int8 | int16 | int32 | uint8 | uint1l6
Output

Port_1 — Values from specified data store
scalar | vector | matrix | N-D array

1-279

1 Blocks

Values from the specified data store, output with the same data type and number of dimensions as in
the data store. The block supports both real and complex signals. You can choose whether to output
the entire data store or only selected elements.

You can use arrays of buses with a Data Store Read block. For details about defining and using an
array of buses, see “Group Nonvirtual Buses in Arrays of Buses”.

Data Types: single | double | half | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Parameters

Parameters

Data store name — Name of data store from which block reads
A (default) | name of data store

Specify the name of the data store from which this block reads data. The adjacent list provides the
names of Data Store Memory blocks that exist at the same level in the model as the Data Store Read
block or at higher levels. The list also includes all Simulink.Signal objects in the base and model
workspaces. To change the name, select a name from the list or enter the name directly in the edit
field.

When compiling a model containing this block, Simulink searches the model upwards from the level
of the block for a Data Store Memory block having the specified data store name. If Simulink does not
find such a block, it searches the model workspace and the MATLAB workspace for a
Simulink.Signal object having the same name. If Simulink finds the signal object, it creates a
hidden Data Store Memory block at the root level of the model with the properties specified by the
signal object and an initial value set to an array of zeros. The dimensions of that array are inherited
from the Dimensions property of the signal object.

If Simulink finds neither the Data Store Memory block nor the signal object, it halts the compilation
and displays an error. See “Symbol Resolution” for more information about the search path.

Programmatic Use

Block Parameter: DataStoreName
Type: character vector

Values: data store name

Default: 'A’

Data store memory block — Data Store Memory block name
block path

This parameter is read-only.
This field lists the Data Store Memory block that initialized the store from which this block reads.

Corresponding Data Store Write blocks — List of corresponding Data Store Write blocks
block path

This parameter is read-only.

1-280

Data Store Read

This field lists the path to all Data Store Write blocks with the same data store name as this block that
are in the same (sub)system or in any subsystem below it in the model hierarchy. Click any entry in
this list to highlight the corresponding block in your model.

Sample time — Sample time
-1 (default) | scalar | vector

The sample time, which controls when the block reads from the data store. A value of -1 indicates
that the sample time is inherited. See “Specify Sample Time” for more information.

Programmatic Use

Block Parameter: SampleTime
Type: character vector

Values: scalar | vector

Default: '-1'

Element Selection

Elements in the array (Signals in the bus) — Elements in associated data store
character vector (no default)

List of elements in the associated data store. For data stores containing arrays, you can read the
whole data store, or you can specify one or more elements of the data store. For data stores with a
bus data type, you can expand the tree to view and select the bus elements. The list displays the
maximum dimensions for each element in parentheses.

If Enable indexing is not selected, select an element and use one of the following approaches:

* Click Select>> to display that element and all its subelements in the Selected element(s) list.

* Use the Specify element(s) to select edit box to specify the subelements that you want to select
for reading. Then click Select>>.

To select multiple elements, repeat the above procedure for each element.

Alternatively, you can select Enable indexing, then select a single element and specify the
subelements dynamically using the Index Option parameter.

To refresh the display and reflect modifications to the array or bus used in the data store, click
Refresh.

Dependencies

The prompt for this section (Elements in the array or Signals in the bus) depends on the type of
data in the data store.

Programmatic Use

Block Parameter: DataStoreElements

Type: character vector

Values: pound-delimited list of elements (See “Specification using the command line”.)
Default: '’

Specify element(s) to select — MATLAB expression defining element to select
character vector (no default)

1-281

1 Blocks

1-282

Enter a MATLAB expression to define a specific element that you want to read, then click Select>>
to add the element to the Selected elements(s) table. Repeat to select additional elements.

For example, for a data store named DSM that has maximum dimensions of [3,5], you could enter
expressions such as DSM(2,4) or DSM([1 3], 2) in the edit box. See “Accessing Specific Bus and
Matrix Elements”.

To apply the element selection, click OK or Apply.

Dependencies

The Specify element(s) to select edit box appears only if Enable indexing is not selected.

Programmatic Use

Block Parameter: DataStoreElements

Type: character vector

Values: pound-delimited list of elements (See “Specification using the command line”.)
Default: '’

Selected element(s) — List of selected elements

character vector (no default)

Elements that you select from the data store. The Data Store Read block icon displays an output port
for each element that you specify.

To change the order of bus or matrix elements in the list, select the element in the list and click Up or
Down. Changing the order of the elements in the list changes the order of the ports. To remove an
element, click Remove.

Dependencies

The Selected element(s) table appears only if Enable indexing is not selected.

Programmatic Use

Block Parameter: DataStoreElements

Type: character vector

Values: pound-delimited list of elements (See “Specification using the command line”.)
Default: '’

Enable indexing — Enable indexing to specify subelements of data store element to read
'off' (default) | 'on'

Select this parameter to enable indexing similar to that used by the Selector block, whereby you can
dynamically specify indices of subelements to read by using one or more index input ports, as well as
specifying indices by using the block dialog. A Data Store Read block can read from only a single
element of a data store (that is, a single signal in a bus) when this parameter is selected. To read from
multiple elements of a data store using dynamic indexing, use multiple Data Store Read blocks.

Clear this parameter to disable Selector block-style indexing. You can select multiple data store
elements to read, but you can specify which subelements to read only by using the block dialog.

Note Do not select Enable indexing if the associated data store contains only a single, scalar
element.

Data Store Read

Programmatic Use

Block Parameter: EnableIndexing
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Number of dimensions — Number of dimensions of data store element
1 (default) | positive integer

Number of dimensions of selected data store element. You must explicitly indicate this number.

Dependencies

This parameter is enabled only if Enable indexing is selected.

Programmatic Use

Block Parameter: NumberOfDimensions
Type: character vector

Values: positive integer

Default: '1'

Index mode — Index mode
One-based (default) | Zero-based

Select the indexing mode. If One-based is selected, an index of 1 specifies the first element of the
input vector. If Zero-based is selected, an index of 0 specifies the first element of the input vector.

Dependencies

This parameter is enabled only if Enable indexing is selected.

Programmatic Use

Parameter: IndexMode

Type: character vector

Values: 'Zero-based' | 'One-based'
Default: 'One-based'’

Index Option — Index method for subelements

Index vector (dialog) (default) | Select all | Index vector (port) |Starting index
(dialog) | Starting index (port)

Define, by dimension, how the subelements of the selected data store element are to be indexed.
From the list, select:

Menu Item Action
Select all All subelements are read.
Index vector (dialog) Enables the Index column. Enter a vector

containing the indices of subelements to be read.

Index vector (port) The relevant index port defines the indices of
subelements to be read.

1-283

1 Blocks

Menu ltem Action

Starting index (dialog) Enables the Index and Output Size columns.
Enter the starting index and size of the range of
subelements to be read.

Starting index (port) Enables the Output Size column. The relevant
index port defines the starting index of the range
of elements to be read. Enter the size of the
range.

The Index and Output Size columns are displayed as relevant.

Dependencies

This parameter is enabled only if Enable indexing is selected.

Programmatic Use

Parameter: IndexOptionArray

Type: character vector

Values: 'Select all' | 'Index vector (dialog)' | 'Index vector (port)'| 'Starting
index (dialog)' | 'Starting index (port)'

Default: 'Index vector (dialog)'

Index — Indices or starting index of subelements
1 (default) | integer | vector of integers

If the Index Option is Index vector (dialog), enter a vector containing the indices of each
subelement to read.

If the Index Option is Starting index (dialog), enter the starting index of the range of
subelements to read.

Dependencies

This parameter is enabled only if Enable indexing is selected and the Index Option for the
dimension is Index vector (dialog) or Starting index (dialog).

Programmatic Use

Parameter: IndexParamArray
Type: character vector

Values: cell array

Default: '{ }'

Output Size — Size of range of subelements to read
1 (default) | integer

If the Index Option is Starting index (dialog) or Starting index (port), enter the size of
the range of subelements to read.

Dependencies

This parameter is enabled only if Enable indexing is selected and the Index Option for the
dimension is Starting index (dialog) or Starting index (port).

1-284

Data Store Read

Programmatic Use

Block Parameter: OutputSizeArray
Type: character vector

Values: cell array

Default: '{ }'

Block Characteristics

Data Types Boolean | bus | double | enumerated | fixed point | half | integer
| single | string

Direct Feedthrough |no

Multidimensional yes
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Store Memory | Data Store Write

Topics

“Data Stores”

“Rename Data Stores”

“Order Data Store Access”

“Access Data Stores with Simulink Blocks”
“Data Store Diagnostics”

1-285

1 Blocks

1-286

Data Store Write

Write data to data store

Libraries:
Simulink / Signal Routing

Description

The Data Store Write block copies the value at its input to the named data store. Each write operation
performed by a Data Store Write block writes over the data store or a selected portion thereof and
replaces the previous contents.

The data store to which this block writes is determined by the location of the Data Store Memory
block or signal object that defines the data store. For more information, see “Data Stores” and Data
Store Memory. The size of the data store is set by the signal object or the Data Store Memory block
that defines and initializes the data store. Each Data Store Write block that writes to that data store
can write up to the amount of data in the data store.

More than one Data Store Write block can write to the same data store. However, if two Data Store
Write blocks attempt to write to the same data store during the same simulation step, results are
unpredictable.

Obtaining correct results from data stores requires ensuring that data store reads and writes occur in
the expected order. For details, see “Order Data Store Access” and “Data Store Diagnostics”.

You can log the values of a local or global data store data variable for all the steps in a simulation. For
details, see “Log Data Stores”.

You can select a Data Store Read, Data Store Write, or Data Store Memory block to highlight blocks
related to it. To show a related block in an open diagram or new tab, pause on the ellipsis that

appears after selection. Then, select Related Blocks i from the action bar. When multiple blocks
correspond to the selected block, a list of related blocks opens. You can filter the list of related blocks
by entering a search term in the text box. After you select a related block from the list, window focus
goes to the open diagram or new tab that shows the related block.

Ports
Input

Port_1 — Values to write to data store
scalar | vector | matrix | N-D array

Values to write to the specified data store. The Data Store Write block accepts a real or complex
signal.

Data Store Write

You can use an array of buses with a Data Store Write block. For details about defining and using an
array of buses, see “Group Nonvirtual Buses in Arrays of Buses”.

To assign a subset of the bus or matrix elements to the associated data store, use the Element
Assignment pane. The Data Store Write block icon reflects the elements that you specify. For details,
see “Accessing Specific Bus and Matrix Elements”.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

IdxN — Nth index signal
scalar | vector

External port specifying an index for the assignment of the corresponding data store subelements.

Dependencies

To enable an external index port, on the Element Assignment tab, select Enable indexing. Then, in
the Nth row of the Index Option table, set Index Option to Index vector (port) or Starting
index (port).

Data Types: int8 | int16 | int32 | uint8 | uintl6

Parameters
Parameters

Data store name — Name of data store to which block writes

A (default) | name of data store

Specify the name of the data store to which this block writes data. The adjacent list provides the
names of Data Store Memory blocks that exist at the same level in the model as the Data Store Write
block or at higher levels. The list also includes all Simulink.Signal objects in the base and model
workspaces. To change the name, select a name from the list or enter the name directly in the edit
field.

When compiling a model containing this block, Simulink searches the model upwards from the level
of the block for a Data Store Memory block having the specified data store name. If Simulink does not
find such a block, it searches the model workspace and the MATLAB workspace for a
Simulink.Signal object having the same name. If Simulink finds a signal object, it creates a hidden
Data Store Memory block at the root level of the model with the properties specified by the signal
object and an initial value set to an array of zeros. The dimensions of that array are inherited from
the Dimensions property of the signal object.

If Simulink finds neither the Data Store Memory block nor the signal object, it halts the compilation
and displays an error. See “Symbol Resolution” for more information about the search path.

Programmatic Use

Block Parameter: DataStoreName
Type: character vector

Values: data store name

Default: 'A'

Data store memory block — Data Store Memory block nhame
block path

1-287

1 Blocks

1-288

This parameter is read-only.
This field lists the Data Store Memory block that initialized the store to which this block writes.

Corresponding Data Store Read blocks — List of corresponding Data Store Read blocks
block path

This parameter is read-only.

This field lists the path to all Data Store Read blocks with the same data store name as this block that
are in the same (sub)system or in any subsystem below it in the model hierarchy. Click any entry in
this list to highlight the corresponding block in your model.

Sample time — Sample time
-1 (default) | scalar | vector

The sample time, which controls when the block writes to the data store. A value of -1 indicates that
the sample time is inherited. See “Specify Sample Time” for more information.

Programmatic Use

Block Parameter: SampleTime
Type: character vector

Values: scalar | vector

Default: '-1'

Element Assighment
Elements in the array (Signals in the bus) — Elements in associated data store
character vector (no default)

List of elements in the associated data store. For data stores with arrays, you can write the whole
data store, or you can assign one or more elements to the whole data store. For data stores with a bus
data type, you can expand the tree to view and select the bus elements. The list displays the
maximum dimensions for each element in parentheses.

If Enable indexing is not selected, select an element and use one of the following approaches:

* Click Select>> to display that element and all its subelements in the Selected element(s) list.

* Use the Specify element(s) to assign edit box to specify the subelements that you want to select
for writing. Then click Select>>.

To select multiple elements, repeat the above procedure for each element.

Alternatively, you can select Enable indexing, then select a single element and specify the
subelements dynamically using the Index Option parameter.

To refresh the display and reflect modifications to the array or bus used in the data store, click
Refresh.

Dependencies

The prompt for this section (Elements in the array or Signals in the bus) depends on the type of
data in the data store.

Data Store Write

Programmatic Use

Block Parameter: DataStoreElements

Type: character vector

Values: pound-delimited list of elements (See “Specification using the command line”.)
Default: '’

Specify element(s) to assign — MATLAB expression defining the elements to assign
character vector (no default)

Enter a MATLAB expression to define the specific element that you want to write, then click
Select>> to add the element to the Assigned element(s) table. Repeat to select additional
elements.

For example, for a data store named DSM that has maximum dimensions of [3,5], you could enter
expressions such as DSM(2,4) or DSM([1 3], 2) in the edit box. See “Accessing Specific Bus and
Matrix Elements”.

To apply the element selection, click OK or Apply.

Dependencies

The Specify element(s) to assign edit box appears only if Enable indexing is not selected.

Programmatic Use

Block Parameter: DataStoreElements

Type: character vector

Values: pound-delimited list of elements (See “Specification using the command line”.)
Default: '’

Assigned element(s) — List of selected elements

character vector (no default)

Elements that you select for assignment. The Data Store Write block icon displays an input port for
each element that you specify.

To change the order of bus or matrix elements in the list, select the element in the list and click Up or
Down. Changing the order of the elements in the list changes the order of the ports. To remove an
element, click Remove.

Dependencies

The Assigned element(s) table appears only if Enable indexing is not selected.

Programmatic Use

Block Parameter: DataStoreElements

Type: character vector

Values: pound-delimited list of elements (See “Specification using the command line”.)
Default: '’

Enable indexing — Enable indexing to specify subelements of data store element to write
'off' (default) | 'on'
Select this parameter to enable indexing similar to that used by the Assignment block, whereby you

can dynamically specify indices of subelements to write by using one or more index input ports, as

1-289

1 Blocks

1-290

well as specifying indices by using the block dialog. A Data Store Write block can write to only a
single element of a data store (that is, a single signal in a bus) when this parameter is selected. To
write to multiple elements of a data store using dynamic indexing, use multiple Data Store Write
blocks.

Clear this parameter to disable Assignment block-style indexing. You can select multiple data store
elements to write, but you can specify which subelements to write only by using the block dialog.

Note Do not select Enable indexing if the associated data store contains only a single, scalar
element.

Programmatic Use

Block Parameter: EnableIndexing
Type: character vector

Values: 'off' | 'on'

Default: 'off"'

Number of dimensions — Number of dimensions of data store element
1 (default) | positive integer

Number of dimensions of selected data store element. You must explicitly indicate this number.

Dependencies

This parameter is enabled only if Enable indexing is selected.

Programmatic Use

Block Parameter: NumberOfDimensions
Type: character vector

Values: positive integer

Default: '1'

Index mode — Index mode

One-based (default) | Zero-based

Select the indexing mode. If One-based is selected, an index of 1 specifies the first element of the
input vector. If Zero-based is selected, an index of 0 specifies the first element of the input vector.

Dependencies

This parameter is enabled only if Enable indexing is selected.

Programmatic Use

Parameter: IndexMode

Type: character vector

Values: 'Zero-based' | 'One-based’
Default: 'One-based’

Index Option — Index method for subelements

Index vector (dialog) (default) | Select all | Index vector (port) |Starting index
(dialog) | Starting index (port)

Data Store Write

Define, by dimension, how the subelements of the selected data store element are to be indexed.

From the list, select:

Menu ltem

Action

Select all

Disables the Index column. All subelements are
assigned.

Index vector (dialog)

Enables the Index column. Enter a vector
containing the indices of subelements to be
assigned values.

Index vector (port)

Disables the Index column. The relevant index
port defines the indices of subelements to be
assigned values.

Starting index (dialog)

Enables the Index column. Enter the starting
index of the range of subelements to be assigned
values. The size of the range is inherited from the
size of relevant dimension of the input data
signal.

Starting index (port)

Disables the Index column. The relevant index
port defines the starting index of the range of
elements to be assigned values. The size of the
range is inherited from the size of relevant
dimension of the input data signal.

The Index column is displayed as relevant.

Dependencies

This parameter is enabled only if Enable indexing

Programmatic Use
Parameter: IndexOptionArray
Type: character vector

is selected.

Values: 'Select all' | 'Index vector (dialog)' | 'Index vector (port)'| 'Starting

index (dialog)' | 'Starting index (port)'
Default: 'Index vector (dialog)'

Index — Indices or starting index of subelements
1 (default) | integer | vector of integers

If the Index Option is Index vector (dialog),
subelement to write.

enter a vector containing the indices of each

If the Index Option is Starting index (dialog), enter the starting index of the range of

subelements to write.

Dependencies

This parameter is enabled only if Enable indexing

is selected and the Index Option for the

dimension is Index vector (dialog) or Starting index (dialog).

Programmatic Use
Parameter: IndexParamArray

1-291

1 Blocks

Type: character vector
Values: cell array
Default: '{ }'

Block Characteristics

Data Types Boolean | bus | double | enumerated | fixed point | half |integer
| single | string

Direct Feedthrough |no

Multidimensional yes
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Store Memory | Data Store Read

Topics

“Data Stores”

“Rename Data Stores”

“Order Data Store Access”

“Access Data Stores with Simulink Blocks”
“Log Data Stores”

“Data Store Diagnostics”

1-292

Data Type Conversion

Data Type Conversion

Convert input signal to specified data type

Libraries:

J convert B Simulink / Commonly Used Blocks

Simulink / Signal Attributes

HDL Coder / Commonly Used Blocks

HDL Coder / HDL Floating Point Operations
HDL Coder / Signal Attributes

Description

The Data Type Conversion block converts an input signal of any Simulink data type to the data type
that you specify.

Note To control the output data type by specifying block parameters, or to inherit a data type from a
downstream block, use the Data Type Conversion block. To inherit a data type from a different signal
in the model, use the Data Type Conversion Inherited block.

Convert Fixed-Point Signals

When you convert between fixed-point data types, the Input and output to have equal parameter
controls block behavior. This parameter does not change the behavior of the block when:

* The input and output do not have a fixed-point data type.
* The input or output has a fixed-point data type with trivial scaling.

For more information about fixed-point numbers, see “Fixed-Point Numbers in Simulink” (Fixed-Point
Designer).

To convert a signal from one data type to another by attempting to preserve the real-world value of
the input signal, select Real World Value (RWV), the default setting. The block accounts for the
limits imposed by the scaling of the input and output and attempts to generate an output of equal
real-world value.

To change the real-world value of the input signal by performing a scaling reinterpretation of the
stored integer value, select Stored Integer (SI). Within the limits of the specified data types, the
block attempts to preserve the stored integer value of the signal during conversion. A best practice is
to specify input and output data types using the same word length and signedness. Doing so ensures
that the block changes only the scaling of the signal. Specifying a different signedness or word length
for the input and output could produce unexpected results such as range loss or unexpected sign
extensions. For an example, see “Convert Data Types in Simulink Models” on page 12-125.

If you select Stored Integer (SI), the block does not perform a lower-level bit reinterpretation of
a floating-point input signal. For example, if the input is single and has value 5, the bits that store
the input in memory are given in hexadecimal by the following command.

num2hex(single(5))

1-293

1 Blocks

1-294

40200000

However, the Data Type Conversion block does not treat the stored integer value as 40200000, but
instead as the real-world value, 5. After conversion, the stored integer value of the output is 5.

Cast Enumerated Signals
Use a Data Type Conversion block to cast enumerated signals as follows:
1 To cast a signal of enumerated type to a signal of any numeric type.

The underlying integers of all enumerated values input to the Data Type Conversion block must
be within the range of the numeric type. Otherwise, an error occurs during simulation.
2 To cast a signal of any integer type to a signal of enumerated type.

The value input to the Data Type Conversion block must match the underlying value of an
enumerated value. Otherwise, an error occurs during simulation.

You can enable the Saturate on integer overflow parameter so that Simulink uses the default
value of the enumerated type when the value input to the block does not match the underlying
value of an enumerated value. See “Type Casting for Enumerations” (Simulink Coder).

You cannot use a Data Type Conversion block in these cases:

» To cast a noninteger numeric signal to an enumerated signal.

» To cast a complex signal to an enumerated signal, regardless of the data types of the real and
imaginary parts of the complex signal.

See “Simulink Enumerations” for information on working with enumerated types.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array. The input can be any real- or complex-
valued signal. If the input is real, the output is real. If the input is complex, the output is complex.
The block converts the input signal to the Output data type you specify.

When you are converting fixed-point data types, use the Input and output to have equal parameter
to determine whether the conversion happens based on the Real World Value (RWV) or Stored
Integer (SI) value of the signal. For more information, see “Convert Fixed-Point Signals” on page
1-293.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

Port_1 — Output signal
scalar | vector | matrix | N-D array

Output signal, converted to the data type you specify, with the same dimensions as the input signal.

Data Type Conversion

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

Parameters

Output minimum — Minimum output value for range checking

[1 (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)

for some blocks.

* Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMin
Type: character vector
Values: '[]'|scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[1 (default) | scalar
Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

» Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

1-295

1 Blocks

1-296

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMax
Type: character vector
Values: '[]'|scalar
Default: '[]'

Output data type — Output data type

Inherit: Inherit via back propagation (default) | double | single | half | int8 | uint8 |
intl6 |uintl6 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,270,0) | Enum: <class name> | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

Programmatic Use

Block Parameter: QutDataTypeStr

Type: character vector

Values: 'Inherit: Inherit via back propagation' | 'double' | 'single' | "half"' |
"int8' | 'uint8' | 'intl1l6"' | 'uintl6' | 'int32' | 'uint32' | 'int64"' | 'uint64" |
'fixdt(1,16)' | 'fixdt(1,16,0)"' | 'fixdt(1,16,270,0)"' | 'Enum: <class name>''<data
type expression>'

Default: 'Inherit: Inherit via back propagation'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector

Values: 'off' | 'on'
Default: 'off'

Input and output to have equal — Constraint for converting fixed-point data types
Real World Value (RWV) (default) | Stored Integer (SI)

Specify which type of input and output must be equal, in the context of fixed-point data
representation.

* Real World Value (RWV) — Specifies the goal of making the Real World Value (RWV) of
the input equal to the Real World Value (RWV) of the output.

* Stored Integer (SI) — Specifies the goal of making the Stored Integer (SI) value of the
input equal to the Stored Integer (SI) value of the output.

Data Type Conversion

Programmatic Use

Block Parameter: ConvertRealWorld

Type: character vector

Values: 'Real World Value (RWV)' | 'Stored Integer (SI)'
Default: 'Real World Value (RwWV)'

Integer rounding mode — Specify the rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds bhoth positive and negative numbers toward positive infinity. Equivalent to the MATLAB
ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to the MATLAB
floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate rounding
code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

Programmatic Use

Block Parameter: RndMeth

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Default: 'Floor'

See Also

For more information, see “Rounding” (Fixed-Point Designer).
Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

1-297

1 Blocks

1-298

+ off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

* on — Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

» Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

* Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

* When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

* In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use

Block Parameter: SaturateOnIntegerOverflow
Type: character vector

Values: 'off' | 'on'

Default: 'off"'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than - 1. For more information, see “Specify Sample Time”.
Dependencies

This parameter is not visible unless it is explicitly set to a value other than - 1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Mode — Select data type mode
Inherit (default) | Built in | Fixed Point

Select the category of data to specify.

* Inherit — Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right where you can select the inheritance mode.

Data Type Conversion

¢ Built in — Built-in data types. Selecting Built in enables a second menu/text box to the right
where you can select a built-in data type.

* Fixed point — Fixed-point data types. Selecting Fixed point enables additional parameters
that you can use to specify a fixed-point data type.

* Expression — Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

For more information, see “Specify Data Types Using Data Type Assistant”.
Dependencies

To enable this parameter, click the Show data type assistant button.
Data type override — Specify data type override mode for this signal
Inherit | Off

Select the data type override mode for this signal.

* When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

* When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies
To enable this parameter, set Mode to Built inor Fixed point.
Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Specify signed or unsigned
Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

* Signed, specifies the fixed-point data as signed.
* Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, set the Mode to Fixed point.

1-299

1 Blocks

Scaling — Method for scaling fixed-point data
Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Word length — Bit size of the word that holds the quantized integer
16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type
0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Binary point.
Slope — Specify slope for the fixed-point data type

270 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.
Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

1-300

Data Type Conversion

Block Characteristics

Detection

Data Types Boolean | double | enumerated | fixed point | half | integer |
single

Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |yes

Zero-Crossing no

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized

logic.

Note If you use double data types in your model, use this block for conversion between double and
single data types. You cannot use the block to convert between double and fixed-point data types.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays

peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

1-301

1 Blocks

1-302

General

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Note With the HDL Code Advisor, you can replace Data Type Conversion blocks that use the Stored
Integer (SI) mode and convert between floating-point and fixed-point data types with Float
Typecast blocks.

Native Floating Point

LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min,
Zero, or Custom for the floating-point operator. The default is inherit.
See also “LatencyStrategy” (HDL Coder).

NFPCustomLatency |To specify a value, set LatencyStrategy to Custom. HDL Coder adds
latency equal to the value that you specify for the NFPCustomLatency
setting. See also “NFPCustomLatency” (HDL Coder).

Enumeration Data Support

This block supports code generation for enumerated signals. Use this block to cast a signal of an
enumerated type to any integer type or to cast a signal of any integer type to an enumerated type.

Complex Data Support

This block supports code generation for complex signals.

Restrictions

If you configure a Data Type Conversion block for double to fixed-point conversion or fixed-point to
double conversion, a warning is displayed during code generation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Type Conversion Inherited | Data Type Propagation | Data Type Scaling Strip

Topics

“Control Data Types of Signals”
“About Data Types in Simulink”
“Simulink Enumerations”
“Fixed Point”

Data Type Conversion Inherited

Data Type Conversion Inherited

Convert from one data type to another using inherited data type and scaling

Libraries:
Simulink / Signal Attributes

Conwert ¥

Description

The Data Type Conversion Inherited block converts one input to the data type and scaling of the
other input. The first input is used as the reference signal. The second input, u, is converted to the
reference type by inheriting the data type and scaling information. (For a description of the port
order for various block orientations, see “Identify Port Location on Rotated or Flipped Block”.)

Inheriting the data type and scaling provides these advantages:

» It makes reusing existing models easier.

+ It allows you to create new fixed-point models with less effort since you can avoid the detail of
specifying the associated parameters.

Ports
Input

Port_1 — Reference signal
scalar | vector | matrix | N-D array

Reference signal, defining the data type used to convert input signal u.
Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

u — Input signal to convert
scalar | vector | matrix | N-D array

Input signal to convert to the reference data type, specified as a scalar, vector, matrix, or N-D array.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

Output

y — Output signal
scalar | vector | matrix | N-D array

Output is the input signal u, converted to the reference data type.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated

1-303

1 Blocks

1-304

Parameters
Input and Output to have equal — Constraint for converting fixed-point data types

Real World Value (RWV) (default) | Stored Integer (SI)

Specify which type of input and output must be equal, in the context of fixed-point data
representation.

* Real World Value (RWV) — Specifies the goal of making the Real World Value (RWV) of
the input equal to the Real World Value (RWV) of the output.

* Stored Integer (SI) — Specifies the goal of making the Stored Integer (SI) value of the
input equal to the Stored Integer (SI) value of the output.

Programmatic Use

Block Parameter: ConvertRealWorld

Type: character vector

Values: 'Real World Value (RWV)' | 'Stored Integer (SI)'
Default: 'Real World Value (RwV)'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Programmatic Use

Block Parameter: RndMeth

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'

Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action

off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use

Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data Type Conversion Inherited

Block Characteristics

Detection

Data Types Boolean | double | enumerated | fixed point | half | integer |
single

Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |yes

Zero-Crossing no

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Data Type Conversion | Data Type Propagation

Topics

“Control Data Types of Signals”
“About Data Types in Simulink”

“Fixed Point”

1-305

1 Blocks

1-306

Data Type Duplicate

Force all inputs to same data type

Yeame Libraries:
DT Simulink / Signal Attributes
) HDL Coder / Signal Attributes

Description

The Data Type Duplicate block forces all inputs to have the same data type. Other attributes of input
signals, such as dimension, complexity, and sample time, are independent.

You can use the Data Type Duplicate block to check for consistency of data types among blocks. If all
signals do not have the same data type, the block returns an error message.

The Data Type Duplicate block is typically used such that one signal to the block controls the data
type for all other blocks. The other blocks are set to inherit their data types via backpropagation.

The block can also be useful in a user created library. These library blocks can be placed in any
model, and the data type for all library blocks are configured according to the usage in the model. To
create a library block with more complex data type rules than duplication, use the Data Type
Propagation block.

Ports
Input

Port_1 — First input signal
scalar | vector | matrix | N-D array

First input signal, specified as a scalar, vector, matrix, or N-D array. If all signals do not have the
same data type, the block returns an error message.

Data Types: single | double | half | int8 | int16 | int32 | uint8 | uint1l6 | uint32 | string |
Boolean | fixed point | enumerated

Port_N — Nth input signal
scalar | vector | matrix | N-D array

Nth input signal, specified as a scalar, vector, matrix, or N-D array. If all signals do not have the same
data type, the block returns an error message.

Data Types: single | double | half | int8 | int1l6 | int32 | uint8 | uint1l6 | uint32 | string |
Boolean | fixed point | enumerated

Parameters
Number of input ports — Number of block inputs

2 (default) | real-valued positive integer

Data Type Duplicate

Specify the number of inputs to this block as a real-valued positive integer.

Programmatic Use

Block Parameter: NumInputPorts
Type: character vector

Values: real-valued positive integer
Default: '2'

Block Characteristics

Data Types Boolean | bus | double | enumerated | fixed point | half | integer
| single | string

Direct Feedthrough |no

Multidimensional yes
Signals

Variable-Size Signals |yes
Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to force inputs to have same data type in subsystems that generate code, but
is not included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.
See Also

Data Type Conversion | Data Type Propagation

Topics
“Control Data Types of Signals”

1-307

1 Blocks

“About Data Types in Simulink”
“Fixed Point”

1-308

Data Type Propagation

Data Type Propagation

Set data type and scaling of propagated signal based on information from reference signals

Libraries:
Simulink / Signal Attributes
HDL Coder / Signal Attributes

Fefl
Refz
Frop

Description

The Data Type Propagation block allows you to control the data type and scaling of signals in your
model. You can use this block along with fixed-point blocks that have their Qutput data type
parameter configured to Inherit: Inherit via back propagation.

The block has three inputs: Refl and Ref2 are the reference inputs, while the Prop input back-
propagates the data type and scaling information gathered from the reference inputs. This
information is then passed on to other fixed-point blocks.

The block provides many choices for propagating data type and scaling information. For example, you
can use:

* The number of bits from the Ref1 reference signal or the number of bits from widest reference
signal

* The range from the Ref2 reference signal or the range of the reference signal with the greatest
range

* A bias of zero, regardless of the biases used by the reference signals

* The precision of the reference signal with the least precision

You specify how data type information is propagated using the Propagated data type parameter:

* Ifyouselect Specify via dialog, then you manually specify the data type via the Propagated
data type edit field.

* Ifyouselect Inherit via propagation rule, then you must use the parameters described in
“Parameters” on page 1-311.

You specify how scaling information is propagated using the Propagated scaling parameter:

+ Ifyouselect Specify via dialog, then you manually specify the scaling via the Propagated
scaling edit field.

* Ifyouselect Inherit via propagation rule, then you must use the parameters described in
“Parameters” on page 1-311.

After you use the information from the reference signals, you can apply a second level of adjustments
to the data type and scaling. To do so, use individual multiplicative and additive adjustments. This
flexibility has various uses. For example, if you are targeting a DSP, then you can configure the block
so that the number of bits associated with a multiply and accumulate (MAC) operation is twice as
wide as the input signal, and has a specific number of guard bits added to it.

1-309

1 Blocks

1-310

The Data Type Propagation block also provides a mechanism to force the computed number of bits to
a useful value. For example, if you are targeting a 16-bit micro, then the target C compiler is likely to
support sizes of only 8 bits, 16 bits, and 32 bits. The block forces these three choices to be used. For
example, suppose that the block computes a data type size of 24 bits. Since 24 bits is not directly
usable by the target chip, the signal is forced up to 32 bits, which is natively supported.

There is also a method for dealing with floating-point reference signals. This method makes it easier
to create designs that are easily retargeted between fixed-point chips and floating-point chips.

The Data Type Propagation block allows you to set up libraries of useful subsystems that are properly
configured based on the connected signals. Without this data type propagation process, subsystems
from a library are unlikely to work as desired with most integer or fixed-point signals. Manual
intervention would be required to configure the data type and scaling. In many situations, this block
can eliminate the manual intervention.

Precedence Rules

The precedence of the dialog box parameters decreases from top to bottom. Also:

* Double-precision reference inputs have precedence over all other data types.
» Single-precision reference inputs have precedence over integer and fixed-point data types.
* Multiplicative adjustments are carried out before additive adjustments.

* The number of bits is determined before the precision or positive range is inherited from the
reference inputs.

* PosRange is one bit higher than the exact maximum positive range of the signal.

* The computed number-of-bits are promoted to the smallest allowable value that is greater than or
equal to the computation. If none exists, then the block returns an error.

Ports
Input

Refl — First reference signal

scalar | vector | matrix | N-D array

First reference signal, from which to gather data type and scaling information.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point

Ref2 — Second reference signal

scalar | vector | matrix | N-D array

Second reference signal from which to gather data type and scaling information.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point

Prop — Propagated data type and scaling
data type and scaling

Data type and scaling information, back-propagated to the model. After the block gathers data type
and scaling information from the reference signals, you can apply a second level of adjustments to the

Data Type Propagation

data type and scaling. To do so, specify individual multiplicative and additive adjustments in the block
dialog box.

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
fixed point

Parameters
Propagated Type

1. Propagated data type — Mode of specifying propagated data type
Inherit via propagation rule (default) | Specify via dialog

Specify whether to propagate the data type via the dialog box, or inherit the data type from the
reference signals.

Dependencies

Setting this parameter to Specify via dialog enables the 1.1. Propagated data type (e.g.
fixdt(1,16), fixdt('single')).

Programmatic Use

Block Parameter: PropDataTypeMode

Type: character vector

Values: 'Specify via dialog' | 'Inherit via propagation rule'
Default: 'Inherit via propagation rule'

1.1. Propagated data type (e.g. fixdt(1,16), fixdt('single')) — Propagated data type
fixdt(1,16) (default) | data type string

Specify the data type to propagate.

Dependencies

To enable this parameter, set 1. Propagated data type to Specify via dialog.

Programmatic Use

Block Parameter: PropDataTypeMode

Type: character vector

Values: 'Specify via dialog' | 'Inherit via propagation rule'
Default: 'Inherit via propagation rule'

1.1 If any reference input is double, output is — Output data type when a reference input is
double
double (default) | single

Specify the output data type as single or double. This parameter makes it easier to create designs
that are easily retargeted between fixed-point chips and floating-point chips.

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

Programmatic Use
Block Parameter: IfRefDouble
Type: character vector

1-311

1 Blocks

Values: 'double' | 'single'’
Default: 'double’

1.2 If any reference input is single, output is — Output data type when a reference input is single
single (default) | double

Specify the output data type as single or double. This parameter makes it easier to create designs
that are easily retargeted between fixed-point chips and floating-point chips.

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

Programmatic Use

Block Parameter: IfRefSingle
Type: character vector

Values: 'double' | 'single'’
Default: 'single’

1.3 Is-Signed — Signedness of propagated data type
IsSignedl or IsSigned2 (default) | IsSignedl | IsSigned2 | TRUE | FALSE

Specify the sign of Prop as one of the following values.

Parameter Value Description

IsSignedl Prop is a signed data type if Ref1 is a signed data type.

IsSigned2 Prop is a signed data type if Ref2 is a signed data type.

IsSignedl or Prop is a signed data type if either Refl or Ref2 are signed data types.
IsSigned2

TRUE Ref1 and Ref2 are ignored, and Prop is always a signed data type.
FALSE Ref1 and Ref2 are ignored, and Prop is always an unsigned data type.

For example, if the Ref1 signal is ufix(16), the Ref2 signal is sfix(16), and the Is-Signed
parameter is IsSignedl or IsSigned2, then Prop is forced to be a signed data type.

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

Programmatic Use

Block Parameter: IsSigned

Type: character vector

Values: 'IsSignedl' | 'IsSigned2' | 'IsSignedl or IsSigned2' | 'TRUE' | 'FALSE'
Default: 'IsSignedl or IsSigned2'

1.4.1 Number-of-bits: Base — Number of bits for the base of the propagated data type
max ([NumBitsl NumBits2]) (default) | NumBitsl | NumBits2 |min([NumBitsl NumBits2]) |
NumBits1l+NumBits2

Specify the number of bits used by Prop for the base data type as one of the following values.

Parameter Value Description

NumBitsl The number of bits for Prop is given by the number of bits for Ref1.

1-312

Data Type Propagation

Parameter Value Description

NumBits2 The number of bits for Prop is given by the number of bits for Ref2.

max ([NumBitsl NumBits2]) |The number of bits for Prop is given by the reference signal with
largest number of bits.

min([NumBitsl NumBits2]) |The number of bits for Prop is given by the reference signal with
smallest number of bits.

NumBits1l+NumBits?2 The number of bits for Prop is given by the sum of the reference
signal bits.

For more information about the base data type, refer to Targeting an Embedded Processor (Fixed-
Point Designer).

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

Programmatic Use

Block Parameter: NumBitsBase

Type: character vector

Values: 'NumBitsl' | 'NumBits2' | 'max([NumBitsl NumBits2])' | 'min([NumBitsl
NumBits2])' | 'NumBitsl+NumBits2'

Default: 'max([NumBitsl NumBits2])'

1.4.2 Number-of-bits: Multiplicative adjustment — Number of bits for multiplicative adjustment
of propagated data type
1 (default) | positive integer

Specify the number of bits used by Prop by including a multiplicative adjustment that uses a data
type of double. For example, suppose that you want to guarantee that the number of bits associated
with a multiply and accumulate (MAC) operation is twice as wide as the input signal. To do this, set
this parameter to 2.

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

Programmatic Use

Block Parameter: NumBitsMult
Type: character vector

Values: positive integer

Default: '1'

1.4.3 Number-of-bits: Additive adjustment — Number of bits for additive adjustment of
propagated data type
0 (default) | positive integer

Specify the number of bits used by Prop by including an additive adjustment that uses a data type of
double. For example, if you are performing multiple additions during a MAC operation, the result
could overflow. To prevent overflow, you can associate guard bits with the propagated data type. To
associate four guard bits, you specify the value 4.

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

1-313

1 Blocks

Programmatic Use

Block Parameter: NumBitsAdd
Type: character vector

Values: scalar

Default: '0'

1.4.4 Number-of-bits: Allowable final values — Allowable number of bits in propagated data type
'1:128"' (default) | scalar or vector of positive integers

Force the computed number of bits used by Prop to a useful value. For example, if you are targeting
a processor that supports only 8 bits, 16 bits, and 32 bits, then you configure this parameter to
[8,16,32]. The block always propagates the smallest specified value that fits. If you want to allow
all fixed-point data types, you would specify the value 1:128.

Dependencies

To enable this parameter, set Propagated data type to Inherit via propagation rule.

Programmatic Use

Block Parameter: NumBitsAllowFinal
Type: character vector

Values: scalar or vector of positive integers
Default: '1:128"

Propagated Scaling

2. Propagated scaling — Propagated scaling mode
Inherit via propagation rule (default) | Specify via dialog|Obtain via best
precision

Choose to propagate the scaling via the dialog box, inherit the scaling from the reference signals, or
calculate the scaling to obtain best precision.

Programmatic Use

Block Parameter: PropScalingMode

Type: character vector

Values: Inherit via propagation rule|Specify via dialog|Obtain via best
precision

Default: Inherit via propagation rule

2.1. Propagated scaling (Slope or [Slope Bias]) — Slope or slope and bias
27~-10 | Slope | [Slope Bias]
Specify the scaling as either a slope or a slope and bias.

Dependencies

To enable this parameter, set Propagated scaling to Specify via dialog.

Programmatic Use

Block Parameter: PropScaling
Type: character vector

Values: Slope | [Slope Bias]
Default: '2~-10"

2.1. Values used to determine best precision scaling — Values to constrain precision
[5 -7] (default)

1-314

Data Type Propagation

Specify any values to be used to constrain the precision, such as the upper and lower limits on the
propagated input. Based on the data type, the block selects a scaling such that these values can be
represented with no overflow error and minimum quantization error.

Dependencies

To enable this parameter, set Propagated scaling to Obtain via best precision.

Programmatic Use

Block Parameter: ValuesUsedBestPrec

Type: character vector
Values: vector of values
Default: '[5 -7]'

2.1.1. Slope: Base — Slope for base of the propagated data type

min([Slopel Slope2]) (default) | Slopel | Slope2 | min([Slopel Slope2]) | max([Biasl
Bias2]) | Slopel*Slope2 | Slopel/Slope?2 | PosRangel | PosRange2 | max([PosRangel
PosRange2]) | min([PosRangel PosRange2]) | PosRangel*PosRange2 | PosRangel/

PosRange?

Specify the slope used by Prop for the base data type as one of the following values.

Parameter Value

Description

Slopel

The slope of Prop is given by the slope of Refl.

Slope2

The slope of Prop is given by the slope of Ref2.

max ([Slopel Slope2])

The slope of Prop is given by the maximum slope of the
reference signals.

min([Slopel Slope2])

The slope of Prop is given by the minimum slope of the
reference signals.

Slopel*Slope2 The slope of Prop is given by the product of the reference
signal slopes.

Slopel/Slope2 The slope of Prop is given by the ratio of the Ref1 slope to the
Ref2 slope.

PosRangel The range of Prop is given by the range of Ref1.

PosRange2 The range of Prop is given by the range of Ref2.

max ([PosRangel PosRange2?])

The range of Prop is given by the maximum range of the
reference signals.

min([PosRangel PosRange2])

The range of Prop is given by the minimum range of the
reference signals.

PosRangel*PosRange2 The range of Prop is given by the product of the reference
signal ranges.
PosRangel/PosRange2 The range of Prop is given by the ratio of the Refl range to

the Ref2 range.

You control the precision of Prop with Slopel and Slope2, and you control the range of Prop with
PosRangel and PosRange?2. Also, PosRangel and PosRange?2 are one bit higher than the maximum
positive range of the associated reference signal.

1-315

1 Blocks

1-316

Dependencies

To enable this parameter, set Propagated scaling to Inherit via propagation rule.

Programmatic Use
Block Parameter: SlopeBase
Type: character vector

Values: 'Slopel' | 'Slope2' | 'max([Slopel Slope2])' | 'min([Slopel Slope2])'
'Slopel*Slope2' | 'Slopel/Slope2' | 'PosRangel’ | 'PosRange2' |
'max([PosRangel PosRange2])' | 'min([PosRangel PosRange2])' |
'PosRangel*PosRange2' | 'PosRangel/PosRange?2’

Default: 'min([Slopel Slope2])'

2.1.2. Slope: Multiplicative adjustment — Slope of multiplicative adjustment of propagated data

type
1 (default) | scalar

Specify the slope used by Prop by including a multiplicative adjustment that uses a data type of
double. For example, if you want 3 bits of additional precision (with a corresponding decrease in
range), the multiplicative adjustment is 2" - 3.

Dependencies

To enable this parameter, set Propagated scaling to Inherit via propagation rule.

Programmatic Use

Block Parameter: SlopeMult
Type: character vector

Values: scalar

Default: '1'

2.1.3. Slope: Additive adjustment — Slope of additive adjustment of propagated data type
0 (default) | scalar

Specify the slope used by Prop by including an additive adjustment that uses a data type of double.
An additive slope adjustment is often not needed. The most likely use is to set the multiplicative
adjustment to 0, and set the additive adjustment to force the final slope to a specified value.

Dependencies

To enable this parameter, set Propagated scaling to Inherit via propagation rule.

Programmatic Use

Block Parameter: SlopeAdd
Type: character vector
Values: scalar

Default: '0’

2.2.1. Bias: Base — Base bias for Prop
Biasl (default) | Bias2 | max([Biasl Bias2]) |min([Biasl Bias2]) | Biasl1*Bias2 |Biasl/
Bias2 | Biasl+Bias2 | Biasl-Bias2

Specify the bias used by Prop for the base data type. The parameter values are described as follows:

Data Type Propagation

Parameter Value Description

Biasl The bias of Prop is given by the bias of Ref1.

Bias2 The bias of Prop is given by the bias of Ref2.

max([Biasl Bias2]) The bias of Prop is given by the maximum bias of the reference
signals.

min([Biasl Bias2]) The bias of Prop is given by the minimum bias of the reference
signals.

Biasl*Bias?2 The bias of Prop is given by the product of the reference signal
biases.

Biasl/Bias2 The bias of Prop is given by the ratio of the Ref1 bias to the Ref2
bias.

Biasl+Bias2 The bias of Prop is given by the sum of the reference biases.

Biasl-Bias2 The bias of Prop is given by the difference of the reference biases.

Dependencies

To enable this parameter, set Propagated scaling to Inherit via propagation rule.

Programmatic Use

Block Parameter: BiasBase

Type: character vector

Values: 'Biasl' | 'Bias2' | 'max([Biasl Bias2])' | 'min([Biasl Bias2])' |
'‘Biasl*Bias2' | 'Biasl/Bias2' | 'Biasl+Bias2' | 'Biasl-Bias2'

Default: 'Biasl'’

2.2.2. Bias: Multiplicative adjustment — Multiplicative bias for propagated data type
1 (default) | scalar

Specify the bias used by Prop by including a multiplicative adjustment that uses a data type of
double.

This parameter is visible only when you set Propagated scaling to Inherit via propagation
rule.

Programmatic Use

Block Parameter: BiasMult
Type: character vector
Values: scalar

Default: '1'

2.3.2. Bias: Additive adjustment — Additive bias for propagated data type
0 (default) | scalar

Specify the bias used by Prop by including an additive adjustment that uses a data type of double.

If you want to guarantee that the bias associated with Prop is zero, configure both the multiplicative
adjustment and the additive adjustment to 0.

Dependencies

To enable this parameter, set Propagated scaling to Inherit via propagation rule.

1-317

1 Blocks

1-318

Programmatic Use

Block Parameter: BiasAdd
Type: character vector
Values: scalar

Default: '0'

Block Characteristics

Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |yes

Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block can be used to control scaling and data types of signals that are part of subsystems that
generate HDL code, but is not included in the hardware implementation.

Limitations
When this block is present inside the masked subsystem, the block is ignored in model generation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Data Type Conversion | Data Type Duplicate | Data Type Conversion Inherited

Topics
“Control Data Types of Signals”
“About Data Types in Simulink”

Data Type Propagation

“Fixed Point”

1-319

1 Blocks

Data Type Scaling Strip

Remove scaling and map to built in integer

Libraries:
Simulink / Signal Attributes
Scaling .
Strip
Description

The Data Type Scaling Strip block strips the scaling off a fixed-point signal. It maps the input data
type to the smallest built-in data type that has enough data bits to hold the input. The stored integer
value of the input is the value of the output. The output always has nominal scaling (slope = 1.0 and
bias = 0.0), so the output does not distinguish between real world value and stored integer value.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The block strips the scaling off a fixed-point input
signal, and outputs the stored integer value with the smallest possible built-in data type.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Input signal mapped to built-in data type
scalar | vector | matrix

Stored integer value of the input signal with the smallest possible built-in data type, and the same
dimensions as the input.

Data Types: single | double | int8 | int16 | int32 | uint8 | uintl1l6 | uint32

Block Characteristics

Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |yes

1-320

Data Type Scaling Strip

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Data Type Conversion | Data Type Duplicate | Data Type Propagation

Topics

“About Data Types in Simulink”

“Fixed Point”

1-321

1 Blocks

1-322

Dead Zone
Provide region of zero output
Libraries:
Simulink / Discontinuities
X P HDL Coder / Discontinuities

Description

The Dead Zone block generates zero output within a specified region, called its dead zone. You
specify the lower limit (LL) and upper limit (UL) of the dead zone as the Start of dead zone and End
of dead zone parameters. The block output depends on the input (U) and the values for the lower
and upper limits.

Input Output
U>= LLand U <= UL Zero

U > UL U-UL
U< LL U-LL
Ports

Input

Port_1 — Input signal
scalar | vector

Input signal to the dead-zone algorithm.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector

Output signal after the dead-zone algorithm is applied to the input signal.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixed point

Parameters
Start of dead zone — Specify the lower bound of the dead zone

'-0.5"' (default) | scalar | vector

Dead Zone

Specify dead zone lower limit. Set the value for Start of dead zone less than or equal to End of
dead zone. When the input value is less than Start of dead zone, then the block shifts the output
value down by the Start of dead zone value.

Programmatic Use

Block Parameter: LowerValue

Type: character vector

Value: scalar or vector less than or equal to UpperValue.
Default: '-0.5"'

End of dead zone — Specify the upper limit of the dead zone

'0.5"' (default) | scalar | vector

Specify dead zone upper limit. Set the value for End of dead zone greater than or equal to Start of
dead zone. When the input value is greater than End of dead zone, then the block shifts the output
value down by the End of dead zone value.

Programmatic Use

Block Parameter: UpperValue

Type: character vector

Value: scalar or vector greater than or equal to LowerValue.
Default: '0.5"

Saturate on integer overflow — Choose the behavior when integer overflow occurs

off (default) | on

Action Reasons for Taking This What Happens for Example
Action Overflows

Select this check |Your model has possible Overflows saturate to either |The maximum value that the

box. overflow, and you want the minimum or maximum int8 (signed, 8-bit integer)
explicit saturation protection |value that the data type can |data type can represent is
in the generated code. represent. 127. Any block operation

result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

1-323

1 Blocks

Action Reasons for Taking This What Happens for Example
Action Overflows
Do not select this |You want to optimize Overflows wrap to the The maximum value that the
check box. efficiency of your generated |appropriate value that is int8 (signed, 8-bit integer)
code. representable by the data data type can represent is
type. 127. Any block operation
You want to avoid result greater than this
overspecifying how a block maximum value causes
handles out-of-range signals. overflow of the 8-bit integer.
For more information, see With the check box cleared,
“Troubleshoot Signal Range the software interprets the
Errors”. overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8§, is -126.

1-324

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. Usually, the code generation process can detect when overflow is not possible. In
this case, the code generator does not produce saturation code.

Programmatic Use

Block Parameter: DoSatur
Type: character vector
Value: 'off' | 'on'
Default: 'off"'

Treat as gain when linearizing — Specify the gain value
On (default) | boolean

The linearization commands in Simulink software treat this block as a gain in state space. Select this
check box to cause the commands to treat the gain as 1. Clear the box to have the commands treat
the gain as 0.

Programmatic Use

Block Parameter: LinearizeAsGain
Type: character vector

Value: 'off' | 'on'

Default: 'on’

Enable zero-crossing detection — Enable zero-crossing detection
on (default) | of f

Select to enable zero-crossing detection. For more information, see “Zero-Crossing Detection”.

Programmatic Use

Block Parameter: ZeroCross
Type: character vector | string
Values: 'off' | 'on'

Default: 'on'

Dead Zone

Sample time — Sample time value other than -1
-1 (default) | scalar | vector

Specify the sample time as a value other than - 1. For more information, see “Specify Sample Time”.
Dependencies

This parameter is not visible unless it is explicitly set to a value other than - 1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Block Characteristics

Data Types double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing yes

Detection

Version History
Introduced before R2006a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

1-325

1 Blocks

1-326

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline

Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Dead Zone Dynamic | Backlash

Dead Zone Dynamic

Dead Zone Dynamic

Provide dynamic region of zero output

[Libraries:
Yo /—/ ¢ Simulink / Discontinuities
b I HDL Coder / Discontinuities

Description

The Dead Zone Dynamic block generates a region of zero output based on dynamic input signals that
specify the upper and lower limit. The block output depends on the input u, and the values of the
input signals up and lo.

Input Output
u>= loandu <= up Zero
u > up u-up
u < lo u-1lo

The Dead Zone Dynamic block is a masked subsystem and does not have any parameters.

Ports
Input

u — Input signal

scalar | vector

Input signal to the dead zone algorithm.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixed point

lo — Lower limit for the dead zone
scalar | vector

Dynamic value providing the lower bound of the region of zero output. When the input is less than lo
then the output value is shifted down by value of lo.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

up — Upper limit for the dead zone
scalar

Dynamic value providing the upper bound of the region of zero output. When the input is greater than
up then the output value is shifted down by value of up.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixed point

1-327

1 Blocks

1-328

Output

y — Output signal
scalar | vector

Output signal after the dynamic dead zone algorithm is applied to the input signal.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Block Characteristics

Data Types double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL

Coder).

Dead Zone Dynamic

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL

Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Dead Zone | Triggered Subsystem

1-329

1 Blocks

Decrement Real World

Decrease real-world value of signal by one

Libraries:

Simulink / Additional Math & Discrete / Additional Math: Increment -
e b Decrement

HDL Coder / Math Operations

Description

The Decrement Real World block decreases the real-world value of the signal by one. Overflows
always wrap.

Ports
Input

Port_1 — Input signal

scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output is the real-world value of the input signal decreased by one. Overflows always wrap. The
output has the same data type and dimensions as the input.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Block Characteristics

Data Types double | fixed point | integer | single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |yes

Zero-Crossing no

Detection

1-330

Decrement Real World

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked subsystem block to execute as an
atomic unit by selecting the Treat as atomic unit option.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Decrement Stored Integer | Decrement Time To Zero | Decrement To Zero | Increment Real World

Topics
“Fixed-Point Numbers”

1-331

1 Blocks

Decrement Stored Integer

Decrease stored integer value of signal by one

Libraries:

Simulink / Additional Math & Discrete / Additional Math: Increment -
o- b Decrement

HDL Coder / Math Operations

Description

The Decrement Stored Integer block decreases the stored integer value of a signal by one.

Floating-point signals also decrease by one, and overflows always wrap.

Ports
Input

Port_1 — Input signal

scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output is the stored integer value of the input signal decreased by one. Floating-point signals also
decrease by one, and overflows always wrap. The output has the same data type and dimensions as
the input.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixed point

Block Characteristics

Data Types double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional no

Signals

Variable-Size Signals |yes

1-332

Decrement Stored Integer

Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked subsystem block to execute as an
atomic unit by selecting the Treat as atomic unit option.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Decrement Real World | Decrement Time To Zero | Decrement To Zero | Increment Stored Integer

Topics
“Fixed-Point Numbers”

1-333

1 Blocks

Decrement Time To Zero

Decrease real-world value of signal by sample time, but only to zero

Libraries:

Simulink / Additional Math & Discrete / Additional Math: Increment -
ma W Tz, 0 Decrement

Description

The Decrement Time To Zero block decreases the real-world value of the signal by the sample time,
Ts. The output never goes below zero.

Limitations

The Decrement Time To Zero block works only with fixed sample rates and does not work inside a
triggered subsystem.

Ports
Input

Port_1 — Input signal

scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output is the real-world value of the input signal decreased by the sample time, Ts. The output never
goes below zero. The output has the same data type and dimensions as the input.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Block Characteristics

Data Types double | fixed point | integer | single
Direct Feedthrough |no

Multidimensional no

Signals

1-334

Decrement Time To Zero

Variable-Size Signals

no

Zero-Crossing
Detection

no

Version History

Introduced before R2006a

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Decrement Real World | Decrement Stored Integer | Decrement To Zero

Topics
“Fixed-Point Numbers”

1-335

1 Blocks

1-336

Decrement To Zero

Decrease real-world value of signal by one, but only to zero

Libraries:
Simulink / Additional Math & Discrete / Additional Math: Increment -
maxg W, 0) Decrement

Description

The Decrement To Zero block decreases the real-world value of the signal by one. The output never
goes below zero.

Ports
Input

Port_1 — Input signal

scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output is the real-world value of the input signal decreased by one. The output never goes below
zero. The output has the same data type and dimensions as the input.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Block Characteristics

Data Types double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Decrement To Zero

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked subsystem block to execute as an
atomic unit by selecting the Treat as atomic unit option.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Decrement Real World | Decrement Stored Integer | Decrement Time To Zero

Topics
“Fixed-Point Numbers”

1-337

1 Blocks

1-338

Delay

Delay input signal by fixed or variable sample periods

Libraries:
2 | Simulink / Commonly Used Blocks
- Simulink / Discrete
HDL Coder / Commonly Used Blocks
HDL Coder / Discrete
Description

The Delay block outputs the input of the block after a delay. The block determines the delay time
based on the value of the Delay length parameter. The block supports:

* Variable delay length

» Specification of the initial condition from an input port

» State storage

» Using a circular buffer instead of an array buffer for state storage

* Resetting the state to the initial condition with an external reset signal

* Controlling execution of the block at every time step with an external enable signal

The initial block output depends on several factors such as the Initial condition parameter and the
simulation start time. For more information, see “Initial Block Output” on page 1-338. The External
reset parameter determines if the block output resets to the initial condition on triggering. The Show
enable port parameter determines if the block execution is controlled in every time step by an
external enable signal.

Initial Block Output

The output in the first few time steps of the simulation depends on the block sample time, the delay
length, and the simulation start time. The block supports specifying or inheriting discrete sample
times to determine the time interval between samples. For more information, see “Specify Sample
Time”.

The table shows the Delay block output for the first few time steps with these settings. The block
inherits a discrete sample time as [Tsampling,Toffset], where Tsampling is the sampling period
and Toffset is the initial time offset. n is the value of the Delay length parameter and Tstart is
the simulation start time for the model

Simulation Time Range Block Output

(Tstart) to (Tstart + Toffset) Zero

(Tstart + Toffset) to (Tstart + Toffset + n * Tsampling) Initial condition
parameter

After (Tstart + Toffset + n * Tsampling) Input signal

Delay

Behavior with External Enable Signal

Selecting the Show enable port check box enables the Enable port. If the enable port is enabled, the
block operates in this order

1 Checks if the enable condition is satisfied.

2 If the reset port is enabled, checks the reset condition.

3 Performs the Delay block functionality.

The block has this operation with the Enable port:

» At the first block enable, the block output is the initial condition value (x0).

» For consecutive enable signals, the block takes the last state of the input signal u.

» If the port is not enabled at the start of simulation, the Delay block outputs 0.

» During simulation, if the port becomes disabled after having been enabled, the block does not
execute and holds its last value.

Variable-Size Support

The Delay block provides the following support for variable-size signals:

* The data input port u accepts variable-size signals. The other input ports do not accept variable-
size signals.

* The output port has the same signal dimensions as the data input port u for variable-size inputs.

The rules that apply to variable-size signals depend on the input processing mode of the Delay block.

Input Processing Mode Rules for Variable-Size Signal Support
Elements as channels * The signal dimensions change only during state reset when the
(sample based) block is enabled.

¢ The initial condition must be scalar.

Columns as channels * No support
(frame based)

Bus Support

The Delay block provides the following support for bus signals:

* The data input u accepts virtual and nonvirtual bus signals. Other than input port x0, the other
input ports do not accept bus signals.

* The initial condition x0 port accepts nonvirtual bus signals.

* The output port has the same bus type as the data input port u for bus inputs.
* Buses work with:

* Sample-based and frame-based processing
* Fixed and variable delay length
* Array and circular buffers

To use a bus signal as the input to a Delay block, specify the initial condition on the dialog box or
through the x0 port. Support for virtual and nonvirtual buses depends on the initial condition that

1-339

1 Blocks

you specify and whether the State name parameter is empty or not. For the x0 input port, only
nonvirtual buses are supported.

Initial Condition State Name
Empty Not Empty

Zero Virtual and nonvirtual bus Nonvirtual bus support only
support

Nonzero scalar Virtual and nonvirtual bus No bus support
support

Nonscalar No bus support No bus support

Structure Virtual and nonvirtual bus Nonvirtual bus support only
support

Partial structure Virtual and nonvirtual bus Nonvirtual bus support only
support

String Support
The Delay block can accept and output string data type only if:

* The block is configured for the default value of the Initial condition parameter (0).
* The Delay length value is 1 or less.

Ports
Input

u — Data input signal

scalar | vector

Input data signal delayed according to parameters settings.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

d — Delay length
scalar

Delay length specified as inherited from an input port. Enabled when you select the Delay length:
Source parameter as Input port.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
fixed point

Enable — External enable signal
scalar

Enable signal that enables or disables execution of the block. To create this port, select the Show
enable port parameter.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

1-340

Delay

External reset — External reset signal
scalar

External signal that resets execution of the block to the initial condition. To create this port, select
the External reset parameter.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

x0 — Initial condition
scalar | vector

Initial condition specified as inherited from an input port. Enabled when you select the Initial
Condition: Source parameter as Input port.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | fixed point | bus

Output

Port_1 — Output signal
scalar | vector

Output signal that is the input signal delayed by the length of time specified by the parameter Delay
length. The initial value of the output signal depends on several conditions. See “Initial Block
Output” on page 1-338.

Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | string | Boolean | fixed point | enumerated | bus

Parameters

Main

Delay length — Delay length
Dialog (default) | Input port

Specify whether to enter the delay length directly on the dialog box (fixed delay) or to inherit the
delay from an input port (variable delay).

+ Ifyou set Source to Dialog, enter the delay length in the edit field under Value.

+ Ifyou set Source to Input port, verify that an upstream signal supplies a delay length for the d
input port. You can also specify its maximum value by specifying the parameter Upper limit.

Specify the scalar delay length as a real, non-negative integer. An out-of-range or non-integer value in
the dialog box (fixed delay) returns an error. An out-of-range value from an input port (variable delay)
casts it into the range. A noninteger value from an input port (variable delay) truncates it to the
integer.

Programmatic Use

Block Parameter: DelaylLengthSource
Type: character vector

Values: 'Dialog' | 'Input port'
Default: 'Dialog’

1-341

1 Blocks

1-342

Block Parameter: DelaylLength

Type: character vector

Values: scalar

Default: '2'

Block Parameter: DelayLengthUpperLimit
Type: character vector

Values: scalar

Default: '100'

Initial condition — Initial condition
Dialog (default) | Input port

Specify whether to enter the initial condition directly on the dialog box or to inherit the initial
condition from an input port.
* Ifyou set Source to Dialog, enter the initial condition in the edit field under Value.

+ Ifyou set Source to Input port, verify that an upstream signal supplies an initial condition for
the x0 input port.

Simulink converts offline the data type of Initial condition to the data type of the input signal u
using a round-to-nearest operation and saturation.

Note When State name must resolve to Simulink signal object is selected on the State
Attributes pane, the block copies the initial value of the signal object to the Initial condition
parameter. However, when the source for Initial condition is Input port, the block ignores the
initial value of the signal object.

Programmatic Use

Block Parameter: InitialConditionSource
Type: character vector

Values: 'Dialog' | 'Input port'

Default: 'Dialog’

Block Parameter: InitialCondition

Type: character vector

Values: scalar

Default: '0.0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

* Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

Delay

* Elements as channels (sample based) — Treat each element of the input as a separate
channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use

Block Parameter: InputProcessing

Type: character vector

Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)

Default: 'Elements as channels (sample based)'

Use circular buffer for state — Circular buffer for storing state
off (default) | on

Select to use a circular buffer for storing the state in simulation and code generation. Otherwise, an
array buffer stores the state.

Using a circular buffer can improve execution speed when the delay length is large. For an array
buffer, the number of copy operations increases as the delay length goes up. For a circular buffer, the
number of copy operations is constant for increasing delay length.

If one of the following conditions is true, an array buffer always stores the state because a circular
buffer does not improve execution speed.

» For sample-based signals, the delay length is 1.
» For frame-based signals, the delay length is no larger than the frame size.

Programmatic Use

Block Parameter: UseCircularBuffer
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Prevent direct feedthrough — Prevent direct feedthrough
off (default) | on

Select to increase the delay length from zero to the lower limit for the Input processing mode.

» For sample-based signals, increase the minimum delay length to 1.
» For frame-based signals, increase the minimum delay length to the frame length.
Selecting this check box prevents direct feedthrough from the input port, u, to the output port.

However, this check box cannot prevent direct feedthrough from the initial condition port, x0, to the
output port.

Dependency

To enable this parameter, set Delay length: Source to Input port.

1-343

1 Blocks

1-344

Programmatic Use

Block Parameter: PreventDirectFeedthrough
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Remove delay length check in generated code — Remove delay length out-of-range check
off (default) | on

Select to remove code that checks for out-of-range delay length.

Check Box Result When to Use

Selected Generated code does not For code efficiency
include conditional statements
to check for out-of-range delay
length.

Cleared Generated code includes For safety-critical applications
conditional statements to check
for out-of-range delay length.

Dependency

To enable this parameter, set Delay length: Source to Input port.

Programmatic Use

Block Parameter: RemoveDelaylLengthCheckInGeneratedCode
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Diagnostic for delay length — Diagnostic checks for delay length
None (default) | Warning | Error

Specify whether to produce a warning or error when the input d is less than the lower limit or greater
than the Delay length: Upper limit. The lower limit depends on the setting for Prevent direct
feedthrough.

o If the check box is cleared, the lower limit is zero.

» If the check box is selected, the lower limit is 1 for sample-based signals and frame length for
frame-based signals.

Options for the diagnostic include:

* None — Simulink software takes no action.
* Warning — Simulink software displays a warning and continues the simulation.
* Error — Simulink software terminates the simulation and displays an error.

Dependency

To enable this parameter, set Delay length: Source to Input port.

Delay

Programmatic Use

Block Parameter: DiagnosticForDelayLength
Type: character vector

Values: 'None' | 'Warning' | 'Error'

Default: 'None'

Show enable port — Create enable port

off (default) | on

Select to control execution of this block with an enable port. The block is considered enabled when
the input to this port is nonzero, and is disabled when the input is 0. The value of the input is checked
at the same time step as the block execution.

Programmatic Use

Block Parameter: ShowEnablePort
Type: character vector

Values: 'off' | 'on'

Default: 'off'

External reset — External state reset
None (default) | Rising | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior

None No reset

Rising Reset on a rising edge

Falling Reset on a falling edge

Either Reset on either a rising or falling edge
Level Reset in either of these cases:

* When the reset signal is nonzero at the
current time step

* When the reset signal value changes from
nonzero at the previous time step to zero at
the current time step

Level hold Reset when the reset signal is nonzero at the
current time step

Programmatic Use

Block Parameter: ExternalReset

Type: character vector

Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'None'

Sample time (-1 for inherited) — Discrete interval between sample time hits

-1 (default) | scalar

1-345

1 Blocks

1-346

Specify the time interval between samples. To inherit the sample time, set this parameter to - 1. This
block supports discrete sample time, but not continuous sample time.

Programmatic Use

Block Parameter: SampleTime
Type: character vector

Value: real scalar

Default: '-1'

State Attributes

State name — Unique name for block state
"' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The defaultis ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

» Avalid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

» The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click
Apply.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

Programmatic Use

Block Parameter: StateName
Type: character vector

Values: unique name

Default: '

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if you set the
model configuration parameter Signal resolution to a value other than None.

Programmatic Use

Block Parameter: StateMustResolveToSignalObject
Type: character vector

Values: 'off' | 'on'

Default: 'off"'

Delay

Block Characteristics

Data Types Boolean | bus | double | enumerated | fixed point | half | integer
| single | string

Direct Feedthrough |yes

Multidimensional yes
Signals

Variable-Size Signals |yes
Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides configuration options that affect HDL implementation and synthesized logic.

Block Parameter Setting Description
Set External reset to Level . Generates a reset port in the HDL code.
Select Show enable port. Generates an enable port in the HDL code.

For Initial condition, set Source to Dialog Specifies an initial condition for the block.
and enter the value.

Set Input processing to Columns as Expects vector input data, where each element of
channels (frame based) or Elements as |the vector represents a sample in time.
channels (sample based).

Additional Settings When Using State Control Block

If you use a State Control block with the Delay block inside a subsystem in your Simulink model, use
these additional settings.

Block Parameter Setting Description

Set External reset to Level hold for Generates a reset port in the HDL code.
Synchronous mode and Level for Classic
mode of the State Control block.

1-347

1 Blocks

1-348

Block Parameter Setting Description

Set Delay length to zero for a Delay block with |Treated as a wire in only Synchronous mode of
an external enable port. the State Control block.

Set Delay length to zero for a Delay block with |Treated as a wire in Synchronous and Classic
an external reset port. modes of the State Control block.

For more information about the State Control block, see State Control (HDL Coder).
HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

InputPipeline Number of input pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates

reset logic. See also “ResetType” (HDL Coder).

UseRAM Map delays to RAM instead of registers. The default is of f. See also

“UseRAM” (HDL Coder).

Variable Integer Delay Support

You can generate HDL code for the Delay block that has Delay Length set through the Input
port. Input delay length can be integer types or floating-point types.

The code generation supports positive integer values at the 'd' port of the delay block. The delay
length set through the input port must be between 0 and Upper limit, specified in the Block
Parameters dialog box.

For negative delay length values, HDL Coder translates these negative delay length to 0.

Similarly, if you specify delay length greater than the upper limit, HDL Coder translates the delay
length to the Upper limit value.

Upper limit range is defined by the range of the delay length input data type. For example, if you
specify delay length input data type as uint8, then the upper limit must not exceed 255.

You can use enable and reset ports for the variable integer Delay block.

Complex Data Support

This block supports code generation for complex signals.

Restrictions

For Initial condition, Source set to Input port is not supported for HDL code generation.
HDL code generation supports only the Boolean data type at the Reset and Enable ports.

HDL Block Property UseRAM for RAM mapping is not supported for Delay block that has Delay
Length set through the Input port.

Delay

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Resettable Delay | Unit Delay | Variable Integer Delay | Tapped Delay

Topics
“Using Enabled Subsystems”

1-349

1 Blocks

Demux

Extract and output elements of virtual vector signal
Libraries:
Simulink / Commonly Used Blocks
Simulink / Signal Routing
HDL Coder / Commonly Used Blocks

HDL Coder / Signal Routing

Description

The Demux block extracts the components of an input vector signal and outputs separate signals. The
output signal ports are ordered from top to bottom.

Examples

Extract Vector Elements and Distribute Evenly Across Outputs

You can use the Demux block to distribute an input signal evenly over the desired number of outputs.
For an input vector of length 6, when you set the Number of outputs parameter to 3, the Demux
block creates three output signals, each of size 2.

II

[~}

Display3

123458

&)
II

Constant Display2

I

Display1

Copyright 2018 The MathWorks, Inc.

Extract Vector Elements Using Specified Output Dimensions

When using the Demux block to extract and output elements from a vector input, you can use -1 in a
vector expression to indicate that the block dynamically sizes the corresponding port. When a vector
expression comprises both positive values and -1 values, the block assigns as many elements as

1-350

Demux

needed to the ports with positive values. The block distributes the remaining elements as evenly as
possible over the ports with -1 values.

In this example, the Number of outputs parameter of the Demux block is set to [-1, 3, -1]. Thus, the
block outputs three signals where the second signal always has three elements. The sizes of the first
and third signals depend on the size of the input signal. For an input vector with seven elements, the
Demux block outputs two elements on the first port, three elements on the second port, and two
elements on the third port.

[}
II

Display3

T
1234567

Il

Constant

Display2

[X]
II

Display1

Copyright 2018 The Math\Works, Inc.

Ports
Input

Port_1 — Accept nonbus vector signal to extract and output signals from

real or complex values of any nonbus data type supported by Simulink software

Vector input signal from which the Demux block selects scalar signals or smaller vectors.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | image

Output

Port_1 — Output signals extracted from input vector signal
nonbus signal with real or complex values of any data type supported by Simulink software

Output signals extracted from the input vector. The output signal ports are ordered from top to
bottom. For a description of the port order for various block orientations, see “Identify Port Location
on Rotated or Flipped Block”.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | image

1-351

1 Blocks

Parameters

Number of outputs — Number of outputs

2 (default) | scalar | vector

Specify the number of outputs and, optionally, the dimensionality of each output port.

The value can be a scalar specifying the number of outputs or a vector whose elements specify the
widths of the block output ports. The block determines the size of its outputs from the size of the
input signal and the value of the Number of outputs parameter.

If you specify a scalar for the Number of outputs parameter, and all of the output ports are
connected, as you draw a new signal line close to the output side of a Demux block, the software adds
a port and updates the Number of outputs parameter.

For an input vector of width n, this table describes what the block outputs.

Parameter Value

Block Output

Examples and Comments

p=n p scalar signals If the input is a three-element
vector and you specify three
outputs, the block outputs three
scalar signals.
p>n Error This value is not supported.
p<n p vector signals each having n/p If the input is a six-element vector
elements and you specify three outputs, the
nmod p =0 block outputs three two-element
vectors.
p<n m vector signals each having (n/p) |If the input is a five-element vector
+1 elements and p -m signals having |and you specify three outputs, the
nmod p=m n/p elements block outputs two two-element
vector signals and one scalar signal.
[p1 P2 --- Pml m vector signals having widths p;, |If the input is a five-element vector
P2, --. Pn and you specify [3, 2] asthe
P1+Pyt. . .+Ppy=N output, the block outputs three of
the input elements on one port and
P > 0 the other two elements on the other

port.

1-352

Demux

Parameter Value

Block Output

Examples and Comments

An array that has one or more of m
elements with a value of -1, which
specifies that the software infers
the size for the element.

For example, suppose that you have
a four-element array with a total
width of 14 and you specify the
parameter to be [p; p, -1 p4].

The value for the third element (the
-1element)is 14 - (p; + p; +
P4)

m vector signals

If p; is greater than zero, the
corresponding output has width p;.
If p; is -1, the width of the
corresponding output is computed
dynamically.

[p1 P2 -+ Pml
P1+Pyt. . . +pp!=n

pp=>0

Error

This value is not supported.

If you specify a number of outputs that is smaller than the number of input elements, the block

distributes the elements as evenly as possible over the outputs.

Programmatic Use

To set the block parameter value programmatically, use the set param function.

Parameter: Outputs

Values: '2"' (default) | character vector | string scalar

Data Types: |char | string

Example: set param(gcb, 'Outputs', '4")

Display option — Displayed block icon

bar (default) | none

By default, the block icon is a solid bar of the block foreground color. To display the icon as a box

containing the block type name, select none.

Programmatic Use

To set the block parameter value programmatically, use the set param function.

Parameter: |DisplayOption

Values: "bar' (default) | 'none'’

Example: set param(gcb, 'DisplayOption', 'none')

Block Characteristics

Data Types

Boolean | double | enumerated | fixed point | half | integer |
single

1-353

1 Blocks

Direct Feedthrough |yes

Multidimensional no
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support
This block supports code generation for complex signals.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

1-354

Demux

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type or capability support depends on block implementation.

See Also
Selector

Topics

“Virtual and Nonvirtual Signals”
“Composite Interface Guidelines”

1-355

1 Blocks

Derivative

Output time derivative of input

" Libraries:
Ax P Simulink / Continuous

Description

The Derivative block approximates the derivative of the input signal u with respect to the simulation
time t. You obtain the approximation of

du
at’

by computing a numerical difference Au/At,where Au is the change in input value and At is the
change in time since the previous simulation (major) time step.

This block accepts one input and generates one output. The initial output for the block is zero.
The precise relationship between the input and output of this block is:

_ Au _ u(t) = u(Tprevious)
y(t) = AF -

t- TPTeViOUS t> TPT'eViOus,

where t is the current simulation time and Tpreyious is the time of the last output time of the
simulation. The latter is the same as the time of the last major time step.

The Derivative block output might be sensitive to the dynamics of the entire model. The accuracy of
the output signal depends on the size of the time steps taken in the simulation. Smaller steps allow
for a smoother and more accurate output curve from this block. However, unlike with blocks that
have continuous states, the solver does not take smaller steps when the input to this block changes
rapidly. Depending on the dynamics of the driving signal and model, the output signal of this block
might contain unexpected fluctuations. These fluctuations are primarily due to the driving signal
output and solver step size.

Because of these sensitivities, structure your models to use integrators (such as Integrator blocks)
instead of Derivative blocks. Integrator blocks have states that allow solvers to adjust the step size
and improve simulation accuracy. See “Circuit Model” for an example of choosing the best-form
mathematical model to avoid using Derivative blocks in your models.

If you must use the Derivative block with a variable step solver, set the solver maximum step size to a
value such that the Derivative block can generate answers with adequate accuracy. To determine this
value, you might need to repeatedly run the simulation using different solver settings.

If the input to this block is a discrete signal, the continuous derivative of the input exhibits an impulse
when the value of the input changes. Otherwise, it is 0. Alternatively, you can define the discrete
derivative of a discrete signal using the difference of the last two values of the signal:

y(k) = 2200 — u(k — 1)

1-356

Derivative

Taking the z-transform of this equation results in:

Ye) _1-270 z-1
u(z) = At T At -z

The Discrete Derivative block models this behavior. Use this block instead of the Derivative block to
approximate the discrete-time derivative of a discrete signal.

Ports
Input

Port_1 — Input signal
real scalar or vector

Signal to be differentiated, specified as a real scalar or vector.

Data Types: double
Output

Port_1 — Time derivative of input signal
real scalar or vector

Time derivative of input signal, specified as a real scalar or vector. The input signal is differentiated
with respect to time as:
_ Au _ u(®) — u(Tprevious)

y(t) = Ar

t- Tprevious t> Tprevious,

where t is the current simulation time and Tprevioys is the time of the last output time of the
simulation. The latter is the same as the time of the last major time step.

Data Types: double

Parameters

Coefficient c in the transfer function approximation s/(c*s + 1) used for linearization —
Specify the time constant ¢ to approximate the linearization of your system

inf (default)

The exact linearization of the Derivative block is difficult because the dynamic equation for the block
is y = u, which you cannot represent as a state-space system. However, you can approximate the
linearization by adding a pole to the Derivative block to create a transfer function s/(c * s + 1). The
addition of a pole filters the signal before differentiating it, which removes the effect of noise.

The default value inf corresponds to a linearization of 0.
Tips

As a best practice, change the value of ¢ to ib, where f}, is the break frequency of the filter.

1-357

1 Blocks

* The parameter must be a finite positive value.

Programmatic Use

Block Parameter: CoefficientInTFapproximation
Type: character vector, string

Values: 'inf'

Default: 'inf'

Block Characteristics

Data Types double
Direct Feedthrough |no
Multidimensional no
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced before R2006a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Consider using the Model Discretizer to map the continuous blocks into discrete equivalents that
support code generation. To access the Model Discretizer, in the Apps tab, under Control Systems,
click Model Discretizer.

Not recommended for production code.

See Also
Discrete Derivative

Topics
“Improved Linearization with Transfer Fcn Blocks” on page 12-39

1-358

Descriptor State-Space

Descriptor State-Space

Model linear implicit systems

Libraries:

Ei = Ax 4 Bi b Simulink / Continuous
y=Cr+

Y.

Description

The Descriptor State-Space block allows you to model linear implicit systems that can be expressed in
the formEx = Ax 4+ Bu where E is the mass matrix of the system. When E is nonsingular and therefore

invertible, the system can be written in its explicit form x = E~ LAx + E"'Bu and modeled using the
State-Space block.

When the mass matrix E is singular, one or more derivatives of the dependent variables of the system
are not present in the equations. These variables are called algebraic variables. Differential equations
that contain such algebraic variables are called differential algebraic equations. Their state space
representation is of the form

Ex = Ax + Bu
y=Cx+Du

where the variables have the following meanings:

* x is the state vector
* uis the input vector
* yis the output vector

Ports
Input

Input 1 — Input signal
scalar | vector

Real-valued input vector of type double whose width is the number of columns in the B and D
matrices.

Data Types: double
Output

Output 1 — Output vector
scalar | vector

Real-valued input vector of type double whose width is the number of rows in the C and D matrices.

Data Types: double

1-359

1 Blocks

Parameters

E — Mass matrix

1 (default) | scalar | matrix

Specify the mass matrix E as a real-valued n-by-n matrix, where n is the number of states in the
system. E must be the same size as A. E can be singular or non-singular.

Programmatic Use

Block Parameter: E

Type: character vector, string
Values: scalar | matrix
Default: '1'

A — Matrix coefficient, A

1 (default) | scalar | matrix

Specify the matrix coefficient A as a real-valued n-by-n matrix, where n is the number of states in the
system. A must be the same size as E.

Programmatic Use

Block Parameter: A

Type: character vector, string
Values: scalar | matrix
Default: '1'

B — Matrix coefficient, B

1 (default) | scalar | vector | matrix

Specify the matrix coefficient B as a real-valued n-by-m matrix, where n is the number of states in the
system and m is the number of inputs.

Programmatic Use

Block Parameter: B

Type: character vector, string
Values: scalar | vector | matrix
Default: '1'

C — Matrix coefficient, C

1 (default) | scalar | vector | matrix

Specify the matrix coefficient C as a real-valued r-by-n matrix, where n is the number of states in the
system and r is the number of outputs.

Programmatic Use

Block Parameter: C

Type: character vector, string
Values: scalar | vector | matrix
Default: '1'

D — Matrix coefficient, D

1-360

Descriptor State-Space

1 (default) | scalar | vector | matrix

Specify the matrix coefficient D as a real-valued r-by-m matrix, where r is the number of outputs of
the system and m is the number of inputs to the system.

Programmatic Use

Block Parameter: D

Type: character vector, string
Values: scalar | vector | matrix
Default: '1'

Initial condition — Initial condition of states

0 (default) | scalar

vector | matrix

Specify initial condition of the block states. The minimum and maximum values are bound by the
Output minimum and Output maximum block parameters.

Tip Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

To enable this parameter, set the Initial condition source to internal.

Programmatic Use

Block Parameter: InitialCondition
Type: character vector, string

Values: scalar | vector | matrix

Default: '0’

Direct feedthrough — Set output signal dependency on input

true (default) | false

Specify whether the output of the block has a direct dependency on the input signal. Use this
parameter for systems having more than 500 continuous states in order to speed up simulation. For
systems with 500 continuous states or less, Simulink automatically determines this setting.

Programmatic Use

Block Parameter: DirectFeedthrough
Type: character vector, string

Values: 'True' | 'False'

Default: 'True'

Linearize to sparse model — Linearize states to sparse matrices
on (default) | off

For Simulink Control Design™ workflows, linearize the system represented by the Descriptor State-
Space block to a sparse model during linearization.

Disable this parameter to linearize the system to a non-sparse explicit state-space model.

Absolute tolerance — Absolute tolerance for computing block states

1-361

1 Blocks

auto (default) | scalar | vector

Absolute tolerance for computing block states, specified as a positive, real-valued, scalar or vector. To
inherit the absolute tolerance from the Configuration Parameters, specify auto or - 1.

» If you enter a real scalar, then that value overrides the absolute tolerance in the Configuration
Parameters dialog box for computing all block states.

» If you enter a real vector, then the dimension of that vector must match the dimension of the
continuous states in the block. These values override the absolute tolerance in the Configuration
Parameters dialog box.

» Ifyou enter auto or -1, then Simulink uses the absolute tolerance value in the Configuration
Parameters dialog box (see “Solver Pane”) to compute block states.

Programmatic Use

Block Parameter: AbsoluteTolerance

Type: character vector, string

Values: 'auto' | '-1"' | any positive real-valued scalar or vector
Default: 'auto’

State Name (e.g., 'position') — Assign unique name to each state

' (default) | 'position' |{'a', 'b', 'c'}|a]..
Assign a unique name to each state. If this field is blank (' '), no name assignment occurs.

* To assign a name to a single state, enter the name between quotes, for example, 'position’.

* To assign names to multiple states, enter a comma-delimited list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

* To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, string, cell array, or structure.

Limitations

» The state names apply only to the selected block.
* The number of states must divide evenly among the number of state names.
* You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

Programmatic Use

Block Parameter: ContinuousStateAttributes
Type: character vector, string

Values: ' ' | user-defined

Default: ' '

Block Characteristics

Data Types double

Direct Feedthrough |yes

1-362

Descriptor State-Space

Multidimensional no
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced in R2018b

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Consider using the Model Discretizer to map these continuous blocks into discrete equivalents
that support code generation. To access the Model Discretizer, in the Apps tab, under Control
Systems, click Model Discretizer.

2 Not recommended for production code.

See Also

Blocks
State-Space | Algebraic Constraint

Functions
dss | sparss

Topics
“Solve Differential Algebraic Equations (DAEs)”
“Model Differential Algebraic Equations”

External Websites
https://www.mathworks.com/matlabcentral/fileexchange/7481-manuscript-of-solving-index-1-daes-in-
matlab-and-simulink

1-363

https://www.mathworks.com/matlabcentral/fileexchange/7481-manuscript-of-solving-index-1-daes-in-matlab-and-simulink
https://www.mathworks.com/matlabcentral/fileexchange/7481-manuscript-of-solving-index-1-daes-in-matlab-and-simulink

1 Blocks

1-364

Detect Change

Detect change in signal value

Libraries:
Simulink / Logic and Bit Operations
Un= Lz p HDL Coder / Logic and Bit Operations

Description

The Detect Change block determines if an input signal does not equal its previous value. The initial
condition determines the initial value of the previous input U/z.

This block supports only discrete sample times.

Ports
Input

Port_1 — Input signal
signal value

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point | enumerated | built-in integer | floating point

Output

Port_1 — Output signal
0|1

Output signal, true (equal to 1) when the input signal does not equal its previous value; false (equal to
0) when the input signal equals its previous value.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters

Initial condition — Initial condition for the previous input

0 (default) | scalar | vector

Set the initial condition for the previous input U/z.

Programmatic Use
Block Parameter: vinit
Type: character vector

Detect Change

Values: scalar | vector
Default:'0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

* Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

* Elements as channels (sample based) — Treat each element of the input as a separate
channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector

Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)
Default: 'Elements as channels (sample based)'

Output data type — Data type of the output
boolean (default) | uint8

Set the output data type to boolean or uints8.

Programmatic Use

Block Parameter: QutDataTypeStr
Type: character vector

Values: 'boolean' | 'uint8'
Default: 'boolean’

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |yes

Zero-Crossing no

Detection

1-365

1 Blocks

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Detect Decrease | Detect Fall Negative | Detect Fall Nonpositive | Detect Increase | Detect Rise
Nonnegative | Detect Rise Positive

1-366

Detect Decrease

Detect Decrease

Detect decrease in signal value

Libraries:
Simulink / Logic and Bit Operations
U<l p HDL Coder / Logic and Bit Operations

Description
The Detect Decrease block determines if an input is strictly less than its previous value.

This block supports only discrete sample times.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Output signal
0|1

Output signal, true (equal to 1) when the input signal is less than its previous value; false (equal to 0)
when the input signal is greater than or equal to its previous value.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
Boolean | fixed point | enumerated
Parameters

Initial condition — Initial condition for the previous input

0 (default) | scalar | vector

Set the initial condition for the previous input U/z.

Programmatic Use

Block Parameter: vinit
Type: character vector
Values: scalar | vector

1-367

1 Blocks

1-368

Default: '0'
Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

* Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

* Elements as channels (sample based) — Treat each element of the input as a separate
channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector

Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)

Default: 'Elements as channels (sample based)'
Output data type — Data type of the output
boolean (default) | uint8

Set the output data type to boolean or uint8.

Programmatic Use

Block Parameter: QutDataTypeStr
Type: character vector

Values: 'boolean' | 'uint8'
Default: 'boolean’

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |yes

Zero-Crossing no

Detection

Detect Decrease

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Detect Change | Detect Fall Negative | Detect Fall Nonpositive | Detect Increase | Detect Rise
Nonnegative | Detect Rise Positive

1-369

1 Blocks

1-370

Detect Fall Negative

Detect falling edge when signal value decreases to strictly negative value, and its previous value was
nonnegative

Libraries:
Simulink / Logic and Bit Operations
=0
& NOT p
Uz =0
Description

The Detect Fall Negative block determines if the input is less than zero, and its previous value is
greater than or equal to zero.

This block supports only discrete sample times.

Ports
For more information, see “Data Types Supported by Simulink” in the Simulink documentation.
Input

Port_1 — Input signal
signal value

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Output signal
0|1

Output signal, true (equal to 1) when the input signal is less than zero, and its previous value was

greater than or equal to zero; false (equal to 0) when the input signal is greater than or equal to zero,
or if the input signal is negative, its previous value was also negative.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Parameters
Initial condition — Initial condition for the previous input

0 (default) | scalar | vector

Detect Fall Negative

Set the initial condition of the Boolean expression U/z < 0.

Programmatic Use

Block Parameter: vinit
Type: character vector
Values: scalar | vector
Default:'0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels (frame based)
Specify whether the block performs sample- or frame-based processing:

* Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

* Elements as channels (sample based) — Treat each element of the input as a separate
channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector

Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)
Default: 'Elements as channels (sample based)'

Output data type — Data type of the output
boolean (default) | uint8

Set the output data type to boolean or uint8.

Programmatic Use

Block Parameter: OutDataTypeStr
Type: character vector

Values: 'boolean' | 'uint8'
Default: 'boolean’

Block Characteristics

Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

1-371

1 Blocks

Variable-Size Signals |yes

Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Detect Decrease | Detect Change | Detect Fall Nonpositive | Detect Increase | Detect Rise
Nonnegative | Detect Rise Positive

1-372

Detect Fall Nonpositive

Detect Fall Nonpositive

Detect falling edge when signal value decreases to nonpositive value, and its previous value was
strictly positive

Libraries:
Simulink / Logic and Bit Operations
U==0
& NOT p
Wiz <=0
Description

The Detect Fall Nonpositive block determines if the input is less than or equal to zero, and its
previous value was greater than zero.

* The output is true (equal to 1) when the input signal is less than or equal to zero, and its previous
value was greater than zero.

* The output is false (equal to 0) when the input signal is greater than zero, or if it is nonpositive, its
previous value was also nonpositive.

This block supports only discrete sample times.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that detects a falling edge, specified as a scalar, vector, or matrix.

* The output is true (equal to 1) when the input signal is less than or equal to zero, and its previous
value was greater than zero.

* The output is false (equal to 0) when the input signal is greater than zero, or if it is nonpositive, its
previous value was also nonpositive.

Data Types: uint8 | Boolean

1-373

1 Blocks

1-374

Parameters
Initial condition — Initial condition of Boolean expression U/z <= 0
0 (default) | scalar | vector | matrix

Set the initial condition of the Boolean expression U/z <= 0.

Programmatic Use

Block Parameter: vinit
Type: character vector
Values: scalar | vector | matrix
Default: '0’

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

* Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

* Elements as channels (sample based) — Treat each element of the input as a separate
channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use

Block Parameter: InputProcessing

Type: character vector

Values: 'Columns as channels (frame based)'| 'Elements as channels (sample
based)

Default: 'Elements as channels (sample based)'

Output data type — Output data type
boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use

Block Parameter: QutDataTypeStr
Type: character vector

Values: 'boolean' | 'uint8'
Default: 'boolean’

Detect Fall Nonpositive

Block Characteristics

Detection

Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |yes

Zero-Crossing no

Version History
Introduced before R2006a

Extended Capabili

C/C++ Code Generation

ties

Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized

logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text

code using Simulink® PLC Coder™.

1-375

1 Blocks

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Detect Change | Detect Decrease | Detect Fall Negative | Detect Increase | Detect Rise Nonnegative |
Detect Rise Positive

1-376

Detect Increase

Detect Increase

Detect increase in signal value

Libraries:
Simulink / Logic and Bit Operations
U=wz p HDL Coder / Logic and Bit Operations

Description

The Detect Increase block determines if an input is strictly greater than its previous value.

* The output is true (equal to 1) when the input signal is greater than its previous value.
» The output is false (equal to 0) when the input signal is less than or equal to its previous value.

This block supports only discrete sample times.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal, detecting an increase in signal value, specified as a scalar, vector, or matrix.

* The output is true (equal to 1) when the input signal is greater than its previous value.
* The output is false (equal to 0) when the input signal is less than or equal to its previous value.

Data Types: uint8 | Boolean

Parameters
Initial condition — Initial condition of previous input

0.0 (default) | scalar | vector | matrix

Set the initial condition for the previous input U/z.

1-377

1 Blocks

Programmatic Use

Block Parameter: vinit
Type: character vector
Values: scalar | vector | matrix
Default: '0.0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

* Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

* Elements as channels (sample based) — Treat each element of the input as a separate
channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use

Block Parameter: InputProcessing

Type: character vector

Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)

Default: 'Elements as channels (sample based)'
Output data type — Output data type
boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use

Block Parameter: QOutDataTypeStr
Type: character vector

Values: 'boolean' | 'uint8'
Default: 'boolean'’

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |yes

1-378

Detect Increase

Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Detect Change | Detect Decrease | Detect Fall Negative | Detect Fall Nonpositive | Detect Rise
Nonnegative | Detect Rise Positive

1-379

1 Blocks

1-380

Detect Rise Nonnegative

Detect rising edge when signal value increases to nonnegative value, and its previous value was
strictly negative

Libraries:
Simulink / Logic and Bit Operations
U==0
& NOT @
Wz ==0
Description

The Detect Rise Nonnegative block determining if the input is greater than or equal to zero, and its
previous value was less than zero.

* The output is true (equal to 1) when the input signal is greater than or equal to zero, and its
previous value was less than zero.

* The output is false (equal to 0) when the input signal is less than zero, or if the input signal is
nonnegative, its previous value was also nonnegative.

This block supports only discrete sample times.

Ports
Input

Port_1 — Input signal

scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that indicates a rising edge whenever the signal value increases to a nonnegative value,
and its previous value was strictly negative. The output can be a scalar, vector, or matrix.

* The output is true (equal to 1) when the input signal is greater than or equal to zero, and its
previous value was less than zero.

* The output is false (equal to 0) when the input signal is less than zero, or if the input signal is
nonnegative, its previous value was also nonnegative.

Data Types: uint8 | Boolean

Detect Rise Nonnegative

Parameters
Initial condition — Initial condition of Boolean expression U/z >= 0
0 (default) | scalar | vector | matrix

Set the initial condition of the Boolean expression U/z >= 0.

Programmatic Use

Block Parameter: vinit
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

* Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

* Elements as channels (sample based) — Treat each element of the input as a separate
channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use

Block Parameter: InputProcessing

Type: character vector

Values: 'Columns as channels (frame based)'| 'Elements as channels (sample
based)

Default: 'Elements as channels (sample based)'

Output data type — Output data type
boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use

Block Parameter: QutDataTypeStr
Type: character vector

Values: 'boolean' | 'uint8'
Default: 'boolean’

1-381

1 Blocks

1-382

Block Characteristics

Detection

Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |yes

Zero-Crossing no

Version History
Introduced before R2006a

Extended Capabili

C/C++ Code Generation

ties

Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized

logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline

Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text

code using Simulink® PLC Coder™.

Detect Rise Nonnegative

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Detect Change | Detect Decrease | Detect Fall Negative | Detect Fall Nonpositive | Detect Increase
Detect Rise Positive

1-383

1 Blocks

1-384

Detect Rise Positive

Detect rising edge when signal value increases to strictly positive value, and its previous value was
nonpositive

Libraries:
Simulink / Logic and Bit Operations
=0
& NOT @
Uz =0
Description

The Detect Rise Positive block detects a rising edge by determining if the input is strictly positive,
and its previous value was nonpositive.

* The output is true (equal to 1) when the input signal is greater than zero, and the previous value
was less than or equal to zero.

* The output is false (equal to 0) when the input is negative or zero, or if the input is positive, the
previous value was also positive.

This block supports only discrete sample times.

Ports
Input

Port_1 — Input signal

scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output signal
scalar | vector | matrix

Output signal that detects a rising edge whenever the input is strictly positive, and its previous value
was nonpositive. The output can be a scalar, vector, or matrix.

* The output is true (equal to 1) when the input signal is greater than zero, and the previous value
was less than or equal to zero.

* The output is false (equal to 0) when the input is negative or zero, or if the input is positive, the
previous value was also positive.

Data Types: uint8 | Boolean

Detect Rise Positive

Parameters
Initial condition — Initial condition of Boolean expression U/z > 0
0 (default) | scalar | vector | matrix

Set the initial condition of the Boolean expression U/z > 0.

Programmatic Use

Block Parameter: vinit
Type: character vector
Values: scalar | vector | matrix
Default: '0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

* Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

* Elements as channels (sample based) — Treat each element of the input as a separate
channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use

Block Parameter: InputProcessing

Type: character vector

Values: 'Columns as channels (frame based)'| 'Elements as channels (sample
based)

Default: 'Elements as channels (sample based)'

Output data type — Output data type
boolean (default) | uint8

Specify the output data type as boolean or uint8.

Programmatic Use

Block Parameter: QutDataTypeStr
Type: character vector

Values: 'boolean' | 'uint8'
Default: 'boolean’

1-385

1 Blocks

1-386

Block Characteristics

Detection

Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |yes

Zero-Crossing no

Version History
Introduced before R2006a

Extended Capabili

C/C++ Code Generation

ties

Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized

logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline

Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text

code using Simulink® PLC Coder™.

Detect Rise Positive

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Detect Change | Detect Decrease | Detect Fall Negative | Detect Fall Nonpositive | Detect Increase
Detect Rise Nonnegative

1-387

1 Blocks

1-388

Difference

Calculate change in signal over one time step

Libraries:
Simulink / Discrete

=1

—]

Description

The Difference block outputs the current input value minus the previous input value.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array.

Dependencies

When you set Input processing to Columns as channels (frame based), the input signal must
have two dimensions or less.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Current input minus previous input
scalar | vector | matrix | N-D array

Current input minus previous input, specified as a scalar, vector, matrix, or N-D array.

Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

Parameters

Main

Initial condition for previous input — Initial condition
0.0 (default) | scalar | vector | matrix | N-D array

Set the initial condition for the previous input.

Difference

Programmatic Use

Parameter: ICPrevInput

Type: character vector

Values: scalar | vector | matrix | N-D array
Default: '0.0'

Input processing — Specify sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

* Columns as channels (frame based) — Treat each column of the input as a separate
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

* Elements as channels (sample based) — Treat each element of the input as a separate
channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP
System Toolbox).

Programmatic Use

Block Parameter: InputProcessing

Type: character vector

Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)

Default: 'Elements as channels (sample based)'

Signal Attributes

Output minimum — Minimum output value for range checking
[1 (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:
* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

» Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

1-389

1 Blocks

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMin
Type: character vector
Values: '[]'|scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[1 (default) | scalar
Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

* Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMax
Type: character vector
Values: '[]'|scalar
Default: '[]'

Output data type — Output data type

Inherit: Inherit via internal rule (default) | Inherit via back propagation |
double | single | int8 | uint8 | int16 | uint1l6 | int32 | uint32 | int64 | uint64 |
fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,270,0) | <data type expression>

Specify the output data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via back propagation
* The name of a built-in data type, for example, single

* The name of a data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

1-390

Difference

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “Z . For more information, see “Specify Data Types Using Data Type
Assistant”.

Dependencies

When input is a floating-point data type smaller than single precision, the Inherit: Inherit via
internal rule output data type depends on the setting of the “Inherit floating-point output type
smaller than single precision” configuration parameter. Data types are smaller than single precision
when the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.

Programmatic Use
Parameter: OutDataTypeStr
Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via back
propagation' | 'double' | 'single' | 'int8' | 'uint8' | 'intl6' | 'uintl6' |
'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)" | 'fixdt(1,16,270,0)' | '<data type expression>'

Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector

Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use

Block Parameter: RndMeth

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
‘Zero'

Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action

1-391

1 Blocks

1-392

off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use

Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics

Data Types Boolean? | double | fixed point | half | integer | single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |yes

Zero-Crossing no

Detection

a This block is not recommended for use with Boolean signals.

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

* The code generator does not explicitly group primitive blocks that constitute a nonatomic masked
subsystem block in the generated code. This flexibility allows for more efficient code generation.
In certain cases, you can achieve grouping by configuring the masked subsystem block to execute
as an atomic unit by selecting the Treat as atomic unit option.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

Difference

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline

Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text

Fixed-Point Conversion

code using Simulink® PLC Coder™.

Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
diff

Topics

“Sample- and Frame-Based Concepts” (DSP System Toolbox)

1-393

1 Blocks

1-394

Digital Clock

Output simulation time at specified sampling interval

Libraries:

Simulink / Sources

Description

The Digital Clock block outputs the simulation time only at the specified sampling interval. At other
times, the block holds the output at the previous value. To control the precision of this block, use the
Sample time parameter in the block dialog box.

Use this block rather than the Clock block (which outputs continuous time) when you need the
current simulation time within a discrete system.

Ports
Output

Port_1 — Sample time
scalar

Sample time, in seconds, at the specified sampling interval. At other times, the block holds the output
at the previous value.

Data Types: double

Parameters
Sample time — Sampling interval
1 (default) | scalar | vector

Specify the sampling interval in seconds. You can specify the sampling interval in one of two ways:

* As the period, specified as a real-valued scalar with data type double.

* As the period and offset, specified as a real-valued vector of length 2 with data type double. The
period and offset must be finite and non-negative, and the offset value must be less than the
period.

For more information, see Specifying Sample Time.

Tip Do not specify a continuous sample time, either © or [0, 0]. Also, avoid specifying -1 (inheriting
the sample time) because this block is a source.

Digital Clock

Programmatic Use

Block Parameter: SampleTime
Type: character vector

Values: scalar | vector

Default: '1'

Block Characteristics

Data Types double
Direct Feedthrough |no
Multidimensional no
Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times. While
the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code. Usually, blocks evolve toward being suitable for
production code. Thus, blocks suitable for production code remain suitable.

See Also
Clock

Topics
“Sample Time”

1-395

1 Blocks

1-396

Direct Lookup Table (n-D)

Index into n-dimensional table to retrieve element, vector, or 2-D matrix

Libraries:
2D T Simulink / Lookup Tables
b HDL Coder / Lookup Tables
2
Description

The Direct Lookup Table (n-D) block indexes into an n-dimensional table to retrieve an element,
vector, or 2-D matrix. The first selection index corresponds to the top (or left) input port. You can
choose to provide the table data as an input to the block, or define the table data on the block dialog
box. The number of input ports and the size of the output depend on the number of table dimensions
and the output slice you select.

If you select a vector from a 2-D table, the output vector can be a column or a row, depending on the
model configuration parameter setting Math and Data Types > Use algorithms optimized for
row-major array layout. The block inputs are zero-based indices (for more information, see the
Inputs select this object from table parameter.

The Direct Lookup Table block supports symbolic dimensions.
Block Inputs and Outputs

The Direct Lookup Table (n-D) block uses inputs as zero-based indices into an n-dimensional table.
The number of inputs varies with the shape of the output: an element, vector, or 2-D matrix.

You define a set of output values as the Table data parameter. For the default column-major
algorithm behavior, the first input specifies the zero-based index to the table dimension that is one
higher than the output dimensionality. The next input specifies the zero-based index to the next table
dimension, and so on.

Output Shape |Output Dimensionality Table Dimension that Maps to the First Input
Element 0 1
Vector 1 2
Matrix 2 3

Suppose that you want to select a vector of values from a 4-D table.

) 4-D TK]

7 b
b

The following mapping of block input port to table dimension applies.

Direct Lookup Table (n-D)

This input port... Is the index for this table dimension...
1 2
2 3
3 4

Changes in Block Icon Appearance

Depending on parameters you set, the block icon changes appearance. For table dimensions higher
than 4, the icon matches the 4-D version but shows the exact number of dimensions at the top.

When you use the Table data parameter, you see these icons for the default column-major behavior.
Some icons are different when you select the configuration parameter Math and Data Types > Use
algorithms optimized for row-major array layout.

Object that Inputs Number of Table Dimensions
Select from the
1 2 3 4
Table
Element TDTH 2.0 T[] y 0T Y 0T
3 b b umu il 4 2)
)) 1y)
2
Vector 0T 20T 30 T y 4D T
E 3 b =71 b 3 b
At 7
2-D Matrix Not applicable 20T R 40T
b X (5 | > p

When you use the table input port, you see these icons.

Object that Inputs

Number of Table Dimensions

Select from the
1 2 4
Table :
Element) DTN y 20T y 30T 40 T[K]
E b b ; mu A5l b
yT 3T b e T
Vector DTH 2D T[] y 3DTH 3y 40T
Ir E) 4 N e b ; 4
AT I

1-397

1 Blocks

Object that Inputs Number of Table Dimensions
'?'aetl)T:t from the 1 2 3 a
2-D Matrix Not applicable ST 5T NI
ST b ’ =7 b) 6 b
AT 1 b -
Ports
Input

Port_1 — Index i1 input values
scalar | vector

For the default column-major algorithm, the first input port, specifying the zero-based index to the
table dimension that is one higher than the output dimensionality (0, 1, or 2). The next input specifies
the zero-based index to the next table dimension, and so on. All index inputs must be real-valued.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
Boolean | fixed point | enumerated

Port_N — Index N input values
scalar | vector

For the default column-major algorithm, the N-th input port, specifying the zero-based index to the
table dimension that is N higher than the output dimensionality (0, 1, or 2). The number of inputs
varies with the shape of the output. All index inputs must be real-valued.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point | enumerated

T — Table data
vector | matrix | N-D array

Table data, specified as a vector, matrix, or N-D array. The table size must match the dimensions of
the Number of dimensions parameter. The block's output data type is the same as the table data

type.

Dependencies

To enable this port, select the Make table an input check box.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Output element, vector, or 2-D matrix
scalar | vector | 2-D matrix

Output slice, provided as a scalar, vector, or 2-D matrix. The size of the block output is determined by
the setting of the Inputs select this object from table parameter. The output data type is the same
as the table data type.

1-398

Direct Lookup Table (n-D)

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point | enumerated

Parameters

Main

Table

Number of table dimensions — Number of dimensions of table data

2 (default) | 1|34

Number of dimensions that the Table data parameter must have. This value determines the number
of independent variables for the table and the number of inputs to the block.

To specify... Do this...
1,2,3,0or4 Select the value from the drop-down list.
A higher number of table dimensions Enter a positive integer directly in the field.

The maximum number of table dimensions that
this block supports is 30.

Programmatic Use

Block Parameter: NumberQfTableDimensions
Type: character vector

Values: '1' | '2' | '3'" | 4" | ... |'30"]
Default: '2'

Make table an input — Provide table data as a block input

off (default) | on

Select this check box to provide table data to the Direct Lookup Table (n-D) block as a block input.
When you select this check box, a new input port, T, appears. Use this port to input the table data.

Programmatic Use

Block Parameter: TableIsInput
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Table data — Table of output values
[4 56; 16 19 20; 10 18 23] (default) | scalar, vector, matrix, or N-D array

Specify the table of output values. The table size must match the dimensions of the Number of table
dimensions parameter.

Tip During block diagram editing, you can leave the Table data field empty. But for simulation, you
must match the number of dimensions in Table data to the Number of table dimensions. For
details on how to construct multidimensional MATLAB arrays, see “Multidimensional Arrays”.

1-399

1 Blocks

1-400

Click Edit to open the Lookup Table Editor. For more information, see “Edit Lookup Tables”.

Dependencies

To enable the Table data field, clear the Make table an input check box.

Programmatic Use

Block Parameter: Table

Type: character vector

Values: scalar, vector, matrix, or N-D array
Default: '[4 5 6;16 19 20;10 18 23]'

Algorithm
Inputs select this object from table — Specify whether output is an element, vector, or 2-D matrix
Element (default) | Vector | 2-D Matrix

Specify whether the output data is a single element, a vector, or a 2-D matrix. The number of input
ports for indexing depends on your selection.

Selection Number of Input Ports for Indexing
Element Number of table dimensions

Vector Number of table dimensions -1

2-D Matrix Number of table dimensions -2

This numbering matches MATLAB indexing. For example, if you have a 4-D table of data, follow these
guidelines.

To access... Specify... As in...

An element Four indices array(1,2,3,4)

A vector Three indices array(:,2,3,4) (default
column-major algorithm)

A 2-D matrix Two indices array(:,:,3,4) (default
column-major algorithm)

Tips

When the Math and Data Types > Use algorithms optimized for row-major array layout
configuration parameter is set, the Direct Lookup Table block behavior changes from column-major to
row-major. For this block, the column-major and row-major algorithms may differ semantically in
output calculations, resulting in different numerical values. For example, assume that Inputs select
this object from table parameter is set to Vector. The elements of the selected vector are
contiguous in the table storage memory. This table shows the column-major and row-major algorithm
depending on the table dimension:

Table Dimension Column-Major Algorithm Row-Major Algorithm

2-D table Column vector is selected Row vector is selected

3-D and higher table

Output vector is selected from
the first dimension of the table

Output vector is selected from
the last dimension of the table

Direct Lookup Table (n-D)

Consider the row-major and column-major direct lookup algorithms with vector output from a 3-D
table. The last dimension is the third dimension of a 3-D table. Due to semantic changes, column-
major and row-major direct lookup may output different vector size and numerical values.

This figure shows a Direct Lookup Table (n-D) block configured with a 3-D table and a vector output.
By default, the block icon shows the column-major algorithm.

3D T[]
[b1
1 > WA

Selact a vector
from & 3x2x4 tabla

v

To have the same block use the row-major algorithm, change the Math and Data Types > Use
algorithm optimized for row-major layout configuration parameter of the model and recompile.
The block icon changes to reflect the change to the algorithm optimized for row-major behavior.

3-D T[K]

[0] s
0 (1)
[1

Sslact & vector
from & Jx2xd table

For more information on row-major support, see “Row-Major Array Layout: Simplify integration with
external C/C++ code for Lookup Table and other blocks” (Simulink Coder).

Programmatic Use

Block Parameter: InputsSelectThisObjectFromTable
Type: character vector

Values: 'Element' | 'Vector' | '2-D Matrix'
Default: 'Element’

Diagnostic for out-of-range input — Block action when input is out of range
Warning (default) | None | Error

Specify whether to show a warning or error when an index is out of range with respect to the table
dimension. Options include:

* None — Produce no response.

* Warning — Display a warning and continue the simulation.

* Error — Terminate the simulation and display an error.

When you select None or Warning, the block clamps out-of-range indices to fit table dimensions. For

example, if the specified index is 5.3 and the maximum index for that table dimension is 4, the block
clamps the index to 4.

1-401

1 Blocks

1-402

Programmatic Use

Block Parameter: DiagnosticForOutOfRangeInput
Type: character vector

Values: 'None' | 'Warning' | 'Error!'

Default: 'Warning'

Sample time — Sample time value other than -1
-1 (default) | scalar | vector

Specify the sample time as a value other than - 1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than - 1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

Code generation

Remove protection against out-of-range input in generated code — Remove code that checks
for out-of-range input values

off (default) | on

Specify whether or not to include code that checks for out-of-range input values.

Check Box Result When to Use

on Generated code does not For code efficiency
include conditional statements
to check for out-of-range
breakpoint inputs.

When the input is out-of-range,
it may cause undefined behavior
for generated code.

off Generated code includes For safety-critical applications
conditional statements to check

for out-of-range inputs.

If your input is not out of range, you can select the Remove protection against out-of-range index
in generated code check box for code efficiency. By default, this check box is cleared. For safety-
critical applications, do not select this check box. If you want to select the Remove protection
against out-of-range index in generated code check box, first check that your model inputs are in
range. For example:

1 Clear the Remove protection against out-of-range index in generated code check box.
2 Set the Diagnostic for out-of-range input parameter to Error.
3 Simulate the model in normal mode.

Direct Lookup Table (n-D)

4 If there are out-of-range errors, fix them to be in range and run the simulation again.

When the simulation no longer generates out-of-range input errors, select the Remove
protection against out-of-range index in generated code check box.

Note When you select the Remove protection against out-of-range index in generated
code check box and the input is out of range, the behavior is undefined for generated code.

Depending on your application, you can run the following Model Advisor checks to verify the usage of
this check box:

* By Product > Embedded Coder > Identify lookup table blocks that generate expensive
out-of-range checking code

* By Product > Simulink Check > Modeling Standards > DO-178C/D0-331 Checks > Check
usage of lookup table blocks

For more information about the Model Advisor, see “Run Model Advisor Checks”.

Additionally, to determine if it is safe to select this check box, if you have a Simulink Design Verifier
license, consider using the “Detect Block Input Range Violations” (Simulink Design Verifier) check.

Programmatic Use

Block Parameter: RemoveProtectionInput
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Table Attributes

Note The parameters in the Table Attributes pane are not available if you select Make table an
input. In this case, the block inherits all table attributes from the input port with the label T.

Table minimum — Minimum value table data can have
[1 (default) | finite, real, double, scalar

Specify the minimum value for table data. The default value is [] (unspecified).

Programmatic Use

Block Parameter: TableMin
Type: character vector
Values: scalar

Default: '[]'

Table maximum — Maximum value table data can have
[1 (default) | finite, real, double, scalar

Specify the maximum value for table data. The default value is [] (unspecified).

Programmatic Use
Block Parameter: TableMax
Type: character vector

1-403

1 Blocks

Values: scalar
Default: '[]"'

Table data type — Data type of table data

Inherit: Inherit from 'Table data' (default) | double | single | half | int8 | uint8 |
intl6 |uintl6 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,270,0) | Enum: <class name> | <data type expression>

Specify the table data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit from 'Table data'
* The name of a built-in data type, for example, single

* The name of a data type class, for example, an enumerated data type class

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “ |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: TableDataTypeStr
Type: character vector

Values: 'Inherit: Inherit from 'Table data'' | 'double' | 'single' | 'half' |
'int8' | 'uint8' | 'intl6' | 'uintl6e' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)"' |

'fixdt(1,16,270,0)"'| 'Enum: <class name>'|'<data type expression>'
Default: 'Inherit: Inherit from 'Table data''

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector

Values: 'off' | 'on'
Default: 'off'

Block Characteristics

Data Types Boolean | double | enumerated | fixed point? | half | integer |
single

Direct Feedthrough |yes

Multidimensional yes

Signals

1-404

Direct Lookup Table (n-D)

Variable-Size Signals |no

Zero-Crossing no
Detection
a This block supports fixed-point data types for 'Table' data only.

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions
MAX 10 Device Settings

If you use Intel® MAX 10 device, to map the lookup table to RAM, add this Tcl command when
creating the project in the Quartus tool:

set global assignment -name INTERNAL FLASH UPDATE MODE "SINGLE IMAGE WITH
ERAM"

Required Block Settings

1-405

1 Blocks

1-406

* Number of table dimensions: Select the table dimension between 1 to 30.
* Inputs select this object from table: Select Element.
* Make table an input: Clear this check box.

* Diagnostic for out-of-range input: Select None, Warning (default), or Error (recommended).
Select Error for efficient HDL code generation. If you select None or Warning, HDL Coder
generates additional logic to handle out-of-range inputs.

Table Data Typing and Sizing

* It is good practice to size each dimension in the table to be a power of two. If the length of a
dimension (except the innermost dimension) is not a power of two, HDL Coder issues a warning.
By following this practice, you can avoid multiplications during table indexing operations and
realize a more efficient table in hardware.

* All ports on the block require scalar values.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block supports fixed-point data types for Table data only. In addition to built-in data types, the
index input also supports fixed-point data type with bias equal to 0, slope equal to 1.0, fractional
length equal to 0, and word length less than or equal to 128.

See Also
n-D Lookup Table

Topics

“About Lookup Table Blocks”

“Anatomy of a Lookup Table”

“Enter Breakpoints and Table Data”

“Guidelines for Choosing a Lookup Table”

“Direct Lookup Table Algorithm for Row-Major Array Layout” (Simulink Coder)
“Column-Major Layout to Row-Major Layout Conversion of Models with Lookup Table Blocks”
(Simulink Coder)

Discrete Derivative

Discrete Derivative

Compute discrete-time derivative

Libraries:
Simulink / Discrete
Kizt) |
Ts =
Description

The Discrete Derivative block computes an optionally scaled discrete time derivative as follows

y(tn) =K

u(ty) —ulty 1)
Ts

where

* u(t,) and y(t,) are the block input and output at the current time step, respectively.
* u(t, - 1) is the block input at the previous time step.

* K s an optional scaling factor, specified using the Gain value parameter.
* T,is the simulation's discrete step size, which must be fixed.

Note Do not use this block in subsystems with a nonperiodic trigger (for example, nonperiodic
function-call subsystems). This configuration produces inaccurate results.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Output

Port_1 — Scaled discrete time derivative
scalar | vector | matrix

Optionally scaled discrete-time derivative, specified as a scalar, vector, or matrix. For more
information on how the block computes the discrete-time derivative, see “Description” on page 1-407.
You specify the data type of the output signal with the Qutput data type parameter.

1-407

1 Blocks

1-408

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |

fixed point

Parameters

Main

Gain value — Scaling factor
1.0 (default) | scalar

Scaling factor applied to the computed derivative, specified as a real scalar value.

Programmatic Use

Block Parameter: gainval
Type: character vector
Values: scalar

Default: '1.0'

Initial condition for previous weighted input K*u/Ts — Initial condition
0.0 (default) | scalar

Initial condition for the previous scaled input, specified as a scalar.

Programmatic Use

Block Parameter: ICPrevScaledInput
Type: character vector

Values: scalar

Default: '0.0'

Input processing — Specify sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing:

* Columns as channels (frame based) — Treat each column of the input as a separate

channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

* Elements as channels (sample based) — Treat each element of the input as a separate

channel (sample-based processing).

Use Input processing to specify whether the block performs sample- or frame-based processing. For
more information about these two processing modes, see “Sample- and Frame-Based Concepts” (DSP

System Toolbox).

Programmatic Use
Block Parameter: InputProcessing
Type: character vector

Discrete Derivative

Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)
Default: 'Elements as channels (sample based)'

Signal Attributes

Output minimum — Minimum output value for range checking
[1 (default) | scalar

Lower value of the output range that Simulink checks.
Simulink uses the minimum to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

« Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: QutMin
Type: character vector
Values: '[]'|scalar
Default: '[]

Output maximum — Maximum output value for range checking
[1 (default) | scalar
Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

» Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

1-409

1 Blocks

1-410

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMax
Type: character vector
Values: '[]'|scalar
Default: '[]'

Output data type — Output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation |double | single | int8 | uint8 | intl6 | uintl6 | int32 | uint32 | int64 |
uint64 | fixdt(1,16,0) | fixdt(1,16,270,0)

Specify the output data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via back propagation
* The name of a built-in data type, for example, single

* The name of a data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant ”2 |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: QutDataTypeStr
Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Inherit via back
propagation' | ‘'double' | 'single' | '"int8' | 'uint8' | 'intl6' | 'uintl6' |
'int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16,0)' |

'fixdt(1,16,270,0)"'
Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the QOutput data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector

Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Discrete Derivative

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use

Block Parameter: RndMeth

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
‘Zero'

Default: 'Floor'

Saturate to max or min when overflows occur — Method of overflow action
off (default) | on

When you select this check box, overflows saturate to the maximum or minimum value that the data
type can represent. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just
the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Programmatic Use

Block Parameter: DoSatur
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics

Data Types double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional no

Signals

Variable-Size Signals |yes

Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1-411

1 Blocks

» Depends on absolute time when used inside a triggered subsystem hierarchy.
* Generated code relies on memcpy or memset functions (string.h) under certain conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Derivative | Discrete-Time Integrator

1-412

Discrete Filter

Discrete Filter

Model Infinite Impulse Response (IIR) filters

Libraries:
Simulink / Discrete

1
14051

Description

The Discrete Filter block independently filters each channel of the input signal with the specified
digital IIR filter. You can specify the filter structure as Direct form I, Direct form I
transposed, Direct form II, orDirect form II transposed. The block implements static
filters with fixed coefficients. You can tune the coefficients of these static filters.

This block filters each channel of the input signal independently over time. The Input processing
parameter allows you to specify how the block treats each element of the input. You can specify
treating input elements as an independent channel (sample-based processing), or treating each
column of the input as an independent channel (frame-based processing). To perform frame-based
processing, you must have a DSP System Toolbox license.

The output dimensions equal the input dimensions, except when you specify a matrix of filter taps for
the Numerator coefficients parameter. When you do so, the output dimensions depend on the
number of different sets of filter taps you specify.

Use the Numerator coefficients parameter to specify the coefficients of the discrete filter
numerator polynomial. Use the Denominator coefficients parameter to specify the coefficients of
the denominator polynomial of the function. The Denominator coefficients parameter must be a
vector of coefficients.

Specify the coefficients of the numerator and denominator polynomials in ascending powers of 2.
The Discrete Filter block lets you use polynomials in 2! (the delay operator) to represent a discrete
system. Signal processing engineers typically use this method. Conversely, the Discrete Transfer Fcn
block lets you use polynomials in z to represent a discrete system. Control engineers typically use this
method. When the numerator and denominator polynomials have the same length, the two methods
are identical.

Specifying Initial States

In Dialog parameters and Input port(s) modes, the block initializes the internal filter states to zero
by default, which is equivalent to assuming past inputs and outputs are zero. You can optionally use
the Initial states parameter to specify nonzero initial states for the filter delays.

To determine the number of initial state values you must specify, and how to specify them, see the

following table on valid initial states and Number of Delay Elements (Filter States). The Initial
states parameter can take one of four forms as described in the following table.

1-413

1 Blocks

Valid Initial States

elements to each
channel)

The delay elements for all channels are
dl and d2.

Initial state Examples Description
Scalar 5 The block initializes all delay elements in the
filter to the scalar value.

Each delay element for each channel is

set to 5.
Vector For a filter with two delay elements: Each vector element specifies a unique initial
(for applying the |[d;d;] condition for a corresponding delay element. The
same delay block applies the same vector of initial conditions

to each channel of the input signal. The vector
length must equal the number of delay elements
in the filter (specified in the table Number of
Delay Elements (Filter States)).

Vector or matrix
(for applying
different delay
elements to each
channel)

For a three-channel input signal and a
filter with two delay elements:

[d1d;D;D,d,d,] or

dy Dy dq
dy Dy dp

* The delay elements for channel 1 are
d1 and dz.

* The delay elements for channel 2 are
D; and D,.

* The delay elements for channel 3 are
d;and d,.

Each vector or matrix element specifies a unique
initial condition for a corresponding delay
element in a corresponding channel:

* The vector length must be equal to the
product of the number of input channels and
the number of delay elements in the filter
(specified in the table Number of Delay
Elements (Filter States)).

¢ The matrix must have the same number of
rows as the number of delay elements in the
filter (specified in the table Number of Delay
Elements (Filter States)), and must have one
column for each channel of the input signal.

Empty matrix

[]
Each delay element for each channel is
set to 0.

The empty matrix, [1, is equivalent to setting the
Initial conditions parameter to the scalar value
0.

The number of delay elements (filter states) per input channel depends on the filter structure, as
indicated in the following table.

1-414

Number of Delay Elements (Filter States)

Filter Structure

Number of Delay Elements Per Channel

Direct form I
Direct form I transposed

* number of zeros - 1
* number of poles - 1

Direct form II
Direct form II transposed

max (number of zeros, number of

poles)-1

The following tables describe the valid initial states for different sizes of input and different number
of channels depending on whether you set the Input processing parameter to frame based or

sample based.

Discrete Filter

Frame-Based Processing

Input Number of Channels |Valid Initial States Valid Initial States
(Dialog Box) (Input Port)
¢ Column vector (K- 1 * Scalar e Scalar
by-1) ¢ Column vector (M- |¢ Column vector (M-
¢ Unoriented vector by-1) by-1)
(K) * Row vector (1-by-M)
* Row vector (1-by-N) |N * Scalar e Scalar
* Matrix (K-by-N) * Column vector (M- |¢ Matrix (M-by-N)
by-1)

* Row vector (1-by-M)
* Matrix (M-by-N)

Sample-Based Processing

Input Number of Channels (Valid Initial States Valid Initial States
(Dialog Box) (Input Port)
e Scalar 1 e Scalar e Scalar
¢ Column vector (M- |¢ Column vector (M-
by-1) by-1)
* Row vector (1-by-M) | Row vector (1-by-M)
* Row vector (1-by-N) |N * Scalar e Scalar
e Column vector (N- e Column vector (M-
by-1) by-1)
+ Unoriented vector * Row vector (1-by-M)
(N) + Matrix (M-by-N)
* Matrix (K-by-N) KxN * Scalar e Scalar
¢ Column vector (M-
by-1)

* Row vector (1-by-M)
* Matrix (M-by-(KxN))

When the Initial states is a scalar, the block initializes all filter states to the same scalar value. Enter
0 to initialize all states to zero. When the Initial states is a vector or a matrix, each vector or matrix
element specifies a unique initial state. This unique state corresponds to a delay element in a
corresponding channel:

* The vector length must equal the number of delay elements in the filter, M = max(number of
zeros, number of poles).

* The matrix must have the same number of rows as the number of delay elements in the filter, M =
max (number of zeros, number of poles). The matrix must also have one column for each
channel of the input signal.

The relationship between the initial filter output y;, the initial input u;, and the initial state [x;, x,] is
given by the following equation.

1-415

1 Blocks

1-416

(u1 — axxq — azxy)
a

y1=by + byxy + b3xp

where,

* by, by, and b; are the numerator coefficients of the discrete filter.
* a;, ay and a; are the denominator coefficients of the discrete filter.

For an example that shows this relationship, see “Specify a Vector of Initial Conditions for a Discrete
Filter Block” on page 12-140.

Ports
Input

u — Input signal
scalar | vector | matrix

Input signal to filter, specified as a scalar, vector, or matrix.

Dependencies

The name of this port depends on the source you specify for the numerator coefficients, denominator
coefficients and initial states. When you set Numerator, Denominator, and Initial states to
Dialog, there is only one input port, and the port is unlabeled. When you set Numerator,
Denominator, or Initial states to Input port, this port is labeled u.

Data Types: single | double | int8 | int16 | int32 | fixed point

Num — Numerator coefficients
scalar | vector | matrix

Numerator coefficients of the discrete filter, specified as descending powers of z. Use a row vector to
specify the coefficients for a single numerator polynomial.

Dependencies

To enable this port, set Numerator to Input port.
Data Types: single | double | int8 | int16 | int32 | fixed point

Den — Denominator coefficients
scalar | vector

Specify the denominator coefficients of the discrete filter as descending powers of z. Use a row vector
to specify the coefficients for a single denominator polynomial.

Dependencies

To enable this port, set Denominator to Input port.

Data Types: single | double | int8 | intl16 | int32 | fixed point

x0 — Initial states
scalar | vector | matrix

Discrete Filter

Initial states, specified as a scalar, vector, or matrix. For more information about specifying states, see
“Specifying Initial States” on page 1-413.

Dependencies

To enable this port, set the Filter structure to Direct form II orDirect form II
transposed, and set Initial states to Input port.

Data Types: single | double | int8 | int16 | int32 | fixed point
Output

Port_1 — Filtered output signal
scalar | vector | matrix

Filtered output signal. The output dimensions equal the input dimensions, except when you specify a
matrix of filter taps for the Numerator coefficients parameter. When you do so, the output
dimensions depend on the number of different sets of filter taps you specify.

Data Types: single | double | int8 | int16 | int32 | fixed point

Parameters
Main
Filter structure — Filter structure

Direct form II (default) |Direct form I transposed|Direct form I |Direct form II
transposed

Specify the discrete IIR filter structure.

Dependencies

To use any filter structure other than Direct form II, you must have an available DSP System
Toolbox license.

Programmatic Use

Block Parameter: FilterStructure

Type: character vector

Values: 'Direct form II' | 'Direct form I transposed' | 'Direct form I' |
'Direct form II transposed'

Default: 'Direct form II'

Numerator Source — Source of numerator coefficients
Dialog (default) | Input port

Specify the source of the numerator coefficients as Dialog or Input port.

Programmatic Use

Block Parameter: NumeratorSource
Type: character vector

Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Numerator Value — Numerator coefficients

1-417

1 Blocks

[1] (default) | scalar | vector | matrix

Specify the numerator coefficients of the discrete filter as descending powers of z. Use a row vector
to specify the coefficients for a single numerator polynomial.

Dependencies

To enable this parameter, set the Numerator Source to Dialog.

Programmatic Use

Block Parameter: Numerator
Type: character vector

Values: scalar | vector | matrix
Default: '[1]"'

Denominator Source — Source of denominator coefficients
Dialog (default) | Input port

Specify the source of the denominator coefficients as Dialog or Input port.

Programmatic Use

Block Parameter: DenominatorSource
Type: character vector

Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Denominator Value — Denominator coefficients

[1 0.5] (default) | vector

Specify the denominator coefficients of the discrete filter as descending powers of z. Use a row vector
to specify the coefficients for a single denominator polynomial.

Dependencies

To enable this parameter, set the Denominator Source to Dialog.

Programmatic Use

Block Parameter: Denominator
Type: character vector

Values: scalar | vector

Default: '[1 0.5]"

Initial states Source — Source of initial states
Dialog (default) | Input port

Specify the source of the initial states as Dialog or Input port.

Programmatic Use

Block Parameter: InitialStatesSource
Type: character vector

Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Initial states Value — Initial filter states

0 (default) | scalar | vector | matrix

1-418

Discrete Filter

Specify the initial filter states as a scalar, vector, or matrix. To learn how to specify initial states, see
“Specifying Initial States” on page 1-413.

Dependencies

To enable this parameter, set the Filter structure to Direct form II orDirect form II
transposed, and set Initial states Source to Dialog.

Programmatic Use

Block Parameter: InitialStates
Type: character vector

Values: scalar | vector | matrix
Default: '0’

Initial states on numerator side — Initial numerator states
0 (default) | scalar | vector | matrix

Specify the initial numerator filter states as a scalar, vector, or matrix. To learn how to specify initial
states, see “Specifying Initial States” on page 1-413.

Dependencies

To enable this port, set the Filter structure to Direct form I orDirect form I transposed.

Programmatic Use

Block Parameter: InitialStates
Type: character vector

Values: scalar | vector | matrix
Default: '0'

Initial states on denominator side — Initial denominator states
0 (default) | scalar | vector | matrix

Specify the initial denominator filter states as a scalar, vector, or matrix. To learn how to specify
initial states, see “Specifying Initial States” on page 1-413.

Dependencies

To enable this port, set the Filter structure to Direct form I orDirect form I transposed.

Programmatic Use

Block Parameter: InitialDenominatorStates
Type: character vector

Values: scalar | vector | matrix

Default: '0'

External reset — External state reset
None (default) | Rising | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior
None No reset
Rising Reset on a rising edge

1-419

1 Blocks

1-420

Reset Mode Behavior

Falling Reset on a falling edge

Either Reset on either a rising or falling edge
Level Reset in either of these cases:

* When the reset signal is nonzero at the
current time step

* When the reset signal value changes from
nonzero at the previous time step to zero at
the current time step

Level hold Reset when the reset signal is nonzero at the

current time step

Programmatic Use

Block Parameter: ExternalReset

Type: character vector

Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'None'

Input processing — Sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing.

* Elements as channels (sample based) — Process each element of the input as an
independent channel.

*+ Columns as channels (frame based) — Process each column of the input as an independent
channel.

Dependencies
Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

Programmatic Use

Block Parameter: InputProcessing

Type: character vector

Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based)

Default: 'Elements as channels (sample based)'

Optimize by skipping divide by leading denominator coefficient (a0) — Skip divide by a0
off (default) | on
Select when the leading denominator coefficient, a,, equals one. This parameter optimizes your code.

When you select this check box, the block does not perform a divide-by-a, either in simulation or in
the generated code. An error occurs if g, is not equal to one.

Discrete Filter

When you clear this check box, the block is fully tunable during simulation. It performs a divide-by-a,
in both simulation and code generation.

Programmatic Use

Block Parameter: aOEqualsOne
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Sample time (-1 for inherited) — Interval between samples

-1 (default) | scalar | vector

Specify the time interval between samples. To inherit the sample time, set this parameter to - 1. For
more information, see “Specify Sample Time”.

Programmatic Use

Block Parameter: SampleTime
Type: character vector

Values: scalar | vector

Default: '-1'

Data Types

State — State data type

Inherit: Same as input (default) | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data
type expression>

Specify the state data type. You can set this parameter to:

* Arule that inherits a data type, for example, Inherit: Same as input
* A built-in integer, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “ |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use

Block Parameter: StateDataTypeStr

Type: character vector

Values: 'Inherit: Same as input' | 'int8' | 'intl6' | 'int32' | 'int64' |
'fixdt(1,16,0)' | '<data type expression>'

Default: 'Inherit: Same as input'

Numerator coefficients — Numerator coefficient data type

Inherit: Inherit via internal rule (default) | int8 | intl6 | int32 | int64 |
fixdt(1,16) | fixdt(1,16,0) | <data type expression>

Specify the numerator coefficient data type. You can set this parameter to:

1-421

1 Blocks

1-422

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in signed integer, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “Z . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use

Block Parameter: NumCoeffDataTypeStr

Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'int8' | 'intl6' | 'int32' |
'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'’

Numerator coefficient minimum — Minimum value of numerator coefficients

[1 (default) | scalar

Specify the minimum value that a numerator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
* Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter: NumCoeffMin

Type: character vector

Values: scalar
Default: '[]'

Numerator coefficient maximum — Maximum value of numerator coefficients

[1 (default) | scalar

Specify the maximum value that a numerator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
* Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter: NumCoeffMax

Type: character vector

Values: scalar
Default: '[]"'

Numerator product output — Numerator product output data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | int8 | int16 |
int32|int64 | fixdt(1,16,0) | <data type expression>

Discrete Filter

Specify the product output data type for the numerator coefficients. You can set this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in data type, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “Z . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: NumProductDataTypeStr
Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input'
"int8' | 'intl6' | 'int32' | 'int64' | 'fixdt(1,16,0)' | '<data type
expression>'

Default: 'Inherit: Inherit via interal rule'
Numerator accumulator — Numerator accumulator data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output|int8|intl6 | int32|int64 | fixdt(1,16,0) | <data type
expression>

Specify the accumulator data type for the numerator coefficients. You can set this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in data type, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “Z . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: NumAccumDataTypeStr
Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input'
"Inherit: Same as product output' | 'int8' | 'intl6' | 'int32' | 'int64' |
'fixdt(1,16,0)" | '<data type expression>'

Default: 'Inherit: Inherit via interal rule'
Denominator coefficients — Denominator coefficient data type

Inherit: Inherit via internal rule (default) | int8 | intl6 | int32 | int64 |
fixdt(1l,16) | fixdt(1,16,0) | <data type expression>

Specify the denominator coefficient data type. You can set this parameter to:

1-423

1 Blocks

1-424

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in integer, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “Z . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use

Block Parameter: DenCoeffDataTypeStr

Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'int8' | 'intl6' | 'int32' |
'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'’

Denominator coefficient minimum — Minimum value of denominator coefficients

[1 (default) | scalar

Specify the minimum value that a denominator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
* Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter: DenCoeffMin

Type: character vector

Values: scalar
Default: '[]'

Denominator coefficient maximum — Maximum value of denominator coefficients

[1 (default) | scalar

Specify the maximum value that a denominator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
* Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter: DenCoeffMax

Type: character vector

Values: scalar
Default: '[]"'

Denominator product output — Denominator product output data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | int8 | int16 |
int32|int64 | fixdt(1,16,0) | <data type expression>

Discrete Filter

Specify the product output data type for the denominator coefficients. You can set this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in data type, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “Z . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: DenProductDataTypeStr
Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input'
"int8' | 'intl6' | 'int32' | 'int64' | 'fixdt(1,16,0)' | '<data type
expression>'

Default: 'Inherit: Inherit via internal rule'
Denominator accumulator — Denominator accumulator data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output|int8|intl6 | int32|int64 | fixdt(1,16,0) | <data type
expression>

Specify the accumulator data type for the denominator coefficients. You can set this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in data type, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “Z . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: DenAccumDataTypeStr
Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input'
"Inherit: Same as product output' | 'int8' | 'intl6' | 'int32' | 'int64' |
'fixdt(1,16,0)" | '<data type expression>'

Default: 'Inherit: Inherit via internal rule'
Output — Output data type

Inherit: Inherit via internal rule (default) | int8 | intl6 | int32 | int64 |
fixdt(1l,16) | fixdt(1,16,0) | <data type expression>

Specify the output data type. You can set this parameter to:

1-425

1 Blocks

1-426

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in data type, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “ |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use

Block Parameter: QutDataTypeStr

Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'int8' | 'intl6' | 'int32' |
'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Output minimum — Minimum value of output

[1 (default) | scalar

Specify the minimum value that the block can output. The default value is [] (unspecified). Simulink
software uses this value to perform:

* Simulation range checking (see “Specify Signal Ranges”)
* Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter: OutMin
Type: character vector
Values: scalar

Default: '[]'

Output maximum — Maximum value of output

[1 (default) | scalar

Specify the maximum value that the block can output. The default value is [] (unspecified). Simulink
software uses this value to perform:

» Simulation range checking (see “Specify Signal Ranges”)
* Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter: QutMax
Type: character vector
Values: scalar

Default: '[]'

Multiplicand data type — Multiplicand data type
Inherit: Same as input (default) | int8 | int16 | int32 | int64 | fixdt(1,16,0) | <data
type expression>

Specify the multiplicand data type. You can set this parameter to:

Discrete Filter

* Arule that inherits a data type, for example, Inherit: Same as input
* A built-in data type, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “Z . For more information, see “Specify Data Types Using Data Type
Assistant”.

Dependencies

To enable this parameter, set the Filter structure to Direct form I transposed

Programmatic Use

Block Parameter: MultiplicandDataTypeStr

Type: character vector

Values: 'Inherit: Same as input' | 'int8' | 'intl6' | 'int32' | 'int64' |
'fixdt(1,16,0)' | '<data type expression>'

Default: 'Inherit: Same as input'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select to lock data type settings of this block against changes by the Fixed-Point Tool and the Fixed-
Point Advisor. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use

Block Parameter: LockScale
Values: 'off' | 'on'
Default: 'of '

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Programmatic Use

Block Parameter: RndMeth

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'

Default: 'Floor'

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

1-427

1 Blocks

Action

Rationale

Impact on Overflows

Example

Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data

type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector

Values:

'off'

Ionl

Default: 'off"'

State Attributes

State name — Assign unigue name to each state

Assign a unique name to each state. If this field is blank ('

' (default) | 'position' | {'a"',

|b|’

'‘c'}lal..

'), no name assignment occurs.

* To assign a name to a single state, enter the name between quotes, for example, 'position’.

* To assign names to multiple states, enter a comma-delimited list surrounded by braces, for

example, {'a’,

1-428

Ibl,

"c'}. Each name must be unique.

Discrete Filter

» To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Limitations

» The state names apply only to the selected block.
* The number of states must divide evenly among the number of state names.
* You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

Dependencies

To enable this parameter, set Filter structure to Direct form II.

Programmatic Use

Block Parameter: StateName
Type: character vector

Values: ' ' | user-defined
Default: ' '

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, set Filter structure to Direct form II and specify a value for State
name. This parameter appears only if you set the model configuration parameter Signal resolution
to a value other than None.

Programmatic Use

Block Parameter: StateMustResolveToSignalObject
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Block Characteristics

Data Types double | fixed point?| integer?|single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

a This block only supports signed fixed-point data types.

1-429

1 Blocks

1-430

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block only supports signed fixed-point data types.

The Discrete Filter block accepts and outputs real and complex signals of any signed numeric data
type that Simulink supports. The block supports the same types for the numerator and denominator
coefficients.

Numerator and denominator coefficients must have the same complexity. They can have different
word lengths and fraction lengths.

The following diagrams show the filter structure and the data types used within the Discrete Filter
block for fixed-point signals.

The block omits the dashed divide when you select the Optimize by skipping divide by leading
denominator coefficient (a0) parameter.

Discrete Filter

Denominatorn
accumuiaton

nput
da'l.affpe- Cast data type ' .

Input

Denom inator
acoumulaton
data type

See Also

Stata

Mumerator Mo s o
jrocuc o put acoumulaton

Dy 5l oy

Dlemomnin arior humesa o M um errtor
poduct cutput poduct cuiput acoumulaton
dats typa daita type [] chaita type
iy Cast
Derominzior | Mumersaion
coafficient cosffcient
o _— dala type data type
il aior
data type L
| 1 |
Dl omniniarton T Mumeraion Numeraton
procuct cutput ¥ procuct cutput ecumu aor
datat ! datat daita
Cast ,_#4} D ey L
Demommin or Mhumesa o
cosfficient coafficient
data typa data Ty

Discrete FIR Filter | Allpole Filter | Digital Filter Design | Filter Realization Wizard | dsp.IIRFilter
| dsp.AllpoleFilter | filterDesigner | fvtool

Topics

“Sample- and Frame-Based Concepts” (DSP System Toolbox)

“Working with States” on page 11-21

1-431

1 Blocks

1-432

Discrete FIR Filter

Model FIR filters
Libraries:
. Simulink / Discrete
05+05z 7 HDL Coder / Discrete
1 HDL Coder / HDL Floating Point Operations
Description

The Discrete FIR Filter block independently filters each channel of the input signal with the specified
digital FIR filter. The block can implement static filters with fixed coefficients, and time-varying filters
with coefficients that change over time. You can tune the coefficients of a static filter during
simulation.

This block filters each channel of the input signal independently over time. The Input processing
parameter allows you to specify whether the block treats each element of the input as an independent
channel (sample-based processing), or each column of the input as an independent channel (frame-
based processing). To perform frame-based processing, you must have a DSP System Toolbox license.

The output dimensions equal the input dimensions, except when you specify a matrix of filter taps for
the Coefficients parameter. When you do so, the output dimensions depend on the number of
different sets of filter taps you specify.

This block supports custom state attributes to customize and generate code more efficiently. For an
example, see “Custom State Attributes in Discrete FIR Filter block”. Under certain conditions, the
block also supports SIMD code generation. For details, see “Code Generation” on page 1-444.

The outputs of this block numerically match the outputs of the DSP System Toolbox Digital Filter
Design block.

This block supports the Simulink state logging feature. For more information, see “State”.
Filter Structure Support

You can change the filter structure implemented with the Discrete FIR Filter block by selecting one of
the following from the Filter structure parameter:

* Direct form

* Direct form symmetric

* Direct form antisymmetric

* Direct form transposed

* Lattice MA

You must have an available DSP System Toolbox license to run a model with any of these filter
structures other than Direct form.

Discrete FIR Filter

Specifying Initial States

The Discrete FIR Filter block initializes the internal filter states to zero by default, which has the
same effect as assuming that past inputs and outputs are zero. You can optionally use the Initial
states parameter to specify nonzero initial conditions for the filter delays.

To determine the number of initial states you must specify and how to specify them, see the table on
valid initial states. The Initial states parameter can take one of the forms described in the next
table.

Valid Initial States

Initial Condition Description
Scalar The block initializes all delay elements in the filter to the scalar value.
Vector or matrix Each vector or matrix element specifies a unique initial condition for a

(for applying different delay |corresponding delay element in a corresponding channel:

elements to each channel) .
* The vector length equals the product of the number of input channels and

the number of delay elements in the filter, # of filter coeffs-1 (or
of reflection coeffs for Lattice MA).

* The matrix must have the same number of rows as the number of delay
elements in the filter, # of filter coeffs-1
(# of reflection coeffs for Lattice MA), and must have one column
for each channel of the input signal.

Ports
Input

In — Input signal
scalar | vector | matrix

Input signal to filter, specified as a scalar, vector, or matrix.

Dependencies

When you set Coefficient source to Dialog parameters, the port for the input signal is unlabeled.
When you set Coefficient source to Input port, the port for the input signal is labeled In.

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
fixed point

Num — Filter coefficients
scalar | vector | matrix

Specify the filter coefficients as a scalar, vector, or matrix. When you specify a row vector of filter
taps, the block applies a single filter to the input. To apply multiple filters to the same input, specify a
matrix of coefficients, where each row represents a different set of filter taps.

Dependencies
To enable this port, set Coefficient source to Input port.

To implement multiple filters, Filter structure must be Direct form, and the input must be a
scalar.

1-433

1 Blocks

1-434

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

External reset — External reset signal
scalar

External reset signal, specified as a scalar. When the specified trigger event occurs, the block resets
the states to their initial conditions.

Tip The icon for this port changes based on the value of the External reset parameter.

Dependencies

To enable this port, set External reset to Rising, Falling, Either, Level, or Level hold.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixed point

[J — Enable signal
scalar

Enable signal, specified as a scalar. This port can control execution of the block. The block is enabled

when the input to this port is nonzero, and is disabled when the input is 0. The value of the input is
checked at the same time step as the block execution.

Dependencies

To enable this port, select the Show enable port check box.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Output

Port_1 — Filtered output signal
scalar | vector | matrix

Filtered output signal.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Parameters

Main

Coefficient source — Source of coefficients
Dialog parameters (default) | Input port

Choose to specify the filter coefficients using tunable dialog parameters or through an input port,
which is useful for time-varying coefficients.

Discrete FIR Filter

Programmatic Use

Block Parameter: CoefSource

Type: character vector

Values: 'Dialog parameters' | 'Input port'
Default: 'Dialog parameters'

Filter structure — Filter structure

Direct form (default) | Direct form symmetric|Direct form antisymmetric |Direct
form transposed |Lattice MA

Select the filter structure you want the block to implement.

Dependencies

You must have an available DSP System Toolbox license to run a model with a Discrete FIR Filter
block that implements any filter structure other than Direct form.

Programmatic Use

Block Parameter: FilterStructure

Type: character vector

Values: 'Direct form' | 'Direct form symmetric' | 'Direct form antisymmetric' |
'‘Direct form transposed' | 'Lattice MA'

Default: 'Direct form'

Coefficients — Filter coefficients

[0.5 0.5] (default) | vector | matrix

Specify the coefficient vector for the transfer function. Filter coefficients must be specified as a row
vector. When you specify a row vector of filter taps, the block applies a single filter to the input. To
apply multiple filters to the same input, specify a matrix of coefficients, where each row represents a
different set of filter taps.

Dependencies
To enable this parameter, set Coefficient source to Dialog parameters.

To implement multiple filters, Filter structure must be Direct form, and the input must be a
scalar.

Programmatic Use

Block Parameter: Coefficients
Type: character vector

Values: vector

Default: '[0.5 0.5]"

Input processing — Sample- or frame-based processing
Elements as channels (sample based) (default) | Columns as channels (frame based)

Specify whether the block performs sample- or frame-based processing. You can select one of the
following options:

* Elements as channels (sample based) — Treat each element of the input as an
independent channel (sample-based processing).

1-435

1 Blocks

* Columns as channels (frame based) — Treat each column of the input as an independent
channel (frame-based processing).

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

Programmatic Use

Block Parameter: InputProcessing

Type: character vector

Values: 'Columns as channels (frame based)' | 'Elements as channels (sample
based) '

Default: 'Elements as channels (sample based)'

Initial states — Initial conditions of filter states
0 (default) | scalar | vector | matrix

Specify the initial conditions of the filter states. To learn how to specify initial states, see “Specifying
Initial States” on page 1-433.

Programmatic Use

Block Parameter: InitialStates
Type: character vector

Values: scalar | vector | matrix
Default: '0'

Show enable port — Create enable port
off (default) | on

Select to control execution of this block with an enable port. The block is considered enabled when
the input to this port is nonzero, and is disabled when the input is 0. The value of the input is checked
at the same time step as the block execution.

Programmatic Use

Block Parameter: ShowEnablePort
Type: character vector

Values: 'off' | 'on'

Default: 'off'

External reset — External state reset
None (default) | Rising | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

Reset Mode Behavior

None No reset

Rising Reset on a rising edge

Falling Reset on a falling edge

Either Reset on either a rising or falling edge

1-436

Discrete FIR Filter

Reset Mode Behavior

Level Reset in either of these cases:

* When the reset signal is nonzero at the
current time step

* When the reset signal value changes from
nonzero at the previous time step to zero at
the current time step

Level hold Reset when the reset signal is nonzero at the
current time step

Programmatic Use

Block Parameter: ExternalReset

Type: character vector

Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'None'

Sample time (-1 for inherited) — Time interval between samples
-1 (default) | scalar | vector

Specify the time interval between samples. To inherit the sample time, set this parameter to - 1. For
more information, see “Specify Sample Time”.

Programmatic Use

Block Parameter: SampleTime
Type: character vector

Values: scalar | vector

Default: '-1'

Data Types
Tap sum — Tap sum data type

Inherit: Same as input (default) | Inherit: Inherit via internal rule|int8 | uint8 |
intl6 | uintl6 | int32 | uint32 | int64 | uint64 | fixdt(1,16,0) | <data type
expression>

Specify the tap sum data type of a direct form symmetric or direct form antisymmetric filter, which is
the data type the filter uses when it sums the inputs prior to multiplication by the coefficients. You
can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule

* A built-in integer, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show
data type assistant ”2 |, For more information, see “Specify Data Types Using Data Type

Assistant”.

1-437

1 Blocks

1-438

Dependencies

This parameter is only visible when you set the Filter structure to Direct form symmetric or
Direct form antisymmetric.

Programmatic Use
Block Parameter: TapSumDataTypeStr
Type: character vector

Values: 'Inherit: Same as input' | 'int8' | 'uint8' | 'intl6' | 'uintl6’
"int32' | 'uint32' | 'int64' | ‘'uint64' | 'fixdt(1,16,0)' | '<data type
expression>'

Default: 'Inherit: Same as input'
Coefficients — Coefficient data type

Inherit: Same wordlength as input (default) | int8 | uint8 | int1l6 | uintl6 | int32 |
uint32 | int64 | uint64 | fixdt(1,16,0) | <data type expression>

Specify the coefficient data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Same word length as input
* A built-in integer, for example, int8

» A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant = |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: CoefDataTypeStr
Type: character vector

Values: 'Inherit: Same word length as input'| 'int8' | 'uint8' | 'intl6' |
‘uintle' | 'int32' | ‘'uint32' | 'int64' | ‘'uint64' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | '<data type expression>'

Default: 'Inherit: Same wordlength as input'
Coefficients minimum — Minimum value of coefficients
[1 (default) | scalar

Specify the minimum value that a filter coefficient should have. The default value is [] (unspecified).
Simulink software uses this value to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
* Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter: CoeffMin
Type: character vector
Values: scalar

Default: '[]'

Discrete FIR Filter

Coefficients maximum — Maximum value of coefficients
[1 (default) | scalar

Specify the maximum value that a filter coefficient should have. The default value is [] (unspecified).
Simulink software uses this value to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)

* Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter: CoeffMax

Type: character vector

Values: scalar
Default: '[]'

Product output — Product output data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input |int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | fixdt(1,16,0) | <data type
expression>

Specify the product output data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in data type, for example, int8

» A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “% |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: ProductDataTypeStr
Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input'
'int8' | 'uint8' | 'intl6' | 'uintl6' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'fixdt(1,16,0)' | '<data type expression>'

Default: 'Inherit: Inherit via internal rule'

Accumulator — Accumulator data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output|int8|uint8 | intl6 |uintl6 | int32 |uint32 | int64 | uint64 |
fixdt(1,16,0) | <data type expression>

Specify the accumulator data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in data type, for example, int8

1-439

1 Blocks

1-440

» A data type object, for example, a Simulink.NumericType object
* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “ |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: AccumDataTypeStr
Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input'
'"Inherit: Same as product output' | 'int8' | 'uint8' | 'intl6' | 'uintl6' |
"int32' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16,0)' | '<data type
expression>'

Default: 'Inherit: Inherit via internal rule'
State — State data type

Inherit: Same as accumulator (default) | Inherit: Same as input | int8 | uint8 | intl6
|uintl6 | int32 | uint32 | int64 | uint64 | fixdt(1,16,0) | <data type expression>

Specify the state data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Same as accumulator
* A built-in integer, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

Dependencies

To enable this parameter, set the Filter structure to Lattice MA.

Programmatic Use
Block Parameter: StateDataTypeStr
Type: character vector

Values: 'Inherit: Same as accumulator' | 'Inherit: Same as input' | 'int8'
'uint8' | 'intl6' | 'uintl6' | 'int32' | 'uint32' | 'int64' | 'uint64' |
'fixdt(1,16,0)' | '<data type expression>'

Default: 'Inherit: Same as accumulator'
Output — Output data type

Inherit: Same as accumulator (default) | Inherit: Same as input | int8 | uint8 | intl6
| uintl6 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) | <data type
expression>

Specify the output data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Same as accumulator
* A built-in data type, for example, int8
» A data type object, for example, a Simulink.NumericType object

Discrete FIR Filter

* An expression that evaluates to a data type, for example, fixdt(1,16,0)
The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “ |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector

Values: 'Inherit: Same as accumulator' | 'Inherit: Same as input' | 'int8' |
‘uint8' | 'intl6' | ‘'uintl6' | 'int32' | ‘'uint32' | 'int64' | 'uint64’' |
'fixdt(1,16)"' | 'fixdt(1,16,0)' | '<data type expression>'

Default: 'Inherit: Same as accumulator'

Output minimum — Minimum output value for range checking

[1 (default) | scalar
Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

* Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMin
Type: character vector
Values: '[]'|scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[1 (default) | scalar
Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

1-441

1 Blocks

+ Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMax
Type: character vector
Values: '[]'|scalar
Default: '[]'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select to lock data type settings of this block against changes by the Fixed-Point Tool and the Fixed-
Point Advisor. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use

Block Parameter: LockScale
Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Programmatic Use

Block Parameter: RndMeth

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
‘Zero'

Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

1-442

Discrete FIR Filter

Action

Rationale

Impact on Overflows

Example

Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data

type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector

Values:

'off!

lonl

Default: 'off"'

Block Characteristics

Detection

Data Types double | fixed point | integer | single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |yes

Zero-Crossing no

1-443

1 Blocks

1-444

Version History
Introduced in R2008a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports custom state attributes to customize and generate code more efficiently. To
access or set these attributes, open the Model Data Editor. On the Modeling tab, click Model Data
Editor. For an example, see “Custom State Attributes in Discrete FIR Filter block”.

The Discrete FIR Filter block supports SIMD code generation using Intel AVX2 technology under
these conditions:

* Filter structure is set to Direct formorDirect form transposed.

* Input processing is set to Columns as channels (frame based).

» Input signal is real-valued with real filter coefficients.

* Input signal is complex-valued with real or complex filter coefficients.

* Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

For hardware-friendly valid and reset control signals, and to model exact hardware latency behavior
in Simulink, use the Discrete FIR Filter block instead.

To reduce area or increase speed, the Discrete FIR Filter block supports either block-level
optimizations or subsystem-level optimizations. For details of available block-level optimization
parameters, see “Block Optimizations” on page 1-446. When you enable block optimizations, the
block cannot participate in subsystem optimizations. Use block optimizations when your design is a
single one-channel filter. Use subsystem optimizations to share resources across multiple channels or
multiple filters. For the block to participate in subsystem-level optimizations, set the Architecture to
Fully parallel. See “Subsystem Optimizations for Filters” (HDL Coder).

Multichannel Filter Support

HDL Coder supports the use of vector inputs to Discrete FIR Filter blocks, where each element of the
vector represents an independent channel.
1 Connect a vector signal to the Discrete FIR Filter block input port.

Specify Input processing as Elements as channels (sample based).

3 To reduce area by sharing the filter kernel between channels, set the ChannelSharing property
to the number of channels.

Discrete FIR Filter

Programmable Filter Support
HDL Coder supports programmable filters for Discrete FIR Filter blocks.

1 On the filter block mask, set Coefficient source to Input port.
2 Connect a vector signal to the Num coefficient port.

Programmable filters are not supported for:

+ distributed arithmetic (DA)
* CoeffMultipliers set to csd or factored-csd

Frame-Based Input Support

HDL Coder supports the use of vector inputs to Discrete FIR Filter blocks, where each element of the
vector represents a sample in time. You can use an input vector of up to 512 samples. The frame-
based implementation supports fixed-point input and output data types, and uses full-precision
internal data types. You can use real input signals with real coefficients, complex input signals with
real coefficients, or real input signals with complex coefficients. You can also use frame-based input
with programmable coefficients.

1 Connect a vector signal to the Discrete FIR Filter block input port.

2 Specify Input processing as Columns as channels (frame based), and set Filter
structure to Direct formorDirect form transposed. For frame-based input with
programmable coefficients, set Filter structure to Direct form.

3 Right-click the block and open HDL Code > HDL Block Properties. Set the Architecture to
Frame Based. The block implements a direct form parallel HDL architecture. Other
architectures, including fully- or partly-serial, are not supported. See “Frame-Based
Architecture” (HDL Coder).

Frame-based input filters are not supported for:

* Optional block-level reset and enable control signals
* Resettable and enabled subsystems

* Complex input signals with complex coefficients. You can use either complex input signals and real
coefficients, or complex coefficients and real input signals.

* Multichannel input
» Sharing and streaming optimizations
o distributed arithmetic (DA)

Control Ports

You can generate HDL code for filters with or without the optional enable port, and with or without
the optional reset port.

Complex Data Support

You can use any combination of complex input and complex coefficients with fully-parallel filter
structures, when you use non-frame-based input data.

Complex coefficients are not supported with serial filter architectures.

1-445

1 Blocks

When you use frame-based input data you can use either complex input signals and real coefficients,
or complex coefficients and real input signals.

You cannot use distributed arithmetic (DA) or CoeffMultipliers set to csd or factored-csd with
complex coefficients.

Block Optimizations

Area and Speed Optimizations

Serial Architecture To use block-level optimizations to reduce hardware resources, set
Architecture to one of the serial options. See “HDL Filter Architectures”
(HDL Coder).

When you specify SerialPartition and ReuseAccum for a Discrete FIR
Filter block, set Filter structure to Direct form, Direct form
symmetric, orDirect form antisymmetric. The Direct form
transposed structure is not supported with serial architectures.

Distributed Arithmetic |To minimize multipliers by replacing them with LUTs and shift registers,
use a distributed arithmetic (DA) filter implementation. See “Distributed
Arithmetic for HDL Filters” (HDL Coder).

When you select the Distributed Arithmetic (DA) architecture and
use the DALUTPartition and DARadix distributed arithmetic properties,
set Filter structure to Direct form, Direct form symmetric, or
Direct form antisymmetric. The Direct form transposed
structure is not supported with distributed arithmetic.

Multichannel Area To share filter logic between channels, set the ChannelSharing property
Reduction to the number of channels. Using ChannelSharing excludes the filter
from other optimizations.

You can achieve the same logic sharing across all eligible logic in a
subsystem by using the StreamingFactor property. This option also
enables the filter to participate in other subsystem optimizations. See the
Streaming section of “Subsystem Optimizations for Filters” (HDL Coder).

Pipelining To improve clock speed, use AddPipelineRegisters to use a pipelined
adder tree rather than the default linear adder. You can also specify the
number of pipeline stages before and after the multipliers. See “HDL Filter
Architectures” (HDL Coder).

HDL Filter Properties

AddPipelineRegisters |Insert a pipeline register between stages of computation in a filter. See
also AddPipelineRegisters (HDL Coder).

ChannelSharing For a multichannel filter, generate a single filter implementation to be
shared between channels. See also ChannelSharing (HDL Coder).

CoeffMultipliers Specify the use of canonical signed digit (CSD) optimization to decrease
filter area by replacing coefficient multipliers with shift-and-add logic.
When you choose a fully parallel filter implementation, you can set
CoeffMultipliers to csd or factored-csd. The default is multipliers,
which retains multipliers in the HDL. See also CoeffMultipliers (HDL
Coder).

1-446

Discrete FIR Filter

HDL Filter Properties

DALUTPartition

Specify distributed arithmetic partial-product LUT partitions as a vector of
the sizes of each partition. The sum of all vector elements must be equal to
the filter length. The maximum size for a partition is 12 taps. Set
DALUTPartition to a scalar value equal to the filter length to generate DA
code without LUT partitions. See also DALUTPartition (HDL Coder).

DARadix

Specify how many distributed arithmetic bit sums are computed in parallel.
A DA radix of 8 (2"3) generates a DA implementation that computes three
sums at a time. The default value is 21, which generates a fully serial DA
implementation. See also DARadix (HDL Coder).

MultiplierInputPipeli
ne

Specify the number of pipeline stages to add at filter multiplier inputs. See
also MultiplierInputPipeline (HDL Coder).

MultiplierOutputPipel
ine

Specify the number of pipeline stages to add at filter multiplier outputs.
See also MultiplierOutputPipeline (HDL Coder).

ReuseAccum Enable or disable accumulator reuse in a serial filter implementation. Set
ReuseAccum to on to use a cascade-serial implementation. See also
ReuseAccum (HDL Coder).

SerialPartition Specify partitions for partly serial or cascade-serial filter implementations

as a vector of the lengths of each partition. For a fully serial
implementation, set this parameter to the length of the filter. See also
SerialPartition (HDL Coder).

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline

Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

* HDL code generation is not supported for:

* Unsigned input data.

¢ Nonzero initial states. You must set Initial states to 0.
* Filter Structure: Lattice MA.

* CoeffMultipliers options are supported only when using a fully parallel architecture. When you
select a serial architecture, CoeffMultipliers is hidden from the HDL Block Properties dialog box.

PLC Code Generation

Generate Structured Text code using Simulink® PLC Coder™.

1-447

1 Blocks

1-448

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

The Discrete FIR Filter block accepts and outputs real and complex signals of any numeric data type

supported by Simulink. The block supports the same types for the coefficients.

The following diagrams show the filter structure and the data types used within the Discrete FIR

Filter block for fixed-point signals.

Direct Form

You cannot specify the state data type on the block mask for this structure because the input states

have the same data types as the input.

nput Product ou fput Accumulaton
: data typa P‘ data typa data typ .

Input
w Mumeraion

¥ cosfficent

] 5

Poscu ct cutpat

Acoumulaton
daia type

-

Mumeraior
| coeficient
7 I data type
1
'
" Product output Acumula or
I data type data 1
- L2 Cast L
hum era o
costficant
data typa

Direct Form Symmetric

Szl s Curtpurt

data typa - dats typa
Caxt 1)

Output

Discrete FIR Filter

You cannot specify the state data type on the block mask for this structure because the input states
have the same data types as the input.

It is assumed that the filter coefficients are symmetric. The block only uses the first half of the
coefficients for filtering.

Even Order - Type |

Teap sum

Product oulput

Odd Order - Type Il

A eeumaka ior Curfpart

Mumeraion
coaffcient
data type

datatype [.| data Ty dats typa
[ast # i Cast (1)
— pT : - Dutpat

Product cutput

Mumeraion
coaffcient
data type

b =L e -
[y

Product oulput

~ Tagsum
dlata type

fy

Mumeraion
coafficient
data type

Aeoumulaton

A eumila ion

dta e) e

data Ty

Even Order -

Type |

1-449

1 Blocks

mput Tap sum Product output Acoumulator Curipurt
data type

Procuct ou dput M ecummula o

b. data typa data tjpa

&
Mumerartor
oo ficient
data ype
u:laal:lairl-.:e Product output M oumulator
f § .
n datatype [T datatype
..lf.r;},, £ l Cast I !
Tapsum Mumesaton
data typs coa fiicient
data tjpa
= | o
Tap sum data typa
data
o o]

Y

Odd Order - Type 11

Direct Form Antisymmetric

You cannot specify the state data type on the block mask for this structure because the input states
have the same data types as the input.

It is assumed that the filter coefficients are antisymmetric. The block only uses the first half of the
coefficients for filtering.

1-450

Discrete FIR Filter

Even Order - Type Il Odd Qrder - Type IV

put Tap sum Product ouput Arcumuiaios Curtpust

dats
i Dutput

data type Prouct cutput heoumukator

dat
B D I
T humeraion
coafficient
data type
Procuct ouput Accumiate
data Typa
Py S LN [
L3
- N Mumeraion
™ Tepsum -7 cofficient
data type data type
| o] [
Y

E‘ﬂ

Even Order - Type I

1-451

1 Blocks

Tap sum

O—— =]

Product output Acoumulator
-
Mumerator
o fiicient
data type
Procuct ou dput M ecummula o

Mumerartor
oo ficient
dara type

Product cutput B oumulston

EEE

Y

1-452

datatype [T datatype
-Eg} l Cast I
Mumesaton
oo ficient
data type

Tap sum
data tpa

Odd Order - Type IV

Direct Form Transposed

Cuiput

Ouiput

States are complex when either the inputs or the coefficients are complex.

Section
input

Discrete FIR Filter

rput Pmoduct outpt Accumulaion Cuput
data typa data typa data Typa data typa
D > ® -
Input Dutput

Aocumulaior
data type

Mum eston Aocumlior
cosfficant Product ouiput Aoomuator | data type
data datat datat
e > Jing Cast P

I

! +

I i

+ i

cosfficant
data typa

Lattice MA

)) ¢)

Input '] Dutput

| COMIK I

_.EI .

1-453

1 Blocks

rput Aeoumulator
data data typa
L1} = #| [ast ! =ﬁ
Input I
Mz oul prouksrtion
X data ypa
[os]
N Prochuct cuput
Stata data fype
darta typa
Product cutput
Coaflicient o type
data typa
! Product cutput
|—.| data typa
L e | Coathicient
A oum ulsrton data type
Acoumulation dat e Stak
[}
See Also

Discrete Filter | Digital Filter Design

Topics

“Sample- and Frame-Based Concepts” (DSP System Toolbox)
“Custom State Attributes in Discrete FIR Filter block”
“Working with States” on page 11-21

1-454

Discrete PID Controller

Discrete PID Controller

Discrete-time or continuous-time PID controller

Libraries:

Simulink / Discrete

FIDGE) b HDL Coder / Discrete

HDL Coder / HDL Floating Point Operations

Description

The Discrete PID Controller block implements a PID controller (PID, PI, PD, P only, or I only). The
block is identical to the PID Controller block with the Time domain parameter set to Discrete-
time.

The block output is a weighted sum of the input signal, the integral of the input signal, and the
derivative of the input signal. The weights are the proportional, integral, and derivative gain
parameters. A first-order pole filters the derivative action.

The block supports several controller types and structures. Configurable options in the block include:

* Controller type (PID, PI, PD, P only, or I only) — See the Controller parameter.

* Controller form (Parallel or Ideal) — See the Form parameter.

* Time domain (continuous or discrete) — See the Time domain parameter.

» [Initial conditions and reset trigger — See the Source and External reset parameters.

* Output saturation limits and built-in anti-windup mechanism — See the Limit output parameter.

* Signal tracking for bumpless control transfer and multiloop control — See the Enable tracking
mode parameter.

As you change these options, the internal structure of the block changes by activating different
variant subsystems. (For more information, see “Implement Variations in Separate Hierarchy Using
Variant Subsystems”). To examine the internal structure of the block and its variant subsystems,
right-click the block and select Mask > Look Under Mask.

Control Configuration

In one common implementation, the PID Controller block operates in the feedforward path of a
feedback loop.

1-455

1 Blocks

Href —h@—b Pliz) | Input Ourtput - D
3
Desired PID Controller
Vater Lavel Water-Tank Systern

The input of the block is typically an error signal, which is the difference between a reference signal
and the system output. For a two-input block that permits setpoint weighting, see Discrete PID
Controller (2DOF).

PID Gain Tuning

The PID controller gains are tunable either manually or automatically. Automatic tuning requires
Simulink Control Design software. For more information about automatic tuning, see the Select
tuning method parameter.

Ports
Input

Port_1(u) — Error signal input
scalar | vector

Difference between a reference signal and the output of the system under control, as shown.

Hraf —h@—b Pliz) = Input Cutput L C]
3
Desired PID Controller
Water Lavel Water-Tank Systemn

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

P — Proportional gain
scalar | vector

Proportional gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

1-456

Discrete PID Controller

Dependencies

To enable this port, set Controller parameters Source to external.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

I — Integral gain
scalar | vector

Integral gain, provided from a source external to the block. External gain input is useful, for example,
when you want to map a different PID parameterization to the PID gains of the block. You can also
use external gain input to implement gain-scheduled PID control. In gain-scheduled control, you
determine the PID coefficients by logic or other calculation in your model and feed them to the block.

When you supply gains externally, time variations in the integral gain are also integrated. This result
occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has integral action.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

I*T; — Integral gain multiplied by sample time
scalar | vector

Integral gain multiplied by the controller sample time, provided from a source external to the block.
External gain input is useful, for example, when you want to map a different PID parameterization to
the PID gains of the block. You can also use external gain input to implement gain-scheduled PID
control. In gain-scheduled control, you determine the PID coefficients by logic or other calculations in
your model and feed them to the block.

Note PID tuning tools, such as the PID Tuner app and Closed-Loop PID Autotuner block, tune the
gain I but not I*T,. Therefore, multiply the integral gain value you obtain from a tuning tool by the
sample time before you supply it to this port.

When you use I*T instead of I, the block requires fewer calculations to perform integration. This
improves the execution time of the generated code.

Dependencies

To enable this port, set Controller parameters Source to external, set Controller to a controller
type that has integral action, and enable the Use I*Ts parameter.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

D — Derivative gain
scalar | vector

Derivative gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You

1-457

1 Blocks

1-458

can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

When you supply gains externally, time variations in the derivative gain are also differentiated. This
result occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has derivative action.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

N — Filter coefficient
scalar | vector

Derivative filter coefficient, provided from a source external to the block. External coefficient input is
useful, for example, when you want to map a different PID parameterization to the PID gains of the
block. You can also use the external input to implement gain-scheduled PID control. In gain-scheduled
control, you determine the PID coefficients by logic or other calculation in your model and feed them
to the block.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has a filtered derivative.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Reset — External reset trigger
scalar

Trigger to reset the integrator and filter to their initial conditions. The value of the External reset
parameter determines whether reset occurs on a rising signal, a falling signal, or a level signal. The
port icon indicates the selected trigger type. For example, the following illustration shows a
continuous-time PID block with External reset set to rising.

Input
Reset » jP'D':E:'

¥

Output

PID Controller

When the trigger occurs, the block resets the integrator and filter to the initial conditions specified by
the Integrator Initial condition and Filter Initial condition parameters or the Iy and D, ports.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA™) software
standard, your model must use Boolean signals to drive the external reset ports of the PID controller
block.

Discrete PID Controller

Dependencies

To enable this port, set External reset to any value other than none.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point | Boolean

lo — Integrator initial condition
scalar | vector

Integrator initial condition, provided from a source external to the block.

Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has integral action.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

D, — Filter initial condition
scalar | vector

Initial condition of the derivative filter, provided from a source external to the block.

Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has derivative action.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

up — Output saturation upper limit
scalar | vector

Upper limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions exceeds the value provided at this port, the block
output is held at that value.

Dependencies

To enable this port, select Limit output and set the output saturation Source to external.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixed point

lo — Output saturation lower limit
scalar | vector

Lower limit of the block output, provided from a source external to the block. If the weighted sum of

the proportional, integral, and derivative actions goes below the value provided at this port, the block
output is held at that value.

Dependencies

To enable this port, select Limit output and set the output saturation Source to external.

1-459

1 Blocks

1-460

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
fixed point

TR — Tracking signal
scalar | vector

Signal for controller output to track. When signal tracking is active, the difference between the
tracking signal and the block output is fed back to the integrator input. Signal tracking is useful for
implementing bumpless control transfer in systems that switch between two controllers. It can also
be useful to prevent block windup in multiloop control systems. For more information, see the Enable
tracking mode parameter.

Dependencies

To enable this port, select the Enable tracking mode parameter.

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
fixed point

Tpom — Discrete-integrator time
scalar

Discrete-integrator time, provided as a scalar to the block. You can use your own value of discrete-
time integrator sample time that defines the rate at which the block is going to be run either in
Simulink or on external hardware. The value of the discrete-time integrator time should match the
average sampling rate of the external interrupts, when the block is used inside a conditionally-
executed subsystem.

In other words, you can specify Ts for any of the integrator methods below such that the value
matches the average sampling rate of the external interrupts. In discrete time, the derivative term of
the controller transfer function is:

D[1+N(x ’

where a(z) depends on the integrator method you specify with this parameter.

Discrete PID Controller

Forward Euler

Backward Euler

Trapezoidal

]
I I
2 .
For more information about discrete-time integration, see the Discrete-Time Integrator block

reference page. For more information on conditionally executed subsystems, see “Conditionally
Executed Subsystems Overview”.

N

N
|

1-461

1 Blocks

1-462

Dependencies

To enable this port, set Time Domain to Discrete-time and select the PID Controller is inside a
conditionally executed subsystem option.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

Output

Port_1(y) — Controller output
scalar | vector

Controller output, generally based on a sum of the input signal, the integral of the input signal, and
the derivative of the input signal, weighted by the proportional, integral, and derivative gain
parameters. A first-order pole filters the derivative action. Which terms are present in the controller
signal depends on what you select for the Controller parameter. The base controller transfer
function for the current settings is displayed in the Compensator formula section of the block
parameters and under the mask. Other parameters modify the block output, such as saturation limits
specified by the Upper Limit and Lower Limit saturation parameters.

The controller output is a vector signal when any of the inputs is a vector signal. In that case, the
block acts as N independent PID controllers, where N is the number of signals in the input vector.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Parameters
Controller — Controller type
PID (default) | PI |PD|P|I

Specify which of the proportional, integral, and derivative terms are in the controller.

PID

Proportional, integral, and derivative action.
PI

Proportional and integral action only.
PD

Proportional and derivative action only.

Proportional action only.

Integral action only.

Tip The controller transfer function for the current setting is displayed in the Compensator
formula section of the block parameters and under the mask.

Discrete PID Controller

Programmatic Use

Block Parameter: Controller
Type: string, character vector
ValueS: n PIDIII n PI II, n PDII, n PII, n I n
Default: "PID"

Form — Controller structure
Parallel (default) | Ideal

Specify whether the controller structure is parallel or ideal.

Parallel

The controller output is the sum of the proportional, integral, and derivative actions, weighted
independently by P, I, and D, respectively. For example, for a continuous-time parallel-form PID
controller, the transfer function is:

Cparls) = P+1{3] + D[)

For a discrete-time parallel-form controller, the transfer function is:
Cpar(2) = P + Ia(2) + D N
par 1+ NBR))

where the Integrator method and Filter method parameters determine a(z) and f(z),
respectively.

Ideal
The proportional gain P acts on the sum of all actions. For example, for a continuous-time ideal-

1
C,-d(s)=P[1+I + D[

S s+ N

For a discrete-time ideal-form controller, the transfer function is:

Cig(2) = P[l + Ia(2) + D—N]

b g

where the Integrator method and Filter method parameters determine a(z) and b(z),
respectively.

Tip The controller transfer function for the current settings is displayed in the Compensator
formula section of the block parameters and under the mask.

Programmatic Use
Block Parameter: Controller
Type: string, character vector

1-463

1 Blocks

1-464

Values: "Parallel”, "Ideal"
Default: "Parallel"

Time domain — Specify discrete-time or continuous-time controller
Discrete-time (default) | Continuous-time

When you select Discrete-time, it is recommended that you specify an explicit sample time for the
block. See the Sample time (-1 for inherited) parameter. Selecting Discrete-time also enables
the Integrator method, and Filter method parameters.

When the PID Controller block is in a model with synchronous state control (see the State Control
block), you cannot select Continuous-time.

Note The PID Controller and Discrete PID Controller blocks are identical except for the default value
of this parameter.

Programmatic Use

Block Parameter: TimeDomain

Type: string, character vector

Values: "Continuous-time", "Discrete-time"
Default: "Discrete-time"

PID Controller is inside a conditionally executed subsystem — Enable the discrete-integrator
time port
off (default) | on

For discrete-time PID controllers, enable the discrete-time integrator port to use your own value of
discrete-time integrator sample time. To ensure proper integration, use the Tpr; port to provide a
scalar value of At for accurate discrete-time integration.

Dependencies

To enable this parameter, set Time Domain to Discrete-time.

Programmatic Use

Block Parameter: UseExternalTs
Type: string, character vector
Values: "on", "off"

Default: "off"

Sample time (-1 for inherited) — Discrete interval between samples

-1 (default) | positive scalar

Specify a sample time by entering a positive scalar value, such as 0.1. The default discrete sample
time of -1 means that the block inherits its sample time from upstream blocks. However, it is
recommended that you set the controller sample time explicitly, especially if you expect the sample
time of upstream blocks to change. The effect of the controller coefficients P, I, D, and N depend on
the sample time. Thus, for a given set of coefficient values, changing the sample time changes the
performance of the controller.

See “Specify Sample Time” for more information.

Discrete PID Controller

To implement a continuous-time controller, set Time domain to Continuous-time.

Tip If you want to run the block with an externally specified or variable sample time, set this
parameter to -1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time.

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use

Block Parameter: SampleTime
Type: scalar

Values: -1, positive scalar
Default: -1

Integrator method — Method for computing integral in discrete-time controller
Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the integral term of the controller transfer function is Ia(z), where a(z) depends on
the integrator method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

Backward Euler
Backward rectangular (right-hand) approximation,

1-465

1 Blocks

Y4

An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal

Bilinear approximation,
|
I I
[
Z

An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,
the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

Note For the BackwardEuler or Trapezoidal methods, you cannot generate HDL code for the
block if either:

* Limit output is selected and Anti-Windup Method is anything other than none.
* Enable tracking mode is selected.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

1-466

Discrete PID Controller

Dependencies

To enable this parameter, set Time Domain to Discrete-time and set Controller to a controller
type with integral action.

Programmatic Use

Block Parameter: IntegratorMethod

Type: string, character vector

Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Filter method — Method for computing derivative in discrete-time controller
Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the derivative term of the controller transfer function is:

D[1+ch ’

where a(z) depends on the filter method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

1-467

1 Blocks

1-468

Backward Euler
Backward rectangular (right-hand) approximation,

Y4

An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

|
I I
2 Z .
An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,

the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Trapezoidal

Bilinear approximation,

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

Dependencies

To enable this parameter, set Time Domain to Discrete-time and enable Use filtered derivative.

Discrete PID Controller

Programmatic Use

Block Parameter: FilterMethod

Type: string, character vector

Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Main
Source — Source for controller gains and filter coefficient

internal (default) | external

Enabling external inputs for the parameters allows you to compute PID gains and filter coefficients
externally to the block and provide them to the block as signal inputs.

internal
Specify the controller gains and filter coefficient using the block parameters P, I, D, and N.
external

Specify the PID gains and filter coefficient externally using block inputs. An additional input port
appears on the block for each parameter that is required for the current controller type.

External gain input is useful, for example, when you want to map a different PID parameterization
to the PID gains of the block. You can also use external gain input to implement gain-scheduled
PID control. In gain-scheduled control, you determine the PID gains by logic or other calculation
in your model and feed them to the block.

When you supply gains externally, time variations in the integral and derivative gain values are
integrated and differentiated, respectively. This result occurs because in both continuous time
and discrete time, the gains are applied to the signal before integration or differentiation. For
example, for a continuous-time PID controller with external inputs, the integrator term is
implemented as shown in the following illustration.

1 — 1

[]

Within the block, the input signal u is multiplied by the externally supplied integrator gain, I,
before integration. This implementation yields:

yi=fuIdt.

Thus, the integrator gain is included in the integral. Similarly, in the derivative term of the block,
multiplication by the derivative gain precedes the differentiation, which causes the derivative
gain D to be differentiated.

Programmatic Use

Block Parameter: ControllerParametersSource
Type: string, character vector

Values: "internal", "external"

Default: "internal"

1-469

1 Blocks

Proportional (P) — Proportional gain
1 (default) | scalar | vector

Specity a finite, real gain value for the proportional gain. When Controller form is:

* Parallel — Proportional action is independent of the integral and derivative actions. For
instance, for a continuous-time parallel PID controller, the transfer function is:

_ 1 Ns
Cparls) = P+ I(E) + D(m) .
For a discrete-time parallel-form controller, the transfer function is:

Cpar@) = P+ Ia(2) + D[%M],

where the Integrator method and Filter method parameters determine a(z) and f(z),
respectively.

* Ideal — The proportional gain multiples the integral and derivative terms. For instance, for a
continuous-time ideal PID controller, the transfer function is:

Ci(s) = P[l + 12 Ns

For a discrete-time ideal-form controller, the transfer function is:

S s+ N

Cig(2) = P[l + Ia(2) + N]

b g

where the Integrator method and Filter method parameters determine a(z) and (),
respectively.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to PID, PD, PI, or P.

Programmatic Use
Block Parameter: P
Type: scalar, vector
Default: 1

Integral (1) — Integral gain
1 (default) | scalar | vector
Specify a finite, real gain value for the integral gain.

Tunable: Yes

1-470

Discrete PID Controller

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to a type that has integral action.

Programmatic Use

Block Parameter: I

Type: scalar, vector

Default: 1

Integral (I*Ts) — Integral gain multiplied by sample time
1 (default) | scalar | vector

Specify a finite, real gain value for the integral gain multiplied by the sample time.

Note PID tuning tools, such as the PID Tuner app and Closed-Loop PID Autotuner block, tune the
gain I but not I*T,. Therefore, multiply the integral gain value you obtain from a tuning tool by the
sample time before you write it to this parameter.

When you use I*Ts instead of I, the block requires fewer calculations to perform integration. This
improves the execution time of the generated code.

Tunable: No

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, set
Controller to a type that has integral action, and enable the Use I*Ts parameter.

Programmatic Use
Block Parameter: I
Type: scalar, vector
Default: 1

Use I*Ts — Use integral gain multiplied by sample time
off (default) | on

For discrete-time controllers with integral action, the block takes the integral gain as an input and
multiplies it by the sample time internally as a part of performing the integration. You can enable this
parameter to specify integral gain multiplied by sample time as input (I*Ts) in place of the integral
gain (I). Doing so reduces the number of internal calculations and is useful when you want to improve
the execution time of your generated code.

Dependencies

To enable this parameter, set Controller to a controller type that has integral action.

Programmatic Use

Block Parameter: UseKiTs
Type: string, character vector
Values: "on", "off"
Default: "on"

1-471

1 Blocks

1-472

Derivative (D) — Derivative gain

0 (default) | scalar | vector

Specify a finite, real gain value for the derivative gain.
Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to PID or PD.

Programmatic Use
Block Parameter: D
Type: scalar, vector
Default: 0

Use filtered derivative — Apply filter to derivative term
on (default) | of f
For discrete-time PID controllers only, clear this option to replace the filtered derivative with an

unfiltered discrete-time differentiator. When you do so, the derivative term of the controller transfer
function becomes:

For continuous-time PID controllers, the derivative term is always filtered.

Discrete PID Controller

Dependencies

To enable this parameter, set Time domain to Discrete-time, and set Controller to a type that
has derivative action.

Programmatic Use

Block Parameter: UseFilter
Type: string, character vector
Values: "on", "off"

Default: "on"

Filter coefficient (N) — Derivative filter coefficient

100 (default) | scalar | vector

Specify a finite, real gain value for the filter coefficient. The filter coefficient determines the pole
location of the filter in the derivative action of the block. The location of the filter pole depends on the
Time domain parameter.

* When Time domain is Continuous-time, the pole locationiss = -N.

* When Time domain is Discrete-time, the pole location depends on the Filter method
parameter.

Filter Method Location of Filter Pole
Forward Euler Zpole = 1 — NT
Backward Euler _ 1

Zpole = T ¥ NT,
Trapezoidal _ 1-NTy/2

Zpole = T L NT,/2

The block does not support N = Inf (ideal unfiltered derivative). When the Time domain is
Discrete-time, you can clear Use filtered derivative to remove the derivative filter.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to PID or PD.

Programmatic Use
Block Parameter: N
Type: scalar, vector
Default: 100

Select tuning method — Tool for automatic tuning of controller coefficients
Transfer Function Based (PID Tuner App) (default) | Frequency Response Based

If you have Simulink Control Design software, you can automatically tune the PID coefficients. To do
so, use this parameter to select a tuning tool, and click Tune.

Transfer Function Based (PID Tuner App)

Use PID Tuner, which lets you interactively tune PID coefficients while examining relevant
system responses to validate performance. By default, PID Tuner works with a linearization of

1-473

1 Blocks

1-474

your plant model. For models that cannot be linearized, you can tune PID coefficients against a
plant model estimated from simulated or measured response data. For more information, see
“Introduction to Model-Based PID Tuning in Simulink” (Simulink Control Design).

Frequency Response Based

Use Frequency Response Based PID Tuner, which tunes PID controller coefficients based on
frequency-response estimation data obtained by simulation. This tuning approach is especially
useful for plants that are not linearizable or that linearize to zero. For more information, see
“Design PID Controller from Plant Frequency-Response Data” (Simulink Control Design).

Both of these tuning methods assume a single-loop control configuration. Simulink Control Design
software includes other tuning approaches that suit more complex configurations. For information
about other ways to tune a PID Controller block, see “Choose a Control Design Approach” (Simulink
Control Design).

Enable zero-crossing detection — Detect zero crossings on reset and on entering or leaving a
saturation state

on (default) | of f

Zero-crossing detection can accurately locate signal discontinuities without resorting to excessively
small time steps that can lead to lengthy simulation times. If you select Limit output or activate
External reset in your PID Controller block, activating zero-crossing detection can reduce
computation time in your simulation. Selecting this parameter activates zero-crossing detection:

* At initial-state reset

* When entering an upper or lower saturation state
* When leaving an upper or lower saturation state

For more information about zero-crossing detection, see “Zero-Crossing Detection”.

Programmatic Use

Block Parameter: ZeroCross
Type: string, character vector
Values: "on", "off"

Default: "on"

Initialization
Source — Source for integrator and derivative initial conditions
internal (default) | external

Simulink uses initial conditions to initialize the integrator and derivative-filter (or the unfiltered
derivative) output at the start of a simulation or at a specified trigger event. (See the External reset
parameter.) These initial conditions determine the initial block output. Use this parameter to select
how to supply the initial condition values to the block.

internal

Specify the initial conditions using the Integrator Initial condition and Filter Initial
condition parameters. If Use filtered derivative is not selected, use the Differentiator
parameter to specify the initial condition for the unfiltered differentiator instead of a filter initial
condition.

Discrete PID Controller

external

Specify the initial conditions externally using block inputs. Additional input ports I, and D,
appear on the block. If Use filtered derivative is not selected, supply the initial condition for the
unfiltered differentiator at D, instead of a filter initial condition.

Programmatic Use

Block Parameter: InitialConditionSource
Type: string, character vector

Values: "internal"”, "external"

Default: "internal”

Integrator — Integrator initial condition
0 (default) | scalar | vector

Simulink uses the integrator initial condition to initialize the integrator at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The integrator initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and set Controller to a
type that has integral action.

Programmatic Use

Block Parameter: InitialConditionForIntegrator
Type: scalar, vector

Default: 0

Filter — Filter initial condition
0 (default) | scalar | vector

Simulink uses the filter initial condition to initialize the derivative filter at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The filter initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and use a controller that
has a derivative filter.

Programmatic Use

Block Parameter: InitialConditionForFilter
Type: scalar, vector

Default: 0

Differentiator — Initial condition for unfiltered derivative
0 (default) | scalar | vector

1-475

1 Blocks

When you use an unfiltered derivative, Simulink uses this parameter to initialize the differentiator at
the start of a simulation or at a specified trigger event (see External reset). The integrator initial
condition and the derivative initial condition determine the initial output of the PID controller block.

The derivative initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, set Time domain to Discrete-time, clear the Use filtered derivative
check box, and in the Initialization tab, set Source to internal.

Programmatic Use

Block Parameter: DifferentiatorICPrevScaledInput
Type: scalar, vector

Default: 0

Initial condition setting — Location at which initial condition is applied
Auto (default) | Output

Use this parameter to specify whether to apply the Integrator Initial condition and Filter Initial
condition parameter to the corresponding block state or output. You can change this parameter at
the command line only, using set param to set the InitialConditionSetting parameter of the
block.

Auto

Use this option in all situations except when the block is in a triggered subsystem or a function-
call subsystem and simplified initialization mode is enabled.

Output

Use this option when the block is in a triggered subsystem or a function-call subsystem and
simplified initialization mode is enabled.

For more information about the Initial condition setting parameter, see the Discrete-Time
Integrator block.

This parameter is only accessible through programmatic use.

Programmatic Use

Block Parameter: InitialConditionSetting
Type: string, character vector

Values: "Auto", "Qutput"

Default: "Auto"

External reset — Trigger for resetting integrator and filter values

none (default) | rising | falling | either | level

Specify the trigger condition that causes the block to reset the integrator and filter to initial
conditions. (If Use filtered derivative is not selected, the trigger resets the integrator and
differentiator to initial conditions.) Selecting any option other than none enables the Reset port on
the block for the external reset signal.

none

The integrator and filter (or differentiator) outputs are set to initial conditions at the beginning of
simulation, and are not reset during simulation.

1-476

Discrete PID Controller

rising

Reset the outputs when the reset signal has a rising edge.
falling

Reset the outputs when the reset signal has a falling edge.
either

Reset the outputs when the reset signal either rises or falls.
level

Reset the outputs when the reset signal either:

* Is nonzero at the current time step
* Changes from nonzero at the previous time step to zero at the current time step

This option holds the outputs to the initial conditions while the reset signal is nonzero.
Dependencies

To enable this parameter, set Controller to a type that has derivative or integral action.

Programmatic Use

Block Parameter: ExternalReset

Type: string, character vector

Values: "none", "rising", "falling", "either","level"
Default: "none"

Ignore reset when linearizing — Force linearization to ignore reset

off (default) | on

Select to force Simulink and Simulink Control Design linearization commands to ignore any reset
mechanism specified in the External reset parameter. Ignoring reset states allows you to linearize a
model around an operating point even if that operating point causes the block to reset.

Programmatic Use

Block Parameter: IgnoreLimit
Type: string, character vector
Values: "off", "on"

Default: "off"

Enable tracking mode — Activate signal tracking

off (default) | on

Signal tracking lets the block output follow a tracking signal that you provide at the TR port. When
signal tracking is active, the difference between the tracking signal and the block output is fed back
to the integrator input with a gain Kt, specified by the Tracking gain (Kt) parameter. Signal
tracking has several applications, including bumpless control transfer and avoiding windup in
multiloop control structures.

Bumpless control transfer

Use signal tracking to achieve bumpless control transfer in systems that switch between two
controllers. Suppose you want to transfer control between a PID controller and another controller. To
do so, connecting the controller output to the TR input as shown in the following illustration.

1-477

1 Blocks

{x=1)

(3 | siz+ 1)

Int

Acthve controller

N

Y

PIDs)
TR

FID Controlar

For more information, see “Bumpless Control Transfer” on page 12-104.
Multiloop control

Use signal tracking to prevent block windup in multiloop control approaches, as in the following
model.

: rely . : | |-
I | TFl;I.Dlﬁl = In ot 1]
v Out1
PIC Controller
Inner Loop
Outer Loop

The Inner Loop subsystem contains the blocks shown in the following diagram.

h 4

=1}
> e £l
Int s(s*1) Outt
Zero-Fole Satirstion

(=11

E
Zero-Pole

Because the PID controller tracks the output of the inner loop, its output never exceeds the saturated
inner-loop output. For more details, see “Prevent Block Windup in Multiloop Control” on page 12-103.

Dependencies

To enable this parameter, set Controller to a type that has integral action.

Programmatic Use

Block Parameter: TrackingMode
Type: string, character vector
Values: "off", "on"

1-478

Discrete PID Controller

Default: "off"
Tracking coefficient (Kt) — Gain of signal-tracking feedback loop
1 (default) | scalar

When you select Enable tracking mode, the difference between the signal TR and the block output
is fed back to the integrator input with a gain Kt. Use this parameter to specify the gain in that
feedback loop.

Dependencies

To enable this parameter, select Enable tracking mode.

Programmatic Use
Block Parameter: Kt
Type: scalar

Default: 1

Saturation

Output saturation
Limit Output — Limit block output to specified saturation values
off (default) | on

Activating this option limits the block output, so that you do not need a separate Saturation on page
1-1896 block after the controller. It also allows you to activate the anti-windup mechanism built into
the block (see the Anti-windup method parameter). Specify the output saturation limits using the
Lower limit and Upper limit parameters. You can also specify the saturation limits externally as
block input ports.

Programmatic Use

Block Parameter: LimitOutput
Type: string, character vector
Values: "off", "on"

Default: "off"

Source — Source for output saturation limits
internal (default) | external

Use this parameter to specify how to supply the upper and lower saturation limits of the block output.

internal
Specify the output saturation limits using the Upper limit and Lower limit parameters.
external

Specify the output saturation limits externally using block input ports. The additional input ports
up and lo appear on the block. You can use the input ports to implement the upper and lower
output saturation limits determined by logic or other calculations in the Simulink model and
passed to the block.

1-479

1 Blocks

1-480

Programmatic Use

Block Parameter: SatLimitsSource
Type: string, character vector

Values: "internal", "external"
Default: "internal"

Upper limit — Upper saturation limit for block output
Inf (default) | scalar

Specify the upper limit for the block output. The block output is held at the Upper saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions exceeds that value.

Dependencies

To enable this parameter, select Limit output.

Programmatic Use

Block Parameter: UpperSaturationLimit
Type: scalar

Default: Inf

Lower limit — Lower saturation limit for block output
-Inf (default) | scalar

Specify the lower limit for the block output. The block output is held at the Lower saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions goes below that
value.

Dependencies

To enable this parameter, select Limit output.

Programmatic Use

Block Parameter: LowerSaturationLimit
Type: scalar

Default: -Inf

Ignore saturation when linearizing — Force linearization to ignore output limits

off (default) | on

Force Simulink and Simulink Control Design linearization commands to ignore block output limits
specified in the Upper limit and Lower limit parameters. Ignoring output limits allows you to
linearize a model around an operating point even if that operating point causes the block to exceed
the output limits.

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use

Block Parameter: LinearizeAsGain
Type: string, character vector

Values: "off", "on"

Discrete PID Controller

Default: "off"
Anti-windup method — Integrator anti-windup method
none (default) | back-calculation | clamping

When you select Limit output and the weighted sum of the controller components exceeds the
specified output limits, the block output holds at the specified limit. However, the integrator output
can continue to grow (integrator windup), increasing the difference between the block output and the
sum of the block components. In other words, the internal signals in the block can be unbounded
even if the output appears bounded by saturation limits. Without a mechanism to prevent integrator
windup, two results are possible:

« If the sign of the input signal never changes, the integrator continues to integrate until it
overflows. The overflow value is the maximum or minimum value for the data type of the
integrator output.

» If the sign of the input signal changes once the weighted sum has grown beyond the output limits,
it can take a long time to unwind the integrator and return the weighted sum within the block
saturation limit.

In either case, controller performance can suffer. To combat the effects of windup without an anti-
windup mechanism, it may be necessary to detune the controller (for example, by reducing the
controller gains), resulting in a sluggish controller. To avoid this problem, activate an anti-windup
mechanism using this parameter.

none
Do not use an anti-windup mechanism.

back-calculation

Unwind the integrator when the block output saturates by feeding back to the integrator the
difference between the saturated and unsaturated control signal. The following diagram
represents the back-calculation feedback circuit for a continuous-time controller. To see the
actual feedback circuit for your controller configuration, right-click on the block and select Mask
> Look Under Mask.

propartional
term

Berror Signalgb—’@——’ %’ f # block output

Integrator

44 g
SN

derivative
term

1-481

1 Blocks

1-482

Use the Back-calculation coefficient (Kb) parameter to specify the gain of the anti-windup

feedback circuit. It is usually satisfactory to set Kb = I, or for controllers with derivative action,
Kb = sqrt(I*D). Back-calculation can be effective for plants with relatively large dead time [1].

clamping

Integration stops when the sum of the block components exceeds the output limits and the
integrator output and block input have the same sign. Integration resumes when the sum of the
block components exceeds the output limits and the integrator output and block input have
opposite sign. Clamping is sometimes referred to as conditional integration.

Clamping can be useful for plants with relatively small dead times, but can yield a poor transient

response for large dead times [1].

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use

Block Parameter: AntiWindupMode

Type: string, character vector

Values: "none", "back-calculation","clamping"
Default: "none"

Back-calculation coefficient (Kb) — Gain coefficient of anti-windup feedback loop

1 (default) | scalar

The back-calculation anti-windup method unwinds the integrator when the block output
saturates. It does so by feeding back to the integrator the difference between the saturated and
unsaturated control signal. Use the Back-calculation coefficient (Kb) parameter to specify the
gain of the anti-windup feedback circuit. For more information, see the Anti-windup method
parameter.

Dependencies

To enable this parameter, select the Limit output parameter, and set the Anti-windup method
parameter to back-calculation.

Programmatic Use
Block Parameter: Kb
Type: scalar

Default: 1

Integrator saturation
Limit Output — Limit integrator output to specified saturation limits
off (default) | on

Enable this parameter to limit the integrator output to be within a specified range. When the

integrator output reaches the limits, the integral action turns off to prevent integral windup. Specify

the saturation limits using the Lower limit and Upper limit parameters.

Dependencies

To enable this parameter, set Controller to a controller type that has integral action.

Discrete PID Controller

Programmatic Use

Block Parameter: LimitIntegratorOutput
Type: string, character vector

Values: "off", "on"

Default: "off"

Upper limit — Upper saturation limit for integrator
Inf (default) | scalar

Specify the upper limit for the integrator output. The integrator output is held at this value whenever
it would otherwise exceed this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.

Programmatic Use

Block Parameter: UpperIntegratorSaturationLimit
Type: scalar

Default: Inf

Lower limit — Lower saturation limit for integrator
-Inf (default) | scalar

Specify the lower limit for the integrator output. The integrator output is held at this value whenever
it would otherwise go below this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.

Programmatic Use

Block Parameter: LowerIntegratorSaturationLimit
Type: scalar

Default: -Inf

Data Types

The parameters in this tab are primarily of use in fixed-point code generation using Fixed-Point
Designer. They define how numeric quantities associated with the block are stored and processed
when you generate code.

If you need to configure data types for fixed-point code generation, click Open Fixed-Point Tool and
use that tool to configure the rest of the parameters in the tab. For information about using Fixed-
Point Tool, see “Autoscaling Data Objects Using the Fixed-Point Tool” (Fixed-Point Designer).

After you use Fixed-Point Tool, you can use the parameters in this tab to make adjustments to fixed-
point data-type settings if necessary. For each quantity associated with the block, you can specify:

* Floating-point or fixed-point data type, including whether the data type is inherited from upstream
values in the block.

* The minimum and maximum values for the quantity, which determine how the quantity is scaled
for fixed-point representation.

1-483

1 Blocks

For assistance in selecting appropriate values, click 7 o open the Data Type Assistant for the
corresponding quantity. For more information, see “Specify Data Types Using Data Type Assistant”.

Main Initialization Output saturation Data Types State Attributes
Fixed-point operational parameters

Integer rounding mode: | Floor -

(] saturate on integer averflow

[] Lock data type settings against changes by the fixed-point tools Open Fixed-Point Tool...

Data Type Minimum Maximum

P product output: | Inherit: Inherit via internal rule v| > |[] | : |[] | :
I product output: | Inherit: Inherit via internal rule v| > |[] | : |[] | :
D product output: ‘ Inherit: Inherit via internal rule v| > |[] | : |[] | :
M product output: ‘ Inherit: Inherit via internal rule v| == |[] | : |[] | :
b product output: | Inherit: Inherit via internal rule v| > |[] | : |[] | :
¢ product output: | Inherit: Inherit via internal rule v| > |[] | : |[] | :
Sum output: | Inherit: Inherit via internal rule v| > |[] | : |[] | :

» Additional data types

The specific quantities listed in the Data Types tab vary depending on how you configure the PID
controller block. In general, you can configure data types for the following types of quantities:

* Product output — Stores the result of a multiplication carried out under the block mask. For
example, P product output stores the output of the gain block that multiplies the block input
with the proportional gain P.

* Parameter — Stores the value of a numeric block parameter, such as P, I, or D.

* Block output — Stores the output of a block that resides under the PID controller block mask. For
example, use Integrator output to specify the data type of the output of the block called
Integrator. This block resides under the mask in the Integrator subsystem, and computes
integrator term of the controller action.

* Accumulator — Stores values associated with a sum block. For example, SumI2 Accumulator
sets the data type of the accumulator associated with the sum block SumlI2. This block resides
under the mask in the Back Calculation subsystem of the Anti-Windup subsystem.

In general, you can find the block associated with any listed parameter by looking under the PID
Controller block mask and examining its subsystems. You can also use the Model Explorer to search
under the mask for the listed parameter name, such as SumI2. (See Model Explorer.)

Matching Input and Internal Data Types

1-484

Discrete PID Controller

By default, all data types in the block are set to Inherit: Inherit via internal rule. With
this setting, Simulink chooses data types to balance numerical accuracy, performance, and generated
code size, while accounting for the properties of the embedded target hardware.

Under some conditions, incompatibility can occur between data types within the block. For instance,
in continuous time, the Integrator block under the mask can accept only signals of type double. If
the block input signal is a type that cannot be converted to double, such as uint16, the internal
rules for type inheritance generate an error when you generate code.

To avoid such errors, you can use the Data Types settings to force a data type conversion. For
instance, you can explicitly set P product output, I product output, and D product output to
double, ensuring that the signals reaching the continuous-time integrators are of type double.

In general, it is not recommended to use the block in continuous time for code generation
applications. However, similar data type errors can occur in discrete time, if you explicitly set some
values to data types that are incompatible with downstream signal constraints within the block. In
such cases, use the Data Types settings to ensure that all data types are internally compatible.

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use

Block Parameter: RndMeth

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
‘Zero'

Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on
Specify whether overflows saturate or wrap.
+ off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

* on — Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

* Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

1-485

1 Blocks

1-486

* Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

* When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

* In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use

Block Parameter: SaturateOnIntegerOverflow
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector

Values: 'off' | 'on'
Default: 'off'

State Attributes
The parameters in this tab are primarily of use in code generation.

State name (e.g., 'position') — Name for continuous-time filter and integrator states
"' (default) | character vector

Assign a unique name to the state associated with the integrator or the filter, for continuous-time PID
controllers. (For information about state names in a discrete-time PID controller, see the State name
parameter.) The state name is used, for example:

* For the corresponding variable in generated code
* As part of the storage name when logging states during simulation
» For the corresponding state in a linear model obtain by linearizing the block

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

Dependencies

To enable this parameter, set Time domain to Continuous-time.

Discrete PID Controller

Programmatic Use

Parameter: IntegratorContinuousStateAttributes, FilterContinuousStateAttributes
Type: character vector

Default: '’

State name — Names for discrete-time filter and integrator states
empty string (default) | string | character vector

Assign a unique name to the state associated with the integrator or the filter, for discrete-time PID
controllers. (For information about state names in a continuous-time PID controller, see the State
name (e.g., 'position') parameter.)

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters. The state name is used, for example:

* For the corresponding variable in generated code

* As part of the storage name when logging states during simulation

» For the corresponding state in a linear model obtain by linearizing the block

For more information about the use of state names in code generation, see “C Code Generation
Configuration for Model Interface Elements” (Simulink Coder).

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use

Parameter: IntegratorStateldentifier, FilterStatelIdentifier
Type: string, character vector

Default: ""

State name must resolve to Simulink signal object — Require that state name resolve to a signal
object
off (default) | on

Select this parameter to require that the discrete-time integrator or filter state name resolves to a
Simulink signal object.

Dependencies

To enable this parameter for the discrete-time integrator or filter state:

1 Set Time domain to Discrete-time.
2 Specify a value for the integrator or filter State name.
3 Set the model configuration parameter Signal resolution to a value other than None.

Programmatic Use

Block Parameter: IntegratorStateMustResolveToSignalObject,
FilterStateMustResolveToSignalObject

Type: string, character vector

Values: "off", "on"

Default: "off"

1-487

1 Blocks

1-488

Block Characteristics

Data Types double | fixed point | integer | single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced in R2009b

R2022b: Issues error when integrator and filter initial conditions lie outside saturation
limits
Behavior changed in R2022b

The block now issues an error when the integrator or filter initial condition value lies outside the
output saturation limits. In previous releases, the block did not issue an error when these initial
conditions had such values.

If this change impacts your model, update the PID integrator or filter initial condition values such
that they are within the output saturation limits.

R2021b: ReferenceBlock parameter returns different path
Behavior changed in R2021b

Starting in R2021b, the get param function returns a different value for the ReferenceBlock
parameter. The ReferenceBlock parameter is a property common to all Simulink blocks and gives
the path of the library block to which a block links. The PID Controller and Discrete PID Controller
blocks now link to 'slpidlib/PID Controller'. Previously, the blocks linked to 'pid 1ib/PID
Controller'.

This change does not affect any other functionality or workflows. You can still use the previous path
with the set param function.

R2020b: ReferenceBlock parameter returns different path
Behavior changed in R2020b

Starting in R2020b, the get param function returns a different value for the ReferenceBlock
parameter. The ReferenceBlock parameter is a property common to all Simulink blocks and gives
the path of the library block to which a block links. The PID Controller and Discrete PID Controller
blocks now link to 'pid 1ib/PID Controller'. Previously, the blocks linked to 'simulink/
Continuous/PID Controller'.

This change does not affect any other functionality or workflows. You can still use the previous path
with the set param function.

Discrete PID Controller

References

[1] Visioli, A., "Modified Anti-Windup Scheme for PID Controllers," IEE Proceedings - Control Theory
and Applications, Vol. 150, Number 1, January 2003

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For continuous-time PID controllers (Time domain set to Continuous-time):

* Consider using “Model Discretizer” to map continuous-time blocks to discrete equivalents that
support code generation. To access Model Discretizer, from your model, in the Apps tab, under
Control Systems, click Model Discretizer.

* Not recommended for production code.

For discrete-time PID controllers (Time domain set to Discrete-time):

* Depends on absolute time when placed inside a triggered subsystem hierarchy.

* Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

* HDL code generation is supported for discrete-time PID controllers only (Time domain set to
Discrete-time).

1-489

1 Blocks

» If the Integrator method is set to BackwardEuler or Trapezoidal, you cannot generate HDL
code for the block under either of the following conditions:
* Limit output is selected and the Anti-Windup Method is anything other than none.
* Enable tracking mode is selected.

* To generate HDL code:

* Use a discrete-time PID controller. On the Time domain section, specify Discrete-time.
* Leave the Use filtered derivative check box selected.

* Specify the initial conditions of the filter and integrator internally. On the Initialization tab,
specify Source as internal.

You can specify the filter coefficients internally and externally for HDL code generation. On the
Main tab, for Source, you can use internal or external.

* Set External reset to none.
* When you use double inputs, do not set Anti-windup Method to clamping.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Fixed-point code generation is supported for discrete-time PID controllers only (Time domain set to
Discrete-time).

See Also

Gain | Discrete-Time Integrator | Discrete Derivative | PID Controller | Discrete PID Controller
(2DOF)

1-490

Discrete PID Controller (2DOF)

Discrete PID Controller (2DOF)

Discrete-time or continuous-time two-degree-of-freedom PID controller

Libraries:
Simulink / Discrete

Ref
FPID(z)

w

Description

The Discrete PID Controller (2DOF) block implements a two-degree-of-freedom PID controller (PID,
PI, or PD). The block is identical to the PID Controller (2DOF) block with the Time domain
parameter set to Discrete-time.

The block generates an output signal based on the difference between a reference signal and a
measured system output. The block computes a weighted difference signal for the proportional and
derivative actions according to the setpoint weights (b and c) that you specify. The block output is the
sum of the proportional, integral, and derivative actions on the respective difference signals, where
each action is weighted according to the gain parameters P, I, and D. A first-order pole filters the
derivative action.

The block supports several controller types and structures. Configurable options in the block include:

» Controller type (PID, PI, or PD) — See the Controller parameter.

* Controller form (Parallel or Ideal) — See the Form parameter.

* Time domain (discrete or continuous) — See the Time domain parameter.

» [Initial conditions and reset trigger — See the Source and External reset parameters.

* Output saturation limits and built-in anti-windup mechanism — See the Limit output parameter.

* Signal tracking for bumpless control transfer and multiloop control — See the Enable tracking
mode parameter.

As you change these options, the internal structure of the block changes by activating different
variant subsystems. (See “Implement Variations in Separate Hierarchy Using Variant Subsystems”.)
To examine the internal structure of the block and its variant subsystems, right-click the block and
select Mask > Look Under Mask.

Control Configuration

In one common implementation, the PID Controller block operates in the feedforward path of a
feedback loop.

1-491

1 Blocks

Hraf | Raf
| PID(z) = Input Curtput - D
Desired "
Water Level Discreta PID Controller (2DOF)

Water-Tank Systemn

For a single-input block that accepts an error signal (a difference between a setpoint and a system
output), see Discrete PID Controller.

PID Gain Tuning

The PID controller coefficients and the setpoint weights are tunable either manually or automatically.
Automatic tuning requires Simulink Control Design software. For more information about automatic
tuning, see the Select tuning method parameter.

Ports
Input

Ref — Reference signal
scalar | vector

Reference signal for plant to follow, as shown.

Hraf | Raf
o FID(z) | Input Cuput - D
De=ired o
Water Lavel Discrete PID Contraller (2D0F)

Water-Tank System

When the reference signal is a vector, the block acts separately on each signal, vectorizing the PID
coefficients and producing a vector output signal of the same dimensions. You can specify the PID
coefficients and some other parameters as vectors of the same dimensions as the input signal. Doing
so is equivalent to specifying a separate PID controller for each entry in the input signal.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
fixed point

Port_1(y) — Measured system output
scalar | vector

Feedback signal for the controller, from the plant output.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

1-492

Discrete PID Controller (2DOF)

P — Proportional gain
scalar | vector

Proportional gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

Dependencies

To enable this port, set Controller parameters Source to external.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

I — Integral gain
scalar | vector

Integral gain, provided from a source external to the block. External gain input is useful, for example,
when you want to map a different PID parameterization to the PID gains of the block. You can also
use external gain input to implement gain-scheduled PID control. In gain-scheduled control, you
determine the PID coefficients by logic or other calculation in your model and feed them to the block.

When you supply gains externally, time variations in the integral gain are also integrated. This result
occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has integral action.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixed point

I*T, — Integral gain multiplied by sample time
scalar | vector

Integral gain multiplied by the controller sample time, provided from a source external to the block.
External gain input is useful, for example, when you want to map a different PID parameterization to
the PID gains of the block. You can also use external gain input to implement gain-scheduled PID
control. In gain-scheduled control, you determine the PID coefficients by logic or other calculations in
your model and feed them to the block.

Note PID tuning tools, such as the PID Tuner app and Closed-Loop PID Autotuner block, tune the
gain I but not I*T,. Therefore, multiply the integral gain value you obtain from a tuning tool by the
sample time before you supply it to this port.

When you use I*T instead of I, the block requires fewer calculations to perform integration. This
improves the execution time of the generated code.

1-493

1 Blocks

1-494

Dependencies

To enable this port, set Controller parameters Source to external, set Controller to a controller
type that has integral action, and enable the Use I*Ts parameter.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

D — Derivative gain
scalar | vector

Derivative gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

When you supply gains externally, time variations in the derivative gain are also differentiated. This
result occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has derivative action.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

N — Filter coefficient
scalar | vector

Derivative filter coefficient, provided from a source external to the block. External coefficient input is
useful, for example, when you want to map a different PID parameterization to the PID gains of the
block. You can also use the external input to implement gain-scheduled PID control. In gain-scheduled
control, you determine the PID coefficients by logic or other calculation in your model and feed them
to the block.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has a filtered derivative.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

b — Proportional setpoint weight
scalar | vector

Proportional setpoint weight, provided from a source external to the block. External input is useful,
for example, when you want to map a different PID parameterization to the PID gains of the block.
You can also use the external input to implement gain-scheduled PID control. In gain-scheduled
control, you determine the PID coefficients by logic or other calculation in your model and feed them
to the block.

Dependencies

To enable this port, set Controller parameters Source to external.

Discrete PID Controller (2DOF)

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

¢ — Derivative setpoint weight
scalar | vector

Derivative setpoint weight, provided from a source external to the block. External input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use the external input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculation in your model and feed them to the
block.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has derivative action.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Reset — External reset trigger
scalar

Trigger to reset the integrator and filter to their initial conditions. Use the External reset parameter
to specify what kind of signal triggers a reset. The port icon indicates the trigger type specified in
that parameter. For example, the following illustration shows a continuous-time PID Controller
(2DOF) block with External reset set to rising.

Reference input [

Measured system response Output

Y

PID(s)

Reset > 5

PID Contraller (2DOF)

When the trigger occurs, the block resets the integrator and filter to the initial conditions specified by
the Integrator Initial condition and Filter Initial condition parameters or the Iy and D, ports.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA) software
standard, your model must use Boolean signals to drive the external reset ports of the PID controller
block.

Dependencies

To enable this port, set External reset to any value other than none.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixed point | Boolean

lo — Integrator initial condition
scalar | vector

Integrator initial condition, provided from a source external to the block.

1-495

1 Blocks

1-496

Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has integral action.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixed point

D, — Filter initial condition
scalar | vector

Initial condition of the derivative filter, provided from a source external to the block.

Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has derivative action.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

up — Output saturation upper limit
scalar | vector

Upper limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions exceeds the value provided at this port, the block
output is held at that value.

Dependencies

To enable this port, select Limit output and set the output saturation Source to external.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

lo — Output saturation lower limit
scalar | vector

Lower limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions goes below the value provided at this port, the block
output is held at that value.

Dependencies

To enable this port, select Limit output and set the output saturation Soeurce to external.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

TR — Tracking signal
scalar | vector

Signal for controller output to track. When signal tracking is active, the difference between the
tracking signal and the block output is fed back to the integrator input. Signal tracking is useful for
implementing bumpless control transfer in systems that switch between two controllers. It can also
be useful to prevent block windup in multiloop control systems. For more information, see the Enable
tracking mode parameter.

Discrete PID Controller (2DOF)

Dependencies

To enable this port, select the Enable tracking mode parameter.

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
fixed point

Tpom — Discrete-integrator time
scalar

Discrete-integrator time, provided as a scalar to the block. You can use your own value of discrete-
time integrator sample time that defines the rate at which the block is going to be run either in
Simulink or on external hardware. The value of the discrete-time integrator time should match the
average sampling rate of the external interrupts, when the block is used inside a conditionally-
executed subsystem.

In other words, you can specify Ts for any of the integrator methods below such that the value
matches the average sampling rate of the external interrupts. In discrete time, the derivative term of
the controller transfer function is:

D[1+ch ’

where a(z) depends on the integrator method you specify with this parameter.

Forward Euler

S

1-497

1 Blocks

Backward Euler

Trapezoidal

|
I I
2 .
For more information about discrete-time integration, see the Discrete-Time Integrator block

reference page. For more information on conditionally executed subsystems, see “Conditionally
Executed Subsystems Overview”.

N

N
|

Dependencies

To enable this port, set Time Domain to Discrete-time and select the PID Controller is inside a
conditionally executed subsystem option.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
Output

Port_1(u) — Controller output
scalar | vector

Controller output, generally based on a sum of the input signal, the integral of the input signal, and
the derivative of the input signal, weighted by the setpoint weights and by the proportional, integral,
and derivative gain parameters. A first-order pole filters the derivative action. Which terms are
present in the controller signal depends on what you select for the Controller parameter. The base
controller transfer function for the current settings is displayed in the Compensator formula
section of the block parameters and under the mask. Other parameters modify the block output, such
as saturation limits specified by the Upper Limit and Lower Limit saturation parameters.

1-498

Discrete PID Controller (2DOF)

The controller output is a vector signal when any of the inputs is a vector signal. In that case, the
block acts as N independent PID controllers, where N is the number of signals in the input vector.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Parameters
Controller — Controller type
PID (default) | PI | PD

Specify which of the proportional, integral, and derivative terms are in the controller.

PID

Proportional, integral, and derivative action.
PI

Proportional and integral action only.
PD

Proportional and derivative action only.

Tip The controller output for the current setting is displayed in the Compensator formula section
of the block parameters and under the mask.

Programmatic Use

Block Parameter: Controller
Type: string, character vector
Values: "PID", "PI", "PD"
Default: "PID"

Form — Controller structure
Parallel (default) | Ideal

Specify whether the controller structure is parallel or ideal.

Parallel

The proportional, integral, and derivative gains P, I, and D, are applied independently. For
example, for a continuous-time 2-DOF PID controller in parallel form, the controller output u is:

N
1
1+ Ny

u = P(br - y)+ I{r = y) + D—r(er - y),

where ris the reference signal, y is the measured plant output signal, and b and c are the
setpoint weights.

For a discrete-time 2-DOF controller in parallel form, the controller output is:

u = P(br — y) + Ia(2)(r — y) + D%B(Z)(cr _—

1-499

1 Blocks

where the Integrator method and Filter method parameters determine a(z) and S(z),
respectively.

Ideal

The proportional gain P acts on the sum of all actions. For example, for a continuous-time 2-DOF
PID controller in ideal form, the controller output is:

u=>~P

1 N
(br—y)+IE(r—y)+D1+N1(cr—y) .

For a discrete-time 2-DOF PID controller in ideal form, the transfer function is:

u= P[(br -) +1a@)(=) + D1 Np e - y)],

where the Integrator method and Filter method parameters determine a(z) and f(z),
respectively.

Tip The controller output for the current settings is displayed in the Compensator formula
section of the block parameters and under the mask.

Programmatic Use

Block Parameter: Controller
Type: string, character vector
Values: "Parallel”, "Ideal"
Default: "Parallel”

Time domain — Specify discrete-time or continuous-time controller

Discrete-time (default) | Continuous-time

When you select Discrete-time, it is recommended that you specify an explicit sample time for the
block. See the Sample time (-1 for inherited) parameter. Selecting Discrete-time also enables
the Integrator method, and Filter method parameters.

When the PID Controller block is in a model with synchronous state control (see the State Control
block), you cannot select Continuous-time.

Note The PID Controller (2DOF) and Discrete PID Controller (2DOF) blocks are identical except for
the default value of this parameter.

Programmatic Use

Block Parameter: TimeDomain

Type: string, character vector

Values: "Continuous-time", "Discrete-time"
Default: "Discrete-time"

PID Controller is inside a conditionally executed subsystem — Enable the discrete-integrator

time port
off (default) | on

1-500

Discrete PID Controller (2DOF)

For discrete-time PID controllers, enable the discrete-time integrator port to use your own value of
discrete-time integrator sample time. To ensure proper integration, use the Tpr; port to provide a
scalar value of At for accurate discrete-time integration.

Dependencies

To enable this parameter, set Time Domain to Discrete-time.

Programmatic Use

Block Parameter: UseExternalTs
Type: string, character vector
Values: "on", "off"

Default: "off"

Sample time (-1 for inherited) — Discrete interval between samples

-1 (default) | positive scalar

Specify a sample time by entering a positive scalar value, such as 0.1. The default discrete sample
time of -1 means that the block inherits its sample time from upstream blocks. However, it is
recommended that you set the controller sample time explicitly, especially if you expect the sample
time of upstream blocks to change. The effect of the controller coefficients P, I, D, and N depend on
the sample time. Thus, for a given set of coefficient values, changing the sample time changes the
performance of the controller.

See “Specify Sample Time” for more information.

To implement a continuous-time controller, set Time domain to Continuous-time.

Tip If you want to run the block with an externally specified or variable sample time, set this
parameter to -1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time.

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use

Block Parameter: SampleTime
Type: scalar

Values: -1, positive scalar
Default: -1

Integrator method — Method for computing integral in discrete-time controller
Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the integral term of the controller transfer function is Ia(z), where a(z) depends on
the integrator method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

1-501

1 Blocks

This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

Backward Euler

Backward rectangular (right-hand) approximation,

An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal
Bilinear approximation,

1-502

Discrete PID Controller (2DOF)

]
E—— I
2 Z .
An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,

the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

Dependencies

To enable this parameter, set Time Domain to Discrete-time and set Controller to a controller
type with integral action.

Programmatic Use

Block Parameter: IntegratorMethod

Type: string, character vector

Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Filter method — Method for computing derivative in discrete-time controller

Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the derivative term of the controller transfer function is:

1-503

1 Blocks

D[1+ch ’

where a(z) depends on the filter method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

Backward Euler
Backward rectangular (right-hand) approximation,

1-504

Discrete PID Controller (2DOF)

Y4

An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal
|
r— I
2 Z .
An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,

the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Bilinear approximation,

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

Dependencies

To enable this parameter, set Time Domain to Discrete-time and enable Use filtered derivative.

Programmatic Use
Block Parameter: FilterMethod
Type: string, character vector

1-505

1 Blocks

1-506

Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Main
Source — Source for controller gains and filter coefficient

internal (default) | external

internal

Specify the controller gains, filter coefficient, and setpoint weights using the block parameters P,
I, D, N, b, and c respectively.

external

Specify the PID gains, filter coefficient, and setpoint weights externally using block inputs. An
additional input port appears on the block for each parameter that is required for the current
controller type.

Enabling external inputs for the parameters allows you to compute their values externally to the
block and provide them to the block as signal inputs.

External input is useful, for example, when you want to map a different PID parameterization to the
PID gains of the block. You can also use external gain input to implement gain-scheduled PID control.
In gain-scheduled control, you determine the PID gains by logic or other calculation in your model
and feed them to the block.

When you supply gains externally, time variations in the integral and derivative gain values are
integrated and differentiated, respectively. The derivative setpoint weight c is also differentiated. This
result occurs because in both continuous time and discrete time, the gains are applied to the signal
before integration or differentiation. For example, for a continuous-time PID controller with external
inputs, the integrator term is implemented as shown in the following illustration.

p-y —*

I!I' - L

Within the block, the input signal u is multiplied by the externally supplied integrator gain, I, before
integration. This implementation yields:

u,-=f(r—y)1dt.

Thus, the integrator gain is included in the integral. Similarly, in the derivative term of the block,
multiplication by the derivative gain precedes the differentiation, which causes the derivative gain D
and the derivative setpoint weight c to be differentiated.

Programmatic Use

Block Parameter: ControllerParametersSource
Type: string, character vector

Values: "internal", "external"

Default: "internal"

Discrete PID Controller (2DOF)

Proportional (P) — Proportional gain
1 (default) | scalar | vector

Specify a finite, real gain value for the proportional gain. When Controller form is:

* Parallel — Proportional action is independent of the integral and derivative actions. For
example, for a continuous-time 2-DOF PID controller in parallel form, the controller output u is:

u=P(br-y)+I-(r~y)+D (cr =),

1
1+N<

where ris the reference signal, y is the measured plant output signal, and b and c are the setpoint
weights.

For a discrete-time 2-DOF controller in parallel form, the controller output is:

u = P(br — y) + Ia(2)(r — y) + D%E(Z)(cr -,

where the Integrator method and Filter method parameters determine a(z) and (z),
respectively.

* Ideal — The proportional gain multiples the integral and derivative terms. For example, for a
continuous-time 2-DOF PID controller in ideal form, the controller output is:

N T(cr—y)|.
+ N

S

u=P|(br=-y)+I+(r-y)+D

For a discrete-time 2-DOF PID controller in ideal form, the transfer function is:

u=P|(br=y)+Iaz)(r-y)+D

N
T+ VB ~ 3’)]'

where the Integrator method and Filter method parameters determine a(z) and (z),
respectively.

Tunable: Yes

Dependencies

To enable this parameter, set the Controller parameters Source to internal.
Programmatic Use

Block Parameter: P

Type: scalar, vector

Default: 1

Integral (1) — Integral gain

1 (default) | scalar | vector

Specity a finite, real gain value for the integral gain.

Tunable: Yes

1-507

1 Blocks

1-508

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to a type that has integral action.

Programmatic Use

Block Parameter: I

Type: scalar, vector

Default: 1

Integral (I*Ts) — Integral gain multiplied by sample time
1 (default) | scalar | vector

Specify a finite, real gain value for the integral gain multiplied by the sample time.

Note PID tuning tools, such as the PID Tuner app and Closed-Loop PID Autotuner block, tune the
gain I but not I*T,. Therefore, multiply the integral gain value you obtain from a tuning tool by the
sample time before you write it to this parameter.

When you use I*Ts instead of I, the block requires fewer calculations to perform integration. This
improves the execution time of the generated code.

Tunable: No

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, set
Controller to a type that has integral action, and enable the Use I*Ts parameter.

Programmatic Use
Block Parameter: I
Type: scalar, vector
Default: 1

Use I*Ts — Use integral gain multiplied by sample time
off (default) | on

For discrete-time controllers with integral action, the block takes the integral gain as an input and
multiplies it by the sample time internally as a part of performing the integration. You can enable this
parameter to specify integral gain multiplied by sample time as input (I*Ts) in place of the integral
gain (I). Doing so reduces the number of internal calculations and is useful when you want to improve
the execution time of your generated code.

Dependencies

To enable this parameter, set Controller to a controller type that has integral action.

Programmatic Use

Block Parameter: UseKiTs
Type: string, character vector
Values: "on", "off"
Default: "on"

Discrete PID Controller (2DOF)

Derivative (D) — Derivative gain

0 (default) | scalar | vector

Specify a finite, real gain value for the derivative gain.
Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to PID or PD.

Programmatic Use
Block Parameter: D
Type: scalar, vector
Default: 0

Use filtered derivative — Apply filter to derivative term
on (default) | of f

For discrete-time PID controllers only, clear this option to replace the filtered derivative with an
unfiltered discrete-time differentiator. When you do so, the derivative term of the controller output
becomes:

cr —1Yy).
21

For continuous-time PID controllers, the derivative term is always filtered.

Dependencies

To enable this parameter, set Time domain to Discrete-time, and set Controller to a type that
has a derivative term.

Programmatic Use

Block Parameter: UseFilter
Type: string, character vector
Values: "on", "off"

Default: "on"

Filter coefficient (N) — Derivative filter coefficient

100 (default) | scalar | vector

1-509

1 Blocks

Specify a finite, real gain value for the filter coefficient. The filter coefficient determines the pole
location of the filter in the derivative action of the block. The location of the filter pole depends on the
Time domain parameter.

* When Time domain is Continuous-time, the pole locationis s = -N.
* When Time domain is Discrete-time, the pole location depends on the Filter method
parameter.
Filter Method Location of Filter Pole
Forward Euler Zpole = 1 — NTj
Backward Euler e 1
pole = T+ NT,
Trapezoidal _ 1-=NTs/2
Zpole = T NT,/2

The block does not support N = Inf (ideal unfiltered derivative). When the Time domain is
Discrete-time, you can clear Use filtered derivative to remove the derivative filter.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to PID or PD.

Programmatic Use
Block Parameter: N
Type: scalar, vector
Default: 100

Setpoint weight (b) — Proportional setpoint weight

1 (default) | scalar | vector

Setpoint weight on the proportional term of the controller. The proportional term of a 2-DOF
controller output is P(br-y), where r is the reference signal and y is the measured plant output.
Setting b to 0 eliminates proportional action on the reference signal, which can reduce overshoot in
the system response to step changes in the setpoint. Changing the relative values of b and ¢ changes
the balance between disturbance rejection and setpoint tracking.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal.

Programmatic Use
Block Parameter: b
Type: scalar, vector
Default: 1

Setpoint weight (c) — Derivative setpoint weight

1 (default) | scalar | vector

1-510

Discrete PID Controller (2DOF)

Setpoint weight on the derivative term of the controller. The derivative term of a 2-DOF controller
acts on cr-y, where ris the reference signal and y is the measured plant output. Thus, setting c to 0
eliminates derivative action on the reference signal, which can reduce transient response to step
changes in the setpoint. Setting ¢ to 0 can yield a controller that achieves both effective disturbance
rejection and smooth setpoint tracking without excessive transient response. Changing the relative
values of b and ¢ changes the balance between disturbance rejection and setpoint tracking.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to a type that has derivative action.

Programmatic Use
Block Parameter:
Type: scalar, vector
Default: 1

Select tuning method — Tool for automatic tuning of controller coefficients
Transfer Function Based (PID Tuner App) (default) | Frequency Response Based

If you have Simulink Control Design software, you can automatically tune the PID coefficients when
they are internal to the block. To do so, use this parameter to select a tuning tool, and click Tune.

Transfer Function Based (PID Tuner App)

Use PID Tuner, which lets you interactively tune PID coefficients while examining relevant
system responses to validate performance. PID Tuner can tune all the coefficients P, I, D, and N,
and the setpoint coefficients b and c. By default, PID Tuner works with a linearization of your
plant model. For models that cannot be linearized, you can tune PID coefficients against a plant
model estimated from simulated or measured response data. For more information, see “Design
Two-Degree-of-Freedom PID Controllers” (Simulink Control Design).

Frequency Response Based

Use Frequency Response Based PID Tuner, which tunes PID controller coefficients based on
frequency-response estimation data obtained by simulation. This tuning approach is especially
useful for plants that are not linearizable or that linearize to zero. Frequency Response Based
PID Tuner tunes the coefficients P, I, D, and N, but does not tune the setpoint coefficients b and
c. For more information, see “Design PID Controller from Plant Frequency-Response Data”
(Simulink Control Design).

Both of these tuning methods assume a single-loop control configuration. Simulink Control Design
software includes other tuning approaches that suit more complex configurations. For information
about other ways to tune a PID Controller block, see “Choose a Control Design Approach” (Simulink
Control Design).

Dependencies
To enable this parameter, in the Main tab, set the controller-parameters Source to internal.

Enable zero-crossing detection — Detect zero crossings on reset and on entering or leaving a
saturation state

on (default) | of f

1-511

1 Blocks

1-512

Zero-crossing detection can accurately locate signal discontinuities without resorting to excessively
small time steps that can lead to lengthy simulation times. If you select Limit output or activate
External reset in your PID Controller block, activating zero-crossing detection can reduce
computation time in your simulation. Selecting this parameter activates zero-crossing detection:

* At initial-state reset

* When entering an upper or lower saturation state
* When leaving an upper or lower saturation state

For more information about zero-crossing detection, see “Zero-Crossing Detection”.

Programmatic Use

Block Parameter: ZeroCross
Type: string, character vector
Values: "on", "off"

Default: "on"

Initialization

Source — Source for integrator and derivative initial conditions

internal (default) | external

Simulink uses initial conditions to initialize the integrator and derivative-filter (or the unfiltered
derivative) output at the start of a simulation or at a specified trigger event. (See the External reset
parameter.) These initial conditions determine the initial block output. Use this parameter to select
how to supply the initial condition values to the block.

internal

Specify the initial conditions using the Integrator Initial condition and Filter Initial
condition parameters. If Use filtered derivative is not selected, use the Differentiator
parameter to specify the initial condition for the unfiltered differentiator instead of a filter initial
condition.

external

Specify the initial conditions externally using block inputs. Additional input ports I, and D,
appear on the block. If Use filtered derivative is not selected, supply the initial condition for the
unfiltered differentiator at D, instead of a filter initial condition.

Programmatic Use

Block Parameter: InitialConditionSource
Type: string, character vector

Values: "internal", "external"

Default: "internal"

Integrator — Integrator initial condition
0 (default) | scalar | vector

Simulink uses the integrator initial condition to initialize the integrator at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The integrator initial condition cannot be NaN or Inf.

Discrete PID Controller (2DOF)

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and set Controller to a
type that has integral action.

Programmatic Use

Block Parameter: InitialConditionForIntegrator
Type: scalar, vector

Default: 0

Filter — Filter initial condition
0 (default) | scalar | vector

Simulink uses the filter initial condition to initialize the derivative filter at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The filter initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and use a controller that
has a derivative filter.

Programmatic Use

Block Parameter: InitialConditionForFilter
Type: scalar, vector

Default: 0

Differentiator — Initial condition for unfiltered derivative
0 (default) | scalar | vector

When you use an unfiltered derivative, Simulink uses this parameter to initialize the differentiator at
the start of a simulation or at a specified trigger event (see External reset). The integrator initial
condition and the derivative initial condition determine the initial output of the PID controller block.

The derivative initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, set Time domain to Discrete-time, clear the Use filtered derivative
check box, and in the Initialization tab, set Source to internal.

Programmatic Use

Block Parameter: DifferentiatorICPrevScaledInput
Type: scalar, vector

Default: 0

Initial condition setting — Location at which initial condition is applied
Auto (default) | Output

Use this parameter to specify whether to apply the Integrator Initial condition and Filter Initial
condition parameter to the corresponding block state or output. You can change this parameter at
the command line only, using set param to set the InitialConditionSetting parameter of the
block.

1-513

1 Blocks

1-514

Auto

Use this option in all situations except when the block is in a triggered subsystem or a function-
call subsystem and simplified initialization mode is enabled.

Output
Use this option when the block is in a triggered subsystem or a function-call subsystem and
simplified initialization mode is enabled.

For more information about the Initial condition setting parameter, see the Discrete-Time
Integrator block.

This parameter is only accessible through programmatic use.

Programmatic Use

Block Parameter: InitialConditionSetting
Type: string, character vector

Values: "Auto", "OQutput"

Default: "Auto"

External reset — Trigger for resetting integrator and filter values
none (default) | rising | falling | either | level

Specify the trigger condition that causes the block to reset the integrator and filter to initial
conditions. (If Use filtered derivative is not selected, the trigger resets the integrator and
differentiator to initial conditions.) Selecting any option other than none enables the Reset port on
the block for the external reset signal.

none

The integrator and filter (or differentiator) outputs are set to initial conditions at the beginning of
simulation, and are not reset during simulation.

rising

Reset the outputs when the reset signal has a rising edge.
falling

Reset the outputs when the reset signal has a falling edge.
either

Reset the outputs when the reset signal either rises or falls.
level

Reset the outputs when the reset signal either:

* Is nonzero at the current time step
* Changes from nonzero at the previous time step to zero at the current time step

This option holds the outputs to the initial conditions while the reset signal is nonzero.
Dependencies

To enable this parameter, set Controller to a type that has derivative or integral action.

Programmatic Use
Block Parameter: ExternalReset

Discrete PID Controller (2DOF)

Type: string, character vector
Values: "none", "rising", "falling", "either","level"
Default: "none"

Ignore reset when linearizing — Force linearization to ignore reset
off (default) | on

Select to force Simulink and Simulink Control Design linearization commands to ignore any reset
mechanism specified in the External reset parameter. Ignoring reset states allows you to linearize a
model around an operating point even if that operating point causes the block to reset.

Programmatic Use

Block Parameter: IgnoreLimit
Type: string, character vector
Values: "off", "on"

Default: "off"

Enable tracking mode — Activate signal tracking
off (default) | on

Signal tracking lets the block output follow a tracking signal that you provide at the TR port. When
signal tracking is active, the difference between the tracking signal and the block output is fed back
to the integrator input with a gain Kt, specified by the Tracking gain (Kt) parameter. Signal
tracking has several applications, including bumpless control transfer and avoiding windup in
multiloop control structures.

Bumpless control transfer
Use signal tracking to achieve bumpless control transfer in systems that switch between two

controllers. Suppose you want to transfer control between a PID controller and another controller. To
do so, connecting the controller output to the TR input as shown in the following illustration.

(s=1)
= s+ 1)

Active controller

| —- .
£92) > Ref
Ref l
2D & > PID(s)
y
—»{TR

PID Controller (2DOF)

1-515

1 Blocks

1-516

J

For more information, see “Bumpless Control Transfer with a Two-Degree-of-Freedom PID Controller’
on page 12-105.

Multiloop control

Use signal tracking to prevent block windup in multiloop control approaches. For an example
illustrating this approach with a 1DOF PID controller, see “Prevent Block Windup in Multiloop
Control” on page 12-103.

Dependencies

To enable this parameter, set Controller to a type that has integral action.

Programmatic Use

Block Parameter: TrackingMode
Type: string, character vector
Values: "off", "on"

Default: "off"

Tracking coefficient (Kt) — Gain of signal-tracking feedback loop

1 (default) | scalar

When you select Enable tracking mode, the difference between the signal TR and the block output
is fed back to the integrator input with a gain Kt. Use this parameter to specify the gain in that
feedback loop.

Dependencies

To enable this parameter, select Enable tracking mode.

Programmatic Use
Block Parameter: Kt
Type: scalar

Default: 1

Saturation
Output saturation

Limit Output — Limit block output to specified saturation values

off (default) | on

Activating this option limits the block output, so that you do not need a separate Saturation on page
1-1896 block after the controller. It also allows you to activate the anti-windup mechanism built into
the block (see the Anti-windup method parameter). Specify the output saturation limits using the
Lower limit and Upper limit parameters. You can also specify the saturation limits externally as
block input ports.

Programmatic Use

Block Parameter: LimitOutput
Type: string, character vector
Values: "off", "on"

Default: "off"

Source — Source for output saturation limits

Discrete PID Controller (2DOF)

internal (default) | external

Use this parameter to specify how to supply the upper and lower saturation limits of the block output.

internal
Specify the output saturation limits using the Upper limit and Lower limit parameters.
external

Specify the output saturation limits externally using block input ports. The additional input ports
up and lo appear on the block. You can use the input ports to implement the upper and lower
output saturation limits determined by logic or other calculations in the Simulink model and
passed to the block.

Programmatic Use

Block Parameter: SatLimitsSource
Type: string, character vector

Values: "internal", "external"
Default: "internal"

Upper limit — Upper saturation limit for block output
Inf (default) | scalar

Specify the upper limit for the block output. The block output is held at the Upper saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions exceeds that value.

Dependencies

To enable this parameter, select Limit output.

Programmatic Use

Block Parameter: UpperSaturationLimit
Type: scalar

Default: Inf

Lower limit — Lower saturation limit for block output
-Inf (default) | scalar
Specify the lower limit for the block output. The block output is held at the Lower saturation limit

whenever the weighted sum of the proportional, integral, and derivative actions goes below that
value.

Dependencies

To enable this parameter, select Limit output.

Programmatic Use

Block Parameter: LowerSaturationLimit

Type: scalar

Default: -Inf

Ignore saturation when linearizing — Force linearization to ignore output limits

off (default) | on

1-517

1 Blocks

1-518

Force Simulink and Simulink Control Design linearization commands to ignore block output limits
specified in the Upper limit and Lower limit parameters. Ignoring output limits allows you to
linearize a model around an operating point even if that operating point causes the block to exceed
the output limits.

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use

Block Parameter: LinearizeAsGain
Type: string, character vector

Values: "off", "on"

Default: "off"

Anti-windup method — Integrator anti-windup method

none (default) | back-calculation | clamping

When you select Limit output and the weighted sum of the controller components exceeds the
specified output limits, the block output holds at the specified limit. However, the integrator output
can continue to grow (integrator windup), increasing the difference between the block output and the
sum of the block components. In other words, the internal signals in the block can be unbounded
even if the output appears bounded by saturation limits. Without a mechanism to prevent integrator
windup, two results are possible:

» If the sign of the signal entering the integrator never changes, the integrator continues to
integrate until it overflows. The overflow value is the maximum or minimum value for the data
type of the integrator output.

» If the sign of the signal entering the integrator changes once the weighted sum has grown beyond
the output limits, it can take a long time to unwind the integrator and return the weighted sum
within the block saturation limit.

In either case, controller performance can suffer. To combat the effects of windup without an anti-
windup mechanism, it may be necessary to detune the controller (for example, by reducing the
controller gains), resulting in a sluggish controller. To avoid this problem, activate an anti-windup
mechanism using this parameter.

none
Do not use an anti-windup mechanism.
back-calculation

Unwind the integrator when the block output saturates by feeding back to the integrator the
difference between the saturated and unsaturated control signal. The following diagram
represents the back-calculation feedback circuit for a continuous-time controller. To see the
actual feedback circuit for your controller configuration, right-click on the block and select Mask
> Look Under Mask.

Discrete PID Controller (2DOF)

weighted
proportional
term

T'Y—hb—.@'—’ 1; +: _/_-—-Q—hblnck output

Integrator

41 A
N

weighted
derivative
term

Use the Back-calculation coefficient (Kb) parameter to specify the gain of the anti-windup
feedback circuit. It is usually satisfactory to set Kb = I, or for controllers with derivative action,
Kb = sqrt(I*D). Back-calculation can be effective for plants with relatively large dead time [1].

clamping
Integration stops when the sum of the block components exceeds the output limits and the
integrator output and block input have the same sign. Integration resumes when the sum of the

block components exceeds the output limits and the integrator output and block input have
opposite sign. Clamping is sometimes referred to as conditional integration.

Clamping can be useful for plants with relatively small dead times, but can yield a poor transient
response for large dead times [1].

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use

Block Parameter: AntiWindupMode

Type: string, character vector

Values: "none", "back-calculation","clamping"
Default: "none"

Back-calculation coefficient (Kb) — Gain coefficient of anti-windup feedback loop

1 (default) | scalar

The back-calculation anti-windup method unwinds the integrator when the block output
saturates. It does so by feeding back to the integrator the difference between the saturated and
unsaturated control signal. Use the Back-calculation coefficient (Kb) parameter to specify the

gain of the anti-windup feedback circuit. For more information, see the Anti-windup method
parameter.

1-519

1 Blocks

1-520

Dependencies

To enable this parameter, select the Limit output parameter, and set the Anti-windup method
parameter to back-calculation.

Programmatic Use
Block Parameter: Kb
Type: scalar

Default: 1

Integrator saturation
Limit Output — Limit integrator output to specified saturation limits
off (default) | on

Enable this parameter to limit the integrator output to be within a specified range. When the
integrator output reaches the limits, the integral action turns off to prevent integral windup. Specify
the saturation limits using the Lower limit and Upper limit parameters.

Dependencies

To enable this parameter, set Controller to a controller type that has integral action.

Programmatic Use

Block Parameter: LimitIntegratorOutput
Type: string, character vector

Values: "off", "on"

Default: "off"

Upper limit — Upper saturation limit for integrator
Inf (default) | scalar

Specify the upper limit for the integrator output. The integrator output is held at this value whenever
it would otherwise exceed this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.

Programmatic Use

Block Parameter: UpperIntegratorSaturationLimit
Type: scalar

Default: Inf

Lower limit — Lower saturation limit for integrator
-Inf (default) | scalar

Specify the lower limit for the integrator output. The integrator output is held at this value whenever
it would otherwise go below this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.

Discrete PID Controller (2DOF)

Programmatic Use

Block Parameter: LowerIntegratorSaturationLimit
Type: scalar

Default: -Inf

Data Types

The parameters in this tab are primarily of use in fixed-point code generation using Fixed-Point
Designer. They define how numeric quantities associated with the block are stored and processed
when you generate code.

If you need to configure data types for fixed-point code generation, click Open Fixed-Point Tool and
use that tool to configure the rest of the parameters in the tab. For information about using Fixed-
Point Tool, see “Autoscaling Data Objects Using the Fixed-Point Tool” (Fixed-Point Designer).

After you use Fixed-Point Tool, you can use the parameters in this tab to make adjustments to fixed-
point data-type settings if necessary. For each quantity associated with the block, you can specify:

» Floating-point or fixed-point data type, including whether the data type is inherited from upstream
values in the block.

* The minimum and maximum values for the quantity, which determine how the quantity is scaled
for fixed-point representation.

For assistance in selecting appropriate values, click o open the Data Type Assistant for the
corresponding quantity. For more information, see “Specify Data Types Using Data Type Assistant”.

Main Initialization Output saturation Data Types State Attributes
Fixed-point operational parameters

Integer rounding mode: | Floor -

(] saturate on integer averflow

[Lock data type settings against changes by the fixed-point tools Open Fixed-Point Tool...

Data Type Minimum Maximum

P product output: | Inherit: Inherit via internal rule v| > |[] | : |[] | :
I product output: | Inherit: Inherit via internal rule v| > |[] | : |[] | :
D product output: ‘ Inherit: Inherit via internal rule v| > |[] | : |[] | :
M product output: ‘ Inherit: Inherit via internal rule v| == |[] | : |[] | :
b product output: | Inherit: Inherit via internal rule v| > |[] | : |[] | :
¢ product output: | Inherit: Inherit via internal rule v| > |[] | : |[] | :
Sum output: | Inherit: Inherit via internal rule v| > |[] | : |[] | :

» Additional data types

1-521

1 Blocks

1-522

The specific quantities listed in the Data Types tab vary depending on how you configure the PID
controller block. In general, you can configure data types for the following types of quantities:

* Product output — Stores the result of a multiplication carried out under the block mask. For
example, P product output stores the output of the gain block that multiplies the block input
with the proportional gain P.

* Parameter — Stores the value of a numeric block parameter, such as P, I, or D.

* Block output — Stores the output of a block that resides under the PID controller block mask. For
example, use Integrator output to specify the data type of the output of the block called
Integrator. This block resides under the mask in the Integrator subsystem, and computes
integrator term of the controller action.

* Accumulator — Stores values associated with a sum block. For example, SumI2 Accumulator
sets the data type of the accumulator associated with the sum block SumI2. This block resides
under the mask in the Back Calculation subsystem of the Anti-Windup subsystem.

In general, you can find the block associated with any listed parameter by looking under the PID
Controller block mask and examining its subsystems. You can also use the Model Explorer to search
under the mask for the listed parameter name, such as SumI2. (See Model Explorer.)

Matching Input and Internal Data Types

By default, all data types in the block are set to Inherit: Inherit via internal rule. With
this setting, Simulink chooses data types to balance numerical accuracy, performance, and generated
code size, while accounting for the properties of the embedded target hardware.

Under some conditions, incompatibility can occur between data types within the block. For instance,
in continuous time, the Integrator block under the mask can accept only signals of type double. If
the block input signal is a type that cannot be converted to double, such as uint16, the internal
rules for type inheritance generate an error when you generate code.

To avoid such errors, you can use the Data Types settings to force a data type conversion. For
instance, you can explicitly set P product output, I product output, and D product output to
double, ensuring that the signals reaching the continuous-time integrators are of type doubtle.

In general, it is not recommended to use the block in continuous time for code generation
applications. However, similar data type errors can occur in discrete time, if you explicitly set some
values to data types that are incompatible with downstream signal constraints within the block. In
such cases, use the Data Types settings to ensure that all data types are internally compatible.

Fixed-Point Operational Parameters
Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth

Discrete PID Controller (2DOF)

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
‘Zero'

Default: 'Floor!'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

+ off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

* on — Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip
» Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

* Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

* When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

* In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use

Block Parameter: SaturateOnIntegerOverflow
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector

Values: 'off' | 'on'

1-523

1 Blocks

1-524

Default: 'off'
State Attributes
The parameters in this tab are primarily of use in code generation.

State name (e.g., 'position’') — Name for continuous-time filter and integrator states
"' (default) | character vector

Assign a unique name to the state associated with the integrator or the filter, for continuous-time PID
controllers. (For information about state names in a discrete-time PID controller, see the State name
parameter.) The state name is used, for example:

* For the corresponding variable in generated code

* As part of the storage name when logging states during simulation

» For the corresponding state in a linear model obtain by linearizing the block

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

Dependencies

To enable this parameter, set Time domain to Continuous-time.

Programmatic Use

Parameter: IntegratorContinuousStateAttributes, FilterContinuousStateAttributes
Type: character vector

Default: '’

State name — Names for discrete-time filter and integrator states
empty string (default) | string | character vector

Assign a unique name to the state associated with the integrator or the filter, for discrete-time PID
controllers. (For information about state names in a continuous-time PID controller, see the State
name (e.g., 'position') parameter.)

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters. The state name is used, for example:

» For the corresponding variable in generated code

* As part of the storage name when logging states during simulation

* For the corresponding state in a linear model obtain by linearizing the block

For more information about the use of state names in code generation, see “C Code Generation
Configuration for Model Interface Elements” (Simulink Coder).

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use

Parameter: IntegratorStateIdentifier, FilterStateIdentifier
Type: string, character vector

Default: ""

Discrete PID Controller (2DOF)

State name must resolve to Simulink signal object — Require that state name resolve to a signal
object
off (default) | on

Select this parameter to require that the discrete-time integrator or filter state name resolves to a
Simulink signal object.

Dependencies
To enable this parameter for the discrete-time integrator or filter state:

1 Set Time domain to Discrete-time.
2 Specify a value for the integrator or filter State name.
3 Set the model configuration parameter Signal resolution to a value other than None.

Programmatic Use

Block Parameter: IntegratorStateMustResolveToSignalObject,
FilterStateMustResolveToSignalObject

Type: string, character vector

Values: "off", "on"

Default: "off"

Block Characteristics

Data Types double | fixed point | integer | single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

More About

Decomposition of 2-DOF PID Controllers

A 2-DOF PID controller can be interpreted as a PID controller with a prefilter, or a PID controller with
a feedforward element.

Prefilter Decomposition

In parallel form, a two-degree-of-freedom PID controller can be equivalently modeled by the following
block diagram, where C is a single degree-of-freedom PID controller and F is a prefilter on the
reference signal.

1-525

1 Blocks

1-526

Rej‘_"'F [A S

¥

Refis the reference signal, y is the feedback from the measured system output, and u is the controller
output. For a continuous-time 2-DOF PID controller in parallel form, the transfer functions for F and
C are

_ (bP 4+ cDN)s® + (bPN + I)s + IN

F,.-(s) =
par(s) (P + DN)s% + (PN + I)s + IN
Coo (s) = (P + DN)s® + (PN + I)s + IN
pari=) = s(s + N) ’

where b and c are the setpoint weights.

For a 2-DOF PID controller in ideal form, the transfer functions are

_ (b + cDN)s® + (bN +I)s + IN
(1+DN)s’+(N+I)s+IN ’

p(L+ DN)s? + (N + D)s + IN
s(s+ N))

Fig(s)

Cig(s) =

A similar decomposition applies for a discrete-time 2-DOF controller.

Feedforward Decomposition

Alternatively, the parallel two-degree-of-freedom PID controller can be modeled by the following
block diagram.

Ref —j—-T

J_:l

In this realization, Q acts as feed-forward conditioning on the reference signal. For a continuous-time
2-DOF PID controller in parallel form, the transfer function for Q is

_((b=1)P+(c-1)DN)s+ (b—-1)PN
Qpar(s) = S+ N .

Discrete PID Controller (2DOF)

For a 2-DOF PID controller in ideal form, the transfer function is

‘ _,(b=1)+(c-1)DN)s+ (b-1)N
Qld(s) =P S+N .

The transfer functions for C are the same as in the filter decomposition.

A similar decomposition applies for a discrete-time 2-DOF controller.

Version History
Introduced in R2009b

R2022bh: Issues error when integrator and filter initial conditions lie outside saturation
limits
Behavior changed in R2022b

The block now issues an error when the integrator or filter initial condition value lies outside the
output saturation limits. In previous releases, the block did not issue an error when these initial
conditions had such values.

If this change impacts your model, update the PID integrator or filter initial condition values such
that they are within the output saturation limits.

R2021b: ReferenceBlock parameter returns different path
Behavior changed in R2021b

Starting in R2021b, the get param function returns a different value for the ReferenceBlock
parameter. The ReferenceBlock parameter is a property common to all Simulink blocks and gives
the path of the library block to which a block links. The PID Controller (2DOF) and Discrete PID
Controller (2DOF) blocks now link to 'slpidlib/PID Controller (2DOF)'. Previously, the
blocks linked to 'pid 1ib/PID Controller (2DOF)'.

This change does not affect any other functionality or workflows. You can still use the previous path
with the set param function.

R2020b: ReferenceBlock parameter returns different path
Behavior changed in R2020b

Starting in R2020b, the get param function returns a different value for the ReferenceBlock
parameter. The ReferenceBlock parameter is a property common to all Simulink blocks and gives
the path of the library block to which a block links. The PID Controller (2DOF) and Discrete PID
Controller (2DOF) blocks now link to 'pid 1ib/PID Controller (2DOF)'. Previously, the blocks
linked to 'simulink/Continuous/PID Controller (2DOF)".

This change does not affect any other functionality or workflows. You can still use the previous path
with the set param function.

References

[1] Visioli, A., "Modified Anti-Windup Scheme for PID Controllers," IEE Proceedings - Control Theory
and Applications, Vol. 150, Number 1, January 2003

1-527

1 Blocks

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For continuous-time PID controllers (Time domain set to Continuous-time):

* Consider using “Model Discretizer” to map continuous-time blocks to discrete equivalents that
support code generation. To access Model Discretizer, in the Apps tab, under Control Systems,
click Model Discretizer.

* Not recommended for production code.
For discrete-time PID controllers (Time domain set to Discrete-time):

* Depends on absolute time when placed inside a triggered subsystem hierarchy.
* Generated code relies on memcpy or memset functions (string.h) under certain conditions.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Fixed-point code generation is supported for discrete-time PID controllers only (Time domain set to
Discrete-time).

See Also
Gain | Discrete-Time Integrator | Discrete Derivative | PID Controller (2DOF) | Discrete PID
Controller

1-528

Discrete State-Space

Discrete State-Space

Implement discrete state-space system

= Av +Bu Libraries:
) W . c;;" .o P Simulink / Discrete
Description

Block Behavior for Non-Empty Matrices

The Discrete State-Space block implements the system described by

x(n+ 1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n),

where u is the input, x is the state, and y is the output. The matrix coefficients must have these
characteristics, as illustrated in the following diagram:
* A must be an n-by-n matrix, where n is the number of states.
* B must be an n-by-m matrix, where m is the number of inputs.
* C must be an r-by-n matrix, where r is the number of outputs.
* D must be an r-by-m matrix.

n m
o A B
r [o D

The block accepts one input and generates one output. The width of the input vector is the number of
columns in the B and D matrices. The width of the output vector is the number of rows in the C and
D matrices. To define the initial state vector, use the Initial conditions parameter.

To specify a vector or matrix of zeros for A, B, C, D, or Initial conditions, use the zeros function.
Block Behavior for Empty Matrices
When the matrices A, B, and C are empty (for example, []), the functionality of the block becomes

y(n) = Du(n). If the Initial conditions vector is also empty, the block uses an initial state vector
of zeros.

Ports
Input

Port_1 — Input signal
scalar | vector

Input vector, where the width equals the number of columns in the B and D matrices. For more
information, see “Description” on page 1-529.

1-529

1 Blocks

1-530

Tip For integer and fixed-point input signals, use the Fixed-Point State-Space block.

Data Types: single | double
Output

Port_1 — Output vector
scalar | vector

Output vector, with width equal to the number of rows in the C and D matrices. For more information,
see “Description” on page 1-529.

Data Types: single | double

Parameters

Main

A — Matrix coefficient A

1 (default) | scalar | vector | matrix

Specify the matrix coefficient A, as a real-valued n-by-n matrix, where n is the number of states. For
more information on the matrix coefficients, see “Description” on page 1-529.

Programmatic Use

Block Parameter: A

Type: character vector
Values: scalar | vector | matrix
Default: '1'

B — Matrix coefficient B
1 (default) | scalar | vector | matrix

Specify the matrix coefficient B, as a real-valued n-by-m matrix, where n is the number of states, and
m is the number of inputs. For more information on the matrix coefficients, see “Description” on page
1-529.

Programmatic Use

Block Parameter: B

Type: character vector
Values: scalar | vector | matrix
Default: '1'

C — Matrix coefficient, C
1 (default) | scalar | vector | matrix
Specify the matrix coefficient C, as a real-valued r-by-n matrix, where r is the number of outputs, and

n is the number of states. For more information on the matrix coefficients, see “Description” on page
1-529.

Discrete State-Space

Programmatic Use

Block Parameter: C

Type: character vector
Values: scalar | vector | matrix
Default: '1'

D — Matrix coefficient, D

1 (default) | scalar | vector | matrix

Specify the matrix coefficient D, as a real-valued r-by-m matrix, where r is the number of outputs, and
m is the number of inputs. For more information on the matrix coefficients, see “Description” on page
1-529.

Programmatic Use

Block Parameter: D

Type: character vector
Values: scalar | vector | matrix
Default: '1'

Initial conditions — Initial state vector

0 (default) | scalar | vector

Specify the initial state vector as a scalar or vector. The initial state vector cannot include inf or NaN
values.

Programmatic Use

Block Parameter: InitialCondition
Type: character vector

Values: scalar | vector

Default: '0'

Sample time (-1 for inherited) — Interval between samples

-1 (default) | scalar | vector

Specify the time interval between samples. See “Specify Sample Time”.

Programmatic Use

Block Parameter: SampleTime
Type: character vector

Values: scalar | vector

Default: '-1'

State Attributes

State name — Unique name for block state

"' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The defaultis ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

» Avalid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

1-531

1 Blocks

1-532

* The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click
Apply.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

Programmatic Use

Block Parameter: StateName
Type: character vector

Values: unique name

Default: '’

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if you set the
model configuration parameter Signal resolution to a value other than None.

Programmatic Use

Block Parameter: StateMustResolveToSignalObject
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Block Characteristics

Data Types double | single
Direct Feedthrough |yes
Multidimensional no

Signals

Variable-Size Signals |no
Zero-Crossing no

Detection

Version History
Introduced before R2006a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Discrete State-Space

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
State-Space | Fixed-Point State-Space

Topics

“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)

“Organize Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder)
“Data Objects”

1-533

1 Blocks

1-534

Discrete-Time Integrator

Perform discrete-time integration or accumulation of signal

Libraries:
Simulink / Commonly Used Blocks
KT | Simulink / Discrete
=1 HDL Coder / Discrete
HDL Coder / HDL Floating Point Operations
Description

Use the Discrete-Time Integrator block in place of the Integrator block to create a purely discrete
model. With the Discrete-Time Integrator block, you can:

* Define initial conditions on the block dialog box or as input to the block

* Define an input gain (K) value

* Output the block state

* Define upper and lower limits on the integral

* Reset the state with an additional reset input

Output Equations

With the first time step, block state n = 0, with either initial output y(0) = IC or initial state x(0)
= IC, depending on the Initial condition setting parameter value.

For a given step n > 0 with simulation time t (n), Simulink updates output y (n) as follows:

* Forward Euler method:

y(n) = y(n-1) + K¥[t(n) - t(n-1)]1*u(n-1)
* Backward Euler method:

y(n) = y(n-1) + K¥[t(n) - t(n-1)]*u(n)
* Trapezoidal method:

y(n) = y(n-1) + K¥[t(n)-t(n-1)]1*[u(n)+u(n-1)]/2

Simulink automatically selects a state-space realization of these output equations depending on the
block sample time, which can be explicit or triggered. When using explicit sample time, t(n) -
t(n-1) reduces to the sample time T foralln > 0.

Integration and Accumulation Methods

This block can integrate or accumulate a signal using a forward Euler, backward Euler, or trapezoidal
method. Assume that u is the input, y is the output, and x is the state. For a given step n, Simulink
updates y(n) and x(n+1). In integration mode, T is the block sample time (delta T in the case of
triggered sample time). In accumulation mode, T = 1. The block sample time determines when the
output is computed but not the output value. K is the gain value. Values clip according to upper or
lower limits.

Discrete-Time Integrator

Forward Euler Method
Forward Euler method (default), also known as forward rectangular, or left-hand approximation

The software approximates 1/s as T/ (z-1). The expressions for the output of the block at step n
are:

x(n) + K*T*u(n)
x(n)

x(n+1)
y(n)

The block uses these steps to compute the output:

Step 0: y(0) = IC (clip if necessary)
x(1) = y(0) + K¥T*u(0)
Step 1: y(1l) = x(1)
x(2) = x(1) + K*T*u(1)
Step n: y(n) = x(n)
x(n+l) = x(n) + K¥T*u(n) (clip if necessary)

Using this method, input port 1 does not have direct feedthrough.
Backward Euler Method

Backward Euler method, also known as backward rectangular or right-hand approximation

The software approximates 1/s as T*z/(z-1). The resulting expression for the output of the block
at step nis

y(n) = y(n-1) + K¥T*u(n).
Let x(n) = y((n)-1). The block uses these steps to compute the output.

+ If the parameter Initial condition setting is set to Output or Auto for triggered and function-
call subsystems:

Step 0: y(0) IC (clipped if necessary)
x(1) y(0)

* If the parameter Initial condition setting is set to Auto for non-triggered subsystems:

Step 0: x(0) = IC (clipped if necessary)
x(1) = y(0) = x(0) + K*¥T*u(0)
Step 1: y(1) = x(1) + K*¥T*u(1)
x(2) = y(1)
Step n: y(n) = x(n) + K*T*u(n)
x(n+l) = y(n)

Using this method, input port 1 has direct feedthrough.
Trapezoidal Method

For this method, the software approximates 1/s as T/2*(z+1)/(z-1).

When T is fixed (equal to the sampling period), the expressions to compute the output are:

1-535

1 Blocks

x(n)
y(n)

y(n-1) + K*T/2*u(n-1)
x(n) + K*¥T/2*u(n)

» If the parameter Initial condition setting is set to Output or Auto for triggered and function-
call subsystems:

Step 0: y(0) IC (clipped if necessary)
x(1) y(0) + K*¥T/2*u(0)

» If the parameter Initial condition setting is set to Auto for non-triggered subsystems:

Step 0: x(0) = IC (clipped if necessary)
y(0) = x(0) + KX¥T/2*u(0)
x(1) = y(0) + K*¥T/2*u(0)
Step 1: y(1) = x(1) + K*¥T/2*u(1)
x(2) = y(1) + K*¥T/2*u(1)
Step n: y(n) = x(n) + K*¥T/2*u(n)
x(n+l) = y(n) + K*¥T/2*u(n)

Here, x (n+1) is the best estimate of the next output. It is not the same as the state, in that x(n) is
not equal to y(n).

Using this method, input port 1 has direct feedthrough.

When T is a Variable

WhenT is a variable (for example, obtained from the triggering times), the block uses these steps to
compute the output.

+ If the parameter Initial condition setting is set to Output or Auto for triggered and function-
call subsystems:

Step 0: y(0) IC (clipped if necessary)
x(1) y(0)

» If the parameter Initial condition setting is set to Auto for non-triggered subsystems:

Step 0: x(0) = IC (clipped if necessary)
x(1) =y(0) = x(0) + K¥T/2*u(0)

Step 1: y(1) = xX(1) + K*T/2*(u(l) + u(0))
x(2) =y(1)

Step n: y(n) = x(n) + K*T/2*(u(n) + u(n-1))
x(n+l) = y(n)

Define Initial Conditions

You can define the initial conditions as a parameter on the block dialog box or input them from an
external signal:

» To define the initial conditions as a block parameter, set the Initial condition source parameter
to internal and enter the value in the Initial condition text box.

* To provide the initial conditions from an external source, set the Initial condition source
parameter to external. An additional input port appears on the block.

1-536

Discrete-Time Integrator

L4

K Ts
£ z-1

L4

When to Use the State Port

Use the state port instead of the output port:

* When the output of the block is fed back into the block through the reset port or the initial
condition port, causing an algebraic loop. For an example, see the
sldemo_bounce two integrators model.

* When you want to pass the state from one conditionally executed subsystem to another, which can
cause timing problems. For an example, see “Building a Clutch Lock-Up Model” on page 13-156.

You can work around these problems by passing the state through the state port rather than the
output port. Simulink generates the state at a slightly different time from the output, which protects
your model from these problems. To output the block state, select the Show state port check box.
The state port appears on the top of the block.

block state

input output
> KTs >
z-1

Discrete-Time
Integralor

Limit the Integral

To keep the output within certain levels, select the Limit output check box and enter the limits in
the corresponding text box. Doing so causes the block to function as a limited integrator. When the
output reaches the limits, the integral action turns off to prevent integral windup. During a
simulation, you can change the limits but you cannot change whether the output is limited. The table
shows how the block determines output.

Integral Output

Less than or equal to the Lower saturation Held at the Lower saturation limit
limit and the input is negative

Between the Lower saturation limit and the The integral
Upper saturation limit

Greater than or equal to the Upper saturation |Held at the Upper saturation limit
limit and the input is positive

To generate a signal that indicates when the state is being limited, select the Show saturation port
check box. A new saturation port appears below the block output port.

1-537

1 Blocks

output
input >
R o Kis saturation
z1 b——p
Discrete-Time
Integrator

The saturation signal has one of three values:

* 1 indicates that the upper limit is being applied.
* 0 indicates that the integral is not limited.
* -1 indicates that the lower limit is being applied.

Reset the State

The block resets its state to the specified initial condition, based on an external signal. To cause the
block to reset its state, select one of the External reset parameter options. A reset port appears that
indicates the reset trigger type.

input
—_— output
resel ES-IE —

— e

Discrete-Time
Integrator

The reset port has direct feedthrough. If the block output feeds back into this port, either directly or
through a series of blocks with direct feedthrough, an algebraic loop results. To resolve this loop,
feed the output of the block state port into the reset port instead. To access the block state, select the
Show state port check box.

Reset Trigger Types

The External reset parameter lets you determine the attribute of the reset signal that triggers the
reset. The trigger options include:

* rising - Resets the state when the reset signal has a rising edge. For example, this figure shows
the effect that a rising reset trigger has on backward Euler integration.

Reset |

1

Rising Infegrate !
Reset i : i

Input

1-538

Discrete-Time Integrator

+ falling — Resets the state when the reset signal has a falling edge. For example, this figure
shows the effect that a falling reset trigger has on backward Euler integration.

Feset ' e

Falling Integrate ¢ © i I iNg integration
Reset AN i Y S

Input

* either — Resets the state when the reset signal rises or falls. For example, the following figure
shows the effect that an either reset trigger has on backward Euler integration.

Reset ‘

Either Intégrate | | i i iNo Integration
Reset A N

Input

h

* level — Resets and holds the output to the initial condition while the reset signal is nonzero. For
example, this figure shows the effect that a level reset trigger has on backward Euler integration.

Reset SR SR S

Nif:: Int{égration

Level I Int_'régrafte
Reset ‘ :

Input

* sampled level — Resets the output to the initial condition when the reset signal is nonzero. For
example, this figure shows the effect that a sampled level reset trigger has on backward Euler
integration.

1-539

1 Blocks

1-540

LY

Reset

mammn e

Sampled T
Level Reset Mo Iritegration

Input

The sampled level reset option requires fewer computations, making it more efficient than the
level reset option.

Note For the Discrete-Time Integrator block, all trigger detections are based on signals with
positive values. For example, a signal changing from -1 to 0 is not considered a rising edge, but a
signal changing from 0 to 1 is.

Behavior in Simplified Initialization Mode

Simplified initialization mode is enabled when you set Underspecified initialization detection to
Simplified in the Configuration Parameters dialog box. If you use simplified initialization mode, the
behavior of the Discrete-Time Integrator block differs from classic initialization mode. The new
initialization behavior is more robust and provides more consistent behavior in these cases:

* In algebraic loops

* On enable and disable

* When comparing results using triggered sample time against explicit sample time, where the
block is triggered at the same rate as the explicit sample time

Simplified initialization mode enables easier conversion from Continuous-Time Integrator blocks to
Discrete-Time Integrator blocks, because the initial conditions have the same meaning for both
blocks.

For more information on classic and simplified initialization modes, see “Underspecified initialization
detection”.

Enable and Disable Behavior with Initial Condition Setting set to Output

When you use simplified initialization mode with Initial condition setting set to Output for
triggered and function-call subsystems, the enable and disable behavior of the block is simplified as
follows.

At disable time tg:
y(ty) = y(tg-1)
At enable time t.:

+ If the parent subsystem control port has States when enabling set to reset:

Discrete-Time Integrator

y(t.) = IC.
» If the parent subsystem control port has States when enabling set to held:

y(te) = y(tq).

The following figure shows this condition.

o

—

N g

' First

E_?'i sable execution
time time after
Enable

Iterator Subsystems

When using simplified initialization mode, you cannot place the Discrete-Time Integrator block in an
iterator subsystem block.

In simplified initialization mode, Iterator subsystems do not maintain elapsed time. Thus, if a
Discrete-Time Integrator block, which needs elapsed time, is placed inside an iterator subsystem
block, Simulink reports an error.

Behavior in an Enabled Subsystem Inside a Function-Call Subsystem

Suppose you have a function-call subsystem that includes an enabled subsystem, which contains a
Discrete-Time Integrator block. The following behavior applies.

1-541

1 Blocks

Integrator Method Sample Time Type of Value of delta T When |Reason for Behavior
Function-Call Trigger Function-Call
Port Subsystem Executes for
the First Time After
Enabled
Forward Euler Triggered t — tstart When the function-call

subsystem executes for the
first time, the integrator
algorithm uses tstart as
the previous simulation

time.
Backward Euler and Triggered t — tprevious When the function-call
Trapezoidal subsystem executes for the

first time, the integrator
algorithm uses
tprevious as the
previous simulation time.

Forward Euler, Backward |Periodic Sample time of the In periodic mode, the
Euler, and Trapezoidal function-call generator Discrete-Time Integrator

block uses sample time of
the function-call generator
for delta T.

1-542

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixed point

IC — Initial conditions of the states
scalar | vector | matrix

Initial conditions of the states, specified as a finite scalar, vector, or matrix.

Dependencies

To enable this port, set Initial condition source to external.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Output

Port_1 — Discrete-time integration or accumulation of input
scalar | vector | matrix

Discrete-time integration or accumulation of the input signal, specified as a scalar, vector, or matrix.

Discrete-Time Integrator

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Port_2 — Saturation output
scalar | vector | matrix

Signal indicating when the state is being limited, specified as a scalar, vector, or matrix. The signal
has one of three values:

* 1 indicates that the upper limit is being applied.
* 0 indicates that the integral is not limited.
* -1 indicates that the lower limit is being applied.

Dependencies

To enable this port, select the Show saturation port check box.

Data Types: single | double | int8

Port_3 — State output
scalar | vector | matrix

Block states, output as a scalar, vector, or matrix. By default, the block adds this port to the top of the
block icon. Use the state port when:

* The output of the block is fed back into the block through the reset port or the initial condition
port, causing an algebraic loop. For an example, see the sldemo _bounce two integrators
model.

* You want to pass the state from one conditionally executed subsystem to another, which can cause
timing problems. For an example, see the sldemo clutch model.

For more information, see “When to Use the State Port” on page 1-537.

Dependencies

To enable this port, select the Show state port check box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |

fixed point

Parameters

Main

Integrator method — Accumulation method

Integration: Forward Euler (default) | Integration: Backward Euler | Integration:
Trapezoidal | Accumulation: Forward Euler | Accumulation: Backward Euler |
Accumulation: Trapezoidal

Specify the integration or accumulation method. See “Output Equations” on page 1-534 and
“Integration and Accumulation Methods” on page 1-534 for more information.

Programmatic Use
Block Parameter: IntegratorMethod

1-543

1 Blocks

1-544

Type: character vector

Values: 'Integration: Forward Euler' | 'Integration: Backward Euler' |
‘Integration: Trapezoidal' | 'Accumulation: Forward Euler' | 'Accumulation:
Backward Euler' | 'Accumulation: Trapezoidal'

Default: 'Integration: Forward Euler'

Gain value — Value to multiply with integrator input
1.0 (default) | scalar | vector

Specify a scalar, vector, or matrix by which to multiply the integrator input. Each element of the gain
must be a positive real number.

* Specifying a value other than 1.0 (the default) is semantically equivalent to connecting a Gain
block to the input of the integrator.
* Valid entries include:

* double(1.0)

*+ single(1.0)

e [1.1 2.2 3.3 4.4]
* [1.1 2.2; 3.3 4.4]

Tip Using this parameter to specify the input gain eliminates a multiplication operation in the
generated code. However, this parameter must be nontunable to realize this benefit. If you want to
tune the input gain, set this parameter to 1.0 and use an external Gain block to specify the input gain.

Programmatic Use

Block Parameter: gainval
Type: character vector
Values: scalar | vector
Default: '1.0'

External reset — Select when to reset states to initial conditions
none (default) | rising | falling | either | level | sampled level

Select the type of trigger event that resets the states to their initial conditions:

* none — Do not reset the state to initial conditions.

* rising — Reset the state when the reset signal has a rising edge.

+ falling — Reset the state when the reset signal has a falling edge.

* either — Reset the state when the reset signal rises or falls.

* level — Reset and hold the output to the initial condition while the reset signal is nonzero.
+ sampled level — Reset the output to the initial condition when the reset signal is nonzero.

For more information, see “Reset the State” on page 1-538 and “Reset Trigger Types” on page 1-538.

Programmatic Use
Block Parameter: ExternalReset

Discrete-Time Integrator

Type: character vector
Values: 'none' | 'rising' | 'falling' | 'either' | 'level’' | 'sampled level'
Default: 'none’

Initial condition source — Option to set initial condition using external signal

internal (default) | external
Select source of initial condition:

* internal — Get the initial conditions of the states from the Initial condition parameter.

+ external — Get the initial conditions of the states from an external signal. When you select this
option, an input port appears on the block.

Programmatic Use

Block Parameter: InitialConditionSource
Type: character vector, string

Values: 'internal’' | 'external’

Default: 'internal’

Initial condition — Initial condition of states

0 (default) | scalar | vector | matrix

Specify initial condition of the block states. The minimum and maximum values are bound by the
Output minimum and Output maximum block parameters.

Tip Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

To enable this parameter, set the Initial condition source to internal.

Programmatic Use

Block Parameter: InitialCondition
Type: character vector, string

Values: scalar | vector | matrix
Default: '0’

Initial condition setting — Select where to apply the initial condition
Auto (default) | Output | Compatibility

Select whether to apply the value of the Initial condition parameter to the block state or block
output. The initial condition is also the reset value.

* Auto — Block chooses where to apply the Initial condition parameter.

» Ifthe block is in a non-triggered subsystem and Integrator method is set to an integration
method, set initial conditions:

At reset:

1-545

1 Blocks

1-546

x(n) = IC

« Ifthe block is in a triggered or function-call subsystem and Integrator method is set to an
integration method, set initial conditions as if output was selected.

* Output — Use this option when the block is in a triggered or a function-call subsystem and
Integrator method is set to an integration method.

Set initial conditions:

y(0) = IC
At reset:
y(n) = IC

* Compatibility — This option is present to provide backward compatibility. You cannot select
this option for Discrete-Time Integrator blocks in Simulink models but you can select it for
Discrete-Time Integrator blocks in a library. Use this option to maintain compatibility with
Simulink models created before R2014a.

Prior to R2014a, the option Auto was known as State only (most efficient). The option
Output was known as State and output. The behavior of the block with the option
Compatibility is as follows.

+ If Underspecified initialization detection is set to Classic, the Initial condition setting
parameter behaves as Auto.

+ If Underspecified initialization detection is set to Simplified, the Initial condition
setting parameter behaves as Output.

Note This parameter was named Use initial condition as initial and reset value for in Simulink
before R2014a.

Programmatic Use

Block Parameter: InitialConditionSetting
Type: character vector

Value: 'Auto' | 'Output' | 'Compatibility'
Default: 'Auto’

Sample time (-1 for inherited) — Interval between samples

-1 (default) | scalar | vector

Enter the discrete time interval between steps.

By default, the block uses a discrete sample time of 1. To set a different sample time, enter another
discrete value, such as 0.1.

See “Specify Sample Time” for more information.
Tips

* Do not specify a sample time of 0. This value specifies a continuous sample time, which the
Discrete-Time Integrator block does not support.

Discrete-Time Integrator

* Do not specify a sample time of inf or NaN because these values are not discrete.

* Ifyou specify -1 to inherit the sample time from an upstream block, verify that the upstream block
uses a discrete sample time. For example, the Discrete-Time Integrator block cannot inherit a
sample time of 0.

Programmatic Use

Block Parameter: SampleTime
Type: character vector

Values: scalar | vector

Default: '-1'

Limit output — Limit block output values to specified range

off (default) | on

Limit the block's output to a value between the Lower saturation limit and Upper saturation limit
parameters.

* Selecting this check box limits the block's output to a value between the Lower saturation limit
and Upper saturation limit parameters.

* Clearing this check box does not limit the block's output values.
Dependencies

Selecting this parameter enables the Lower saturation limit and Upper saturation limit
parameters.

Programmatic Use

Block Parameter: LimitOutput
Type: character vector

Values: 'off' | 'on'

Default: 'of '

Upper saturation limit — Upper limit for the integral

inf (default) | scalar | vector | matrix

Specify the upper limit for the integral as a scalar, vector, or matrix. You must specify a value
between the Output minimum and Output maximum parameter values.

Dependencies

To enable this parameter, select the Limit output check box.

Programmatic Use

Block Parameter: UpperSaturationLimit
Type: character vector, string

Values: scalar | vector | matrix

Default: 'inf"'

Lower saturation limit — Lower limit for the integral

-inf (default) | scalar | vector | matrix

Specify the lower limit for the integral as a scalar, vector, or matrix. You must specify a value between
the Output minimum and Output maximum parameter values.

1-547

1 Blocks

1-548

Dependencies

To enable this parameter, select the Limit output check box.

Programmatic Use

Block Parameter: LowerSaturationLimit
Type: character vector , string

Values: scalar | vector | matrix

Default: '-inf'

Show saturation port — Enable saturation output port
off (default) | on

Select this check box to add a saturation output port to the block. When you clear this check box, the
block does not have a saturation output port.

Dependencies

Selecting this parameter enables a saturation output port.

Programmatic Use

Block Parameter: ShowSaturationPort
Type: character vector, string

Values: 'off' | 'on'

Default: 'off'

Show state port — Enable state output port
off (default) | on

Select this check box to add a state output port to the block. When you clear this check box, the block
does not have a state output port.

Dependencies

Selecting this parameter enables a state output port.

Programmatic Use

Block Parameter: ShowStatePort
Type: character vector , string
Values: 'off' | 'on'

Default: 'off'

Ignore limit and reset when linearizing — Treat block as not resettable
off (default) | on
Select this check box to have Simulink linearization commands treat this block as not resettable and

as having no limits on its output, regardless of the settings of the block reset and output limitation
options.

Tip Ignoring the limit and resetting allows you to linearize a model around an operating point. This
point may cause the integrator to reset or saturate.

Discrete-Time Integrator

Programmatic Use

Block Parameter: IgnoreLimit
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Signal Attributes

Output minimum — Minimum output value for range checking
[1 (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

* Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMin
Type: character vector
Values: '[]'|scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[1 (default) | scalar
Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

* Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.

1-549

1 Blocks

1-550

For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMax
Type: character vector
Values: '[]'|scalar
Default: '[]'

Data type — Output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | double | single | int8 |uint8 | int16 | uintl6 | int32 | uint32 | int64 |
uint64 | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,270,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType. For more information, see “Control Data Types of
Signals”.

When you select an inherited option, the block behaves as follows:

* Inherit: Inherit via internal rule — Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. For example, if the block multiplies an input of type int8 by a
gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is
sfix24. If Unspecified (assume 32-bit Generic), i.e., a generic 32-bit microprocessor, is
specified as the target hardware, the output data type is int32. If none of the word lengths
provided by the target microprocessor can accommodate the output range, Simulink software
displays an error in the Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical accuracy at the
same time. If the internal rule doesn’t meet your specific needs for numerical accuracy or
performance, use one of the following options:

* Specify the output data type explicitly.

* Use the simple choice of Inherit: Same as input.

+ Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point
Tool to propose data types for your model. For more information, see fxptdlg.

* To specify your own inheritance rule, use Inherit: Inherit via back propagation and
then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

* Inherit: Inherit via back propagation — Use data type of the driving block.
Programmatic Use

Block Parameter: OutDataTypeStr
Type: character vector

Discrete-Time Integrator

Values: 'Inherit: Inherit via internal rule| 'Inherit: Inherit via back
propagation' | 'double’ | 'single’ | 'int8' | 'uint8' | 'int16' | 'uintl6' | 'int32" |
‘uint32' | 'int64' | 'uint64' | 'fixdt(1,16)"' | 'fixdt(1,16,0)"' | 'fixdt(1,16,270,0)"
| '<data type expression>'

Default: 'Inherit: Inherit via internal rule’

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector

Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Specify the rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Choose one of these rounding modes.

Ceiling
Rounds both positive and negative numbers toward positive infinity. Equivalent to the MATLAB
ceil function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds both positive and negative numbers toward negative infinity. Equivalent to the MATLAB
floor function.

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest

Automatically chooses between round toward floor and round toward zero to generate rounding
code that is as efficient as possible.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

1-551

1 Blocks

1-552

Programmatic Use

Block Parameter: RndMeth

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Default: 'Floor'

See Also

For more information, see “Rounding” (Fixed-Point Designer).

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

+ off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

* on — Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

* Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

* Consider clearing this check box when you want to optimize efficiency of your generated code.
Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

* When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

* In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use

Block Parameter: SaturateOnIntegerOverflow
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Mode — Select data type mode
Inherit (default) | Built in | Fixed Point

Select the category of data to specify.

* Inherit — Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right where you can select the inheritance mode.

Discrete-Time Integrator

¢ Built in — Built-in data types. Selecting Built in enables a second menu/text box to the right
where you can select a built-in data type.

* Fixed point — Fixed-point data types. Selecting Fixed point enables additional parameters
that you can use to specify a fixed-point data type.

* Expression — Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

For more information, see “Specify Data Types Using Data Type Assistant”.
Dependencies

To enable this parameter, click the Show data type assistant button.
Data type override — Specify data type override mode for this signal
Inherit | Off

Select the data type override mode for this signal.

* When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

* When you select Off, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies
To enable this parameter, set Mode to Built inor Fixed point.
Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Signedness of fixed-point data
Signed (default) | Unsigned

Specify whether you want the fixed-point data as signed or unsigned. Signed data can represent
positive and negative values, but unsigned data represents positive values only. For more information,
see “Specifying a Fixed-Point Data Type”.

Dependencies
To enable this parameter, set Mode to Fixed point.
Word length — Bit size of the word that holds the quantized integer

16 (default) | integer from 0 to 32

1-553

1 Blocks

1-554

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type
0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Binary point.
Slope — Specify slope for the fixed-point data type

270 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.
Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.
State Attributes

State name — Unique name for block state

"' (default) | alphanumeric string

Discrete-Time Integrator

Use this parameter to assign a unique name to the block state. The defaultis ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

» Avalid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

* The state name applies only to the selected block.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

Dependencies

When you specify a value for State name and click Apply, you enable the State name must resolve
to Simulink signal object parameter.

Programmatic Use
Parameter: StateName
Type: character vector
Values: unique name
Default: ''

State name must resolve to Simulink signal object — Option to require that state names resolve
to signal object

off (default) | on

Specify whether state names are required to resolve to signal objects. If selected, the software
generates an error at run time if you specify a state name that does not match the name of a signal
object.

Selecting this parameter disables the Code generation storage class parameter.

Dependencies

Enabled when you specify a value for the State name parameter and set the Signal resolution
model configuration parameter to a value other than None.

Programmatic Use

Block Parameter: StateMustResolveToSignalObject
Type: character vector

Values: 'off' | 'on'

Default: 'off"'

Block Characteristics

Data Types double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

1-555

1 Blocks

1-556

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Depends on absolute time when used inside a triggered subsystem hierarchy.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

General

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Native Floating Point

HandleDenormals Specify whether you want HDL Coder to insert additional logic to handle
denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

LatencyStrategy Specify whether to map the blocks in your design to inherit, Max, Min, or
Zero for the floating-point operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

MantissaMultiplyStra |Specify how to implement the mantissa multiplication operation during
tegy code generation. By using different settings, you can control the DSP usage
on the target FPGA device. The default is inherit. See also
“MantissaMultiplyStrategy” (HDL Coder).

Discrete-Time Integrator

Restrictions

* State ports are not supported for HDL code generation. Clear the Show state port option.

» External initial conditions are not supported for HDL code generation. Set Initial condition
source to Internal.

* External Reset must be set to none, rising, falling or level.
* Continuous sample time is not supported. Use a discrete sample time for the block.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Integrator

Topics

“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)

“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)

“Organize Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder)

1-557

1 Blocks

1-558

Discrete Transfer Fcn

Implement discrete transfer function

1 Libraries:

b >705 % Simulink / Discrete

: HDL Coder / Discrete

HDL Coder / HDL Floating Point Operations

Description
The Discrete Transfer Fcn block implements the z-transform transfer function as follows:

num(z) _ numez™ + numz™ “14 . +numy,

H(2) = =
()= Gentz) dengz" + denyz" ~ ! + ... + den,

where m+1 and n+1 are the number of numerator and denominator coefficients, respectively. num
and den contain the coefficients of the numerator and denominator in descending powers of z. num
can be a vector or matrix, while den must be a vector. The order of the denominator must be greater
than or equal to the order of the numerator.

Specify the coefficients of the numerator and denominator polynomials in descending powers of z.
This block lets you use polynomials in z to represent a discrete system, a method that control
engineers typically use. Conversely, the Discrete Filter block lets you use polynomials in 2z (the delay
operator) to represent a discrete system, a method that signal processing engineers typically use. The
two methods are identical when the numerator and denominator polynomials have the same length.

The Discrete Transfer Fcn block applies the z-transform transfer function to each independent
channel of the input. The Input processing parameter allows you to specify whether the block treats
each column of the input as an individual channel (frame-based processing) or each element of the
input as an individual channel (sample-based processing). To perform frame-based processing, you
must have a DSP System Toolbox license.

Specifying Initial States

Use the Initial states parameter to specify initial filter states. To determine the number of initial
states you must specify and how to specify them, use the following tables.

Discrete Transfer Fcn

Frame-Based Processing

* Matrix (K-by-N)

Input Number of Channels |Valid Initial States Valid Initial States
(Dialog Box) (Input Port)
e Column vector (K- 1 ¢ Scalar e Scalar
by-1) ¢ Column vector (M- |¢ Column vector (M-
e Unoriented vector by-1) by-1)
(K) * Row vector (1-by-M)
* Row vector (1-by-N) |N * Scalar * Scalar

¢ Column vector (M-
by-1)

* Row vector (1-by-M)
* Matrix (M-by-N)

* Matrix (M-by-N)

Sample-Based Processing

Input Number of Channels (Valid Initial States Valid Initial States
(Dialog Box) (Input Port)
e Scalar 1 e Scalar e Scalar
e Column vector (M- |¢ Column vector (M-
by-1) by-1)
* Row vector (1-by-M) |* Row vector (1-by-M)
* Row vector (1-by-N) |N e Scalar e Scalar
e Column vector (N- e Column vector (M-
by-1) by-1)
+ Unoriented vector * Row vector (1-by-M)
(N) ¢ Matrix (M-by-N)
* Matrix (K-by-N) KxN * Scalar e Scalar

¢ Column vector (M-
by-1)

* Row vector (1-by-M)
* Matrix (M-by-(KxN))

When the Initial states is a scalar, the block initializes all filter states to the same scalar value. To
initialize all states to zero, enter . When the Initial states is a vector or a matrix, each vector or
matrix element specifies a unique initial state for a corresponding delay element in a corresponding

channel:

» The vector length must equal the number of delay elements in the filter, M = max(number of
zeros, number of poles).

* The matrix must have the same number of rows as the number of delay elements in the filter, M =
max (number of zeros, number of poles). The matrix must also have one column for each
channel of the input signal.

The following example shows the relationship between the initial filter output and the initial input
and state. Given an initial input u;, the first output y; is related to the initial state [x;, x;] and initial

input by as follows:

1-559

1 Blocks

yl =4x1
x2 =1/2(ul — 3x1)

4
1 I e | yout
2z+3
DiscreteTransfer Fen_input1 Discrete Transfer Fon Signal To
Workspace
ul
¥ 2
Gain
¥
1
Delay| Z
x1
Gain2
‘/"L — i yout1
\EJ"
Gaint Signal To
Works pace1

Ports
Input

u — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int16 | int32 | fixed point

Num — Numerator coefficients
scalar | vector | matrix

Coefficients of the numerator polynomial specified as a vector or matrix in descending powers of z.
Use a row vector to specify the coefficients for a single numerator polynomial. Use a matrix to specify

1-560

Discrete Transfer Fcn

coefficients for multiple filters to be applied to the same input. Each matrix row represents a set of
filter taps. The order of the denominator must be greater than or equal to the order of the numerator.

Dependencies

To enable this port, set Numerator Source to Input port.

Numerator and denominator coefficients must have the same complexity. They can have different
word lengths and fraction lengths.

Data Types: single | double | int8 | intl16 | int32 | fixed point

Den — Denominator coefficients
scalar | vector | matrix

Coefficients of the denominator polynomial specified as a vector in descending powers of z. Use a row
vector to specify the coefficients for a single denominator polynomial. Use a matrix to specify
coefficients for multiple filters to be applied to the same input. Each matrix row represents a set of
filter taps. The order of the denominator must be greater than or equal to the order of the numerator.
The leading denominator coefficient cannot be 0.

Dependencies
To enable this port, set Denominator Source to Input port.

Numerator and denominator coefficients must have the same complexity. They can have different
word lengths and fraction lengths.
Data Types: single | double | int8 | int16 | int32 | fixed point

External reset — External reset signal
scalar

External reset signal, specified as a scalar. When the specified trigger event occurs, the block resets
the states to their initial conditions.

Tip The icon for this port changes based on the value of the External reset parameter.

Dependencies

To enable this port, set External reset to Rising, Falling, Either, Level, or Level hold.

Limitations

The reset signal must be a scalar of type single, double, Boolean, or integer. Fixed-point data types,
except for ufix1, are not supported.
Data Types: single | double | Boolean | int8 | intl16 | int32 | fixed point

x0 — Initial states
scalar | vector | matrix

Initial states, specified as a scalar, vector, or matrix. For more information about specifying states, see

“Specifying Initial States” on page 1-558. States are complex when either the input or the coefficients
are complex.

1-561

1 Blocks

1-562

Dependencies

To enable this port, set Initial states Source to Input port.

Data Types: single | double | int8 | int16 | int32 | fixed point
Output

Port_1 — Output signal
scalar | vector | matrix

Output signal specified as a scalar, vector, or matrix.

Data Types: single | double | int8 | int16 | int32 | fixed point

Parameters
Main

Numerator Source — Source of numerator coefficients
Dialog (default) | Input port

Specify the source of the numerator coefficients as Dialog or Input port.

Programmatic Use

Block Parameter: NumeratorSource
Type: character vector

Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Numerator Value — Numerator coefficients
[1] (default) | scalar | vector | matrix

Numerator coefficients of the discrete transfer function. To specify the coefficients, set the Source to
Dialog. Then, enter the coefficients in Value as descending powers of z. Use a row vector to specify
the coefficients for a single numerator polynomial. Use a matrix to specify coefficients for multiple
filters to be applied to the same input. Each matrix row represents a set of filter taps.

Dependencies

To enable this parameter, set the Numerator Source to Dialog.

Programmatic Use

Block Parameter: Numerator
Type: character vector

Values: scalar | vector | matrix
Default: '[1]"

Denominator Source — Source of denominator coefficients
Dialog (default) | Input port

Specify the source of the denominator coefficients as Dialog or Input port.

Programmatic Use
Block Parameter: DenominatorSource

Discrete Transfer Fcn

Type: character vector
Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Denominator Value — Denominator coefficients
[1 0.5] (default) | scalar | vector | matrix

Denominator coefficients of the discrete transfer function. To specify the coefficients, set the Source
to Dialog. Then, enter the coefficients in Value as descending powers of z. Use a row vector to
specify the coefficients for a single denominator polynomial. Use a matrix to specify coefficients for
multiple filters to be applied to the same input. Each matrix row represents a set of filter taps.

Dependencies

To enable this parameter, set the Denominator Source to Dialog.

Programmatic Use

Block Parameter: Denominator
Type: character vector

Values: scalar | vector | matrix
Default: '[1 0.5]"

Initial states Source — Source of initial states
Dialog (default) | Input port

Specify the source of the initial states as Dialog or Input port.

Programmatic Use

Block Parameter: InitialStatesSource
Type: character vector

Values: 'Dialog' | 'Input port'
Default: 'Dialog'

Initial states Value — Initial filter states
0 (default) | scalar | vector | matrix

Specify the initial filter states as a scalar, vector, or matrix. To learn how to specify initial states, see
“Specifying Initial States” on page 1-558.

Dependencies

To enable this parameter, set Initial states Source to Dialog.

Programmatic Use

Block Parameter: InitialStates
Type: character vector

Values: scalar | vector | matrix
Default: '0'

External reset — External state reset

None (default) | Rising | Falling | Either | Level | Level hold

Specify the trigger event to use to reset the states to the initial conditions.

1-563

1 Blocks

1-564

Reset Mode Behavior

None No reset

Rising Reset on a rising edge

Falling Reset on a falling edge

Either Reset on either a rising or falling edge
Level Reset in either of these cases:

* When the reset signal is nonzero at the
current time step

* When the reset signal value changes from
nonzero at the previous time step to zero at
the current time step

Level hold Reset when the reset signal is nonzero at the

current time step

Programmatic Use

Block Parameter: ExternalReset

Type: character vector

Values: 'None' | 'Rising' | 'Falling' | 'Either' | 'Level' | 'Level hold'
Default: 'None'

Input processing — Sample- or frame-based processing

Elements as channels (sample based) (default) | Columns as channels (frame based)
Specify whether the block performs sample- or frame-based processing.

* Elements as channels (sample based) — Process each element of the input as an
independent channel.

* Columns as channels (frame based) — Process each column of the input as an independent
channel.

Note Frame-based processing requires a DSP System Toolbox license.

For more information, see “Sample- and Frame-Based Concepts” (DSP System Toolbox).

Programmatic Use

Block Parameter: InputProcessing

Type: character vector

Values: 'Elements as channels (sample based)' | 'Columns as channels (frame
based)

Default: 'Elements as channels (sample based)'

Optimize by skipping divide by leading denominator coefficient (a0) — Skip divide by a0
off (default) | on
Select when the leading denominator coefficient, a,, equals 1. This parameter optimizes your code.

When you select this check box, the block does not perform a divide-by-a, either in simulation or in
the generated code. An error occurs if g, is not equal to one.

Discrete Transfer Fcn

When you clear this check box, the block is fully tunable during simulation, and performs a divide-by-
a, in both simulation and code generation.

Programmatic Use

Block Parameter: aOEqualsOne
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Sample time (-1 for inherited) — Interval between samples
-1 (default) | scalar | vector

Specify the time interval between samples. To inherit the sample time, set this parameter to - 1. For
more information, see “Specify Sample Time”.

Programmatic Use

Block Parameter: SampleTime
Type: character vector

Values: scalar | vector

Default: '-1'

Data Types
State — State data type

Inherit: Same as input (default) | int8 | intl16 | int32 | int64 | fixdt(1,16,0) | <data
type expression>

Specify the state data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Same as input
* A built-in integer, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant > |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Numerator coefficients — Numerator coefficient data type

Inherit: Inherit via internal rule (default) | int8 | intl6 | int32 | int64 |
fixdt(1l,16) | fixdt(1,16,0) | <data type expression>

Specify the numerator coefficient data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in integer, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

1-565

1 Blocks

1-566

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “Z . For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use

Block Parameter: NumCoeffDataTypeStr

Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'int8' | 'intl6' | 'int32' |
'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Numerator coefficient minimum — Minimum value of numerator coefficients
[1 (default) | scalar

Specify the minimum value that a numerator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
* Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter: NumCoeffMin

Type: character vector

Values: scalar
Default: '[]"'

Numerator coefficient maximum — Maximum value of numerator coefficients
[1 (default) | scalar

Specify the maximum value that a numerator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
* Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter: NumCoeffMax

Type: character vector

Values: scalar
Default: '[]'

Numerator product output — Numerator product output data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input |int8 | int16 |
int32|int64 | fixdt(1,16,0) | <data type expression>

Specify the product output data type for the numerator coefficients. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in data type, for example, int8

Discrete Transfer Fcn

» A data type object, for example, a Simulink.NumericType object
* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant ”2 |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: NumProductDataTypeStr
Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
'int8' | 'intl6' | 'int32' | 'int64' | 'fixdt(1,16,0)' | '<data type
expression>'

Default: 'Inherit: Inherit via interal rule'
Numerator accumulator — Numerator accumulator data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output|int8|intl6 | int32|int64 | fixdt(1,16,0) | <data type
expression>

Specify the accumulator data type for the numerator coefficients. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in data type, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant ”2 |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: NumAccumDataTypeStr
Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
"Inherit: Same as product output' | 'int8' | 'intl6' | 'int32' | 'int64' |
'fixdt(1,16,0)' | '<data type expression>'

Default: 'Inherit: Inherit via interal rule'
Denominator coefficients — Denominator coefficient data type

Inherit: Inherit via internal rule (default) | int8 | intl6 | int32 | int64 |
fixdt(1,16) | fixdt(1,16,0) | <data type expression>

Specify the denominator coefficient data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in integer, for example, int8
» A data type object, for example, a Simulink.NumericType object

1-567

1 Blocks

1-568

* An expression that evaluates to a data type, for example, fixdt(1,16,0)
The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant ”% |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use

Block Parameter: DenCoeffDataTypeStr

Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'int8' | 'intl6' | 'int32' |
'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'Inherit: Same wordlength as input'

Denominator coefficient minimum — Minimum value of denominator coefficients
[1 (default) | scalar

Specify the minimum value that a denominator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
* Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter: DenCoeffMin

Type: character vector

Values: scalar
Default: '[]"'

Denominator coefficient maximum — Maximum value of denominator coefficients
[1 (default) | scalar

Specify the maximum value that a denominator coefficient can have. The default value is []
(unspecified). Simulink software uses this value to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
* Automatic scaling of fixed-point data types

Programmatic Use

Block Parameter: DenCoeffMax
Type: character vector

Values: scalar

Default: '[]"

Denominator product output — Denominator product output data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | int8 | int16 |
int32|int64 | fixdt(1,16,0) | <data type expression>

Specify the product output data type for the denominator coefficients. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule

Discrete Transfer Fcn

* A built-in data type, for example, int8
* A data type object, for example, a Simulink.NumericType object
* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “ |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: DenProductDataTypeStr
Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
"int8' | 'intl6' | 'int32' | 'int64' | 'fixdt(1,16,0)' | '<data type
expression>'

Default: 'Inherit: Inherit via interal rule'
Denominator accumulator — Denominator accumulator data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output|int8|intl6|int32|int64 | fixdt(1,16,0) | <data type
expression>

Specify the accumulator data type for the denominator coefficients. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in data type, for example, int8

* A data type object, for example, a Simulink.NumericType object

* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant “ |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use
Block Parameter: DenAccumDataTypeStr
Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
"Inherit: Same as product output' | 'int8' | 'intl6' | 'int32' | 'int64"' |
'fixdt(1,16,0)' | '<data type expression>'

Default: 'Inherit: Inherit via interal rule'
Output — Output data type

Inherit: Inherit via internal rule (default) | Inherit: Same as input |int8]| int16 |
int32 | int64 | fixdt(1,16) | fixdt(1,16,0) | <data type expression>

Specify the output data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal rule
* A built-in data type, for example, int8

1-569

1 Blocks

1-570

» A data type object, for example, a Simulink.NumericType object
* An expression that evaluates to a data type, for example, fixdt(1,16,0)

The Data Type Assistant helps you set data attributes. To use the Data Type Assistant, click Show

data type assistant ”2 |, For more information, see “Specify Data Types Using Data Type
Assistant”.

Programmatic Use

Block Parameter: QOutDataTypeStr

Type: character vector

Values: 'Inherit: Inherit via internal rule' | 'Inherit: Same as input' |
"int8' | 'intl6' | 'int32' | 'int64' | 'fixdt(1,16)' | 'fixdt(1,16,0)" |
'<data type expression>'

Default: 'Inherit: Inherit via interal rule'

Output minimum — Minimum value of output

[1 (default) | scalar

Specify the minimum value that the block can output. The default value is [] (unspecified). Simulink
uses this value to perform:

* Simulation range checking (see “Specify Signal Ranges”)
* Automatic scaling of fixed-point data types
Programmatic Use

Block Parameter: OutMin

Type: character vector

Values: scalar
Default: '[]'

Output maximum — Maximum value of output

[1 (default) | scalar

Specify the maximum value that the block can output. The default value is [] (unspecified). Simulink
uses this value to perform:

* Simulation range checking (see “Specify Signal Ranges”)
* Automatic scaling of fixed-point data types
Programmatic Use

Block Parameter: QutMax

Type: character vector

Values: scalar
Default: '[]'

Lock data type settings against changes by the fixed-point tools — Prevent fixed-point tools
from overriding data types

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Discrete Transfer Fcn

Programmatic Use
Block Parameter: LockScale
Type: character vector

Values:

‘off' |

lonl

Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'
Saturate on integer overflow — Method of overflow action
off (default) | on
Specify whether overflows saturate or wrap.
Action Rationale Impact on Overflows Example

Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

1-571

1 Blocks

Action Rationale Impact on Overflows Example
Do not select this |You want to optimize Overflows wrap to the The maximum value that the
check box (off). |efficiency of your generated |appropriate value that is int8 (signed, 8-bit integer)
code. representable by the data data type can represent is
type. 127. Any block operation
You want to avoid result greater than this
overspecifying how a block maximum value causes
handles out-of-range signals. overflow of the 8-bit integer.
For more information, see With the check box cleared,
“Troubleshoot Signal Range the software interprets the
Errors”. overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

1-572

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use

Block Parameter: SaturateOnIntegerOverflow
Type: character vector

Values: 'off' | 'on'

Default: 'off'

State Attributes
State name — Unique name for block state
"' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The defaultis ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

» Avalid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

* The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click
Apply.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

Programmatic Use

Block Parameter: StateName
Type: character vector

Values: unique name

Default: '’

Discrete Transfer Fcn

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if you set the
model configuration parameter Signal resolution to a value other than None.

Programmatic Use

Block Parameter: StateMustResolveToSignalObject
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Block Characteristics

Data Types double | fixed point?|integer?|single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

a This block only supports signed fixed-point data types.

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

1-573

1 Blocks

1-574

HDL Block Properties

General

ConstMultiplierOptim | Canonical signed digit (CSD) or factored CSD optimization. The default is

ization none. See also “ConstMultiplierOptimization” (HDL Coder).

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays

peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Native Floating Point

HandleDenormals

Specify whether you want HDL Coder to insert additional logic to handle
denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

LatencyStrategy

Specify whether to map the blocks in your design to inherit, Max, Min, or
Zero for the floating-point operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

MantissaMultiplyStra
tegy

Specify how to implement the mantissa multiplication operation during
code generation. By using different settings, you can control the DSP usage
on the target FPGA device. The default is inherit. See also
“MantissaMultiplyStrategy” (HDL Coder).

Restrictions

* Double data types are

not supported for this block. Use single data types instead.

* Frame, matrix, and vector input data types are not supported.

* The leading denominator coefficient (a0) must be 1 or -1.

» Setting output data type as Inherit: Inherit via internal rule is not supported.

The Discrete Transfer Fcn block is excluded from the following optimizations:

* Resource sharing
» Distributed pipelining

PLC Code Generation
Generate Structured Text

Fixed-Point Conversion

code using Simulink® PLC Coder™.

Design and simulate fixed-point systems using Fixed-Point Designer™.

Discrete Transfer Fcn

This block only supports signed fixed-point data types.
See Also
Discrete Filter | Transfer Fcn

Topics
“Working with States” on page 11-21
“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)

1-575

1 Blocks

1-576

Discrete Zero-Pole

Model system defined by zeros and poles of discrete transfer function

1 Libraries:
) zrr;;glr, 5 Simulink / Discrete
Description

The Discrete Zero-Pole block models a discrete system defined by the zeros, poles, and gain of a z-
domain transfer function. This block assumes that the transfer function has the following form:

_ K(z - 212 —-2y)..(2 - Zpy)

H(Z) =KP(Z) (Z—Pl)(Z—Pz)...(l_Pn),

where Z represents the zeros vector, P the poles vector, and K the gain. The number of poles must be
greater than or equal to the number of zeros (n = m). If the poles and zeros are complex, they must
be complex conjugate pairs.

The block displays the transfer function depending on how the parameters are specified. See Zero-
Pole for more information.

Modeling a Single-Output System

For a single-output system, the input and the output of the block are scalar time-domain signals. To
model this system:

1 Enter a vector for the zeros of the transfer function in the Zeros field.
2 Enter a vector for the poles of the transfer function in the Poles field.
3 Enter a 1-by-1 vector for the gain of the transfer function in the Gain field.

Modeling a Multiple-Output System

For a multiple-output system, the block input is a scalar and the output is a vector, where each
element is an output of the system. To model this system:

1 Enter a matrix of zeros in the Zeros field.

Each column of this matrix contains the zeros of a transfer function that relates the system input
to one of the outputs.

2 Enter a vector for the poles common to all transfer functions of the system in the Poles field.
3 Enter a vector of gains in the Gain field.

Each element is the gain of the corresponding transfer function in Zeros.

Each element of the output vector corresponds to a column in Zeros.

Discrete Zero-Pole

Ports
Input

Port_1 — Input signal
scalar

Input signal specified as a real-valued scalar.

Data Types: single | double
Output

Port_1 — Model of discrete system
scalar | vector

Model of system as defined by zeros, poles, and gain of discrete transfer function. The width of the
output is equal to the number of columns in the Zeros matrix, or one if Zeros is a vector.

Data Types: single | double

Parameters

Main

Zeros — Matrix of zeros

[1] (default) | vector | matrix

Specify the vector or matrix of zeros. The number of zeros must be less than or equal to the number

of poles. If the poles and zeros are complex, they must be complex conjugate pairs.

» For a single-output system, enter a vector for the zeros of the transfer function.

* For a multiple-output system, enter a matrix. Each column of the matrix contains the zeros of a
transfer function that relates the system input to one of the outputs.

Programmatic Use

Block Parameter: Zeros
Type: character vector
Values: vector

Default: '[1]"'

Poles — Vector of poles
[0 0.5] (default) | vector

Specify the vector of poles. The number of poles must be greater than or equal to the number of
zeros. If the poles and zeros are complex, they must be complex conjugate pairs.

+ For a single-output system, enter a vector for the poles of the transfer function.

» For a multiple-output system, enter a vector for the poles common to all transfer functions of the
system.

1-577

1 Blocks

Programmatic Use

Block Parameter: Poles
Type: character vector
Values: vector

Default: ' [0 0.5]"

Gain — Gain value
1 (default) | scalar | vector

Specify vector of gain values.

» For a single-output system, enter a scalar or 1-by-1 vector for the gain of the transfer function.
* For a multiple-output system, enter a vector of gains. Each element is the gain of the
corresponding transfer function in Zeros.

Programmatic Use
Block Parameter: Gain
Type: character vector
Values: scalar | vector
Default: '1'

Sample time (-1 for inherited) — Interval between samples
-1 | scalar | vector

Specify the time interval between samples. For more information, see Specifying Sample Time.

Programmatic Use

Block Parameter: SampleTime
Type: character vector

Values: scalar | vector

Default: '-1'

State Attributes
State name — Unique name for block state
"' (default) | alphanumeric string

Use this parameter to assign a unique name to the block state. The defaultis ' '. When this field is
blank, no name is assigned. When using this parameter, remember these considerations:

» Avalid identifier starts with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

» The state name applies only to the selected block.

This parameter enables State name must resolve to Simulink signal object when you click
Apply.

For more information, see “C Code Generation Configuration for Model Interface Elements” (Simulink
Coder).

1-578

Discrete Zero-Pole

Programmatic Use

Block Parameter: StateName
Type: character vector

Values: unique name

Default: '’

State name must resolve to Simulink signal object — Require state name resolve to a signal
object

off (default) | on

Select this check box to require that the state name resolves to a Simulink signal object.

Dependencies

To enable this parameter, specify a value for State name. This parameter appears only if you set the
model configuration parameter Signal resolution to a value other than None.

Programmatic Use

Block Parameter: StateMustResolveToSignalObject
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Block Characteristics

Data Types double | single
Direct Feedthrough |yes
Multidimensional no

Signals

Variable-Size Signals |no
Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

See Also
Zero-Pole | Discrete Transfer Fcn

Topics
“C Code Generation Configuration for Model Interface Elements” (Simulink Coder)

1-579

1 Blocks

“Organize Parameter Data into a Structure by Using Struct Storage Class” (Embedded Coder)
“Data Objects”

1-580

Display

Display

Display signal value during simulation

Libraries:
Simulink / Dashboard

4?2

Description

The Display block connects to a signal in your model and displays its value during simulation. You can
configure the appearance and format of the Display block to make intuitive sense for the value it
displays. You can edit the parameters of the Display block during simulation. The Display block can
display complex, vector, and 2-D matrix signals. Use the Display block with other dashboard blocks to
build an interactive dashboard of controls and indicators for your model.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
signals in your model, use connect mode. Connect mode facilitates the process of connecting

dashboard blocks in your model, especially when you want to connect multiple blocks at once. To
connect a single dashboard block, you can also use the Connection table in the block dialog box.

Tip You can modify dashboard block connections during normal and accelerator mode simulations.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more signals or blocks, a list of signals that are available for
connection appears. Select a signal from the list to connect to the selected dashboard block. To
connect another dashboard block, pause on the block you want to connect and click the Connect
button above it. Then, select one or more signals and blocks in the model and choose a signal to
connect.

+ Connect
Double-click to (\V 3 1 () = Amplified Signal
connect Signal Amplifiad Signal - _ ,
Ot Y [
Sine Wave Gain O T Signal

1-581

1 Blocks

1-582

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Limitations

* You cannot use the Connection table to connect a dashboard block to a block that is commented
out. When you connect a dashboard block to a commented block using connect mode, the
dashboard block does not display the connected value until the you uncomment the block.

* The toolstrip does not support dashboard blocks that are in a panel.

» Dashboard blocks cannot connect to signals inside referenced models.

* When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.

* Dashboard blocks do not support rapid accelerator simulation.

* You cannot connect a dashboard block to state activity or chart data in Stateflow during
simulation.

* You cannot programmatically connect a dashboard block to state activity or chart data in
Stateflow.

* Some signals do not have data available during simulation due to block reduction or optimization
for accelerator mode simulations. To view such a signal using a dashboard block, mark the signal
for logging.

Parameters

Connection

Connection — Signal to connect and display
signal connection options

Use the connection table to select the signal to connect to the block. To connect the block to a signal:

1 Make a selection in the model that includes one or more signals.
2 In the table, select the signal you want to connect.
3 Click Apply.

Tip You can connect dashboard blocks to signals in the model during simulation.

Programmatic Use

Block Parameter: Binding

Type: Simulink.HMI.SignalSpecification
Default: []

Main

Format — Format for displaying signal values

Display

short (default) | Long | shortE | LlongE | ...

Format for displaying signal values, specified as one of these values:

short — Scaled fixed-decimal format with four digits after the decimal point

long — Scaled fixed-decimal format with fifteen digits after the decimal point for double values
and seven digits after the decimal point for single values

shortE — Scientific notation format with four digits

longE — Scientific notation format with fifteen digits after the decimal point for double values
and seven digits after the decimal point for single values

shortG — Data takes the more compact format between fixed-decimal or scientific notation, with
a total of five digits

longG — Data takes the more compact format between fixed-decimal or scientific notation, with a
total of fifteen digits for double values and seven digits for single values

shortEng — Engineering notation where the exponent is a multiple of 3, with 4 digits after the
decimal point

longEng — Engineering notation where the exponent is a multiple of 3, with 15 significant digits

+ — Positive/negative format. +, -, and blank characters are displayed for positive, negative, and
zero values, respectively

bank — Currency format with 2 digits after the decimal point
hex — Hexadecimal representation
rat — Ratio

Custom — Custom string format. Data is displayed in a custom string that you specify using the
Format String parameter.

Integer — Data rounded to the nearest whole number.

1-583

1 Blocks

pi —»—
"Hello!" |
short 3.1416 shortEng 3.1416e+000
long 3.141592653589793 longEng 3.14159265358979e+000 string Hello!
shortE 3.1416e+00 bank 3.14
Zara
Positive = * Nagative
longE 3.141592653589793e+00 plus +
shortG 3.1416 hex 400921FB54442D18 SiDemaSign(1) [—+
longG 3.14159265358979 rat 355/113 enum Positive
Custom The value of piis 3.14 Integer 3

Programmatic Use

Block Parameter: Format

Type: character array | string

Values: 'short' | 'long' | 'shortE' | 'longE' | 'shortG' | 'longG' | 'shortEng' |
'longEng' | 'bank' | '+'| 'hex' | 'rat' | 'Custom' | 'Integer’

Default: 'short'

Format String — Custom string to format data
"%d' (default) | string

Custom string to format displayed signal data, specified as a string. The format string consists of text
and format operators, which start with a % sign and end with a conversion character. Use the format
operators at the place in the string where you want the signal data to display. For more information
about supported formatting operators, see the formatSpec input of the compose function.

Example: The value of pi is %.2f displays the value of the connected signal within a sentence.

Example: $%.2f displays the value of the connected signal with a dollar sign and two decimal places.

Dependencies

To enable this parameter, set the Format parameter to Custom.

Programmatic Use

Block Parameter: FormatString
Type: character array | string
Default: '%d'

1-584

Display

Alignment — Text alignment in block
Center (default) | Left | Right

Text alignment in the Display block.

Programmatic Use

Block Parameter: Alignment

Type: character array

Values: 'Left' | 'Center' | 'Right’
Default: 'Center'

Label — Block label position
Hide (default) | Bottom | Top

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use

Block Parameter: LabelPosition
Type: character vector

Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Layout — How to arrange elements of non-scalar data
Preserve dimensions (default) | Fill available space

How to arrange elements of non-scalar data, specified as one of these options:

* Preserve dimensions — Display elements arranged to match signal dimensions.
* Fill available space — Display as many elements as possible within available space.

Programmatic Use

Block Parameter: Layout

Type: character array | string

Values: 'Preserve dimensions' | 'Fill available space'
Default: 'Preserve dimensions'

Format
Show grid for non-scalar signals — Whether to show grid
on (default) | off

Whether to show a grid on the block when the block displays non-scalar data. Specify the color of the
grid using the Grid Color parameter.

Programmatic Use

Block Parameter: ShowGrid
Type: character array | string
Values: 'on' | 'off'
Default: 'on’

1-585

1 Blocks

1-586

Opacity — Block background opacity
1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.

Example: 0.5

Programmatic Use

Block Parameter: Opacity
Type: scalar

Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, including the text. You can select a color from a palette of standard colors or
specify a custom color.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.

Block Parameter: ForegroundColor

Type: character vector | string

Values: [r g b] vector

Background Color — Block background color
[r g b] vector

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.

Block Parameter: BackgroundColor

Type: character vector | string

Values: [r g b] vector

Grid Color — Block grid color
[r g b] vector

Block grid color. The grid shows when the block displays non-scalar data. You can select a color from
a palette of standard colors or specify a custom color.

Programmatic Use

Specify the GridColor parameter for the block as a 1-by-3 [r g b] vector with values between 0
and 1.

Block Parameter: GridColor

Type: [r g b] vector

Default: [0.502 0.502 0.502]

Display

Block Characteristics

Detection

Data Types Boolean | double | enumerated | fixed point | half | integer |
single | string

Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Version History

Introduced in R2017b

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.

See Also

Dashboard Scope | Gauge | Lamp | MultiStateImage

Topics

“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1-587

1 Blocks

1-588

Display

Show value of input

Libraries:
— Simulink / Sinks
HDL Coder / Sinks

Description

The Display block shows the value of the input data. You can specify the frequency of the display. For
numeric input data, you can also specify the format of display.

If the block input is an array, you can resize the block vertically or horizontally to show more than just
the first element. If the block input is a vector, the block sequentially adds display fields from left to
right and top to bottom. The block displays as many values as possible. A black triangle indicates that
the block is not displaying all input array elements.

The Display block shows the first 200 elements of a vector signal and the first 20 rows and 10
columns of a matrix signal.

Note If you specify a numeric display format that is not large enough to display all the digits of a
value, the displayed values may lose precision. The result depends on your computer hardware and
operating system.

Display Abbreviations

The following abbreviations appear on the Display block to help you identify the format of the value.

When You See... The Value That Appears Is...

(SI) The stored integer value

Note (SI) does not appear when the signal is of an integer data type.

hex In hexadecimal format
bin In binary format
oct In octal format

Displaying Strings
When working with strings, the Display block displays:

* Strings with double quotes.
* Special characters such as newline are shown as escaped sequences, for example '\n"'.
* Non-displayable characters as escaped octal number, for example '\201".

Display

If the incoming signal is of type string, the Numeric display format parameter selection does not
affect the display of the string.

Ports
Input

Port_1 — Input data
scalar | vector

Input data to display.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | string | Boolean | fixed point | enumerated

Parameters
Numeric display format — Format to display numeric input data

short (default) | long | short e | long e | bank | hex (Stored Integer) |binary (Stored
Integer) | decimal (Stored Integer) |octal (Stored Integer)

Specify the format of the numeric data that appears.

If You Select... The Block Displays...

short A 5-digit scaled value with fixed decimal point

long A 15-digit scaled value with fixed decimal point

short e A 5-digit value with a floating decimal point

long e A 16-digit value with a floating decimal point

bank A value in fixed dollars and cents format (but with
no $ or commas)

hex (Stored Integer) The stored integer value of a fixed-point input in
hexadecimal format

binary (Stored Integer) The stored integer value of a fixed-point input in
binary format

decimal (Stored Integer) The stored integer value of a fixed-point input in
decimal format

octal (Stored Integer) The stored integer value of a fixed-point input in
octal format

If the numeric input to a Display block has an enumerated data type (see “Simulink Enumerations”
and “Define Simulink Enumerations”):

* The block displays enumerated values, not the values of underlying integers.
* Setting Numeric display format to any of the Stored Integer settings causes an error.

If the incoming signal is of type string, the selection of the Numeric display format parameter does
not affect the display of the string.

1-589

1 Blocks

1-590

Programmatic Use

Block Parameter: Format

Type: character vector

Values: 'short' | 'long' | 'short e' | 'long e' | 'bank' | 'hex (Stored Integer)' |
'binary (Stored Integer)' | 'decimal (Stored Integer)'| 'octal (Stored
Integer)'

Default: 'short'

Decimation — Display rate
1 (default) | integer
Specify how often to display data.

The amount of data that appears and the time steps at which the data appears depend on the
Decimation block parameter and the SampleTime property.

» The Decimation parameter enables you to display data at every nth sample, where n is the
decimation factor. The default decimation, 1, displays data at every time step.

Note The Display block updates its display at the initial time, even when the Decimation value is
greater than one.

* The SampleTime property, which you can set with set param, enables you to specify a sampling
interval at which to display points. This property is useful when you are using a variable-step
solver where the interval between time steps is not the same. The default sample time, -1, causes
the block to ignore the sampling interval when determining the points to display.

Note If the block inherits a sample time of Inf, the Decimation parameter is ignored.

Programmatic Use

Block Parameter: Decimation
Type: character vector

Values: '1' | integer

Default: '1'

Floating display — Floating display
off (default) | on

To use the block as a floating display, select the Floating display check box. The block input port
disappears and the block displays the value of the signal on a selected line.

If you select Floating display:

» Turn off signal storage reuse for your model. See Signal storage reuse (Simulink Coder) for more
information.

* Do not connect a multidimensional signal to a floating display.

Programmatic Use

Block Parameter: Floating
Type: character vector
Values: 'on' | 'off'

Display

Default: 'on'

Block Characteristics

Data Types Boolean | double | enumerated | fixed point | half | integer |
single | string

Direct Feedthrough |yes

Multidimensional no

Signals

Variable-Size Signals |yes
Zero-Crossing no

Detection

Version History
Introduced before R2006a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Ignored for code generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Scope | To File | To Workspace

1-591

1 Blocks

1-592

Divide
Divide one input by another

Libraries:
Simulink / Math Operations

, HDL Coder / HDL Floating Point Operations
HDL Coder / Math Operations

Description

The Divide block outputs the result of dividing its first input by its second. The inputs can be scalars,
a scalar and a nonscalar, or two nonscalars that have the same dimensions. This block supports only
complex input values at division ports when all ports have the same single or double data type.

The Divide block is functionally a Product block that has two block parameter values preset:

* Multiplication — Element-wise(.*)
* Number of Inputs — */

Setting nondefault values for either of those parameters can change a Divide block to be functionally
equivalent to a Product block or a Product of Elements block.

Ports
Input

X — Input signal to multiply
scalar | vector | matrix | N-D array

Input signal to be multiplied with other inputs.

Dependencies

To enable one or more X ports, specify one or more * characters for the Number of inputs
parameter and set the Multiplication parameter to Element-wise(.*).

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

+ — Input signal to divide or invert
scalar | vector | matrix | N-D array

Input signal for division or inversion operations.

Dependencies

To enable one or more + ports, specify one or more / characters for the Number of inputs
parameter and set the Multiplication parameter to Element-wise(.*).

Divide

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

Port_1 — First input to multiply or divide

scalar | vector | matrix | N-D array

First input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

Port_N — Nth input to multiply or divide
scalar | vector | matrix | N-D array

Nth input to multiply or divide, provided as a scalar, vector, matrix, or N-D array.
Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

* — Input signal to multiply
scalar | vector | matrix | N-D array

Input signal to be multiplied with other inputs.

Dependencies

To enable one or more * ports, specify one or more * characters for the Number of inputs
parameter and set the Multiplication parameter to Matrix(*).

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

Inv — Input signal to divide or invert
scalar | vector | matrix | N-D array

Input signal for division or inversion operations.

Dependencies

To enable one or more Inv ports, specify one or more / characters for the Number of inputs
parameter and set the Multiplication parameter to Matrix(*).

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

Output

Port_1 — Output computed by multiplying, dividing, or inverting inputs
scalar | vector | matrix | N-D array

Output computed by multiplying, dividing, or inverting inputs.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point

1-593

1 Blocks

1-594

Parameters

Main

Number of inputs — Control number of inputs and type of operation
*/ (default) | positive integer scalar | * or / for each input port

Control two properties of the block:

* The number of input ports on the block
* Whether each input is multiplied or divided into the output

When you specify:
* lor*or/

The block has one input port. In element-wise mode, the block processes the input as described
for the Product of Elements block. In matrix mode, if the parameter value is 1 or *, the block
outputs the input value. If the value is /, the input must be a square matrix (including a scalar as a
degenerate case) and the block outputs the matrix inverse. See “Element-Wise Mode” on page 1-
1611 and “Matrix Mode” on page 1-1612 for more information.

* Integer value > 1

The block has the number of inputs given by the integer value. The inputs are multiplied together
in element-wise mode or matrix mode, as specified by the Multiplication parameter. See
“Element-Wise Mode” on page 1-1611 and “Matrix Mode” on page 1-1612 for more information.

* Unquoted string of two or more * and / characters

The block has the number of inputs given by the length of the character vector. Each input that
corresponds to a * character is multiplied into the output. Each input that corresponds to a /
character is divided into the output. The operations occur in element-wise mode or matrix mode,
as specified by the Multiplication parameter. See “Element-Wise Mode” on page 1-1611 and
“Matrix Mode” on page 1-1612 for more information.

Programmatic Use

Block Parameter: Inputs

Type: character vector

Values: '2' | '*' | ‘'x¥' | tk/0 | ER/ED
Default: '*/'

Multiplication — Element-wise (.*) or Matrix (*) multiplication
Element-wise(.*) (default) | Matrix(*)

Specify whether the block performs Element-wise(.*) or Matrix(*) multiplication.

Programmatic Use

Block Parameter: Multiplication

Type: character vector

Values: 'Element-wise(.*)"' | 'Matrix(*)'
Default: 'Element-wise(.*)'

Divide

Multiply over — All dimensions or specified dimension
All dimensions (default) | Specified dimension

Specify the dimension to multiply over as ALl dimensions, or Specified dimension. When you
select Specified dimension, you can specify the Dimension as 1 or 2.

Dependencies

To enable this parameter, set Number of inputs to * and Multiplication to Element-wise (.*).

Programmatic Use

Block Parameter: CollapseMode

Type: character vector

Values: 'All dimensions' | 'Specified dimension'
Default: 'All dimensions'

Dimension — Dimension to multiply over
1 (default) | 2] ... |N

Specify the dimension to multiply over as an integer less than or equal to the number of dimensions
of the input signal.

Dependencies

To enable this parameter, set:

* Number of inputs to *

* Multiplication to Element-wise (.*)

* Multiply over to Specified dimension
Programmatic Use

Block Parameter: CollapseDim

Type: character vector

Values: '1' | '2' |

Default: '1'

Sample time — Sample time value other than -1

-1 (default) | scalar | vector

Specify the sample time as a value other than - 1. For more information, see “Specify Sample Time”.

Dependencies

This parameter is not visible unless it is explicitly set to a value other than - 1. To learn more, see
“Blocks for Which Sample Time Is Not Recommended”.

Programmatic Use

Block Parameter: SampleTime
Type: string scalar or character vector
Default: "-1"

1-595

1 Blocks

1-596

Signal Attributes

Require all inputs to have the same data type — Require that all inputs have the same data type
off (default) | on

Specify if input signals must all have the same data type. If you enable this parameter, then an error
occurs during simulation if the input signal types are different.

Programmatic Use

Block Parameter: InputSameDT
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Output minimum — Minimum output value for range checking

[1 (default) | scalar

Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:

* Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)

for some blocks.

» Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMin
Type: character vector
Values: '[]'|scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[1 (default) | scalar
Upper value of the output range that Simulink checks.

Simulink uses the maximum value to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

Divide

+ Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.
* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.

For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMax
Type: character vector
Values: '[]'|scalar
Default: '[]

Output data type — Specify the output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first input |double|single| int8 | uint8|int16 |
uintl6 | int32 | uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,270,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType. For more information, see “Control Data Types of
Signals”.

When you select an inherited option, the block behaves as follows:

* Inherit: Inherit via internal rule — Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. For example, if the block multiplies an input of type int8 by a
gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is
sfix24. If Unspecified (assume 32-bit Generic), in other words, a generic 32-bit
microprocessor, is specified as the target hardware, the output data type is int32. If none of the
word lengths provided by the target microprocessor can accommodate the output range, Simulink
software displays an error in the Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical accuracy at the
same time. If the internal rule doesn’t meet your specific needs for numerical accuracy or
performance, use one of the following options:

* Specify the output data type explicitly.
* Use the simple choice of Inherit: Same as input.

+ Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point
Tool to propose data types for your model. For more information, see fxptdlg.

* To specify your own inheritance rule, use Inherit: Inherit via back propagation and
then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

1-597

1 Blocks

1-598

* Inherit: Inherit via back propagation — Use data type of the driving block.
* Inherit: Same as first input — Use data type of first input signal.

Dependencies

When input is a floating-point data type smaller than single precision, the Inherit: Inherit via
internal rule output data type depends on the setting of the “Inherit floating-point output type
smaller than single precision” configuration parameter. Data types are smaller than single precision
when the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.

Programmatic Use

Block Parameter: OutDataTypeStr

Type: character vector

Values: 'Inherit: Inherit via internal rule| 'Inherit: Same as first input' |
"Inherit: Inherit via back propagation' | 'double' | 'single' | 'int8"' | 'uint8"' |
'intl6' | 'uintl6' | 'int32"' | 'uint32' | 'int64' | 'uint64' | 'fixdt(1,16)" |
'fixdt(1,16,0)"' | 'fixdt(1,16,2"0,0)"' | '<data type expression>'

Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding Output data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector

Values: 'off' | 'on'
Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode for fixed-point operations. You can select:

Ceiling
Rounds positive and negative numbers toward positive infinity. Equivalent to the MATLAB ceil
function.

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to the nearest even
integer. Equivalent to the Fixed-Point Designer convergent function.

Floor

Rounds positive and negative numbers toward negative infinity. Equivalent to the MATLAB floor
function.

Divide

Nearest

Rounds number to the nearest representable value. If a tie occurs, rounds toward positive infinity.
Equivalent to the Fixed-Point Designer nearest function.

Round

Rounds number to the nearest representable value. If a tie occurs, rounds positive numbers
toward positive infinity and rounds negative numbers toward negative infinity. Equivalent to the
Fixed-Point Designer round function.

Simplest

Chooses between rounding toward floor and rounding toward zero to generate rounding code
that is as efficient as possible. This rounding mode is affected by these configuration parameters
on the Hardware Implementation pane.

+ If the Signed integer division rounds to parameter is set to Zero or Undefined,
Simplest resolves to zero.

+ Ifthe Signed integer division rounds to parameter is set to Floor, Simplest resolves to
floor.

Zero
Rounds number toward zero. Equivalent to the MATLAB fix function.

For more information, see “Rounding” (Fixed-Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use

Block Parameter: RndMeth

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
‘Zero'

Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

1-599

1 Blocks

Action

Rationale

Impact on Overflows

Example

Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of
-128.

Do not select this
check box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors”.

Overflows wrap to the
appropriate value that is
representable by the data

type.

The maximum value that the
int8 (signed, 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
overflow-causing value as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8, is -126.

When you select this check box, saturation applies to every internal operation on the block, not just
the output, or result. Usually, the code generation process can detect when overflow is not possible.
In this case, the code generator does not produce saturation code.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector

Values:

‘off’

| 'on

Default: 'off"'

Mode — Select data type mode

Inherit (default) | Built in | Fixed Point

Select the category of data to specify.

* Inherit — Inheritance rules for data types. Selecting Inherit enables a second menu/text box
to the right where you can select the inheritance mode.

¢ Built in — Built-in data types. Selecting Built in enables a second menu/text box to the right
where you can select a built-in data type.

* Fixed point — Fixed-point data types. Selecting Fixed point enables additional parameters
that you can use to specify a fixed-point data type.

1-600

Divide

* Expression — Expressions that evaluate to data types. Selecting Expression enables a second
menu/text box to the right, where you can enter the expression.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies
To enable this parameter, click the Show data type assistant button.

Data type override — Specify data type override mode for this signal

Inherit | Off
Select the data type override mode for this signal.

* When you select Inherit, Simulink inherits the data type override setting from its context, that
is, from the block, Simulink.Signal object or Stateflow chart in Simulink that is using the
signal.

* When you select 0ff, Simulink ignores the data type override setting of its context and uses the
fixed-point data type specified for the signal.

For more information, see “Specify Data Types Using Data Type Assistant” in the Simulink
documentation.

Dependencies
To enable this parameter, set Mode to Built inor Fixed point.
Tips

The ability to turn off data type override for an individual data type provides greater control over the
data types in your model when you apply data type override. For example, you can use this option to
ensure that data types meet the requirements of downstream blocks regardless of the data type
override setting.

Signedness — Specify signed or unsigned

Signed (default) | Unsigned

Specify whether the fixed-point data is signed or unsigned. Signed data can represent positive and
negative values, but unsigned data represents positive values only.

* Signed, specifies the fixed-point data as signed.
* Unsigned, specifies the fixed-point data as unsigned.

For more information, see “Specify Data Types Using Data Type Assistant”.

Dependencies

To enable this parameter, set the Mode to Fixed point.

Word length — Bit size of the word that holds the quantized integer
16 (default) | integer from 0 to 32

Specify the bit size of the word that holds the quantized integer. For more information, see
“Specifying a Fixed-Point Data Type”.

1-601

1 Blocks

Dependencies

To enable this parameter, set Mode to Fixed point.

Fraction length — Specify fraction length for fixed-point data type
0 (default) | scalar integer

Specify fraction length for fixed-point data type as a positive or negative integer. For more
information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Binary point.
Scaling — Method for scaling fixed-point data

Best precision (default) | Binary point | Slope and bias

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. For more information, see “Specifying a Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Mode to Fixed point.
Slope — Specify slope for the fixed-point data type
270 (default) | positive, real-valued scalar

Specify slope for the fixed-point data type. For more information, see “Specifying a Fixed-Point Data
Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.
Bias — Specify bias for the fixed-point data type

0 (default) | real-valued scalar

Specify bias for the fixed-point data type as any real number. For more information, see “Specifying a
Fixed-Point Data Type”.

Dependencies

To enable this parameter, set Scaling to Slope and bias.

Block Characteristics

Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

1-602

Divide

Variable-Size Signals |yes

Zero-Crossing
Detection

no

Version History
Introduced before R2006a

Extended Capabili

C/C++ Code Generation

ties

Generate C and C++ code using Simulink® Coder™.

Expected Differences Between Simulation and Code Generation

These conditions may yield different results between simulation and the generated code:

* The Divide block inputs contain a NaN or inf value

* The Divide block generates NaN or inf during execution

This difference is due to the nonfinite NaN or inf values. In such cases, inspect your model
configuration and eliminate the conditions that produce NaN or inf.

Code Optimizations

The Simulink Coder build process provides efficient code for matrix inverse and division operations.
This table describes the benefits and when each benefit is available.

Benefit

Small Matrices
(2-by-2 to 5-by-5)

Medium Matrices
(6-by-6 to 20-by-20)

Large Matrices
(larger than 20-
by-20)

Faster code execution
time, compared to
R2011a and earlier
releases

Yes

No

Yes

Reduced ROM and RAM
usage, compared to
R2011a and earlier
releases

Yes, for real values

Yes, for real values

Yes, for real values

MATLAB Coder results

Reuse of variables Yes Yes Yes
Dead code elimination |Yes Yes Yes
Constant folding Yes Yes Yes
Expression folding Yes Yes Yes
Consistency with Yes Yes Yes

For blocks that have three or more inputs of different dimensions, the code might include an extra
buffer to store temporary variables for intermediate results.

1-603

1 Blocks

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Note When you deploy the generated HDL code onto the target hardware, make sure that you set
the signed integer division rounds to parameter in the Hardware Implementation pane of the
Configuration Parameters dialog box to Zero or Floor.

To perform an HDL-optimized divide operation, connect a Product block to a Divide block in
reciprocal mode.

HDL Architecture

The Divide block is the same as a Product block with Number of Inputs set to */.

Architecture Parameters Description

Linear(Default) None Generate a divide (/) operator in the
HDL code.

ShiftAdd UsePipelines Perform divide operations on fixed-point

types by using a non-restoring division
algorithm that performs multiple shift
and add operations to compute the
quotient. This architecture provides
improved accuracy compared to the
Newton-Raphson approximation
method.

When you use this architecture, to
achieve a higher maximum clock
frequency on the target FPGA device,
leave the UsePipelines HDL block
property to on.

When you use fixed-point data types,
following criteria must be satisfied for
generating the HDL code:

* Inputs word length (WL) must be less
than 63.

e [Max(WL inputl, WL input2) +
Abs(FL Difference)] must be

less than 63. Where, Fractional
length (FL) Difference is given by,

FL Difference = FL inputl -
(FL input2 + FL output)

Reciprocal Mode

1-604

Divide

When Number of Inputs is set to /, the Divide block is in reciprocal mode.

This block has multi-cycle implementations that introduce additional latency in the generated code.
To see the added latency, view the generated model or validation model. See “Generated Model and

Validation Model” (HDL Coder).

In reciprocal mode, the Divide block has the HDL block implementations described in the following

table.
Architectures Parameters |Additional |Description
cycles of
latency
Linear(default) None 0 When you compute a
reciprocal, use the HDL
divide (/) operator to
implement the division.
ReciprocalRsqrtBasedNewton Iterations [Signed input: |Use the iterative Newton
Iterations |method. Select this option
+5 to optimize area.
Unsigned The default value for
input: Iterationsis 3.
Iterations
+3 The recommended value for
Iterations is between 2
and 10. If Iterations is
outside the recommended
range, HDL Coder displays
a message.
ReciprocalRsqrtBasedNewtonSingleRate Iterations |Signed input: |Use the single rate
(Iteration |pipelined Newton method.
s*4)+ 8 Select this option to
optimize speed, or if you
Unsigned want a single rate
input: implementation.
(Iteration
s*¥4)+6 The default value for

Iterationsis 3.

The recommended value for
Iterations is between 2
and 10. If Iterations is
outside the recommended
range, the coder displays a
message.

1-605

1 Blocks

Architectures Parameters |Additional |Description
cycles of
latency

ShiftAdd UsePipelines |Signed input: |Perform reciprocal
(Input word |operation on a fixed-point
length + 4) |input by using a non-

restoring division algorithm

Unsigned |that performs multiple shift
input: (Input |and add operations to
word length |compute the reciprocal.
+4) This architecture provides

improved accuracy
compared to the Newton-
Raphson approximation
method.

When you use this
architecture, to achieve a
higher maximum clock
frequency on the target
FPGA device, leave the
UsePipelines HDL block
property to on.

When you use fixed-point
data types, following
criteria must be satisfied
for generating the HDL
code:

* Input word length (WL)
must be less than or
equal to 63.

e [WL input + Abs(FL
Sum)] must be less than
or equal to 63. Where,
FL Sum is given by,

FL sum =
FL output

FL input +

The Newton-Raphson iterative method:

i)
f(x)

Xj+1 =X~

= x;(1.5 — 0.5ax;2)

ReciprocalRsqrtBasedNewton and ReciprocalRsqrtBasedNewtonSingleRate implement the
Newton-Raphson method with:

=1_
f(X)_Xz 1

1-606

Divide

HDL code generation supports different output data types for divide (*/) and reciprocal (/)
operations in ShiftAdd. You can use these output data types for the blocks:

e Inherit: Inherit via internal rule

* Inherit: Keep MSB

* Inherit: Match scaling

* Inherit: Inherit via back propagation

* Inherit: Same as first input

* Integer types (uint8,int8,uintl6,intl6,uint32,int32,uint64,int64)

* Fixed point types

HDL Block Properties

General

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DSPStyle

Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

Use this property with:

* Product block
* Divide and Reciprocal blocks with Linear architecture

InputPipeline

Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline

Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

LatencyStrategy

To enable this property, set HDL architecture to ShiftAdd. Specify
whether to map the blocks in your design to MAX, CUSTOM, or ZERO latency
for fixed-point and floating-point types. The default is MAX. See also
“LatencyStrategy” (HDL Coder).

CustomLatency

To enable this property, set HDL architecture to ShiftAdd. When
LatencyStrategy is set to CUSTOM, use this property to specify a custom
latency value between ZERO and MAX for fixed-point types. See also
“LatencyStrategy” (HDL Coder).

1-607

1 Blocks

1-608

Native Floating Point

HandleDenormals Specify whether you want HDL Coder to insert additional logic to handle
denormal numbers in your design. Denormal numbers are numbers that
have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The default is inherit.
See also “HandleDenormals” (HDL Coder).

NFPCustomLatency |To specify a value, set LatencyStrategy to Custom. HDL Coder adds
latency equal to the value that you specify for the NFPCustomLatency
setting. See also “NFPCustomLatency” (HDL Coder).

MantissaMultiplyStra |Specify how to implement the mantissa multiplication operation during
tegy code generation. By using different settings, you can control the DSP usage
on the target FPGA device. The default is inherit. See also
“MantissaMultiplyStrategy” (HDL Coder).

DivisionAlgorithm Specify whether to use the Radix-2 or Radix-4 algorithm to perform the
floating-point division. The Radix-2 mode offers a trade-off between latency
and frequency. The Radix-4 mode offers a trade-off between latency and
resource usage. For more information, see “DivisionAlgorithm” (HDL
Coder).

To see the latency calculation for fixed-point types with Divide and Reciprocal blocks, at the MATLAB
command prompt, enter:

HDLMathLib

Complex Data Support

This block does not support code generation for division with complex signals.
Restrictions

When you use the Divide block in reciprocal mode, the following restrictions apply:

* When you use fixed-point types, the input and output must be scalar. To use vector inputs, specify
the Math architecture and input a floating-point value.
* Only the Zero rounding mode is supported.

* You must select the Saturate on integer overflow option on the block.
For the Divide block, only the Zero and Simplest rounding modes are supported.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Product | Dot Product | Product of Elements

DocBlock

DocBlock

Create text that documents model and save text with model

Libraries:
Simulink / Model-Wide Utilities
oOc HDL Coder / Model-Wide Utilities

Te

Description

The DocBlock allows you to create and edit text that documents a model, and save that text with the
model. Double-clicking an instance of the block creates a temporary file containing the text
associated with this block and opens the file in an editor. Use the editor to modify the text and save
the file. Simulink software stores the contents of the saved file in the model file.

The DocBlock supports HTML, Rich Text Format (RTF), and ASCII text document types. The default
editors for these different document types are

* HTML — Microsoft® Word (if available). Otherwise, the DocBlock opens HTML documents using
the editor specified on the Editor/Debugger Preferences pane of the Preferences dialog box.

* RTF — Microsoft Word (if available). Otherwise, the DocBlock opens RTF documents using the
editor specified on the Editor/Debugger Preferences pane of the Preferences dialog box.

» Text — The DocBlock opens text documents using the editor specified on the Editor/Debugger
Preferences pane of the Preferences dialog box.

Use the docblock command to change the default editors.

Tip To edit the block parameters of the DocBlock, right-click the block icon and select Mask > Mask
Parameters....

Parameters

Code generation template symbol — Template symbol for generated code

" | Abstract |Description |History |Modified History | Notes

Enter a template symbol name in this field. Embedded Coder® software uses this symbol to add
comments to the code generated from the model. For more information, see “Add Global Comments in
the Generated Code” (Embedded Coder).

Dependencies

For comments to appear in the generated code, you must also set the Document type to Text.

Programmatic Use
Block Parameter: ECoderFlag

1-609

1 Blocks

Type: character vector
Values: Abstract | Description | History | Modified History | Notes
Default: '0'

Document type — Type of document

Text (default) | RTF | HTML

Select the type of document associated with the DocBlock. The options are:

e Text
« RTF
 HTML

Dependencies

If you are using a DocBlock to add comments to your code during code generation, ensure that you
set the Document Type as Text. If you set the Document Type as RTF or HTML, your comments will
not appear in the code.

Programmatic Use

Block Parameter: DocumentType
Type: character vector

Values: Text | RTF | HTML
Default: 'Text'

Block Characteristics

Data Types

Direct Feedthrough |no
Multidimensional no
Signals

Variable-Size Signals |[no
Zero-Crossing no
Detection

Version History
Introduced before R2006a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Uses the template symbol you specify for the Embedded Coder Flag block parameter to add
comments to generated code. Requires an Embedded Coder license. For more information, see “Use a
Simulink DocBlock to Add a Comment” (Embedded Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

1-610

DocBlock

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic. See also “Generate Code with Annotations or Comments” (HDL Coder) and “Integrate Custom
HDL Code by Using DocBlock” (HDL Coder).

HDL Architecture

Architecture Description

Annotation (default) Insert text as comment in the generated code.
HDLText Integrate text as custom HDL code.

No HDL Do not generate HDL code for this block.

HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

TargetLanguage Language of the text, either Verilog® or VHDL®. The default is VHDL.

When Architecture is HDLText, this property is available. To learn more,

see “Integrate Custom HDL Code by Using DocBlock” (HDL Coder).

Restrictions
* Document type must be Text.

HDL Coder does not support the HTML or RTF options.
* You can have a maximum of two DocBlock blocks with Architecture set to HDLText in the same
subsystem.

If you have two DocBlock blocks, one must have TargetLanguage set to VHDL, and the other must
have TargetLanguage set to Verilog. When generating code, HDL Coder only integrates the
custom code from the DocBlock that matches the target language for code generation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Model Info | docblock

1-611

1 Blocks

Topics
“Add Global Comments in the Generated Code” (Embedded Coder)

1-612

Dot Product

Dot Product

Generate dot product of two vectors

Libraries:
Simulink / Math Operations
HDL Coder / Math Operations

Description

The Dot Product block generates the dot product of the input vectors. The scalar output, y, is equal to
the MATLAB operation

y = sum(conj(ul) .* u2)

where ul and u2 represent the input vectors. The inputs can be vectors, column vectors (single-
column matrices), or scalars. If both inputs are vectors or column vectors, they must be the same
length. If ul and u2 are both column vectors, the block outputs the equivalent of the MATLAB
expression ul'*u2.

The elements of the input vectors can be real- or complex-valued signals. The signal type (complex or
real) of the output depends on the signal types of the inputs.

Input 1 Input 2 Output
real real real

real complex complex
complex real complex
complex complex complex
Ports

Input

Port_1 — First operand input signal
scalar | vector

Signal representing the first operand to the dot product calculation.
Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | fixed point

Port_2 — Second operand input signal
scalar | vector

Signal representing the second operand to the dot product calculation.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | fixed point

1-613

1 Blocks

1-614

Output

Port_1 — Dot product output signal
scalar | vector
Output signal resulting from the dot product calculation of the two input signals.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | fixed point

Parameters
Require all inputs to have the same data type — Require all inputs to have the same data type
on (default) | of f

Clear this check box for all the inputs to have different data types.

Programmatic Use

Block Parameter: InputSameDT
Type: character vector

Values: 'on' | 'off'

Default: 'on'

Output minimum — Minimum output value for range checking
[1 (default) | scalar
Lower value of the output range that Simulink checks.

Simulink uses the minimum to perform:
» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

« Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.

For more information, see Optimize using the specified minimum and maximum values (Embedded

Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMin
Type: character vector
Values: '[]'|scalar
Default: '[]

Dot Product

Output maximum — Maximum output value for range checking

[1 (default) | scalar

Specify the upper value of the output range that Simulink checks as a finite, real, double, scalar
value.

Note If you specify a bus object as the data type for this block, do not set the maximum value for
bus data on the block. Simulink ignores this setting. Instead, set the maximum values for bus
elements of the bus object specified as the data type. For information on the Maximum parameter for
a bus element, see Simulink.BusElement.

Simulink uses the maximum value to perform:

» Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”)
for some blocks.

» Simulation range checking (see “Specify Signal Ranges” and “Enable Simulation Range
Checking”).

* Automatic scaling of fixed-point data types.

* Optimization of the code that you generate from the model. This optimization can remove
algorithmic code and affect the results of some simulation modes such as SIL or external mode.

For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use

Block Parameter: OutMax
Type: character vector
Values: scalar

Default: '[]'

Output data type — Specify the output data type

Inherit: Inherit via internal rule (default) | Inherit: Inherit via back
propagation | Inherit: Same as first input |double|single|half|int8 | uint8 |
intl6 | uintl6 | int32 |uint32 | int64 | uint64 | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,270,0) | <data type expression>

Choose the data type for the output. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType. For more information, see “Control Data Types of
Signals”.

When you select an inherited option, the block behaves as follows:

* Inherit: Inherit via internal rule — Simulink chooses a data type to balance numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. If you change the embedded target settings, the data type selected by
the internal rule might change. For example, if the block multiplies an input of type int8 by a

1-615

1 Blocks

1-616

gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is
sfix24. If Unspecified (assume 32-bit Generic), in other words, a generic 32-bit
microprocessor, is specified as the target hardware, the output data type is int32. If none of the
word lengths provided by the target microprocessor can accommodate the output range, Simulink
software displays an error in the Diagnostic Viewer.

It is not always possible for the software to optimize code efficiency and numerical accuracy at the
same time. If the internal rule doesn’t meet your specific needs for numerical accuracy or
performance, use one of the following options:

* Specify the output data type explicitly.
* Use the simple choice of Inherit: Same as input.

+ Explicitly specify a default data type such as fixdt(1,32,16) and then use the Fixed-Point
Tool to propose data types for your model. For more information, see fxptdlg.

* To specify your own inheritance rule, use Inherit: Inherit via back propagation and
then use a Data Type Propagation block. Examples of how to use this block are available in the
Signal Attributes library Data Type Propagation Examples block.

Note When input is a floating-point data type smaller than single precision, Inherit: Inherit
via internal rule depends on the setting of the “Inherit floating-point output type smaller
than single precision” configuration parameter. Data types are smaller than single precision when
the number of bits needed to encode the data type is less than the 32 bits needed to encode the
single-precision data type. For example, half and int16 are smaller than single precision.

* Inherit: Inherit via back propagation — Use data type of the driving block.
* Inherit: Same as first input — Use data type of first input signal.

Programmatic Use

Block Parameter: OutDataTypeStr

Type: character vector

Values: 'Inherit: Inherit via internal rule| 'Inherit: Same as first input' |
"Inherit: Inherit via back propagation' | 'double’ | 'single' | "half' | 'int8' |
‘uint8' | 'intl6' | 'uintl6' | 'int32' | 'uint32' | 'int64"' | 'uint64’ | 'fixdt(1,16)" |
'fixdt(1,16,0)"' | 'fixdt(1,16,270,0)"' | '<data type expression>'

Default: 'Inherit: Inherit via internal rule'

Lock output data type setting against changes by the fixed-point tools — Prevent fixed-point
tools from overriding data types

off (default) | on

Select to lock the output data type setting of this block against changes by the Fixed-Point Tool and
the Fixed-Point Advisor. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use

Block Parameter: LockScale
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Integer rounding mode — Rounding mode for fixed-point operations

Dot Product

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB rounding function into the mask field.

Programmatic Use

Block Parameter: RndMeth

Type: character vector

Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'

Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on
Specify whether overflows saturate or wrap.
+ off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.

* on — Overflows saturate to either the minimum or maximum value that the data type can
represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

* Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

* Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

* When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

* In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

Programmatic Use

Block Parameter: SaturateOnIntegerOverflow
Type: character vector

Values: 'off' | 'on'

Default: 'off"'

1-617

1 Blocks

Block Characteristics

Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

Architecture Description

Linear (default) Generates a linear chain of adders to compute the sum of
products.

Tree Generates a tree structure of adders to compute the sum
of products.

HDL Block Properties

General

InputPipeline Number of input pipeline stages to insert in the generated
code. Distributed pipelining and constrained output
pipelining can move these registers. The default is 0. For
more details, see “InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and constrained
output pipelining can move these registers. The default is
0. For more details, see “OutputPipeline” (HDL Coder).

1-618

Dot Product

General

ConstrainedOutputPipeline

Number of registers to place at the outputs by moving
existing delays within your design. Distributed pipelining
does not redistribute these registers. The default is 0. For
more details, see “ConstrainedOutputPipeline” (HDL
Coder).

Native Floating Point

HandleDenormals

Specify whether you want HDL Coder to insert additional
logic to handle denormal numbers in your design.
Denormal numbers are numbers that have magnitudes
less than the smallest floating-point number that can be
represented without leading zeros in the mantissa. The
default is inherit. See also “HandleDenormals” (HDL
Coder).

LatencyStrategy

Specify whether to map the blocks in your design to
inherit, Max, Min, or Zero for the floating-point
operator. The default is inherit. See also
“LatencyStrategy” (HDL Coder).

MantissaMultiplyStrategy

Specify how to implement the mantissa multiplication
operation during code generation. By using different
settings, you can control the DSP usage on the target
FPGA device. The default is inherit. See also
“MantissaMultiplyStrategy” (HDL Coder).

PLC Code Generation

Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Product | Product of Elements

1-619

1 Blocks

1-620

Edit
Enter new value for parameter

Libraries:
Simulink / Dashboard

I

Description

The Edit block allows you to type in new values for block parameters during simulation. Use the Edit
block with other Dashboard blocks to build an interactive dashboard of controls and indicators for
your model.

Double-clicking the Edit block does not open its dialog box during simulation and when the block is
selected. To edit the block parameters, you can use the Property Inspector, or you can right-click
the block and select Block Parameters from the context menu.

Connect Dashboard Blocks

Dashboard blocks do not use ports to connect to model elements. To connect dashboard blocks to
variables and block parameters, use connect mode. Connect mode facilitates the process of
connecting dashboard blocks in your model, especially when you want to connect multiple blocks at
once. To connect a single dashboard block, you can also use the Connection table in the block dialog
box.

Tip You can modify dashboard block connections in your model during normal and accelerator mode
simulations.

Note Dashboard blocks cannot connect to variables until you update the model diagram. To connect
dashboard blocks to variables or modify variable values between opening your model and running a
simulation, update the model diagram using Ctrl+D.

To enter connect mode, in the canvas, select the dashboard block to connect. On the Simulink
Toolstrip, a tab named after the type of the selected block appears. On the block tab, click Connect.
In connect mode, when you select one or more blocks, a list of parameters and variables available for
connection appears. Select a variable or parameter from the list to connect to the selected dashboard
block.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard block.
To connect to an element of a vector, matrix, or array, specify the element index, for example, 3 or
(1,3). To connect to an element in a bus or structure, specify the element in the context of the bus
or structure hierarchy by using dots to indicate different levels in the hierarchy, and omit the top

Edit

level. For example, specify a.b to connect to scalar element b of the structure or bus a nested inside
the selected composite variable or parameter.

To connect another dashboard block, pause on another dashboard block and click the Connect
button above it. Then, make a selection of signals and blocks in your model and choose a model
element to connect.

Connect
() [#] Gain:Gain
DUU:IJ:Jllidn-'.:eI!::tk 5 (\/ Signal 2 Amplified Signal & O [Sine Wave:Amplitude
Jine Wave Gain O [#] Sine Wave:Bias
O [#] Sine Wave:Frequency
O [#] Sine Wave:Phase
O [4] Sine Wave:Samples

When you finish connecting the dashboard blocks in your model, on the block tab, click Done
Connecting.

Tip You can hide the message shown on unconnected blocks using the set param function with the
ShowInitialText block parameter. The message also disappears when you connect the block.

Parameter Logging

Tunable parameters connected to dashboard blocks are logged to the Simulation Data Inspector,
where you can view the parameter values along with logged signal data. You can access logged
parameter data in the MATLAB workspace by exporting the parameter data from the Simulation Data
Inspector by using the Ul or the Simulink.sdi.exportRun function. For more information about
exporting data using the Simulation Data Inspector UI, see “Export Data to the Workspace or a File”.
The parameter data is stored in a Simulink.SimulationData.Parameter object, accessible as an
element in the exported Simulink.SimulationData.Dataset.

Limitations

* Except for the Dashboard Scope block and the Display block, dashboard blocks can only connect
to real scalar signals.

* The toolstrip does not support blocks that are inside a panel.

* You cannot use the Connection table in the block dialog to connect a dashboard block to a block
that is commented out. When you connect a dashboard block to a commented block using connect
mode, the dashboard block does not display the connected value until the you uncomment the
block.

* Dashboard blocks cannot connect to model elements inside referenced models.
* When you simulate a model hierarchy, dashboard blocks inside referenced models do not update.
* Dashboard blocks do not support rapid accelerator simulation.

1-621

1 Blocks

1-622

* When you connect a dashboard block to a variable or parameter during simulation, the data for
that variable or parameter is not logged to the Simulation Data Inspector. To log variable and
parameter data to the Simulation Data Inspector, connect the dashboard block to the variable or
parameter prior to simulation.

* When you simulate a model in external mode with the Default parameter behavior set to
Inlined, dashboard blocks can appear to change parameter and variable values. However, the
change does not propagate to the simulation. For example, Gain blocks display changes made to
the Gain parameter using the dashboard blocks, but the Gain value used in the simulation does
not change.

Parameters
Connection

Connection — Select a variable or block parameter to connect
variable and parameter connection options

Select the variable or block parameter to control using the Connection table. To connect the block to
a signal:

Make a selection in the model that includes one or more blocks.
2 Select the variable or parameter you want to connect.

When the value of the selected variable or block parameter is nonscalar, use the text box at the
bottom of the Connection table to specify the element you want to connect to the dashboard
block. To connect to an element of a vector, matrix, or array, specify the element index, for
example, 3 or (1,3). To connect to an element in a bus or structure, specify the element in the
context of the bus or structure hierarchy by using dots to indicate different levels in the
hierarchy, and omit the top level. For example, specify a.b to connect to scalar element b of the
structure or bus a nested inside the selected composite variable or parameter.

3 Click Apply.

To facilitate understanding and debugging your model, you can connect Dashboard blocks to
variables and parameters in your model during simulation.

Note To see workspace variables in the connection table, update the model diagram using Ctrl+D.

Programmatic Use

To programmatically connect a dashboard block to a tunable parameter or a variable, use a
Simulink.HMI.ParamSourceInfo object. The Simulink.HMI.ParamSourceInfo object contains
four properties. Some of the properties apply to connecting dashboard blocks to parameters, and
some apply to connecting dashboard blocks to variables. Not all fields have a value for a connection
because a given dashboard block connects to either a parameter or a variable.

Block Parameter: Binding

Type: Simulink.HMI.ParamSourceInfo

Default: []

Edit

Main
Align — Text alignment
Center (default) | Left | Right

Alignment of the text in the Edit block.

Programmatic Use

Block Parameter: Alignment

Type: string or character vector
Values: 'Center' | 'Left' | 'Right'’
Default: 'Center!’

Label — Block label position
Hide (default) | Bottom | Top

Position of the block label. When the block is connected to an element in the model, the label is the
name of the connected element.

Programmatic Use

Block Parameter: LabelPosition
Type: character vector

Values: 'Hide' | 'Bottom' | 'Top'
Default: 'Hide'

Format
Opacity — Block background opacity
1 (default) | scalar

Block background opacity, specified as a scalar value between 0 and 1.

Example: 0.5

Programmatic Use

Block Parameter: Opacity
Type: scalar

Default: 1

Foreground Color — Block foreground color
[r g b] vector

Block foreground color, including the text. You can select a color from a palette of standard colors or
specify a custom color.

Programmatic Use

Specify the ForegroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.

Block Parameter: ForegroundColor

Type: character vector | string

Values: [r g b] vector

1-623

1 Blocks

Background Color — Block background color
[r g b] vector

Block background color. You can select a color from a palette of standard colors or specify a custom
color.

Programmatic Use

Specify the BackgroundColor parameter for the block as a string or a character vector that defines
a 1-by-3 [r g b] vector with values between 0 and 1.

Block Parameter: BackgroundColor

Type: character vector | string

Values: [r g b] vector

Block Characteristics

Data Types double | half | integer | single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced in R2017b

R2021a: Tune matrix and structure elements using dashboard blocks

Starting in R2021a, you can connect a block from the Dashboard library to a scalar element of a
matrix or structure that defines the value of a tunable block parameter. When you connect a
dashboard block to a tunable parameter, you first select one or more blocks. Then, in a dialog box,
you select the parameter to which you want to connect. When you select a parameter that has a
nonscalar value, specify the element you want to tune using the text box in the dialog box.

R2020b: Background Color, Foreground Color, and Opacity properties added for several
dashboard blocks

Starting in R2020b, you can specify a background color, a foreground color, and opacity for these
blocks from the Dashboard library:

* Check Box

* Combo Box

+ Edit

* Push Button

* Radio Button

1-624

Edit

R2020b: Simulink Toolstrip support for dashboard blocks

Starting in R2020b, the Block tab in the Simulink Toolstrip turns into a block-specific tab when you
select a block in your model that is from the Dashboard library in the Simulink library or from the
Flight Instruments library in the Aerospace Blockset Flight Control Analysis library. From the
toolstrip, you can connect, disconnect, and modify connections for the selected block. You can jump to
the model element connected to the selected block, and you can add the selected block to a panel.

R2019a: Programmatically add and configure dashboard blocks

Starting in R2019a, you can use functions such as add _block and set param to create and
configure blocks from the Dashboard library in your model.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dashboard blocks are ignored for code generation.
See Also

Knob | Slider | Display

Topics

“Tune and Visualize Your Model with Dashboard Blocks”
“Decide How to Visualize Simulation Data”

1-625

1 Blocks

1-626

Enable

Add enable port to subsystem or model

Libraries:
Simulink / Ports & Subsystems
HDL Coder / Ports & Subsystems

Description

The Enable block allows an external signal to control execution of a subsystem or a model. To enable
this functionality, add the block to a Subsystem block or at the root level of a model that is referenced
by a Model block.

If you use an enable port at the root-level of a model:

* For multi-rate models, set the solver to single-tasking.

» For models with a fixed-step size, at least one block in the model must run at the specified fixed-
step size rate.

Ports
Output

Enable signal — External enable signal for a subsystem or model
scalar

Enable signal attached externally to the outside of an Enabled Subsystem block and passed to the
inside of the subsystem. An enable signal port is added to an Enable block when you select the Show
output port parameter.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point | expression

Parameters

States when enabling — Select block states when subsystem or model is disabled
held (default) | reset

When a Subsystem block or Model block is disabled, select what happens to block states for the
blocks within the subsystem or model.
held
Hold block states at their previous values.
reset
Reset block states to their initial conditions (zero if not defined).

Enable

Programmatic Use

Block parameter: StatesWhenEnabling
Type: character vector

Values: 'held' | 'reset’

Default: 'held'’

Propagate sizes of variable-size signals — Select when to propagate a variable-size signal
Only when enabling (default) | During execution

Select when to propagate a variable-size signal.

Only when enabling

Propagate a variable-size signal when reenabling a Subsystem block or Model block containing an
Enable port block. When you select this option, sample time must be periodic.

During execution
Propagate variable-size signals at each time step.
Programmatic Use
Block parameter: PropagateVarSize
Type: character vector

Values: 'Only when enabling' | 'During execution'
Default: 'Only when enabling'

Show output port — Control display of output port for enable signal
off (default) | on

The output port passes the enable signal attached externally to the outside of an Enabled Subsystem
block or enabled Model block to the inside.

off
Remove the output port on the Enable port block.

4 on
Display an output port on the Enable port block. Selecting this option allows the subsystem or
model to process the enable signal.

Programmatic Use

Block parameter: ShowOutputPort
Type: character vector

Values: 'off' | 'on'

Default: 'off'

Enable zero-crossing detection — Control zero-crossing detection
on (default) | off
Control zero-crossing detection for a model.

Y| on

Detect zero crossings.

1-627

1 Blocks

off

Do not detect zero crossings.
Programmatic Use
Block parameter: ZeroCross
Type: character vector

Values: 'on' | 'off'
Default: 'on’

Port dimensions — Specify dimensions for the enable signal
1 (default) | [n] | [m n]

Specify dimensions for the enable signal attached externally to a Model block and passed to the
inside of the block.
1
Scalar signal.
[n]
Vector signal of width n.
(m n]
Matrix signal having m rows and n columns.
Programmatic Use
Block parameter: PortDimensions
Type: character vector

Values: '1' | '[n]'|'[m n]'
Default: '1'

Sample time — Specify time interval
-1 (default) | Ts | [Ts, To]

Specify time interval between block method execution. See “Specify Sample Time”.

-1
Sample time inherited from the model.
Ts
Scalar where Ts is the time interval.
[Ts, Tol
Vector where Ts is the time interval and To is the initial time offset.
Programmatic Use
Block parameter: SampleTime
Type: character vector

Values: '-1' | 'Ts'| '[Ts, Tol'
Default: '-1'

Minimum — Specify minimum output value for the enable signal
[1 (default) | real scalar

1-628

Enable

Specify minimum value for the enable signal attached externally to a Model block and passed to the
inside of the block.

Simulink uses this value to perform:

* Simulation range checking. See “Specify Signal Ranges”.
* Automatic scaling of fixed-point data types.

* Optimization of generated code. This optimization can remove algorithmic code and affect the
results of some simulation modes such as SIL or external mode. See Optimize using the specified
minimum and maximum values (Embedded Coder).

[]

Unspecified minimum value.
real scalar

Real double scalar value.
Programmatic Use
Block parameter: OutMin
Type: character vector

Values: '[]' | '<real scalar>'
Default: '[]'

Maximum — Specify maximum output value for the enable signal
[1 (default) | real scalar

Specify maximum value for the enable signal attached externally to a Model block and passed to the
inside of the block.

Simulink uses this value to perform:

* Simulation range checking. See “Specify Signal Ranges”.
* Automatic scaling of fixed-point data types.

* Optimization of generated code. This optimization can remove algorithmic code and affect the
results of some simulation modes such as SIL or external mode. See Optimize using the specified
minimum and maximum values (Embedded Coder).

[]

Unspecified maximum value.
real scalar

Real double scalar value.
Programmatic Use
Block parameter: OutMax
Type: character vector

Values: '[]' | '<real scalar>'
Default: '[]'

1-629

1 Blocks

Data type — Specify output data type for the enable signal
double (default) | single | int8 | uint8 | int16 | uint1l6 | int32 | uint32 | int64 | uint64 |
boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1l,16,2~,0) | <data type expression>

Specify data type for the enable signal attached externally to a Model block and passed to the inside
of the block.
double
Double-precision floating point.
single
Single-precision floating point.
int8
Signed 8-bit integer.
uint8
Unsigned 8-bit integer.
intl6
Signed 16-bit integer.
uintle
Unsigned 16-bit integer.
int32
Signed 32-bit integer.
uint32
Unsigned 32-bit integer.
int64
Signed 64-bit integer.
uint64
Unsigned 64-bit integer.
boolean
Boolean with a value of true or false.
fixdt(1,16)
Signed 16-bit fixed point number with binary point undefined.
fixdt(1,16,0)
Signed 16-bit fixed point number with binary point set to zero.
fixdt(1,16,2",0)
Signed 16-bit fixed point number with slope set to 270 and bias set to 0.
<data type expression>
Data type object, for example Simulink.NumericType. You cannot enter the name of a
Simulink.Bus object as a data type expression.

Programmatic Use
Block parameter: OutDataTypeStr
Type: character vector

1-630

Enable

Values: 'double’ | 'single' | 'int8"' | 'uint8"' | 'int16' | 'uintl6' | 'int32' | 'uint32"' |
'int64' | 'uint64' | 'boolean’' | '<fixdt(1,16)"' | 'fixdt(1,16,0)" |
'fixdt(1,16,270,0)"' | '<data type expression>'

Default: 'double’

Mode — Select data type category
Build in (default) | Fixed point | Expression

Select data type category and display drop-down lists to help you define the data type.
Build in

Display drop-down lists for data type and Data type override.
Fixed point

Display drop-down lists for Signedness, Scaling, and Data type override.
Expression

Display text box for entering an expression.

Dependency

To enable this parameter, select the Show data type assistant button.

Programmatic Use
No equivalent command-line parameter.

Interpolate data — Specify value of missing workspace data
on (default) | off

Specify value of missing workspace data when loading data from the workspace.

¥l on

Linearly Interpolate output at time steps for which no corresponding workspace data exists.

1 off

Do not interpolate output at time steps. The current output equals the output at the most recent
time step for which data exists.

Programmatic Use

Block parameter: Interpolate
Type: character vector

Values: 'on' | 'off'

Default: 'on'

Block Characteristics

Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough |no

1-631

1 Blocks

Multidimensional yes
Signals

Variable-Size Signals |no
Zero-Crossing yes
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Subsystem | Enabled and Triggered Subsystem | Enabled Subsystem

1-632

Enable

Topics

“Conditionally Executed Subsystems Overview”
“Using Enabled Subsystems”

“Using Enabled and Triggered Subsystems”

1-633

1 Blocks

Enabled and Triggered Subsystem

Subsystem whose execution is enabled and triggered by external inputs

Libraries:
T r; Simulink / Ports & Subsystems

In1 Out1

Description

The Enabled and Triggered Subsystem block is a Subsystem block preconfigured as a starting point
for creating a subsystem that executes when both of these conditions occur:

* Enable control signal has a positive value.
» Trigger control signal has a trigger value.

V. AV
I F

M in1 Cut1

Enabled and
Trigger'lraed%uzgyﬂstem

Enable Trigger

Use Enabled and Triggered Subsystem blocks to model:

* Optional functionality.
* Alternative functionality.

For an explanation of the Enabled and Triggered Subsystem block parameters, see Subsystem.

Ports
Input

In — Signal input to a subsystem block
scalar | vector | matrix

Placing an Inport block in a subsystem adds an external input port to the Subsystem block. The port
label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

1-634

Enabled and Triggered Subsystem

Enable — Control signal input to a subsystem block

scalar

Placing an Enable block in a subsystem adds an external input port to the Subsystem block.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixed point

Trigger — Control signal input to a subsystem block
scalar

Placing a Trigger block in a subsystem adds an external input port to the Subsystem block.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Output

Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem adds an output port from the Subsystem block. The port
label on the subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Block Characteristics

Data Types Boolean? | bus? | double? | enumerated® | fixed pointe|half?|
integer?|single? | string®

Direct Feedthrough |no

Multidimensional yes?

Signals

Variable-Size Signals |yes?

Zero-Crossing no

Detection

a Actual data type or capability support depends on block implementation.

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

1-635

1 Blocks

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also

Triggered Subsystem | Enabled Subsystem | Message Triggered Subsystem | Function-Call
Subsystem | Subsystem | Enable | Trigger

Topics

“Conditionally Executed Subsystems Overview”
“Using Enabled Subsystems”

“Using Triggered Subsystems”

“Using Enabled and Triggered Subsystems”
“Using Function-Call Subsystems”

1-636

Enabled Subsystem

Enabled Subsystem

Subsystem whose execution is enabled by external input

Libraries:
i Simulink / Ports & Subsystems
it . HDL Coder / Ports & Subsystems

Description

The Enabled Subsystem block is a Subsystem block preconfigured as a starting point for creating a
subsystem that executes when a control signal has a positive value.

v
n
p Ll Out1
Enabled
Subsystem
Enable
Inl Outl

Use Enabled Subsystem blocks to model:

* Discontinuities
* Optional functionality
* Alternative functionality

For an explanation of the Enabled Subsystem block parameters, see Subsystem.

Ports
Input

In — Signal input to Subsystem block
scalar | vector | matrix

Signal input to a Subsystem block, specified as a scalar, vector, or matrix. Placing an Inport block in a
subsystem adds an external input port to the Subsystem block. The port label matches the name of
the Inport block.

Use Inport blocks to receive signals from the local environment.

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

1-637

1 Blocks

1-638

Enable — Control signal input to Subsystem block
scalar | vector | matrix

An Enable block in a subsystem adds an external input port to the Subsystem block and makes the
block an Enabled Subsystem block.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
Boolean | fixed point

Output

Out — Signal output from Subsystem block
scalar | vector | matrix

Signal output from a Subsystem block, returned as a scalar, vector, or matrix. Placing an Outport
block in a subsystem adds an external output port to the Subsystem block. The port label matches the
name of the Outport block.

Use Outport blocks to send signals to the local environment.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus | image

Block Characteristics

Data Types Boolean? | bus? | double? | enumerated® | fixed pointe|half?|
integer?|single? | string?®

Direct Feedthrough |no

Multidimensional yes?

Signals

Variable-Size Signals |yes?

Zero-Crossing no

Detection

a Actual data type or capability support depends on block implementation.

Version History
Introduced before R2006a
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual code generation support depends on block implementation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Enabled Subsystem

Best Practices

When using enabled subsystems in models targeted for HDL code generation, it is good practice to

consider the following:

» For synthesis results to match Simulink results, the Enable port must be driven by registered logic
(with a synchronous clock) on the FPGA.

* Put unit delays on Enabled Subsystem output signals. Doing so prevents the code generator from
inserting extra bypass registers in the HDL code.

* Enabled subsystems can affect synthesis results in the following ways:

* In some cases, the system clock speed can drop by a small percentage.

* Generated code uses more resources, scaling with the number of enabled subsystem instances
and the number of output ports per subsystem.

HDL Architecture

Architecture Description
Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black box interface. The generated HDL code includes only the input/

output port definitions for the subsystem. Therefore, you can use a subsystem in
your model to generate an interface to existing, manually written HDL code.

The black-box interface generation for subsystems is similar to the Model block
interface generation without the clock signals.

No HDL Remove the subsystem from the generated code. You can use the subsystem in
simulation, however, treat it as a “no-op” in the HDL code.

HDL Block Properties

General

AdaptivePipelining Automatic pipeline insertion based on the synthesis tool, target frequency,
and multiplier word-lengths. The default is inherit. See also
“AdaptivePipelining” (HDL Coder).

BalanceDelays Detects introduction of new delays along one path and inserts matching
delays on the other paths. The default is inherit. See also
“BalanceDelays” (HDL Coder).

ClockRatePipelining |Insert pipeline registers at a faster clock rate instead of the slower data

rate. The default is inherit. See also “ClockRatePipelining” (HDL Coder).

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

DistributedPipelining

Pipeline register distribution, or register retiming. The default is inherit.
See also “DistributedPipelining” (HDL Coder).

DSPStyle

Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle” (HDL Coder).

1-639

1 Blocks

1-640

General

FlattenHierarchy Remove subsystem hierarchy from generated HDL code. The default is

inherit. See also “FlattenHierarchy” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

SharingFactor Number of functionally equivalent resources to map to a single shared

resource. The default is 0. See also “Resource Sharing” (HDL Coder).

StreamingFactor Number of parallel data paths, or vectors, that are time multiplexed to

transform into serial, scalar data paths. The default is 0, which implements
fully parallel data paths. See also “Streaming” (HDL Coder).

Target Specification

This block cannot be the DUT, so the block property settings in the Target Specification tab are
ignored.

Restrictions

HDL Coder supports HDL code generation for enabled subsystems that meet the following conditions:

The enabled subsystem is not the DUT.

The subsystem is not both triggered and enabled.

The enable signal is a scalar.

The input datatype for the enable signal is boolean.

If the output of the subsystem is a bus then Initial condition of the outport must be 0.

All inputs and outputs of the enabled subsystem (including the enable signal) run at the same rate.
The Show output port parameter of the Enable block is set to Off.

The States when enabling parameter of the Enable block is set to held (i.e., the Enable block
does not reset states when enabled).

The Output when disabled parameter for the enabled subsystem output ports is set to held (i.e.,
the enabled subsystem does not reset output values when disabled).

If the DUT contains the following blocks, RAMArchitecture is set to WithClockEnable:

* Dual Port RAM

* Simple Dual Port RAM

* Single Port RAM

The enabled subsystem does not contain the following blocks:

¢ CIC Decimation
* CIC Interpolation
¢ FIR Decimation

Enabled Subsystem

* FIR Interpolation

* Downsample

* Upsample

 HDL FIFO

 HDL Cosimulation blocks (HDL Verifier™)

* Rate Transition

* NR Polar Encoder and NR Polar Decoder (Wireless HDL Toolbox™)

Example

The Automatic Gain Controller example shows how you can use enabled subsystems in HDL code
generation. To open the example, enter:

hdlcoder agc

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Actual data type support depends on block implementation.

See Also

Triggered Subsystem | Enabled and Triggered Subsystem | Function-Call Subsystem | Subsystem |
Enable

Topics

“Conditionally Executed Subsystems Overview”
“Using Enabled Subsystems”

“Using Triggered Subsystems”

“Using Enabled and Triggered Subsystems”
“Using Function-Call Subsystems”

1-641

1 Blocks

1-642

Enumerated Constant

Generate enumerated constant value

Libraries:

Simulink / Sources
HDL Coder / Sources

Description

The Enumerated Constant block outputs a scalar, array, or matrix of enumerated values. You can also
use the Constant block to output enumerated values, but it provides block parameters that do not
apply to enumerated types, such as Qutput minimum and Qutput maximum. When you need a
block that outputs only constant enumerated values, use Enumerated Constant rather than Constant.
For more information, see “Simulink Enumerations”.

Ports
Output

Port_1 — Enumerated constant
scalar | vector | matrix

Enumerated constant value, specified as a scalar, vector, or matrix.

Data Types: enumerated

Parameters
Output data type — Output data type

Enum: SlDemoSign (default) | Enum:<ClassName>

Specify the enumerated type from which you want the block to output one or more values. The initial
value, Enum: S1DemoSign, is a dummy enumerated type that prevents a newly cloned block from
causing an error. To specify the desired enumerated type, select it from the drop-down list or enter
Enum:ClassName in the Output data type field, where ClassName is the name of the MATLAB
class that defines the type.

Programmatic Use

Block Parameter: OutDataTypeStr
Type: character vector

Values: 'Enum:<ClassName>'
Default: 'Enum: S1DemoSign'

Mode — Category of data to specify
Enumerated (default)

Select the category of data to specify.

Enumerated Constant

Enumerated

Enumerated data types. Selecting Enumerated enables a second menu/text box to the right,
where you can enter the class name.

Value — Enumerated value

SlDemoSign.Positive (default) | Enum:<ClassName.Value>

Specify the value or values that the block outputs. The output of the block has the same dimensions
and elements as the Value parameter. The initial value, SIDemoSign.Positive, is a dummy
enumerated value that prevents a newly cloned block from causing an error.

To specify the desired enumerated values, select from the drop-down list or enter any MATLAB
expression that evaluates to the desired result, including an expression that uses tunable parameters.
All specified values must be of the type indicated by the Output data type. To specify an array that
includes every value in the enumerated type, use the enumeration function.

Programmatic Use

Block Parameter: Value

Type: character vector

Values: 'Enum:<ClassName.Value>'
Default: 'S1DemoSign.Positive'

Sample time — Sample time
inf (default) | scalar | vector

Specify the interval between times that the block output can change during simulation (for example,
due to tuning the Value parameter). The default value of inf indicates that the block output can
never change. A sample time of inf speeds the simulation and generated code by avoiding the need
to recompute the block output. For more information, see “Specify Sample Time”.

Programmatic Use

Block Parameter: SampleTime
Type: character vector

Values: scalar | vector

Default: 'inf"'

Block Characteristics

Data Types enumerated
Direct Feedthrough |no
Multidimensional yes

Signals

Variable-Size Signals |no
Zero-Crossing no
Detection

Version History
Introduced in R2009b

1-643

1 Blocks

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Constant | enumeration

Topics

“Use Enumerated Data in Simulink Models”
“Simulink Enumerations”

“Code Generation for Enumerations”
“Specify Sample Time”

1-644

Environment Controller

Environment Controller

(Removed) Create branches of block diagram that apply only to simulation or only to code generation

Note Environment Controller block has been removed. Use the Variant Source block instead. For
more information, see “Compatibility Considerations”.

Libraries:
Sim_ | Simulink / Signal Routing
Crut
Codear
Description

The Environment Controller block outputs the signal at its Sim port only if the model that contains it
is being simulated. It outputs the signal at its Coder port only if code is being generated from the
model. This option enables you to create branches of a block diagram that apply only to simulation or
code generation. This table describes various scenarios where either the Sim or Coder port applies.

Scenario Output
Normal mode simulation Sim
Accelerator mode simulation Sim
Rapid accelerator mode simulation Sim
Simulation of a referenced model in normal or Sim

accelerator modes

Simulation of a referenced model in processor-in- |Coder

the-loop (PIL) mode (uses the same code generated for a referenced
model)

External mode simulation Coder

Standard code generation Coder

Code generation of a referenced model Coder

Simulink Coder software does not generate code for blocks connected to the Sim port if these
conditions hold:

* On the Code Generation > Optimization pane of the Configuration Parameters dialog box, you
set Default parameter behavior to Inlined.

* The blocks connected to the Sim port do not have external signals.
* The Sim port input path does not contain an S-function or an Interpreted MATLAB Function block.

If you enable block reduction optimization, Simulink eliminates blocks in the branch connected to the
Coder port when compiling the model for simulation. For more information, see “Block reduction”.

Note Simulink Coder code generation eliminates the blocks connected to the Sim branch only if the
Sim branch has the same signal dimensions as the Coder branch. Regardless of whether it eliminates

1-645

1 Blocks

the Sim branch, Simulink Coder uses the sample times on the Sim branch as well as the Coder branch
to determine the fundamental sample time of the generated code and might, in some cases, generate
sample-time handling code that applies only to sample times specified on the Sim branch.

Ports
Input

Sim — Simulation input
scalar | vector | matrix

Simulation input values, specified as a scalar, vector, or matrix. Input signal must have the same
width as the input to the Coder port.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Coder — Code generation input
scalar | vector | matrix

Code generation input values, specified as a scalar, vector, or matrix. Input signal must have the same
width as the input to the Sim port.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Output

Out — Values from Sim or Coder input port
scalar | vector | matrix

Values from the Sim or Coder input port, depending on the current environment. For more
information on what the block outputs in various simulation and code generation modes, see
“Description” on page 1-645.

Data Types: single | double | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Block Characteristics

Data Types Boolean | bus | double | enumerated | fixed point | half | integer
| single

Direct Feedthrough |no

Multidimensional yes

Signals

Variable-Size Signals |no

Zero-Crossing no

Detection

Version History
Introduced before R2006a

1-646

Environment Controller

R2021b: Environment Controller block has been removed

Warns starting in R2021b

The Environment Controller block has been removed from the Signal Routing library. Existing models
that use this block continue to work with a warning. Use the Variant Source block with the Variant
control mode parameter set to sim codegen switching instead. You can use Model Advisor or
Upgrade Advisor to automatically identify and replace all instances of the Environment Controller
block with the Variant Source block. For information on the Model advisor check, see “Identify
Environment Controller Blocks and Replace Them with Variant Source Blocks” on page 9-66.

Variant blocks offer these advantages over the Environment Controller block:

» Variant Source block with the Variant control mode parameter set to sim codegen
switching allows you to automatically switch between simulation and code generation
workflows. In this mode, Variant Source block supports these activation times:

Variant activation time

Behavior

update diagram

Simulink sets the active choice during update diagram
before the propagation of signal attributes. Inactive
choices are removed prior to propagation of signal
attributes, so the generated code contains only the
active choice.

update diagram analyze all
choices

Simulink sets the active choice during update diagram
after the propagation of signal attributes. Signal
attributes are propagated to both active and inactive
choices to check for consistency. Inactive choices are
removed at the end of update diagram before model
start occurs. The generated code contains only active
choices.

» Variant Sink block enables branching on the output side (destination of a signal).

* Variant blocks highlight the path of the active variant choice during simulation and code

generation.

» Variant Source block offers optimal code generation compared to the Environment Controller
block. The Environment Controller block can retain blocks connected to the Sim port in the

generated code.

» Variant blocks can be centrally managed using the Variant Manager tool, which offers these key

capabilities:

* Visualize the variant model hierarchy.

* Define and validate multiple variant configurations of the model.

* Generate a simplified model for a variant configuration using the Variant Reducer tool. For
variant blocks with the Variant control mode parameter set to sim codegen switching,
you can choose to retain the simulation branch or the code generation branch in the reduced

model.

* Compare variant configurations using the Variant Configuration Analysis tool.

For more information, see “Variant Manager for Simulink”.

1-647

1 Blocks

1-648

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code. Relates to resource limits and restrictions on speed and
memory often found in embedded systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and widely-varying execution times. While
the code is functionally valid and generally acceptable in resource-rich environments, smaller
embedded targets often cannot support such code. Usually, blocks evolve toward being suitable for
production code. Thus, blocks suitable for production code remain suitable.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Variant Source | Default parameter behavior (Simulink Coder)

Topics

“Spawn and Synchronize Execution of RTOS Task” (Simulink Coder)
“Dual-Model Approach: Code Generation” (Simulink Coder)

“Block reduction”

Event Listener

Event Listener

Event port for Initialize Function, Reinitialize Function, Reset Function, and Terminate Function
blocks

Description

The Event Listener block serves as an event port for the Initialize Function, Reinitialize Function,
Reset Function, and Terminate Function blocks.

Parameters
Event type — Select event type for subsystem
Initialize (default) | Reinitialize | Reset | Terminate

Select event type for subsystem to execute initialize, reinitialize, reset, or terminate algorithms.

Initialize

Select to trigger the execution of an Initialize Function block with an initialize event.
Reinitialize

Select to trigger the execution of an Reinitialize Function block with an reinitialize event.
Reset

Select to trigger the execution of a Reset Function block with a reset event.
Terminate

Select to trigger the execution of a Terminate Function block with a terminate event.
Programmatic Use
Block Parameter: EventType
Type: character vector
Value: 'Initialize' | 'Reinitialize' | 'Reset' | 'Terminate’
Default: 'Initialize’

Event name — Specify event name
reinit | reset | event name

Specify event name for Reinitialize Function or Reset Function block. Simulink displays the name on
the face of the Reinitialize Function or Reset Function block. The event name is also the name of the
reinitialize event port on the Model or Subsystem block containing the Reinitialize Function block or
the name of the reset event port on the Model block containing the Reset Function block.
reinit

Default event name when Event type is set to Reinitialize.
reset

Default event name when Event type is set to Reset.

1-649

1 Blocks

1-650

When entering the Event name, the auto-completion list provides some suggestions. The list is not
complete.

The Event name must be a valid MATLAB variable name.

Dependency

To enable this parameter, set the Event type parameter to Reinitialize or Reset.

Programmatic Use

Block Parameter: EventName

Type: character vector

Value: 'reinit' | 'reset' | '<event name>'
Default: 'reinit' or 'reset’

Enable variant condition — Control activating the variant control (condition)

off (default) | on

Control activating the variant control (condition) defined with the Variant control parameter.

off
Deactivate variant control of subsystem.

#| on
Activate variant control of subsystem.

When you select Enable variant condition, a badge indicates the change:

i M ir?i_:ialize F‘!- () reinit !- () reset !- @ terminate
i i i

Programmatic Use

Block Parameter: Variant
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Note

* Areinitialize event port of a Model or Subsystem block can be conditional and propagates the net
variant conditions defined on the corresponding Reinitialize Function block in the referenced
model or subsystem.

* Areset event port of a Model block can be conditional and propagates the net variant conditions
defined on the corresponding Reset Function block in the referenced model.

* [Initialize and terminate event ports are always unconditional because they control both the model
default and block-specific initialize and terminate events of the referenced model. If you define an
Initialize Function block in the referenced model, it corresponds to an explicit initialize event.

Variant control — Specify variant control (condition) expression

Event Listener

Variant (default) | logical expression

Specify variant control (condition) expression that executes a variant Initialize Function, Reinitialize
Function, Reset Function, or Terminate Function block when the expression evaluates to true.
Variant
Default name for a logical (Boolean) expression.
logical expression
A logical (Boolean) expression or a Simulink.Variant object representing a Boolean
expression.

If you want to generate code for your model, define the variables in the expression as
Simulink.Parameter objects.

Dependency

To enable this parameter, select the Enable variant condition parameter.

Programmatic Use

Block Parameter: VariantControl

Type: character vector

Value: 'Variant' | '<logical expression>'
Default: 'Variant'

Generate preprocessor conditionals — Select if variant choices are enclosed within C preprocessor
conditional statements

off (default) | on

Select if variant choices are enclosed within C preprocessor conditional statements.

off
Do not enclose variant choices within C preprocessor conditional statements.

¥| on

When generating code for an ERT target, enclose variant choices within C preprocessor
conditional statements (#1if).

Dependency
To enable this parameter, select the Enable variant condition parameter.

When you select Generate preprocessor conditionals, a badge indicates the change:

vl
) initialize (") reinit () reset @ terminate

Programmatic Use

Block Parameter: GeneratePreprocessorConditionals
Type: character vector

Value: 'off' | 'on'

Default: 'off'

1-651

1 Blocks

See Also

Initialize Function | Reinitialize Function | Reset Function | Terminate Function | State Reader | State
Writer

Topics

“Using Initialize, Reinitialize, Reset, and Terminate Functions”
“Create Test Harness to Generate Function Calls”

1-652

Extract Bits

Extract Bits

Output selection of contiguous bits from input signal

Libraries:
S Simulink / Logic and Bit Operations
Unper Halr HDL Coder / Logic and Bit Operations
Description

The Extract Bits block allows you to output a contiguous selection of bits from the stored integer
value of the input signal. Use the Bits to extract parameter to define the method for selecting the
output bits.

* Select Upper half to output the half of the input bits that contain the most significant bit. If
there is an odd number of bits in the input signal, the number of output bits is given by the
equation

number of output bits = ceil(number of input bits/2)

» Select Lower half to output the half of the input bits that contain the least significant bit. If
there is an odd number of bits in the input signal, the number of output bits is given by the
equation

number of output bits = ceil(number of input bits/2)

* Select Range starting with most significant bit to output a certain number of the most
significant bits of the input signal. Specify the number of most significant bits to output in the
Number of bits parameter.

» Select Range ending with least significant bit to output a certain number of the least
significant bits of the input signal. Specify the number of least significant bits to output in the
Number of bits parameter.

* Select Range of bits to indicate a series of contiguous bits of the input to output in the Bit
indices parameter. You indicate the range in [start end] format, and the indices of the input
bits are labeled contiguously starting at 0 for the least significant bit.

This block does not report wrap on overflow warnings during simulation. To report these warnings,
see the Simulink. restoreDiagnostic reference page. The block does report errors due to wrap
on overflow.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array. Floating-point inputs are passed
through the block unchanged. boolean inputs are treated as uint8 signals.

1-653

1 Blocks

1-654

Note Performing bit operations on a signed integer is difficult. You can avoid difficulty by converting
the data type of your input signals to unsigned integer types.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Extracted bits
scalar | vector | matrix | N-D array

Contiguous selection of extracted bits, specified as a scalar, vector, matrix, or N-D array. Floating-
point inputs are passed through the block unchanged.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

Parameters
Bits to extract — Method for extracting bits

Upper half (default) | Lower half | Range starting with most significant bit | Range
ending with least significant big | Range of bits

Select the method for extracting bits from the input signal.

Consider an input signal that is represented in binary by 110111001:

» Ifyou select Upper half for the Bits to extract parameter, the output is 11011 in binary.
* Ifyouselect Lower half for the Bits to extract parameter, the output is 11001 in binary.

» Ifyou select Range starting with most significant bit for the Bits to extract
parameter, and specify 3 for the Number of bits parameter, the output is 110 in binary.

* Ifyouselect Range ending with least significant bit for the Bits to extract
parameter, and specify 8 for the Number of bits parameter, the output is 10111001 in binary.

* Ifyouselect Range of bits for the Bits to extract parameter, and specify [4 7] for the Bit
indices parameter, the output is 1011 in binary.

Programmatic Use

Block Parameter: bitsToExtract

Type: character vector

Values: 'Upper half' | 'Lower half' | 'Range starting with most significant
bit' | 'Range ending with least significant bit' | 'Range of bits'

Default: 'Upper half'

Number of bits — Number of bits to output
8 (default) | positive integer

Select the number of bits to output from the input signal. Signed integer data types must have at
least two bits. Unsigned data integer types can be as short as a single bit.

Extract Bits

Dependencies

To enable this parameter, set Bits to extract to Range starting with most significant bit
or Range ending with least significant bit.

Programmatic Use

Block Parameter: numBits
Type: character vector
Values: positive integer
Default: '8

Bit indices — Contiguous range of bits to output
[0 7] (default) | contiguous range

Specify a contiguous range of bits of the input signal to output. Specify the range in [start end]
format. The indices are assigned to the input bits starting with 0 at the least significant bit.

Dependencies

To enable this parameter, set Bits to extract to Range of bits.

Programmatic Use

Block Parameter: bitIdxRange
Type: character vector

Values: contiguous range
Default: ' [0 7]

Output scaling mode — Output scaling mode
Preserve fixed-point scaling (default) | Treat bit field as an integer
Select the scaling mode to use on the output bit selection:

* When you select Preserve fixed-point scaling, the fixed-point scaling of the input is used
to determine the output scaling during the data type conversion.

* When you select Treat bit field as an integer, the fixed-point scaling of the input is
ignored, and only the stored integer is used to compute the output data type.

Programmatic Use

Block Parameter: outScalingMode

Type: character vector

Values: 'Preserve fixed-point scaling' | 'Treat bit field as an integer'
Default: 'Preserve fixed-point scaling'

Block Characteristics

Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough |yes

Multidimensional yes

Signals

Variable-Size Signals |no

1-655

1 Blocks

1-656

Zero-Crossing no
Detection

Version History
Introduced before R2006a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL

Coder).

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Bitwise Operator | Bit Clear | Bit Set | Float Extract Bits | Bit Slice

Extract Diagonal

Extract Diagonal

Extract main diagonal of input matrix

Libraries:
A =>\ ok Simulink / Matrix Operations

Description

The Extract Diagonal block populates the unoriented output vector with the elements on the main
diagonal of the M-by-N input matrix A. Equivalent MATLAB code is given by:

D = diag(A)

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input matrix to extract the diagonal from, specified as a scalar, vector, or matrix .

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Output

Port_1 — Output signal
vector

Output vector of each diagonal element.

The output is the same data type and complexity as the input. The output vector has length
min(M,N).

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Block Characteristics

Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough |no

Multidimensional no

Signals

Variable-Size Signals |no

1-657

1 Blocks

1-658

Zero-Crossing no
Detection

Version History
Introduced before R2006a

R2021b: Extract Diagonal Block Moved to Simulink Matrix Operations Library
Behavior changed in R2021b

The Extract Diagonal block has been moved from the DSP System Toolbox > Math Functions >
Matrices and Linear Algebra > Matrix Operations library to the Simulink > Matrix
Operationslibrary. All existing models continue to work.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on the memcpy or memset function (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Blocks
Create Diagonal Matrix

Functions
diag

Fcn

Fcn
Apply specified expression to input
Libraries:
Simulink / User-Defined Functions
LC) 3
Description

The Fcn block applies the specified mathematical expression to its input. The expression can include
one or more of these components:

u — The input to the block. If u is a vector, u (i) represents the ith element of the vector; u(1) or
u alone represents the first element.

Numeric constants.
Arithmetic operators (+ - * / ™).

Relational operators (== != > < >= <=) — The expression returns 1 if the relation is true;
otherwise, it returns 0.

Logical operators (&& || !) — The expression returns 1 if the relation is true; otherwise, it returns
0.

Parentheses.

Mathematical functions — abs, acos, asin, atan, atan2, ceil, cos, cosh, exp, floor, hypot,
log, Logl0, power, rem, sgn (equivalent to sign in MATLAB), sin, sinh, sqrt, tan, and tanh.

Note The Fcn block does not support round and fix. Use the Rounding Function block to apply
these rounding modes.

Workspace variables — Variable names that are not recognized in the preceding list of items are
passed to MATLAB for evaluation. Matrix or vector elements must be specifically referenced (e.g.,
A(1,1) instead of A for the first element in the matrix).

The Fcn block observes the following rules of operator precedence:

© 00 N O 1 A W N =

()

N

+ - (unary)
!

* /

+ -

> < <= >=
= I=

&&

1-659

1 Blocks

10 ||

The expression differs from a MATLAB expression in that the expression cannot perform matrix
computations. Also, this block does not support the colon operator (:).

Block input can be a scalar or vector. The output is always a scalar. For vector output, consider using

the Math Function block. If a block input is a vector and the function operates on input elements
individually (for example, the sin function), the block operates on only the first vector element.

Limitations
* You cannot tune the expression during simulation in Normal or Accelerator mode (see “How
Acceleration Modes Work”), or in generated code. To implement tunable expressions, tune the

expression outside the Fcn block. For example, use the Relational Operator block to evaluate the
expression outside.

* The Fcn block does not support custom storage classes. See “Organize Parameter Data into a
Structure by Using Struct Storage Class” (Embedded Coder).

Ports
Input

In — Input to a Fcn block
scalar | vector

The Fcn block accepts and outputs signals of type single or double.

For more information, see “Data Types Supported by Simulink” in the Simulink documentation.

Data Types: single | double
Output

Out — Output from a Fcn block
scalar

The Fcn block accepts and outputs signals of type single or double.

For more information, see “Data Types Supported by Simulink” in the Simulink documentation.

Data Types: single | double

Parameters

Expression — Specify the mathematical expression

mathematical expression

Specify the mathematical expression to apply to the input. Expression components are listed above.
The expression must be mathematically well-formed (uses matched parentheses, proper number of

function arguments, and so on). The expression has restrictions on tunability (see “Limitations” on
page 1-660).

1-660

Fcn

Programmatic Use

Block Parameter: Expr

Type: character vector

Value: mathematical expression

Default: 'sin(u(l)*exp(2.3*(-u(2))))"

Sample time — Specify sample time in the block

scalar

Note This parameter is not visible in the block dialog box unless it is explicitly set to a value other
than - 1. To learn more, see “Blocks for Which Sample Time Is Not Recommended”.

Block Characteristics

Data Types double | single
Direct Feedthrough |yes
Multidimensional no

Signals

Variable-Size Signals |no
Zero-Crossing no

Detection

Version History
Introduced before R2006a

R2023a: Fcn Block Restored to User-Defined Library
Behavior changed in R2023a

The Fcn block has been restored to the Simulink > User-Defined library.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
MATLAB System | MATLAB Function | Interpreted MATLAB Function

1-661

1 Blocks

1-662

Find Nonzero Elements

Find nonzero elements in array

Libraries:
2 find p Simulink / Math Operations

Description

The Find Nonzero Elements block locates all nonzero elements of the input signal and returns the
linear indices of those elements. If the input is a multidimensional signal, the Find Nonzero Elements
block can also return the subscripts of the nonzero input elements. In both cases, you can show an
output port with the nonzero input values.

The Find Nonzero Elements block outputs a variable-size signal. The sample time for any variable-
size signal must be discrete. If your model does not already use a fixed-step solver, you may need to
select a fixed-step solver in the Configuration Parameters dialog. For more information, see “Compare
Solvers” and “Choose a Solver”.

Ports
Input

Port_1 — Input signal

scalar | vector | matrix | N-D array

Input signal from which the block finds all nonzero elements.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Indices of nonzero elements
variable-size signal

The Find Nonzero Elements block outputs the indices of nonzero elements as a variable-size signal.
You control the data type of the output using the Output data type block parameter.

Dependencies

By default, the block outputs linear indices from the first output port. When you change the Index
output format to Subscripts, the block instead provides the element indices of a two-dimension or
larger signal in a subscript form. In this mode, you must specify the Number of input dimensions,
and the block creates a separate output port for each dimension.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
Boolean | fixed point

Port_2 — Values of nonzero elements
variable-size signal

Find Nonzero Elements

The Find block can optionally output the values of all nonzero elements as a variable-size signal.

Dependencies

To enable this port, select Show output port for nonzero input values.

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
Boolean | fixed point

Parameters

Main

Index output format — Format for indices of nonzero elements
Linear indices (default) | Subscripts

Select the output format for the indices of the nonzero input values.

* Selecting Linear indices provides the element indices of any dimension signal in a vector
form. For one dimension (vector) signals, indices correspond to the position of nonzero values
within the vector. For signals with more than one dimension, the conversion of subscripts to
indices is along the first dimension. You do not need to know the signal dimension of the input
signal.

» Selecting Subscripts provides the element indices of a two-dimension or larger signal in a
subscript form. Because the block shows an output port